
Earth System Modeling Framework

ESMF Reference Manual for Fortran

Version 5.1

ESMF Joint Specification Team: V. Balaji, Byron Boville, Samson Cheung, Nancy Collins, Tony
Craig, Carlos Cruz, Arlindo da Silva, Cecelia DeLuca, Rosalinda de Fainchtein, Brian Eaton,
Bob Hallberg, Tom Henderson, Chris Hill, Mark Iredell, Rob Jacob, Phil Jones, Erik Kluzek,

Brian Kauffman, Jay Larson, Peggy Li, Fei Liu, John Michalakes, Sylvia Murphy, David Neckels,
Ryan O Kuinghttons, Bob Oehmke, Chuck Panaccione, Jim Rosinski, Will Sawyer, Earl Schwab,
Shepard Smithline, Walter Spector, Don Stark, Max Suarez, Spencer Swift, Gerhard Theurich,

Atanas Trayanov, Silverio Vasquez, Jon Wolfe, Weiyu Yang, Mike Young, Leonid Zaslavsky

February 28, 2011

http://www.earthsystemmodeling.org

Acknowledgements

The ESMF software is based on the contributions of a broad community. Below are the software packages that
are included in ESMF or strongly influenced our design. We’d like to express our gratitude to the developers of these
codes for access to their software as well as their ideas and advice.

• The Spherical Coordinate Remapping and Interpolation Package (SCRIP) from Los Alamos, which informed
the design of our regridding functionality

• The Model Coupling Toolkit (MCT) from Argonne National Laboratory, on which we based our sparse matrix
multiply approach to general regridding

• The Inpack configuration attributes package from NASA Goddard, which was adapted for use in ESMF by
members of NASA Global Modeling and Assimilation group

• The Flexible Modeling System (FMS) package from GFDL and theGoddard Earth Modeling System (GEMS)
from NASA Goddard, both of which provided inspiration for the overall ESMF architecture

• The Common Component Architecture (CCA) effort within the Department of Energy, from which we drew
many ideas about how to design components

• The Vector Signal Image Processing Library (VSIPL) and its predecessors, which informed many aspects of our
design, and the radar system software design group at Lincoln Laboratory

• The Portable, Extensible Toolkit for Scientific Computation (PETSc) package from Argonne National Labora-
tories, on which we based our initial makefile system

• The Community Climate System Model (CCSM) and Weather Research and Forecasting (WRF) modeling
groups at NCAR, who have provided valuable feedback on the design and implementation of the framework

1

Contents

I ESMF Overview 24

1 What is the Earth System Modeling Framework? 25

2 The ESMF Reference Manual for Fortran 25

3 How to Contact User Support and Find Additional Informatio n 26

4 How to Submit Comments, Bug Reports, and Feature Requests 26

5 Conventions 26
5.1 Typeface and Diagram Conventions 26
5.2 Method Name and Argument Conventions 27

6 The ESMF Application Programming Interface 28
6.1 Standard Methods and Interface Rules 28
6.2 Deep and Shallow Classes 29
6.3 Special Methods 29
6.4 The ESMF Data Hierarchy 29
6.5 ESMF Spatial Classes 30
6.6 ESMF Maps 30
6.7 ESMF Specification Classes 31
6.8 ESMF Utility Classes 31

7 Overall Rules and Behavior 31
7.1 Local and Global Views and Associated Conventions 31
7.2 Allocation Rules 31
7.3 Equality and Copying Objects 32
7.4 Attributes 32

8 Integrating ESMF into Applications 32
8.1 Using the ESMF Superstructure 32

9 Global Options, Flags and Parameters 33
9.1 Options 33

9.1.1 ESMF_Method 33
9.2 Flags 33

9.2.1 ESMF_AllocFlag 33
9.2.2 ESMF_BlockingFlag 33
9.2.3 ESMF_CommFlag 34
9.2.4 ESMF_ContextFlag 35
9.2.5 ESMF_CopyFlag 35
9.2.6 ESMF_DefaultFlag 35
9.2.7 ESMF_DecompFlag 36
9.2.8 ESMF_IOFmtFlag 36
9.2.9 ESMF_IndexFlag 36
9.2.10 ESMF_NeededFlag 36
9.2.11 ESMF_ReadyFlag 36
9.2.12 ESMF_ReduceFlag 37

2

9.2.13 ESMF_HaloStartRegionFlag 37
9.2.14 ESMF_RegionFlag 37
9.2.15 ESMF_ReqForRestartFlag 37
9.2.16 ESMF_Status 37
9.2.17 ESMF_ValidFlag 38

9.3 Parameters 38
9.3.1 ESMF_TypeKind 38
9.3.2 Fortran Kinds 38
9.3.3 ESMF Version 39
9.3.4 ESMF_GeomType 39

10 Overall Design and Implementation Notes 39

II Applications 40

11 ESMF_Info 40
11.1 Description 40

12 ESMF_RegridWeightGen 40
12.1 Description 40
12.2 Usage 42

III Superstructure 44

13 Overview of Superstructure 45
13.1 Superstructure Classes 45
13.2 Hierarchical Creation of Components 46
13.3 Sequential and Concurrent Execution of Components 47
13.4 Intra-Component Communication 48
13.5 Data Distribution and Scoping in Components 48
13.6 Performance 48
13.7 Object Model 52

14 Application Driver and Required ESMF Methods 52
14.1 Description 52
14.2 Application Driver and Required ESMF Methods Options .. 53

14.2.1 ESMF_TerminationFlag 53
14.3 Use and Examples 53
14.4 Required ESMF Methods 58

14.4.1 ESMF_Initialize 58
14.4.2 ESMF_Finalize 59
14.4.3 User-codeSetServices method . 60
14.4.4 User-codeInitialize , Run, andFinalize methods 60
14.4.5 User-codeSetVM method . 60

15 GridComp Class 61
15.1 Description 61
15.2 GridComp Options 61

15.2.1 ESMF_GridCompType 61
15.3 Use and Examples 62

3

15.3.1 Implement a user-codeSetServices routine . 62
15.3.2 Implement a user-codeInitialize routine . 63
15.3.3 Implement a user-codeRun routine . 63
15.3.4 Implement a user-codeFinalize routine . 64
15.3.5 Implement a user-codeSetVM routine . 64
15.3.6 Set and Get the Internal State 65

15.4 Restrictions and Future Work 69
15.5 Class API 69

15.5.1 ESMF_GridCompCreate 69
15.5.2 ESMF_GridCompDestroy 70
15.5.3 ESMF_GridCompFinalize 71
15.5.4 ESMF_GridCompGet 71
15.5.5 ESMF_GridCompGetInternalState 73
15.5.6 ESMF_GridCompInitialize 73
15.5.7 ESMF_GridCompIsPetLocal 74
15.5.8 ESMF_GridCompPrint 75
15.5.9 ESMF_GridCompReadRestart 75
15.5.10 ESMF_GridCompRun 76
15.5.11 ESMF_GridCompSet 77
15.5.12 ESMF_GridCompSetEntryPoint 78
15.5.13 ESMF_GridCompSetInternalState 78
15.5.14 ESMF_GridCompSetServices 79
15.5.15 ESMF_GridCompSetServices 80
15.5.16 ESMF_GridCompSetVM 81
15.5.17 ESMF_GridCompSetVM 81
15.5.18 ESMF_GridCompSetVMMaxPEs 82
15.5.19 ESMF_GridCompSetVMMaxThreads 83
15.5.20 ESMF_GridCompSetVMMinThreads 84
15.5.21 ESMF_GridCompValidate 84
15.5.22 ESMF_GridCompWait 85
15.5.23 ESMF_GridCompWriteRestart 85

16 CplComp Class 86
16.1 Description 86
16.2 Use and Examples 86

16.2.1 Implement a user-codeSetServices routine . 87
16.2.2 Implement a user-codeInitialize routine . 87
16.2.3 Implement a user-codeRun routine . 88
16.2.4 Implement a user-codeFinalize routine . 88
16.2.5 Implement a user-codeSetVM routine . 89

16.3 Restrictions and Future Work 89
16.4 Class API 90

16.4.1 ESMF_CplCompCreate 90
16.4.2 ESMF_CplCompDestroy 91
16.4.3 ESMF_CplCompFinalize 91
16.4.4 ESMF_CplCompGet 92
16.4.5 ESMF_CplCompGetInternalState 93
16.4.6 ESMF_CplCompInitialize 94
16.4.7 ESMF_CplCompIsPetLocal 94
16.4.8 ESMF_CplCompPrint 95
16.4.9 ESMF_CplCompReadRestart 95

4

16.4.10 ESMF_CplCompRun 96
16.4.11 ESMF_CplCompSet 97
16.4.12 ESMF_CplCompSetEntryPoint 98
16.4.13 ESMF_CplCompSetInternalState 99
16.4.14 ESMF_CplCompSetServices 99
16.4.15 ESMF_CplCompSetServices 100
16.4.16 ESMF_CplCompSetVM 101
16.4.17 ESMF_CplCompSetVM 101
16.4.18 ESMF_CplCompSetVMMaxPEs 102
16.4.19 ESMF_CplCompSetVMMaxThreads 103
16.4.20 ESMF_CplCompSetVMMinThreads 104
16.4.21 ESMF_CplCompValidate 104
16.4.22 ESMF_CplCompWait 105
16.4.23 ESMF_CplCompWriteRestart 105

17 State Class 106
17.1 Description 106
17.2 State Options 106

17.2.1 ESMF_StateItemType 106
17.2.2 ESMF_StateType 107

17.3 Use and Examples 107
17.3.1 State create and destroy 108
17.3.2 Add items to a State 108
17.3.3 Add placeholders to a State 108
17.3.4 Mark an itemNEEDED. 109
17.3.5 Create aNEEDEDitem . 109
17.3.6 ESMF_StateReconcile() usage . 109
17.3.7 Read Arrays from a netCDF file and add to a State 112
17.3.8 Print Array data from a State 112
17.3.9 Write Array data within a State to a netCDF file 113

17.4 Restrictions and Future Work 113
17.5 Design and Implementation Notes 113
17.6 Object Model 116
17.7 Class API 116

17.7.1 ESMF_StateAdd 116
17.7.2 ESMF_StateAdd 117
17.7.3 ESMF_StateCreate 118
17.7.4 ESMF_StateDestroy 119
17.7.5 ESMF_StateGet 120
17.7.6 ESMF_StateGet 121
17.7.7 ESMF_StateGet 122
17.7.8 ESMF_StateGetNeeded 122
17.7.9 ESMF_StateIsNeeded 123
17.7.10 ESMF_StatePrint 123
17.7.11 ESMF_StateRead 124
17.7.12 ESMF_StateWrite 124
17.7.13 ESMF_StateReconcile 125
17.7.14 ESMF_StateSetNeeded 125
17.7.15 ESMF_StateValidate 126

5

IV Infrastructure: Fields and Grids 127

18 Overview of Infrastructure Data Handling 128
18.1 Infrastructure Data Classes 128
18.2 Design and Implementation Notes 129

19 FieldBundle Class 130
19.1 Description 130
19.2 FieldBundle Options 130

19.2.1 ESMF_PackFlag 130
19.3 Use and Examples 130

19.3.1 Create a FieldBundle 130
19.3.2 Access FieldBundle data 130
19.3.3 Destroy a FieldBundle 130
19.3.4 Redistribute data from a source FieldBundle to a destination FieldBundle 133
19.3.5 Perform sparse matrix multiplication from a source FieldBundle to a destination FieldBundle . 135
19.3.6 Perform FieldBundle halo update 137

19.4 Restrictions and Future Work 139
19.5 Design and Implementation Notes 140
19.6 Class API: Basic FieldBundle Methods 140

19.6.1 ESMF_FieldBundleAdd 140
19.6.2 ESMF_FieldBundleAdd 140
19.6.3 ESMF_FieldBundleCreate 141
19.6.4 ESMF_FieldBundleCreate 142
19.6.5 ESMF_FieldBundleCreate 142
19.6.6 ESMF_FieldBundleCreate 143
19.6.7 ESMF_FieldBundleCreate 143
19.6.8 ESMF_FieldBundleDestroy 144
19.6.9 ESMF_FieldBundleGet 144
19.6.10 ESMF_FieldBundleGet 145
19.6.11 ESMF_FieldBundleGet 145
19.6.12 ESMF_FieldBundleGet 146
19.6.13 ESMF_FieldBundlePrint 146
19.6.14 ESMF_FieldBundleRead 147
19.6.15 ESMF_FieldBundleSet 147
19.6.16 ESMF_FieldBundleSet 148
19.6.17 ESMF_FieldBundleSet 148
19.6.18 ESMF_FieldBundleValidate 149
19.6.19 ESMF_FieldBundleWrite 149

19.7 Class API: FieldBundle Communications 150
19.7.1 ESMF_FieldBundleHalo 150
19.7.2 ESMF_FieldBundleHaloRelease 151
19.7.3 ESMF_FieldBundleHaloStore 151
19.7.4 ESMF_FieldBundleRedist 152
19.7.5 ESMF_FieldBundleRedistRelease 152
19.7.6 ESMF_FieldBundleRedistStore 153
19.7.7 ESMF_FieldBundleRedistStore 154
19.7.8 ESMF_FieldBundleRegrid 155
19.7.9 ESMF_FieldBundleRegridRelease 156
19.7.10 ESMF_FieldBundleRegridStore 156
19.7.11 ESMF_FieldBundleSMM 157

6

19.7.12 ESMF_FieldBundleSMMRelease 157
19.7.13 ESMF_FieldBundleSMMStore 158
19.7.14 ESMF_FieldBundleSMMStore 159

20 Field Class 160
20.1 Description 160
20.2 Field Options 161

20.2.1 ESMF_RegridMethod 161
20.2.2 ESMF_RegridPole 161

20.3 Use and Examples 161
20.3.1 Field create and destroy 162
20.3.2 Get Fortran data pointer, bounds, and counts information from a Field 162
20.3.3 Get Grid, Array, and other information from a Field . .. 163
20.3.4 Create a Field with a Grid, typekind, and rank 164
20.3.5 Create a Field with a Grid and Arrayspec 164
20.3.6 Create a Field with a Grid and Array 165
20.3.7 Create an empty Field and finish it with FieldSetCommit . 166
20.3.8 Create a 7D Field with a 5D Grid and 2D ungridded boundsfrom a Fortran data array 166
20.3.9 Create a 2D Field with a 2D Grid and a Fortran data array. 168
20.3.10 Create a 2D Field with a 2D Grid and a Fortran data pointer 169
20.3.11 Create a 3D Field with a 2D Grid and a 3D Fortran data array 169
20.3.12 Create a 3D Field with a 2D Grid and a 3D Fortran data array with the gridToFieldMap argument170
20.3.13 Create a 3D Field with a 2D Grid and a 3D Fortran data array with halos 171
20.3.14 Create a Field from a LocStream, typekind, and rank .. 174
20.3.15 Create a Field from a LocStream and arrayspec 174
20.3.16 Create a Field from a Mesh, typekind, and rank 174
20.3.17 Create a Field from a Mesh and arrayspec 175
20.3.18 Create a Field from a Mesh and an Array 176
20.3.19 Create a Field from a Mesh and an ArraySpec with optional features 176
20.3.20 Create a Field with replicated dimensions 176
20.3.21 Create a Field on an arbitrarily distributed Grid . .. 178
20.3.22 Create a Field on an arbitrarily distributed Grid with replicated dimensions and ungridded bounds179
20.3.23 Field regridding 180
20.3.24 Precompute a regridding operation between two Fields . 181
20.3.25 Apply a regridding operation between a pair of Fields . 181
20.3.26 Release the stored information for a regridding operation . 182
20.3.27 Precompute a regridding operation using masks 182
20.3.28 Regrid troubleshooting guide 182
20.3.29 Field Regrid Example: Mesh to Mesh 183
20.3.30 Gather Field data onto root PET 186
20.3.31 Scatter Field data from root PET onto its set of jointPETs 187
20.3.32 Redistribute data from source Field to destinationField . 188
20.3.33 Field redistribution as a form of scattering on arbitrarily distributed structures 190
20.3.34 Sparse matrix multiplication from source Field to destination Field 192
20.3.35 Field Halo solving a domain decomposed heat transfer problem 194

20.4 Restrictions and Future Work 196
20.5 Design and Implementation Notes 196
20.6 Class API 196

20.6.1 ESMF_FieldCreateEmpty 196
20.6.2 ESMF_FieldDestroy 197
20.6.3 ESMF_FieldCreate 197

7

20.6.4 ESMF_FieldCreate 199
20.6.5 ESMF_FieldCreate 201
20.6.6 ESMF_FieldCreate 202
20.6.7 ESMF_FieldCreate 204
20.6.8 ESMF_FieldCreate 205
20.6.9 ESMF_FieldCreate 206
20.6.10 ESMF_FieldCreate 208
20.6.11 ESMF_FieldCreate 209
20.6.12 ESMF_FieldCreate 210
20.6.13 ESMF_FieldCreate 211
20.6.14 ESMF_FieldCreate 212
20.6.15 ESMF_FieldCreate 214
20.6.16 ESMF_FieldCreate 215
20.6.17 ESMF_FieldCreate 216
20.6.18 ESMF_FieldCreate 217
20.6.19 ESMF_FieldCreate 219
20.6.20 ESMF_FieldCreate 220
20.6.21 ESMF_FieldCreate 221
20.6.22 ESMF_FieldCreate 223
20.6.23 ESMF_FieldGet 224
20.6.24 ESMF_FieldGet 226
20.6.25 ESMF_FieldGetBounds 227
20.6.26 ESMF_FieldGet 229
20.6.27 ESMF_FieldGet 230
20.6.28 ESMF_FieldGet 231
20.6.29 ESMF_FieldGet 232
20.6.30 ESMF_FieldPrint 234
20.6.31 ESMF_FieldRead 234
20.6.32 ESMF_FieldSetCommit 235
20.6.33 ESMF_FieldSetCommit 236
20.6.34 ESMF_FieldSetCommit 238
20.6.35 ESMF_FieldSetCommit 239
20.6.36 ESMF_FieldSetCommit 240
20.6.37 ESMF_FieldSetCommit 241
20.6.38 ESMF_FieldSetCommit 242
20.6.39 ESMF_FieldSetCommit 243
20.6.40 ESMF_FieldValidate 244
20.6.41 ESMF_FieldWrite 245

20.7 Class API: Field Communications 246
20.7.1 ESMF_FieldGather 246
20.7.2 ESMF_FieldHalo 246
20.7.3 ESMF_FieldHaloRelease 247
20.7.4 ESMF_FieldHaloStore 248
20.7.5 ESMF_FieldRedist 249
20.7.6 ESMF_FieldRedistRelease 249
20.7.7 ESMF_FieldRedistStore 250
20.7.8 ESMF_FieldRedistStore 251
20.7.9 ESMF_FieldRegrid 252
20.7.10 ESMF_FieldRegridRelease 253
20.7.11 ESMF_FieldRegridStore 254
20.7.12 ESMF_FieldRegridStore 255

8

20.7.13 ESMF_FieldScatter 256
20.7.14 ESMF_FieldSMM 257
20.7.15 ESMF_FieldSMMRelease 257
20.7.16 ESMF_FieldSMMStore 258
20.7.17 ESMF_FieldSMMStore 259

21 ArrayBundle Class 260
21.1 Description 260
21.2 Use and Examples 261

21.2.1 Create an ArrayBundle from a list of Arrays 261
21.2.2 Access Arrays inside the ArrayBundle 261
21.2.3 Destroy an ArrayBundle and its constituents 262
21.2.4 Halo communication 262

21.3 Restrictions and Future Work 263
21.4 Design and Implementation Notes 263
21.5 Class API 263

21.5.1 ESMF_ArrayBundleCreate 263
21.5.2 ESMF_ArrayBundleDestroy 264
21.5.3 ESMF_ArrayBundleGet 264
21.5.4 ESMF_ArrayBundleHalo 265
21.5.5 ESMF_ArrayBundleHaloRelease 265
21.5.6 ESMF_ArrayBundleHaloStore 266
21.5.7 ESMF_ArrayBundlePrint 267
21.5.8 ESMF_ArrayBundleRead 267
21.5.9 ESMF_ArrayBundleRedist 268
21.5.10 ESMF_ArrayBundleRedistRelease 268
21.5.11 ESMF_ArrayBundleRedistStore 269
21.5.12 ESMF_ArrayBundleRedistStore 270
21.5.13 ESMF_ArrayBundleSMM 270
21.5.14 ESMF_ArrayBundleSMMRelease 271
21.5.15 ESMF_ArrayBundleSMMStore 272
21.5.16 ESMF_ArrayBundleSMMStore 273
21.5.17 ESMF_ArrayBundleWrite 274

22 Array Class 275
22.1 Description 275
22.2 Use and Examples 275

22.2.1 Array from native Fortran array with 1 DE per PET 275
22.2.2 Array from native Fortran array with extra elements for halo or padding 278
22.2.3 Array fromESMF_LocalArray . 280
22.2.4 Create Array with automatic memory allocation 284
22.2.5 Native language memory access 285
22.2.6 Regions and default bounds 286
22.2.7 Array bounds 288
22.2.8 Computational region and extra elements for halo or padding 289
22.2.9 Create 1D and 3D Arrays 291
22.2.10 Working with Arrays of different rank 292
22.2.11 Array and DistGrid rank – 2D+1 Arrays 292
22.2.12 Arrays with replicated dimensions 295
22.2.13 Communication – Scatter and Gather 297
22.2.14 Communication – Halo 300

9

22.2.15 Communication – Halo for arbitrary distribution . .. 305
22.2.16 Communication – Redist 311
22.2.17 Communication – SparseMatMul 316
22.2.18 Communication – Scatter and Gather, revisited 322
22.2.19 Non-blocking Communications 325

22.3 Restrictions and Future Work 327
22.4 Design and Implementation Notes 327
22.5 Class API 327

22.5.1 ESMF_ArrayCreate 327
22.5.2 ESMF_ArrayCreate 329
22.5.3 ESMF_ArrayCreate 330
22.5.4 ESMF_ArrayCreate 332
22.5.5 ESMF_ArrayCreate 334
22.5.6 ESMF_ArrayCreate 336
22.5.7 ESMF_ArrayCreate 337
22.5.8 ESMF_ArrayCreate 338
22.5.9 ESMF_ArrayCreate 340
22.5.10 ESMF_ArrayCreate 341
22.5.11 ESMF_ArrayDestroy 341
22.5.12 ESMF_ArrayGather 342
22.5.13 ESMF_ArrayGet 343
22.5.14 ESMF_ArrayGet 345
22.5.15 ESMF_ArrayGet 346
22.5.16 ESMF_ArrayGet 346
22.5.17 ESMF_ArrayHalo 347
22.5.18 ESMF_ArrayHaloRelease 348
22.5.19 ESMF_ArrayHaloStore 348
22.5.20 ESMF_ArrayPrint 349
22.5.21 ESMF_ArrayRead 350
22.5.22 ESMF_ArrayRedist 350
22.5.23 ESMF_ArrayRedistRelease 351
22.5.24 ESMF_ArrayRedistStore 352
22.5.25 ESMF_ArrayRedistStore 353
22.5.26 ESMF_ArrayScatter 354
22.5.27 ESMF_ArraySet 355
22.5.28 ESMF_ArraySet 355
22.5.29 ESMF_ArraySMM 356
22.5.30 ESMF_ArraySMMRelease 357
22.5.31 ESMF_ArraySMMStore 357
22.5.32 ESMF_ArraySMMStore 359
22.5.33 ESMF_ArrayValidate 359
22.5.34 ESMF_ArrayWrite 360

23 LocalArray Class 361
23.1 Description 361
23.2 Restrictions and Future Work 361
23.3 Class API 361

23.3.1 ESMF_LocalArrayCreate 361
23.3.2 ESMF_LocalArrayCreate 362
23.3.3 ESMF_LocalArrayCreate 362
23.3.4 ESMF_LocalArrayCreate 363

10

23.3.5 ESMF_LocalArrayDestroy 364
23.3.6 ESMF_LocalArrayGet 364
23.3.7 ESMF_LocalArrayGet 365

24 ArraySpec Class 365
24.1 Description 365
24.2 Use and Examples 365

24.2.1 Set ArraySpec values 366
24.2.2 Get ArraySpec values 366

24.3 Restrictions and Future Work 366
24.4 Design and Implementation Notes 366
24.5 Class API 367

24.5.1 ESMF_ArraySpecGet 367
24.5.2 ESMF_ArraySpecSet 367
24.5.3 ESMF_ArraySpecValidate 368
24.5.4 ESMF_ArraySpecPrint 368

25 Grid Class 368
25.1 Description 368

25.1.1 Grid Representation in ESMF 369
25.1.2 Supported Grids 369
25.1.3 Grid Topologies and Periodicity 369
25.1.4 Grid Distribution 370
25.1.5 Grid Coordinates 370
25.1.6 Coordinate Specification and Generation 371
25.1.7 Staggering 371
25.1.8 Options for Building Grids 372

25.2 Grid Options 373
25.2.1 ESMF_GridConn 373
25.2.2 ESMF_GridStatus 373
25.2.3 ESMF_GridItem 373
25.2.4 ESMF_StaggerLoc 373

25.3 Use and Examples 375
25.3.1 Create single-tile Grid shortcut method 375
25.3.2 Create a 2D regularly distributed rectilinear Grid with uniformly spaced coordinates 377
25.3.3 Create a 2D irregularly distributed rectilinear Grid with uniformly spaced coordinates 379
25.3.4 Create a 2D irregularly distributed Grid with curvilinear coordinates 380
25.3.5 Create an irregularly distributed rectilinear Gridwith a non-distributed vertical dimension . . 381
25.3.6 Create an arbitrarily distributed rectilinear Gridwith a non-distributed vertical dimension . . . 384
25.3.7 Create a curvilinear Grid using the coordinates defined in a SCRIP file 386
25.3.8 Create an empty Grid in a parent Component for completion in a child Component 387
25.3.9 Grid stagger locations 387
25.3.10 Associate coordinates with stagger locations 388
25.3.11 Specify the relationship of coordinate Arrays to index space dimensions 388
25.3.12 Access coordinates 389
25.3.13 Associate items with stagger locations 390
25.3.14 Access items 390
25.3.15 Grid regions and bounds 390
25.3.16 Get Grid coordinate bounds 392
25.3.17 Get Grid stagger location bounds 392
25.3.18 Get Grid stagger location information 393

11

25.3.19 Create an Array at a stagger location 393
25.3.20 Create more complex Grids using DistGrid 394
25.3.21 Specify custom stagger locations 394
25.3.22 Specify custom stagger padding 396
25.3.23 Create a 2D regularly distributed rectilinear Gridfrom file 397

25.4 Restrictions and Future Work 399
25.5 Design and Implementation Notes 400

25.5.1 Grid Topology 400
25.6 Class API: General Grid Methods 400

25.6.1 ESMF_GridAddCoord 400
25.6.2 ESMF_GridAddItem 401
25.6.3 ESMF_GridCreate 402
25.6.4 ESMF_GridCreate 404
25.6.5 ESMF_GridCreate 405
25.6.6 ESMF_GridCreate 405
25.6.7 ESMF_GridCreate 406
25.6.8 ESMF_GridCreateEmpty 407
25.6.9 ESMF_GridCreateShapeTile 407
25.6.10 ESMF_GridCreateShapeTile 410
25.6.11 ESMF_GridCreateShapeTile 413
25.6.12 ESMF_GridDestroy 415
25.6.13 ESMF_GridGet 416
25.6.14 ESMF_GridGet 417
25.6.15 ESMF_GridGet 418
25.6.16 ESMF_GridGet 419
25.6.17 ESMF_GridGetCoord 420
25.6.18 ESMF_GridGetCoord 421
25.6.19 ESMF_GridGetCoord 423
25.6.20 ESMF_GridGetCoord 424
25.6.21 ESMF_GridGetCoord 424
25.6.22 ESMF_GridGetItem 425
25.6.23 ESMF_GridGetItem 427
25.6.24 ESMF_GridGetItem 428
25.6.25 ESMF_GridGetStatus 429
25.6.26 ESMF_GridMatch 429
25.6.27 ESMF_GridSetCoord 430
25.6.28 ESMF_GridSetCommitShapeTile 431
25.6.29 ESMF_GridSetCommitShapeTile 433
25.6.30 ESMF_GridSetCommitShapeTile 436
25.6.31 ESMF_GridSetItem 439
25.6.32 ESMF_GridValidate 439

25.7 Class API: StaggerLoc Methods 440
25.7.1 ESMF_StaggerLocSet 440
25.7.2 ESMF_StaggerLocSet 440
25.7.3 ESMF_StaggerLocString 441
25.7.4 ESMF_StaggerLocPrint 441

12

26 LocStream Class 442
26.1 Description 442
26.2 Use and Examples 442

26.2.1 Create a LocStream with user allocated memory 442
26.2.2 Create a LocStream with internally allocated memory. 444
26.2.3 Create a LocStream from a background Grid 445

26.3 Class API 447
26.3.1 ESMF_LocStreamAddKey 447
26.3.2 ESMF_LocStreamAddKey 448
26.3.3 ESMF_LocStreamAddKey 448
26.3.4 ESMF_LocStreamCreate 449
26.3.5 ESMF_LocStreamCreate 450
26.3.6 ESMF_LocStreamCreate 451
26.3.7 ESMF_LocStreamCreate 452
26.3.8 ESMF_LocStreamCreate 452
26.3.9 ESMF_LocStreamCreate 453
26.3.10 ESMF_LocStreamDestroy 454
26.3.11 ESMF_LocStreamGet 454
26.3.12 ESMF_LocStreamGetKey 455
26.3.13 ESMF_LocStreamGetKey 455
26.3.14 ESMF_LocStreamGetKey 456
26.3.15 ESMF_LocStreamGetKey 457
26.3.16 ESMF_LocStreamGet 458
26.3.17 ESMF_LocStreamPrint 459
26.3.18 ESMF_LocStreamValidate 459

27 Mesh Class 460
27.1 Description 460

27.1.1 Mesh representation in ESMF 460
27.1.2 Supported Meshes 460

27.2 Mesh Options 460
27.2.1 ESMF_MeshElemType 460
27.2.2 ESMF_FileFormatType 461

27.3 Use and Examples 462
27.3.1 Mesh creation 462
27.3.2 Create a small single PET Mesh in one step 463
27.3.3 Create a small single PET Mesh in three steps 465
27.3.4 Create a small Mesh on 4 PETs in one step 467
27.3.5 Create a Mesh from a SCRIP Grid file or an ESMF unstructured Grid file 472
27.3.6 Remove Mesh memory 473

27.4 Class API 474
27.4.1 ESMF_MeshAddElements 474
27.4.2 ESMF_MeshAddNodes 475
27.4.3 ESMF_MeshCreate 475
27.4.4 ESMF_MeshCreate 476
27.4.5 ESMF_MeshCreate 478
27.4.6 ESMF_MeshDestroy 478
27.4.7 ESMF_MeshFreeMemory 479
27.4.8 ESMF_MeshGet 479

13

28 XGrid Class 480
28.1 Description 480
28.2 Use and Examples 480

28.2.1 Create an XGrid from user input data then use it for regridding 480
28.2.2 Query the XGrid for its internal information 486
28.2.3 Destroying the XGrid and other resources 487

28.3 Restrictions and Future Work 488
28.3.1 Restrictions and Future Work 488

28.4 Design and Implementation Notes 488
28.5 Class API 488

28.5.1 ESMF_XGridCreate 488
28.5.2 ESMF_XGridDestroy 489
28.5.3 ESMF_XGridGet 489
28.5.4 ESMF_XGridGet 491
28.5.5 ESMF_XGridGet 491

29 DistGrid Class 492
29.1 Description 492
29.2 Use and Examples 493

29.2.1 Single patch DistGrid with regular decomposition . .. 493
29.2.2 DistGrid and DELayout 495
29.2.3 Single patch DistGrid with decomposition by DE blocks . 497
29.2.4 Single patch DistGrid with periodic boundaries 498
29.2.5 2D patchwork DistGrid with regular decomposition . .. 498
29.2.6 Arbitrary DistGrids with user-supplied sequence indices . 500

29.3 Restrictions and Future Work 501
29.4 Design and Implementation Notes 501
29.5 Class API 501

29.5.1 ESMF_DistGridCreate 501
29.5.2 ESMF_DistGridCreate 502
29.5.3 ESMF_DistGridCreate 504
29.5.4 ESMF_DistGridCreate 505
29.5.5 ESMF_DistGridCreate 507
29.5.6 ESMF_DistGridCreate 507
29.5.7 ESMF_DistGridDestroy 508
29.5.8 ESMF_DistGridGet 508
29.5.9 ESMF_DistGridGet 510
29.5.10 ESMF_DistGridGet 510
29.5.11 ESMF_DistGridPrint 511
29.5.12 ESMF_DistGridMatch 511
29.5.13 ESMF_DistGridValidate 512
29.5.14 ESMF_DistGridConnection 512

30 IO Capability 514
30.1 Description 514
30.2 Attribute I/O 514
30.3 Data I/O 514
30.4 Data formats 514
30.5 Restrictions and Future Work 515
30.6 Design and Implementation Notes 515

14

31 IOSpec Class 515
31.1 Description 515
31.2 Class API 515

31.2.1 ESMF_IOSpecGet 515
31.2.2 ESMF_IOSpecSet 516

32 Overview of Distributed Data Methods 517
32.1 Higher Level Functions 517
32.2 Lower Level Functions 517
32.3 Common Options 517
32.4 Design and Implementation Notes 518
32.5 Object Model 526

V Infrastructure: Utilities 528

33 Overview of Infrastructure Utility Classes 529

34 Attribute Class 530
34.1 Description 530

34.1.1 The ESMF approach to Attributes 530
34.1.2 Attribute hierarchies 530

34.2 Attribute Packages 531
34.2.1 Component Attribute packages 531
34.2.2 State Attribute packages 534
34.2.3 Field Attribute packages 535
34.2.4 Array Attribute packages 537
34.2.5 Grid Attribute packages 537
34.2.6 Table of available Attributes 538
34.2.7 Custom Attribute packages 540

34.3 Attribute Packages Nesting 540
34.4 Export Formats 540

34.4.1 Tab-delimited ASCII 541
34.4.2 Simple XML 541
34.4.3 CIM XML 541

34.5 Use and Examples 541
34.5.1 Basic Attribute usage 541
34.5.2 Attribute packages 544
34.5.3 CIM Attribute packages 551
34.5.4 Read an XML file-based ESG Attribute package for a Gridded Component 562
34.5.5 Read an XML file-based CF Attribute package for a Field. 564
34.5.6 Read an XML file-based GridSpec Attribute package fora Grid 565
34.5.7 Read and validate an XML file-based set of user-definedAttributes for a Coupler Component 567
34.5.8 ESMF_AttributeUpdate - Attributes in a distributed environment 568

34.6 Restrictions and Future Work 578
34.6.1 Attributes 578
34.6.2 Attribute packages 578
34.6.3 Attribute hierarchies 579
34.6.4 Attribute import and export 579

34.7 Design and Implementation Notes 579
34.7.1 Attribute memory deallocation 579

15

34.7.2 UsingESMF_AttributeGet() to retrieve Attribute lists 579
34.7.3 Using Attribute package nesting capabilites 580
34.7.4 Attributes in a distributed environment 580
34.7.5 Writing Attribute packages to file 581
34.7.6 Copying Attribute hierarchies 581
34.7.7 Reading and writing Attributes from XML files 581

34.8 Object Model 581
34.9 Class API 585

34.9.1 ESMF_AttributeAdd 585
34.9.2 ESMF_AttributeAdd 585
34.9.3 ESMF_AttributeAdd 586
34.9.4 ESMF_AttributeAdd 588
34.9.5 ESMF_AttributeCopy 589
34.9.6 ESMF_AttributeGet 590
34.9.7 ESMF_AttributeGet 591
34.9.8 ESMF_AttributeGet 593
34.9.9 ESMF_AttributeGet 594
34.9.10 ESMF_AttributeGet 594
34.9.11 ESMF_AttributeLink 595
34.9.12 ESMF_AttributeLink 596
34.9.13 ESMF_AttributeLink 597
34.9.14 ESMF_AttributeLink 597
34.9.15 ESMF_AttributeLink 597
34.9.16 ESMF_AttributeLinkRemove 598
34.9.17 ESMF_AttributeLinkRemove 599
34.9.18 ESMF_AttributeLinkRemove 599
34.9.19 ESMF_AttributeLinkRemove 600
34.9.20 ESMF_AttributeLinkRemove 600
34.9.21 ESMF_AttributeRead 600
34.9.22 ESMF_AttributeRemove 601
34.9.23 ESMF_AttributeSet 602
34.9.24 ESMF_AttributeSet 604
34.9.25 ESMF_AttributeUpdate 605
34.9.26 ESMF_AttributeWrite 606

35 Attachable Methods 607
35.1 Description 607
35.2 Use and Examples 607

35.2.1 Producer Component attaches user defined method 607
35.2.2 Producer Component implements user defined method 607
35.2.3 Consumer Component executes user defined method 608

35.3 Restrictions and Future Work 608
35.4 Class API 608

35.4.1 ESMF_MethodAdd 608
35.4.2 ESMF_MethodAdd 609
35.4.3 ESMF_MethodExecute 610
35.4.4 ESMF_MethodRemove 610

16

36 Time Manager Utility 610
36.1 Time Manager Classes 611
36.2 Calendar 612
36.3 Time Instants and TimeIntervals 612
36.4 Clocks and Alarms 612
36.5 Design and Implementation Notes 613
36.6 Object Model 615

37 Calendar Class 616
37.1 Description 616
37.2 Calendar Options 616

37.2.1 ESMF_CalendarType 616
37.3 Use and Examples 617

37.3.1 Calendar creation 617
37.3.2 Calendar comparison 617
37.3.3 Time conversion between Calendars 618
37.3.4 Calendar destruction 618

37.4 Restrictions and Future Work 618
37.5 Class API 618

37.5.1 ESMF_CalendarOperator(==) 618
37.5.2 ESMF_CalendarOperator(==) 619
37.5.3 ESMF_CalendarOperator(==) 619
37.5.4 ESMF_CalendarOperator(==) 620
37.5.5 ESMF_CalendarOperator(/=) 620
37.5.6 ESMF_CalendarOperator(/=) 621
37.5.7 ESMF_CalendarOperator(/=) 621
37.5.8 ESMF_CalendarOperator(/=) 622
37.5.9 ESMF_CalendarCreate 622
37.5.10 ESMF_CalendarCreate 623
37.5.11 ESMF_CalendarCreate 624
37.5.12 ESMF_CalendarDestroy 624
37.5.13 ESMF_CalendarGet 625
37.5.14 ESMF_CalendarIsLeapYear 626
37.5.15 ESMF_CalendarIsLeapYear 626
37.5.16 ESMF_CalendarPrint 627
37.5.17 ESMF_CalendarSet 628
37.5.18 ESMF_CalendarSet 628
37.5.19 ESMF_CalendarSetDefault 629
37.5.20 ESMF_CalendarSetDefault 630
37.5.21 ESMF_CalendarValidate 630

38 Time Class 631
38.1 Description 631
38.2 Use and Examples 631

38.2.1 Time initialization 631
38.2.2 Time increment 632
38.2.3 Time comparison 632

38.3 Restrictions and Future Work 632
38.4 Class API 633

38.4.1 ESMF_TimeOperator(+) 633
38.4.2 ESMF_TimeOperator(-) 633

17

38.4.3 ESMF_TimeOperator(-) 634
38.4.4 ESMF_TimeOperator(==) 634
38.4.5 ESMF_TimeOperator(/=) 635
38.4.6 ESMF_TimeOperator(<) 635
38.4.7 ESMF_TimeOperator(<=) 636
38.4.8 ESMF_TimeOperator(>) 636
38.4.9 ESMF_TimeOperator(>=) 637
38.4.10 ESMF_TimeGet 637
38.4.11 ESMF_TimeIsLeapYear 640
38.4.12 ESMF_TimeIsSameCalendar 641
38.4.13 ESMF_TimePrint 641
38.4.14 ESMF_TimeSet 642
38.4.15 ESMF_TimeSyncToRealTime 644
38.4.16 ESMF_TimeValidate 645

39 TimeInterval Class 646
39.1 Description 646
39.2 Use and Examples 646

39.2.1 TimeInterval initialization 647
39.2.2 TimeInterval conversion 647
39.2.3 TimeInterval difference 647
39.2.4 TimeInterval multiplication 647
39.2.5 TimeInterval comparison 648

39.3 Restrictions and Future Work 648
39.4 Class API 648

39.4.1 ESMF_TimeIntervalOperator(+) 648
39.4.2 ESMF_TimeIntervalOperator(-) 649
39.4.3 ESMF_TimeIntervalOperator(-) 649
39.4.4 ESMF_TimeIntervalOperator(/) 649
39.4.5 ESMF_TimeIntervalOperator(/) 650
39.4.6 ESMF_TimeIntervalFunction(MOD) 650
39.4.7 ESMF_TimeIntervalOperator(x) 651
39.4.8 ESMF_TimeIntervalOperator(x) 651
39.4.9 ESMF_TimeIntervalOperator(==) 652
39.4.10 ESMF_TimeIntervalOperator(/=) 652
39.4.11 ESMF_TimeIntervalOperator(<) 653
39.4.12 ESMF_TimeIntervalOperator(<=) 653
39.4.13 ESMF_TimeIntervalOperator(>) 654
39.4.14 ESMF_TimeIntervalOperator(>=) 654
39.4.15 ESMF_TimeIntervalAbsValue 655
39.4.16 ESMF_TimeIntervalGet 655
39.4.17 ESMF_TimeIntervalGet 658
39.4.18 ESMF_TimeIntervalGet 660
39.4.19 ESMF_TimeIntervalGet 662
39.4.20 ESMF_TimeIntervalNegAbsValue 665
39.4.21 ESMF_TimeIntervalPrint 665
39.4.22 ESMF_TimeIntervalSet 666
39.4.23 ESMF_TimeIntervalSet 668
39.4.24 ESMF_TimeIntervalSet 670
39.4.25 ESMF_TimeIntervalSet 672
39.4.26 ESMF_TimeIntervalValidate 674

18

40 Clock Class 675
40.1 Description 675
40.2 Clock Options 675

40.2.1 ESMF_Direction 675
40.3 Use and Examples 675

40.3.1 Clock creation 676
40.3.2 Clock advance 677
40.3.3 Clock examination 677
40.3.4 Clock reversal 677
40.3.5 Clock destruction 678

40.4 Restrictions and Future Work 678
40.5 Class API 678

40.5.1 ESMF_ClockOperator(==) 678
40.5.2 ESMF_ClockOperator(/=) 679
40.5.3 ESMF_ClockAdvance 679
40.5.4 ESMF_ClockCreate 680
40.5.5 ESMF_ClockCreate 681
40.5.6 ESMF_ClockDestroy 681
40.5.7 ESMF_ClockGet 682
40.5.8 ESMF_ClockGetAlarm 683
40.5.9 ESMF_ClockGetAlarmList 683
40.5.10 ESMF_ClockGetNextTime 684
40.5.11 ESMF_ClockIsDone 685
40.5.12 ESMF_ClockIsReverse 685
40.5.13 ESMF_ClockIsStopTime 686
40.5.14 ESMF_ClockIsStopTimeEnabled 686
40.5.15 ESMF_ClockPrint 687
40.5.16 ESMF_ClockSet 687
40.5.17 ESMF_ClockStopTimeDisable 689
40.5.18 ESMF_ClockStopTimeEnable 689
40.5.19 ESMF_ClockSyncToRealTime 690
40.5.20 ESMF_ClockValidate 690

41 Alarm Class 691
41.1 Description 691
41.2 Alarm Options 691

41.2.1 ESMF_AlarmListType 691
41.3 Use and Examples 691

41.3.1 Clock initialization 692
41.3.2 Alarm initialization 692
41.3.3 Clock advance and Alarm processing 693
41.3.4 Alarm and Clock destruction 693

41.4 Restrictions and Future Work 694
41.5 Design and Implementation Notes 694
41.6 Class API 694

41.6.1 ESMF_AlarmOperator(==) 694
41.6.2 ESMF_AlarmOperator(/=) 695
41.6.3 ESMF_AlarmCreate 695
41.6.4 ESMF_AlarmCreate 696
41.6.5 ESMF_AlarmDestroy 697
41.6.6 ESMF_AlarmDisable 697

19

41.6.7 ESMF_AlarmEnable 698
41.6.8 ESMF_AlarmGet 698
41.6.9 ESMF_AlarmIsEnabled 699
41.6.10 ESMF_AlarmIsRinging 700
41.6.11 ESMF_AlarmIsSticky 700
41.6.12 ESMF_AlarmNotSticky 701
41.6.13 ESMF_AlarmPrint 701
41.6.14 ESMF_AlarmRingerOff 702
41.6.15 ESMF_AlarmRingerOn 703
41.6.16 ESMF_AlarmSet 703
41.6.17 ESMF_AlarmSticky 704
41.6.18 ESMF_AlarmValidate 705
41.6.19 ESMF_AlarmWasPrevRinging 705
41.6.20 ESMF_AlarmWillRingNext 706

42 Config Class 706
42.1 Description 706

42.1.1 Package history 706
42.1.2 Resource files 707

42.2 Use and Examples 707
42.2.1 Variable declarations 708
42.2.2 Creation of a Config 708
42.2.3 How to retrieve a label with a single value 708
42.2.4 How to retrieve a label with multiple values 709
42.2.5 How to retrieve a table 709
42.2.6 Destruction of a Config 709

42.3 Class API 710
42.3.1 ESMF_ConfigCreate 710
42.3.2 ESMF_ConfigDestroy 710
42.3.3 ESMF_ConfigFindLabel 710
42.3.4 ESMF_ConfigGetAttribute 711
42.3.5 ESMF_ConfigGetAttribute 712
42.3.6 ESMF_ConfigGetChar 712
42.3.7 ESMF_ConfigGetDim 713
42.3.8 ESMF_ConfigGetLen 713
42.3.9 ESMF_ConfigLoadFile 714
42.3.10 ESMF_ConfigNextLine 714
42.3.11 ESMF_ConfigSetAttribute 715
42.3.12 ESMF_ConfigValidate 715

43 LogErr Class 716
43.1 Description 716
43.2 LogErr Options 716

43.2.1 ESMF_HaltType 716
43.2.2 ESMF_MsgType 717
43.2.3 ESMF_LogType 717

43.3 Use and Examples 717
43.3.1 Default Log 718
43.3.2 User created Log 719
43.3.3 Get and Set 719

43.4 Restrictions and Future Work 720

20

43.5 Design and Implementation Notes 720
43.6 Object Model 721
43.7 Class API 721

43.7.1 ESMF_LogClose 721
43.7.2 ESMF_LogFlush 722
43.7.3 ESMF_LogFoundAllocError 722
43.7.4 ESMF_LogFoundDeallocError 723
43.7.5 ESMF_LogFoundError 723
43.7.6 ESMF_LogMsgFoundAllocError 724
43.7.7 ESMF_LogMsgFoundDeallocError 725
43.7.8 ESMF_LogMsgFoundError 726
43.7.9 ESMF_LogMsgSetError 726
43.7.10 ESMF_LogOpen 727
43.7.11 ESMF_LogSet 728
43.7.12 ESMF_LogWrite 729

44 DELayout Class 729
44.1 Description 729
44.2 DELayout Options 730

44.2.1 ESMF_DePinFlag 730
44.3 Use and Examples 730

44.3.1 Default DELayout 730
44.3.2 DELayout with specified number of DEs 731
44.3.3 DELayout with computational and communication weights 731
44.3.4 DELayout from petMap 732
44.3.5 DELayout from petMap with multiple DEs per PET 732
44.3.6 Working with a DELayout - simple 1-to-1 DE to PET mapping 732
44.3.7 Working with a DELayout - general DE to PET mapping 732
44.3.8 Work queue dynamic load balancing 733

44.4 Restrictions and Future Work 733
44.5 Design and Implementation Notes 733
44.6 Class API 734

44.6.1 ESMF_DELayoutCreate 734
44.6.2 ESMF_DELayoutCreate 735
44.6.3 ESMF_DELayoutCreate 735
44.6.4 ESMF_DELayoutDestroy 736
44.6.5 ESMF_DELayoutGet 737
44.6.6 ESMF_DELayoutPrint 738
44.6.7 ESMF_DELayoutServiceComplete 738
44.6.8 ESMF_DELayoutServiceOffer 739
44.6.9 ESMF_DELayoutValidate 739

45 VM Class 740
45.1 Description 740
45.2 Use and Examples 740

45.2.1 Global VM 740
45.2.2 Getting the MPI Communicator from an VM object 741
45.2.3 Nesting ESMF inside a user MPI application 742
45.2.4 Nesting ESMF inside a user MPI application on a subsetof MPI ranks 742
45.2.5 Send/Recv 743
45.2.6 Scatter and Gather 743

21

45.2.7 AllReduce and AllFullReduce 744
45.2.8 VM and Components 744

45.3 Restrictions and Future Work 746
45.4 Design and Implementation Notes 746
45.5 Class API 749

45.5.1 ESMF_VMAllFullReduce 749
45.5.2 ESMF_VMAllGather 750
45.5.3 ESMF_VMAllGatherV 751
45.5.4 ESMF_VMAllReduce 752
45.5.5 ESMF_VMAllToAllV 753
45.5.6 ESMF_VMBarrier 754
45.5.7 ESMF_VMBroadcast 754
45.5.8 ESMF_VMGather 755
45.5.9 ESMF_VMGatherV 756
45.5.10 ESMF_VMGet 757
45.5.11 ESMF_VMGetGlobal 758
45.5.12 ESMF_VMGetCurrent 758
45.5.13 ESMF_VMGetPETLocalInfo 759
45.5.14 ESMF_VMPrint 759
45.5.15 ESMF_VMRecv 760
45.5.16 ESMF_VMReduce 761
45.5.17 ESMF_VMScatter 762
45.5.18 ESMF_VMScatterV 763
45.5.19 ESMF_VMSend 763
45.5.20 ESMF_VMSendRecv 764
45.5.21 ESMF_VMValidate 765
45.5.22 ESMF_VMCommWait 766
45.5.23 ESMF_VMCommQueueWait 766
45.5.24 ESMF_VMWtime 766
45.5.25 ESMF_VMWtimeDelay 767
45.5.26 ESMF_VMWtimePrec 767

46 Fortran I/O Utilities 768
46.1 Description 768
46.2 Use and Examples 768

46.2.1 Fortran unit number management 768
46.2.2 Flushing output 768

46.3 Design and Implementation Notes 769
46.3.1 Fortran unit number management 769
46.3.2 Flushing output 769

46.4 Utility API 769
46.4.1 ESMF_IOUnitFlush 769
46.4.2 ESMF_IOUnitGet 770

VI References 771

VII Appendices 773

47 Appendix A: A Brief Introduction to UML 773

22

48 Appendix B: ESMF Error Return Codes 774

23

Part I

ESMF Overview

24

1 What is the Earth System Modeling Framework?

The Earth System Modeling Framework (ESMF) is a suite of software tools for developing high-performance, multi-
component Earth science modeling applications. Such applications may include a few or dozens of components
representing atmospheric, oceanic, terrestrial, or otherphysical domains, and their constituent processes (dynamical,
chemical, biological, etc.). Often these components are developed by different groups independently, and must be
“coupled” together using software that transfers and transforms data among the components in order to form functional
simulations.

ESMF supports the development of these complex applications in a number of ways. It introduces a set of simple,
consistent component interfaces that apply to all types of components, including couplers themselves. These interfaces
expose in an obvious way the inputs and outputs of each component. It offers a variety of data structures for transferring
data between components, and libraries for regridding, time advancement, and other common modeling functions.
Finally, it provides a growing set of tools for using metadata to describe components and their input and output
fields. This capability is important because components that are self-describing can be integrated more easily into
automated workflows, model and dataset distribution and analysis portals, and other emerging “semantically enabled”
computational environments.

ESMF is not a single Earth system model into which all components must fit, and its distribution doesn’t contain
any scientific code. Rather it provides a way of structuring components so that they can be used in many differ-
ent user-written applications and contexts with minimal code modification, and so they can be coupled together in
new configurations with relative ease. The idea is to create many components across a broad community, and so to
encourage new collaborations and combinations.

ESMF offers the flexibility needed by this diverse user base.It is tested nightly on more than two dozen plat-
form/compiler combinations; can be run on one processor or thousands; supports shared and distributed memory pro-
gramming models and a hybrid model; can run components sequentially (on all the same processors) or concurrently
(on mutually exclusive processors); and supports single executable or multiple executable modes.

ESMF’s generality and breadth of function can make it daunting for the novice user. To help users navigate
the software, we try to apply consistent names and behavior throughout and to provide many examples. The large-
scale structure of the software is straightforward. The utilities and data structures for building modeling components
are called the ESMFinfrastructure. The coupling interfaces and drivers are called thesuperstructure. User code sits
between these two layers, making calls to the infrastructure libraries underneath and being scheduled and synchronized
by the superstructure above. The configuration resembles a sandwich, as shown in Figure 1.

ESMF users may choose to extensively rewrite their codes to take advantage of the ESMF infrastructure, or they
may decide to simply wrap their components in the ESMF superstructure in order to utilize framework coupling
services. Either way, we encourage users to contact our support team if questions arise about how to best use the
software, or how to structure their application. ESMF is more than software; it’s a group of people dedicated to
realizing the vision of a collaborative model development community that spans insitutional and national bounds.

2 The ESMF Reference Manual for Fortran

ESMF has a complete set of Fortran interfaces and some C interfaces. ThisESMF Reference Manualis a listing of
ESMF interfaces for Fortran.1

Interfaces are grouped by class. A class is comprised of the data and methods for a specific concept like a physical
field. Superstructure classes are listed first in thisManual, followed by infrastructure classes.

The major classes in the ESMF superstructure are Components, which usually represent large pieces of function-
ality such as atmosphere and ocean models, and States, whichare the data structures used to transfer data between
Components. There are both data structures and utilities inthe ESMF infrastructure. Data structures include multi-
dimensional Arrays, Fields that are comprised of an Array and a Grid, and collections of Arrays and Fields called
ArrayBundles and FieldBundles, respectively. There are utility libraries for data decomposition and communications,
time management, logging and error handling, and application configuration.

1Since the customer base for it is small, we have not yet prepared a comprehensive reference manual for C.

25

mailto:esmf_support@list.woc.noaa.gov

Figure 1: Schematic of the ESMF “sandwich” architecture. The framework consists of two parts, an upper level
superstructure layer and a lower levelinfrastructure layer. User code is sandwiched between these two layers.

Time
ESMF Superstructure

AppDriver
Component Classes: GridComp, CplComp, State

Time
ESMF Infrastructure

Data Classes: Bundle, Field, Grid, Array
Utility Classes: Clock, LogErr, DELayout, VM, Config

TimeUser Code

3 How to Contact User Support and Find Additional Informatio n

The ESMF team can answer questions about the interfaces presented in this document. For user support, please contact
esmf_support@list.woc.noaa.gov.

More information on the ESMF project as a whole is available on the ESMF website, http://www.earthsystemmodeling.org.
The website includes release notes and known bugs for each version of the framework, supported platforms, project
history, values, and metrics, related projects, the ESMF management structure, and more. TheESMF User’s Guide
contains build and installation instructions, an overviewof the ESMF system and a description of how its classes
interrelate (this version of the document corresponds to the last public version of the framework). Also available on
the ESMF website is theESMF Developer’s Guidethat details ESMF procedures and conventions.

4 How to Submit Comments, Bug Reports, and Feature Requests

We welcome input on any aspect of the ESMF project. Send questions and comments to esmf_support@list.woc.noaa.gov.

5 Conventions

5.1 Typeface and Diagram Conventions

The following conventions for fonts and capitalization areused in this and other ESMF documents.

26

mailto:esmf_support@list.woc.noaa.gov
http://www.earthsystemmodeling.org
http://www.earthsystemmodeling.org/esmf_releases/public/last/ESMF_usrdoc/
http://www.earthsystemmodeling.org/documents/dev_guide/
mailto:esmf_support@list.woc.noaa.gov

Style Meaning Example
italics documents ESMF Reference Manual
courier code fragments ESMF_TRUE
courier() ESMF method name ESMF_FieldGet()
boldface first definitions Anaddress spaceis ...
boldface web links and tabs Developerstab on the website
Capitals ESMF class name DataMap

ESMF class names frequently coincide with words commonly used within the Earth system domain (field, grid,
component, array, etc.) The convention we adopt in this manual is that if a word is used in the context of an ESMF
class name it is capitalized, and if the word is used in a more general context it remains in lower case. We would write,
for example, that an ESMF Field class represents a physical field.

Diagrams are drawn using the Unified Modeling Language (UML). UML is a visual tool that can illustrate the
structure of classes, define relationships between classes, and describe sequences of actions. A reader interested in
more detail can refer to a text such asThe Unified Modeling Language Reference Manual.[17]

5.2 Method Name and Argument Conventions

Method names begin withESMF_, followed by the class name, followed by the name of the operation being performed.
Each new word is capitalized. Although Fortran interfaces are not case-sensitive, we use case to help parse multi-word
names.

For method arguments that are multi-word, the first word is lower case and subsequent words begin with upper
case. ESMF class names (including typed flags) are an exception. When multi-word class names appear in argument
lists, all letters after the first are lower case. The first letter is lower case if the class is the first word in the argument
and upper case otherwise. For example, in an argument list the DELayout class name may appear asdelayout or
srcDelayout .

Most Fortran calls in the ESMF are subroutines, with any returned values passed through the interface. For the
sake of convenience, some ESMF calls are written as functions.

A typical ESMF call looks like this:

call ESMF_<ClassName><Operation>(classname, firstArgu ment,
secondArgument, ..., rc)

where
<ClassName> is the class name,
<Operation> is the name of the action to be performed,
classname is a variable of the derived type associated with the class,
thearg * arguments are whatever other variables are required for theoperation,
andrc is a return code.

27

6 The ESMF Application Programming Interface

The ESMF Application Programming Interface (API) is based on the object-oriented programming concept of aclass.
A class is a software construct that’s used for grouping a setof related variables together with the subroutines and
functions that operate on them. We use classes in ESMF because they help to organize the code, and often make it
easier to maintain and understand. A particular instance ofa class is called anobject. For example, Field is an ESMF
class. An actual Field calledtemperature is an object. That is about as far as we will go into software engineering
terminology.

The Fortran interface is implemented so that the variables associated with a class are stored in a derived type.
For example, anESMF_Field derived type stores the data array, grid information, and metadata associated with a
physical field. The derived type for each class is stored in a Fortran module, and the operations associated with each
class are defined as module procedures. We use the Fortran features of generic functions and optional arguments
extensively to simplify our interfaces.

The modules for ESMF are bundled together and can be accessedwith a singleUSEstatement,USE ESMF_Mod.

6.1 Standard Methods and Interface Rules

ESMF defines a set of standard methods and interface rules that hold across the entire API. These are:

• ESMF_<Class>Create() and ESMF_<Class>Destroy() , for creating and destroying classes. The
ESMF_<Class>Create() method allocates memory for the class structure itself and for internal variables,
and initializes variables where appropriate. It is always written as a Fortran function that returns a derived type
instance of the class.

• ESMF_<Class>Set() andESMF_<Class>Get() , for setting and retrieving a particular item or flag. In
general, these methods are overloaded for all cases where the item can be manipulated as a name/value pair. If
identifying the item requires more than a name, or if the class is of sufficient complexity that overloading in this
way would result in an overwhelming number of options, we define specificESMF_<Class>Set<Something>()
andESMF_<Class>Get<Something>() interfaces.

• ESMF_<Class>Add() and ESMF_<Class>Remove() for manipulating items that can be appended or
inserted into a list of like items within a class. For example, theESMF_StateAdd() method adds another
Field to the list of Fields contained in the State class.

• ESMF_<Class>Print() , for printing the contents of a class to standard out. This method is mainly intended
for debugging.

• ESMF_<Class>ReadRestart() andESMF_<Class>WriteRestart() , for saving the contents of a
class and restoring it exactly. Read and write restart methods have not yet been implemented for most ESMF
classes, so where necessary the user needs to write restart values themselves.

• ESMF_<Class>Validate() , for determining whether a class is internally consistent.For example,ESMF_FieldValidate()
checks whether the Array and Grid associated with a Field areconsistent.

EXAMPLE
In this simple example, an ESMF Field is created with the name’temp’ .

USE ESMF_Mod

type (ESMF_Field) :: field

field = ESMF_FieldCreate(’temp’)

28

6.2 Deep and Shallow Classes

The ESMF contains two types of classes.Deepclasses requireESMF_<Class>Create() andESMF_<Class>Destroy()
calls. They take significant time to set up and should not be created in a time-critical portion of code. Deep objects
persist even after the method in which they were created has returned. Most classes in ESMF, including Fields,
FieldBundles, Arrays, ArrayBundles, Grids, and Clocks, fall into this category.

Shallow classes do not requireESMF_<Class>Create() andESMF_<Class>Destroy() calls. They
can simply be declared and their values set using anESMF_<Class>Set() call. Examples of shallow classes are
Times, TimeIntervals, and ArraySpecs. Shallow classes do not take long to set up and can be declared and set within a
time-critical code segment. Shallow objects stop existingwhen the method in which they were declared has returned.

An exception to this is when a shallow object, such as a Time, is stored in a deep object such as a Clock. The Clock
then carries a copy of the Time in persistent memory. The Timeis deallocated with theESMF_ClockDestroy()
call.

See Section 10, Overall Design and Implementation Notes, for a brief discussion of deep and shallow classes
from an implementation perspective. For an in-depth look atthe design and inter-language issues related to deep and
shallow classes, see theESMF Implementation Report.

6.3 Special Methods

The following are special methods which, in one case, are required by any application using ESMF, and in the other
case must be called by any application that is using ESMF Components.

• ESMF_Initialize() andESMF_Finalize() are required methods that must bracket the use of ESMF
within an application. They manage the resources required to run ESMF and shut it down gracefully. ESMF
does not support restarts in the same executable, i.e.ESMF_Initialize() should not be called after
ESMF_Finalize() .

• ESMF_<Type>CompInitialize() ,ESMF_<Type>CompRun() , andESMF_<Type>CompFinalize()
are component methods that are used at the highest level within ESMF.<Type> may be<Grid> , for Grid-
ded Components such as oceans or atmospheres, or<Cpl> , for Coupler Components that are used to connect
them. The content of these methods is not part of the ESMF. Instead the methods call into associated Fortran
subroutines within user code.

6.4 The ESMF Data Hierarchy

The ESMF API is organized around an hierarchy of classes thatcontain model data. The operations that are performed
on model data, such as regridding, redistribution, and haloupdates, are methods of these classes.

The main data classes in ESMF, in order of increasing complexity, are:

• Array An ESMF Array is a distributed, multi-dimensional array that can carry information such as its type,
kind, rank, and associated halo widths. It contains a reference to a native Fortran array.

• ArrayBundle An ArrayBundle is a collection of Arrays, not necessarily distributed in the same manner. It is
useful for performing collective data operations and communications.

• Field A Field represents a physical scalar or vector field. It contains a reference to an Array along with grid
information and metadata.

• FieldBundle A FieldBundle is a collection of Fields discretized on the same grid. The staggering of data points
may be different for different Fields within a FieldBundle.Like the ArrayBundle, it is useful for performing
collective data operations and communications.

• StateA State represents the collection of data that a Component either requires to run (an Import State) or can
make available to other Components (an Export State). States may contain references to Arrays, ArrayBundles,
Fields, FieldBundles, or other States.

29

http://www.earthsystemmodeling.org/documents/IMPL_repdoc/

• Component A Component is a piece of software with a distinct function. ESMF currently recognizes two
types of Components. Components that represent a physical domain or process, such as an atmospheric model,
are called Gridded Components since they are usually discretized on an underlying grid. The Components
responsible for regridding and transferring data between Gridded Components are called Coupler Components.
Each Component is associated with an Import and an Export State. Components can be nested so that simpler
Components are contained within more complex ones.

Underlying these data classes are native language arrays. ESMF allows you to reference an existing Fortran array
to an ESMF Array or Field so that ESMF data classes can be readily introduced into existing code. You can perform
communication operations directly on Fortran arrays through the VM class, which serves as a unifying wrapper for
distributed and shared memory communication libraries.

6.5 ESMF Spatial Classes

Like the hierarchy of model data classes, ranging from the simple to the complex, ESMF is organized around an hierar-
chy of classes that represent different spaces associated with a computation. Each of these spaces can be manipulated,
in order to give the user control over how a computation is executed. For Earth system models, this hierarchy starts
with the address space associated with the computer and extends to the physical region described by the application.
The main spatial classes in ESMF, from those closest to the machine to those closest to the application, are:

• TheVirtual Machine , or VM The ESMF VM is an abstraction of a parallel computing environment that en-
compasses both shared and distributed memory, single and multi-core systems. Its primary purpose is resource
allocation and management. Each Component runs in its own VM, using the resources it defines. The elements
of a VM arePersistent Execution Threads, or PETs, that are executing inVirtual Address Spaces, or VASs.
A simple case is one in which every PET is associated with a single MPI process. In this case every PET is
executing in its own private VAS. If Components are nested, the parent component allocates a subset of its PETs
to its children. The children have some flexibility, subjectto the constraints of the computing environment, to
decide how they want to use the resources associated with thePETs they’ve received.

• DELayout A DELayout represents a data decomposition (we also refer tothis as a distribution). Its basic
elements areDecomposition Elements, or DEs. A DELayout associates a set of DEs with the PETs in a VM.
DEs are not necessarily one-to-one with PETs. For cache blocking, or user-managed multi-threading, more DEs
than PETs may be defined. Fewer DEs than PETs may also be definedif an application requires it.

• DistGrid A DistGrid represents the index space associated with a grid. It is a useful abstraction because often
a full specification of grid coordinates is not necessary to define data communication patterns. The DistGrid
contains information about the sequence and connectivity of data points, which is sufficient information for
many operations. Arrays are defined on DistGrids.

• Array An Array defines how the index space described in the DistGridis associated with the VAS of each PET.
This association considers the type, kind and rank of the indexed data. Fields are defined on Arrays.

• Grid A Grid is an abstraction of a physical space. It associates a coordinate system, a set of coordinates, and
a topology to a collection of grid cells. Grids in ESMF are comprised of DistGrids plus additional coordinate
information.

• Field A Field may contain more dimensions than the Grid that it is discretized on. For example, for convenience
during integration, a user may want to define a single Field object that holds snapshots of data at multiple times.
Fields also keep track of the stagger location of a Field datapoint within its associated Grid cell.

6.6 ESMF Maps

In order to define how the index spaces of the spatial classes relate to each other, we require either implicit rules
(in which case the relationship between spaces is defined by default), or special Map arrays that allow the user to

30

specify the desired association. The form of the specification is usually that the position of the array element carries
information about the first object, and the value of the arrayelement carries information about the second object.
ESMF includes adistGridToArrayMap , agridToFieldMap , adistGridToGridMap , and others.

6.7 ESMF Specification Classes

It can be useful to make small packets of descriptive parameters. ESMF has one of these:

• ArraySpec, for storing the specifics, such as type/kind/rank, of an array.

6.8 ESMF Utility Classes

There are a number of utilities in ESMF that can be used independently. These are:

• Attributes , for storing metadata about Fields, FieldBundles, States,and other classes.

• TimeMgr , for calendar, time, clock and alarm functions.

• LogErr , for logging and error handling.

• Config, for creating resource files that can replace namelists as a consistent way of setting configuration param-
eters.

7 Overall Rules and Behavior

7.1 Local and Global Views and Associated Conventions

ESMF data objects such as Fields are distributed over DEs, with each DE getting a portion of the data. Depending on
the task, a local or global view of the object may be preferable. In a local view, data indices start with the first element
on the DE and end with the last element on the same DE. In a global view, there is an assumed or specified order to the
set of DEs over which the object is distributed. Data indicesstart with the first element on the first DE, and continue
across all the elements in the sequence of DEs. The last data index represents the number of elements in the entire
object. The DistGrid provides the mapping between local andglobal data indices.

The convention in ESMF is that entities with a global view have no prefix. Entities with a DE-local (and in some
cases, PET-local) view have the prefix “local.”

Just as data is distributed over DEs, DEs themselves can be distributed over PETs. This is an advanced feature for
users who would like to create multiple local chunks of data,for algorithmic or performance reasons. Local DEs are
those DEs that are located on the local PET. Local DE labelingalways starts at 0 and goes to localDeCount-1, where
localDeCount is the number of DEs on the local PET. Global DE numbers also start at 0 and go to deCount-1. The
DELayout class provides the mapping between local and global DE numbers.

7.2 Allocation Rules

The basic rule of allocation and deallocation for the ESMF is: whoever allocates it is responsible for deallocating it.
ESMF methods that allocate their own space for data will deallocate that space when the object is destroyed.

Methods which accept a user-allocated buffer, for exampleESMF_FieldCreate() with the ESMF_DATA_REF
flag, will not deallocate that buffer at the time the object isdestroyed. The user must deallocate the buffer when all use
of it is complete.

Classes such as Fields, FieldBundles, and States may have Arrays, Fields, Grids and FieldBundles created exter-
nally and associated with them. These associated items are not destroyed along with the rest of the data object since it
is possible for the items to be added to more than one data object at a time (e.g. the same Grid could be part of many
Fields). It is the user’s responsibility to delete these items when the last use of them is done.

31

7.3 Equality and Copying Objects

The equal sign operator in ESMF does not generate any specialbehavior on the part of the framework. If the user
decides to set one object equal to another, the internal contents will simply be copied. That means that if there is a
pointer within the object being copied, the pointer will be replicated and the data pointed to will be referenced by the
object copy. As a matter of style and safety, users should tryto avoid exploiting such implicit behavior. A preferable
approach is to use a class creation or duplication method. Unfortunately, not all classes have duplication methods yet.

7.4 Attributes

Attributes are (name, value) pairs, where the name is a character string and the value can be either a single value or list
of integer , real , double precision , logical , or character values. Attributes can be associated with
Fields, FieldBundles, and States. Mixed types are not allowed in a single attribute, and all attribute names must be
unique within a single object. Attributes are set by name, and can be retrieved either directly by name or by querying
for a count of attributes and retrieving names and values by index number.

8 Integrating ESMF into Applications

Depending on the requirements of the application, the user may want to begin integrating ESMF in either a top-down
or bottom-up manner. In the top-down approach, tools at the superstructure level are used to help reorganize and
structure the interactions among large-scale components in the application. It is appropriate when interoperabilityis
a primary concern; for example, when several different versions or implementations of components are going to be
swapped in, or a particular component is going to be used in multiple contexts. Another reason for deciding on a
top-down approach is that the application contains legacy code that for some reason (e.g., intertwined functions, very
large, highly performance-tuned, resource limitations) there is little motivation to fully restructure. The superstructure
can usually be incorporated into such applications in a way that is non-intrusive.

In the bottom-up approach, the user selects desired utilities (data communications, calendar management, perfor-
mance profiling, logging and error handling, etc.) from the ESMF infrastructure and either writes new code using
them, introduces them into existing code, or replaces the functionality in existing code with them. This makes sense
when maximizing code reuse and minimizing maintenance costs is a goal. There may be a specific need for function-
ality or the component writer may be starting from scratch. The calendar management utility is a popular place to
start.

8.1 Using the ESMF Superstructure

The following is a typical set of steps involved in adopting the ESMF superstructure. The first two tasks, which occur
before an ESMF call is ever made, have the potential to be the most difficult and time-consuming. They are the work
of splitting an application into components and ensuring that each component has well-defined stages of execution.
ESMF aside, this sort of code structure helps to promote application clarity and maintainability, and the effort put into
it is likely to be a good investment.

1. Decide how to organize the application as discrete Gridded and Coupler Components. This might involve
reorganizing code so that individual components are cleanly separated and their interactions consist of a minimal
number of data exchanges.

2. Divide the code for each component into initialize, run, and finalize methods. These methods can be multi-phase,
e.g.,init_1, init_2 .

3. Pack any data that will be transferred between componentsinto ESMF Import and Export State data structures.
This is done by first wrapping model data in either ESMF Arraysor Fields. Arrays are simpler to create and use
than Fields, but carry less information and have a more limited range of operations. These Arrays and Fields
are then added to Import and Export States. They may be packedinto ArrayBundles or FieldBundles first, for

32

more efficient communications. Metadata describing the model data can also be added. At the end of this step,
the data to be transferred between components will be in a compact and largely self-describing form.

4. Pack time information into ESMF time management data structures.

5. Using code templates provided in the ESMF distribution, create ESMF Gridded and Coupler Components to
represent each component in the user code.

6. Write a set services routine that sets ESMF entry points for each user component’s initialize, run, and finalize
methods.

7. Run the application using an ESMF Application Driver.

9 Global Options, Flags and Parameters

9.1 Options

9.1.1 ESMF_Method

DESCRIPTION:
Specify standard ESMF Component method.

Valid values are:

ESMF_SETFINAL Finalize method.

ESMF_SETINIT Initialize method.

ESMF_SETREADRESTART ReadRestart method.

ESMF_SETRUN Run method.

ESMF_SETWRITERESTART WriteRestart method.

9.2 Flags

9.2.1 ESMF_AllocFlag

DESCRIPTION:
Indicates whether to allocate data or not.

Valid values are:

ESMF_ALLOC Allocate data.

ESMF_NO_ALLOC Do not allocate data at this time.

9.2.2 ESMF_BlockingFlag

DESCRIPTION:
Indicates method blocking behavior and PET synchronization for VM communication methods, as well as for standard
Component methods, such as Initialize(), Run() and Finalize().

For VM communication calls theESMF_BLOCKINGandESMF_NONBLOCKINGmodes provide behavior that is
practically identical to the blocking and non-blocking communication calls familiar from MPI.

The details of how the blocking mode setting affects Component methods are more complex. This is a consequence
of the fact that ESMF Components can be executed in threaded or non-threaded mode. However, in the default, non-
threaded case, where an ESMF application runs as a pure MPI ormpiuni program, most of the complexity is removed.

See theVM item in 6.5 for an explanation of the PET and VAS concepts usedin the following descriptions.
Valid values are:

33

ESMF_BLOCKING Communication calls:The called method will block until all (PET-)local operations are com-
plete. After the return of a blocking communication method it is safe to modify or use all participating local
data.

Component calls:The called method will block until all PETs of the VM have completed the operation.

For a non-threaded, pure MPI component the behavior is identical to calling a barrier before returning from
the method. Generally this kind of rigid synchronization isnot the desirable mode of operation for an MPI
application, but may be useful for application debugging. In the opposite case, where all PETs of the component
are running as threads in shared memory, i.e. in a single VAS,strict synchronization of all PETs is required to
prevent race conditions.

ESMF_VASBLOCKING Communication calls:Not available for communication calls.

Component calls:The called method will block each PET until all operations inthe PET-local VAS have com-
pleted.

This mode is a combination ofESMF_BLOCKINGandESMF_NONBLOCKINGmodes. It provides a default
setting that leads to the typically desirable behavior for pure MPI components as well as those that share address
spaces between PETs.

For a non-threaded, pure MPI component each PET returns independent of the other PETs. This is generally
the expected behavior in the pure MPI case where calling intoa component method is practically identical to a
subroutine call without extra synchronization between theprocesses.

In the case where some PETs of the component are running as threads in shared memoryESMF_VASBLOCKING
becomes identical toESMF_BLOCKINGwithin thread groups, to prevent race conditions, while there is no
synchronization between the thread groups.

ESMF_NONBLOCKING Communication calls:The called method will not block but returns immediately after
initiating the requested operation. It is unsafe to modify or use participating local data before all local operations
have completed. Use theESMF_VMCommWait()or ESMF_VMCommQueueWait()method to block the
local PET until local data access is safe again.

Component calls:The behavior of this mode is fundamentally different for threaded and non-threaded compo-
nents, independent on whether the components use shared memory or not. TheESMF_NONBLOCKINGmode is
the most complex mode for calling component methods and should only be used if the extra control, described
below, is absolutely necessary.

For non-threaded components (the ESMF default) calling a component method withESMF_NONBLOCKINGis
identical to calling it withESMF_VASBLOCKING. However, different than forESMF_VASBLOCKING, a call to
ESMF_GridCompWait() or ESMF_CplCompWait() is required in order to deallocate memory internally
allocated for theESMF_NONBLOCKINGmode.

For threaded components the calling PETs of the parent component will not be blocked and return immediately
after initiating the requested child component method. In this scenario parent and child components will run
concurrently in identical VASs. This is the most complex mode of operation. It is unsafe to modify or use
VAS local data that may be accessed by concurrently running components until the child component method
has completed. Use the appropriateESMF_GridCompWait() or ESMF_CplCompWait() method to block
the local parent PET until the child component method has completed in the local VAS.

9.2.3 ESMF_CommFlag

DESCRIPTION:
Switch between blocking and non-blocking execution of RouteHandle based communication calls. Every RouteHandle
based communication method contains an optional argumentcommflag that is of typeESMF_CommFlag.

Valid values are:

34

ESMF_COMM_BLOCKING Execute a precomputed communication pattern in blocking mode. This mode guar-
antees that when the method returns all PET-local data transfers, both in-bound and out-bound, have finished.

ESMF_COMM_NBSTART Start executing a precomputed communication pattern in non-blocking mode. When a
method returns from being called in this mode, it guaranteesthat all PET-local out-bound data has been trans-
ferred. It is now safe for the user to overwrite out-bound data elements. No guarantees are made for in-bound
data elements at this stage. It is unsafe to access these elements until a call inESMF_COMM_NBTESTFINISH
mode has been issued and has returned withfinishedflag equal to .true., or a call inESMF_COMM_NBWAITFINISH
mode has been issued and has returned.

ESMF_COMM_NBTESTFINISH Test whether the transfer of data of a precomputed communication pattern, started
with ESMF_COMM_NBSTART, has completed. Finish up as much as possible and set thefinishedflag to
.true. if all data operations have completed, or.false. if there are still outstanding transfers. Only after
a finishedflag equal to.true. has been returned is it safe to access any of the in-bound dataelements.

ESMF_COMM_NBWAITFINISH Wait (i.e. block) until the transfer of data of a precomputedcommunication
pattern, started withESMF_COMM_NBSTART, has completed. Finish upall data operations and set the returned
finishedflag to .true. . It is safe to access any of the in-bound data elements once the call has returned.

ESMF_COMM_CANCEL Cancel outstanding transfers for a precomputed communication pattern.

9.2.4 ESMF_ContextFlag

DESCRIPTION:
Indicates the type of VM context in which a Component will be executing its standard methods.

Valid values are:

ESMF_CHILD_IN_NEW_VM The component is running in its own, separate VM context. Resources are inherited
from the parent but can be arranged to fit the component’s requirements.

ESMF_CHILD_IN_PARENT_VM The component uses the parent’s VM for resource management.Compared to
components that use their own VM context components that runin the parent’s VM context are more light-
weight with respect to the overhead of calling into their initialize, run and finalize methods. Furthermore, VM-
specific properties remain unchanged when going from the parent component to the child component. These
properties include the MPI communicator, the number of PETs, the PET labeling, communication attributes,
threading-level.

9.2.5 ESMF_CopyFlag

DESCRIPTION:
Indicates whether to reference a data item or make a copy of it.

Valid values are:

ESMF_DATA_COPY Copy the data item to another buffer.

ESMF_DATA_REF Reference the data item.

9.2.6 ESMF_DefaultFlag

DESCRIPTION:
Indicates whether to use defaults or not.

Valid values are:

ESMF_USE_DEFAULTS Use default values where possible.

ESMF_NO_DEFAULTS Don’t use any default values.

35

9.2.7 ESMF_DecompFlag

DESCRIPTION:
Indicates how DistGrid elements are decomposed over DEs.

Valid values are:

ESMF_DECOMP_CYCLIC Decompose elements cyclically across DEs.

ESMF_DECOMP_DEFAULT Use default decomposition behavior. Currently equal toESMF_DECOMP_HOMOGEN.

ESMF_DECOMP_HOMOGEN Decompose elements as homogenously as possible across DEs.The maximum
difference in number of elements per DE is 1, with the extra elements on the lower DEs.

ESMF_DECOMP_RESTFIRST Divide elements over DEs. Assign the rest of this division tothe first DE.

ESMF_DECOMP_RESTLAST Divide elements over DEs. Assign the rest of this division tothe last DE.

9.2.8 ESMF_IOFmtFlag

DESCRIPTION:
Indicates IO format options that is currently supported.

Valid values are:

ESMF_IOFMT_BIN Binary format.

ESMF_IOFMT_NETCDF NETCDF and PNETCDF format.

9.2.9 ESMF_IndexFlag

DESCRIPTION:
Indicates whether index is local (per DE) or global (per object).

Valid values are:

ESMF_INDEX_DELOCAL Indicates that DE-local index space starts at lower bound 1 for each DE.

ESMF_INDEX_GLOBAL Indicates that global indices are used. This means that DE-local index space starts at the
global lower bound for each DE.

ESMF_INDEX_USER Indicates that the DE-local index bounds are explicitly setby the user.

9.2.10 ESMF_NeededFlag

DESCRIPTION:
Specifies whether or not a data item is needed for a particularapplication configuration. Used inESMF_State .

Valid values are:

ESMF_NEEDED Data is needed.

ESMF_NOTNEEDED Data is not needed.

9.2.11 ESMF_ReadyFlag

DESCRIPTION:
Specifies whether a data item is ready to read or write.

Valid values are:

ESMF_READYTOREAD Data is ready to read.

ESMF_READYTOWRITE Data is ready to write.

ESMF_NOTREADY Data is not ready.

36

9.2.12 ESMF_ReduceFlag

DESCRIPTION:
Indicates reduce operation to aReduce() method.

Valid values are:

ESMF_SUM Use arithmetic sum to add all data elements.

ESMF_MIN Determine the minimum of all data elements.

ESMF_MAX Determine the maximum of all data elements.

9.2.13 ESMF_HaloStartRegionFlag

DESCRIPTION:
Specifies the start of the effective halo region of an Array orField object.

Valid values are:

ESMF_REGION_EXCLUSIVE Region of elements that are exclusively owned by the local DE.

ESMF_REGION_COMPUTATIONAL User defined region, greater or equal to the exclusive region.

9.2.14 ESMF_RegionFlag

DESCRIPTION:
Specifies various regions in the data layout of an Array or Field object.

Valid values are:

ESMF_REGION_TOTAL Total allocated memory.

ESMF_REGION_SELECT Region of operation-specific elements.

ESMF_REGION_EMPTY The empty region contains no elements.

9.2.15 ESMF_ReqForRestartFlag

DESCRIPTION:
Specifies whether a data item is necessary for restart.

Valid values are:

ESMF_REQUIRED_FOR_RESTART Data is required for restart.

ESMF_NOTREQUIRED_FOR_RESTART Data is not required for restart.

9.2.16 ESMF_Status

DESCRIPTION:
This is a general object status flag used throughout the framework.

Valid values are:

ESMF_STATUS_UNINIT Object is uninitialized.

ESMF_STATUS_READY Object is ready for use.

ESMF_STATUS_UNALLOCATED Object has not yet been allocated.

ESMF_STATUS_ALLOCATED Object has been allocated.

ESMF_STATUS_BUSY Object is not able to respond.

ESMF_STATUS_INVALID Object is invalid.

37

9.2.17 ESMF_ValidFlag

DESCRIPTION:
Specifies whether a data item contains valid data.

Valid values are:

ESMF_VALID Data is ready to read.

ESMF_INVALID Data is ready to write.

ESMF_NOTREADY Data is not ready.

9.3 Parameters

9.3.1 ESMF_TypeKind

DESCRIPTION:
Supported ESMF type and kind combinations. This is an ESMF derived type used for arguments to subroutines and
functions that specify or query a data precision and type. These values cannot be used when declaring variables; see
the next section on Fortran Kinds for that.

Valid values are:

ESMF_TYPEKIND_I1 1 byte integer.

ESMF_TYPEKIND_I2 2 byte integer.

ESMF_TYPEKIND_I4 4 byte integer.

ESMF_TYPEKIND_I8 8 byte integer.

ESMF_TYPEKIND_R4 4 byte real.

ESMF_TYPEKIND_R8 8 byte real.

9.3.2 Fortran Kinds

DESCRIPTION:
These are integer parameters of the proper type to be used when declaring variables with a specific precision in Fortran
syntax. For example:

integer(ESMF_KIND_I4) :: myintegervariable
real(ESMF_KIND_R4) :: myrealvariable

The Fortran 90 standard does not mandate what numeric valuescorrespond to actual number of bytes allocated for the
various kinds, so these are defined by ESMF to be correct across the different supported Fortran 90 compilers. Note
that not all compilers support every kind listed below; in particular 1 and 2 byte integers can be problematic.

Valid values are:

ESMF_KIND_I1 1 byte integer.

ESMF_KIND_I2 2 byte integer.

ESMF_KIND_I4 4 byte integer.

ESMF_KIND_I8 8 byte integer.

ESMF_KIND_R4 4 byte real.

38

ESMF_KIND_R8 8 byte real.

ESMF_KIND_C8 8 byte character.

ESMF_KIND_C16 16 byte character.

9.3.3 ESMF Version

DESCRIPTION:
The following parameters are available to allow detection of the version of ESMF in use.

ESMF_MAJOR_VERSION Integer parameter with the major version number (e.g., 3 forv3.1.0)

ESMF_MINOR_VERSION Integer parameter with the minor version number (e.g., 1 forv3.1.0)

ESMF_REVISION Integer parameter with the revision number (e.g., 0 for v3.1.0)

ESMF_PATCHLEVEL Integer parameter with the patch level of a specific revision(e.g., 2 for v3.1.0rp2)

ESMF_VERSION_STRING Character string parameter describing the release (e.g., "3.1.0rp2")

9.3.4 ESMF_GeomType

DESCRIPTION:
Different types of geometries upon which an ESMF Field or ESMF Fieldbundle may be built.

Valid values are:

ESMF_GEOMTYPE_GRID An ESMF_Grid, a structured grid composed of one or more logically rectangular tiles

ESMF_GEOMTYPE_MESH An ESMF_Mesh, an unstructured grid

ESMF_GEOMTYPE_XGRID An ESMF_XGrid, an exchange grid

ESMF_TYPEKIND_LOCSTREAM An ESMF_LocStream, a disconnected series of points with associated key
values

10 Overall Design and Implementation Notes

1. Deep and shallow classes.The deep and shallow classes described in Section 6.2 differin how and where they
are allocated within a multi-language implementation environment. We distinguish between the implementation
language, which is the language a method is written in, and the calling language, which is the language that the
user application is written in. Deep classes are allocated off the process heap by the implementation language.
Shallow classes are allocated off the stack by the calling language.

2. Base class.All ESMF classes are built upon a Base class, which holds a small set of system-wide capabilities.

39

Part II

Applications
The main product delivered by ESMF is the ESMF library that allows application developers to write programs based
on the ESMF API. In addition to the programming library, ESMFdistributions come with a small set of applications
that are of general interest to the community. These applications utilize the ESMF library to implement features such
as printing general information about the ESMF installation, or generating regrid weight files. The provided ESMF
applications are intended to be used as standard command line tools.

The bundled ESMF applications are built and installed during the usual ESMF installation process, which is de-
scribed in detail in the ESMF User’s Guide section "Buildingand Installing the ESMF". After the installation the
applications will be located in theESMF_APPSDIRdirectory, which can be found as a Makefile variable in the
esmf.mk file. Theesmf.mk file can be found in theESMF_INSTALL_LIBDIR directory after a successful instal-
lation. The ESMF User’s Guide discusses theesmf.mk mechanism to access the bundled applications in more detail
in section "Using Bundled ESMF Applications".

The following sections provide in-depth documentation of the bundled ESMF applications. In addition, each
application supports the standard--help command line argument, providing a brief description of howto invoke
the program.

11 ESMF_Info

11.1 Description

TheESMF_Info application prints basic information about the ESMF installation tostdout .
The application usage is as follows:

ESMF_Info [--help]

where
--help prints a brief usage message

12 ESMF_RegridWeightGen

12.1 Description

In addition to the online regridding functionality, the ESMF distribution also contains an exectuable for generating
regridding weights. This tool reads in two grid files and outputs weights for interpolation between the two grids. The
input and output files are all in netcdf format. The grid files are either in the same format as is used as an input to
SCRIP [10], or in the ESMF unstructured grid format 27.3.5. The weight file is the same format as is output by SCRIP.
The interpolation weights can be generated with the bilinear, patch, or first order conservative methods decribed below.
This application assumes that the source and destination grids are spherical and that the coordinates given in the files
are latitude and longitude values. This file based regrid weight generation application is fully parallel. This application
is used in the ESMF_RegridWeightGenCheck external demo, sothat can serve as an example of its use.

Internally this application uses the ESMF public API to generate the interpolation weights. If a the source or desti-
nation grid is logically rectangular, thenESMF_GridCreate() 25.3.7 is used to create an ESMF_Grid object. The
cell center coordinates of the input grid are put into the center stagger location (ESMF_STAGGERLOC_CENTER). In
addition, for conservative regridding, the corner coordinates are also put into the corner stagger location (ESMF_STAGGERLOC_CORNER
The 2D coordinates are mapped into 3D Cartesian coordiantesby setting theregridScheme flag toESMF_REGRID_SCHEME_FULL3D
while calling ESMF_FieldRegridStore() . The methodESMF_MeshCreate() 27.3.5 is used to create an

40

http://www.earthsystemmodeling.org/users/code_examples/external_demos/external_demos.shtml

ESMF_Mesh object, if the source or destination grid is a cubed sphere grid or an unstructured grid. When mak-
ing this call, the flagconvert3D is set toTRUEto convert the 2D coordinates into 3D Cartesian coordinates.
ESMF_FieldRegridStore() is used to generate the weight table and indicies table representing the interpolation
matrix.

The regridding occurs in 3D to avoid problems with periodicity and with the pole singularity. This application
supports four options for handling the pole region (i.e. theempty area above the top row of the source grid or below
the bottom row of the source grid). The first option is to leavethe pole region empty (“-p none”), in this case if a
destination point lies above or below the top row of the source grid, it will fail to map, yielding an error. With the
next two options, the pole region is handled by constructingan artificial pole in the center of the top and bottom row
of grid points and then filling in the region from this pole to the edges of the source grid with triangles. The pole is
located at the average of the position of the points surrounding it, but moved outward to be at the same radius as the
rest of the points in the grid. The difference between these two artificial pole options is what value is used at the pole.
The default pole option (“-p all”) sets the value at the pole to be the average of the values of all of the grid points
surrounding the pole. For the other option (“-p N”), the userchooses a number N from 1 to the number of source
grid points around the pole. For each destination point, thevalue at the pole is then the average of the N source points
surrounding that destination point. For the last pole option (“-p teeth”) no artificial pole is constructed, instead thepole
region is covered by connecting points across the top and bottom row of the source Grid into triangles. As this makes
the top and bottom of the source sphere flat, for a big enough difference between the size of the source and destination
pole regions, this can still result in unmapped destinationpoints. Only pole option “none” is currently supported with
the conservative interpolation method (i.e. “-m conserve”).

This regridding application can be used to generate bilinear, patch, or first-order conservative interpolation weights.
The default interpolation method is bilinear. The algorithm used by this application to generate the bilinear weights
is the standard one found in many textbooks. Each destination point is mapped to a location in the source Mesh,
the position of the destination point relative to the sourcepoints surrounding it is used to calculate the interpolation
weights.

This application can also be used to generate patch interpolation weights. Patch interpolation is the ESMF version
of a techique called “patch recovery” commonly used in finiteelement modeling [3] [7]. It typically results in better
approximations to values and derivatives when compared to bilinear interpolation. Patch interpolation works by con-
structing multiple polynomial patches to represent the data in a source element. For 2D grids, these polynomials are
currently 2nd degree 2D polynomials. The interpolated value at the destination point is the weighted average of the
values of the patches at that point.

The patch interpolation process works as follows. For each source element containing a destination point we
construct a patch for each corner node that makes up the element (e.g. 4 patches for quadrilateral elements, 3 for
triangular elements). To construct a polynomial patch for acorner node we gather all the elements around that node.
(Note that this means that the patch interpolation weights depends on the source element’s nodes, and the nodes
of all elements neighboring the source element.) We then usea least squares fitting algorithm to choose the set of
coefficients for the polynomial that produces the best fit forthe data in the elements. This polynomial will give a
value at the destination point that fits the source data in theelements surrounding the corner node. We then repeat
this process for each corner node of the source element generating a new polynomial for each set of elements. To
calculate the value at the destination point we do a weightedaverage of the values of each of the corner polynomials
evaluated at that point. The weight for a corner’s polynomial is the bilinear weight of the destination point with regard
to that corner. The patch method has a larger stencil than thebilinear, for this reason the patch weight matrix can be
correspondingly larger than the bilinear matrix (e.g. for aquadrilateral grid the patch matrix is around 4x the size of
the bilinear matrix). This can be an issue when performing a regrid weight generation operation close to the memory
limit on a machine.

First-order conservative interpolation [16] is also available as a regridding method. This method will typically have
a larger interpolation error than the previous two methods,but will do a much better job of preserving the value of the
integral of data between the source and destination grid. Inthis method the value across each source cell is treated
as a constant. The weights for a particular destination cell, are the area of intersection of each source cell with the
destination cell divided by the area of the destination cell. Areas in this case are the great circle areas of the polygons
which make up the cells (the cells around each center are defined by the corner coordinates in the grid file).

41

12.2 Usage

The command line arguments are all keyword based. Both the long keyward prefixed with ’--’ or the one
character short keyword prefixed with’-’ are supported. The format to run the application is as follows:

ESMF_RegridWeightGen [--help]
[--source|-s] src_grid_filename
[--destination|-d] dst_grid_filename
[--weight|-w] out_weight_file
[--method|-m] [bilinear|patch|conserve]
[--pole|-p] [none|all|teeth|1|2|..]
--src_type [SCRIP|ESMF]
--dst_type [SCRIP|ESMF]
-t [SCRIP|ESMF]

where
--help - print the usage message
--source or -s - a required argument specifying the source gr id file name

--destination or -d - a required argument specifying the des tination grid file name

--weight or -w - a required argument specifying the output re gridding
weight file name

--method or -m - an optional argument specifying which inter polation method
is used. The value can be one of the following:

bilinear - for bilinear interpolation, also the default
method if not specified.

patch - for patch recovery interpolation
conserve - for first-order conservative interpolation

--pole or -p - an optional argument indicating what to do with the pole.
The value can be one of the following:

none - No pole, the source grid ends at the top (and bottom)
row of nodes specified in <source grid>.

all - Construct an artificial pole placed in the center of the
top (or bottom) row of nodes, but projected onto the
sphere formed by the rest of the grid. The value at
this pole is the average of all the pole values. This
is the default option.

teeth - No new pole point is constructed, instead the holes at
the poles are filled by constructing triangles across
the top and bottom row of the source Grid. This can be
useful because no averaging occurs, however, because
the top and bottom of the sphere are now flat, for a
big enough mismatch between the size of the destination
and source pole regions, some destination points may
still not be able to be mapped to the source Grid.

42

<N> - Construct an artificial pole placed in the center of the
top (or bottom) row of nodes, but projected onto the
sphere formed by the rest of the grid. The value at
this pole is the average of the N source nodes next to
the pole and surrounding the destination point (i.e.
the value may differ for each destination point. Here
N ranges from 1 to the number of nodes around the pole.

--src_type - an optional argument specifying the source gri d file type. The
value could be either SCRIP or ESMF. Currently, the ESMF
file type is only available for the unstructured grid. The
default option is SCRIP.

--dst_type - an optional argument specifying the destinati on grid file type.
The value could be either SCRIP or ESMF. Currently, the ESMF
file type is only available for the unstructured grid. The
default option is SCRIP.

-t - an optional argument specifying the file types for both t he
source and the destination grid files. The default option
is SCRIP. If both -t and --src_type or --dst_type are given
at the same time and they disagree with each other, an error
message will be generated.

43

Part III

Superstructure

44

13 Overview of Superstructure

ESMF superstructure classes define an architecture for assembling Earth system applications from modelingcompo-
nents. A component may be defined in terms of the physical domain that it represents, such as an atmosphere or sea
ice model. It may also be defined in terms of a computational function, such as a data assimilation system. Earth
system research often requires that such components becoupled together to create an application. By coupling we
mean the data transformations and, on parallel computing systems, data transfers, that are necessary to allow data from
one component to be utilized by another. ESMF offers regridding methods and other tools to simplify the organization
and execution of inter-component data exchanges.

In addition to components defined at the level of major physical domains and computational functions, components
may be defined that represent smaller computational functions within larger components, such as the transformation
of data between the physics and dynamics in a spectral atmosphere model, or the creation of nested higher resolution
regions within a coarser grid. The objective is to couple components at varying scales both flexibly and efficiently.
ESMF encourages a hierachical application structure, in which large components branch into smaller sub-components
(see Figure 2). ESMF also makes it easier for the same component to be used in multiple contexts without changes to
its source code.

Key Features
Modular, component-based architecture.
Hierarchical assembly of components into applications.
Use of components in multiple contexts without modification.
Sequential or concurrent component execution.
Single program, multiple datastream (SPMD) applications for maximum portability and reconfigurability.
Multiple program, multiple datastream (MPMD) option for flexibility.

13.1 Superstructure Classes

There are a small number of classes in the ESMF superstructure:

• ComponentAn ESMF component has two parts, one that is supplied by the ESMF and one that is supplied by
the user. The part that is supplied by the framework is an ESMFderived type that is either a Gridded Component
(GridComp) or a Coupler Component (CplComp). A Gridded Component typically represents a physical
domain in which data is associated with one or more grids - forexample, a sea ice model. A Coupler Component
arranges and executes data transformations and transfers between one or more Gridded Components. Gridded
Components and Coupler Components have standard methods, which include initialize, run, and finalize. These
methods can be multi-phase.

The second part of an ESMF Component is user code, such as a model or data assimilation system. Users set
entry points within their code so that it is callable by the framework. In practice, setting entry points means that
within user code there are calls to ESMF methods that associate the name of a Fortran subroutine with a cor-
responding standard ESMF operation. For example, a user-written initialization routine calledmyOceanInit
might be associated with the standard initialize routine ofan ESMF Gridded Component named “myOcean”
that represents an ocean model.

• StateESMF components exchange information with other components only through States. A State is an ESMF
derived type that can contain Fields, FieldBundles, Arrays, ArrayBundles, and other States. A Component is
associated with two States, anImport State and anExport State. Its Import State holds the data that it receives
from other Components. Its Export State contains data that it can make available to other Components.

• Application Driver The Application Driver (AppDriver) is a small, generic driver program that contains the
“main” routine for an ESMF application.

45

Figure 2: ESMF enables applications such as the atmosphericgeneral circulation model GEOS-5 to be structured
hierarchically, and reconfigured and extended easily. Eachbox in this diagram is an ESMF Gridded Component.

GEOS-5

surfacefvcoregravity_wave_drag

historyagcm

dynamics physics

chemistry moist_processes radiation turbulence

infrared solarlake land_ice data_ocean land

vegetation catchment

An ESMF coupled application typically involves an AppDriver, a parent Gridded Component, two or more child
Gridded Components that require an inter-component data exchange, and one or more Coupler Components.

The parent Gridded Component is responsible for creating the child Gridded Components that are exchanging
data, for creating the Coupler, for creating the necessary Import and Export States, and for setting up the desired
sequencing. The AppDriver “main” routine calls the parent Gridded Component’s initialize, run, and finalize methods
in order to execute the application. For each of these standard methods, the parent Gridded Component in turn calls
the corresponding methods in the child Gridded Components and the Coupler Component. For example, consider a
simple coupled ocean/atmosphere simulation. When the initialize method of the parent Gridded Component is called
by the AppDriver, it in turn calls the initialize methods of its child atmosphere and ocean Gridded Components, and
the initialize method of an ocean-to-atmosphere Coupler Component. Figure 3 shows this schematically.

13.2 Hierarchical Creation of Components

Components are allocated computational resources in the form of Persistent Execution Threads, or PETs. A list of
a Component’s PETs is contained in a structure called aVirtual Machine , or VM . The VM also contains information
about the topology and characteristics of the underlying computer. Components are created hierarchically, with parent
Components creating child Components and allocating some or all of their PETs to each one. By default ESMF creates
a new VM for each child Component, which allows Components totailor their VM resources to match their needs. In
some cases a child may want to share its parent’s VM - ESMF supports this too.

46

Figure 3: A call to a standard ESMF initialize (run, finalize)method by a parent component triggers calls to initialize
(run, finalize) all of its child components.

Child GridComp “Atmosphere”

Parent GridComp “Hurricane Model”

Finalize

Child GridComp “Ocean”

Finalize

Child CplComp “Atm-Ocean Coupler”

Finalize

Call Initialize Call FinalizeCall Run

Initialize Run Finalize

Initialize

Initialize

Initialize

Run

Run

Run

AppDriver (“Main”)

Call Initialize Call FinalizeCall Run

A Gridded Component may exist across all the PETs in an application. A Gridded Component may also reside
on a subset of PETs in an application. These PETs may wholly coincide with, be wholly contained within, or wholly
contain another Component.

13.3 Sequential and Concurrent Execution of Components

When a set of Gridded Components and a Coupler runs in sequence on the same set of PETs the application is executing
in a sequentialmode. When Gridded Components are created and run on mutually exclusive sets of PETs, and are
coupled by a Coupler Component that extends over the union ofthese sets, the mode of execution isconcurrent.

Figure 4 illustrates a typical configuration for a simple coupled sequential application, and Figure 5 shows a
possible configuration for the same application running in aconcurrent mode.

Parent Components can select if and when to wait for concurrently executing child Components, synchronizing
only when required.

It is possible for ESMF applications to contain some Component sets that are executing sequentially and others
that are executing concurrently. We might have, for example, atmosphere and land Components created on the same

47

subset of PETs, ocean and sea ice Components created on the remainder of PETs, and a Coupler created across all the
PETs in the application.

13.4 Intra-Component Communication

All data transfers within an ESMF application occurwithin a component. For example, a Gridded Component may
contain halo updates. Another example is that a Coupler Component may redistribute data between two Gridded
Components. As a result, the architecture of ESMF does not depend on any particular data communication mechanism,
and new communication schemes can be introduced without affecting the overall structure of the application.

Since all data communication happens within a component, a Coupler Component must be created on the union of
the PETs of all the Gridded Components that it couples.

13.5 Data Distribution and Scoping in Components

The scope of distributed objects is the VM of the currently executing Component. For this reason, all PETs in the
current VM must make the same distributed object creation calls. When a Coupler Component running on a super-
set of a Gridded Component’s PETs needs to make communication calls involving objects created by the Gridded
Component, an ESMF-supplied function calledESMF_StateReconcile() creates proxy objects for those PETs
that had no previous information about the distributed objects. Proxy objects contain no local data but can be used in
communication calls (such as regrid or redistribute) to describe the remote source for data being moved to the current
PET, or to describe the remote destination for data being moved from the local PET. Figure 6 is a simple schematic
that shows the sequence of events in a reconcile call.

13.6 Performance

The ESMF design enables the user to configure ESMF applications so that data is transferred directly from one com-
ponent to another, without requiring that it be copied or sent to a different data buffer as an interim step. This is likely
to be the most efficient way of performing inter-component coupling. However, if desired, an application can also be
configured so that data from a source component is sent to a distinct set of Coupler Component PETs for processing
before being sent to its destination.

The ability to overlap computation with communication is essential for performance. When running with ESMF
the user can initiate data sends during Gridded Component execution, as soon as the data is ready. Computations can
then proceed simultaneously with the data transfer.

48

Figure 4: Schematic of the run method of a coupled application, with an “Atmosphere” and an “Ocean” Gridded
Component running sequentially with an “Atm-Ocean Coupler.” The top-level “Hurricane Model” Gridded Com-
ponent contains the sequencing information and time advancement loop. The AppDriver, Coupler, and all Gridded
Components are distributed over nine PETs.

GridComp
“Atmosphere”

GridComp “Hurricane Model”

GridComp
“Ocean”

CplComp
“Atm-Ocean Coupler”

LOOP Call Run

Run

Run

Run

Run

AppDriver (“Main”)

Call Run

1 2 3 54 6

PETs

T
im

e

7 8 9

49

Figure 5: Schematic of the run method of a coupled application, with an “Atmosphere” and an “Ocean” Gridded Com-
ponent running concurrently with an “Atm-Ocean Coupler.” The top-level “Hurricane Model” Gridded Component
contains the sequencing information and time advancement loop. The AppDriver, Coupler, and top-level “Hurricane
Model” Gridded Component are distributed over nine PETs. The “Atmosphere” Gridded Component is distributed
over three PETs and the “Ocean” Gridded Component is distributed over six PETs.

GridComp
“Atmosphere”

GridComp “Hurricane Model”

GridComp
“Ocean”

CplComp
“Atm-Ocean Coupler”

LOOP Call Run

Run

Run Run

Run

AppDriver (“Main”)

Call Run

1 2 3 54 6

PETs

T
im

e

7 8 9

50

Figure 6: AnESMF_StateReconcile() call creates proxy objects for use in subsequent communication calls.
The reconcile call would normally be made during Coupler initialization.

CplComp
“Atm-Ocean Coupler”

1 2 3 54 6

PETs

T
im

e

7 8 9

OcnState
 …...
 …...
 …...
 OcnField1
 OcnField2
 OcnField3

AtmState
 AtmField1
 AtmField2
 AtmField3
 ……
 ……
 ……

call ESMF_StateReconcile()

Initialize

AtmState
 AtmField1
 AtmField2
 AtmField3
 OcnField1-proxy
 OcnField2-proxy
 OcnField3-proxy

OcnState
 AtmField1-proxy
 AtmField2-proxy
 AtmField3-proxy
 OcnField1
 OcnField2
 OcnField3

51

13.7 Object Model

The following is a simplified UML diagram showing the relationships among ESMF superstructure classes. See
Appendix A, A Brief Introduction to UML, for a translation table that lists the symbols in the diagram and their
meaning.

GridComp CplComp

Comp

Possible extensions

DataCompVisComp

...

14 Application Driver and Required ESMF Methods

14.1 Description

The ESMF Application Driver (ESMF_AppDriver), is a generic ESMF driver program that contains a “main.”
Simpler applications may be able to use an Application Driver without modification; for more complex applications,
an Application Driver can be used as an extendable template.

ESMF provides a number of different Application Drivers in the$ESMF_DIR/src/Superstructure/AppDriver
directory. An appropriate one can be chosen depending on howthe application is to be structured. Options when de-
ciding how to structure an application include choices about:

Sequential vs. Concurrent ExecutionIn a sequential execution model every Component executes onall PETs, with
each Component completing execution before the next Component begins. This has the appeal of simplicity of
data consumption and production: when a Gridded Component starts all required data is available for use, and
when a Gridded Component finishes all data produced is ready for consumption by the next Gridded Component.
This approach also has the possibility of less data movementif the grid and data decomposition is done such
that each processor’s memory contains the data needed by thenext Component.

In a concurrent execution model subgroups of PETs run Gridded Components and multiple Gridded Components
are active at the same time. Data exchange must be coordinated between Gridded Components so that data
deadlock does not occur. This strategy has the advantage of allowing coupling to other Gridded Components
at any time during the computational process, including nothaving to return to the calling level of code before
making data available.

Pairwise vs. Hub and SpokeCoupler Components are responsible for taking data from oneGridded Component and
putting it into the form expected by another Gridded Component. This might include regridding, change of units,
averaging, or binning.

Coupler Components can be written forpairwisedata exchange: the Coupler Component takes data from a
single Component and transforms it for use by another singleGridded Component. This simplifies the structure
of the Coupler Component code.

Couplers can also be written using ahub and spokemodel where a single Coupler accepts data from all other
Components, can do data merging or splitting, and formats data for all other Components.

Multiple Couplers, using either of the above two models or some mixture of these approaches, are also possible.

52

Implementation Language The ESMF framework currently has Fortran interfaces for allpublic functions. Some
functions also have C interfaces, and the number of these is expected to increase over time.

Number of Executables The simplest way to run an application is to run the same executable program on all PETs.
Different Components can still be run on mutually exclusivePETs by using branching (e.g., if this is PET 1,
2, or 3, run Component A, if it is PET 4, 5, or 6 run Component B).This is aSPMD model, Single Program
Multiple Data.

The alternative is to start a different executable program on different PETs. This is aMPMD model, Multiple
Program Multiple Data. There are complications with many job control systems on multiprocessor machines
in getting the different executables started, and getting inter-process communcations established. ESMF cur-
rently has some support for MPMD: different Components can run as separate executables, but the Coupler that
transfers data between the Components must still run on the union of their PETs. This means that the Coupler
Component must be linked into all of the executables.

14.2 Application Driver and Required ESMF Methods Options

14.2.1 ESMF_TerminationFlag

DESCRIPTION:
TheESMF_TerminationFlag determines how an ESMF application is shut down.

Valid values are:

ESMF_ABORT Global abort of the ESMF application. There is no guarantee that all PETs will shut down cleanly
during an abort. However, all attempts are made to prevent the application from hanging and the LogErr of
at least one PET will be completely flushed during the abort. This option should only be used if a condition
is detected that prevents normal continuation or termination of the application. Typical conditions that war-
rant the use ofESMF_ABORTare those that occur on a per PET basis where other PETs may be blocked in
communication calls, unable to reach the normal termination point.

ESMF_FINAL Normal termination of the ESMF application. Wait for all PETs of the global VM to reachESMF_Finalize()
before termination. This is the clean way of terminating an application.MPI_Finalize() will be called in
case of MPI applications.

ESMF_KEEPMPI Same asESMF_FINALbut MPI_Finalize() will not be called. It is the user code’s respon-
sibility to shut down MPI cleanly if necessary.

14.3 Use and Examples

ESMF encourages application organization in which there isa single top-level Gridded Component. This provides
a simple, clear sequence of operations at the highest level,and also enables the entire application to be treated as a
sub-Component of another, larger application if desired. When a simple application is organized in this fashion the
standard AppDriver can probably be used without much modification.

Examples of program organization using the AppDriver can befound in thesrc/Superstructure/AppDriver
directory. A set of subdirectories within the AppDriver directory follows the naming convention:

<seq|concur>_<pairwise|hub>_<f|c>driver_<spmd|mpmd>

The example that is currently implemented isseq_pairwise_fdriver_spmd , which has sequential compo-
nent execution, a pairwise coupler, a main program in Fortran, and all processors launching the same executable. It is
also copied automatically into a top-levelquick_start directory at compilation time.

The user can copy the AppDriver files into their own local directory. Some of the files can be used unchanged.
Others are template files which have the rough outline of the code but need additional application-specific code added
in order to perform a meaningful function. TheREADMEfile in the AppDriver subdirectory orquick_start
directory contains instructions about which files to change.

53

Examples of concurrent component execution can be found in the system tests that are bundled with the ESMF
distribution.

--- ---------------------------
--- ---------------------------

EXAMPLE: This is an AppDriver.F90 file for a sequential ESMF application.
--- ---------------------------
--- ---------------------------

The ChangeMe.F90 file that’s included below contains a numb er of definitions
that are used by the AppDriver, such as the name of the applica tion’s
main configuration file and the name of the application’s Se tServices
routine. This file is in the same directory as the AppDriver. F90 file.

--- ---------------------------

#include "ChangeMe.F90"

program ESMF_AppDriver
#define ESMF_METHOD "program ESMF_AppDriver"

#include "ESMF.h"

! ESMF module, defines all ESMF data types and procedures
use ESMF_Mod

! Gridded Component registration routines. Defined in "Cha ngeMe.F90"
use USER_APP_Mod, only : SetServices => USER_APP_SetServi ces

implicit none

--- ---------------------------
Define local variables

--- ---------------------------

! Components and States
type(ESMF_GridComp) :: compGridded
type(ESMF_State) :: defaultstate

! Configuration information
type(ESMF_Config) :: config

! A common Grid
type(ESMF_Grid) :: grid

! A Clock, a Calendar, and timesteps
type(ESMF_Clock) :: clock
type(ESMF_TimeInterval) :: timeStep
type(ESMF_Time) :: startTime
type(ESMF_Time) :: stopTime

! Variables related to the Grid
integer :: i_max, j_max

! Return codes for error checks
integer :: rc, localrc

54

--- ---------------------------
Initialize ESMF. Note that an output Log is created by defaul t.

--- ---------------------------

call ESMF_Initialize(defaultCalendar=ESMF_CAL_GREGOR IAN, rc=localrc)
if (ESMF_LogMsgFoundError(localrc, ESMF_ERR_PASSTHRU, &

ESMF_CONTEXT, rcToReturn=rc)) &
call ESMF_Finalize(rc=localrc, terminationflag=ESMF_A BORT)

call ESMF_LogWrite("ESMF AppDriver start", ESMF_LOG_INF O)

--- ---------------------------
Create and load a configuration file.
The USER_CONFIG_FILE is set to sample.rc in the ChangeMe.F9 0 file.
The sample.rc file is also included in the directory with the AppDriver.F90
file.

--- ---------------------------

config = ESMF_ConfigCreate(rc=localrc)
if (ESMF_LogMsgFoundError(localrc, ESMF_ERR_PASSTHRU, &

ESMF_CONTEXT, rcToReturn=rc)) &
call ESMF_Finalize(rc=localrc, terminationflag=ESMF_A BORT)

call ESMF_ConfigLoadFile(config, USER_CONFIG_FILE, rc = localrc)
if (ESMF_LogMsgFoundError(localrc, ESMF_ERR_PASSTHRU, &

ESMF_CONTEXT, rcToReturn=rc)) &
call ESMF_Finalize(rc=localrc, terminationflag=ESMF_A BORT)

--- ---------------------------
Get configuration information.

A configuration file like sample.rc might include:
- size and coordinate information needed to create the defau lt Grid.
- the default start time, stop time, and running intervals

for the main time loop.
--- ---------------------------

call ESMF_ConfigGetAttribute(config, i_max, ’I Counts:’ , default=10, rc=localrc)
if (ESMF_LogMsgFoundError(localrc, ESMF_ERR_PASSTHRU, &

ESMF_CONTEXT, rcToReturn=rc)) &
call ESMF_Finalize(rc=localrc, terminationflag=ESMF_A BORT)

call ESMF_ConfigGetAttribute(config, j_max, ’J Counts:’ , default=40, rc=localrc)
if (ESMF_LogMsgFoundError(localrc, ESMF_ERR_PASSTHRU, &

ESMF_CONTEXT, rcToReturn=rc)) &
call ESMF_Finalize(rc=localrc, terminationflag=ESMF_A BORT)

--- ---------------------------
Create the top Gridded Component.

--- ---------------------------

compGridded = ESMF_GridCompCreate(name="ESMF Gridded Co mponent", rc=localrc)
if (ESMF_LogMsgFoundError(localrc, ESMF_ERR_PASSTHRU, &

ESMF_CONTEXT, rcToReturn=rc)) &
call ESMF_Finalize(rc=localrc, terminationflag=ESMF_A BORT)

55

call ESMF_LogWrite("Component Create finished", ESMF_LO G_INFO)

--- ---------------------------
Register the set services method for the top Gridded Compone nt.

--- ---------------------------

call ESMF_GridCompSetServices(compGridded, SetService s, rc)
if (ESMF_LogMsgFoundError(rc, "Registration failed", rc)) &

call ESMF_Finalize(rc=localrc, terminationflag=ESMF_A BORT)

--- ---------------------------
Create and initialize a Clock.

--- ---------------------------

call ESMF_TimeIntervalSet(timeStep, s=2, rc=localrc)
if (ESMF_LogMsgFoundError(localrc, ESMF_ERR_PASSTHRU, &

ESMF_CONTEXT, rcToReturn=rc)) &
call ESMF_Finalize(rc=localrc, terminationflag=ESMF_A BORT)

call ESMF_TimeSet(startTime, yy=2004, mm=9, dd=25, rc=lo calrc)
if (ESMF_LogMsgFoundError(localrc, ESMF_ERR_PASSTHRU, &

ESMF_CONTEXT, rcToReturn=rc)) &
call ESMF_Finalize(rc=localrc, terminationflag=ESMF_A BORT)

call ESMF_TimeSet(stopTime, yy=2004, mm=9, dd=26, rc=loc alrc)
if (ESMF_LogMsgFoundError(localrc, ESMF_ERR_PASSTHRU, &

ESMF_CONTEXT, rcToReturn=rc)) &
call ESMF_Finalize(rc=localrc, terminationflag=ESMF_A BORT)

clock = ESMF_ClockCreate("Application Clock", timeStep, startTime, &
stopTime, rc=localrc)

if (ESMF_LogMsgFoundError(localrc, ESMF_ERR_PASSTHRU, &
ESMF_CONTEXT, rcToReturn=rc)) &
call ESMF_Finalize(rc=localrc, terminationflag=ESMF_A BORT)

--- ---------------------------
Create and initialize a Grid.

The default lower indices for the Grid are (/1,1/).
The upper indices for the Grid are read in from the sample.rc f ile,
where they are set to (/10,40/). This means a Grid will be
created with 10 grid cells in the x direction and 40 grid cells in the
y direction. The Grid section in the Reference Manual shows h ow to set
coordinates.

--- ---------------------------

grid = ESMF_GridCreateShapeTile(maxIndex=(/i_max, j_ma x/), &
name="source grid", rc=localrc)

if (ESMF_LogMsgFoundError(localrc, ESMF_ERR_PASSTHRU, &
ESMF_CONTEXT, rcToReturn=rc)) &
call ESMF_Finalize(rc=localrc, terminationflag=ESMF_A BORT)

! Attach the grid to the Component
call ESMF_GridCompSet(compGridded, grid=grid, rc=local rc)

56

if (ESMF_LogMsgFoundError(localrc, ESMF_ERR_PASSTHRU, &
ESMF_CONTEXT, rcToReturn=rc)) &
call ESMF_Finalize(rc=localrc, terminationflag=ESMF_A BORT)

--- ---------------------------
Create and initialize a State to use for both import and expor t.
In a real code, separate import and export States would norma lly be
created.

--- ---------------------------

defaultstate = ESMF_StateCreate("Default State", rc=loc alrc)
if (ESMF_LogMsgFoundError(localrc, ESMF_ERR_PASSTHRU, &

ESMF_CONTEXT, rcToReturn=rc)) &
call ESMF_Finalize(rc=localrc, terminationflag=ESMF_A BORT)

--- ---------------------------
Call the initialize, run, and finalize methods of the top com ponent.
When the initialize method of the top component is called, it will in
turn call the initialize methods of all its child components , they
will initialize their children, and so on. The same is true of the
run and finalize methods.

--- ---------------------------

call ESMF_GridCompInitialize(compGridded, defaultstat e, defaultstate, &
clock, rc=localrc)

if (ESMF_LogMsgFoundError(rc, "Initialize failed", rc)) &
call ESMF_Finalize(rc=localrc, terminationflag=ESMF_A BORT)

call ESMF_GridCompRun(compGridded, defaultstate, defau ltstate, &
clock, rc=localrc)

if (ESMF_LogMsgFoundError(rc, "Run failed", rc)) &
call ESMF_Finalize(rc=localrc, terminationflag=ESMF_A BORT)

call ESMF_GridCompFinalize(compGridded, defaultstate, defaultstate, &
clock, rc=localrc)

if (ESMF_LogMsgFoundError(rc, "Finalize failed", rc)) &
call ESMF_Finalize(rc=localrc, terminationflag=ESMF_A BORT)

--- ---------------------------
Destroy objects.

--- ---------------------------

call ESMF_ClockDestroy(clock, rc=localrc)
if (ESMF_LogMsgFoundError(localrc, ESMF_ERR_PASSTHRU, &

ESMF_CONTEXT, rcToReturn=rc)) &
call ESMF_Finalize(rc=localrc, terminationflag=ESMF_A BORT)

call ESMF_StateDestroy(defaultstate, rc=localrc)
if (ESMF_LogMsgFoundError(localrc, ESMF_ERR_PASSTHRU, &

ESMF_CONTEXT, rcToReturn=rc)) &
call ESMF_Finalize(rc=localrc, terminationflag=ESMF_A BORT)

call ESMF_GridCompDestroy(compGridded, rc=localrc)
if (ESMF_LogMsgFoundError(localrc, ESMF_ERR_PASSTHRU, &

57

ESMF_CONTEXT, rcToReturn=rc)) &
call ESMF_Finalize(rc=localrc, terminationflag=ESMF_A BORT)

--- ---------------------------
Finalize and clean up.

--- ---------------------------

call ESMF_Finalize()

end program ESMF_AppDriver

14.4 Required ESMF Methods

There are a few methods that every ESMF application must contain. First,ESMF_Initialize() andESMF_Finalize()
are in complete analogy toMPI_Init() andMPI_Finalize() known from MPI. All ESMF programs, serial or
parallel, must initialize the ESMF system at the beginning,and finalize it at the end of execution. The behavior of
calling any ESMF method beforeESMF_Initialize() , or afterESMF_Finalize() is undefined.
Second, every ESMF Component that is accessed by an ESMF application requires that its set services routine is called
throughESMF_<Grid/Cpl>CompSetServices() . The Component must implement one public entry point, its
set services routine, that can be called through theESMF_<Grid/Cpl>CompSetServices() library routine.
The Component set services routine is responsible for setting entry points for the standard ESMF Component methods
Initialize, Run, and Finalize.
Finally, the Component library callESMF_<Grid/Cpl>CompSetVM() can optionally be issuesbeforecalling
ESMF_<Grid/Cpl>CompSetServices() . Similar toESMF_<Grid/Cpl>CompSetServices() , theESMF_<Grid/Cpl>CompSetVM()
call requires a public entry point into the Component. It allows the Component to adjust certain aspects of its execution
environment, i.e. its own VM, before it is started up.
The following sections discuss the above mentioned aspectsin more detail.

14.4.1 ESMF_Initialize - Initialize ESMF

INTERFACE:

subroutine ESMF_Initialize(defaultConfigFileName, def aultCalendar, &
defaultLogFileName, defaultLogType, mpiCommunicator, &
IOUnitLower, IOUnitUpper, vm, rc)

ARGUMENTS:

character(len= *), intent(in), optional :: defaultConfigFileName
type(ESMF_CalendarType), intent(in), optional :: defaul tCalendar
character(len= *), intent(in), optional :: defaultLogFileName
type(ESMF_LogType), intent(in), optional :: defaultLogT ype
integer, intent(in), optional :: mpiCommunicator
integer, intent(in), optional :: IOUnitLower
integer, intent(in), optional :: IOUnitUpper
type(ESMF_VM), intent(out), optional :: vm
integer, intent(out), optional :: rc

DESCRIPTION:

This method must be called once on each PET before any other ESMF methods are used. The method contains a
barrier before returning, ensuring that all processes madeit successfully through initialization.

58

Typically ESMF_Initialize() will call MPI_Init() internally unless MPI has been initialized by the user
code before initializing the framework. If the MPI initialization is left toESMF_Initialize() it inherits all of the
MPI implementation dependent limitations of what may or maynot be done beforeMPI_Init() . For instance, it
is unsafe for some MPI implementations, such as MPICH, to do IO before the MPI environment is initialized. Please
consult the documentation of your MPI implementation for details.
Note that when using MPICH as the MPI library, ESMF needs to use the application command line arguments for
MPI_Init() . However, ESMF acquires these arguments internally and theuser does not need to worry about
providing them. Also, note that ESMF does not alter the command line arguments, so that if the user obtains them
they will be as specified on the command line (including thosewhich MPICH would normally strip out).
By default,ESMF_Initialize() will open multiple error log files, one per processor. This isvery useful for de-
bugging purpose. However, when running the application on alarge number of processors, opening a large number of
log files and writing log messages from all the processors could become a performance bottleneck. Therefore, it is rec-
ommended to turn the Error Log feature off in these situations by settingdefaultLogType to ESMF_LOG_NONE.
When integrating ESMF with applications where Fortran unitnumber conflicts exist, the optionalIOUnitLower
andIOUnitUpper arguments may be used to specify an alternate unit number range. See section 46.2.1 for more
information on how ESMF uses Fortran unit numbers.
Before exiting the application the user must callESMF_Finalize() to release resources and clean up ESMF grace-
fully.
The arguments are:

[defaultConfigFilename] Name of the default configuration file for the entire application.

[defaultCalendar] Sets the default calendar to be used by ESMF Time Manager. Seesection 37.2.1 for a list of valid
options. If not specified, defaults toESMF_CAL_NOCALENDAR.

[defaultLogFileName] Name of the default log file for warning and error messages. Ifnot specified, defaults to
ESMF_ErrorLog .

[defaultLogType] Sets the default Log Type to be used by ESMF Log Manager. See section 43.2.3 for a list of valid
options. If not specified, defaults toESMF_LOG_MULTI.

[mpiCommunicator] MPI communicator defining the group of processes on which theESMF application is running.
If not specified, defaults toMPI_COMM_WORLD.

[IOUnitLower] Lower bound for Fortran unit numbers used within the ESMF library. Fortran units are primarily
used for log files. Legal unit numbers are positive integers.A value higher than 10 is recommended in order to
avoid the compiler-specific reservations which are typically found on the first few units. If not specified, defaults
to ESMF_LOG_FORT_UNIT_NUMBER, which is distributed with a value of 50.

[IOUnitUpper] Upper bound for Fortran unit numbers used within the ESMF library. Must be set to a value at least
5 units higher thanIOUnitLower . If not specified, defaults toESMF_LOG_UPPER, which is distributed with
a value of 99.

[vm] Returns the globalESMF_VMthat was created during initialization.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

14.4.2 ESMF_Finalize - Clean up and close ESMF

INTERFACE:

subroutine ESMF_Finalize(terminationflag, rc)

ARGUMENTS:

type(ESMF_TerminationFlag), intent(in), optional :: ter minationflag
integer, intent(out), optional :: rc

59

DESCRIPTION:

This must be called once on each PET before the application exits to allow ESMF to flush buffers, close open connec-
tions, and release internal resources cleanly. The optional argumentterminationflag may be used to indicate the
mode of termination. Note that this call must be issued only once per PET withterminationflag=ESMF_FINAL ,
and that this call may not be followed byESMF_Initialize() . This last restriction means that it is not possible
to restart ESMF within the same execution.
The arguments are:

[terminationflag] Specify mode of termination. The default isESMF_FINALwhich waits for all PETs of the global
VM to reachESMF_Finalize() before termination. See section 14.2.1 for a complete list and description
of valid flags.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

14.4.3 User-codeSetServices method

Many programs call some library routines. The library documentation must explain what the routine name is, what
arguments are required and what are optional, and what the code does.
In contrast, all ESMF components must be written tobe calledby another part of the program; in effect, an ESMF
component takes the place of a library. The interface is prescribed by the framework, and the component writer must
provide specific subroutines which have standard argument lists and perform specific operations. For technical reasons
noneof the arguments in user-provided subroutines must be declared asoptional.
The onlyrequiredpublic interface of a Component is its set services method. This subroutine must have an externally
accessible name (be a public symbol), take a component as thefirst argument, and an integer return code as the second.
Both arguments are required and mustnotbe declared asoptional . If an intent is specified in the interface it must be
intent(inout) for the first andintent(out) for the second argument. The subroutine name is not predefined,
it is set by the component writer, but must be provided as partof the component documentation.
The required function that the set services subroutine mustprovide is to specify the user-code entry points for the stan-
dard ESMF Component methods. To this end the user-written set services routine calls theESMF_<Grid/Cpl>CompSetEntryPoint()
method to set each Component entry point.
See sections 15.3.1 and 16.2.1 for examples of how to write a user-code set services routine.
Note that a component does not call its own set services routine; the AppDriver or parent component code, which
is creating a component, will first callESMF_<Grid/Cpl>CompCreate() to create an "empty" component, and
then must call intoESMF_<Grid/Cpl>CompSetServices() , supplying the user-code set services routine as an
argument. The framework calls into the user-code set services, after the Component’s VM has been started up.

14.4.4 User-codeInitialize , Run, and Finalize methods

The required standard ESMF Component methods, for which user-code entry points must be set, are Initialize, Run,
and Finalize. Currently optional, a Component may also set entry points for the WriteRestart and ReadRestart methods.
Sections 15.3.1 and 16.2.1 provide examples of how the entrypoints for Initialize, Run, and Finalize are set during the
user-code set services routine, using theESMF_<Grid/Cpl>CompSetEntryPoint() library call.
All standard user-code methods must abideexactly to the prescribed interfaces.Noneof the arguments must be
declared asoptional.
The names of the Initialize, Run, and Finalize user-code subroutines do not need to be public; in fact it is far better for
them to be private to lower the chances of public symbol clashes between different components.
See sections 15.3.2, 15.3.3, 15.3.4, and 16.2.2, 16.2.3, 16.2.4 for examples of how to write entry points for the standard
ESMF Component methods.

14.4.5 User-codeSetVM method

When the AppDriver or parent component code callsESMF_<Grid/Cpl>CompCreate() it has the option to
specify apetList argument. All of the parent PETs contained in this list become resources of the child component.
By default all of the parent PETs are provided to the child component.

60

Unless the optionalcontextflag argument is used duringESMF_<Grid/Cpl>CompCreate() , to indicate that
the child component will execute in the same VM as the parent,the child component has the option to set certain as-
pects of how the provided resources are to be used when executing child component methods. The resources provided
via the parent PETs are the associated processing elements (PEs) and virtual address spaces (VASs).
The optional user-written set vm routine is called from the parent through theESMF_<Grid/Cpl>CompSetVM()
library code, and is the only place where the child componentcan set aspects of its own VM before it is started
up. The child component’s VM must be running before its set services routine can be called, and thus the optional
ESMF_<Grid/Cpl>CompSetVM() call must be placedbeforeESMF_<Grid/Cpl>CompSetServices() .
If called by the parent, the user-code set vm routine has the option to specify how the PETs of the child component
share the provided parent PEs. Further, PETs on the same single system image can be set to run multi-threaded, within
a reduced number of VAS, allowing a component to leverage shared memory concepts.
Sections 15.3.5 and 16.2.5 provide examples for simple user-written set vm routines.

15 GridComp Class

15.1 Description

In Earth system modeling, the most natural way to think aboutan ESMF Gridded Component, orESMF_GridComp,
is as a piece of code representing a particular physical domain, such as an atmospheric model or an ocean model.
Gridded Components may also represent individual processes, such as radiation or chemistry. It’s up to the application
writer to decide how deeply to “componentize.”
Earth system software components tend to share a number of basic features. Most ingest and produce a variety
of physical fields, refer to a (possibly noncontiguous) spatial region and a grid that is partitioned across a set of
computational resources, and require a clock for things like stepping a governing set of PDEs forward in time. Most
can also be divided into distinct initialize, run, and finalize computational phases. These common characteristics are
used within ESMF to define a Gridded Component data structurethat is tailored for Earth system modeling and yet is
still flexible enough to represent a variety of domains.
A well designed Gridded Component does not store information internally about how it couples to other Gridded
Components. That allows it to be used in different contexts without changes to source code. The idea here is to avoid
situations in which slightly different versions of the samemodel source are maintained for use in different contexts -
standalone vs. coupled versions, for example. Data is passed in and out of Gridded Components using an ESMF State,
this is described in Section??.
An ESMF Gridded Component has two parts, one which is user-written and another which is part of the framework.
The user-written part is software that represents a physical domain or performs some other computational function. It
forms the body of the Gridded Component. It may be a piece of legacy code, or it may be developed expressly for use
with ESMF. It must contain routines with standard ESMF interfaces that can be called to initialize, run, and finalize the
Gridded Component. These routines can have separate callable phases, such as distinct first and second initialization
steps.
ESMF provides the Gridded Component derived type,ESMF_GridComp. An ESMF_GridComp must be created
for every portion of the application that will be represented as a separate component. For example, in a climate model,
there may be Gridded Components representing the land, ocean, sea ice, and atmosphere. If the application contains
an ensemble of identical Gridded Components, every one has its own associatedESMF_GridComp. Each Gridded
Component has its own name and is allocated a set of computational resources, in the form of an ESMF Virtual
Machine, orVM.
The user-written part of a Gridded Component is associated with anESMF_GridCompderived type through a routine
calledESMF_SetServices() . This is a routine that the user must write, and declare public. Inside the SetServices
routine the user must callESMF_SetEntryPoint() methods that associate a standard ESMF operation with the
name of the corresponding Fortran subroutine in their user code.

15.2 GridComp Options

15.2.1 ESMF_GridCompType

DESCRIPTION:
The ESMF_GridCompType flag identifies what sort of physical domain or computationalfunction a particular

61

ESMF_GridComp represents. The flag values are purely informational; they are not used anywhere within the frame-
work. Use of this flag is optional.
Valid values are:

ESMF_ATM Atmospheric model.

ESMF_LAND Land model.

ESMF_OCEAN Ocean model.

ESMF_SEAICE Sea ice model.

ESMF_RIVER River model.

ESMF_OTHER Other type of model or system.

15.3 Use and Examples

A Gridded Component is a computational entity which consumes and produces data. It uses a State object to exchange
data between itself and other Components. It uses a Clock object to manage time, and a VM to describe its own and
its child components’ computational resources.
This section shows how to create Gridded Components. For demonstrations of the use of Gridded Components,
see the system tests that are bundled with the ESMF software distribution. These can be found in the directory
esmf/src/system_tests .

15.3.1 Implement a user-codeSetServices routine

EveryESMF_GridComp is required to provide and document a public set services routine. It can have any name,
but must follow the declaration below: a subroutine which takes anESMF_GridComp as the first argument, and an
integer return code as the second. Both arguments are required and mustnot be declared asoptional . If an intent
is specified in the interface it must beintent(inout) for the first andintent(out) for the second argument.
The set services routine must call the ESMF methodESMF_GridCompSetEntryPoint() to register with the
framework what user-code subroutines should be called to initialize, run, and finalize the component. There are
additional routines which can be registered as well, for checkpoint and restart functions.
Note that the actual subroutines being registered do not have to be public to this module; only the set services routine
itself must be available to be used by other code.

! Example Gridded Component
module ESMF_GriddedCompEx

! ESMF Framework module
use ESMF_Mod
implicit none
public GComp_SetServices
public GComp_SetVM

contains

subroutine GComp_SetServices(comp, rc)
type(ESMF_GridComp) :: comp ! must not be optional
integer, intent(out) :: rc ! must not be optional

! Set the entry points for standard ESMF Component methods
call ESMF_GridCompSetEntryPoint(comp, ESMF_SETINIT, us erRoutine=GComp_Init, rc=rc)
call ESMF_GridCompSetEntryPoint(comp, ESMF_SETRUN, use rRoutine=GComp_Run, rc=rc)
call ESMF_GridCompSetEntryPoint(comp, ESMF_SETFINAL, u serRoutine=GComp_Final, rc=rc)

62

rc = ESMF_SUCCESS

end subroutine

15.3.2 Implement a user-codeInitialize routine

When a higher level component is ready to begin using anESMF_GridComp, it will call its initialize routine.
The component writer must supply a subroutine with the exactinterface shown below. Arguments must not be declared
as optional, and the types and order must match.
At initialization time the component can allocate data space, open data files, set up initial conditions; anything it needs
to do to prepare to run.
Therc return code should be set if an error occurs, otherwise the valueESMF_SUCCESSshould be returned.

subroutine GComp_Init(comp, importState, exportState, c lock, rc)
type(ESMF_GridComp) :: comp ! must not be optional
type(ESMF_State) :: importState, exportState ! must not be optional
type(ESMF_Clock) :: clock ! must not be optional
integer, intent(out) :: rc ! must not be optional

print * , "Gridded Comp Init starting"

! This is where the model specific setup code goes.

! If the initial Export state needs to be filled, do it here.
!call ESMF_StateAdd(exportState, field, rc)
!call ESMF_StateAdd(exportState, bundle, rc)
print * , "Gridded Comp Init returning"

rc = ESMF_SUCCESS

end subroutine GComp_Init

15.3.3 Implement a user-codeRun routine

During the execution loop, the run routine may be called manytimes. Each time it should read data from the
importState , use theclock to determine what the current time is in the calling component, compute new values
or process the data, and produce any output and place it in theexportState .
When a higher level component is ready to use theESMF_GridComp it will call its run routine.
The component writer must supply a subroutine with the exactinterface shown below. Arguments must not be declared
as optional, and the types and order must match.
It is expected that this is where the bulk of the model computation or data analysis will occur.
Therc return code should be set if an error occurs, otherwise the valueESMF_SUCCESSshould be returned.

subroutine GComp_Run(comp, importState, exportState, cl ock, rc)
type(ESMF_GridComp) :: comp ! must not be optional
type(ESMF_State) :: importState, exportState ! must not be optional
type(ESMF_Clock) :: clock ! must not be optional
integer, intent(out) :: rc ! must not be optional

print * , "Gridded Comp Run starting"

63

! call ESMF_StateGet(), etc to get fields, bundles, arrays
! from import state.

! This is where the model specific computation goes.

! Fill export state here using ESMF_StateAdd(), etc

print * , "Gridded Comp Run returning"

rc = ESMF_SUCCESS

end subroutine GComp_Run

15.3.4 Implement a user-codeFinalize routine

At the end of application execution, eachESMF_GridComp should deallocate data space, close open files, and flush
final results. These functions should be placed in a finalize routine.
The component writer must supply a subroutine with the exactinterface shown below. Arguments must not be declared
as optional, and the types and order must match.
Therc return code should be set if an error occurs, otherwise the valueESMF_SUCCESSshould be returned.

subroutine GComp_Final(comp, importState, exportState, clock, rc)
type(ESMF_GridComp) :: comp ! must not be optional
type(ESMF_State) :: importState, exportState ! must not be optional
type(ESMF_Clock) :: clock ! must not be optional
integer, intent(out) :: rc ! must not be optional

print * , "Gridded Comp Final starting"

! Add whatever code here needed

print * , "Gridded Comp Final returning"

rc = ESMF_SUCCESS

end subroutine GComp_Final

15.3.5 Implement a user-codeSetVM routine

EveryESMF_GridComp can optionally provide and document a public set vm routine.It can have any name, but
must follow the declaration below: a subroutine which takesan ESMF_GridComp as the first argument, and an
integer return code as the second. Both arguments are required and mustnot be declared asoptional . If an intent
is specified in the interface it must beintent(inout) for the first andintent(out) for the second argument.
The set vm routine is the only place where the child componentcan use theESMF_GridCompSetVMMaxPEs() , or
ESMF_GridCompSetVMMaxThreads() , or ESMF_GridCompSetVMMinThreads() call to modify aspects
of its own VM.
A component’s VM is started up right before its set services routine is entered.ESMF_GridCompSetVM() is
executing in the parent VM, and must be calledbeforeESMF_GridCompSetServices() .

subroutine GComp_SetVM(comp, rc)

64

type(ESMF_GridComp) :: comp ! must not be optional
integer, intent(out) :: rc ! must not be optional

type(ESMF_VM) :: vm
logical :: pthreadsEnabled

! Test for Pthread support, all SetVM calls require it
call ESMF_VMGetGlobal(vm, rc=rc)
call ESMF_VMGet(vm, pthreadsEnabledFlag=pthreadsEnabl ed, rc=rc)

if (pthreadsEnabled) then
! run PETs single-threaded
call ESMF_GridCompSetVMMinThreads(comp, rc=rc)

endif

rc = ESMF_SUCCESS

end subroutine

end module ESMF_GriddedCompEx

15.3.6 Set and Get the Internal State

ESMF provides the concept of an Internal State that is associated with a Component. Through the Internal State API a
user can attach a private data block to a Component, and laterretrieve a pointer to this memory allocation. Setting and
getting of Internal State information are supported from anywhere in the Component’s SetServices, Initialize, Run, or
Finalize code.
The code below demonstrates the basic Internal State API ofESMF_<Grid|Cpl>SetInternalState() and
ESMF_<Grid|Cpl>GetInternalState() . Notice that an extra level of indirection to the user data isneces-
sary!

! ESMF Framework module
use ESMF_Mod
implicit none

type(ESMF_GridComp) :: comp
integer :: rc, finalrc

! Internal State Variables
type testData
sequence

integer :: testValue
real :: testScaling

end type

type dataWrapper
sequence

type(testData), pointer :: p
end type

type(dataWrapper) :: wrap1, wrap2
type(testData), target :: data
type(testData), pointer :: datap ! extra level of indirecti on

65

finalrc = ESMF_SUCCESS
!-- -----------------------

call ESMF_Initialize(defaultlogfilename="InternalSta teEx.Log", &
defaultlogtype=ESMF_LOG_MULTI, rc=rc)

if (rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

!-- -----------------------

! Creation of a Component
comp = ESMF_GridCompCreate(name="test", rc=rc)
if (rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

!-- -----------------------
! This could be called, for example, during a Component’s ini tialize phase.

! Initialize private data block
data%testValue = 4567
data%testScaling = 0.5

! Set Internal State
wrap1%p => data
call ESMF_GridCompSetInternalState(comp, wrap1, rc)
if (rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

!-- -----------------------
! This could be called, for example, during a Component’s run phase.

! Get Internal State
call ESMF_GridCompGetInternalState(comp, wrap2, rc)
if (rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! Access private data block and verify data
datap => wrap2%p
if ((datap%testValue .ne. 4567) .or. (datap%testScaling . ne. 0.5)) then

print * , "did not get same values back"
finalrc = ESMF_FAILURE

else
print * , "got same values back from GetInternalState as original"

endif

When working with ESMF Internal States it is important to consider the applying scoping rules. The user must
ensure that the private data block, that is being referenced, persists for the entire access period. This is not an issue
in the previous example, where the private data block was defined on the scope of the main program. However, the
Internal State construct is often useful inside of Component modules to hold Component specific data between calls.
One option to ensure persisting private data blocks is to usethe Fortran SAVE attribute either on local or module
variables. A second option, illustrated in the following example, is to use Fortran pointers and user controlled memory
management via allocate() and deallocate() calls.
One situation where the Internal State is useful is in the creation of ensembles of the same Component. In this case
it can be tricky to distinguish which data, held in saved module variables, belongs to which ensemble member -
especially if the ensemble members are executing on the sameset of PETs. The Internal State solves this problem by
providing a handle to instance specific data allocations.

66

module user_mod

use ESMF_Mod

implicit none

! module variables
private

! Internal State Variables
type testData
sequence

integer :: testValue ! scalar data
real :: testScaling ! scalar data
real, pointer :: testArray(:) ! array data

end type

type dataWrapper
sequence

type(testData), pointer :: p
end type

contains !-- --------------------------

subroutine mygcomp_init(gcomp, istate, estate, clock, rc)
type(ESMF_GridComp):: gcomp
type(ESMF_State):: istate, estate
type(ESMF_Clock):: clock
integer, intent(out):: rc

! Local variables
type(dataWrapper) :: wrap
type(testData), pointer :: data
integer :: i

rc = ESMF_SUCCESS

! Allocate private data block
allocate(data)

! Initialize private data block
data%testValue = 4567 ! initialize scalar data
data%testScaling = 0.5 ! initialize scalar data
allocate(data%testArray(10)) ! allocate array data

do i=1, 10
data%testArray(i) = real(i) ! initialize array data

enddo

! In a real ensemble application the initial data would be set to something
! unique for this ensemble member. This could be accomplishe d for example
! by reading a member specific config file that was specified by the

67

! driver code. Alternatively, Attributes, set by the driver , could be used
! to label the Component instances as specific ensemble memb ers.

! Set Internal State
wrap%p => data
call ESMF_GridCompSetInternalState(gcomp, wrap, rc)

end subroutine !------------------------------------- -------------------------

subroutine mygcomp_run(gcomp, istate, estate, clock, rc)
type(ESMF_GridComp):: gcomp
type(ESMF_State):: istate, estate
type(ESMF_Clock):: clock
integer, intent(out):: rc

! Local variables
type(dataWrapper) :: wrap
type(testData), pointer :: data
logical :: match = .true.
integer :: i

rc = ESMF_SUCCESS

! Get Internal State
call ESMF_GridCompGetInternalState(gcomp, wrap, rc)
if (rc/=ESMF_SUCCESS) return

! Access private data block and verify data
data => wrap%p
if (data%testValue .ne. 4567) match = .false. ! test scalar d ata
if (data%testScaling .ne. 0.5) match = .false. ! test scalar data
do i=1, 10

if (data%testArray(i) .ne. real(i)) match = .false. ! test a rray data
enddo

if (match) then
print * , "got same values back from GetInternalState as original"

else
print * , "did not get same values back"
rc = ESMF_FAILURE

endif

end subroutine !------------------------------------- -------------------------

subroutine mygcomp_final(gcomp, istate, estate, clock, r c)
type(ESMF_GridComp):: gcomp
type(ESMF_State):: istate, estate
type(ESMF_Clock):: clock
integer, intent(out):: rc

! Local variables
type(dataWrapper) :: wrap
type(testData), pointer :: data

rc = ESMF_SUCCESS

68

! Get Internal State
call ESMF_GridCompGetInternalState(gcomp, wrap, rc)
if (rc/=ESMF_SUCCESS) return

! Deallocate private data block
data => wrap%p
deallocate(data%testArray) ! deallocate array data
deallocate(data)

end subroutine !------------------------------------- -------------------------

end module

15.4 Restrictions and Future Work

1. No optional arguments. User-written routines called by SetServices, and registered for Initialize, Run and
Finalize,must notdeclare any of the arguments as optional.

2. Namespace isolation.If possible, Gridded Components should attempt to make all data private, so public
names do not interfere with data in other components.

3. Single execution mode.It is not expected that a single Gridded Component be able to function in both se-
quential and concurrent modes, although Gridded Components of different types can be nested. For example, a
concurrently called Gridded Component can contain severalnested sequential Gridded Components.

15.5 Class API

15.5.1 ESMF_GridCompCreate - Create a GridComp

INTERFACE:

recursive function ESMF_GridCompCreate(name, gridcompt ype, grid, config, &
configFile, clock, petList, contextflag, rc)

RETURN VALUE:

type(ESMF_GridComp) :: ESMF_GridCompCreate

ARGUMENTS:

character(len= *), intent(in), optional :: name
type(ESMF_GridCompType), intent(in), optional :: gridco mptype
type(ESMF_Grid), intent(inout), optional :: grid
type(ESMF_Config), intent(inout), optional :: config
character(len= *), intent(in), optional :: configFile
type(ESMF_Clock), intent(inout), optional :: clock
integer, intent(in), optional :: petList(:)
type(ESMF_ContextFlag), intent(in), optional :: context flag
integer, intent(out), optional :: rc

DESCRIPTION:

69

This interface creates anESMF_GridComp object. By default, a separate VM context will be created foreach
component. This implies creating a new MPI communicator andallocating additional memory to manage the VM
resources. When running on a large number of processors, creating a separate VM for each component could be both
time and memory inefficient. If the application is sequential, i.e., each component is running on all the PETs of the
global VM, it will be more efficient to use the global VM instead of creating a new one. This can be done by setting
contextflag to ESMF_CHILD_IN_PARENT_VM.
The return value is the newESMF_GridComp.
The arguments are:

[name] Name of the newly-createdESMF_GridComp. This name can be altered from within theESMF_GridComp
code once the initialization routine is called.

[gridcomptype] ESMF_GridCompmodel type, where model includesESMF_ATM, ESMF_LAND, ESMF_OCEAN,
ESMF_SEAICE, ESMF_RIVER. Note that this has no meaning to the framework, it is an annotation for user
code to query. See section 15.2.1 for a complete list of validtypes.

[grid] Default ESMF_Grid associated with thisgridcomp . Note that it is perfectly ok to not pass a Grid in for
this argument. This argument is simply a convenience for theuser to allow them to associate a Grid with a
component for their later use. The grid isn’t actually used in the component code.

[config] An already-createdESMF_Config configuration object from which the new component can read innamelist-
type information to set parameters for this run. If both are specified, this object takes priority overconfigFile .

[configFile] The filename of anESMF_Config format file. If specified, this file is opened anESMF_Config con-
figuration object is created for the file, and attached to the new component. The user can callESMF_GridCompGet()
to get and use the object. If both are specified, theconfig object takes priority over this one.

[clock] Component-specificESMF_Clock . This clock is available to be queried and updated by the newESMF_GridComp
as it chooses. This should not be the parent component clock,which should be maintained and passed down to
the initialize/run/finalize routines separately.

[petList] List of parentPETs given to the created child component by the parent component. If petList is not
specified all of the parentPETs will be given to the child component. The order of PETs inpetList determines
how the child local PETs refer back to the parent PETs.

[contextflag] Specify the component’s VM context. The default context isESMF_CHILD_IN_NEW_VM. See section
9.2.4 for a complete list of valid flags.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

15.5.2 ESMF_GridCompDestroy - Release resources for a GridComp

INTERFACE:

subroutine ESMF_GridCompDestroy(gridcomp, rc)

ARGUMENTS:

type(ESMF_GridComp) :: gridcomp
integer, intent(out), optional :: rc

DESCRIPTION:

Releases all resources associated with thisESMF_GridComp.
The arguments are:

gridcomp Release all resources associated with thisESMF_GridComp and mark the object as invalid. It is an error
to pass this object into any other routines after being destroyed.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

70

15.5.3 ESMF_GridCompFinalize - Call the GridComp’s finalize routine

INTERFACE:

recursive subroutine ESMF_GridCompFinalize(gridcomp, i mportState, &
exportState, clock, blockingflag, phase, userRc, rc)

ARGUMENTS:

type(ESMF_GridComp) :: gridcomp
type(ESMF_State), intent(inout), optional :: importStat e
type(ESMF_State), intent(inout), optional :: exportStat e
type(ESMF_Clock), intent(inout), optional :: clock
type(ESMF_BlockingFlag), intent(in), optional :: blocki ngflag
integer, intent(in), optional :: phase
integer, intent(out), optional :: userRc
integer, intent(out), optional :: rc

DESCRIPTION:

Call the associated user-supplied finalization code for anESMF_GridComp.
The arguments are:

gridcomp TheESMF_GridComp to call finalize routine for.

[importState] ESMF_State containing import data. If not present, a dummy argument will be passed to the user-
supplied routine. The importState argument in the user codecannot be optional.

[exportState] ESMF_State containing export data. If not present, a dummy argument will be passed to the user-
supplied routine. The exportState argument in the user codecannot be optional.

[clock] ExternalESMF_Clock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations. If not present, a dummy argument will be passed to the user-supplied routine.
The clock argument in the user code cannot be optional.

[blockingflag] Blocking behavior of this method call. See section 9.2.2 fora list of valid blocking options. Default
option isESMF_VASBLOCKINGwhich blocks PETs and their spawned off threads across each VAS but does
not synchronize PETs that run in different VASs.

[phase] Component providers must document whether their each of their routines aresingle-phaseor multi-phase.
Single-phase routines require only one invocation to complete their work. Multi-phase routines provide multiple
subroutines to accomplish the work, accommodating components which must complete part of their work, return
to the caller and allow other processing to occur, and then continue the original operation. For multiple-phase
child components, this is the integer phase number to be invoked. For single-phase child components this
argument is optional. The default is 1.

[userRc] Return code set byuserRoutine before returning.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

15.5.4 ESMF_GridCompGet - Query a GridComp for information

INTERFACE:

71

subroutine ESMF_GridCompGet(gridcomp, name, gridcompty pe, grid, config, &
configFile, clock, localPet, petCount, contextflag, curr entMethod, &
currentPhase, comptype, vm, rc)

ARGUMENTS:

type(ESMF_GridComp), intent(inout) :: gridcomp
character(len= *), intent(out), optional :: name
type(ESMF_GridCompType), intent(out), optional :: gridc omptype
type(ESMF_Grid), intent(out), optional :: grid
type(ESMF_Config), intent(out), optional :: config
character(len= *), intent(out), optional :: configFile
type(ESMF_Clock), intent(out), optional :: clock
integer, intent(out), optional :: localPet
integer, intent(out), optional :: petCount
type(ESMF_ContextFlag), intent(out), optional :: contex tflag
type(ESMF_Method), intent(out), optional :: currentMeth od
integer, intent(out), optional :: currentPhase
type(ESMF_CompType), intent(out), optional :: comptype
type(ESMF_VM), intent(out), optional :: vm
integer, intent(out), optional :: rc

DESCRIPTION:

Returns information about anESMF_GridComp. For queries where the caller only wants a single value, specify the
argument by name. All the arguments after thegridcomp argument are optional to facilitate this.
The arguments are:

gridcomp ESMF_GridCompobject to query.

[name] Return the name of theESMF_GridComp.

[gridcomptype] Return the model type of thisESMF_GridComp. See section 15.2.1 for a complete list of valid
types.

[grid] Return theESMF_Grid associated with thisESMF_GridComp.

[config] Return theESMF_Config object for thisESMF_GridComp.

[configFile] Return the configuration filename for thisESMF_GridComp.

[clock] Return the private clock for thisESMF_GridComp.

[localPet] Return the local PET id withing theESMF_GridCompobject.

[petCount] Return the number of PETs in the theESMF_GridCompobject.

[contextflag] Return theESMF_ContextFlag for thisESMF_GridComp. See section 9.2.4 for a complete list of
valid flags.

[currentMethod] Return the currentESMF_Method of the ESMF_GridComp execution. See section 9.1.1 for a
complete list of valid options.

[currentPhase] Return the currentphase of theESMF_GridCompexecution.

[comptype] Return the Component type:ESMF_COMPTYPE_GRIDor ESMF_COMPTYPE_CPL.

[vm] Return theESMF_VMfor thisESMF_GridComp.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

72

15.5.5 ESMF_GridCompGetInternalState - Get private data block pointer

INTERFACE:

subroutine ESMF_GridCompGetInternalState(gridcomp, da taPointer, rc)

ARGUMENTS:

type(ESMF_GridComp), intent(inout) :: gridcomp
type(any), pointer :: dataPointer
integer, intent(out) :: rc

DESCRIPTION:

Available to be called by anESMF_GridCompat any time afterESMF_GridCompSetInternalState has been
called. Since init, run, and finalize must be separate subroutines, data that they need to share in common can either
be module global data, or can be allocated in a private data block and the address of that block can be registered
with the framework and retrieved by this call. When running multiple instantiations of anESMF_GridComp, for
example during ensemble runs, it may be simpler to maintain private data specific to each run with private data
blocks. A correspondingESMF_GridCompSetInternalState call sets the data pointer to this block, and this
call retrieves the data pointer. Note that thedataPointer argument needs to be a derived type which contains only
a pointer of the type of the data block defined by the user. Whenmaking this call the pointer needs to be unassociated.
When the call returns, the pointer will now reference the original data block which was set during the previous call to
ESMF_GridCompSetInternalState .
Only thelast data block set viaESMF_GridCompSetInternalState will be accessible.
The arguments are:

gridcomp An ESMF_GridCompobject.

dataPointer A derived type, containing only an unassociated pointer to the private data block. The framework
will fill in the pointer. When this call returns, the pointer is set to the same address set during the last
ESMF_GridCompSetInternalState call. This level of indirection is needed to reliably set andretrieve
the data block no matter which architecture or compiler is used.

rc Return code; equalsESMF_SUCCESSif there are no errors. Note: unlike most other ESMF routines, this argument
is not optional because of implementation considerations.

15.5.6 ESMF_GridCompInitialize - Call the GridComp’s init ialize routine

INTERFACE:

recursive subroutine ESMF_GridCompInitialize(gridcomp , importState, &
exportState, clock, blockingflag, phase, userRc, rc)

ARGUMENTS:

type(ESMF_GridComp) :: gridcomp
type(ESMF_State), intent(inout), optional :: importStat e
type(ESMF_State), intent(inout), optional :: exportStat e
type(ESMF_Clock), intent(inout), optional :: clock
type(ESMF_BlockingFlag), intent(in), optional :: blocki ngflag
integer, intent(in), optional :: phase
integer, intent(out), optional :: userRc
integer, intent(out), optional :: rc

73

DESCRIPTION:

Call the associated user initialization code for a GridComp.
The arguments are:

gridcomp ESMF_GridComp to call initialize routine for.

[importState] ESMF_State containing import data for coupling. If not present, a dummyargument will be passed
to the user-supplied routine. The importState argument in the user code cannot be optional.

[exportState] ESMF_State containing export data for coupling. If not present, a dummyargument will be passed
to the user-supplied routine. The exportState argument in the user code cannot be optional.

[clock] ExternalESMF_Clock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations. If not present, a dummy argument will be passed to the user-supplied routine.
The clock argument in the user code cannot be optional.

[blockingflag] Blocking behavior of this method call. See section 9.2.2 fora list of valid blocking options. Default
option isESMF_VASBLOCKINGwhich blocks PETs and their spawned off threads across each VAS but does
not synchronize PETs that run in different VASs.

[phase] Component providers must document whether each of their routines aresingle-phaseor multi-phase. Single-
phase routines require only one invocation to complete their work. Multi-phase routines provide multiple sub-
routines to accomplish the work, accomodating components which must complete part of their work, return to
the caller and allow other processing to occur, and then continue the original operation. For multiple-phase child
components, this is the integer phase number to be invoked. For single-phase child components this argument
is optional. The default is 1.

[userRc] Return code set byuserRoutine before returning.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

15.5.7 ESMF_GridCompIsPetLocal - Inquire if this GridComp is to execute on the calling PET

INTERFACE:

recursive function ESMF_GridCompIsPetLocal(gridcomp, r c)

RETURN VALUE:

logical :: ESMF_GridCompIsPetLocal

ARGUMENTS:

type(ESMF_GridComp), intent(inout) :: gridcomp
integer, intent(out), optional :: rc

DESCRIPTION:

Inquire if thisESMF_GridCompobject is to execute on the calling PET.
The return value is.true. if the component is to execute on the calling PET,.false. otherwise.
The arguments are:

gridcomp ESMF_GridCompqueried.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

74

15.5.8 ESMF_GridCompPrint - Print the contents of a GridComp

INTERFACE:

subroutine ESMF_GridCompPrint(gridcomp, options, rc)

ARGUMENTS:

type(ESMF_GridComp) :: gridcomp
character(len = *), intent(in), optional :: options
integer, intent(out), optional :: rc

DESCRIPTION:

Prints information about anESMF_GridComp to stdout .

Note: ManyESMF_<class>Print methods are implemented in C++. On some platforms/compilers there is a
potential issue with interleaving Fortran and C++ output tostdout such that it doesn’t appear in the expected order.
If this occurs, theESMF_IOUnitFlush() method may be used on unit 6 to get coherent output.

The arguments are:

gridcomp ESMF_GridComp to print.

[options] Print options are not yet supported.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

15.5.9 ESMF_GridCompReadRestart - Call the GridComp’s read restart routine

INTERFACE:

recursive subroutine ESMF_GridCompReadRestart(gridcom p, importState, &
exportState, clock, blockingflag, phase, userRc, rc)

ARGUMENTS:

type(ESMF_GridComp) :: gridcomp
type(ESMF_State), intent(inout), optional :: importStat e
type(ESMF_State), intent(inout), optional :: exportStat e
type(ESMF_Clock), intent(inout), optional :: clock
type(ESMF_BlockingFlag), intent(in), optional :: blocki ngflag
integer, intent(in), optional :: phase
integer, intent(out), optional :: userRc
integer, intent(out), optional :: rc

DESCRIPTION:

Call the associated user read restart code for anESMF_GridComp.
The arguments are:

gridcomp ESMF_GridComp to call run routine for.

[importState] ESMF_State containing import data. If not present, a dummy argument will be passed to the user-
supplied routine. The importState argument in the user codecannot be optional.

75

[exportState] ESMF_State containing export data. If not present, a dummy argument will be passed to the user-
supplied routine. The exportState argument in the user codecannot be optional.

[clock] ExternalESMF_Clock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations. If not present, a dummy argument will be passed to the user-supplied routine.
The clock argument in the user code cannot be optional.

[blockingflag] Blocking behavior of this method call. See section 9.2.2 fora list of valid blocking options. Default
option isESMF_VASBLOCKINGwhich blocks PETs and their spawned off threads across each VAS but does
not synchronize PETs that run in different VASs.

[phase] Component providers must document whether their each of their routines aresingle-phaseor multi-phase.
Single-phase routines require only one invocation to complete their work. Multi-phase routines provide multiple
subroutines to accomplish the work, accomodating components which must complete part of their work, return
to the caller and allow other processing to occur, and then continue the original operation. For multiple-phase
child components, this is the integer phase number to be invoked. For single-phase child components this
argument is optional. The default is 1.

[userRc] Return code set byuserRoutine before returning.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

15.5.10 ESMF_GridCompRun - Call the GridComp’s run routine

INTERFACE:

recursive subroutine ESMF_GridCompRun(gridcomp, import State, exportState,&
clock, blockingflag, phase, userRc, rc)

ARGUMENTS:

type(ESMF_GridComp) :: gridcomp
type(ESMF_State), intent(inout), optional :: importStat e
type(ESMF_State), intent(inout), optional :: exportStat e
type(ESMF_Clock), intent(inout), optional :: clock
type(ESMF_BlockingFlag), intent(in), optional :: blocki ngflag
integer, intent(in), optional :: phase
integer, intent(out), optional :: userRc
integer, intent(out), optional :: rc

DESCRIPTION:

Call the associated user run code for anESMF_GridComp.
The arguments are:

gridcomp ESMF_GridComp to call run routine for.

[importState] ESMF_State containing import data. If not present, a dummy argument will be passed to the user-
supplied routine. The importState argument in the user codecannot be optional.

[exportState] ESMF_State containing export data. If not present, a dummy argument will be passed to the user-
supplied routine. The exportState argument in the user codecannot be optional.

[clock] ExternalESMF_Clock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations. If not present, a dummy argument will be passed to the user-supplied routine.
The clock argument in the user code cannot be optional.

76

[blockingflag] Blocking behavior of this method call. See section 9.2.2 fora list of valid blocking options. Default
option isESMF_VASBLOCKINGwhich blocks PETs and their spawned off threads across each VAS but does
not synchronize PETs that run in different VASs.

[phase] Component providers must document whether their each of their routines aresingle-phaseor multi-phase.
Single-phase routines require only one invocation to complete their work. Multi-phase routines provide multiple
subroutines to accomplish the work, accomodating components which must complete part of their work, return
to the caller and allow other processing to occur, and then continue the original operation. For multiple-phase
child components, this is the integer phase number to be invoked. For single-phase child components this
argument is optional. The default is 1.

[userRc] Return code set byuserRoutine before returning.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

15.5.11 ESMF_GridCompSet - Set or reset information about the GridComp

INTERFACE:

subroutine ESMF_GridCompSet(gridcomp, name, gridcompty pe, grid, config, &
configFile, clock, rc)

ARGUMENTS:

type(ESMF_GridComp), intent(inout) :: gridcomp
character(len= *), intent(in), optional :: name
type(ESMF_GridCompType), intent(in), optional :: gridco mptype
type(ESMF_Grid), intent(inout), optional :: grid
type(ESMF_Config), intent(inout), optional :: config
character(len= *), intent(in), optional :: configFile
type(ESMF_Clock), intent(inout), optional :: clock
integer, intent(out), optional :: rc

DESCRIPTION:

Sets or resets information about anESMF_GridComp. The caller can set individual values by specifying the argu-
ments by name. All the arguments exceptgridcomp are optional to facilitate this.
The arguments are:

gridcomp ESMF_GridComp to change.

[name] Set the name of theESMF_GridComp.

[gridcomptype] Set the model type for thisESMF_GridComp. See section 15.2.1 for a complete list of valid types.

[grid] Set theESMF_Grid associated with theESMF_GridComp.

[config] Set the configuration information for theESMF_GridComp from this already createdESMF_Config ob-
ject. If specified, takes priority overconfigFile .

[configFile] Set the configuration filename for thisESMF_GridComp. An ESMF_Config object will be created
for this file and attached to theESMF_GridComp. Superceeded byconfig if both are specified.

[clock] Set the private clock for thisESMF_GridComp.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

77

15.5.12 ESMF_GridCompSetEntryPoint - Set user routine as entry point for standard GridComp method

INTERFACE:

subroutine ESMF_GridCompSetEntryPoint(gridcomp, metho d, userRoutine, phase, rc)

ARGUMENTS:

type(ESMF_GridComp), intent(in) :: gridcomp
type(ESMF_Method), intent(in) :: method
interface

subroutine userRoutine(gridcomp, importState, exportSt ate, clock, rc)
use ESMF_CompMod
use ESMF_StateMod
use ESMF_ClockMod
implicit none
type(ESMF_GridComp) :: gridcomp ! must not be optional
type(ESMF_State) :: importState ! must not be optional
type(ESMF_State) :: exportState ! must not be optional
type(ESMF_Clock) :: clock ! must not be optional
integer, intent(out) :: rc ! must not be optional

end subroutine
end interface
integer, intent(in), optional :: phase
integer, intent(out), optional :: rc

DESCRIPTION:

Registers a user-supplieduserRoutine as the entry point for one of the predefined Componentmethod s. After
this call theuserRoutine becomes accessible via the standard Component method API.
The arguments are:

gridcomp An ESMF_GridCompobject.

method One of a set of predefined Component methods - e.g.ESMF_SETINIT,ESMF_SETRUN,ESMF_SETFINAL.
See section 9.1.1 for a complete list of valid method options.

userRoutine The user-supplied subroutine to be associated for this Componentmethod . This subroutine does not
have to be public.

[phase] Thephase number for multi-phase methods. For single phase methods thephase argument can be omitted.
The default setting is 1.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

The Component writer must supply a subroutine with the exactinterface shown above for theuserRoutine argu-
ment. Arguments inuserRoutine must not be declared as optional, and the types, intent and order must match.

15.5.13 ESMF_GridCompSetInternalState - Set private datablock pointer

INTERFACE:

subroutine ESMF_GridCompSetInternalState(gridcomp, da taPointer, rc)

ARGUMENTS:

78

type(ESMF_GridComp), intent(inout) :: gridcomp
type(any), pointer :: dataPointer
integer, intent(out) :: rc

DESCRIPTION:

Available to be called by anESMF_GridComp at any time, but expected to be most useful when called duringthe
registration process, or initialization. Since init, run,and finalize must be separate subroutines, data that they need to
share in common can either be module global data, or can be allocated in a private data block and the address of that
block can be registered with the framework and retrieved by subsequent calls. When running multiple instantiations
of an ESMF_GridComp, for example during ensemble runs, it may be simpler to maintain private data specific to
each run with private data blocks. A correspondingESMF_GridCompGetInternalState call retrieves the data
pointer.
Only thelast data block set viaESMF_GridCompSetInternalState will be accessible.
The arguments are:

gridcomp An ESMF_GridCompobject.

dataPointer A pointer to the private data block, wrapped in a derived typewhich contains only a pointer to the block.
This level of indirection is needed to reliably set and retrieve the data block no matter which architecture or
compiler is used.

rc Return code; equalsESMF_SUCCESSif there are no errors. Note: unlike most other ESMF routines, this argument
is not optional because of implementation considerations.

15.5.14 ESMF_GridCompSetServices - Call user routine to register GridComp methods

INTERFACE:

recursive subroutine ESMF_GridCompSetServices(gridcom p, userRoutine, userRc, rc)

ARGUMENTS:

type(ESMF_GridComp) :: gridcomp
interface

subroutine userRoutine(gridcomp, rc)
use ESMF_CompMod
implicit none
type(ESMF_GridComp) :: gridcomp ! must not be optional
integer, intent(out) :: rc ! must not be optional

end subroutine
end interface
integer, intent(out), optional :: userRc
integer, intent(out), optional :: rc

DESCRIPTION:

Call into user provideduserRoutine which is responsible for setting Component’s Initialize(), Run() and Finalize()
services.
The arguments are:

gridcomp Gridded Component.

userRoutine Routine to be called.

[userRc] Return code set byuserRoutine before returning.

79

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

The Component writer must supply a subroutine with the exactinterface shown above for theuserRoutine argu-
ment. Arguments inuserRoutine must not be declared as optional, and the types, intent and order must match.
TheuserRoutine , when called by the framework, must make successive calls toESMF_GridCompSetEntryPoint()
to preset callback routines for standard Component Initialize(), Run() and Finalize() methods.

15.5.15 ESMF_GridCompSetServices - Call user routine, located in shared object, to register GridComp
methods

INTERFACE:

! Private name; call using ESMF_GridCompSetServices()
recursive subroutine ESMF_GridCompSetServicesShObj(gr idcomp, userRoutine, &

sharedObj, userRc, rc)

ARGUMENTS:

type(ESMF_GridComp), intent(inout) :: gridcomp
character(len= *), intent(in) :: userRoutine
character(len= *), intent(in), optional :: sharedObj
integer, intent(out), optional :: userRc
integer, intent(out), optional :: rc

DESCRIPTION:

Call into user provided routine which is responsible for setting Component’s Initialize(), Run() and Finalize() services.
The nameduserRoutine must exist in the shared object file specified in thesharedObj argument. All of the
platform specific details about dynamic linking and loadingapply.
The arguments are:

gridcomp Gridded Component.

userRoutine Name of routine to be called.

[sharedObj] Name of shared object that containsuserRoutine . If the sharedObj argument is not provided the
executable itself will be searched foruserRoutine .

[userRc] Return code set byuserRoutine before returning.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

The Component writer must supply a subroutine with the exactinterface shown foruserRoutine below. Arguments
must not be declared as optional, and the types, intent and order must match.

INTERFACE:

interface
subroutine userRoutine(gridcomp, rc)

type(ESMF_GridComp) :: gridcomp ! must not be optional
integer, intent(out) :: rc ! must not be optional

end subroutine
end interface

DESCRIPTION:

TheuserRoutine , when called by the framework, must make successive calls toESMF_GridCompSetEntryPoint()
to preset callback routines for standard Component Initialize(), Run() and Finalize() methods.

80

15.5.16 ESMF_GridCompSetVM - Call user routine to set GridComp VM properties

INTERFACE:

recursive subroutine ESMF_GridCompSetVM(gridcomp, user Routine, userRc, rc)

ARGUMENTS:

type(ESMF_GridComp) :: gridcomp
interface

subroutine userRoutine(gridcomp, rc)
use ESMF_CompMod
implicit none
type(ESMF_GridComp) :: gridcomp ! must not be optional
integer, intent(out) :: rc ! must not be optional

end subroutine
end interface
integer, intent(out), optional :: userRc
integer, intent(out), optional :: rc

DESCRIPTION:

Optionally call into user provideduserRoutine which is responsible for for setting Component’s VM properties.
The arguments are:

gridcomp Gridded Component.

userRoutine Routine to be called.

[userRc] Return code set byuserRoutine before returning.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

The Component writer must supply a subroutine with the exactinterface shown above for theuserRoutine argu-
ment. Arguments inuserRoutine must not be declared as optional, and the types, intent and order must match.
The subroutine, when called by the framework, is expected touse any of theESMF_GridCompSetVMxxx() meth-
ods to set the properties of the VM associated with the Gridded Component.

15.5.17 ESMF_GridCompSetVM - Call user routine, located inshared object, to set GridComp VM proper-
ties

INTERFACE:

! Private name; call using ESMF_GridCompSetVM()
recursive subroutine ESMF_GridCompSetVMShObj(gridcomp , userRoutine, sharedObj, &

userRc, rc)

ARGUMENTS:

type(ESMF_GridComp), intent(inout) :: gridcomp
character(len= *), intent(in) :: userRoutine
character(len= *), intent(in), optional :: sharedObj
integer, intent(out), optional :: userRc
integer, intent(out), optional :: rc

81

DESCRIPTION:

Optionally call into user provideduserRoutine which is responsible for for setting Component’s VM properties.
The nameduserRoutine must exist in the shared object file specified in thesharedObj argument. All of the
platform specific details about dynamic linking and loadingapply.
The arguments are:

gridcomp Gridded Component.

userRoutine Routine to be called.

[sharedObj] Name of shared object that containsuserRoutine . If the sharedObj argument is not provided the
executable itself will be searched foruserRoutine .

[userRc] Return code set byuserRoutine before returning.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

The Component writer must supply a subroutine with the exactinterface shown foruserRoutine below. Arguments
must not be declared as optional, and the types, intent and order must match.

INTERFACE:

interface
subroutine userRoutine(gridcomp, rc)

type(ESMF_GridComp) :: gridcomp ! must not be optional
integer, intent(out) :: rc ! must not be optional

end subroutine
end interface

DESCRIPTION:

The subroutine, when called by the framework, is expected touse any of theESMF_GridCompSetVMxxx() meth-
ods to set the properties of the VM associated with the Gridded Component.

15.5.18 ESMF_GridCompSetVMMaxPEs - Set VM for GridComp to associate max PEs with PETs

INTERFACE:

subroutine ESMF_GridCompSetVMMaxPEs(gridcomp, max, pre f_intra_process, &
pref_intra_ssi, pref_inter_ssi, rc)

ARGUMENTS:

type(ESMF_GridComp), intent(inout) :: gridcomp
integer, intent(in), optional :: max
integer, intent(in), optional :: pref_intra_process
integer, intent(in), optional :: pref_intra_ssi
integer, intent(in), optional :: pref_inter_ssi
integer, intent(out), optional :: rc

DESCRIPTION:

Set characteristics of theESMF_VMfor thisESMF_GridComp. Attempts to associatemax PEs with each PET. Only
PEs that are located on the same single system image can be associated with the same PET. Within this constraint the
call tries to get as close as possible to the number specified by max.
The typical use ofESMF_GridCompSetVMMaxPEs() is to allocate multiple PEs per PET in a Component for
user-level threading, e.g. OpenMP.
The arguments are:

82

gridcomp ESMF_GridComp to set theESMF_VMfor.

[max] Maximum number of PEs per PET. Default is peCount.

[pref_intra_process] Intra process communication preference.Currently options not documented. Use default.

[pref_intra_ssi] Intra SSI communication preference.Currently options not documented. Use default.

[pref_inter_ssi] Inter process communication preference.Currently options not documented. Use default.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

15.5.19 ESMF_GridCompSetVMMaxThreads - Set VM for GridComp with multi-threaded PETs

INTERFACE:

subroutine ESMF_GridCompSetVMMaxThreads(gridcomp, max , pref_intra_process, &
pref_intra_ssi, pref_inter_ssi, rc)

ARGUMENTS:

type(ESMF_GridComp), intent(inout) :: gridcomp
integer, intent(in), optional :: max
integer, intent(in), optional :: pref_intra_process
integer, intent(in), optional :: pref_intra_ssi
integer, intent(in), optional :: pref_inter_ssi
integer, intent(out), optional :: rc

DESCRIPTION:

Set characteristics of theESMF_VMfor this ESMF_GridComp. Attempts to providemax threaded PETs in each
VAS. Only as many threaded PETs as there are PEs located on thesame single system image can be associated with
the same VAS. Within this constraint the call tries to get as close as possible to the number specified bymax.
The typical use ofESMF_GridCompSetVMMaxThreads() is to run a Component multi-threaded with a groups
of PETs that execute within the same virtual address space.
The arguments are:

gridcomp ESMF_GridComp to set theESMF_VMfor.

[max] Maximum threading level.

[pref_intra_process] Intra process communication preference.Currently options not documented. Use default.

[pref_intra_ssi] Intra SSI communication preference.Currently options not documented. Use default.

[pref_inter_ssi] Inter process communication preference.Currently options not documented. Use default.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

83

15.5.20 ESMF_GridCompSetVMMinThreads - Set VM for GridComp with reduced threading level

INTERFACE:

subroutine ESMF_GridCompSetVMMinThreads(gridcomp, max , pref_intra_process, &
pref_intra_ssi, pref_inter_ssi, rc)

ARGUMENTS:

type(ESMF_GridComp), intent(inout) :: gridcomp
integer, intent(in), optional :: max
integer, intent(in), optional :: pref_intra_process
integer, intent(in), optional :: pref_intra_ssi
integer, intent(in), optional :: pref_inter_ssi
integer, intent(out), optional :: rc

DESCRIPTION:

Set characteristics of theESMF_VMfor this ESMF_GridComp. Reduces the number of threaded PETs in each VAS.
Themax argument may be specified to limit the maximum number of PEs that a single PET may be associated with.
The typical use ofESMF_GridCompSetVMMinThreads() is to run a Component across a set of single-threaded
PETs.
The arguments are:

gridcomp ESMF_GridComp to set theESMF_VMfor.

[max] Maximum number of PEs per PET. Default is peCount.

[pref_intra_process] Intra process communication preference.Currently options not documented. Use default.

[pref_intra_ssi] Intra SSI communication preference.Currently options not documented. Use default.

[pref_inter_ssi] Inter process communication preference.Currently options not documented. Use default.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

15.5.21 ESMF_GridCompValidate - Check validity of a GridComp

INTERFACE:

subroutine ESMF_GridCompValidate(gridcomp, options, rc)

ARGUMENTS:

type(ESMF_GridComp) :: gridcomp
character(len = *), intent(in), optional :: options
integer, intent(out), optional :: rc

DESCRIPTION:

Currently all this method does is to check that thegridcomp exists.
The arguments are:

gridcomp ESMF_GridComp to validate.

[options] Validation options are not yet supported.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

84

15.5.22 ESMF_GridCompWait - Wait for a GridComp to return

INTERFACE:

subroutine ESMF_GridCompWait(gridcomp, blockingflag, u serRc, rc)

ARGUMENTS:

type(ESMF_GridComp), intent(inout) :: gridcomp
type(ESMF_BlockingFlag), intent(in), optional :: blocki ngflag
integer, intent(out), optional :: userRc
integer, intent(out), optional :: rc

DESCRIPTION:

When executing asychronously, wait for anESMF_GridComp to return.
The arguments are:

gridcomp ESMF_GridComp to wait for.

[blockingflag] Blocking behavior of this method call. See section 9.2.2 fora list of valid blocking options. Default
option isESMF_VASBLOCKINGwhich blocks PETs and their spawned off threads across each VAS but does
not synchronize PETs that run in different VASs.

[userRc] Return code set byuserRoutine before returning.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

15.5.23 ESMF_GridCompWriteRestart - Call the GridComp’s write restart routine

INTERFACE:

recursive subroutine ESMF_GridCompWriteRestart(gridco mp, importState, &
exportState, clock, blockingflag, phase, userRc, rc)

ARGUMENTS:

type(ESMF_GridComp) :: gridcomp
type(ESMF_State), intent(inout), optional :: importStat e
type(ESMF_State), intent(inout), optional :: exportStat e
type(ESMF_Clock), intent(inout), optional :: clock
type(ESMF_BlockingFlag), intent(in), optional :: blocki ngflag
integer, intent(in), optional :: phase
integer, intent(out), optional :: userRc
integer, intent(out), optional :: rc

DESCRIPTION:

Call the associated user write restart code for anESMF_GridComp.
The arguments are:

gridcomp ESMF_GridComp to call run routine for.

[importState] ESMF_State containing import data. If not present, a dummy argument will be passed to the user-
supplied routine. The importState argument in the user codecannot be optional.

[exportState] ESMF_State containing export data. If not present, a dummy argument will be passed to the user-
supplied routine. The exportState argument in the user codecannot be optional.

85

[clock] ExternalESMF_Clock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations. If not present, a dummy argument will be passed to the user-supplied routine.
The clock argument in the user code cannot be optional.

[blockingflag] Blocking behavior of this method call. See section 9.2.2 fora list of valid blocking options. Default
option isESMF_VASBLOCKINGwhich blocks PETs and their spawned off threads across each VAS but does
not synchronize PETs that run in different VASs.

[phase] Component providers must document whether their each of their routines aresingle-phaseor multi-phase.
Single-phase routines require only one invocation to complete their work. Multi-phase routines provide multiple
subroutines to accomplish the work, accomodating components which must complete part of their work, return
to the caller and allow other processing to occur, and then continue the original operation. For multiple-phase
child components, this is the integer phase number to be invoked. For single-phase child components this
argument is optional. The default is 1.

[userRc] Return code set byuserRoutine before returning.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

16 CplComp Class

16.1 Description

In a large, multi-component application such as a weather forecasting or climate prediction system running within
ESMF, physical domains and major system functions are represented as Gridded Components (see Section 15.1).
A Coupler Component, orESMF_CplComp, arranges and executes the data transformations between the Gridded
Components. Ideally, Coupler Components should contain all the information about inter-component communication
for an application. This enables the Gridded Components in the application to be used in multiple contexts; that is, used
in different coupled configurations without changes to their source code. For example, the same atmosphere might
in one case be coupled to an ocean in a hurricane prediction model, and to a data assimilation system for numerical
weather prediction in another. A single Coupler Component can couple two or more Gridded Components.
Like Gridded Components, Coupler Components have two parts, one that is provided by the user and another that is
part of the framework. The user-written portion of the software is the coupling code necessary for a particular exchange
between Gridded Components. This portion of the Coupler Component code must be divided into separately callable
initialize, run, and finalize methods. The interfaces for these methods are prescribed by ESMF.
The term “user-written” is somewhat misleading here, sincewithin a Coupler Component the user can leverage ESMF
infrastructure software for regridding, redistribution,lower-level communications, calendar management, and other
functions. However, ESMF is unlikely to offer all the software necessary to customize a data transfer between Gridded
Components. For instance, ESMF does not currently offer tools for unit tranformations or time averaging operations,
so users must manage those operations themselves.
The second part of a Coupler Component is theESMF_CplCompderived type within ESMF. The user must create one
of these types to represent a specific coupling function, such as the regular transfer of data between a data assimilation
system and an atmospheric model.2

The user-written part of a Coupler Component is associated with an ESMF_CplCompderived type through a rou-
tine calledESMF_SetServices() . This is a routine that the user must write and declare public. Inside the
ESMF_SetServices() routine the user must callESMF_SetEntryPoint() methods that associate a stan-
dard ESMF operation with the name of the corresponding Fortran subroutine in their user code. For example, a user
routine called “couplerInit” might be associated with the standard initialize routine in a Coupler Component.

16.2 Use and Examples

A Coupler Component manages the transformation of data between Components. It contains a list of State objects
and the operations needed to make them compatible, including such things as regridding and unit conversion. Coupler

2It is not necessary to create a Coupler Component for each individual datatransfer.

86

Components are user-written, following prescribed ESMF interfaces and, wherever desired, using ESMF infrastructure
tools.

16.2.1 Implement a user-codeSetServices routine

Every ESMF_CplCompis required to provide and document a public set services routine. It can have any name,
but must follow the declaration below: a subroutine which takes anESMF_CplCompas the first argument, and an
integer return code as the second. Both arguments are required and mustnot be declared asoptional . If an intent
is specified in the interface it must beintent(inout) for the first andintent(out) for the second argument.
The set services routine must call the ESMF methodESMF_CplCompSetEntryPoint() to register with the
framework what user-code subroutines should be called to initialize, run, and finalize the component. There are
additional routines which can be registered as well, for checkpoint and restart functions.
Note that the actual subroutines being registered do not have to be public to this module; only the set services routine
itself must be available to be used by other code.

! Example Coupler Component
module ESMF_CouplerEx

! ESMF Framework module
use ESMF_Mod
implicit none
public CPL_SetServices

contains

subroutine CPL_SetServices(comp, rc)
type(ESMF_CplComp) :: comp ! must not be optional
integer, intent(out) :: rc ! must not be optional

! Set the entry points for standard ESMF Component methods
call ESMF_CplCompSetEntryPoint(comp, ESMF_SETINIT, use rRoutine=CPL_Init, rc=rc)
call ESMF_CplCompSetEntryPoint(comp, ESMF_SETRUN, user Routine=CPL_Run, rc=rc)
call ESMF_CplCompSetEntryPoint(comp, ESMF_SETFINAL, us erRoutine=CPL_Final, rc=rc)

rc = ESMF_SUCCESS
end subroutine

16.2.2 Implement a user-codeInitialize routine

When a higher level component is ready to begin using anESMF_CplComp, it will call its initialize routine.
The component writer must supply a subroutine with the exactinterface shown below. Arguments must not be declared
as optional, and the types and order must match.
At initialization time the component can allocate data space, open data files, set up initial conditions; anything it needs
to do to prepare to run.
Therc return code should be set if an error occurs, otherwise the valueESMF_SUCCESSshould be returned.

subroutine CPL_Init(comp, importState, exportState, clo ck, rc)
type(ESMF_CplComp) :: comp ! must not be optional
type(ESMF_State) :: importState, exportState ! must not be optional
type(ESMF_Clock) :: clock ! must not be optional
integer, intent(out) :: rc ! must not be optional

print * , "Coupler Init starting"

87

! Add whatever code here needed
! Precompute any needed values, fill in any inital values
! needed in Import States

rc = ESMF_SUCCESS

print * , "Coupler Init returning"

end subroutine CPL_Init

16.2.3 Implement a user-codeRun routine

During the execution loop, the run routine may be called manytimes. Each time it should read data from the
importState , use theclock to determine what the current time is in the calling component, compute new values
or process the data, and produce any output and place it in theexportState .
When a higher level component is ready to use theESMF_CplCompit will call its run routine.
The component writer must supply a subroutine with the exactinterface shown below. Arguments must not be declared
as optional, and the types and order must match.
It is expected that this is where the bulk of the model computation or data analysis will occur.
Therc return code should be set if an error occurs, otherwise the valueESMF_SUCCESSshould be returned.

subroutine CPL_Run(comp, importState, exportState, cloc k, rc)
type(ESMF_CplComp) :: comp ! must not be optional
type(ESMF_State) :: importState, exportState ! must not be optional
type(ESMF_Clock) :: clock ! must not be optional
integer, intent(out) :: rc ! must not be optional

print * , "Coupler Run starting"

! Add whatever code needed here to transform Export state dat a
! into Import states for the next timestep.

rc = ESMF_SUCCESS

print * , "Coupler Run returning"

end subroutine CPL_Run

16.2.4 Implement a user-codeFinalize routine

At the end of application execution, eachESMF_CplCompshould deallocate data space, close open files, and flush
final results. These functions should be placed in a finalize routine.
The component writer must supply a subroutine with the exactinterface shown below. Arguments must not be declared
as optional, and the types and order must match.
Therc return code should be set if an error occurs, otherwise the valueESMF_SUCCESSshould be returned.

subroutine CPL_Final(comp, importState, exportState, cl ock, rc)
type(ESMF_CplComp) :: comp ! must not be optional
type(ESMF_State) :: importState, exportState ! must not be optional

88

type(ESMF_Clock) :: clock ! must not be optional
integer, intent(out) :: rc ! must not be optional

print * , "Coupler Final starting"

! Add whatever code needed here to compute final values and
! finish the computation.

rc = ESMF_SUCCESS

print * , "Coupler Final returning"

end subroutine CPL_Final

16.2.5 Implement a user-codeSetVM routine

EveryESMF_CplCompcan optionally provide and document a public set vm routine.It can have any name, but must
follow the declaration below: a subroutine which takes anESMF_CplCompas the first argument, and an integer return
code as the second. Both arguments are required and mustnot be declared asoptional . If an intent is specified in
the interface it must beintent(inout) for the first andintent(out) for the second argument.
The set vm routine is the only place where the child componentcan use theESMF_CplCompSetVMMaxPEs() , or
ESMF_CplCompSetVMMaxThreads() , or ESMF_CplCompSetVMMinThreads() call to modify aspects of
its own VM.
A component’s VM is started up right before its set services routine is entered.ESMF_CplCompSetVM() is execut-
ing in the parent VM, and must be calledbeforeESMF_CplCompSetServices() .

subroutine GComp_SetVM(comp, rc)
type(ESMF_CplComp) :: comp ! must not be optional
integer, intent(out) :: rc ! must not be optional

type(ESMF_VM) :: vm
logical :: pthreadsEnabled

! Test for Pthread support, all SetVM calls require it
call ESMF_VMGetGlobal(vm, rc=rc)
call ESMF_VMGet(vm, pthreadsEnabledFlag=pthreadsEnabl ed, rc=rc)

if (pthreadsEnabled) then
! run PETs single-threaded
call ESMF_CplCompSetVMMinThreads(comp, rc=rc)

endif

rc = ESMF_SUCCESS

end subroutine

end module ESMF_CouplerEx

16.3 Restrictions and Future Work

1. No optional arguments. User-written routines called by SetServices, and registered for Initialize, Run and

89

Finalize,must notdeclare any of the arguments as optional.

2. No Transforms. Components must exchange data throughESMF_State objects. The input data are available
at the time the component code is called, and data to be returned to another component are available when that
code returns.

3. No automatic unit conversions. The ESMF framework does not currently contain tools for performing unit
conversions, operations that are fairly standard within Coupler Components.

4. No accumulator. The ESMF does not have an accumulator tool, to perform time averaging of fields for cou-
pling. This is likely to be developed in the near term.

16.4 Class API

16.4.1 ESMF_CplCompCreate - Create a CplComp

INTERFACE:

recursive function ESMF_CplCompCreate(name, config, con figFile, clock, &
petList, contextflag, rc)

RETURN VALUE:

type(ESMF_CplComp) :: ESMF_CplCompCreate

ARGUMENTS:

character(len= *), intent(in), optional :: name
type(ESMF_Config), intent(inout), optional :: config
character(len= *), intent(in), optional :: configFile
type(ESMF_Clock), intent(inout), optional :: clock
integer, intent(in), optional :: petList(:)
type(ESMF_ContextFlag), intent(in), optional :: context flag
integer, intent(out), optional :: rc

DESCRIPTION:

This interface creates anESMF_CplCompobject. By default, a separate VM context will be created foreach compo-
nent. This implies creating a new MPI communicator and allocating additional memory to manage the VM resources.
When running on a large number of processors, creating a separate VM for each component could be both time and
memory inefficient. If the application is sequential, i.e.,each component is running on all the PETs of the global VM, it
will be more efficient to use the global VM instead of creatinga new one. This can be done by settingcontextflag
to ESMF_CHILD_IN_PARENT_VM.
The return value is the newESMF_CplComp.
The arguments are:

[name] Name of the newly-createdESMF_CplComp. This name can be altered from within theESMF_CplComp
code once the initialization routine is called.

[config] An already-createdESMF_Config configuration object from which the new component can read innamelist-
type information to set parameters for this run. If both are specified, this object takes priority overconfigFile .

[configFile] The filename of anESMF_Config format file. If specified, this file is opened, anESMF_Config con-
figuration object is created for the file, and attached to the new component. The user can callESMF_CplCompGet()
to get and use the object. If both are specified, theconfig object takes priority over this one.

[clock] Component-specificESMF_Clock . This clock is available to be queried and updated by the newESMF_CplComp
as it chooses. This should not be the parent component clock,which should be maintained and passed down to
the initialize/run/finalize routines separately.

90

[petList] List of parentPETs given to the created child component by the parent component. If petList is not
specified all of the parentPETs will be given to the child component. The order of PETs inpetList determines
how the child local PETs refer back to the parent PETs.

[contextflag] Specify the component’s VM context. The default context isESMF_CHILD_IN_NEW_VM. See section
9.2.4 for a complete list of valid flags.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

16.4.2 ESMF_CplCompDestroy - Release resources for a CplComp

INTERFACE:

subroutine ESMF_CplCompDestroy(cplcomp, rc)

ARGUMENTS:

type(ESMF_CplComp) :: cplcomp
integer, intent(out), optional :: rc

DESCRIPTION:

Releases all resources associated with thisESMF_CplComp.
The arguments are:

cplcomp Release all resources associated with thisESMF_CplCompand mark the object as invalid. It is an error to
pass this object into any other routines after being destroyed.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

16.4.3 ESMF_CplCompFinalize - Call the CplComp’s finalize routine

INTERFACE:

recursive subroutine ESMF_CplCompFinalize(cplcomp, imp ortState, exportState, &
clock, blockingflag, phase, userRc, rc)

ARGUMENTS:

type(ESMF_CplComp) :: cplcomp
type(ESMF_State), intent(inout), optional :: importStat e
type(ESMF_State), intent(inout), optional :: exportStat e
type(ESMF_Clock), intent(inout), optional :: clock
type(ESMF_BlockingFlag), intent(in), optional :: blocki ngflag
integer, intent(in), optional :: phase
integer, intent(out), optional :: userRc
integer, intent(out), optional :: rc

DESCRIPTION:

Call the associated user-supplied finalization routine foranESMF_CplComp.
The arguments are:

cplcomp TheESMF_CplCompto call finalize routine for.

91

[importState] ESMF_State containing import data for coupling. If not present, a dummyargument will be passed
to the user-supplied routine. The importState argument in the user code cannot be optional.

[exportState] ESMF_State containing export data for coupling. If not present, a dummyargument will be passed
to the user-supplied routine. The exportState argument in the user code cannot be optional.

[clock] ExternalESMF_Clock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations. If not present, a dummy argument will be passed to the user-supplied routine.
The clock argument in the user code cannot be optional.

[blockingflag] Blocking behavior of this method call. See section 9.2.2 fora list of valid blocking options. Default
option isESMF_VASBLOCKINGwhich blocks PETs and their spawned off threads across each VAS but does
not synchronize PETs that run in different VASs.

[phase] Component providers must document whether their each of their routines aresingle-phaseor multi-phase.
Single-phase routines require only one invocation to complete their work. Multi-phase routines provide multiple
subroutines to accomplish the work, accomodating components which must complete part of their work, return
to the caller and allow other processing to occur, and then continue the original operation. For multiple-phase
child components, this is the integer phase number to be invoked. For single-phase child components this
argument is optional. The default is 1.

[userRc] Return code set byuserRoutine before returning.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

16.4.4 ESMF_CplCompGet - Query a CplComp for information

INTERFACE:

subroutine ESMF_CplCompGet(cplcomp, name, config, confi gFile, clock, &
localPet, petCount, contextflag, currentMethod, current Phase, vm, rc)

ARGUMENTS:

type(ESMF_CplComp), intent(inout) :: cplcomp
character(len= *), intent(out), optional :: name
type(ESMF_Config), intent(out), optional :: config
character(len= *), intent(out), optional :: configFile
type(ESMF_Clock), intent(out), optional :: clock
integer, intent(out), optional :: localPet
integer, intent(out), optional :: petCount
type(ESMF_ContextFlag), intent(out), optional :: contex tflag
type(ESMF_Method), intent(out), optional :: currentMeth od
integer, intent(out), optional :: currentPhase
type(ESMF_VM), intent(out), optional :: vm
integer, intent(out), optional :: rc

DESCRIPTION:

Returns information about anESMF_CplComp. For queries where the caller only wants a single value, specify the
argument by name. All the arguments aftercplcomp argument are optional to facilitate this.
The arguments are:

cplcomp ESMF_CplCompto query.

92

[name] Return the name of theESMF_CplComp.

[config] Return theESMF_Config object for thisESMF_CplComp.

[configFile] Return the configuration filename for thisESMF_CplComp.

[clock] Return the private clock for thisESMF_CplComp.

[localPet] Return the local PET id withing theESMF_GridCompobject.

[petCount] Return the number of PETs in the theESMF_GridCompobject.

[contextflag] Return theESMF_ContextFlag for this ESMF_CplComp. See section 9.2.4 for a complete list of
valid flags.

[currentMethod] Return the currentESMF_Method of the ESMF_CplCompexecution. See section 9.1.1 for a
complete list of valid options.

[currentPhase] Return the currentphase of theESMF_CplCompexecution.

[vm] Return theESMF_VMfor thisESMF_CplComp.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

16.4.5 ESMF_CplCompGetInternalState - Get private data block pointer

INTERFACE:

subroutine ESMF_CplCompGetInternalState(cplcomp, data Pointer, rc)

ARGUMENTS:

type(ESMF_CplComp), intent(inout) :: cplcomp
type(any), pointer :: dataPointer
integer, intent(out) :: rc

DESCRIPTION:

Available to be called by anESMF_CplCompat any time afterESMF_CplCompSetInternalState has been
called. Since init, run, and finalize must be separate subroutines, data that they need to share in common can either
be module global data, or can be allocated in a private data block and the address of that block can be registered with
the framework and retrieved by this call. When running multiple instantiations of anESMF_CplComp, for example
during ensemble runs, it may be simpler to maintain private data specific to each run with private data blocks. A
correspondingESMF_CplCompSetInternalState call sets the data pointer to this block, and this call retrieves
the data pointer. Note that thedataPointer argument needs to be a derived type which contains only a pointer
of the type of the data block defined by the user. When making this call the pointer needs to be unassociated. When
the call returns, the pointer will now reference the original data block which was set during the previous call to
ESMF_CplCompSetInternalState .
Only thelast data block set viaESMF_CplCompSetInternalState will be accessible.
The arguments are:

cplcomp An ESMF_CplCompobject.

dataPointer A derived type, containing only an unassociated pointer to the private data block. The framework
will fill in the pointer. When this call returns, the pointer is set to the same address set during the last
ESMF_CplCompSetInternalState call. This level of indirection is needed to reliably set andretrieve
the data block no matter which architecture or compiler is used.

rc Return code; equalsESMF_SUCCESSif there are no errors. Note: unlike most other ESMF routines, this argument
is not optional because of implementation considerations.

93

16.4.6 ESMF_CplCompInitialize - Call the CplComp’s initialize routine

INTERFACE:

recursive subroutine ESMF_CplCompInitialize(cplcomp, i mportState, &
exportState, clock, blockingflag, phase, userRc, rc)

ARGUMENTS:

type(ESMF_CplComp) :: cplcomp
type(ESMF_State), intent(inout), optional :: importStat e
type(ESMF_State), intent(inout), optional :: exportStat e
type(ESMF_Clock), intent(inout), optional :: clock
type(ESMF_BlockingFlag), intent(in), optional :: blocki ngflag
integer, intent(in), optional :: phase
integer, intent(out), optional :: userRc
integer, intent(out), optional :: rc

DESCRIPTION:

Call the associated user initialization code for a CplComp.
The arguments are:

cplcomp ESMF_CplCompto call initialize routine for.

[importState] ESMF_State containing import data for coupling. If not present, a dummyargument will be passed
to the user-supplied routine. The importState argument in the user code cannot be optional.

[exportState] ESMF_State containing export data for coupling. If not present, a dummyargument will be passed
to the user-supplied routine. The exportState argument in the user code cannot be optional.

[clock] ExternalESMF_Clock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations. If not present, a dummy argument will be passed to the user-supplied routine.
The clock argument in the user code cannot be optional.

[blockingflag] Blocking behavior of this method call. See section 9.2.2 fora list of valid blocking options. Default
option isESMF_VASBLOCKINGwhich blocks PETs and their spawned off threads across each VAS but does
not synchronize PETs that run in different VASs.

[phase] Component providers must document whether their each of their routines aresingle-phaseor multi-phase.
Single-phase routines require only one invocation to complete their work. Multi-phase routines provide multiple
subroutines to accomplish the work, accomodating components which must complete part of their work, return
to the caller and allow other processing to occur, and then continue the original operation. For multiple-phase
child components, this is the integer phase number to be invoked. For single-phase child components this
argument is optional. The default is 1.

[userRc] Return code set byuserRoutine before returning.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

16.4.7 ESMF_CplCompIsPetLocal - Inquire if this CplComp isto execute on the calling PET

INTERFACE:

recursive function ESMF_CplCompIsPetLocal(cplcomp, rc)

94

RETURN VALUE:

logical :: ESMF_CplCompIsPetLocal

ARGUMENTS:

type(ESMF_CplComp), intent(inout) :: cplcomp
integer, intent(out), optional :: rc

DESCRIPTION:

Inquire if thisESMF_CplCompobject is to execute on the calling PET.
The return value is.true. if the component is to execute on the calling PET,.false. otherwise.
The arguments are:

cplcomp ESMF_CplCompqueried.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

16.4.8 ESMF_CplCompPrint - Print the contents of a CplComp

INTERFACE:

subroutine ESMF_CplCompPrint(cplcomp, options, rc)

ARGUMENTS:

type(ESMF_CplComp) :: cplcomp
character(len = *), intent(in), optional :: options
integer, intent(out), optional :: rc

DESCRIPTION:

Prints information about anESMF_CplCompto stdout .

Note: ManyESMF_<class>Print methods are implemented in C++. On some platforms/compilers there is a
potential issue with interleaving Fortran and C++ output tostdout such that it doesn’t appear in the expected order.
If this occurs, theESMF_IOUnitFlush() method may be used on unit 6 to get coherent output.

The arguments are:

cplcomp ESMF_CplCompto print.

[options] Print options are not yet supported.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

16.4.9 ESMF_CplCompReadRestart – Call the CplComp’s read restart routine

INTERFACE:

recursive subroutine ESMF_CplCompReadRestart(cplcomp, importState, &
exportState, clock, blockingflag, phase, userRc, rc)

ARGUMENTS:

95

type(ESMF_CplComp) :: cplcomp
type(ESMF_State), intent(inout), optional :: importStat e
type(ESMF_State), intent(inout), optional :: exportStat e
type(ESMF_Clock), intent(inout), optional :: clock
type(ESMF_BlockingFlag), intent(in), optional :: blocki ngflag
integer, intent(in), optional :: phase
integer, intent(out), optional :: userRc
integer, intent(out), optional :: rc

DESCRIPTION:

Call the associated user read restart code for anESMF_CplComp.
The arguments are:

cplcomp ESMF_CplCompto call run routine for.

[importState] ESMF_State containing import data. If not present, a dummy argument will be passed to the user-
supplied routine. The importState argument in the user codecannot be optional.

[exportState] ESMF_State containing export data. If not present, a dummy argument will be passed to the user-
supplied routine. The exportState argument in the user codecannot be optional.

[clock] ExternalESMF_Clock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations. If not present, a dummy argument will be passed to the user-supplied routine.
The clock argument in the user code cannot be optional.

[blockingflag] Blocking behavior of this method call. See section 9.2.2 fora list of valid blocking options. Default
option isESMF_VASBLOCKINGwhich blocks PETs and their spawned off threads across each VAS but does
not synchronize PETs that run in different VASs.

[phase] Component providers must document whether their each of their routines aresingle-phaseor multi-phase.
Single-phase routines require only one invocation to complete their work. Multi-phase routines provide multiple
subroutines to accomplish the work, accomodating components which must complete part of their work, return
to the caller and allow other processing to occur, and then continue the original operation. For multiple-phase
child components, this is the integer phase number to be invoked. For single-phase child components this
argument is optional. The default is 1.

[userRc] Return code set byuserRoutine before returning.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

16.4.10 ESMF_CplCompRun - Call the CplComp’s run routine

INTERFACE:

recursive subroutine ESMF_CplCompRun(cplcomp, importSt ate, exportState, &
clock, blockingflag, phase, userRc, rc)

ARGUMENTS:

type(ESMF_CplComp) :: cplcomp
type(ESMF_State), intent(inout), optional :: importStat e
type(ESMF_State), intent(inout), optional :: exportStat e
type(ESMF_Clock), intent(inout), optional :: clock
type(ESMF_BlockingFlag), intent(in), optional :: blocki ngflag
integer, intent(in), optional :: phase
integer, intent(out), optional :: userRc
integer, intent(out), optional :: rc

96

DESCRIPTION:

Call the associated user run code for anESMF_CplComp.
The arguments are:

cplcomp ESMF_CplCompto call run routine for.

[importState] ESMF_State containing import data for coupling. If not present, a dummyargument will be passed
to the user-supplied routine. The importState argument in the user code cannot be optional.

[exportState] ESMF_State containing export data for coupling. If not present, a dummyargument will be passed
to the user-supplied routine. The exportState argument in the user code cannot be optional.

[clock] ExternalESMF_Clock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations. If not present, a dummy argument will be passed to the user-supplied routine.
The clock argument in the user code cannot be optional.

[blockingflag] Blocking behavior of this method call. See section 9.2.2 fora list of valid blocking options. Default
option isESMF_VASBLOCKINGwhich blocks PETs and their spawned off threads across each VAS but does
not synchronize PETs that run in different VASs.

[phase] Component providers must document whether their each of their routines aresingle-phaseor multi-phase.
Single-phase routines require only one invocation to complete their work. Multi-phase routines provide multiple
subroutines to accomplish the work, accomodating components which must complete part of their work, return
to the caller and allow other processing to occur, and then continue the original operation. For multiple-phase
child components, this is the integer phase number to be invoked. For single-phase child components this
argument is optional. The default is 1.

[userRc] Return code set byuserRoutine before returning.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

16.4.11 ESMF_CplCompSet - Set or reset information about the CplComp

INTERFACE:

subroutine ESMF_CplCompSet(cplcomp, name, config, confi gFile, clock, rc)

ARGUMENTS:

type(ESMF_CplComp), intent(inout) :: cplcomp
character(len= *), intent(in), optional :: name
type(ESMF_Config), intent(inout), optional :: config
character(len= *), intent(in), optional :: configFile
type(ESMF_Clock), intent(inout), optional :: clock
integer, intent(out), optional :: rc

DESCRIPTION:

Sets or resets information about anESMF_CplComp. The caller can set individual values by specifying the arguments
by name. All the arguments exceptcplcomp are optional to facilitate this.
The arguments are:

cplcomp ESMF_CplCompto change.

97

[name] Set the name of theESMF_CplComp.

[config] Set the configuration information for theESMF_CplCompfrom this already createdESMF_Config object.
If specified, takes priority overconfigFile .

[configFile] Set the configuration filename for thisESMF_CplComp. An ESMF_Config object will be created for
this file and attached to theESMF_CplComp. Superceeded byconfig if both are specified.

[clock] Set the private clock for thisESMF_CplComp.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

16.4.12 ESMF_CplCompSetEntryPoint - Set user routine as entry point for standard Component method

INTERFACE:

subroutine ESMF_CplCompSetEntryPoint(cplcomp, method, userRoutine, phase, rc)

ARGUMENTS:

type(ESMF_CplComp), intent (in) :: cplcomp
type(ESMF_Method), intent(in) :: method
interface

subroutine userRoutine(cplcomp, importState, exportSta te, clock, rc)
use ESMF_CompMod
use ESMF_StateMod
use ESMF_ClockMod
implicit none
type(ESMF_CplComp) :: cplcomp ! must not be optional
type(ESMF_State) :: importState ! must not be optional
type(ESMF_State) :: exportState ! must not be optional
type(ESMF_Clock) :: clock ! must not be optional
integer, intent(out) :: rc ! must not be optional

end subroutine
end interface
integer, intent(in), optional :: phase
integer, intent(out), optional :: rc

DESCRIPTION:

Registers a user-supplieduserRoutine as the entry point for one of the predefined Componentmethod s. After
this call theuserRoutine becomes accessible via the standard Component method API.
The arguments are:

cplcomp An ESMF_CplCompobject.

method One of a set of predefined Component methods - e.g.ESMF_SETINIT,ESMF_SETRUN,ESMF_SETFINAL.
See section 9.1.1 for a complete list of valid method options.

userRoutine The user-supplied subroutine to be associated for thismethod . This subroutine does not have to be
public.

[phase] Thephase number for multi-phase methods. For single phase methods thephase argument can be omitted.
The default setting is 1.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

The Component writer must supply a subroutine with the exactinterface shown above for theuserRoutine argu-
ment. Arguments inuserRoutine must not be declared as optional, and the types, intent and order must match.

98

16.4.13 ESMF_CplCompSetInternalState - Set private data block pointer

INTERFACE:

subroutine ESMF_CplCompSetInternalState(cplcomp, data Pointer, rc)

ARGUMENTS:

type(ESMF_CplComp), intent(inout) :: cplcomp
type(any), pointer :: dataPointer
integer, intent(out) :: rc

DESCRIPTION:

Available to be called by anESMF_CplCompat any time, but expected to be most useful when called duringthe
registration process, or initialization. Since init, run,and finalize must be separate subroutines data that they needto
share in common can either be module global data, or can be allocated in a private data block and the address of that
block can be registered with the framework and retrieved by subsequent calls. When running multiple instantiations
of anESMF_CplComp, for example during ensemble runs, it may be simpler to maintain private data specific to each
run with private data blocks. A correspondingESMF_CplCompGetInternalState call retrieves the data pointer.
Only thelast data block set viaESMF_CplCompSetInternalState will be accessible.
The arguments are:

cplcomp An ESMF_CplCompobject.

dataPointer A pointer to the private data block, wrapped in a derived typewhich contains only a pointer to the block.
This level of indirection is needed to reliably set and retrieve the data block no matter which architecture or
compiler is used.

rc Return code; equalsESMF_SUCCESSif there are no errors. Note: unlike most other ESMF routines, this argument
is not optional because of implementation considerations.

16.4.14 ESMF_CplCompSetServices - Call user routine to register CplComp methods

INTERFACE:

recursive subroutine ESMF_CplCompSetServices(cplcomp, userRoutine, userRc, rc)

ARGUMENTS:

type(ESMF_CplComp) :: cplcomp
interface

subroutine userRoutine(cplcomp, rc)
use ESMF_CompMod
implicit none
type(ESMF_CplComp) :: cplcomp ! must not be optional
integer, intent(out) :: rc ! must not be optional

end subroutine
end interface
integer, intent(out), optional :: userRc
integer, intent(out), optional :: rc

DESCRIPTION:

Call into user provideduserRoutine which is responsible for for setting Component’s Initialize(), Run() and Fi-
nalize() services.
The arguments are:

99

cplcomp Coupler Component.

userRoutine Routine to be called.

[userRc] Return code set byuserRoutine before returning.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

The Component writer must supply a subroutine with the exactinterface shown above for theuserRoutine argu-
ment. Arguments inuserRoutine must not be declared as optional, and the types, intent and order must match.
TheuserRoutine , when called by the framework, must make successive calls toESMF_CplCompSetEntryPoint()
to preset callback routines for standard Component Initialize(), Run() and Finalize() methods.

16.4.15 ESMF_CplCompSetServices - Call user routine, located in shared object, to register CplComp meth-
ods

INTERFACE:

! Private name; call using ESMF_CplCompSetServices()
recursive subroutine ESMF_CplCompSetServicesShObj(cpl comp, userRoutine, &

sharedObj, userRc, rc)

ARGUMENTS:

type(ESMF_CplComp), intent(inout) :: cplcomp
character(len= *), intent(in) :: userRoutine
character(len= *), intent(in), optional :: sharedObj
integer, intent(out), optional :: userRc
integer, intent(out), optional :: rc

DESCRIPTION:

Call into user provided routine which is responsible for setting Component’s Initialize(), Run() and Finalize() services.
The nameduserRoutine must exist in the shared object file specified in thesharedObj argument. All of the
platform specific details about dynamic linking and loadingapply.
The arguments are:

cplcomp Coupler Component.

userRoutine Name of routine to be called.

[sharedObj] Name of shared object that containsuserRoutine . If the sharedObj argument is not provided the
executable itself will be searched foruserRoutine .

[userRc] Return code set byuserRoutine before returning.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

The Component writer must supply a subroutine with the exactinterface shown foruserRoutine below. Arguments
must not be declared as optional, and the types, intent and order must match.

INTERFACE:

interface
subroutine userRoutine(cplcomp, rc)

type(ESMF_CplComp) :: cplcomp ! must not be optional
integer, intent(out) :: rc ! must not be optional

end subroutine
end interface

100

DESCRIPTION:

TheuserRoutine , when called by the framework, must make successive calls toESMF_CplCompSetEntryPoint()
to preset callback routines for standard Component Initialize(), Run() and Finalize() methods.

16.4.16 ESMF_CplCompSetVM - Call user routine to set CplComp VM properties

INTERFACE:

recursive subroutine ESMF_CplCompSetVM(cplcomp, userRo utine, userRc, rc)

ARGUMENTS:

type(ESMF_CplComp) :: cplcomp
interface

subroutine userRoutine(cplcomp, rc)
use ESMF_CompMod
implicit none
type(ESMF_CplComp) :: cplcomp ! must not be optional
integer, intent(out) :: rc ! must not be optional

end subroutine
end interface
integer, intent(out), optional :: userRc
integer, intent(out), optional :: rc

DESCRIPTION:

Optionally call into user provideduserRoutine which is responsible for for setting Component’s VM properties.
The arguments are:

cplcomp Coupler Component.

userRoutine Routine to be called.

[userRc] Return code set byuserRoutine before returning.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

The Component writer must supply a subroutine with the exactinterface shown above for theuserRoutine argu-
ment. Arguments inuserRoutine must not be declared as optional, and the types, intent and order must match.
The subroutine, when called by the framework, is expected touse any of theESMF_CplCompSetVMxxx() methods
to set the properties of the VM associated with the Coupler Component.

16.4.17 ESMF_CplCompSetVM - Set CplComp VM properties in routine located in shared object

INTERFACE:

! Private name; call using ESMF_CplCompSetVM()
recursive subroutine ESMF_CplCompSetVMShObj(cplcomp, u serRoutine, sharedObj, &

userRc, rc)

ARGUMENTS:

101

type(ESMF_CplComp), intent(inout) :: cplcomp
character(len= *), intent(in) :: userRoutine
character(len= *), intent(in), optional :: sharedObj
integer, intent(out), optional :: userRc
integer, intent(out), optional :: rc

DESCRIPTION:

Optionally call into user provideduserRoutine which is responsible for for setting Component’s VM properties.
The nameduserRoutine must exist in the shared object file specified in thesharedObj argument. All of the
platform specific details about dynamic linking and loadingapply.
The arguments are:

cplcomp Coupler Component.

userRoutine Routine to be called.

[sharedObj] Name of shared object that containsuserRoutine . If the sharedObj argument is not provided the
executable itself will be searched foruserRoutine .

[userRc] Return code set byuserRoutine before returning.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

The Component writer must supply a subroutine with the exactinterface shown foruserRoutine below. Arguments
must not be declared as optional, and the types, intent and order must match.

INTERFACE:

interface
subroutine userRoutine(cplcomp, rc)

type(ESMF_CplComp) :: cplcomp ! must not be optional
integer, intent(out) :: rc ! must not be optional

end subroutine
end interface

DESCRIPTION:

The subroutine, when called by the framework, is expected touse any of theESMF_CplCompSetVMxxx() methods
to set the properties of the VM associated with the Coupler Component.

16.4.18 ESMF_CplCompSetVMMaxPEs - Set VM for CplComp to associate max PEs with PETs

INTERFACE:

subroutine ESMF_CplCompSetVMMaxPEs(cplcomp, max, pref_ intra_process, &
pref_intra_ssi, pref_inter_ssi, rc)

ARGUMENTS:

type(ESMF_CplComp), intent(inout) :: cplcomp
integer, intent(in), optional :: max
integer, intent(in), optional :: pref_intra_process
integer, intent(in), optional :: pref_intra_ssi
integer, intent(in), optional :: pref_inter_ssi
integer, intent(out), optional :: rc

102

DESCRIPTION:

Set characteristics of theESMF_VMfor this ESMF_CplComp. Attempts to associatemax PEs with each PET. Only
PEs that are located on the same single system image can be associated with the same PET. Within this constraint the
call tries to get as close as possible to the number specified by max.
The typical use ofESMF_CplCompSetVMMaxPEs() is to allocate multiple PEs per PET in a Component for user-
level threading, e.g. OpenMP.
The arguments are:

cplcomp ESMF_CplCompto set theESMF_VMfor.

[max] Maximum number of PEs per PET. Default is peCount.

[pref_intra_process] Intra process communication preference.Currently options not documented. Use default.

[pref_intra_ssi] Intra SSI communication preference.Currently options not documented. Use default.

[pref_inter_ssi] Inter process communication preference.Currently options not documented. Use default.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

16.4.19 ESMF_CplCompSetVMMaxThreads - Set VM for CplComp with multi-threaded PETs

INTERFACE:

subroutine ESMF_CplCompSetVMMaxThreads(cplcomp, max, p ref_intra_process, &
pref_intra_ssi, pref_inter_ssi, rc)

ARGUMENTS:

type(ESMF_CplComp), intent(inout) :: cplcomp
integer, intent(in), optional :: max
integer, intent(in), optional :: pref_intra_process
integer, intent(in), optional :: pref_intra_ssi
integer, intent(in), optional :: pref_inter_ssi
integer, intent(out), optional :: rc

DESCRIPTION:

Set characteristics of theESMF_VMfor thisESMF_CplComp. Attempts to providemax threaded PETs in each VAS.
Only as many threaded PETs as there are PEs located on the samesingle system image can be associated with the
same VAS. Within this constraint the call tries to get as close as possible to the number specified bymax.
The typical use ofESMF_CplCompSetVMMaxThreads() is to run a Component multi-threaded with a groups of
PETs that execute within the same virtual address space.
The arguments are:

cplcomp ESMF_CplCompto set theESMF_VMfor.

[max] Maximum threading level.

[pref_intra_process] Intra process communication preference.Currently options not documented. Use default.

[pref_intra_ssi] Intra SSI communication preference.Currently options not documented. Use default.

[pref_inter_ssi] Inter process communication preference.Currently options not documented. Use default.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

103

16.4.20 ESMF_CplCompSetVMMinThreads - Set VM for CplComp with reduced threading level

INTERFACE:

subroutine ESMF_CplCompSetVMMinThreads(cplcomp, max, p ref_intra_process, &
pref_intra_ssi, pref_inter_ssi, rc)

ARGUMENTS:

type(ESMF_CplComp), intent(inout) :: cplcomp
integer, intent(in), optional :: max
integer, intent(in), optional :: pref_intra_process
integer, intent(in), optional :: pref_intra_ssi
integer, intent(in), optional :: pref_inter_ssi
integer, intent(out), optional :: rc

DESCRIPTION:

Set characteristics of theESMF_VMfor this ESMF_CplComp. Reduces the number of threaded PETs in each VAS.
Themax argument may be specified to limit the maximum number of PEs that a single PET may be associated with.
The typical use ofESMF_CplCompSetVMMinThreads() is to run a Component across a set of single-threaded
PETs.
The arguments are:

cplcomp ESMF_CplCompto set theESMF_VMfor.

[max] Maximum number of PEs per PET. Default is peCount.

[pref_intra_process] Intra process communication preference.Currently options not documented. Use default.

[pref_intra_ssi] Intra SSI communication preference.Currently options not documented. Use default.

[pref_inter_ssi] Inter process communication preference.Currently options not documented. Use default.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

16.4.21 ESMF_CplCompValidate – Ensure the CplComp is internally consistent

INTERFACE:

subroutine ESMF_CplCompValidate(cplcomp, options, rc)

ARGUMENTS:

type(ESMF_CplComp) :: cplcomp
character(len = *), intent(in), optional :: options
integer, intent(out), optional :: rc

DESCRIPTION:

Currently all this method does is to check that thecplcomp exists.
The arguments are:

cplcomp ESMF_CplCompto validate.

[options] Validation options are not yet supported.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

104

16.4.22 ESMF_CplCompWait - Wait for a CplComp to return

INTERFACE:

subroutine ESMF_CplCompWait(cplcomp, blockingflag, use rRc, rc)

ARGUMENTS:

type(ESMF_CplComp), intent(inout) :: cplcomp
type(ESMF_BlockingFlag), intent(in), optional :: blocki ngflag
integer, intent(out), optional :: userRc
integer, intent(out), optional :: rc

DESCRIPTION:

When executing asychronously, wait for anESMF_CplCompto return.
The arguments are:

cplcomp ESMF_CplCompto wait for.

[blockingflag] Blocking behavior of this method call. See section 9.2.2 fora list of valid blocking options. Default
option isESMF_VASBLOCKINGwhich blocks PETs and their spawned off threads across each VAS but does
not synchronize PETs that run in different VASs.

[userRc] Return code set byuserRoutine before returning.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

16.4.23 ESMF_CplCompWriteRestart – Call the CplComp’s write restart routine

INTERFACE:

recursive subroutine ESMF_CplCompWriteRestart(cplcomp , importState, &
exportState, clock, blockingflag, phase, userRc, rc)

ARGUMENTS:

type(ESMF_CplComp), intent(inout) :: cplcomp
type(ESMF_State), intent(inout), optional :: importStat e
type(ESMF_State), intent(inout), optional :: exportStat e
type(ESMF_Clock), intent(inout), optional :: clock
type(ESMF_BlockingFlag), intent(in), optional :: blocki ngflag
integer, intent(in), optional :: phase
integer, intent(out), optional :: userRc
integer, intent(out), optional :: rc

DESCRIPTION:

Call the associated user write restart code for anESMF_CplComp.
The arguments are:

cplcomp ESMF_CplCompto call run routine for.

[importState] ESMF_State containing import data. If not present, a dummy argument will be passed to the user-
supplied routine. The importState argument in the user codecannot be optional.

[exportState] ESMF_State containing export data. If not present, a dummy argument will be passed to the user-
supplied routine. The exportState argument in the user codecannot be optional.

105

[clock] ExternalESMF_Clock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations. If not present, a dummy argument will be passed to the user-supplied routine.
The clock argument in the user code cannot be optional.

[blockingflag] Blocking behavior of this method call. See section 9.2.2 fora list of valid blocking options. Default
option isESMF_VASBLOCKINGwhich blocks PETs and their spawned off threads across each VAS but does
not synchronize PETs that run in different VASs.

[phase] Component providers must document whether their each of their routines aresingle-phaseor multi-phase.
Single-phase routines require only one invocation to complete their work. Multi-phase routines provide multiple
subroutines to accomplish the work, accomodating components which must complete part of their work, return
to the caller and allow other processing to occur, and then continue the original operation. For multiple-phase
child components, this is the integer phase number to be invoked. For single-phase child components this
argument is optional. The default is 1.

[userRc] Return code set byuserRoutine before returning.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

17 State Class

17.1 Description

A State contains the data and metadata to be transferred between ESMF Components. It is an important class, because
it defines a standard for how data is represented in data transfers between Earth science components. The State
construct is a rational compromise between a fully prescribed interface - one that would dictate what specific fields
should be transferred between components - and an interfacein which data structures are completely ad hoc.
There are two types of States, import and export. An import State contains data that is necessary for a Gridded
Component or Coupler Component to execute, and an export State contains the data that a Gridded Component or
Coupler Component can make available.
States can contain Arrays, ArrayBundles, Fields, FieldBundles, and other States. They cannot directly contain native
language arrays (i.e. Fortran or C style arrays). Objects ina State must span the VM on which they are running.
For sequentially executing components which run on the sameset of PETs this happens by calling the object create
methods on each PET, creating the object in unison. For concurrently executing components which are running on
subsets of PETs, an additional method, calledESMF_StateReconcile() , is provided by ESMF to broadcast
information about objects which were created in sub-components.
State methods include creation and deletion, adding and retrieving data items, adding and retrieving attributes, and
performing queries.

17.2 State Options

17.2.1 ESMF_StateItemType

DESCRIPTION:
Specifies the type of object being added to or retrieved from an ESMF_State.
Valid values are:

ESMF_STATEITEM_BUNDLE Refers to anESMF_FieldBundle within anESMF_State .

ESMF_STATEITEM_FIELD Refers to anESMF_Field within anESMF_State .

ESMF_STATEITEM_ARRAY Refers to anESMF_Array within anESMF_State .

ESMF_STATEITEM_STATE Refers to anESMF_State within anESMF_State .

ESMF_STATEITEM_NAME Refers to a data name used as a placeholder within anESMF_State .

106

ESMF_STATEITEM_NOTFOUND Only valid as a return object type from a query routine. Indicates that no object
with this name exists in theESMF_State .

ESMF_STATEITEM_UNKNOWN Object type within anESMF_State is unknown.

17.2.2 ESMF_StateType

DESCRIPTION:
Specifies whether anESMF_State contains data to be imported into a component or exported from a component.
Valid values are:

ESMF_STATE_IMPORT Contains data to be imported into a component.

ESMF_STATE_EXPORT Contains data to be exported out of a component.

ESMF_STATE_INVALID Does not contain valid data.

17.3 Use and Examples

A Gridded Component generally has one associated import State and one export State. Generally the States associated
with a Gridded Component will be created by the Gridded Component’s parent component. In many cases, the States
will be created containing no data. Both the empty States andthe newly created Gridded Component are passed by
the parent component into the Gridded Component’s initialize method. This is where the States get prepared for use
and the import State is first filled with data.
States can be created in a number of ways without the Fields, Arrays, FieldBundles, ArrayBundles, and other States
they will eventually contain. They can be created with namesas placeholders where these data items will eventually
be. When the States are passed into the Gridded Component’s initialize method, Field, FieldBundle, Array, and
ArrayBundle create calls can be made in that method to replace the name placeholders with real data objects.
States can also be filled with data items that do not yet have data allocated. Fields, FieldBundles, Arrays, and Array-
Bundles each have methods that support their creation without actual data allocation - the Grid and Attributes are set
up but no Fortran array of data values is allocated. In this approach, when a State is passed into its associated Gridded
Component’s initialize method, the incomplete Arrays, Fields, FieldBundles, and ArrayBundles within the State can
allocate or reference data inside the initialize method.
States are passed through the interfaces of the Gridded and Coupler Components’ run methods in order to carry
data between the components. While we expect a Gridded Component’s import State to be filled with data during
initialization, its export State will typically be filled over the course of its run method. At the end of a Gridded
Component’s run method, the filled export State is passed outthrough the argument list into a Coupler Component’s
run method. We recommend the convention that it enters the Coupler Component as the Coupler Component’s import
State. Here is it transformed into a form that another Gridded Component requires, and passed out of the Coupler
Component as its export State. It can then be passed into the run method of a recipient Gridded Component as that
component’s import State.
While the above sounds complicated, the rule is simple: a State going into a component is an import State, and a State
leaving a component is an export State.
Data items within a State can be marked needed or not needed, depending on whether they are required for a particular
application configuration. If the item is marked not needed,the user can make the Gridded Component’s initialize
method clever enough to not allocate the data for that item atall and not compute it within the Gridded Component
code. For example, some diagnostics may not be desired for all runs.
Other flags will eventually be available for data items within a State, such as data ready for reading or writing, data
valid or invalid, and data required for restart or not. Theseare not yet fully implemented, so only the default value for
each value can be set at this time.
Objects inside States are normally created inunison where each PET executing a component makes the same object
create call. If the object contains data, like a Field, each PET may have a different local chunk of the entire dataset
but each Field has the same name and is logically one part of a single distributed object. As States are passed between
components, if any object in a State was not created in unisonon all the current PETs then some PETs have no object
to pass into a communication method (e.g. regrid or data redistribution). TheESMF_StateReconcile() method
must be called to broadcast information about these objectsto all PETs in a component; after which all PETs have a
single uniform view of all objects and metadata.

107

If components are running in sequential mode on all available PETs and States are being passed between them there is
no need to callESMF_StateReconcile since all PETs have a uniform view of the objects. However, ifcomponents
are running on a subset of the PETs, as is usually the case whenrunning in concurrent mode, then when States
are passed into components which contain a superset of thosePETs, for example, a Coupler Component, all PETs
must callESMF_StateReconcile on the States before using them in any ESMF communication methods. The
reconciliation process broadcasts information about objects which exist only on a subset of the PETs. On PETs missing
those objects it creates aproxyobject which contains any qualities of the original object plus enough information for
it to be a data source or destination for a regrid or data redistribution operation. There is an option to turn off metadata
reconciliation in theESMF_StateReconcile call.

17.3.1 State create and destroy

States can be created and destroyed at any time during application execution. TheESMF_StateCreate() routine
can take many different combinations of optional arguments. Refer to the API description for all possible methods of
creating a State. An empty State can be created by providing only a name and type for the intended State:
state = ESMF_StateCreate(statename, statetype=ESMF_STA TE_IMPORT, rc=rc)
When finished with anESMF_State , theESMF_StateDestroy method removes it. However, the objects inside
the ESMF_State created externally should be destroyed separately, since objects can be added to more than one
ESMF_State .

17.3.2 Add items to a State

Creation of an emptyESMF_State , and adding anESMF_FieldBundle to it. Note that theESMF_FieldBundle
does not get destroyed when theESMF_State is destroyed; theESMF_State only contains a reference to the ob-
jects it contains. It also does not make a copy; the original objects can be updated and code accessing them by using
theESMF_State will see the updated version.

statename = "Ocean"
state2 = ESMF_StateCreate(statename, statetype=ESMF_ST ATE_EXPORT, rc=rc)

bundlename = "Temperature"
bundle1 = ESMF_FieldBundleCreate(name=bundlename, rc=r c)
print * , "FieldBundle Create returned", rc

call ESMF_StateAdd(state2, bundle1, rc)
print * , "StateAdd returned", rc

call ESMF_StateDestroy(state2, rc)

call ESMF_FieldBundleDestroy(bundle1, rc)

17.3.3 Add placeholders to a State

If a component could potentially produce a large number of optional items, one strategy is to add the names only of
those objects to theESMF_State . Other components can call framework routines to set theESMF_NEEDEDflag
to indicate they require that data. The original component can query this flag and then produce only the data that is
required by another component.

statename = "Ocean"
state3 = ESMF_StateCreate(statename, statetype=ESMF_ST ATE_EXPORT, rc=rc)

108

dataname = "Downward wind"
call ESMF_StateAdd(state3, dataname, rc)

dataname = "Humidity"
call ESMF_StateAdd(state3, dataname, rc)

17.3.4 Mark an itemNEEDED

How to set theNEEDEDstate of an item.

dataname = "Downward wind"
call ESMF_StateSetNeeded(state3, dataname, ESMF_NEEDED , rc)

17.3.5 Create aNEEDEDitem

Query an item for theNEEDEDstatus, and creating an item on demand. Similar flags exist for "Ready", "Valid", and
"Required for Restart", to mark each data item as ready, having been validated, or needed if the application is to be
checkpointed and restarted. The flags are supported to help coordinate the data exchange between components.

dataname = "Downward wind"
if (ESMF_StateIsNeeded(state3, dataname, rc)) then

bundlename = dataname
bundle2 = ESMF_FieldBundleCreate(name=bundlename, rc=r c)

call ESMF_StateAdd(state3, bundle2, rc)

else
print * , "Data not marked as needed", trim(dataname)

endif

17.3.6 ESMF_StateReconcile() usage

The set services routines are used to tell ESMF which routinehold the user code for the initialize, run, and finalize
blocks of user level Components. These are the separate subroutines called by the code below.

! Initialize routine which creates "field1" on PETs 0 and 1
subroutine comp1_init(gcomp, istate, ostate, clock, rc)

type(ESMF_GridComp) :: gcomp
type(ESMF_State) :: istate, ostate
type(ESMF_Clock) :: clock
integer, intent(out) :: rc

type(ESMF_Field) :: field1
integer :: localrc

print * , "i am comp1_init"

field1 = ESMF_FieldCreateEmpty(name="Comp1 Field", rc=l ocalrc)

109

call ESMF_StateAdd(istate, field1, rc=localrc)

rc = localrc

end subroutine comp1_init

! Initialize routine which creates "field2" on PETs 2 and 3
subroutine comp2_init(gcomp, istate, ostate, clock, rc)

type(ESMF_GridComp) :: gcomp
type(ESMF_State) :: istate, ostate
type(ESMF_Clock) :: clock
integer, intent(out) :: rc

type(ESMF_Field) :: field2
integer :: localrc

print * , "i am comp2_init"

field2 = ESMF_FieldCreateEmpty(name="Comp2 Field", rc=l ocalrc)

call ESMF_StateAdd(istate, field2, rc=localrc)

rc = localrc

end subroutine comp2_init

subroutine comp_dummy(gcomp, rc)
type(ESMF_GridComp) :: gcomp
integer, intent(out) :: rc

rc = ESMF_SUCCESS
end subroutine comp_dummy

! !PROGRAM: ESMF_StateReconcileEx - State reconciliation
!
! !DESCRIPTION:
!
! This program shows examples of using the State Reconcile fu nction
!-- ---------------------------

! ESMF Framework module
use ESMF_Mod
use ESMF_StateReconcileEx_Mod
implicit none

! Local variables
integer :: rc, petCount
type(ESMF_State) :: state1
type(ESMF_GridComp) :: comp1, comp2
type(ESMF_VM) :: vm
character(len=ESMF_MAXSTR) :: comp1name, comp2name, sta tename

A Component can be created which will run only on a subset of the current PET list.

110

! Get the global VM for this job.
call ESMF_VMGetGlobal(vm=vm, rc=rc)

comp1name = "Atmosphere"
comp1 = ESMF_GridCompCreate(name=comp1name, petList=(/ 0, 1 /), rc=rc)
print * , "GridComp Create returned, name = ", trim(comp1name)

comp2name = "Ocean"
comp2 = ESMF_GridCompCreate(name=comp2name, petList=(/ 2, 3 /), rc=rc)
print * , "GridComp Create returned, name = ", trim(comp2name)

statename = "Ocn2Atm"
state1 = ESMF_StateCreate(statename, rc=rc)

Here we register the subroutines which should be called for initialization. Then we call ESMF_GridCompInitialize()
on all PETs, but the code runs only on the PETs given in the petList when the Component was created.
Because this example is so short, we call the entry point codedirectly instead of the normal procedure of nesting it in
a separate SetServices() subroutine.

! This is where the VM for each component is initialized.
! Normally you would call SetEntryPoint inside set services ,
! but to make this example very short, they are called inline b elow.
! This is o.k. because the SetServices routine must execute f rom within
! the parent component VM.
call ESMF_GridCompSetVM(comp1, comp_dummy, rc)
call ESMF_GridCompSetVM(comp2, comp_dummy, rc)
call ESMF_GridCompSetServices(comp1, comp_dummy, rc)
call ESMF_GridCompSetServices(comp2, comp_dummy, rc)

print * , "ready to set entry point 1"
call ESMF_GridCompSetEntryPoint(comp1, ESMF_SETINIT, c omp1_init, rc=rc)

print * , "ready to set entry point 2"
call ESMF_GridCompSetEntryPoint(comp2, ESMF_SETINIT, c omp2_init, rc=rc)

print * , "ready to call init for comp 1"
call ESMF_GridCompInitialize(comp1, state1, rc=rc)
print * , "ready to call init for comp 2"
call ESMF_GridCompInitialize(comp2, state1, rc=rc)

Now we havestate1 containingfield1 on PETs 0 and 1, andstate1 containingfield2 on PETs 2 and 3.
For the code to have a rational view of the data, we callESMF_StateReconcile which determines which objects
are missing from any PET, and communicates information about the object. There is the option of turning metadata
reconciliation on or off with the optional parameter shown in the call below. The default behavior is for metadata
reconciliation to be off. After the call to reconcile, allESMF_State objects now have a consistent view of the data.

print * , "State before calling StateReconcile()"
call ESMF_StatePrint(state1, rc=rc)

call ESMF_StateReconcile(state1, vm, ESMF_ATTRECONCILE _OFF, rc=rc)

print * , "State after calling StateReconcile()"
call ESMF_StatePrint(state1, rc=rc)

111

end program ESMF_StateReconcileEx

17.3.7 Read Arrays from a netCDF file and add to a State

This program shows an example of reading and writing Arrays from a State from/to a NetCDF file.

! ESMF Framework module
use ESMF_Mod
implicit none

! Local variables
type(ESMF_State) :: state
type(ESMF_Array) :: latArray, lonArray, timeArray, humid Array, &

tempArray, pArray, rhArray
type(ESMF_VM) :: vm
integer :: localPet, rc

————————————————————————- The following line of code willread all Array data con-
tained in a NetCDF file, place them inESMF_Arrays and add them to anESMF_State . Only PET 0 reads the file;
the States in the other PETs remain empty. Currently, the data is not decomposed or distributed; each PET has only 1
DE and only PET 0 contains data after reading the file. Future versions of ESMF will support data decomposition and
distribution upon reading a file.
Note that the third party NetCDF library must be installed. For more details, see the "ESMF Users Guide", "Building
and Installing the ESMF, Third Party Libraries, NetCDF" andthe website http://www.unidata.ucar.edu/software/netcdf.

! Read the NetCDF data file into Array objects in the State on P ET 0
call ESMF_StateRead(state, "io_netcdf_testdata.nc", rc =rc)

! If the NetCDF library is not present (on PET 0), cleanup and e xit
if (rc == ESMF_RC_LIB_NOT_PRESENT) then

call ESMF_StateDestroy(state, rc=rc)
goto 10

endif

Only reading data intoESMF_Arrays is supported at this time;ESMF_ArrayBundles , ESMF_Fields , and
ESMF_FieldBundles will be supported in future releases of ESMF.

17.3.8 Print Array data from a State

To see that the State now contains the same data as in the file, the following shows how to print out what Arrays are
contained within the State and to print the data contained within each Array. The NetCDF utility "ncdump" can be
used to view the contents of the NetCDF file. In this example, only PET 0 will contain data.

if (localPet == 0) then
! Print the names and attributes of Array objects contained i n the State
call ESMF_StatePrint(state, rc=rc)

! Get each Array by name from the State
call ESMF_StateGet(state, "lat", latArray, rc=rc)
call ESMF_StateGet(state, "lon", lonArray, rc=rc)
call ESMF_StateGet(state, "time", timeArray, rc=rc)
call ESMF_StateGet(state, "Q", humidArray, rc=rc)

112

call ESMF_StateGet(state, "TEMP", tempArray, rc=rc)
call ESMF_StateGet(state, "p", pArray, rc=rc)
call ESMF_StateGet(state, "rh", rhArray, rc=rc)

! Print out the Array data
call ESMF_ArrayPrint(latArray, rc=rc)
call ESMF_ArrayPrint(lonArray, rc=rc)
call ESMF_ArrayPrint(timeArray, rc=rc)
call ESMF_ArrayPrint(humidArray, rc=rc)
call ESMF_ArrayPrint(tempArray, rc=rc)
call ESMF_ArrayPrint(pArray, rc=rc)
call ESMF_ArrayPrint(rhArray, rc=rc)

endif

Note that the Arrays "lat", "lon", and "time" hold spatial and temporal coordinate data for the dimensions latitude,
longitude and time, respectively. These will be used in future releases of ESMF to createESMF_Grids .

17.3.9 Write Array data within a State to a netCDF file

All the Array data within the State on PET 0 can be written out to a NetCDF file as follows:

! Write Arrays within the State on PET 0 to a NetCDF file
call ESMF_StateWrite(state, "io_netcdf_testdata_out.n c", rc=rc)

Currently writing is limited to PET 0; future versions of ESMF will allow parallel writing, as well as parallel reading.

17.4 Restrictions and Future Work

1. Flags not fully implemented. The flags for indicating various qualities associated with data items in a State -
validity, whether or not the item is required for restart, read/write status - are not fully implemented. Although
their defaults can be set, the associated methods for setting and getting these flags have not been implemented.
(Theneeded flag is fully supported.)

2. No synchronization of object ids at object create time.Object IDs are using during the reconcile process to
identify objects which are unknown to some subset of the PETsin the currently running VM. Object IDs are
assigned in sequential order at object create time.

One important request by the user community during the ESMF object design was that there be no communi-
cation overhead or synchronization when creating distributed ESMF objects. As a consequence it is required to
create these objects inunison across all PETs in order to keep the ESMF object identifiaction in sync.

17.5 Design and Implementation Notes

1. States contain the name of the associated Component, a flagfor Import or Export, and a list of data objects,
which can be a combination of FieldBundles, Fields, and/or Arrays. The objects must be named and have the
proper attributes so they can be identified by the receiver ofthe data. For example, units and other detailed
information may need to be associated with the data as an Attribute.

2. Data contained in States must be created in unison on each PET of the current VM. This allows the creation
process to avoid doing communications since each PET can compute any information it needs to know about
any remote PET (for example, the grid distribute method can compute the decomposition of the grid on not only
the local PET but also the remote PETs since it knows each PET is making the identical call). For all PETs to
have a consistent view of the data this means objects must be given unique names when created, or all objects
must be created in the same order on all PETs so ESMF can generate consistent default names for the objects.

113

DE 1
PET 2

DE 3
PET 0

DE 2
PET 4

DE 0
PET 6

Source Grid Decomposition

Figure 7: The mapping of PETs (processors) to DEs (data) in the source grid created byuser_model1.F90 in the
FieldExcl system test.

DE 2
PET 3

DE 1
PET 1

DE 0
PET 5

Destination Grid Decomposition

Figure 8: The mapping of PETs (processors) to DEs (data) in the destination grid created byuser_model2.F90 in
the FieldExcl system test.

When running components on subsets of the original VM all thePETs can create consistent objects but then
when they are put into a State and passed to a component with a different VM and a different set of PETs, a
communication call (reconcile) must be made to communicatethe missing information to the PETs which were
not involved in the original object creation. The reconcilecall broadcasts object lists; those PETs which are
missing any objects in the total list can receive enough information to reconstruct a proxy object which contains
all necessary information about that object, with no local data, on that PET. These proxy objects can be queried
by ESMF routines to determine the amount of data and what PETscontain data which is destined to be moved
to the local PET (for receiving data) and conversely, can determine which other PETs are going to receive data
and how much (for sending data).

For example, the FieldExcl system test creates 2 Gridded Components on separate subsets of PETs. They use
the option of mapping particular, non-monotonic PETs to DEs. The following figures illustrate how the DEs are
mapped in each of the Gridded Components in that test:

114

DE 1
PET 2

DE 5
PET 0

DE 4
PET 4

DE 0
PET 6

Proxy DELayout created by Framework for
Source Grid Decomposition in Coupler

DE 6
PET 5

X
PET 7

DE 3
PET 3

DE 2
PET 1

Figure 9: The mapping of PETs (processors) to DEs (data) in the source grid after the reconcile call in
user_coupler.F90 in the FieldExcl system test.

In the coupler code, all PETs must make the reconcile call before accessing data in the State. On PETs which
already contain data, the objects are unchanged. On PETs which were not involved during the creation of the
FieldBundles or Fields, the reconcile call adds an object tothe State which contains all the same metadata
associated with the object, but creates a slightly different Grid object, called a Proxy Grid. These PETs contain
no local data, so the Array object is empty, and the DELayout for the Grid is like this:

115

DE 2
PET 3

DE 1
PET 1

DE 0
PET 5

Proxy DELayout created by Framework for
Destination Grid Decomposition in Coupler

DE 3
PET 0

DE 4
PET 2

DE 5
PET 4

DE 6
PET 6

Figure 10: The mapping of PETs (processors) to DEs (data) in the destination grid after the reconcile call in
user_coupler.F90 in the FieldExcl system test.

17.6 Object Model

The following is a simplified UML diagram showing the structure of the State class. States can contain FieldBundles,
Fields, Arrays, or nested States. See Appendix A,A Brief Introduction to UML, for a translation table that lists the
symbols in the diagram and their meaning.

Array

0..n

Bundle Field

TimeState

0..n0..n0..n

0..n

17.7 Class API

17.7.1 ESMF_StateAdd - Add a single item to a State

INTERFACE:

subroutine ESMF_StateAdd(state, <item>, rc)

ARGUMENTS:

type(ESMF_State), intent(inout) :: state
<item>, see below for supported values
integer, intent(out), optional :: rc

116

DESCRIPTION:

Add a reference to a single <item> to an existingstate . Any of the supported <item>s can be marked needed for
a particular run using theESMF_StateSetNeeded() call. The name of the <item> must be unique within the
state .
One of the supported options below is to add only the name of the item to thestate during a first pass. The name
can be replaced with the actual <item> in a later call. When doing this, the name of the <item> provided to thestate
during the first pass must match the name stored in the <item> itself.
Supported values for <item> are:

type(ESMF_Array), intent(in) :: array

type(ESMF_ArrayBundle), intent(in) :: arraybundle

type(ESMF_Field), intent(in) :: field

type(ESMF_FieldBundle), intent(in) :: fieldbundle

character (len=*), intent(in) :: name

type(ESMF_RouteHandle), intent(in) :: routehandle

type(ESMF_State), intent(in) :: nestedState

The arguments are:

state TheESMF_State to which <item>s will be added.

<item> The <item> to be added. This is a reference only; when thestate is destroyed the <item>s contained in
it will not be destroyed. Also, the <item> cannot be safely destroyed before thestate is destroyed. Since
<item>s can be added to multiple containers, it remains the user’s responsibility to manage their destruction
when they are no longer in use.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

17.7.2 ESMF_StateAdd - Add a list of items to a State

INTERFACE:

subroutine ESMF_StateAdd(state, <itemList>, count, rc)

ARGUMENTS:

type(ESMF_State), intent(inout) :: state
<itemList>, see below for supported values
integer, intent(in), optional :: count
integer, intent(out), optional :: rc

DESCRIPTION:

Add a list of items to anESMF_State .
Supported values for <itemList> are:

type(ESMF_Array), intent(in) :: arrayList(:)

type(ESMF_ArrayBundle), intent(in) :: arraybundleList(:)

type(ESMF_Field), intent(in) :: fieldList(:)

117

type(ESMF_FieldBundle), intent(in) :: fieldbundleList(:)

character (len=*), intent(in) :: nameList(:)

type(ESMF_RouteHandle), intent(in) :: routehandleList(:)

type(ESMF_State), intent(in) :: stateList(:)

The arguments are:

state An ESMF_State to which the <itemList> will be added.

<itemList> The list of items to be added. This is a reference only; when the ESMF_State is destroyed the
<itemList> contained in it will not be destroyed. Also, the <itemList> cannot be safely destroyed before the
ESMF_State is destroyed. Since <itemList>s can be added to multiple containers, it remains the user’s re-
sponsibility to manage their destruction when they are no longer in use.

[count] The number of items to be added. By default equal to the size ofthe <itemList> argument.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

17.7.3 ESMF_StateCreate - Create a new State

INTERFACE:

function ESMF_StateCreate(stateName, statetype, &
bundleList, fieldList, arrayList, nestedStateList, &
nameList, itemCount, &
neededflag, readyflag, validflag, reqforrestartflag, rc)

RETURN VALUE:

type(ESMF_State) :: ESMF_StateCreate

ARGUMENTS:

character(len= *), intent(in), optional :: stateName
type(ESMF_StateType), intent(in), optional :: statetype
type(ESMF_FieldBundle), dimension(:), intent(inout), o ptional :: bundleList
type(ESMF_Field), dimension(:), intent(inout), optiona l :: fieldList
type(ESMF_Array), dimension(:), intent(in), optional :: arrayList
type(ESMF_State), dimension(:), intent(in), optional :: nestedStateList
character(len= *), dimension(:), intent(in), optional :: nameList
integer, intent(in), optional :: itemCount
type(ESMF_NeededFlag), optional :: neededflag
type(ESMF_ReadyFlag), optional :: readyflag
type(ESMF_ValidFlag), optional :: validflag
type(ESMF_ReqForRestartFlag), optional :: reqforrestar tflag
integer, intent(out), optional :: rc

DESCRIPTION:

Create a newESMF_State , set default characteristics for objects added to it, and optionally add initial objects to it.
The arguments are:

[stateName] Name of thisESMF_State object. A default name will be generated if none is specified.

118

[statetype] Import or ExportESMF_State . Valid values areESMF_STATE_IMPORT, ESMF_STATE_EXPORT,
or ESMF_STATE_UNSPECIFIEDThe default isESMF_STATE_UNSPECIFIED.

[bundleList] A list (Fortran array) ofESMF_FieldBundle s.

[fieldList] A list (Fortran array) ofESMF_Field s.

[arrayList] A list (Fortran array) ofESMF_Array s.

[nestedStateList] A list (Fortran array) ofESMF_State s to be nested inside the outerESMF_State .

[nameList] A list (Fortran array) of character string name placeholders.

[itemCount] The total number of things – FieldBundles, Fields, Arrays, States, and Names – to be added. If
itemCount is not specified, it will be computed internally based on the length of each object list. IfitemCount
is specified this routine will do an error check to verify the total number of items found in the argument lists
matches this count of the expected number of items.

[neededflag] Set the default value for new items added to anESMF_State . Possible values are listed in Sec-
tion 9.2.10. If not specified, the default value is set toESMF_NEEDED.

[readyflag] Set the default value for new items added to anESMF_State . Possible values are listed in Sec-
tion 9.2.11. If not specified, the default value is set toESMF_READYTOREAD.

[validflag] Set the default value for new items added to anESMF_State . Possible values are listed in Section 9.2.17.
If not specified, the default value is set toESMF_VALID.

[reqforrestartflag] Set the default value for new items added to anESMF_State . Possible values are listed in
Section 9.2.15. If not specified, the default value is set toESMF_REQUIRED_FOR_RESTART.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

17.7.4 ESMF_StateDestroy - Release resources for a State

INTERFACE:

recursive subroutine ESMF_StateDestroy(state, rc)

ARGUMENTS:

type(ESMF_State) :: state
integer, intent(out), optional :: rc

DESCRIPTION:

Releases all resources associated with thisESMF_State . Actual objects added toESMF_State s will not be de-
stroyed, it remains the user’s responsibility to destroy these objects in the correct context. However, proxy objects
automatically created duringESMF_StateReconcile() are destroyed when the State is destroyed.
The arguments are:

state Destroy contents of thisESMF_State .

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

119

17.7.5 ESMF_StateGet - Get information about a State

INTERFACE:

! Private name; call using ESMF_StateGet()
subroutine ESMF_StateGetInfo(state, itemSearch, nested Flag, name, statetype, itemCount,

itemNameList, stateitemtypeList, rc)

ARGUMENTS:

type(ESMF_State), intent(in) :: state
character (len= *), intent(in), optional :: itemSearch
logical, intent(in), optional :: nestedFlag
character (len= *), intent(out), optional :: name
type(ESMF_StateType), intent(out), optional :: statetyp e
integer, intent(out), optional :: itemCount
character (len= *), intent(out), optional :: itemNameList(:)
type(ESMF_StateItemType), intent(out), optional :: stat eitemtypeList(:)
integer, intent(out), optional :: rc

DESCRIPTION:

Returns the requested information about thisESMF_State . The optionalitemSearch argument may specify the
name of an individual item to search for. When used in conjunction with thenestedFlag , nested States will also be
searched.
The arguments are:

state An ESMF_State object to be queried.

[itemSearch] Query objects by name in the State. When thenestedFlag option is set to .true., all nested States
will also be searched for the specified name.

[nestedFlag] When set to.false. , returns information at the current State level only (default) When set to.true. ,
additionally returns information from nested States

[name] Name of thisESMF_State .

[statetype] Import or Export of thisESMF_State . Possible values are listed in Section 17.2.2.

[itemCount] Count of items in thisESMF_State , including all objects as well as placeholder names. When the
nestedFlag option is set to.true. , the count will include items present in nested States. Whenusing
itemSearch , it will count the number of items matching the specified name.

[itemNameList] Array of item names in thisESMF_State , including placeholder names. When thenestedFlag
option is set to.true. , the list will include items present in nested States. When using itemSearch , it will
return the names of items matching the specified name.itemNameList must be at leastitemCount long.

[stateitemtypeList] Array of possible item object types in thisESMF_State , including placeholder names. When
the nestedFlag option is set to.true. , the list will include items present in nested States. When using
itemSearch , it will return the types of items matching the specified name. Must be at leastitemCount
long. Return values are listed in Section 17.2.1.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

Typically, anESMF_StateGet() information request will be performed twice. The first time,the itemCount
argument will be used to query the size of arrays that are needed. Arrays can then be allocated to the correct size for
itemNameList andstateitemtypeList as needed. A second call toESMF_StateGet() will then fill in
the values.

120

17.7.6 ESMF_StateGet - Retrieve an item from a State

INTERFACE:

subroutine ESMF_StateGet(state, itemName, <item>,
nestedStateName, rc)

ARGUMENTS:

type(ESMF_State), intent(in) :: state
character (len= *), intent(in) :: itemName
<item>, see below for supported values
character (len= *), intent(in), optional :: nestedStateName
integer, intent(out), optional :: rc

DESCRIPTION:

Returns an <item> from anESMF_State by name. If theESMF_State contains the <item> directly, onlyitemName
is required.
If the state contains nestedESMF_State s, theitemName argument may specify a fully qualified name to access
the desired item with a single call. This is performed using the “/” character to separate the names of the intermediate
State names leading to the desired item. (E.g.,itemName=“state1/state12/item” .
An alternative technique for accessing a nested item which is only one level down, is to specify the nested State with
the nestedStateName argument. While States can be nested to any depth, this option only searches immediate
descendents. It is an error to specify anestedStateName if the state contains no nestedESMF_State s. It is
an error to specify bothnestedStateName and a fully qualified, nested State itemName.
Supported values for <item> are:

type(ESMF_Array), intent(out) :: array

type(ESMF_ArrayBundle), intent(out) :: arraybundle

type(ESMF_Field), intent(out) :: field

type(ESMF_FieldBundle), intent(out) :: fieldbundle

type(ESMF_RouteHandle), intent(out) :: routehandle

type(ESMF_State), intent(out) :: nestedState

The arguments are:

state State to query for an <item> nameditemName .

itemName Name of <item> to be returned. This name may be fully qualifiedin order to access nested State items.

<item> Returned reference to the <item>.

[nestedStateName]Optional. Used when thestate contains multiple nestedESMF_State s and the <item> being
requested is one level down in one of the nestedESMF_State . An error if specified when thestate argument
contains no nestedESMF_State s. It is also an error to use this option with a fully qualifieditemName . This
option is retained for compatibility with earlier versionsof ESMF.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

121

17.7.7 ESMF_StateGet - Get information about an item in a State

INTERFACE:

! Private name; call using ESMF_StateGet()
subroutine ESMF_StateGetItemInfo(state, name, stateite mtype, rc)

ARGUMENTS:

type(ESMF_State), intent(in) :: state
character (len= *), intent(in) :: name
type(ESMF_StateItemType), intent(out) :: stateitemtype
integer, intent(out), optional :: rc

DESCRIPTION:

Returns the type for the item namedname in this ESMF_State . If no item with this name exists, the value
ESMF_STATEITEM_NOTFOUNDwill be returned and the error code will not be set to an error.Thus this routine
can be used to safely query for the existance of items by name whether or not they are expected to be there. The error
code will be set in case of other errors, for example if theESMF_State itself is invalid.
The arguments are:

state ESMF_State to be queried.

name Name of the item to return information about.

stateitemtype Returned item types for the item with the given name, including placeholder names. Options are listed
in Section 17.2.1. If no item with the given name is found,ESMF_STATEITEM_NOTFOUNDwill be returned
andrc will not be set to an error.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

17.7.8 ESMF_StateGetNeeded - Query whether a data item is needed

INTERFACE:

subroutine ESMF_StateGetNeeded(state, itemName, needed flag, rc)

ARGUMENTS:

type(ESMF_State), intent(in) :: state
character (len= *), intent(in) :: itemName
type(ESMF_NeededFlag), intent(out) :: neededflag
integer, intent(out), optional :: rc

DESCRIPTION:

Returns the status of theneededflag for the data item named byitemName in theESMF_State .
The arguments are:

state TheESMF_State to query.

itemName Name of the data item to query.

neededflagWhether state item is needed or not for a particular application configuration. Possible values are listed
in Section 9.2.10.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

122

17.7.9 ESMF_StateIsNeeded – Return logical true if data item needed

INTERFACE:

function ESMF_StateIsNeeded(state, itemName, rc)

RETURN VALUE:

logical :: ESMF_StateIsNeeded

ARGUMENTS:

type(ESMF_State), intent(in) :: state
character (len= *), intent(in) :: itemName
integer, intent(out), optional :: rc

DESCRIPTION:

Returns true if the status of theneeded flag for the data item named byitemName in the ESMF_State is
ESMF_STATEITEM_NEEDED. Returns false for no item found with the specified name or item marked not needed.
Also sets error code ifdataname not found.
The arguments are:

state ESMF_State to query.

itemName Name of the data item to query.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

17.7.10 ESMF_StatePrint - Print the internal data for a State

INTERFACE:

subroutine ESMF_StatePrint(state, options, nestedFlag, rc)

ARGUMENTS:

type(ESMF_State) :: state
character (len = *), intent(in), optional :: options
logical, intent(in), optional :: nestedFlag
integer, intent(out), optional :: rc

DESCRIPTION:

Prints information about thestate to stdout .

Note: ManyESMF_<class>Print methods are implemented in C++. On some platforms/compilers there is a
potential issue with interleaving Fortran and C++ output tostdout such that it doesn’t appear in the expected order.
If this occurs, theESMF_IOUnitFlush() method may be used on unitESMF_IOstdout to get coherent output.

The arguments are:

state TheESMF_State to print.

[options] Print options: " ", or "brief" - print names and types of the objects within the state (default) "long" - print
additional information, such as proxy flags

[nestedFlag] ESMF_NESTED_OFF- print objects at the current State level onlyESMF_NESTED_ON- recursively
print nested State objects

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

123

17.7.11 ESMF_StateRead – Read data items from a file into a State

INTERFACE:

subroutine ESMF_StateRead(state, fileName, fileFormat, rc)

ARGUMENTS:

type(ESMF_State) :: state
character (len= *), intent(in) :: fileName
type (ESMF_IOFileFormat), intent(in), optional :: fileFo rmat
integer, intent(out), optional :: rc

DESCRIPTION:

Currently limited to read in all Arrays from a netCDF file and add them to a State object. Future releases will enable
more items of a State to be read from a file of various formats.
Only PET 0 reads the file; the States in other PETs remain empty. Currently, the data is not decomposed or distributed;
each PET has only 1 DE and only PET 0 contains data after reading the file. Future versions of ESMF will support
data decomposition and distribution upon reading a file. SeeSection 17.3.7 for an example.
Note that the third party NetCDF library must be installed. For more details, see the "ESMF Users Guide", "Building
and Installing the ESMF, Third Party Libraries, NetCDF" andthe website http://www.unidata.ucar.edu/software/netcdf.
The arguments are:

state TheESMF_State to add items read from file. Currently only Arrays are supported.

fileName File to be read.

[fileFormat] The file format to be used. Currently, only ESMF_IO_FILEFORMAT_NETCDF is supported, which is
the default. Future releases will support others.

[rc] Return code; equalsESMF_SUCCESSif there are no errors. EqualsESMF_RC_LIB_NOT_PRESENTif fileFor-
mat is ESMF_IO_FILEFORMAT_NETCDF and the NetCDF library isnot present.

17.7.12 ESMF_StateWrite – Write items from a State to file

INTERFACE:

subroutine ESMF_StateWrite(state, fileName, fileFormat , rc)

ARGUMENTS:

type(ESMF_State) :: state
character (len= *), intent(in) :: fileName
type (ESMF_IOFileFormat), intent(in), optional :: fileFo rmat
integer, intent(out), optional :: rc

DESCRIPTION:

Currently limited to write out all Arrays of a State object toa netCDF file. Future releases will enable more item types
of a State to be written to files of various formats.
Writing is currently limited to PET 0; future versions of ESMF will allow parallel writing, as well as parallel reading.
See Section 17.3.7 for an example.
Note that the third party NetCDF library must be installed. For more details, see the "ESMF Users Guide", "Building
and Installing the ESMF, Third Party Libraries, NetCDF" andthe website http://www.unidata.ucar.edu/software/netcdf.
The arguments are:

124

state TheESMF_State from which to write items. Currently limited to Arrays.

fileName File to be written.

[fileFormat] The file format to be used. Currently, only ESMF_IO_FILEFORMAT_NETCDF is supported, which is
the default. Future releases will support others.

[rc] Return code; equalsESMF_SUCCESSif there are no errors. EqualsESMF_RC_LIB_NOT_PRESENTif fileFor-
mat is ESMF_IO_FILEFORMAT_NETCDF and the NetCDF library isnot present.

17.7.13 ESMF_StateReconcile – Reconcile State data acrossall PETs in a VM

INTERFACE:

subroutine ESMF_StateReconcile(state, vm, attreconflag , rc)

ARGUMENTS:

type(ESMF_State), intent(inout) :: state
type(ESMF_VM), intent(in) :: vm
type(ESMF_AttReconcileFlag), intent(in), optional :: at treconflag
integer, intent(out), optional :: rc

DESCRIPTION:

Must be called for anyESMF_State which contains ESMF objects that have not been created on allthePETs of the
currently runningESMF_Component. For example, if a coupler is operating on data which was created by another
component that ran on only a subset of the coupler’sPETs, the coupler must make this call first before operating on any
data inside thatESMF_State . After calling ESMF_StateReconcile all PETs will have a common view of all
objects contained in thisESMF_State . The option to reconcile the metadata associated with the objects contained
in this ESMF_State also exists. The default behavior for this capability is tonot reconcile metadata unless told
otherwise.
The arguments are:

state ESMF_State to reconcile.

vm ESMF_VMfor thisESMF_Component.

[attreconflag] Flag to tell if Attribute reconciliation is to be done as wellas data reconciliation

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

NOTE: The options forattreconflag include:

1. ESMF_ATTRECONCILE_ON will allow reconciliation of metadata (Attributes)

2. ESMF_ATTRECONCILE_OFF is the default behavior, this option turns off the metadata reconciliation

17.7.14 ESMF_StateSetNeeded - Set if a data item is needed

INTERFACE:

subroutine ESMF_StateSetNeeded(state, itemName, needed flag, rc)

ARGUMENTS:

125

type(ESMF_State), intent(inout) :: state
character (len= *), intent(in) :: itemName
type(ESMF_NeededFlag), intent(in) :: neededflag
integer, intent(out), optional :: rc

DESCRIPTION:

Sets the status of theneeded flag for the data item named byitemName in theESMF_State .
The arguments are:

state TheESMF_State to set.

itemName Name of the data item to set.

neededflagSet status of data item to this. See Section 9.2.10 for possible values.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

17.7.15 ESMF_StateValidate - Check validity of a State

INTERFACE:

subroutine ESMF_StateValidate(state, options, nestedFl ag, rc)

ARGUMENTS:

type(ESMF_State) :: state
character (len = *), intent(in), optional :: options
logical, intent(in), optional :: nestedFlag
integer, intent(out), optional :: rc

DESCRIPTION:

Validates that thestate is internally consistent. Currently this method determines if theState is uninitialized or
already destroyed. The method returns an error code if problems are found.
The arguments are:

state TheESMF_State to validate.

[nestedFlag] .false. - validates at the current State level only (default).true. - recursively validates any nested
States

[options] Validation options are not yet supported.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

126

Part IV

Infrastructure: Fields and Grids

127

18 Overview of Infrastructure Data Handling

The ESMF infrastructure data classes are part of the framework’s hierarchy of structures for handling Earth system
model data and metadata on parallel platforms. The hierarchy is in complexity; the simplest data class in the infras-
tructure represents a distributed data array and the most complex data class represents a bundle of physical fields that
are discretized on the same grid. Data class methods are called both from user-written code and from other classes
internal to the framework.
Data classes are distributed overDEs, orDecomposition Elements. A DE represents a piece of a decomposition. A
DELayout is a collection of DEs with some associated connectivity that describes a specific distribution. For example,
the distribution of a grid divided into four segments in the x-dimension would be expressed in ESMF as a DELayout
with four DEs lying along an x-axis. This abstract concept enables a data decomposition to be defined in terms of
threads, MPI processes, virtual decomposition elements, or combinations of these without changes to user code. This
is a primary strategy for ensuring optimal performance and portability for codes using the ESMF for communications.
ESMF data classes are useful because they provide a standard, convenient way for developers to collect together
information related to model or observational data. The information assembled in a data class includes a data pointer,
a set of attributes (e.g. units, although attributes can also be user-defined), and a description of an associated grid. The
same set of information within an ESMF data object can be usedby the framework to arrange intercomponent data
transfers, to perform I/O, for communications such as gathers and scatters, for simplification of interfaces within user
code, for debugging, and for other functions. This unifies and organizes codes overall so that the user need not define
different representations of metadata for the same field forI/O and for component coupling.
Since it is critical that users be able to introduce ESMF intotheir codes easily and incrementally, ESMF data classes
can be created based on native Fortran pointers. Likewise, there are methods for retrieving native Fortran pointers
from within ESMF data objects. This allows the user to perform allocations using ESMF, and to retrieve Fortran
arrays later for optimized model calculations. The ESMF data classes do not have associated differential operators or
other mathematical methods.
For flexibility, it is not necessary to build an ESMF data object all at once. For example, it’s possible to create a field
but to defer allocation of the associated field data until a later time.

Key Features
Hierarchy of data structures designed specifically for the Earth system domain and high performance, parallel
computing.
Multi-use ESMF structures simplify user code overall.
Data objects support incremental construction and deferred allocation.
Native Fortran arrays can be associated with or retrieved from ESMF data objects, for ease of adoption,
convenience, and performance.

18.1 Infrastructure Data Classes

The main classes that are used for model and observational data manipulation are as follows:

• Array An ESMF Array contains a data pointer, information about itsassociated datatype, precision, and dimen-
sion.

Data elements in Arrays are partitioned into categories defined by the role the data element plays in distributed
halo operations. Haloing - sometimes called ghosting - is the practice of copying portions of array data to mul-
tiple memory locations to ensure that data dependencies canbe satisfied quickly when performing a calculation.
ESMF Arrays contain anexclusivedomain, which contains data elements updated exclusively and definitively
by a given DE; acomputational domain, which contains all data elements with values that are updated by the
DE in computations; and atotal domain, which includes both the computational domain and data elements from
other DEs which may be read but are not updated in computations.

• ArrayBundle ArrayBundles are collections of Arrays that are stored in a single object. Unlike FieldBundles,
they don’t need to be distributed the same way across PETs. The motivation for ArrayBundles is both conve-
nience and performance.

128

• Field A Field holds model and/or observational data together withits underlying grid or set of spatial locations.
It provides methods for configuration, initialization, setting and retrieving data values, data I/O, data regridding,
and manipulation of attributes.

• FieldBundle Groups of Fields on the same underlying physical grid can be collected into a single object called
a FieldBundle. A FieldBundle provides two major functions:it allows groups of Fields to be manipulated
using a single identifier, for example during export or import of data between Components; and it allows data
from multiple Fields to be packed together in memory for higher locality of reference and ease in subsetting
operations. Packing a set of Fields into a single FieldBundle before performing a data communication allows
the set to be transferred at once rather than as a Field at a time. This can improve performance on high-latency
platforms.

FieldBundle objects contain methods for setting and retrieving constituent fields, regridding, data I/O, and re-
ordering of data in memory.

18.2 Design and Implementation Notes

1. In communication methods such as Regrid, Redist, Scatter, etc. the FieldBundle and Field code cascades down
through the Array code, so that the actual implementation exist in only one place in the source.

129

19 FieldBundle Class

19.1 Description

A FieldBundle functions mainly as a convenient container for storing similar Fields. It represents “bundles” of Fields
that are discretized on the same Grid and distributed in the same manner. The FieldBundle is an important data
structure because it can be added to a State, which is used forsending and receiving data between Components.
Fields within a FieldBundle may be located at different locations relative to the vertices of their common Grid. The
Fields in a FieldBundle may be of different dimensions, as long as the Grid dimensions that are distributed are the
same. For example, a surface Field on a distributed lat/lon Grid and a 3D Field with an added vertical dimension on
the same distributed lat/lon Grid can be included in the sameFieldBundle.
FieldBundles can be created and destroyed, can have Attributes added or retrieved, and can have Fields added or
retrieved. Methods include queries that return information about the FieldBundle itself and about the Fields that it
contains. The Fortran data pointer of a Field within a FieldBundle can be obtained by first retrieving the Field with a
call toESMF_FieldBundleGet() , and then usingESMF_FieldGet() to get the data.
In the future FieldBundles will serve as a mechanism for performance optimization. ESMF will take advantage of
the similarities of the Fields within a FieldBundle to implement collective communication, IO, and regridding. See
Section 19.4 for a description of features that are scheduled for future work.

19.2 FieldBundle Options

19.2.1 ESMF_PackFlag

DESCRIPTION:
Specifies whether a FieldBundle is packed or not. A packed FieldBundle contains an array in which all the data in its
constituent Fields is packed contiguously. FieldBundles that are not packed are not guaranteed to carry a contiguous
array of their data. This flag is not yet implemented; the value is always set toESMF_NO_PACKED_DATA.
Valid values are:

ESMF_PACKED_DATA Contains a packed array.

ESMF_NO_PACKED_DATA Does not contain a packed array.

19.3 Use and Examples

Examples of creating, destroying and accessing FieldBundles and their constituent Fields are provided in this section,
along with some notes on FieldBundle methods.

19.3.1 Create a FieldBundle

After creating multiple Fields, a FieldBundle can be created by passing a list of the Fields into the methodESMF_FieldBundleCreate()
The FieldBundle will contain references to the Fields. An empty FieldBundle can also be created and Fields added
one at a time or in groups.

19.3.2 Access FieldBundle data

To access data in a FieldBundle the user can provide a Field name and retrieve the Field’s Fortran data pointer.
Alternatively, the user can retrieve the data in the form of an ESMF Field and use the Field-level interfaces.

19.3.3 Destroy a FieldBundle

The user must callESMF_FieldBundleDestroy() before deleting any of the Fields it contains. Because Fields
can be shared by multiple FieldBundles and States, they are not deleted by this call.
See the following code fragments for examples of how to create new FieldBundles.

130

! Example program showing various ways to create a FieldBund le object.

program ESMF_FieldBundleCreateEx

! ESMF Framework module
use ESMF_Mod

implicit none

! Local variables
integer :: i, rc, fieldcount
type(ESMF_Grid) :: grid
type(ESMF_ArraySpec) :: arrayspec
character (len = ESMF_MAXSTR) :: bname1, fname1, fname2
type(ESMF_Field) :: field(10), returnedfield1, returned field2, simplefield
type(ESMF_FieldBundle) :: bundle1, bundle2, bundle3

!-- -----------------------
! ! Create several Fields and add them to a new FieldBundle.

grid = ESMF_GridCreateShapeTile(minIndex=(/1,1/), maxI ndex=(/100,200/), &
regDecomp=(/2,2/), name="atmgrid", rc=rc)

call ESMF_ArraySpecSet(arrayspec, 2, ESMF_TYPEKIND_R8, rc=rc)
if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE

field(1) = ESMF_FieldCreate(grid, arrayspec, &
staggerloc=ESMF_STAGGERLOC_CENTER, &
name="pressure", rc=rc)

field(2) = ESMF_FieldCreate(grid, arrayspec, &
staggerloc=ESMF_STAGGERLOC_CENTER, &
name="temperature", rc=rc)

field(3) = ESMF_FieldCreate(grid, arrayspec, &
staggerloc=ESMF_STAGGERLOC_CENTER, &
name="heat flux", rc=rc)

bundle1 = ESMF_FieldBundleCreate(3, field, name="atmosp here data", rc=rc)

print * , "FieldBundle example 1 returned"

!-- -----------------------
! ! Create an empty FieldBundle and then add a single field to i t.

simplefield = ESMF_FieldCreate(grid, arrayspec, &
staggerloc=ESMF_STAGGERLOC_CENTER, name="rh", rc=rc)

131

bundle2 = ESMF_FieldBundleCreate(name="time step 1", rc= rc)

call ESMF_FieldBundleAdd(bundle2, simplefield, rc)

call ESMF_FieldBundleGet(bundle2, fieldCount=fieldcou nt, rc=rc)

print * , "FieldBundle example 2 returned, fieldcount =", fieldcou nt

!-- -----------------------
! ! Create an empty FieldBundle and then add multiple fields t o it.

bundle3 = ESMF_FieldBundleCreate(name="southern hemisp here", rc=rc)

call ESMF_FieldBundleAdd(bundle3, 3, field, rc)

call ESMF_FieldBundleGet(bundle3, fieldCount=fieldcou nt, rc=rc)

print * , "FieldBundle example 3 returned, fieldcount =", fieldcou nt

!-- -----------------------
! ! Get a Field back from a FieldBundle, first by name and then b y index.
! ! Also get the FieldBundle name.

call ESMF_FieldBundleGet(bundle1, "pressure", returned field1, rc)

call ESMF_FieldGet(returnedfield1, name=fname1, rc=rc)

call ESMF_FieldBundleGet(bundle1, 2, returnedfield2, rc)

call ESMF_FieldGet(returnedfield2, name=fname2, rc=rc)

call ESMF_FieldBundleGet(bundle1, name=bname1, rc=rc)

print * , "FieldBundle example 4 returned, field names = ", &
trim(fname1), ", ", trim(fname2)

print * , "FieldBundle name = ", trim(bname1)

!-- -----------------------

call ESMF_FieldBundleDestroy(bundle1, rc=rc)

call ESMF_FieldBundleDestroy(bundle2, rc=rc)

call ESMF_FieldBundleDestroy(bundle3, rc=rc)

132

do i=1, 3
call ESMF_FieldDestroy(field(i),rc=rc)

enddo

call ESMF_FieldDestroy(simplefield, rc=rc)

end program ESMF_FieldBundleCreateEx

19.3.4 Redistribute data from a source FieldBundle to a destination FieldBundle

A user can useESMF_FieldBundleRedist interface to redistribute data from source FieldBundle to destination
FieldBundle. This interface is overloaded by type and kind;In the version ofESMF_FieldBundleRedist without
factor argument, a default value of factor 1 is used.
In this example, we first create two FieldBundles, a source FieldBundle and a destination FieldBundle. Then we use
ESMF_FieldBundleRedist to redistribute data from source FieldBundle to destination FieldBundle.

! retrieve VM and its context info such as PET number
call ESMF_VMGetCurrent(vm, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

call ESMF_VMGet(vm, localPet=lpe, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! create distgrid and grid for field and fieldbundle creatio n
distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIn dex=(/10,20/), &

regDecomp=(/2,2/), rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

grid = ESMF_GridCreate(distgrid=distgrid, name="grid", rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

call ESMF_ArraySpecSet(arrayspec, 3, ESMF_TYPEKIND_I4, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! create src and dst FieldBundles pair
srcFieldBundle = ESMF_FieldBundleCreate(grid, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

dstFieldBundle = ESMF_FieldBundleCreate(grid, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! create src and dst Fields and add the Fields into FieldBundl es
do i = 1, 3

srcField(i) = ESMF_FieldCreate(grid, arrayspec, &
ungriddedLBound=(/1/), ungriddedUBound=(/4/), &
maxHaloLWidth=(/1,1/), maxHaloUWidth=(/1,2/), &
rc=rc)

if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

call ESMF_FieldGet(srcField(i), localDe=0, farrayPtr=s rcfptr, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

133

srcfptr = lpe

call ESMF_FieldBundleAdd(srcFieldBundle, srcField(i), rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

dstField(i) = ESMF_FieldCreate(grid, arrayspec, &
ungriddedLBound=(/1/), ungriddedUBound=(/4/), &
maxHaloLWidth=(/1,1/), maxHaloUWidth=(/1,2/), &
rc=rc)

if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

call ESMF_FieldGet(dstField(i), localDe=0, farrayPtr=d stfptr, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

dstfptr = 0

call ESMF_FieldBundleAdd(dstFieldBundle, dstField(i), rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

enddo

! perform redist
call ESMF_FieldBundleRedistStore(srcFieldBundle, dstF ieldBundle, routehandle, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

call ESMF_FieldBundleRedist(srcFieldBundle, dstFieldB undle, routehandle, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! verify redist
do l = 1, 3

call ESMF_FieldGet(dstField(l), localDe=0, farrayPtr=f ptr, &
exclusiveLBound=exLB, exclusiveUBound=exUB, rc=rc)

if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! Verify that the redistributed data in dstField is correct.
! Before the redist op, the dst Field contains all 0.
! The redist op reset the values to the PE value, verify this is the case.
! MUST use exclusive bounds because Redist operates within e xcl. region.
do k = exLB(3), exUB(3)

do j = exLB(2), exUB(2)
do i = exLB(1), exUB(1)

if(fptr(i,j,k) .ne. lpe) finalrc = ESMF_FAILURE
enddo

enddo
enddo
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

enddo

! release route handle
call ESMF_FieldRedistRelease(routehandle, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

call ESMF_FieldBundleDestroy(srcFieldBundle, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE
call ESMF_FieldBundleDestroy(dstFieldBundle, rc=rc)

134

if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE
do i = 1, 3

call ESMF_FieldDestroy(srcField(i), rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE
call ESMF_FieldDestroy(dstField(i), rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

enddo
call ESMF_GridDestroy(grid, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE
call ESMF_DistGridDestroy(distgrid, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

19.3.5 Perform sparse matrix multiplication from a source FieldBundle to a destination FieldBundle

A user can useESMF_FieldBundleSMM interface to perform SMM from source FieldBundle to destination Field-
Bundle. This interface is overloaded by type and kind;
In this example, we first create two FieldBundles, a source FieldBundle and a destination FieldBundle. Then we use
ESMF_FieldBundleSMM to perform sparse matrix multiplication from source FieldBundle to destination Field-
Bundle.
The operation performed in this example is better illustrated in section 20.3.34.
Section 22.2.17 provides a detailed discussion of the sparse matrix mulitiplication operation implemented in ESMF.

call ESMF_VMGetCurrent(vm, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

call ESMF_VMGet(vm, localPet=lpe, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! create distgrid and grid
distgrid = ESMF_DistGridCreate(minIndex=(/1/), maxInde x=(/16/), &

regDecomp=(/4/), &
rc=rc)

if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

grid = ESMF_GridCreate(distgrid=distgrid, &
gridEdgeLWidth=(/0/), gridEdgeUWidth=(/0/), &
name="grid", rc=rc)

if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

call ESMF_ArraySpecSet(arrayspec, 1, ESMF_TYPEKIND_I4, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! create field bundles and fields
srcFieldBundle = ESMF_FieldBundleCreate(grid, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

dstFieldBundle = ESMF_FieldBundleCreate(grid, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

do i = 1, 3
srcField(i) = ESMF_FieldCreate(grid, arrayspec, &

maxHaloLWidth=(/1/), maxHaloUWidth=(/2/), &
rc=rc)

135

if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

call ESMF_FieldGet(srcField(i), localDe=0, farrayPtr=s rcfptr, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

srcfptr = 1

call ESMF_FieldBundleAdd(srcFieldBundle, srcField(i), rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

dstField(i) = ESMF_FieldCreate(grid, arrayspec, &
maxHaloLWidth=(/1/), maxHaloUWidth=(/2/), &
rc=rc)

if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

call ESMF_FieldGet(dstField(i), localDe=0, farrayPtr=d stfptr, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

dstfptr = 0

call ESMF_FieldBundleAdd(dstFieldBundle, dstField(i), rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

enddo

! initialize factorList and factorIndexList
allocate(factorList(4))
allocate(factorIndexList(2,4))
factorList = (/1,2,3,4/)
factorIndexList(1,:) = (/lpe * 4+1,lpe * 4+2,lpe * 4+3,lpe * 4+4/)
factorIndexList(2,:) = (/lpe * 4+1,lpe * 4+2,lpe * 4+3,lpe * 4+4/)
call ESMF_FieldBundleSMMStore(srcFieldBundle, dstFiel dBundle, routehandle, &

factorList, factorIndexList, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! perform smm
call ESMF_FieldBundleSMM(srcFieldBundle, dstFieldBund le, routehandle, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! verify smm
do l = 1, 3

call ESMF_FieldGet(dstField(l), localDe=0, farrayPtr=f ptr, &
exclusiveLBound=exlb, exclusiveUBound=exub, rc=rc)

if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! Verify that the smm data in dstField(l) is correct.
! Before the smm op, the dst Field contains all 0.
! The smm op reset the values to the index value, verify this is the case.
!write(* , ’(9I3)’) l, lpe, fptr
do i = exlb(1), exub(1)

if(fptr(i) .ne. i) finalrc = ESMF_FAILURE
enddo
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

enddo

! release SMM route handle

136

call ESMF_FieldBundleSMMRelease(routehandle, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! release all acquired resources
call ESMF_FieldBundleDestroy(srcFieldBundle, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE
call ESMF_FieldBundleDestroy(dstFieldBundle, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE
do l = 1, 3

call ESMF_FieldDestroy(srcField(l), rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE
call ESMF_FieldDestroy(dstField(l), rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

enddo
call ESMF_GridDestroy(grid, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE
call ESMF_DistGridDestroy(distgrid, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE
deallocate(factorList, factorIndexList)

19.3.6 Perform FieldBundle halo update

ESMF_FieldBundleHalo interface can be used to perform halo update of all the Fieldscontained in theESMF_FieldBundle .
In this example, we will set up a FieldBundle for a 2D viscous and compressible flow problem. We will illustrate
the FieldBundle halo update operation but we will not solve the non-linear PDEs here. The emphasis here is to
demonstrate how to set up halo regions, how a numerical scheme updates the exclusive regions, and how halo update
communicates data in the halo regions. Here are the governing equations:
ut + uux + vuy + 1

ρ
px = 0 (conservation of momentum in x-direction)

vt + uvx + vvy + 1

ρ
py = 0 (conservation of momentum in y-direction)

ρt + ρux + ρvy = 0 (conservation of mass)
ρ
ργ + u(p

ργ)
x

+ v(p
ργ)

y
= 0 (conservation of energy)

The four unknowns are pressurep, densityρ, velocity (u, v). The grids are set up using Arakawa D stagger (p on
corner,ρ at center,u andv on edges).p, ρ, u, andv are bounded by necessary boundary conditions and initial
conditions.
Section 22.2.14 provides a detailed discussion of the halo operation implemented in ESMF.

! create distgrid and grid according to the following decomp osition
! and stagger pattern, r is density.
!
! p--------u-------+p+-------u--------p
! ! | |
! ! | |
! ! | |
! v r v r v
! ! PET 0 | PET 1 |
! ! | |
! ! | |
! p--------u-------+p+-------u--------p
! ! | |
! ! | |
! ! | |
! v r v r v

137

! ! PET 2 | PET 3 |
! ! | |
! ! | |
! p--------u-------+p+-------u--------p
!
distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIn dex=(/256,256/), &

regDecomp=(/2,2/), &
rc=rc)

if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

grid = ESMF_GridCreate(distgrid=distgrid, name="grid", rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

call ESMF_ArraySpecSet(arrayspec, 2, ESMF_TYPEKIND_R4, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! create field bundles and fields
fieldBundle = ESMF_FieldBundleCreate(grid, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! set up exclusive/total region for the fields
!
! halo: L/U, nDim, nField, nPet
! halo configuration for pressure, and similarly for densit y, u, and v
halo(1,1,1,1) = 0
halo(2,1,1,1) = 0
halo(1,2,1,1) = 0
halo(2,2,1,1) = 0
halo(1,1,1,2) = 1 ! halo in x direction on left hand side of pet 1
halo(2,1,1,2) = 0
halo(1,2,1,2) = 0
halo(2,2,1,2) = 0
halo(1,1,1,3) = 0
halo(2,1,1,3) = 1 ! halo in y direction on upper side of pet 2
halo(1,2,1,3) = 0
halo(2,2,1,3) = 0
halo(1,1,1,4) = 1 ! halo in x direction on left hand side of pet 3
halo(2,1,1,4) = 1 ! halo in y direction on upper side of pet 3
halo(1,2,1,4) = 0
halo(2,2,1,4) = 0

! names and staggers of the 4 unknown fields
names(1) = "pressure"
names(2) = "density"
names(3) = "u"
names(4) = "v"
staggers(1) = ESMF_STAGGERLOC_CORNER
staggers(2) = ESMF_STAGGERLOC_CENTER
staggers(3) = ESMF_STAGGERLOC_EDGE2
staggers(4) = ESMF_STAGGERLOC_EDGE1

! create a FieldBundle
lpe = lpe + 1
do i = 1, 4

field(i) = ESMF_FieldCreate(grid, arrayspec, &

138

maxHaloLWidth=(/halo(1,1,i,lpe), halo(1,2,i,lpe)/), &
maxHaloUWidth=(/halo(2,1,i,lpe), halo(2,2,i,lpe)/), &
staggerloc=staggers(i), name=names(i), &
rc=rc)

if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE
call ESMF_FieldBundleAdd(fieldBundle, field(i), rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

enddo

! compute the routehandle
call ESMF_FieldBundleHaloStore(fieldBundle, routehand le=routehandle, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

do iter = 1, 10
do i = 1, 4

call ESMF_FieldGet(field(i), farrayPtr=fptr, &
exclusiveLBound=excllb, exclusiveUBound=exclub, rc=rc)

if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE
sizes = exclub - excllb
! fill the total region with 0.
fptr = 0.
! only update the exclusive region on local PET
do j = excllb(1), exclub(1)

do k = excllb(2), exclub(2)
fptr(j,k) = iter * cos(2. * PI * j/sizes(1)) * sin(2. * PI * k/sizes(2))

enddo
enddo

enddo
! call halo execution to update the data in the halo region,
! it can be verified that the halo regions change from 0. to non zero values.
call ESMF_FieldBundleHalo(fieldbundle, routehandle=ro utehandle, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

enddo
! release halo route handle
call ESMF_FieldBundleHaloRelease(routehandle, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

19.4 Restrictions and Future Work

1. No mathematical operators.The FieldBundle class does not support differential or other mathematical opera-
tors. We do not anticipate providing this functionality in the near future.

2. Limited validation and print options. We are planning to increase the number of validity checks available for
FieldBundles as soon as possible. We also will be working on print options.

3. Limited communication support. Only a subset of the communication routines are currently supported for
FieldBundles, and the Fields contained in the FieldBundlesmust currently have the same structure (e.g. same
halo width, same dimensionality). Support for more variable data will be added in a later release. For those
routines not implemented yet, or for those FieldBundles which contain Fields with differing data, the user can
loop over the Fields in the FieldBundle and call the Field level communication routines instead.

4. Packed data not supported.One of the options that we are currently working on for FieldBundles is packing.
Packing means that the data from all the Fields that comprisethe FieldBundle are manipulated collectively.
This operation can be done without destroying the original Field data. Packing is being designed to facilitate

139

optimized regridding, data communication, and IO operations. This will reduce the latency overhead of the
communication.

5. Interleaving Fields within a FieldBundle. Data locality is important for performance on some computing
platforms. An interleave option will allow the user to create a packed FieldBundle in which Fields are either
concatenated in memory or in which Field elements are interleaved.

19.5 Design and Implementation Notes

1. Fields in a FieldBundle reference the same Grid.In order to reduce memory requirements and ensure con-
sistency, the Fields within a FieldBundle all reference thesame Grid object. This restriction may be relaxed in
the future.

19.6 Class API: Basic FieldBundle Methods

19.6.1 ESMF_FieldBundleAdd - Add a Field to a FieldBundle

INTERFACE:

! Private name; call using ESMF_FieldBundleAdd()
subroutine ESMF_FieldBundleAddOneField(bundle, field, rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(inout) :: bundle
type(ESMF_Field), intent(inout) :: field
integer, intent(out), optional :: rc

DESCRIPTION:

Adds a singlefield to an existingbundle . Thefield must be associated with the same geometry (i.e. ESMF_Grid,
ESMF_Mesh, or ESMF_LocStream) as the otherESMF_Field s in thebundle . The field is referenced by the
bundle , not copied.
The arguments are:

bundle TheESMF_FieldBundle to add theESMF_Field to.

field TheESMF_Field to add.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

19.6.2 ESMF_FieldBundleAdd - Add a list of Fields to a FieldBundle

INTERFACE:

! Private name; call using ESMF_FieldBundleAdd()
subroutine ESMF_FieldBundleAddFieldList(bundle, field Count, fieldList, rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(inout) :: bundle
integer, intent(in) :: fieldCount
type(ESMF_Field), dimension(:), intent(inout) :: fieldL ist
integer, intent(out), optional :: rc

140

DESCRIPTION:

Adds afieldList to an existingESMF_FieldBundle . The items added from theESMF_fieldList must be
associated with the same geometry (i.e. ESMF_Grid, ESMF_Mesh, or ESMF_LocStream) as the otherESMF_Field s
in thebundle . The items in thefieldList are referenced by thebundle , not copied.
The arguments are:

bundle ESMF_FieldBundle to addESMF_Field s to.

fieldCount Number ofESMF_Field s to be added to theESMF_FieldBundle ; must be equal to or less than the
number of items in thefieldList .

fieldList Array of existingESMF_Field s. The firstfieldCount items will be added to theESMF_FieldBundle .

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

19.6.3 ESMF_FieldBundleCreate - Create a FieldBundle fromexisting Fields

INTERFACE:

! Private name; call using ESMF_FieldBundleCreate()
function ESMF_FieldBundleCreateNew(fieldCount, fieldL ist, &

packflag, name, iospec, rc)

RETURN VALUE:

type(ESMF_FieldBundle) :: ESMF_FieldBundleCreateNew

ARGUMENTS:

integer, intent(in) :: fieldCount
type(ESMF_Field), dimension (:) :: fieldList
type(ESMF_PackFlag), intent(in), optional :: packflag
character (len = *), intent(in), optional :: name
type(ESMF_IOSpec), intent(in), optional :: iospec
integer, intent(out), optional :: rc

DESCRIPTION:

Creates anESMF_FieldBundle from a list of existingESMF_Fields stored in afieldList . All items in the
fieldList must be associated with the same geometry (i.e. ESMF_Grid, ESMF_Mesh, or ESMF_LocStream).
Returns a newESMF_FieldBundle .
The arguments are:

fieldCount Number of fields to be added to the newESMF_FieldBundle . Must be equal to or less than the number
of ESMF_Field s in thefieldList .

fieldList Array of existingESMF_Field s. The firstESMF_FieldCount items will be added to the newESMF_FieldBundle .

[packflag] The packing option is not yet implemented. See Section 19.4 for a description of packing, and Sec-
tion 19.2.1 for anticipated values. The current implementation corresponds to the valueESMF_NO_PACKED_DATA,
which means that everyESMF_Field is referenced separately rather than being copied into a single contiguous
buffer. This is the case no matter what value, if any, is passed in for this argument.

[name] ESMF_FieldBundle name. A default name is generated if one is not specified.

[iospec] TheESMF_IOSpec is not yet used byESMF_FieldBundle s. Any values passed in will be ignored.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

141

19.6.4 ESMF_FieldBundleCreate - Create a FieldBundle withno Fields and no Grid

INTERFACE:

! Private name; call using ESMF_FieldBundleCreate()
function ESMF_FieldBundleCreateNFNone(name, iospec, rc)

RETURN VALUE:

type(ESMF_FieldBundle) :: ESMF_FieldBundleCreateNFNon e

ARGUMENTS:

character (len = *), intent(in), optional :: name
type(ESMF_IOSpec), intent(in), optional :: iospec
integer, intent(out), optional :: rc

DESCRIPTION:

Creates anESMF_FieldBundle with no associatedESMF_Fields .
The arguments are:

[name] ESMF_FieldBundle name. A default name is generated if one is not specified.

[iospec] TheESMF_IOSpec is not yet used byESMF_FieldBundle s. Any values passed in will be ignored.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

19.6.5 ESMF_FieldBundleCreate - Create a FieldBundle withno Fields but a Grid

INTERFACE:

! Private name; call using ESMF_FieldBundleCreate()
function ESMF_FieldBundleCreateNFGrid(grid, name, iosp ec, rc)

RETURN VALUE:

type(ESMF_FieldBundle) :: ESMF_FieldBundleCreateNFGri d

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid
character (len = *), intent(in), optional :: name
type(ESMF_IOSpec), intent(in), optional :: iospec
integer, intent(out), optional :: rc

DESCRIPTION:

Creates anESMF_FieldBundle with no associatedESMF_Fields .
The arguments are:

grid TheESMF_Grid which allESMF_Field s added to thisESMF_FieldBundle must be associated with.

[name] ESMF_FieldBundle name. A default name is generated if one is not specified.

[iospec] TheESMF_IOSpec is not yet used byESMF_FieldBundle s. Any values passed in will be ignored.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

142

19.6.6 ESMF_FieldBundleCreate - Create a FieldBundle withno Fields but a Mesh

INTERFACE:

! Private name; call using ESMF_FieldBundleCreate()
function ESMF_FieldBundleCreateNFMesh(mesh, name, iosp ec, rc)

RETURN VALUE:

type(ESMF_FieldBundle) :: ESMF_FieldBundleCreateNFMes h

ARGUMENTS:

type(ESMF_Mesh), intent(in) :: mesh
character (len = *), intent(in), optional :: name
type(ESMF_IOSpec), intent(in), optional :: iospec
integer, intent(out), optional :: rc

DESCRIPTION:

Creates anESMF_FieldBundle with no associatedESMF_Fields .
The arguments are:

mesh TheESMF_Meshwhich allESMF_Field s added to thisESMF_FieldBundle must be associated with.

[name] ESMF_FieldBundle name. A default name is generated if one is not specified.

[iospec] TheESMF_IOSpec is not yet used byESMF_FieldBundle s. Any values passed in will be ignored.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

19.6.7 ESMF_FieldBundleCreate - Create a FieldBundle withno Fields but a LocStream

INTERFACE:

! Private name; call using ESMF_FieldBundleCreate()
function ESMF_FieldBundleCreateNFLS(locstream, name, i ospec, rc)

RETURN VALUE:

type(ESMF_FieldBundle) :: ESMF_FieldBundleCreateNFLS

ARGUMENTS:

type(ESMF_LocStream), intent(in) :: locstream
character (len = *), intent(in), optional :: name
type(ESMF_IOSpec), intent(in), optional :: iospec
integer, intent(out), optional :: rc

DESCRIPTION:

Creates anESMF_FieldBundle with no associatedESMF_Fields .
The arguments are:

locstream TheESMF_LocStream which allESMF_Field s added to thisESMF_FieldBundle must be associ-
ated with.

143

[name] ESMF_FieldBundle name. A default name is generated if one is not specified.

[iospec] TheESMF_IOSpec is not yet used byESMF_FieldBundle s. Any values passed in will be ignored.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

19.6.8 ESMF_FieldBundleDestroy - Free all resources associated with a FieldBundle

INTERFACE:

subroutine ESMF_FieldBundleDestroy(bundle, rc)

ARGUMENTS:

type(ESMF_FieldBundle) :: bundle
integer, intent(out), optional :: rc

DESCRIPTION:

Releases resources associated with thebundle . This method does not destroy theESMF_Field s that thebundle
contains. Thebundle should be destroyed before theESMF_Field s within it are.

bundle An ESMF_FieldBundle object.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

19.6.9 ESMF_FieldBundleGet - Return information about a FieldBundle

INTERFACE:

! Private name; call using ESMF_FieldBundleGet()
subroutine ESMF_FieldBundleGetInfo(bundle, geomtype, g rid, mesh, locstream, fieldCount,

ARGUMENTS:

type(ESMF_FieldBundle), intent(in) :: bundle
type(ESMF_GeomType), intent(out), optional :: geomtype
type(ESMF_Grid), intent(out), optional :: grid
type(ESMF_Mesh), intent(out), optional :: mesh
type(ESMF_LocStream), intent(out), optional :: locstrea m
integer, intent(out), optional :: fieldCount
character (len = *), intent(out), optional :: name
integer, intent(out), optional :: rc

DESCRIPTION:

Returns information about thebundle . If the ESMF_FieldBundle was originally created without specifying a
name, a unique name will have been generated by the framework.
The arguments are:

bundle TheESMF_FieldBundle object to query.

[geomtype] Specifies the type of geometry on which the FieldBundle is built. Please see Section 9.3.4 for the range
of values. Based on this value the user can use this method to retrieve one and only one ofgrid , mesh, or
locstream .

144

[grid] TheESMF_Grid associated with thebundle .

[mesh] TheESMF_Meshassociated with thebundle .

[locstream] TheESMF_LocStream associated with thebundle .

[fieldCount] Number ofESMF_Field s in thebundle .

[name] A character string where thebundle name is returned.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

19.6.10 ESMF_FieldBundleGet - Retrieve a Field by name

INTERFACE:

! Private name; call using ESMF_FieldBundleGet()
subroutine ESMF_FieldBundleGetFieldByName(bundle, nam e, field, rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(in) :: bundle
character (len = *), intent(in) :: name
type(ESMF_Field), intent(out) :: field
integer, intent(out), optional :: rc

DESCRIPTION:

Returns afield from abundle using thefield ’s name.
The arguments are:

bundle ESMF_FieldBundle to query forESMF_Field .

name ESMF_Field name.

field ReturnedESMF_Field .

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

19.6.11 ESMF_FieldBundleGet - Retrieve a Field by index number

INTERFACE:

! Private name; call using ESMF_FieldBundleGet()
subroutine ESMF_FieldBundleGetFieldByNum(bundle, fiel dIndex, field, rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(in) :: bundle
integer, intent(in) :: fieldIndex
type(ESMF_Field), intent(out) :: field
integer, intent(out), optional :: rc

DESCRIPTION:

Returns afield from abundle by index number.
The arguments are:

145

bundle ESMF_FieldBundle to query forESMF_Field .

fieldIndex ESMF_Field index number; firstfieldIndex is 1.

field ReturnedESMF_Field .

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

19.6.12 ESMF_FieldBundleGet - Return all Field names in a FieldBundle

INTERFACE:

! Private name; call using ESMF_FieldBundleGet()
subroutine ESMF_FieldBundleGetFieldNames(bundle, name List, nameCount, rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(in) :: bundle
character (len = *), intent(out) :: nameList(:)
integer, intent(out), optional :: nameCount
integer, intent(out), optional :: rc

DESCRIPTION:

Returns an array ofESMF_Field names in anESMF_FieldBundle .
The arguments are:

bundle An ESMF_FieldBundle object.

nameList An array of character strings where eachESMF_Field name is returned. Must be at least as long as
nameCount .

[nameCount] A count of how manyESMF_Field names were returned. Same as the number ofESMF_Field s in
theESMF_FieldBundle .

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

19.6.13 ESMF_FieldBundlePrint - Print information about a FieldBundle

INTERFACE:

subroutine ESMF_FieldBundlePrint(bundle, options, rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(in) :: bundle
character (len= *), intent(in), optional :: options
integer, intent(out), optional :: rc

DESCRIPTION:

Prints diagnostic information about thebundle to stdout .

Note: ManyESMF_<class>Print methods are implemented in C++. On some platforms/compilers there is a
potential issue with interleaving Fortran and C++ output tostdout such that it doesn’t appear in the expected order.
If this occurs, theESMF_IOUnitFlush() method may be used on unit 6 to get coherent output.

The arguments are:

146

bundle An ESMF_FieldBundle object.

[options] Print options are not yet supported.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

19.6.14 ESMF_FieldBundleRead - Read Fields to a FieldBundle from file(s)

INTERFACE:

subroutine ESMF_FieldBundleRead(bundle, file, singleFi le, iofmt, rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(inout) :: bundle
character(*), intent(in) :: file
logical, intent(in), optional :: singleFile
type(ESMF_IOFmtFlag), intent(in), optional :: iofmt
integer, intent(out), optional :: rc

DESCRIPTION:

Read Field data to a FieldBundle object from file(s). For thisAPI to be functional, the environment variableESMF_PIO
should be set to "internal" when the ESMF library is built. Please see the section on Data I/O, 30.3.
Limitations:

• Only 1 DE per PET supported.

• Not supported inESMF_COMM=mpiunimode.

The arguments are:

bundle An ESMF_FieldBundle object.

file The name of the file from which FieldBundle data is read.

[singleFile] A logical flag, the default is .true., i.e., all Fields in the bundle are stored in one single file. If .false., each
Field is stored in separate files; these files are numbered with the name based on the argument "file". That is, a
set of files are named: [file_name]001, [file_name]002, [file_name]003,...

[iofmt] The IO format. Please see Section 9.2.8 for the list of options. If not present, defaults toESMF_IOFMT_NETCDF.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

19.6.15 ESMF_FieldBundleSet - Associate a Grid with an empty FieldBundle

INTERFACE:

! Private name; call using ESMF_FieldBundleSet()
subroutine ESMF_FieldBundleSetGrid(bundle, grid, rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(inout) :: bundle
type(ESMF_Grid), intent(in) :: grid
integer, intent(out), optional :: rc

147

DESCRIPTION:

Sets thegrid for a bundle that contains noESMF_Field s. All ESMF_Field s added to thisbundle must
be associated with the sameESMF_Grid . Returns an error if there is already anESMF_Grid associated with the
bundle .
The arguments are:

bundle An ESMF_FieldBundle object.

grid TheESMF_Grid which allESMF_Field s added to thisESMF_FieldBundle must have.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

19.6.16 ESMF_FieldBundleSet - Associate a Mesh with an empty FieldBundle

INTERFACE:

! Private name; call using ESMF_FieldBundleSet()
subroutine ESMF_FieldBundleSetMesh(bundle, mesh, rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(inout) :: bundle
type(ESMF_Mesh), intent(in) :: mesh
integer, intent(out), optional :: rc

DESCRIPTION:

Sets themesh for a bundle that contains noESMF_Field s. All ESMF_Field s added to thisbundle must
be associated with the sameESMF_Mesh. Returns an error if there is already anESMF_Meshassociated with the
bundle .
The arguments are:

bundle An ESMF_FieldBundle object.

mesh TheESMF_Meshwhich allESMF_Field s added to thisESMF_FieldBundle must have.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

19.6.17 ESMF_FieldBundleSet - Associate a LocStream with an empty FieldBundle

INTERFACE:

! Private name; call using ESMF_FieldBundleSet()
subroutine ESMF_FieldBundleSetLS(bundle, locstream, rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(inout) :: bundle
type(ESMF_LocStream), intent(in) :: locstream
integer, intent(out), optional :: rc

148

DESCRIPTION:

Sets thelocstream for a bundle that contains noESMF_Field s. All ESMF_Field s added to thisbundle
must be associated with the sameESMF_LocStream . Returns an error if there is already anESMF_LocStream
associated with thebundle .
The arguments are:

bundle An ESMF_FieldBundle object.

locstream TheESMF_LocStream which allESMF_Field s added to thisESMF_FieldBundle must have.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

19.6.18 ESMF_FieldBundleValidate - Check validity of a FieldBundle

INTERFACE:

subroutine ESMF_FieldBundleValidate(bundle, options, r c)

ARGUMENTS:

type(ESMF_FieldBundle), intent(in) :: bundle
character (len= *), intent(in), optional :: options
integer, intent(out), optional :: rc

DESCRIPTION:

Validates that thebundle is internally consistent. Currently this method determines if thebundle is uninitialized
or already destroyed. The method returns an error code if problems are found.
The arguments are:

bundle ESMF_FieldBundle to validate.

[options] Validation options are not yet supported.

[rc] Return code; equalsESMF_SUCCESSif the bundle is valid.

19.6.19 ESMF_FieldBundleWrite - Write the Fields into a file

INTERFACE:

subroutine ESMF_FieldBundleWrite(bundle, file, singleF ile, timeslice, iofmt, rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(inout) :: bundle
character(*), intent(in) :: file
logical, intent(in), optional :: singleFile
integer, intent(in), optional :: timeslice
type(ESMF_IOFmtFlag), intent(in), optional :: iofmt
integer, intent(out), optional :: rc

DESCRIPTION:

Write the Fields into a file. For this API to be functional, theenvironment variableESMF_PIOshould be set to
"internal" when the ESMF library is built. Please see the section on Data I/O, 30.3.
Limitations:

149

• Only 1 DE per PET supported.

• Not supported inESMF_COMM=mpiunimode.

The arguments are:

bundle An ESMF_FieldBundle object.

file The name of the output file to which field bundle data is written.

[singleFile] A logical flag, the default is .true., i.e., all arrays in the bundle are written in one single file. If .false.,
each array will be written in separate files; these files are numbered with the name based on the argument "file".
That is, a set of files are named: [file_name]001, [file_name]002, [file_name]003,...

[timeslice] Some IO formats (e.g. NetCDF) support the output of data in form of time slices. Thetimeslice argu-
ment provides access to this capability. Usage of this feature requires that the first slice is written with a positive
timeslice value, and that subsequent slices are written with atimeslice argument that increments by one
each time. By default, i.e. by omitting thetimeslice argument, no provisions for time slicing are made in
the output file.

[iofmt] The IO format. Please see Section 9.2.8 for the list of options. If not present, defaults toESMF_IOFMT_NETCDF.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

19.7 Class API: FieldBundle Communications

19.7.1 ESMF_FieldBundleHalo - Execute a FieldBundle halo operation

INTERFACE:

subroutine ESMF_FieldBundleHalo(fieldBundle, routehan dle, checkflag, rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(in) :: fieldBundle
type(ESMF_RouteHandle), intent(inout) :: routehandle
logical, intent(in), optional :: checkflag
integer, intent(out), optional :: rc

DESCRIPTION:

Execute a precomputed FieldBundle halo operation for the Fields in fieldBundle. SeeESMF_FieldBundleStore()
on how to compute routehandle.

fieldBundle ESMF_FieldBundle with source data. The data in this FieldBundle may be destroyed by this call.

routehandle Handle to the precomputed Route.

[checkflag] If set to.TRUE. the input FieldBundle pair will be checked for consistency with the precomputed opera-
tion provided byroutehandle . If set to.FALSE. (default)only a very basic input check will be performed,
leaving many inconsistencies undetected. Setcheckflag to .FALSE. to achieve highest performance.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

150

19.7.2 ESMF_FieldBundleHaloRelease - Release resources associated with a FieldBundle

halo operation

INTERFACE:

subroutine ESMF_FieldBundleHaloRelease(routehandle, r c)

ARGUMENTS:

type(ESMF_RouteHandle), intent(inout) :: routehandle
integer, intent(out), optional :: rc

DESCRIPTION:

Release resouces associated with a FieldBundle halo operation. After this callroutehandle becomes invalid.

routehandle Handle to the precomputed Route.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

19.7.3 ESMF_FieldBundleHaloStore - Precompute a FieldBundle halo operation

INTERFACE:

subroutine ESMF_FieldBundleHaloStore(fieldBundle, rou tehandle, rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(inout) :: fieldBundle
type(ESMF_RouteHandle), intent(inout) :: routehandle
integer, intent(out), optional :: rc

DESCRIPTION:

Store a FieldBundle halo operation over the data infieldBundle . By definition, all elements in the total Field
regions that lie outside the exclusive regions will be considered potential destination elements for halo. However, only
those elements that have a corresponding halo source element, i.e. an exclusive element on one of the DEs, will be
updated under the halo operation. Elements that have no associated source remain unchanged under halo.
The routine returns anESMF_RouteHandle that can be used to callESMF_FieldBundleHalo() on any Field-
Bundle that is weakly congruent and typekind conform tofieldBundle . Congruency for FieldBundles is given by
the congruency of its constituents. Congruent Fields possess matching DistGrids, and the shape of the local array tiles
matches between the Fields for every DE. For weakly congruent Fields the sizes of the undistributed dimensions, that
vary faster with memory than the first distributed dimension, are permitted to be different. This means that the same
routehandle can be applied to a large class of similar Fields that differ in the number of elements in the left most
undistributed dimensions.
This call iscollectiveacross the current VM.

fieldbundle ESMF_FieldBundle containing data to be haloed. The data in this FieldBundle may be destroyed by
this call.

routehandle Handle to the precomputed Route.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

151

19.7.4 ESMF_FieldBundleRedist - Execute a FieldBundle redistribution

INTERFACE:

subroutine ESMF_FieldBundleRedist(srcFieldBundle, dst FieldBundle, routehandle, checkflag,

ARGUMENTS:

type(ESMF_FieldBundle), intent(in), optional :: srcFiel dBundle
type(ESMF_FieldBundle), intent(inout),optional :: dstF ieldBundle
type(ESMF_RouteHandle), intent(inout) :: routehandle
logical, intent(in), optional :: checkflag
integer, intent(out), optional :: rc

DESCRIPTION:

Execute a precomputed FieldBundle redistribution fromsrcFieldBundle todstFieldBundle . BothsrcFieldBundle
anddstFieldBundle must be weakly congruent and typekind conform with the respective FieldBundles used dur-
ing ESMF_FieldBundleRedistStore() . Congruent FieldBundles possess matching DistGrids and the shape
of the local array tiles matches between the FieldBundles for every DE. For weakly congruent Fields the sizes of
the undistributed dimensions, that vary faster with memorythan the first distributed dimension, are permitted to be
different. This means that the sameroutehandle can be applied to a large class of similar Fields that differ in the
number of elements in the left most undistributed dimensions.
It is erroneous to specify the identical FieldBundle objectfor srcFieldBundle anddstFieldBundle argu-
ments.
SeeESMF_FieldBundleRedistStore() on how to precomputeroutehandle .
This call iscollectiveacross the current VM.
For examples and associated documentations using this method see Section 19.3.4.

[srcFieldBundle] ESMF_FieldBundle with source data.

[dstFieldBundle] ESMF_FieldBundle with destination data.

routehandle Handle to the precomputed Route.

[checkflag] If set to.TRUE. the input FieldBundle pair will be checked for consistency with the precomputed opera-
tion provided byroutehandle . If set to.FALSE. (default)only a very basic input check will be performed,
leaving many inconsistencies undetected. Setcheckflag to .FALSE. to achieve highest performance.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

19.7.5 ESMF_FieldBundleRedistRelease - Release resources associated with a FieldBundle

redistribution

INTERFACE:

subroutine ESMF_FieldBundleRedistRelease(routehandle , rc)

ARGUMENTS:

type(ESMF_RouteHandle), intent(inout) :: routehandle
integer, intent(out), optional :: rc

DESCRIPTION:

Release resouces associated with a FieldBundle redistribution. After this callroutehandle becomes invalid.

routehandle Handle to the precomputed Route.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

152

19.7.6 ESMF_FieldBundleRedistStore - Precompute a FieldBundle redistribution

with local factor argument

INTERFACE:

! Private name; call using ESMF_FieldBundleRedistStore()
subroutine ESMF_FieldBundleRedistStore<type><kind>(s rcFieldBundle, dstFieldBundle, &

routehandle, factor, srcToDstTransposeMap, rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(in) :: srcFieldBundle
type(ESMF_FieldBundle), intent(inout) :: dstFieldBundl e
type(ESMF_RouteHandle), intent(inout) :: routehandle
<type>(ESMF_KIND_<kind>), intent(in) :: factor
integer, intent(in), optional :: srcToDstTransposeMap(:)
integer, intent(out), optional :: rc

DESCRIPTION:

Store a FieldBundle redistribution operation fromsrcFieldBundle to dstFieldBundle . PETs that specify
a factor argument must use the <type><kind> overloaded interface. Other PETs call into the interface without
factor argument. If multiple PETs specify thefactor argument its type and kind as well as its value must match
across all PETs. If none of the PETs specifies afactor argument the default will be a factor of 1.
BothsrcFieldBundle anddstFieldBundle are interpreted as sequentialized vectors. The sequence isdefined
by the order of DistGrid dimensions and the order of patches within the DistGrid or by user-supplied arbitrary sequence
indices. See section 22.2.17 for details on the definition ofsequence indices. Redistribution corresponds to an identity
mapping of the source FieldBundle vector to the destinationFieldBundle vector.
Source and destination FieldBundles may be of different <type><kind>. Further source and destination FieldBundles
may differ in shape, however, the number of elements must match.
It is erroneous to specify the identical FieldBundle objectfor srcFieldBundle and dstFieldBundle arguments.
The routine returns anESMF_RouteHandle that can be used to callESMF_FieldBundleRedist() on any pair
of FieldBundles that are congruent and typekind conform with the srcFieldBundle, dstFieldBundle pair. Congruent
FieldBundles possess matching DistGrids and the shape of the local array tiles matches between the FieldBundles for
every DE. For weakly congruent Fields the sizes of the undistributed dimensions, that vary faster with memory than
the first distributed dimension, are permitted to be different. This means that the sameroutehandle can be applied
to a large class of similar Fields that differ in the number ofelements in the left most undistributed dimensions.
This method is overloaded for:
ESMF_TYPEKIND_I4, ESMF_TYPEKIND_I8,
ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8.

This call is collective across the current VM.
For examples and associated documentations using this method see Section 19.3.4.
The arguments are:

srcFieldBundle ESMF_FieldBundle with source data.

dstFieldBundle ESMF_FieldBundle with destination data. The data in this FieldBundle may be destroyed by this
call.

routehandle Handle to the precomputed Route.

factor FActor by which to multiply source data. Default is 1.

[srcToDstTransposeMap] List with as many entries as there are dimensions insrcFieldBundle . Each entry
maps the correspondingsrcFieldBundle dimension against the specifieddstFieldBundle dimension.
Mixing of distributed and undistributed dimensions is supported.

153

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

19.7.7 ESMF_FieldBundleRedistStore - Precompute a FieldBundle redistribution with local factor argument

INTERFACE:

! Private name; call using ESMF_FieldBundleRedistStore()
subroutine ESMF_FieldBundleRedistStoreNF(srcFieldBun dle, dstFieldBundle, &

routehandle, factor, srcToDstTransposeMap, rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(in) :: srcFieldBundle
type(ESMF_FieldBundle), intent(inout) :: dstFieldBundl e
type(ESMF_RouteHandle), intent(inout) :: routehandle
integer, intent(in) , optional :: srcToDstTransposeMap(:)
integer, intent(out), optional :: rc

DESCRIPTION:

Store a FieldBundle redistribution operation fromsrcFieldBundle to dstFieldBundle . PETs that specify
non-zero matrix coefficients must use the <type><kind> overloaded interface and provide thefactorList and
factorIndexList arguments. ProvidingfactorList andfactorIndexList arguments withsize(factorList)
= (/0/) andsize(factorIndexList) = (/2,0/) or (/4,0/) indicates that a PET does not provide ma-
trix elements. Alternatively, PETs that do not provide matrix elements may also call into the overloaded interface
withoutfactorList andfactorIndexList arguments.
BothsrcFieldBundle anddstFieldBundle are interpreted as sequentialized vectors. The sequence isdefined
by the order of DistGrid dimensions and the order of patches within the DistGrid or by user-supplied arbitrary sequence
indices. See section 22.2.17 for details on the definition ofsequence indices. Redistribution corresponds to an identity
mapping of the source FieldBundle vector to the destinationFieldBundle vector.
Source and destination Fields may be of different <type><kind>. Further source and destination Fields may differ in
shape, however, the number of elements must match.
It is erroneous to specify the identical FieldBundle objectfor srcFieldBundle and dstFieldBundle arguments.
The routine returns anESMF_RouteHandle that can be used to callESMF_FieldBundleRedist() on any pair
of Fields that are congruent and typekind conform with the srcFieldBundle, dstFieldBundle pair. Congruent Fields
possess matching DistGrids and the shape of the local array tiles matches between the Fields for every DE. For weakly
congruent Fields the sizes of the undistributed dimensions, that vary faster with memory than the first distributed
dimension, are permitted to be different. This means that the sameroutehandle can be applied to a large class of
similar Fields that differ in the number of elements in the left most undistributed dimensions.
This method is overloaded for:
ESMF_TYPEKIND_I4, ESMF_TYPEKIND_I8,
ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8.

This call is collective across the current VM.
For examples and associated documentations using this method see Section 19.3.4.
The arguments are:

srcFieldBundle ESMF_FieldBundle with source data.

dstFieldBundle ESMF_FieldBundle with destination data. The data in this FieldBundle may be destroyed by this
call.

routehandle Handle to the precomputed Route.

154

[srcToDstTransposeMap] List with as many entries as there are dimensions insrcFieldBundle . Each entry
maps the correspondingsrcFieldBundle dimension against the specifieddstFieldBundle dimension.
Mixing of distributed and undistributed dimensions is supported.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

19.7.8 ESMF_FieldBundleRegrid - Execute a FieldBundle regrid operation

INTERFACE:

subroutine ESMF_FieldBundleRegrid(srcFieldBundle, dst FieldBundle, routehandle, zeroflag,

ARGUMENTS:

type(ESMF_FieldBundle), intent(in), optional :: srcFiel dBundle
type(ESMF_FieldBundle), intent(inout),optional :: dstF ieldBundle
type(ESMF_RouteHandle), intent(inout) :: routehandle
type(ESMF_RegionFlag), intent(in), optional :: zeroflag
logical, intent(in), optional :: checkflag
integer, intent(out), optional :: rc

DESCRIPTION:

Execute a precomputed FieldBundle regrid fromsrcFieldBundle to dstFieldBundle . BothsrcFieldBundle
and dstFieldBundle must be congruent and typekind conform with the respective FieldBundles used during
ESMF_FieldBundleRegridStore() . Congruent FieldBundles possess matching DistGrids and the shape of
the local array tiles matches between the FieldBundles for every DE. For weakly congruent Fields the sizes of the
undistributed dimensions, that vary faster with memory than the first distributed dimension, are permitted to be dif-
ferent. This means that the sameroutehandle can be applied to a large class of similar Fields that differ in the
number of elements in the left most undistributed dimensions.
It is erroneous to specify the identical FieldBundle objectfor srcFieldBundle anddstFieldBundle argu-
ments.
SeeESMF_FieldBundleRegridStore() on how to precomputeroutehandle .
This call iscollectiveacross the current VM.

[srcFieldBundle] ESMF_FieldBundle with source data.

[dstFieldBundle] ESMF_FieldBundle with destination data.

routehandle Handle to the precomputed Route.

[zeroflag] If set to ESMF_REGION_TOTAL(default) the total regions of all DEs indstFieldBundle will be
initialized to zero before updating the elements with the results of the sparse matrix multiplication. If set to
ESMF_REGION_EMPTYthe elements indstFieldBundle will not be modified prior to the sparse matrix
multiplication and results will be added to the incoming element values. Settingzeroflag to ESMF_REGION_SELECT
will only zero out those elements in the destination FieldBundle that will be updated by the sparse matrix mul-
tiplication. See section 9.2.14 for a complete list of validsettings.

[checkflag] If set to.TRUE. the input FieldBundle pair will be checked for consistency with the precomputed opera-
tion provided byroutehandle . If set to.FALSE. (default)only a very basic input check will be performed,
leaving many inconsistencies undetected. Setcheckflag to .FALSE. to achieve highest performance.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

155

19.7.9 ESMF_FieldBundleRegridRelease - Release resources associated with a FieldBundle regrid operation

INTERFACE:

subroutine ESMF_FieldBundleRegridRelease(routehandle , rc)

ARGUMENTS:

type(ESMF_RouteHandle), intent(inout) :: routehandle
integer, intent(out), optional :: rc

DESCRIPTION:

Release resouces associated with a FieldBundle regrid operation. After this callroutehandle becomes invalid.

routehandle Handle to the precomputed Route.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

19.7.10 ESMF_FieldBundleRegridStore - Precompute a FieldBundle regrid operation

INTERFACE:

subroutine ESMF_FieldBundleRegridStore(srcFieldBundl e, dstFieldBundle, regridMethod, &
regridScheme, routehandle, rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(inout) :: srcFieldBundl e
type(ESMF_FieldBundle), intent(inout) :: dstFieldBundl e
type(ESMF_RegridMethod), intent(in), optional :: regrid Method
integer, intent(in), optional :: regridScheme
type(ESMF_RouteHandle), intent(inout) :: routehandle
integer, intent(out), optional :: rc

DESCRIPTION:

Store a FieldBundle regrid operation over the data insrcFieldBundle anddstFieldBundle pair.
The routine returns anESMF_RouteHandle that can be used to callESMF_FieldBundleRegrid() on any
FieldBundle pairs that are weakly congruent and typekind conform to the FieldBundle pair used here. Congruency
for FieldBundles is given by the congruency of its constituents. Congruent Fields possess matching DistGrids, and
the shape of the local array tiles matches between the Fieldsfor every DE. For weakly congruent Fields the sizes of
the undistributed dimensions, that vary faster with memorythan the first distributed dimension, are permitted to be
different. This means that the sameroutehandle can be applied to a large class of similar Fields that differ in the
number of elements in the left most undistributed dimensions.
This call iscollectiveacross the current VM.

srcFieldbundle SourceESMF_FieldBundle containing data to be regridded.

dstFieldbundle DestinationESMF_FieldBundle .

[regridMethod] The type of interpolation. Please see Section 20.2.1 for a list of valid options. If not specified,
defaults toESMF_REGRID_METHOD_BILINEAR.

[regridScheme] Whether to convert to spherical coordinates (ESMF_REGRID_SCHEME_FULL3D), or to leave in
native coordinates (ESMF_REGRID_SCHEME_NATIVE).

routehandle Handle to the precomputed Route.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

156

19.7.11 ESMF_FieldBundleSMM - Execute a FieldBundle sparse matrix multiplication

INTERFACE:

subroutine ESMF_FieldBundleSMM(srcFieldBundle, dstFie ldBundle, routehandle, zeroflag, checkflag,

ARGUMENTS:

type(ESMF_FieldBundle), intent(in), optional :: srcFiel dBundle
type(ESMF_FieldBundle), intent(inout),optional :: dstF ieldBundle
type(ESMF_RouteHandle), intent(inout) :: routehandle
type(ESMF_RegionFlag), intent(in), optional :: zeroflag
logical, intent(in), optional :: checkflag
integer, intent(out), optional :: rc

DESCRIPTION:

Execute a precomputed FieldBundle sparse matrix multiplication fromsrcFieldBundle to dstFieldBundle .
Both srcFieldBundle and dstFieldBundle must be congruent and typekind conform with the respective
FieldBundles used duringESMF_FieldBundleSMMStore() . Congruent FieldBundles possess matching Dist-
Grids and the shape of the local array tiles matches between the FieldBundles for every DE. For weakly congruent
Fields the sizes of the undistributed dimensions, that varyfaster with memory than the first distributed dimension, are
permitted to be different. This means that the sameroutehandle can be applied to a large class of similar Fields
that differ in the number of elements in the left most undistributed dimensions.
It is erroneous to specify the identical FieldBundle objectfor srcFieldBundle anddstFieldBundle argu-
ments.
SeeESMF_FieldBundleSMMStore() on how to precomputeroutehandle .
This call iscollectiveacross the current VM.
For examples and associated documentations using this method see Section 19.3.5.

[srcFieldBundle] ESMF_FieldBundle with source data.

[dstFieldBundle] ESMF_FieldBundle with destination data.

routehandle Handle to the precomputed Route.

[zeroflag] If set to ESMF_REGION_TOTAL(default) the total regions of all DEs indstFieldBundle will be
initialized to zero before updating the elements with the results of the sparse matrix multiplication. If set to
ESMF_REGION_EMPTYthe elements indstFieldBundle will not be modified prior to the sparse matrix
multiplication and results will be added to the incoming element values. Settingzeroflag to ESMF_REGION_SELECT
will only zero out those elements in the destination FieldBundle that will be updated by the sparse matrix mul-
tiplication. See section 9.2.14 for a complete list of validsettings.

[checkflag] If set to.TRUE. the input FieldBundle pair will be checked for consistency with the precomputed opera-
tion provided byroutehandle . If set to.FALSE. (default)only a very basic input check will be performed,
leaving many inconsistencies undetected. Setcheckflag to .FALSE. to achieve highest performance.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

19.7.12 ESMF_FieldBundleSMMRelease - Release resources associated with a FieldBundle

sparse matrix multiplication

INTERFACE:

subroutine ESMF_FieldBundleSMMRelease(routehandle, rc)

157

ARGUMENTS:

type(ESMF_RouteHandle), intent(inout) :: routehandle
integer, intent(out), optional :: rc

DESCRIPTION:

Release resouces associated with a FieldBundle sparse matrix multiplication. After this callroutehandle becomes
invalid.

routehandle Handle to the precomputed Route.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

19.7.13 ESMF_FieldBundleSMMStore - Precompute a FieldBundle sparse matrix multiplication with local
factors

INTERFACE:

! Private name; call using ESMF_FieldBundleSMMStore()
subroutine ESMF_FieldBundleSMMStore<type><kind>(srcF ieldBundle, dstFieldBundle, &

routehandle, factorList, factorIndexList, rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(in) :: srcFieldBundle
type(ESMF_FieldBundle), intent(inout) :: dstFieldBundl e
type(ESMF_RouteHandle), intent(inout) :: routehandle
<type>(ESMF_KIND_<kind>), intent(in) :: factorList(:)
integer, intent(in), :: factorIndexList(:,:)
integer, intent(out), optional :: rc

DESCRIPTION:

Store a FieldBundle sparse matrix multiplication operation fromsrcFieldBundle to dstFieldBundle . PETs
that specify non-zero matrix coefficients must use the <type><kind> overloaded interface and provide thefactorList
andfactorIndexList arguments. ProvidingfactorList andfactorIndexList arguments withsize(factorList)
= (/0/) andsize(factorIndexList) = (/2,0/) or (/4,0/) indicates that a PET does not provide ma-
trix elements. Alternatively, PETs that do not provide matrix elements may also call into the overloaded interface
withoutfactorList andfactorIndexList arguments.
BothsrcFieldBundle anddstFieldBundle are interpreted as sequentialized vectors. The sequence isdefined
by the order of DistGrid dimensions and the order of patches within the DistGrid or by user-supplied arbitrary sequence
indices. See section 22.2.17 for details on the definition ofsequence indices. SMM corresponds to an identity mapping
of the source FieldBundle vector to the destination FieldBundle vector.
Source and destination Fields may be of different <type><kind>. Further source and destination Fields may differ in
shape, however, the number of elements must match.
It is erroneous to specify the identical FieldBundle objectfor srcFieldBundle and dstFieldBundle arguments.
The routine returns anESMF_RouteHandle that can be used to callESMF_FieldBundleSMM() on any pair
of FieldBundles that are congruent and typekind conform with the srcFieldBundle, dstFieldBundle pair. Congruent
FieldBundles possess matching DistGrids and the shape of the local array tiles matches between the FieldBundles for
every DE. For weakly congruent Fields the sizes of the undistributed dimensions, that vary faster with memory than
the first distributed dimension, are permitted to be different. This means that the sameroutehandle can be applied
to a large class of similar Fields that differ in the number ofelements in the left most undistributed dimensions.

158

This method is overloaded for:
ESMF_TYPEKIND_I4, ESMF_TYPEKIND_I8,
ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8.

This call is collective across the current VM.
For examples and associated documentations using this method see Section 19.3.5.
The arguments are:

srcFieldBundle ESMF_FieldBundle with source data.

dstFieldBundle ESMF_FieldBundle with destination data. The data in this FieldBundle may be destroyed by this
call.

routehandle Handle to the precomputed Route.

factorList List of non-zero coefficients.

factorIndexList Pairs of sequence indices for the factors stored infactorList .

The second dimension offactorIndexList steps through the list of pairs, i.e.size(factorIndexList,2)
== size(factorList) . The first dimension offactorIndexList is either of size 2 or size 4.

In the size 2 formatfactorIndexList(1,:) specifies the sequence index of the source element in the
srcFieldBundle while factorIndexList(2,:) specifies the sequence index of the destination ele-
ment indstFieldBundle . For this format to be a valid option source and destination FieldBundles must
have matching number of tensor elements (the product of the sizes of all Field tensor dimensions). Under this
condition an identiy matrix can be applied within the space of tensor elements for each sparse matrix factor.

Thesize 4 formatis more general and does not require a matching tensor element count. Here thefactorIndexList(1,:)
specifies the sequence index whilefactorIndexList(2,:) specifies the tensor sequence index of the
source element in thesrcFieldBundle . FurtherfactorIndexList(3,:) specifies the sequence in-
dex andfactorIndexList(4,:) specifies the tensor sequence index of the destination element in the
dstFieldBundle .

See section 22.2.17 for details on the definition ofsequence indicesandtensor sequence indices.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

19.7.14 ESMF_FieldBundleSMMStore - Precompute a FieldBundle sparse matrix multiplication without lo-
cal factors

INTERFACE:

! Private name; call using ESMF_FieldBundleSMMStore()
subroutine ESMF_FieldBundleSMMStoreNF(srcFieldBundle , dstFieldBundle, &

routehandle, factorList, factorIndexList, rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(in) :: srcFieldBundle
type(ESMF_FieldBundle), intent(inout) :: dstFieldBundl e
type(ESMF_RouteHandle), intent(inout) :: routehandle
integer, intent(out), optional :: rc

159

DESCRIPTION:

Store a FieldBundle sparse matrix multiplication operation fromsrcFieldBundle to dstFieldBundle . PETs
that specify non-zero matrix coefficients must use the <type><kind> overloaded interface and provide thefactorList
andfactorIndexList arguments. ProvidingfactorList andfactorIndexList arguments withsize(factorList)
= (/0/) andsize(factorIndexList) = (/2,0/) or (/4,0/) indicates that a PET does not provide ma-
trix elements. Alternatively, PETs that do not provide matrix elements may also call into the overloaded interface
withoutfactorList andfactorIndexList arguments.
BothsrcFieldBundle anddstFieldBundle are interpreted as sequentialized vectors. The sequence isdefined
by the order of DistGrid dimensions and the order of patches within the DistGrid or by user-supplied arbitrary sequence
indices. See section 22.2.17 for details on the definition ofsequence indices. SMM corresponds to an identity mapping
of the source FieldBundle vector to the destination FieldBundle vector.
Source and destination Fields may be of different <type><kind>. Further source and destination Fields may differ in
shape, however, the number of elements must match.
It is erroneous to specify the identical FieldBundle objectfor srcFieldBundle and dstFieldBundle arguments.
The routine returns anESMF_RouteHandle that can be used to callESMF_FieldBundleSMM() on any pair
of FieldBundles that are congruent and typekind conform with the srcFieldBundle, dstFieldBundle pair. Congruent
FieldBundles possess matching DistGrids and the shape of the local array tiles matches between the FieldBundles for
every DE. For weakly congruent Fields the sizes of the undistributed dimensions, that vary faster with memory than
the first distributed dimension, are permitted to be different. This means that the sameroutehandle can be applied
to a large class of similar Fields that differ in the number ofelements in the left most undistributed dimensions.
This method is overloaded for:
ESMF_TYPEKIND_I4, ESMF_TYPEKIND_I8,
ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8.

This call is collective across the current VM.
For examples and associated documentations using this method see Section 19.3.5.
The arguments are:

srcFieldBundle ESMF_FieldBundle with source data.

dstFieldBundle ESMF_FieldBundle with destination data. The data in this FieldBundle may be destroyed by this
call.

routehandle Handle to the precomputed Route.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20 Field Class

20.1 Description

An ESMF Field represents a physical field, such as temperature. The motivation for including Fields in ESMF is that
bundles of Fields are the entities that are normally exchanged when coupling Components.
The ESMF Field class contains distributed and discretized field data, a reference to its associated grid, and metadata.
The Field class stores the gridstaggeringfor that physical field. This is the relationship of how the data array of a field
maps onto a grid (e.g. one item per cell located at the cell center, one item per cell located at the NW corner, one item
per cell vertex, etc.). This means that different Fields which are on the same underlying ESMF Grid but have different
staggerings can share the same Grid object without needing to replicate it multiple times.
Fields can be added to States for use in inter-Component datacommunications. Fields can also be added to FieldBun-
dles, which are groups of Fields on the same underlying Grid.One motivation for packing Fields into FieldBundles is
convenience; another is the ability to perform optimized collective data transfers.
Field communication capabilities include: data redistribution, regridding, scatter, gather, sparse-matrix multiplication,
and halo update. These are discussed in more detail in the documentation for the specific method calls. ESMF does
not currently support vector fields, so the components of a vector field must be stored as separate Field objects.

160

20.2 Field Options

20.2.1 ESMF_RegridMethod

DESCRIPTION:
Specify which interpolation method to use during regridding.
Valid values are:

ESMF_REGRID_METHOD_BILINEAR Bilinear interpolation. Destination value is a linear combination of the
source values in the cell which contains the destination point. The weights for the linear combination are based
on the distance of destination point from each source value.

ESMF_REGRID_METHOD_PATCH Higher-order patch recovery interpolation. Destination value is a weighted
average of 2D polynomial patches constructed from cells surrounding the source cell which contains the des-
tination point. This method typically results in better approximations to values and derivatives than bilinear.
However, because of its larger stencil, it also results in a much larger interpolation matrix (and thus routeHan-
dle) than the bilinear.

ESMF_REGRID_METHOD_CONSERVE First order conservative interpolation. Value of a destination cell is the
weighted sum of the values of the source cells that it overlaps. The weights are the determined by the amount
the source cell overlaps the destination cell. Will typically give less accurate approximations to values than the
other interpolation methods, however, will do a much betterjob preserving the integral of the value between the
source and destination. Needs corner coordinate values to be provided in the Grid. Currently only works for
Fields created on the Grid center stagger (or the Mesh element location).

20.2.2 ESMF_RegridPole

DESCRIPTION:
When interpolating between two Grids which have been mappedto a sphere (using theESMF_REGRID_SCHEME_FULL3D
option toESMF_FieldRegridStore()) these can be used to specify the type of artificial pole to create on the
source Grid during interpolation. Creating the pole allowsdestination points above the top row or below the bottom
row of the source Grid to still be mapped.
Valid values are:

ESMF_REGRIDPOLE_NONE No pole. Destination points which lie above the top or below the bottom row of the
source Grid won’t be mapped.

ESMF_REGRIDPOLE_ALLAVG Construct an artificial pole placed in the center of the top (or bottom) row of
nodes, but projected onto the sphere formed by the rest of thegrid. The value at this pole is the average of all
the source values surrounding the pole.

ESMF_REGRIDPOLE_NPNTAVG Construct an artificial pole placed in the center of the top (or bottom) row of
nodes, but projected onto the sphere formed by the rest of thegrid. The value at this pole is the average of the N
source nodes next to the pole and surrounding the destination point (i.e. the value may differ for each destination
point). Here N is set by using theregridPoleNPnts parameter and ranges from 1 to the number of nodes
around the pole. This option is useful for interpolating values which may be zeroed out by averaging around the
entire pole (e.g. vector components).

ESMF_REGRIDPOLE_TEETH No new pole point is constructed, instead the holes at the poles are filled by con-
structing triangles across the top and bottom row of the source Grid. This can be useful because no averaging
occurs, however, because the top and bottom of the sphere arenow flat, for a big enough mismatch between the
size of the destination and source pole holes, some destination points may still not be able to be mapped to the
source Grid.

20.3 Use and Examples

A Field serves as an annotator of data, since it carries a description of the grid it is associated with and metadata
such as name and units. Fields can be used in this capacity alone, as convenient, descriptive containers into which

161

arrays can be placed and retrieved. However, for most codes the primary use of Fields is in the context of import
and export States, which are the objects that carry couplinginformation between Components. Fields enable data
to be self-describing, and a State holding ESMF Fields contains data in a standard format that can be queried and
manipulated.
The sections below go into more detail about Field usage.

20.3.1 Field create and destroy

Fields can be created and destroyed at any time during application execution. However, these Field methods require
some time to complete. We do not recommend that the user create or destroy Fields inside performance-critical
computational loops.
All versions of theESMF_FieldCreate() routines require a Grid object as input, or require a Grid be added
before most operations involving Fields can be performed. The Grid contains the information needed to know which
Decomposition Elements (DEs) are participating in the processing of this Field, and which subsets of the data are local
to a particular DE.
The details of how the create process happens depends on which of the variants of theESMF_FieldCreate() call
is used. Some of the variants are discussed below.
There are versions of theESMF_FieldCreate() interface which create the Field based on the input Grid. The
ESMF can allocate the proper amount of space but not assign initial values. The user code can then get the pointer to
the uninitialized buffer and set the initial data values.
Other versions of theESMF_FieldCreate() interface allow user code to attach arrays that have alreadybeen
allocated by the user. Empty Fields can also be created in which case the data can be added at some later time.
For versions of Create which do not specify data values, usercode can create an ArraySpec object, which contains
information about the typekind and rank of the data values inthe array. Then at Field create time, the appropriate
amount of memory is allocated to contain the data which is local to each DE.
When finished with aESMF_Field , theESMF_FieldDestroy method removes it. However, the objects inside
the ESMF_Field created externally should be destroyed separately, since objects can be added to more than one
ESMF_Field . For example, the sameESMF_Grid can be referenced by multipleESMF_Field s. In this case the
internal Grid is not deleted by theESMF_FieldDestroy call.

20.3.2 Get Fortran data pointer, bounds, and counts information from a Field

A user can get bounds and counts information from anESMF_Field through theESMF_FieldGet() interface.
Also available through this interface is the intrinsic Fortran data pointer contained in the internalESMF_Array object
of anESMF_Field . The bounds and counts information are DE specific for the associated Fortran data pointer.
For a better discussion of the terminologies, bounds and widths in ESMF e.g. exclusive, computational, total bounds
for the lower and upper corner of data region, etc.., user canrefer to the explanation of these concepts for Grid and
Array in their respective sections in theReference Manual, e.g. Section 22.2.6 on Array and Section 25.3.15 on Grid.
In this example, we first create a 3D Field based on a 3D Grid andArray. Then we use theESMF_FieldGet()
interface to retrieve the data pointer, potentially updating or verifying its values. We also retrieve the bounds and
counts information of the 3D Field to assist in data element iteration.

xdim = 180
ydim = 90
zdim = 50

! create a 3D data Field from a Grid and Array.
! first create a Grid
grid3d = ESMF_GridCreateShapeTile(minIndex=(/1,1,1/), maxIndex=(/xdim,ydim,zdim/), &

regDecomp=(/2,2,1/), name="grid", rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

call ESMF_GridGet(grid=grid3d, staggerloc=ESMF_STAGGE RLOC_CENTER, &
staggerDistgrid=distgrid3d, rc=rc)

if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

162

call ESMF_FieldGet(grid=grid3d, localDe=0, staggerloc= ESMF_STAGGERLOC_CENTER, &
totalCount=fa_shape, rc=rc)

if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

allocate(farray(fa_shape(1), fa_shape(2), fa_shape(3)))

! create an Array
array3d = ESMF_ArrayCreate(farray, distgrid=distgrid3d , indexflag=ESMF_INDEX_DELOCAL, &

rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! create a Field
field = ESMF_FieldCreate(grid=grid3d, array=array3d, rc =rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! retrieve the Fortran data pointer from the Field
call ESMF_FieldGet(field=field, localDe=0, farrayPtr=f array1, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! retrieve the Fortran data pointer from the Field and bounds
call ESMF_FieldGet(field=field, localDe=0, farrayPtr=f array1, &

computationalLBound=compLBnd, computationalUBound=co mpUBnd, &
exclusiveLBound=exclLBnd, exclusiveUBound=exclUBnd, &
totalLBound=totalLBnd, totalUBound=totalUBnd, &
computationalCount=comp_count, &
exclusiveCount=excl_count, &
totalCount=total_count, &
rc=rc)

! iterate through the total bounds of the field data pointer
do k = totalLBnd(3), totalUBnd(3)

do j = totalLBnd(2), totalUBnd(2)
do i = totalLBnd(1), totalUBnd(1)

farray1(i, j, k) = sin(2 * i/total_count(1) * PI) + &
sin(4 * j/total_count(2) * PI) + &
sin(8 * k/total_count(2) * PI)

enddo
enddo

enddo

20.3.3 Get Grid, Array, and other information from a Field

A user can get the internalESMF_Grid andESMF_Array from aESMF_Field . Note that the user should not issue
any destroy command on the retrieved grid or array object since they are referenced from within theESMF_Field .
The retrieved objects should be used in a read-only fashion to query additional information not directly available
through theESMF_FieldGet() interface.

call ESMF_FieldGet(field, grid=grid, array=array, &
typekind=typekind, dimCount=dimCount, staggerloc=stag gerloc, &
gridToFieldMap=gridToFieldMap, &
ungriddedLBound=ungriddedLBound, ungriddedUBound=ung riddedUBound, &
maxHaloLWidth=maxHaloLWidth, maxHaloUWidth=maxHaloUW idth, &
name=name, &
rc=rc)

163

20.3.4 Create a Field with a Grid, typekind, and rank

A user can create anESMF_Field from anESMF_Grid and typekind/rank. This create method associates the two
objects.
We first create a Grid with a regular distribution that is 10x20 index in 2x2 DEs. This version of Field create simply
associates the data with the Grid. The data is referenced explicitly on a regular 2x2 uniform grid. Finally we create a
Field from the Grid, typekind, rank, and a user specified StaggerLoc.
This example also illustrates a typical use of this Field creation method. By creating a Field from a Grid and
typekind/rank, the user allows the ESMF library to create a internal Array in the Field. Then the user can use
ESMF_FieldGet() to retrieve the Fortran data array and necessary bounds information to assign initial values
to it.

! create a grid
grid = ESMF_GridCreateShapeTile(minIndex=(/1,1/), maxI ndex=(/10,20/), &

regDecomp=(/2,2/), name="atmgrid", rc=rc)
if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE

! create a Field from the Grid and arrayspec
field1 = ESMF_FieldCreate(grid, typekind=ESMF_TYPEKIND _R4, rank=2, &

indexflag=ESMF_INDEX_DELOCAL, &
staggerloc=ESMF_STAGGERLOC_CENTER, name="pressure", r c=rc)

if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE

call ESMF_FieldGet(field1, localDe=0, farrayPtr=farray 2dd, &
totalLBound=ftlb, totalUBound=ftub, totalCount=ftc, rc =rc)

do i = ftlb(1), ftub(1)
do j = ftlb(2), ftub(2)

farray2dd(i, j) = sin(i/ftc(1) * PI) * cos(j/ftc(2) * PI)
enddo

enddo

if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE

20.3.5 Create a Field with a Grid and Arrayspec

A user can create anESMF_Field from anESMF_Grid and aESMF_Arrayspec with corresponding rank and
type. This create method associates the two objects.
We first create a Grid with a regular distribution that is 10x20 index in 2x2 DEs. This version of Field create simply
associates the data with the Grid. The data is referenced explicitly on a regular 2x2 uniform grid. Then we create an
ArraySpec. Finally we create a Field from the Grid, ArraySpec, and a user specified StaggerLoc.
This example also illustrates a typical use of this Field creation method. By creating a Field from a Grid and
an ArraySpec, the user allows the ESMF library to create a internal Array in the Field. Then the user can use
ESMF_FieldGet() to retrieve the Fortran data array and necessary bounds information to assign initial values
to it.

! create a grid
grid = ESMF_GridCreateShapeTile(minIndex=(/1,1/), maxI ndex=(/10,20/), &

regDecomp=(/2,2/), name="atmgrid", rc=rc)
if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE

! setup arrayspec
call ESMF_ArraySpecSet(arrayspec, 2, ESMF_TYPEKIND_R4, rc)
if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE

164

! create a Field from the Grid and arrayspec
field1 = ESMF_FieldCreate(grid, arrayspec, ESMF_INDEX_D ELOCAL, &

staggerloc=ESMF_STAGGERLOC_CENTER, name="pressure", r c=rc)
if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE

call ESMF_FieldGet(field1, localDe=0, farrayPtr=farray 2dd, &
totalLBound=ftlb, totalUBound=ftub, totalCount=ftc, rc =rc)

do i = ftlb(1), ftub(1)
do j = ftlb(2), ftub(2)

farray2dd(i, j) = sin(i/ftc(1) * PI) * cos(j/ftc(2) * PI)
enddo

enddo

if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE

A user can also create an ArraySpec that has a different rank from the Grid, For example, the following code shows
creation of of 3D Field from a 2D Grid using a 3D ArraySpec.
This example also demonstrates the technique to create a typical 3D data Field that has 2 gridded dimensions and 1
ungridded dimension.
First we create a 2D grid with an index space of 180x360 equivalent to 180x360 Grid cells (note that for a distributed
memory computer, this means each grid cell will be on a separate PE!). In the FieldCreate call, we use gridToFieldMap
to indicate the mapping between Grid dimension and Field dimension. For the ungridded dimension (typically the
altitude), we use ungriddedLBound and ungriddedUBound to describe its bounds. Internally the ungridded dimension
has a stride of 1, so the number of elements of the ungridded dimension is ungriddedUBound - ungriddedLBound + 1.
Note that gridToFieldMap in this specific example is (/1,2/)which is the default value so the user can neglect this
argument for the FieldCreate call.

grid2d = ESMF_GridCreateShapeTile(minIndex=(/1,1/), ma xIndex=(/180,360/), &
regDecomp=(/2,2/), name="atmgrid", rc=rc)

if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE

call ESMF_ArraySpecSet(arrayspec, 3, ESMF_TYPEKIND_R4, rc)
if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE

field1 = ESMF_FieldCreate(grid2d, arrayspec, ESMF_INDEX _DELOCAL, &
staggerloc=ESMF_STAGGERLOC_CENTER, &
gridToFieldMap=(/1,2/), &
ungriddedLBound=(/1/), ungriddedUBound=(/50/), &
name="pressure", rc=rc)

if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE

20.3.6 Create a Field with a Grid and Array

A user can create anESMF_Field from anESMF_Grid and aESMF_Array . The Grid was created in the previous
example.
This example creates a 2DESMF_Field from a 2DESMF_Grid and a 2DESMF_Array .

! Get necessary information from the Grid
call ESMF_GridGet(grid, staggerloc=ESMF_STAGGERLOC_CE NTER, &

staggerDistgrid=distgrid, rc=rc)
if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE

! Create a 2D ESMF_TYPEKIND_R4 arrayspec

165

call ESMF_ArraySpecSet(arrayspec, 2, ESMF_TYPEKIND_R4, rc)
if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE

! Create a ESMF_Array from the arrayspec and distgrid
array2d = ESMF_ArrayCreate(arrayspec=arrayspec, &

distgrid=distgrid, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! Create a ESMF_Field from the grid and array
field4 = ESMF_FieldCreate(grid, array2d, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

20.3.7 Create an empty Field and finish it with FieldSetCommit

A user can create an emptyESMF_Field . Then the user can finalize the emptyESMF_Field from aESMF_Grid
and a intrinsic Fortran data array. This interface is overloaded for typekind and rank of the Fortran data array.
In this example, both grid and Fortran array pointer are 2 dimensional and each dimension index maps in order, i.e.
1st dimension of grid maps to 1st dimension of Fortran array pointer, 2nd dimension of grid maps to 2nd dimension
of Fortran array pointer, so on and so forth.
In order to create or finish a Field from a Grid and a Fortran array pointer, certain rules of the Fortran array bounds must
be obeyed. We will discuss these rules as we progress in Fieldcreation examples. We will make frequent reference to
the terminologies for bounds and widths in ESMF. For a betterdiscussion of these terminologies and concepts behind
them, e.g. exclusive, computational, total bounds for the lower and upper corner of data region, etc.., users can refer to
the explanation of these concepts for Grid and Array in theirrespective sections in theReference Manual, e.g. Section
22.2.6 on Array and Section 25.3.15 on Grid. The examples here are designed to help a user to get up to speed with
creating Fields for typical use.
This example introduces a helper method, part of theESMF_FieldGet interface that facilitates the computation of
Fortran data array bounds and shape to assistESMF_FieldSetCommit finalizing a Field from a instrinsic Fortran
data array and a Grid.

! create an empty Field
field3 = ESMF_FieldCreateEmpty("precip", rc=rc)
if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE

! use FieldGet to retrieve total counts
call ESMF_FieldGet(grid2d, localDe=0, staggerloc=ESMF_ STAGGERLOC_CENTER, &

totalCount=ftc, rc=rc)
if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE

! allocate the 2d Fortran array based on retrieved total coun ts
allocate(farray2d(ftc(1), ftc(2)))

! finalize the Field
call ESMF_FieldSetCommit(field3, grid2d, farray2d, rc=r c)

20.3.8 Create a 7D Field with a 5D Grid and 2D ungridded boundsfrom a Fortran data array

In this example, we will show how to create a 7D Field from a 5DESMF_Grid and 2D ungridded bounds with
arbitrary halo widths and gridToFieldMap.
We first create a 5D DistGrid and a 5D Grid based on the DistGrid; thenESMF_FieldGet computes the shape of a
7D array in fsize. We can then create a 7D Field from the 5D Gridand the 7D Fortran data array with other assimilating
parameters.

! create a 5d distgrid

166

distgrid5d = ESMF_DistGridCreate(minIndex=(/1,1,1,1,1 /), maxIndex=(/10,4,10,4,6/), &
regDecomp=(/2,1,2,1,1/), rc=rc)

if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE

! Create a 5d Grid
grid5d = ESMF_GridCreate(distgrid=distgrid5d, name="gr id", rc=rc)
if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE

! use FieldGet to retrieve total counts
call ESMF_FieldGet(grid5d, localDe=0, ungriddedLBound= (/1,2/), &

ungriddedUBound=(/4,5/), &
maxHaloLWidth=(/1,1,1,2,2/), maxHaloUWidth=(/1,2,3,4 ,5/), &
gridToFieldMap=(/3,2,5,4,1/), &
totalCount=fsize, &
rc=rc)

if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE

! allocate the 7d Fortran array based on retrieved total coun ts
allocate(farray7d(fsize(1), fsize(2), fsize(3), fsize(4), fsize(5), fsize(6), fsize(7)))

! create the Field
field7d = ESMF_FieldCreate(grid5d, farray7d, ESMF_INDEX _DELOCAL, &

ungriddedLBound=(/1,2/), ungriddedUBound=(/4,5/), &
maxHaloLWidth=(/1,1,1,2,2/), maxHaloUWidth=(/1,2,3,4 ,5/), &
gridToFieldMap=(/3,2,5,4,1/), &
rc=rc)

if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE

A user can allocate the Fortran array in a different manner using the lower and upper bounds returned from FieldGet
through the optional totalLBound and totalUBound arguments. In the following example, we create another 7D Field
by retrieving the bounds and allocate the Fortran array withthis approach. In this scheme, indexing the Fortran array
is sometimes more convenient than using the shape directly.

call ESMF_FieldGet(grid5d, localDe=0, ungriddedLBound= (/1,2/), &
ungriddedUBound=(/4,5/), &
maxHaloLWidth=(/1,1,1,2,2/), maxHaloUWidth=(/1,2,3,4 ,5/), &
gridToFieldMap=(/3,2,5,4,1/), &
totalLBound=flbound, totalUBound=fubound, &
rc=rc)

if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE

allocate(farray7d2(flbound(1):fubound(1), flbound(2) :fubound(2), flbound(3):fubound(3),
flbound(4):fubound(4), flbound(5):fubound(5), flbound (6):fubound(6),
flbound(7):fubound(7)))

field7d2 = ESMF_FieldCreate(grid5d, farray7d2, ESMF_IND EX_DELOCAL, &
ungriddedLBound=(/1,2/), ungriddedUBound=(/4,5/), &
maxHaloLWidth=(/1,1,1,2,2/), maxHaloUWidth=(/1,2,3,4 ,5/), &
gridToFieldMap=(/3,2,5,4,1/), &
rc=rc)

if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE

167

20.3.9 Create a 2D Field with a 2D Grid and a Fortran data array

A user can create anESMF_Field directly from anESMF_Grid and an intrinsic Fortran data array. This interface
is overloaded for typekind and rank of the Fortran data array.
In the following example, each dimension size of the Fortranarray is equal to the exclusive bounds of its corresponding
Grid dimension queried from the Grid throughESMF_GridGet() public interface.
Formally let fa_shape(i) be the shape of i-th dimension of user supplied Fortran array, then rule 1 states:

(1) fa_shape(i) = exclusiveCount(i)
i = 1...GridDimCount

fa_shape(i) defines the shape of i-th dimension of the Fortran array. ExclusiveCount are the number of data elements
of i-th dimension in the exclusive region queried fromESMF_GridGet interface.Rule 1 assumes that the Grid and
the Fortran intrinsic array have same number of dimensions;and optional arguments of FieldCreate from Fortran
array are left unspecified using default setup. These assumptions are true for most typical use of FieldCreate from
Fortran data array. This is the easiest way to create a Field from a Grid and Fortran intrinsic data array.
Fortran array dimension sizes (called shape in most Fortranlanguage books) are equivalent to the bounds and counts
used in this manual. The following equation holds:

fa_shape(i) = shape(i) = counts(i) = upper_bound(i) - lower _bound(i) + 1

These typically mean the same concept unless specifically explained to mean something else. For example, ESMF
uses DimCount very often to mean number of dimensions instead of its meaning implied in the above equation. We’ll
clarify the meaning of a word when ambiguity could occur.
Rule 1 is most useful for a user working with Field creation from a Grid and a Fortran data array in most scenarios.
It extends to higher dimension count, 3D, 4D, etc... Typically, as the code example demonstrates, a user first creates
a Grid , then usesESMF_GridGet() to retrieve the exclusive counts. Next the user calculates the shape of each
Fortran array dimension according to rule 1. The Fortran data array is allocated and initialized based on the computed
shape. A Field can either be created in one shot created emptyand finished usingESMF_FieldSetCommit .
There are important details that can be skipped but are good to know forESMF_FieldSetCommit andESMF_FieldCreate
from a Fortran data array. 1) these methods requireeach PET contains exactly one DE. This implies that a code
using FieldCreate from a data array or FieldSetCommit must have the same number of DEs and PETs, formally
nDE = nPET . Violation of this condition will cause run time failures. 2) the bounds and counts retrieved from
GridGet are DE specific or equivalently PET specific, which means thatthe Fortran array shape could be different
from one PET to another.

grid = ESMF_GridCreateShapeTile(minIndex=(/1,1/), maxI ndex=(/10,20/), &
regDecomp=(/2,2/), name="atmgrid", rc=rc)

if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE

call ESMF_GridGet(grid, localDE=0, staggerloc=ESMF_STA GGERLOC_CENTER, &
exclusiveCount=gec, rc=rc)

if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE

allocate(farray(gec(1), gec(2)))

field = ESMF_FieldCreate(grid, farray, ESMF_INDEX_DELOC AL, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

168

20.3.10 Create a 2D Field with a 2D Grid and a Fortran data pointer

The setup of this example is similar to the previous section except that the Field is created from a data pointer instead
of a data array. We highlight the ability to deallocate the internal fortran data pointer queried from the Field. This
gives a user more flexibility with memory management.

allocate(farrayPtr(gec(1), gec(2)))

field = ESMF_FieldCreate(grid, farrayPtr, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE
call ESMF_FieldGet(field, farrayPtr=farrayPtr2, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE
! deallocate the retrieved fortran array pointer
deallocate(farrayPtr2)

20.3.11 Create a 3D Field with a 2D Grid and a 3D Fortran data array

This example demonstrates a typical use ofESMF_Field combining a 2D grid and a 3D Fortran native data array.
One immediate problem follows: how does one define the boundsof the ungridded dimension? This is solved by
the optional argumentsungriddedLBound andungriddedUBound of theESMF_FieldCreate interface. By
definition,ungriddedLBound andungriddedUBound are both 1 dimensional integer Fortran arrays.
Formally, let fa_shape(j=1...FieldDimCount-GridDimCount) be the shape of the ungridded dimensions of a Field
relative to the Grid used in Field creation. The Field dimension count is equal to the number of dimensions of
the Fortran array, which equals the number of dimensions of the resultant Field. GridDimCount is the number of
dimensions of the Grid.
fa_shape(j) is computed as:

fa_shape(j) = ungriddedUBound(j) - ungriddedLBound(j) + 1

fa_shape is easy to compute when the gridded and ungridded dimensions do not mix. However, it’s conceivable that
at higher dimension count, gridded and ungridded dimensions can interleave. To aid the computation of ungridded
dimension shape we formally introduce the mapping concept.
Let mapA,B(i = 1...nA) = iB, andiB ∈ [φ, 1...nB]. nA is the number of elements in set A,nB is the number of
elements in set B.mapA,B(i) defines a mapping from i-th element of set A toiB-th element in set B.iB = φ indicates
there does not exist a mapping from i-th element of set A to setB.
Suppose we have a mapping from dimension index of ungriddedLBound (or ungriddedUBound) to Fortran array
dimension index, called ugb2fa. By definition,nA equals to the dimension count of ungriddedLBound (or ungrid-
dedUBound),nB equals to the dimension count of the Fortran array. We can nowformulate the computation of
ungridded dimension shape as rule 2:

(2) fa_shape(ugb2fa(j)) = ungriddedUBound(j) - ungridded LBound(j) + 1
j = 1..FortranArrayDimCount - GridDimCount

The mapping can be computed in linear time proportional to the Fortran array dimension count (or rank) using the
following algorithm in pseudocode:

map_index = 1
do i = 1, farray_rank

if i-th dimension of farray is ungridded
ugb2fa(map_index) = i
map_index = map_index + 1

169

endif
enddo

Here we use rank and dimension count interchangably. These 2terminologies are typically equivalent. But there are
subtle differences under certain conditions. Rank is the total number of dimensions of a tensor object. Dimension
count allows a finer description of the heterogeneous dimensions in that object. For example, A Field of rank 5 can
have 3 gridded dimensions and 2 ungridded dimensions. Rank is precisely the summation of dimension count of all
types of dimensions.
For example, if a 5D array is used with a 3D Grid, there are 2 ungridded dimensions: ungriddedLBound=(/1,2/) and
ungriddedUBound=(/5,7/). Suppose the distribution of dimensions look like (O, X, O, X, O), O means gridded, X
means ungridded. Then the mapping from ungridded bounds to Fortran array is ugb2fa=(/2, 4/). The shape of 2nd and
4th dimension of Fortran array should equal (5, 8).
Back to our 3D Field created from a 2D Grid and 3D Fortran arrayexample, suppose the 3rd Field dimension is
ungridded, ungriddedLBound=(/3/), ungriddedUBound=(/9/). First we use rule 1 to compute shapes of the gridded
Fortran array dimension, then we use rule 2 to compute shapesof the ungridded Fortran array dimension. In this
example, we used the exclusive bounds obtained in the previous example.

fa_shape(1) = gec(1) ! rule 1
fa_shape(2) = gec(2)
fa_shape(3) = 7 ! rule 2 9-3+1
allocate(farray3d(fa_shape(1), fa_shape(2), fa_shape(3)))
field = ESMF_FieldCreate(grid, farray3d, ESMF_INDEX_DEL OCAL, &

ungriddedLBound=(/3/), ungriddedUBound=(/9/), &
rc=rc)

if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

20.3.12 Create a 3D Field with a 2D Grid and a 3D Fortran data array with the gridToFieldMap argument

Building upon the previous example, we will create a 3D Fieldfrom a 2D grid and 3D array but with a slight twist.
In this example, we introduce the gridToFieldMap argument that allows a user to map Grid dimension index to Field
dimension index.
In this example, both dimensions of the Grid are distributedand the mapping from DistGrid to Grid is (/1,2/). We
will introduce rule 3 assuming distgridToGridMap=(/1,2,3...gridDimCount/), and distgridDimCount equals to grid-
DimCount. This is a reasonable assumption in typical Field use.
We apply the mapping gridToFieldMap on rule 1 to create rule 3:

(3) fa_shape(gridToFieldMap(i)) = exclusiveCount(i)
i = 1,..GridDimCount.

Back to our example, suppose the 2nd Field dimension is ungridded, ungriddedLBound=(/3/),ungriddedUBound=(/9/).
gridToFieldMap=(/3,1/), meaning the 1st Grid dimension maps to 3rd Field dimension, and 2nd Grid dimension maps
to 1st Field dimension.
First we use rule 3 to compute shapes of the gridded Fortran array dimension, then we use rule 2 to compute shapes
of the ungridded Fortran array dimension. In this example, we use the exclusive bounds obtained in the previous
example.

gridToFieldMap2d(1) = 3
gridToFieldMap2d(2) = 1
do i = 1, 2

fa_shape(gridToFieldMap2d(i)) = gec(i)
end do

170

fa_shape(2) = 7
allocate(farray3d(fa_shape(1), fa_shape(2), fa_shape(3)))
field = ESMF_FieldCreate(grid, farray3d, ESMF_INDEX_DEL OCAL, &

ungriddedLBound=(/3/), ungriddedUBound=(/9/), &
gridToFieldMap=gridToFieldMap2d, &
rc=rc)

if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

20.3.13 Create a 3D Field with a 2D Grid and a 3D Fortran data array with halos

This example is similar to example 20.3.12, in addition we will show a user can associate different halo width to a
Fortran array to create a Field through the maxHaloLWidth and maxHaloUWdith optional arguments. A diagram of
the dimension configuration from Grid, halos, and Fortran data array is shown here.

TheESMF_FieldCreate() interface supports creating a Field from a Grid and a Fortranarray padded with halos
on the distributed dimensions of the Fortran array. Using this technique one can avoid passing non-contiguous Fortran
array slice to FieldCreate. It guarantees the same exclusive region, and by using halos, it also defines a bigger total
region to contain the entire contiguous memory block of the Fortran array.
The elements of maxHaloLWidth and maxHaloUWidth are applied in the order distributed dimensions appear in the
Fortran array. By definition, maxHaloLWidth and maxHaloUWdith are 1 dimensional arrays of non-negative integer
values. The size of haloWidth arrays is equal to the number ofdistributed dimensions of the Fortran array, which is
also equal to the number of distributed dimensions of the Grid used in the Field creation.
Because the order of maxHaloWidth (representing both maxHaloLWidth and maxHaloUWdith) element is applied to
the order distributed dimensions appear in the Fortran array dimensions, it’s quite simple to compute the shape of
distributed dimensions of the Fortran array. They are done in a similar manner when applying ungriddedLBound and
ungriddedUBound to ungridded dimensions of the Fortran array defined by rule 2.
Assume we have the mapping from the dimension index of maxHaloWidth to the dimension index of Fortran array,
called mhw2fa; and we also have the mapping from dimension index of Fortran array to dimension index of the Grid,
called fa2g. The shape of distributed dimensions of a Fortran array can be computed by rule 4:

(4) fa_shape(mhw2fa(k)) = exclusiveCount(fa2g(mhw2fa(k)) +
maxHaloUWidth(k) + maxHaloLWidth(k)

k = 1...size(maxHaloWidth)

This rule may seem confusing but algorithmically the computation can be done by the following pseudocode:

fa_index = 1
do i = 1, farray_rank

if i-th dimension of Fortran array is distributed
fa_shape(i) = exclusiveCount(fa2g(i)) +

maxHaloUWidth(fa_index) + maxHaloLWidth(fa_index)
fa_index = fa_index + 1

endif
enddo

The only complication then is to figure out the mapping from Fortran array dimension index to Grid dimension index.
This process can be done by computing the reverse mapping from Field to Grid.

171

Figure 11: Field dimension configuration from Grid, halos, and Fortran data array.

172

Typically, we don’t have to consider these complications ifthe following conditions are met: 1) All Grid dimensions
are distributed. 2) DistGrid in the Grid has a dimension index mapping to the Grid in the form of natural order
(/1,2,3,.../). This natural order mapping is the default mapping between various objects throughout ESMF. 3) Grid to
Field mapping is in the form of natural order, i.e. default mapping. These seem like a lot of conditions but they are
the default case in the interaction among DistGrid, Grid, and Field. When these conditions are met, which is typically
true, the shape of distributed dimensions of Fortran array follows rule 5 in a simple form:

(5) fa_shape(k) = exclusiveCount(k) +
maxHaloUWidth(k) + maxHaloLWidth(k)

k = 1...size(maxHaloWidth)

Let’s examine an example on how to apply rule 5. Suppose we have a 5D array and a 3D Grid that has its first 3 dimen-
sions mapped to the first 3 dimensions of the Fortran array. maxHaloLWidth=(/1,2,3/), maxHaloUWdith=(/7,9,10/),
then by rule 5, the following pseudo code can be used to compute the shape of the first 3 dimensions of the Fortran
array. The shape of the remaining two ungridded dimensions can be computed according to rule 2.

do k = 1, 3
fa_shape(k) = exclusiveCount(k) +

maxHaloUWidth(k) + maxHaloLWidth(k))
enddo

Suppose now gridToFieldMap=(/2,3,4/) instead which says the first dimension of Grid maps to the 2nd dimension
of Field (or Fortran array) and so on and so forth, we can obtain a more general form of rule 5 by introducing
first_distdim_index shift when Grid to Field map (gridToFieldMap) is in the form of (/a,a+1,a+2.../).

(6) fa_shape(k+first_distdim_index-1) = exclusiveCount (k) +
maxHaloUWidth(k) + maxHaloLWidth(k)

k = 1...size(maxHaloWidth)

It’s obvious that first_distdim_index=a. If the first dimension of the Fortran array is distributed, then rule 6 degenerates
into rule 5, which is the typical case.
Back to our example creating a 3D Field from a 2D Grid and a 3D intrinsic Fortran array, we will use the Grid created
from previous example that satisfies condition 1 and 2. We’llalso use a simple gridToFieldMap (1,2) which is the
default mapping that satisfies condition 3. First we use rule5 to compute the shape of distributed dimensions then we
use rule 2 to compute the shape of the ungridded dimensions.

gridToFieldMap2d(1) = 1
gridToFieldMap2d(2) = 2
maxHaloLWidth2d(1) = 3
maxHaloLWidth2d(2) = 4
maxHaloUWidth2d(1) = 3
maxHaloUWidth2d(2) = 5
do k = 1, 2

fa_shape(k) = gec(k) + maxHaloLWidth2d(k) + maxHaloUWidth 2d(k)
end do
fa_shape(3) = 7 ! 9-3+1
allocate(farray3d(fa_shape(1), fa_shape(2), fa_shape(3)))
field = ESMF_FieldCreate(grid, farray3d, ESMF_INDEX_DEL OCAL, &

173

ungriddedLBound=(/3/), ungriddedUBound=(/9/), &
maxHaloLWidth=maxHaloLWidth2d, maxHaloUWidth=maxHalo UWidth2d, &
gridToFieldMap=gridToFieldMap2d, &
rc=rc)

if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

20.3.14 Create a Field from a LocStream, typekind, and rank

In this example, anESMF_Field is created from anESMF_LocStream and typekind/rank. The location stream
object is uniformly distributed in a 1 dimensional space on 4DEs. The rank is 1 dimensional. Please refer to LocStream
examples section for more information on LocStream creation.

locs = ESMF_LocStreamCreate(minIndex=1, maxIndex=16, rc =rc)
if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE

field = ESMF_FieldCreate(locs, typekind=ESMF_TYPEKIND_ I4, rank=1, &
rc=rc)

if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE

20.3.15 Create a Field from a LocStream and arrayspec

In this example, anESMF_Field is created from anESMF_LocStream and anESMF_Arrayspec . The location
stream object is uniformly distributed in a 1 dimensional space on 4 DEs. The arrayspec is 1 dimensional. Please refer
to LocStream examples section for more information on LocStream creation.

locs = ESMF_LocStreamCreate(minIndex=1, maxIndex=16, rc =rc)
if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE

call ESMF_ArraySpecSet(arrayspec, 1, ESMF_TYPEKIND_I4, rc=rc)
if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE

field = ESMF_FieldCreate(locs, arrayspec, &
rc=rc)

if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE

20.3.16 Create a Field from a Mesh, typekind, and rank

In this example, anESMF_Field is created from anESMF_Meshand typekind/rank. The mesh object is on a
Euclidean surface that is partitioned to a 2x2 rectangular space with 4 elements and 9 nodes. The nodal space is
represented by a distgrid with 9 indices. Field is created onlocally owned nodes on each PET. Therefore, the created
Field has 9 data points globally. The mesh object can be represented by the picture below. For more information on
Mesh creation, please see Section 27.3.1.

Mesh Ids

2.0 7 ------- 8 -------- 9
3	4

174

1.0 4 ------- 5 -------- 6
1	2

0.0 1 ------- 2 -------- 3

0.0 1.0 2.0

Node Ids at corners
Element Ids in centers

Mesh Owners

2.0 2 ------- 2 -------- 3
2	3

1.0 0 ------- 0 -------- 1
0	1

0.0 0 ------- 0 -------- 1

0.0 1.0 2.0

Node Owners at corners
Element Owners in centers

! Create Mesh structure in 1 step
mesh=ESMF_MeshCreate(parametricDim=2,spatialDim=2, &

nodeIds=nodeIds, nodeCoords=nodeCoords, &
nodeOwners=nodeOwners, elementIds=elemIds,&
elementTypes=elemTypes, elementConn=elemConn, &
rc=rc)

if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! Field is created on the 1 dimensinonal nodal distgrid. On
! each PET, Field is created on the locally owned nodes.
field = ESMF_FieldCreate(mesh, typekind=ESMF_TYPEKIND_ I4, rank=1, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

20.3.17 Create a Field from a Mesh and arrayspec

In this example, anESMF_Field is created from anESMF_Meshand anESMF_Arrayspec . The mesh object is
on a Euclidean surface that is partitioned to a 2x2 rectangular space with 4 elements and 9 nodes. The nodal space is
represented by a distgrid with 9 indices. Field is created onlocally owned nodes on each PET. Therefore, the created
Field has 9 data points globally. The mesh object can be represented by the picture below. For more information on
Mesh creation, please see Section 27.3.1.

! Create Mesh structure in 1 step
mesh=ESMF_MeshCreate(parametricDim=2,spatialDim=2, &

nodeIds=nodeIds, nodeCoords=nodeCoords, &
nodeOwners=nodeOwners, elementIds=elemIds,&

175

elementTypes=elemTypes, elementConn=elemConn, &
rc=rc)

if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

call ESMF_ArraySpecSet(arrayspec, 1, ESMF_TYPEKIND_I4, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! Field is created on the 1 dimensinonal nodal distgrid. On
! each PET, Field is created on the locally owned nodes.
field = ESMF_FieldCreate(mesh, arrayspec, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

20.3.18 Create a Field from a Mesh and an Array

In this example, anESMF_Field is created from anESMF_Meshand anESMF_Array . The mesh object is created
in the previous example and the array object is retrieved from the field created in the previous example too.

call ESMF_MeshGet(mesh, nodalDistgrid=distgrid, rc=rc)
if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE
array = ESMF_ArrayCreate(distgrid=distgrid, arrayspec= arrayspec, rc=rc)
if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE
! query the array from the previous example
call ESMF_FieldGet(field, array=array, rc=rc)
if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE
! create a Field from a mesh and an array
field1 = ESMF_FieldCreate(mesh, array, rc=rc)
if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE

20.3.19 Create a Field from a Mesh and an ArraySpec with optional features

In this example, anESMF_Field is created from anESMF_Meshand anESMF_ArraySpec . The mesh object is
created in the previous example. The Field is also created with optional arguments such as ungridded dimensions and
dimension mapping.
In this example, the mesh is mapped to the 2nd dimension of theESMF_Field , with its first dimension being the
ungridded dimension with bounds 1,3.

call ESMF_ArraySpecSet(arrayspec, 2, ESMF_TYPEKIND_I4, rc=rc)
field = ESMF_FieldCreate(mesh, arrayspec=arrayspec, gri dToFieldMap=(/2/), &

ungriddedLBound=(/1/), ungriddedUBound=(/3/), rc=rc)
if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE

20.3.20 Create a Field with replicated dimensions

In this example anESMF_Field with replicated dimension is created from anESMF_Grid and anESMF_Arrayspec .
A user can also use otherESMF_FieldCreate() methods to create replicated dimension Field, this exampleillus-
trates the key concepts and use of a replicated dimension Field.
Normally gridToFieldMap argument inESMF_FieldCreate() should not contain 0 value entries. However, for
Field with replicated dimension, a 0 entry in gridToFieldMap indicates the corresponding Grid dimension is replicated
in the Field. In such a Field, the rank of the Field is no longernecessarily greater than its Grid rank. An example will
make this clear. We will start by creating Distgrid and Grid.

! create 4D distgrid

176

distgrid = ESMF_DistGridCreate(minIndex=(/1,1,1,1/), m axIndex=(/6,4,6,4/), &
regDecomp=(/2,1,2,1/), rc=rc)

if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE

! create 4D grid on top of the 4D distgrid
grid = ESMF_GridCreate(distgrid=distgrid, name="grid", rc=rc)
if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE

! create 3D arrayspec
call ESMF_ArraySpecSet(arrayspec, 3, ESMF_TYPEKIND_R8, rc=rc)
if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE

In this example, a user creates a 3D Field with replicated dimension replicated along the 2nd and 4th dimension of its
underlying 4D Grid. In addition, the 2nd dimension of the Field is ungridded (why?). The 1st and 3rd dimensions of
the Field have halos.

! create field, 2nd and 4th dimensions of the Grid are replica ted
field = ESMF_FieldCreate(grid, arrayspec, ESMF_INDEX_DE LOCAL, &

gridToFieldMap=(/1,0,2,0/), &
ungriddedLBound=(/1/), ungriddedUBound=(/4/), &
maxHaloLWidth=(/1,1/), maxHaloUWidth=(/4,5/), &
staggerloc=ESMF_STAGGERLOC_CORNER, &
rc=rc)

if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE

! get basic information from the field
call ESMF_FieldGet(field, grid=grid1, array=array, type kind=typekind, &

dimCount=dimCount, staggerloc=lstaggerloc, gridToFiel dMap=lgridToFieldMap, &
ungriddedLBound=lungriddedLBound, ungriddedUBound=lu ngriddedUBound, &
maxHaloLWidth=lmaxHaloLWidth, maxHaloUWidth=lmaxHalo UWidth, &
rc=rc)

if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE

! get bounds information from the field
call ESMF_FieldGet(field, localDe=0, farrayPtr=farray, &

exclusiveLBound=felb, exclusiveUBound=feub, exclusive Count=fec, &
computationalLBound=fclb, computationalUBound=fcub, c omputationalCount=fcc, &
totalLBound=ftlb, totalUBound=ftub, totalCount=ftc, &
rc=rc)

if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE

Next we verify that the field and array bounds agree with each other

call ESMF_ArrayGet(array, rank=arank, dimCount=adimCou nt, rc=rc)
if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE

gridrank_repdim = 0
do i = 1, size(gridToFieldMap)

if(gridToFieldMap(i) == 0) gridrank_repdim = gridrank_re pdim + 1
enddo

Number of undistributed dimension of the arrayX is computed from total rank of the arrayA, the dimension count of
its underlying distgridB and number of replicated dimension in the distgridC. We have the following formula: X = A
- (B - C)

177

allocate(audlb(arank-adimCount+gridrank_repdim), aud ub(arank-adimCount+gridrank_repdim))
call ESMF_ArrayGet(array, exclusiveLBound=aelb, exclus iveUBound=aeub, &

computationalLBound=aclb, computationalUBound=acub, &
totalLBound=atlb, totalUBound=atub, &
undistLBound=audlb, undistUBound=audub, &
rc=rc)

if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE

! verify the ungridded bounds from field match
! undistributed bounds from its underlying array
do i = 1, arank-adimCount

if(lungriddedLBound(i) .ne. audlb(i)) &
rc = ESMF_FAILURE

enddo
if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE

do i = 1, arank-adimCount
if(lungriddedUBound(i) .ne. audub(i)) &

rc = ESMF_FAILURE
enddo
if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE

We then verify the data in the replicated dimension Field canbe updated and accessed.

do ik = ftlb(3), ftub(3)
do ij = ftlb(2), ftub(2)

do ii = ftlb(1), ftub(1)
farray(ii,ij,ik) = ii+ij * 2+ik

enddo
enddo

enddo
! access and verify
call ESMF_FieldGet(field, localDe=0, farrayPtr=farray1 , &

rc=rc)
if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE
do ik = ftlb(3), ftub(3)

do ij = ftlb(2), ftub(2)
do ii = ftlb(1), ftub(1)

n = ii+ij * 2+ik
if(farray1(ii,ij,ik) .ne. n) rc = ESMF_FAILURE

enddo
enddo

enddo
if (rc.NE.ESMF_SUCCESS) finalrc = ESMF_FAILURE

! release resources
call ESMF_FieldDestroy(field)
call ESMF_GridDestroy(grid)
call ESMF_DistGridDestroy(distgrid)

20.3.21 Create a Field on an arbitrarily distributed Grid

With the introduction of Field on arbitrarily distributed Grid, Field has two kinds of dimension count: one associated
geometrical (or physical) dimensionality, the other one associated with its memory index space representation. Field

178

and Grid dimCount reflect the physical index space of the objects. A new type of dimCount memDimCount should
be added to both of these entities. memDimCount gives the number of dimensions of the memory index space of the
objects. This would be the dimension of the pointer pulled out of Field and the size of the bounds vector, for example.
For non-arbitrary Grids memDimCount=dimCount, but for grids and fields with arbitrary dimensions memDimCount
= dimCount - (number of Arb dims) + 1 (Internally Field can usethe Arb info from the grid to create the mapping
from the Field Array to the DistGrid)
When creating a Field size(GridToFieldMap)=dimCount for both Arb and Non-arb grids This array specifies the
mapping of Field to Grid identically for both Arb and Nonarb grids If a zero occurs in an entry corresponding to any
arbitrary dimension, then a zero must occur in every entry corresponding to an arbitrary dimension (i.e. all arbitrary
dimensions must either be all replicated or all not replicated, they can’t be broken apart).
In this example anESMF_Field is created from an arbitrarily distributedESMF_Grid and anESMF_Arrayspec .
A user can also use otherESMF_FieldCreate() methods to create such a Field, this example illustrates thekey
concepts and use of Field on arbitrary distributed Grid.
The Grid is 3 dimensional in physics index space but the first two dimension are collapsed into a single memory index
space. Thus the result Field is 3D in physics index space and 2D in memory index space. This is made obvious with
the 2D arrayspec used to create this Field.

! create a 3D grid with the first 2 dimensions collapsed and ar bitrarily distributed
grid3d = ESMF_GridCreateShapeTile("arb3dgrid", coordTy peKind=ESMF_TYPEKIND_R8, &

minIndex=(/1,1,1/), maxIndex=(/xdim, ydim,zdim/), &
localArbIndex=localArbIndex,localArbIndexCount=loca lArbIndexCount,rc=rc)

if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! create a 2D arrayspec
call ESMF_ArraySpecSet(arrayspec2D, rank=2, typekind=E SMF_TYPEKIND_R4, &

rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! create a 2D Field using the Grid and the arrayspec
field = ESMF_FieldCreate(grid3d, arrayspec2D, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

call ESMF_FieldGet(field, memDimCount=memDimCount, dim Count=dimCount, rc=rc)
if (myPet .eq. 0) print * , ’Field memDimCount, dimCount’, memDimCount, dimCount
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! verify that the dimension counts are correct
if (memDimCount .ne. 2) correct = .false.
if (dimCount .ne. 3) correct = .false.

20.3.22 Create a Field on an arbitrarily distributed Grid wi th replicated dimensions and ungridded bounds

The next example is slightly more complicated in that the Field also contains ungridded dimension and its gridded
dimension is replicated on the arbitrarily distributed dimension of the Grid.
The same 3D Grid and 2D arrayspec in the previous example are used but a gridToFieldMap argument is supplied to
theESMF_FieldCreate() call. The first 2 entries of the map are 0, the last (3rd) entry is 1. The 3rd dimension of
the Grid is mapped to the first dimension of the Field, this dimension is then replicated on the arbitrarily distributed
dimensions of the Grid. In addition, the Field also has one ungridded dimension. Thus the final dimension count of
the Field is 2 in both physics and memory index space.

field = ESMF_FieldCreate(grid3d, arrayspec2D,gridToFie ldMap=(/0,0,1/), &
ungriddedLBound=(/1/), ungriddedUBound=(/10/),rc=rc)

if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

call ESMF_FieldGet(field, memDimCount=memDimCount, dim Count=dimCount, rc=rc)

179

if (myPet .eq. 0) print * , ’Field memDimCount, dimCount’, memDimCount, dimCount
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

if (memDimCount .ne. 2) correct = .false.
if (dimCount .ne. 2) correct = .false.

20.3.23 Field regridding

The Field regrid operation moves data between Fields which lie on different Grids. In order to do this the data in the
source Field is interpolated to the destination Grid and then put into the destination Field. In ESMF the regrid operation
is implemented as a sparse matrix multiply. TheESMF_FieldRegridStore() call generates the sparse matrix for
the regrid operation. This matrix may be either retrieved ina factor and index raw form, or may be retrieved in the form
of a routeHandle which contains an internal representationof the communication and mathermatical operations neces-
sary to perform the regrid. The routeHandle can then be used in anESMF_FieldRegrid() call to perform the in-
terpolation between the two Fields. Note that the routeHandle depends just on the coordinates in the Grids upon which
the Fields are built, so as long as the coordinates stay the same, the operation can be performed multiple times using the
same routeHandle. This is true even if the Field data changes. The same routeHandle may also be used to interpolate
between any source and destination Field which lie on the same stagger location and Grid as the original Fields. When
it’s no longer needed the routeHandle should be destroyed byusingESMF_FieldRegridRelease() to free the
memory it’s using.
There are two options for accessing ESMF regridding functionality: online and offline. Online regridding means that
the weights are generated via subroutine calls during the execution of the users code. This is the method described in
the following sections. Offline regridding means that the weights are generated by a seperate application from the user
code. Please see Section 12 for a description of the offline regridding application and the options it supports.
ESMF currently supports regridding only on a subset of the full range of Grids and Meshes it supports.
In 2D ESMF supports regridding between any combination of the following:

• Structured Grids composed of a single logically rectangular patch

• Unstructured Meshes composed of any combination of triangles and quadralaterals (e.g. rectangles)

In addition the user may use theESMF_REGRID_SCHEME_FULL3Doption inESMF_FieldRegridStore() to
map two single patch logically rectangular Grids onto the sphere and regrid between them in that representation.
In 3D ESMF supports regridding between any combination of the following:

• Structured Grids composed of a single logically rectangular patch

• Unstructured Meshes composed of hexahedrons (e.g. cubes).

Note that regridding involving tetrahedra is currently NOTsupported.
In terms of masking, ESMF regrid currently supports maskingfor Fields built on structured Grids. The user may mask
out points in the source Field or destination Field or both. The user also has the option to return an error for unmapped
destination points or to ignore them. At this point ESMF doesnot support extrapolation to destination points outside
the unmasked source Field.
ESMF currently supports three options for interpolation: bilinear, patch, and conservative. Bilinear interpolation
calculates the value for the destination point as a combination of multiple linear interpolations, one for each dimension
of the Grid. Note that for ease of use, the term bilinear interpolation is used for 3D interpolation in ESMF as well,
although it should more properly be referred to as trilinearinterpolation.
Patch (or higher-order) interpolation is the ESMF version of a techique called “patch recovery” commonly used in
finite element modeling [3] [7]. It typically results in better approximations to values and derivatives when compared
to bilinear interpolation. Patch interpolation works by constructing multiple polynomial patches to represent the data
in a source cell. For 2D grids, these polynomials are currently 2nd degree 2D polynomials. One patch is constructed
for each corner of the source cell, and the patch is constructed by doing a least squared fit through the data in the cells
surrounding the corner. The interpolated value at the destination point is then a weighted average of the values of the
patches at that point. The patch method has a larger stencil than the bilinear, for this reason the patch weight matrix
can be correspondingly larger than the bilinear matrix (e.g. for a quadrilateral grid the patch matrix is around 4x the

180

size of the bilinear matrix). This can be an issue when performing a regrid operation close to the memory limit on a
machine.
First-order conservative interpolation [16] is also available as a regridding method. This method will typically havea
larger interpolation error than the previous two methods, but will do a much better job of preserving the value of the
integral of data between the source and destination grid. Inthis method the value across each source cell is treated
as a constant. The weights for a particular destination cell, are the area of intersection of each source cell with the
destination cell divided by the area of the destination cell. Areas in this case are the great circle areas of the polygons
which make up the cells (the cells around each center are defined by the corner coordinates in the grid file). To use
this method the user must have created their Fields on the center stagger location (ESMF_STAGGERLOC_CENTER)
for Grids or the element location (ESMF_MESHLOC_ELEMENT) for Meshes. For Grids, the corner stagger location
(ESMF_STAGGERLOC_CORNER) must contain coordinates describing the outer perimeter of the Grid cells. Currently
conservative interpolation is only supported for 2D Grids and Meshes.

Online Offline

2D Polygons Triangles
√ √

Quadrilaterals
√ √

3D Polygons Hexahedrons
√

Regridding Bilinear
√ √

Patch
√ √

Conservative (1st order)
√ √

Masking Destination
√ √

Source
√ √

Unmapped points
√

Pole Options Full circle average
√ √

N-point average
√ √

Teeth pole
√ √

Table 1: Comparison of the offline vs. online regridding capabilities of ESMF

The following sections give examples of using the regridding functionality.

20.3.24 Precompute a regridding operation between two Fields

To create the sparse matrix regrid operator we call theESMF_FieldRegridStore() routine. In this example
we choose theESMF_REGRID_METHOD_BILINEARregridding method. Other methods are available and more we
will be added in the future. This method creates two meshes, and a Rendezvous decomposition of these meshes is
computed. An octree search is performed, followed by a determination of which source cell each destination gridpoint
is in. Bilinear weights are then computed locally on each cell. This matrix of weights is, finally, sent back to the
destination grid’s row decomposition and declared as a sparse matrix. This matrix is embedded in the routeHandle
object.

call ESMF_FieldRegridStore(srcField=srcField, dstFiel d=dstField, &
routeHandle=routeHandle, &
indicies=indicies, weights=weights, &
regridMethod=ESMF_REGRID_METHOD_BILINEAR, rc=localrc)

20.3.25 Apply a regridding operation between a pair of Fields

TheESMF_FieldRegrid subroutine callsESMF_ArraySparseMatMul and performs a regrid from source to
destination field.

call ESMF_FieldRegrid(srcField, dstField, routeHandle, rc=localrc)

181

20.3.26 Release the stored information for a regridding operation

call ESMF_FieldRegridRelease(routeHandle, rc=localrc)

20.3.27 Precompute a regridding operation using masks

As before, to create the sparse matrix regrid operator we call theESMF_FieldRegridStore() routine. However,
in this case we apply masking to the regrid operation. The mask value for each index location in the Grids may
be set using theESMF_GridAddItem() call (see Section 25.3.13 and Section 25.3.14). Mask valuesmay be set
independantly for the source and destination Grids. If no mask values have been set in a Grid, then it is assumed no
masking should be used for that Grid. ThesrcMaskValues parameter allows the user to set the list of values which
indicate that a source location should be masked out. ThedstMaskValues parameter allows the user to set the list
of values which indicate that a destination location shouldbe masked out. The absence of one of these parameters
indicates that no masking should be used for that Field (e.g no srcMaskValue parameter indicates that source
masking shouldn’t occur). TheunmappedDstAction flag may be used with or without masking and indicates what
should occur if destination points can not be mapped to a source cell. Here theESMF_UNMAPPEDACTION_IGNORE
value indicates that unmapped destination points are to be ignored and no sparse matrix entries should be generated
for them.

call ESMF_FieldRegridStore(srcField=srcField, srcMask Values=(/1/), &
dstField=dstField, dstMaskValues=(/1/), &
unmappedDstAction=ESMF_UNMAPPEDACTION_IGNORE, &
routeHandle=routeHandle, &
indicies=indicies, weights=weights, &
regridMethod=ESMF_REGRID_METHOD_BILINEAR, &
rc=localrc)

TheESMF_FieldRegrid andESMF_FieldRegridRelease calls may then be applied as in the previous ex-
ample.

20.3.28 Regrid troubleshooting guide

The below is a list of problems users commonly encounter withregridding and potential solutions. This is by no means
an exhaustive list, so if none of these problems fit your case,or if the solutions don’t fix your problem, please feel free
to email esmf support (esmf_support@list.woc.noaa.gov).

Problem: Regridding is too slow.

Possible Cause:TheESMF_FieldRegridStore() method is called more than is necessary. TheESMF_FieldRegridStore()
operation is a complex one and can be relatively slow for somecases (large Grids, 3D grids, etc.)

Solution: Reduce the number ofESMF_FieldRegridStore() calls to the minimum necessary. The routeHandle
generated by theESMF_FieldRegridStore() call depends on only four factors: the stagger locations that the
input Fields are created on, the coordinates in the Grids theinput Fields are built on at those stagger locations, the
padding of the input Fields (specified by themaxHaloWidth arguments inFieldCreate) and the size of the tensor
dimensions in the input Fields (specified by theungridded arguments inFieldCreate). For any pair of Fields
which share these attributes with the Fields used in theESMF_FieldRegridStore call the same routeHandle can
be used. Note, that the data in the Fields does NOT matter, thesame routeHandle can be used no matter how the data
in the Fields changes.

In particular:

• If Grid coordinates do not change during a run, then theESMF_FieldRegridStore() call can be done
once between a pair of Fields at the beginning and the resulting routeHandle used for each timestep during the
run.

182

• If a pair of Fields was created with exactly the same arguments to ESMF_FieldCreate() as the pair of
Fields used during anESMF_FieldRegridStore() call, then the resulting routeHandle can also be used
between that pair of Fields.

Problem: Distortions in destination Field at periodic boundary.

Possible Cause:The Grid overlaps itself. With a periodic Grid, the regrid system expects the first point to not be a
repeat of the last point. In other words, regrid constructs its own connection and overlap between the first and last
points of the periodic dimension and so the Grid doesn’t needto contain these. If the Grid does, then this can cause
problems.

Solution: Define the Grid so that it doesn’t contain the overlap point. This typically means simply making the Grid
one point smaller in the periodic dimension. If a Field constructuted on the Grid needs to contain these overlap points
then the user can use themaxHaloWidth arguments to include this extra padding in the Field. Note, however, that
the regrid won’t update these extra points, so the user will have to do a copy to fill the points in the overlap region in
the Field.

20.3.29 Field Regrid Example: Mesh to Mesh

This example demonstrates the regridding process between Fields created on Meshes. First the Meshes are created.
This example omits the setup of the arrays describing the Mesh, but please see Section 27.3.1 for examples of this.
After creation Fields are constructed on the Meshes, and then ESMF_FieldRegridStore() is called to construct a Route-
Handle implementing the regrid operation. Finally, ESMF_FieldRegrid() is called with the Fields and the RouteHandle
to do the interpolation between the source Field and destination Field.

!!!
! Create Source Mesh
!!!

! Create the Mesh structure.
! For brevity’s sake, the code to fill the Mesh creation
! arrays is omitted from this example. However, here
! is a brief description of the arrays:
! srcNodeIds - the global ids for the src nodes
! srcNodeCoords - the coordinates for the src nodes
! srcNodeOwners - which PET owns each src node
! srcElemIds - the global ids of the src elements
! srcElemTypes - the topological shape of each src element
! srcElemConn - how to connect the nodes to form the elements
! in the source mesh
! Several examples of setting up these arrays can be seen in
! the Mesh Section "Mesh Creation".
srcMesh=ESMF_MeshCreate(parametricDim=2,spatialDim= 2, &

nodeIds=srcNodeIds, nodeCoords=srcNodeCoords, &
nodeOwners=srcNodeOwners, elementIds=srcElemIds,&
elementTypes=srcElemTypes, elementConn=srcElemConn, r c=rc)

!!!
! Create and Fill Source Field
!!!

! Set description of source Field
call ESMF_ArraySpecSet(arrayspec, 1, ESMF_TYPEKIND_R8, rc=rc)

183

! Create source Field
srcField = ESMF_FieldCreate(srcMesh, arrayspec, &

name="source", rc=rc)

! Get source Field data pointer to put data into
call ESMF_FieldGet(srcField, 0, fptr1D, rc=rc)

! Get number of local nodes to allocate space
! to hold local node coordinates
call ESMF_MeshGet(srcMesh, &

numOwnedNodes=numOwnedNodes, rc=rc)

! Allocate space to hold local node coordinates
! (spatial dimension of Mesh * number of local nodes)
allocate(ownedNodeCoords(2 * numOwnedNodes))

! Get local node coordinates
call ESMF_MeshGet(srcMesh, &

ownedNodeCoords=ownedNodeCoords, rc=rc)

! Set the source Field to the function 20.0+x+y
do i=1,numOwnedNodes

! Get coordinates
x=ownedNodeCoords(2 * i-1)
y=ownedNodeCoords(2 * i)

! Set source function
fptr1D(i) = 20.0+x+y

enddo

! Deallocate local node coordinates
deallocate(ownedNodeCoords)

!!!
! Create Destination Mesh
!!!

! Create the Mesh structure.
! For brevity’s sake, the code to fill the Mesh creation
! arrays is omitted from this example. However, here
! is a brief description of the arrays:
! dstNodeIds - the global ids for the dst nodes
! dstNodeCoords - the coordinates for the dst nodes
! dstNodeOwners - which PET owns each dst node
! dstElemIds - the global ids of the dst elements
! dstElemTypes - the topological shape of each dst element
! dstElemConn - how to connect the nodes to form the elements
! in the destination mesh
! Several examples of setting up these arrays can be seen in
! the Mesh Section "Mesh Creation".
dstMesh=ESMF_MeshCreate(parametricDim=2,spatialDim= 2, &

nodeIds=dstNodeIds, nodeCoords=dstNodeCoords, &
nodeOwners=dstNodeOwners, elementIds=dstElemIds,&

184

elementTypes=dstElemTypes, elementConn=dstElemConn, r c=rc)

!!!
! Create Destination Field
!!!

! Set description of source Field
call ESMF_ArraySpecSet(arrayspec, 1, ESMF_TYPEKIND_R8, rc)

! Create destination Field
dstField = ESMF_FieldCreate(dstMesh, arrayspec, &

name="destination", rc=rc)

!!!
! Do Regrid
!!!

! Compute RouteHandle which contains the regrid operation
call ESMF_FieldRegridStore(&

srcField, &
dstField=dstField, &
routeHandle=routeHandle, &
regridMethod=ESMF_REGRID_METHOD_BILINEAR, &
rc=rc)

! Perform Regrid operation moving data from srcField to dstF ield
call ESMF_FieldRegrid(srcField, dstField, routeHandle, rc=rc)

!!!
! dstField now contains the interpolated data.
! If the Meshes don’t change, then routeHandle
! may be used repeatedly to interpolate from
! srcField to dstField.
!!!

! User code to use the routeHandle, Fields, and
! Meshes goes here before they are freed below.

!!!
! Free the objects created in the example.
!!!

! Free the RouteHandle
call ESMF_FieldRegridRelease(routeHandle, rc=rc)

! Free the Fields
call ESMF_FieldDestroy(srcField, rc=rc)

call ESMF_FieldDestroy(dstField, rc=rc)

! Free the Meshes

185

call ESMF_MeshDestroy(dstMesh, rc=rc)

call ESMF_MeshDestroy(srcMesh, rc=rc)

20.3.30 Gather Field data onto root PET

User can useESMF_FieldGather interface to gather Field data from multiple PETS onto a single root PET. This
interface is overloaded by type, kind, and rank.
In this example, we first create a 2D Field, then useESMF_FieldGather to collect all the data in this Field into a
data pointer on PET 0.

! Get current VM and pet number
call ESMF_VMGetCurrent(vm, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

call ESMF_VMGet(vm, localPet=lpe, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! Create a 2D Grid and use this grid to create a Field
! farray is the Fortran data array that contains data on each P ET.
grid = ESMF_GridCreateShapeTile(minIndex=(/1,1/), maxI ndex=(/10,20/), &

regDecomp=(/2,2/), &
gridEdgeLWidth=(/0,0/), gridEdgeUWidth=(/0,0/), &
name="grid", rc=rc)

if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

call ESMF_GridGet(grid, distgrid=distgrid, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

call ESMF_FieldGet(grid, localDe=0, totalCount=fa_shap e, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

allocate(farray(fa_shape(1), fa_shape(2)))
farray = lpe
array = ESMF_ArrayCreate(farray, distgrid=distgrid, ind exflag=ESMF_INDEX_DELOCAL, &

rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

field = ESMF_FieldCreate(grid, array, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! allocate the Fortran data array on PET 0 to store gathered da ta
if(lpe .eq. 0) allocate(farrayDst(10,20))
call ESMF_FieldGather(field, farrayDst, rootPet=0, rc=r c)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! check that the values gathered on rootPet are correct
! 1 5 10
! 1 +--------+---------+
! | | |
! | 0 | 1 |
! | | |
! 10 +--------+---------+

186

! | | |
! | 2 | 3 |
! | | |
! 20 +--------+---------+
if(lpe .eq. 0) then

do i = 1, 2
do j = 1, 2

if(farrayDst(i, j) .ne. (i-1)+(j-1) * 2) localrc=ESMF_FAILURE
if(farrayDst(i * 5, j * 10) .ne. (i-1)+(j-1) * 2) localrc=ESMF_FAILURE

enddo
enddo
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

endif

! destroy all objects created in this example to prevent memo ry leak
call ESMF_FieldDestroy(field, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE
call ESMF_GridDestroy(grid, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE
call ESMF_ArrayDestroy(array, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE
deallocate(farray)
if(lpe .eq. 0) deallocate(farrayDst)

20.3.31 Scatter Field data from root PET onto its set of jointPETs

User can useESMF_FieldScatter interface to scatter Field data from root PET onto its set of joint PETs. This
interface is overloaded by type, kind, and rank.
In this example, we first create a 2D Field, then useESMF_FieldScatter to scatter the data from a data array
located on PET 0 onto this Field.

! Create a 2D Grid and use this grid to create a Field
! farray is the Fortran data array that contains data on each P ET.
grid = ESMF_GridCreateShapeTile(minIndex=(/1,1/), maxI ndex=(/10,20/), &

regDecomp=(/2,2/), &
gridEdgeLWidth=(/0,0/), gridEdgeUWidth=(/0,0/), &
name="grid", rc=rc)

if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

call ESMF_GridGet(grid, distgrid=distgrid, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

call ESMF_FieldGet(grid, localDe=0, totalCount=fa_shap e, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

allocate(farray(fa_shape(1), fa_shape(2)))
farray = lpe
array = ESMF_ArrayCreate(farray, distgrid=distgrid, ind exflag=ESMF_INDEX_DELOCAL, &

rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

field = ESMF_FieldCreate(grid, array, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! initialize values to be scattered

187

! 1 5 10
! 1 +--------+---------+
! | | |
! | 0 | 1 |
! | | |
! 10 +--------+---------+
! | | |
! | 2 | 3 |
! | | |
! 20 +--------+---------+
if(lpe .eq. 0) then

allocate(farraySrc(10,20))
farraySrc(1:5,1:10) = 0
farraySrc(6:10,1:10) = 1
farraySrc(1:5,11:20) = 2
farraySrc(6:10,11:20) = 3

endif

! scatter the data onto individual PETs of the Field
call ESMF_FieldScatter(field, farraySrc, rootPet=0, rc= rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

call ESMF_FieldGet(field, localDe=0, farrayPtr=fptr, rc =rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! verify that the scattered data is properly distributed
do i = lbound(fptr, 1), ubound(fptr, 1)

do j = lbound(fptr, 2), ubound(fptr, 2)
if(fptr(i, j) .ne. lpe) localrc = ESMF_FAILURE

enddo
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

enddo

! destroy all objects created in this example to prevent memo ry leak
call ESMF_FieldDestroy(field, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE
call ESMF_GridDestroy(grid, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE
call ESMF_ArrayDestroy(array, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE
deallocate(farray)
if(lpe .eq. 0) deallocate(farraySrc)

20.3.32 Redistribute data from source Field to destinationField

User can useESMF_FieldRedist interface to redistribute data from source Field to destination Field. This interface
is overloaded by type and kind; In the version ofESMF_FieldRedist without factor argument, a default value of
1 is used.
In this example, we first create two 1D Fields, a source Field and a destination Field. Then we useESMF_FieldRedist
to redistribute data from source Field to destination Field.

! Get current VM and pet number
call ESMF_VMGetCurrent(vm, rc=rc)

188

if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

call ESMF_VMGet(vm, localPet=localPet, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! create distgrid and grid
distgrid = ESMF_DistGridCreate(minIndex=(/1/), maxInde x=(/16/), &

regDecomp=(/4/), &
rc=rc)

if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

grid = ESMF_GridCreate(distgrid=distgrid, &
gridEdgeLWidth=(/0/), gridEdgeUWidth=(/0/), &
name="grid", rc=rc)

if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

call ESMF_FieldGet(grid, localDe=0, totalCount=fa_shap e, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! create src_farray, srcArray, and srcField
! +--------+--------+--------+--------+
! 0 1 2 3 ! value
! 1 4 8 12 16 ! bounds
allocate(src_farray(fa_shape(1)))
src_farray = localPet
srcArray = ESMF_ArrayCreate(src_farray, distgrid=distg rid, indexflag=ESMF_INDEX_DELOCAL,

rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

srcField = ESMF_FieldCreate(grid, srcArray, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! create dst_farray, dstArray, and dstField
! +--------+--------+--------+--------+
! 0 0 0 0 ! value
! 1 4 8 12 16 ! bounds
allocate(dst_farray(fa_shape(1)))
dst_farray = 0
dstArray = ESMF_ArrayCreate(dst_farray, distgrid=distg rid, indexflag=ESMF_INDEX_DELOCAL,

rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

dstField = ESMF_FieldCreate(grid, dstArray, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! perform redist
! 1. setup routehandle from source Field to destination Fiel d
call ESMF_FieldRedistStore(srcField, dstField, routeha ndle, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! 2. use precomputed routehandle to redistribute data
call ESMF_FieldRedist(srcfield, dstField, routehandle, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! verify redist

189

call ESMF_FieldGet(dstField, localDe=0, farrayPtr=fptr , rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! Verify that the redistributed data in dstField is correct.
! Before the redist op, the dst Field contains all 0.
! The redist op reset the values to the PE value, verify this is the case.
do i = lbound(fptr, 1), ubound(fptr, 1)

if(fptr(i) .ne. localPet) localrc = ESMF_FAILURE
enddo
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

Field redistribution can also be performed between weakly congruent Fields. In this case, source and destination Fields
can have ungridded dimensions with size different from the Field pair used to compute the routehandle.

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEK IND_I4, rank=2, rc=rc)

Create two fields with ungridded dimensions using the Grid created previously. The new Field pair has matching
number of elements. The ungridded dimension is mapped to thefirst dimension of either Field.

srcFieldA = ESMF_FieldCreate(grid, arrayspec, gridToFie ldMap=(/2/), &
ungriddedLBound=(/1/), ungriddedUBound=(/10/), rc=rc)

dstFieldA = ESMF_FieldCreate(grid, arrayspec, gridToFie ldMap=(/2/), &
ungriddedLBound=(/1/), ungriddedUBound=(/10/), rc=rc)

Using the previously computed routehandle, weakly congruent Fields can be redistributed.

call ESMF_FieldRedist(srcfieldA, dstFieldA, routehandl e, rc=rc)

call ESMF_FieldRedistRelease(routehandle, rc=rc)

20.3.33 Field redistribution as a form of scattering on arbitrarily distributed structures

User can useESMF_FieldRedist interface to redistribute data from source Field to destination Field, where the
destination Field is built on an arbitrarily distributed structure, e.g.ESMF_Mesh. The underlying mechanism is
explained in section 22.2.18.
In this example, we will create 2 one dimensional Fields, thesrc Field has a regular decomposition and holds all its
data on a single PET, in this case PET 0. The destination Fieldis built on a Mesh which is itself built on an arbitrarily
distributed distgrid. Then we useESMF_FieldRedist to redistribute data from source Field to destination Field,
similar to a traditional scatter operation.
The src Field only has data on PET 0 where it is sequentially initialized, i.e. 1,2,3...This data will be redistributed (or
scattered) from PET 0 to the destination Field arbitrarily distributed on all the PETs.

! a one dimensional grid whose elements are all located on PET 0
distgrid = ESMF_DistGridCreate(minIndex=(/1/), maxInde x=(/9/), &

regDecomp=(/1/), rc=rc)
grid = ESMF_GridCreate(distgrid=distgrid, indexflag=ES MF_INDEX_DELOCAL, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

call ESMF_ArraySpecSet(arrayspec, 1, ESMF_TYPEKIND_I4, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

190

srcField = ESMF_FieldCreate(grid, arrayspec, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! initialize the source data
if (localPet == 0) then

call ESMF_FieldGet(srcField, farrayPtr=srcfptr, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE
do i = 1, 9

srcfptr(i) = i
enddo

endif

For more information on Mesh creation, user can refer to Meshexamples section or Field creation on Mesh example
for more details.

! Create Mesh structure
mesh=ESMF_MeshCreate(parametricDim=2,spatialDim=2, &

nodeIds=nodeIds, nodeCoords=nodeCoords, &
nodeOwners=nodeOwners, elementIds=elemIds,&
elementTypes=elemTypes, elementConn=elemConn, &
rc=rc)

if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

Create the destination Field on the Mesh that is arbitrarilydistributed on all the PETs.

call ESMF_ArraySpecSet(arrayspec, 1, ESMF_TYPEKIND_I4, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

dstField = ESMF_FieldCreate(mesh, arrayspec, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

Perform the redistribution from source Field to destination Field.

call ESMF_FieldRedistStore(srcField, dstField, routeha ndle=routehandle, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE
call ESMF_FieldRedist(srcField, dstField, routehandle= routehandle, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

We can now verify that the sequentially intialized source data is scattered on to the destination Field. The data has
been scattered onto the destination Field with the following distribution.

4 elements on PET 0: 1 2 4 5
2 elements on PET 1: 3 6
2 elements on PET 2: 7 8
1 element on PET 3: 9

Because the redistribution is index based, the elements also corresponds to the index space of Mesh in the destination
Field.

191

call ESMF_FieldGet(dstField, farrayPtr=dstfptr, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

The scatter operation is successful. Since the routehandlecomputed withESMF_FieldRedistStore can be
reused, user can use the same routehandle to scatter multiple source Fields from a single PET to multiple destination
Fields distributed on all PETs. Thegathering operation is just the opposite of the demonstratedscattering
operation, where a user would redist from a source Field distributed on multiple PETs to a destination Field that only
has data storage on a single PET.
Now it’s time to release all the resources.

call ESMF_FieldRedistRelease(routehandle=routehandle , rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE
call ESMF_FieldDestroy(srcField, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE
call ESMF_FieldDestroy(dstField, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE
call ESMF_MeshDestroy(mesh, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

20.3.34 Sparse matrix multiplication from source Field to destination Field

A user can useESMF_FieldSMM() interface to perform sparse matrix multiplication from source Field to destination
Field. This interface is overloaded by type and kind;
In this example, we first create two 1D Fields, a source Field and a destination Field. Then we useESMF_FieldSMM
to perform sparse matrix multiplication from source Field to destination Field.
The source and destination Field data are arranged such thateach of the 4 PETs has 4 data elements. Moreover, the
source Field has all its data elements initialized to a linear function based on local PET number. Then collectively on
each PET, a SMM according to the following formula is preformed:
dstF ield(i) = i ∗ srcF ield(i), i = 1...4

Because source Field data are initialized to a linear function based on local PET number, the formula predicts that the
result destination Field data on each PET is 1,2,3,4. This isverified in the example.
Section 22.2.17 provides a detailed discussion of the sparse matrix mulitiplication operation implemented in ESMF.

! Get current VM and pet number
call ESMF_VMGetCurrent(vm, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

call ESMF_VMGet(vm, localPet=lpe, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! create distgrid and grid
distgrid = ESMF_DistGridCreate(minIndex=(/1/), maxInde x=(/16/), &

regDecomp=(/4/), &
rc=rc)

if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

grid = ESMF_GridCreate(distgrid=distgrid, &
gridEdgeLWidth=(/0/), gridEdgeUWidth=(/0/), &
name="grid", rc=rc)

if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

192

call ESMF_FieldGet(grid, localDe=0, totalCount=fa_shap e, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! create src_farray, srcArray, and srcField
! +--------+--------+--------+--------+
! 1 2 3 4 ! value
! 1 4 8 12 16 ! bounds
allocate(src_farray(fa_shape(1)))
src_farray = lpe+1
srcArray = ESMF_ArrayCreate(src_farray, distgrid=distg rid, indexflag=ESMF_INDEX_DELOCAL,

rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

srcField = ESMF_FieldCreate(grid, srcArray, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! create dst_farray, dstArray, and dstField
! +--------+--------+--------+--------+
! 0 0 0 0 ! value
! 1 4 8 12 16 ! bounds
allocate(dst_farray(fa_shape(1)))
dst_farray = 0
dstArray = ESMF_ArrayCreate(dst_farray, distgrid=distg rid, indexflag=ESMF_INDEX_DELOCAL,

rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

dstField = ESMF_FieldCreate(grid, dstArray, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! perform sparse matrix multiplication
! 1. setup routehandle from source Field to destination Fiel d
! initialize factorList and factorIndexList
allocate(factorList(4))
allocate(factorIndexList(2,4))
factorList = (/1,2,3,4/)
factorIndexList(1,:) = (/lpe * 4+1,lpe * 4+2,lpe * 4+3,lpe * 4+4/)
factorIndexList(2,:) = (/lpe * 4+1,lpe * 4+2,lpe * 4+3,lpe * 4+4/)

call ESMF_FieldSMMStore(srcField, dstField, routehandl e, &
factorList, factorIndexList, rc=localrc)

if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! 2. use precomputed routehandle to perform SMM
call ESMF_FieldSMM(srcfield, dstField, routehandle, rc= rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! verify sparse matrix multiplication
call ESMF_FieldGet(dstField, localDe=0, farrayPtr=fptr , rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! Verify that the result data in dstField is correct.
! Before the SMM op, the dst Field contains all 0.
! The SMM op reset the values to the index value, verify this is the case.
! +--------+--------+--------+--------+

193

! 1 2 3 4 2 4 6 8 3 6 9 12 4 8 12 16 ! value
! 1 4 8 12 16 ! bounds
do i = lbound(fptr, 1), ubound(fptr, 1)

if(fptr(i) /= i * (lpe+1)) rc = ESMF_FAILURE
enddo

Field sparse matrix matmul can also be performed between weakly congruent Fields. In this case, source and destina-
tion Fields can have ungridded dimensions with size different from the Field pair used to compute the routehandle.

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEK IND_I4, rank=2, rc=rc)

Create two fields with ungridded dimensions using the Grid created previously. The new Field pair has matching
number of elements. The ungridded dimension is mapped to thefirst dimension of either Field.

srcFieldA = ESMF_FieldCreate(grid, arrayspec, gridToFie ldMap=(/2/), &
ungriddedLBound=(/1/), ungriddedUBound=(/10/), rc=rc)

dstFieldA = ESMF_FieldCreate(grid, arrayspec, gridToFie ldMap=(/2/), &
ungriddedLBound=(/1/), ungriddedUBound=(/10/), rc=rc)

Using the previously computed routehandle, weakly congruent Fields can perform sparse matrix matmul.

call ESMF_FieldSMM(srcfieldA, dstFieldA, routehandle, r c=rc)

! release route handle
call ESMF_FieldSMMRelease(routehandle, rc=rc)

20.3.35 Field Halo solving a domain decomposed heat transfer problem

ESMF_FieldHalo() interface can be used to perform halo update of a Field. This eases communication program-
ming from a user perspective. By definition, user program only needs to update locally owned exclusive region in each
domain, then call FieldHalo to communicate the values in thehalo region from/to neighboring domain elements. In
this example, we solve a 1D heat transfer problem:ut = α2uxx with the initial conditionu(0, x) = 20 and boundary
conditionsu(t, 0) = 10, u(t, 1) = 40. The temperature fieldu is represented by aESMF_Field . A finite difference
explicit time steping scheme is employed. During each time step, FieldHalo update is called to communicate values in
the halo region to neighboring domain elements. The steady state (ast → ∞) solution is a linear temperature profile
alongx. The numerical solution is an approximation of the steady state solution. It can be verified to represent a linear
temperature profile.
Section 22.2.14 provides a discussion of the halo operationimplemented inESMF_Array .

! create 1D distgrid and grid decomposed according to the fol lowing diagram:
! +----------------+ +-------------------+ +---------- ---------+ +----------------+
! | DE 0 | | | | DE 1 | | | | DE 2 | | | | DE 3
! | 1 x 16 | | | | 1 x 16 | | | | 1 x 16 | | | | 1 x 16
! | | 1|<->|1 | | 1|<->|1 | | 1|<->|1 |
! | | | | | | | | | | | | |
! +----------------+ +-------------------+ +---------- ---------+ +----------------+
distgrid = ESMF_DistGridCreate(minIndex=(/1/), maxInde x=(/npx/), &

regDecomp=(/4/), rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

194

grid = ESMF_GridCreate(distgrid=distgrid, name="grid", rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! set up initial condition and boundary conditions of the tem perature Field
if(lpe == 0) then

allocate(fptr(17), tmp_farray(17))
fptr = 20.
fptr(1) = 10.
tmp_farray(1) = 10.
startx = 2
endx = 16

field = ESMF_FieldCreate(grid, fptr, maxHaloUWidth=(/1/), name="temperature", rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

else if(lpe == 3) then
allocate(fptr(17), tmp_farray(17))
fptr = 20.
fptr(17) = 40.
tmp_farray(17) = 40.
startx = 2
endx = 16

field = ESMF_FieldCreate(grid, fptr, maxHaloLWidth=(/1/), name="temperature", rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

else
allocate(fptr(18), tmp_farray(18))
fptr = 20.
startx = 2
endx = 17

field = ESMF_FieldCreate(grid, fptr, &
maxHaloLWidth=(/1/), maxHaloUWidth=(/1/), name="tempe rature", rc=rc)

if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE
endif

! compute the halo update routehandle of the decomposed temp erature Field
call ESMF_FieldHaloStore(field, routehandle=routehand le, rc=rc)
if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

dt = 0.01
dx = 1./npx
alpha = 0.1

! Employ explicit time steping
! Solution converges after about 9000 steps based on apriori knowledge.
! The result is a linear temperature profile stored in field.
do iter = 1, 9000

! only elements in the exclusive region are updated locally i n each domain
do i = startx, endx

tmp_farray(i) = fptr(i)+alpha * alpha * dt/dx/dx * (fptr(i+1)-2. * fptr(i)+fptr(i-1))
enddo
fptr = tmp_farray
! call halo update to communicate the values in the halo regio n to neighboring domains
call ESMF_FieldHalo(field, routehandle=routehandle, rc =rc)

195

if(rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE
enddo

! release the halo routehandle
call ESMF_FieldHaloRelease(routehandle, rc=rc)

20.4 Restrictions and Future Work

1. CAUTION: It depends on the specific entry point ofESMF_FieldCreate() used during Field creation,
which Fortran operations are supported on the Fortran arraypointerfarrayPtr , returned byESMF_FieldGet() .
Only if the ESMF_FieldCreate() from pointervariant was used, will the returnedfarrayPtr variable
contain the original bounds information, and be suitable for the Fortrandeallocate() call. This limitation
is a direct consequence of the Fortran 95 standard relating to the passing of array arguments.

2. No mathematical operators.The Fields class does not currently support advanced operations on fields, such
as differential or other mathematical operators.

3. No vector Fields. ESMF does not currently support storage of multiple vector Field components in the same
Field component, although that support is planned. At this time users need to create a separate Field object to
represent each vector component.

20.5 Design and Implementation Notes

1. Some methods which have a Field interface are actually implemented at the underlying Grid or Array level;
they are inherited by the Field class. This allows the user API (Application Programming Interface) to present
functions at the level which is most consistent to the application without restricting where inside the ESMF the
actual implementation is done.

2. The Field class is implemented in Fortran, and as such is defined inside the framework by a Field derived type
and a set of subprograms (functions and subroutines) which operate on that derived type. The Field class itself
is very thin; it is a container class which groups a Grid and anArray object together.

3. Fields follow the framework-wide convention of theunisoncreation and operation rule: All PETs which are
part of the currently executing VM must create the same Fields at the same point in their execution. Since an
early user request was that global object creation not impose the overhead of a barrier or synchronization point,
Field creation does no inter-PET communication. For this towork, each PET must query the total number of
PETs in this VM, and which local PET number it is. It can then compute which DE(s) are part of the local
decomposition, and any global information can be computed in unison by all PETs independently of the others.
In this way the overhead of communication is avoided, at the cost of more difficulty in diagnosing program bugs
which result from not all PETs executing the same create calls.

4. Related to the item above, the user request to not impose inter-PET communication at object creation time
means that requirement FLD 1.5.1, that all Fields will have unique names, and if not specified, the framework
will generate a unique name for it, is difficult or impossibleto support. A part of this requirement has been
implememted; a unique object counter is maintained in the Base object class, and if a name is not given at create
time a name such as "Field003" is generated which is guarenteed to not be repeated by the framework. However,
it is impossible to error check that the user has not replicated a name, and it is possible under certain conditions
that if not all PETs have created the same number of objects, that the counters on different PETs may not stay
synchronized. This remains an open issue.

20.6 Class API

20.6.1 ESMF_FieldCreateEmpty - Create an empty Field with no Grid

INTERFACE:

196

function ESMF_FieldCreateEmpty(name, iospec, rc)

RETURN VALUE:

type(ESMF_Field) :: ESMF_FieldCreateEmpty

ARGUMENTS:

character (len = *), intent(in), optional :: name
type(ESMF_IOSpec), intent(in), optional :: iospec
integer, intent(out), optional :: rc

DESCRIPTION:

This version ofESMF_FieldCreate builds an emptyESMF_Field and depends on later calls to add anESMF_Grid
andESMF_Array to it. Attributes can be added to an empty Field object. For anexample and associated documen-
tation using this method see Section 20.3.7.
The arguments are:

[name] Field name.

[iospec] I/O specification. ! NOT IMPLEMENTED

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.6.2 ESMF_FieldDestroy - Free all resources associated with a Field

INTERFACE:

subroutine ESMF_FieldDestroy(field, rc)

ARGUMENTS:

type(ESMF_Field) :: field
integer, intent(out), optional :: rc

DESCRIPTION:

Releases all resources associated with theESMF_Field .
The arguments are:

field ESMF_Field object.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.6.3 ESMF_FieldCreate - Create a Field from Grid and typekind/rank

INTERFACE:

! Private name; call using ESMF_FieldCreate()
function ESMF_FieldCreateGridTKR(grid, typekind, rank, indexflag, &

staggerloc, gridToFieldMap, ungriddedLBound, ungridded UBound, &
maxHaloLWidth, maxHaloUWidth, name, iospec, rc)

RETURN VALUE:

197

type(ESMF_Field) :: ESMF_FieldCreateGridTKR

ARGUMENTS:

type(ESMF_Grid) :: grid
type(ESMF_TypeKind), intent(in) :: typekind
integer, intent(in) :: rank
type(ESMF_IndexFlag), intent(in), optional :: indexflag
type(ESMF_StaggerLoc), intent(in), optional :: staggerl oc
integer, intent(in), optional :: gridToFieldMap(:)
integer, intent(in), optional :: ungriddedLBound(:)
integer, intent(in), optional :: ungriddedUBound(:)
integer, intent(in), optional :: maxHaloLWidth(:)
integer, intent(in), optional :: maxHaloUWidth(:)
character (len= *), intent(in), optional :: name
type(ESMF_IOSpec), intent(in), optional :: iospec
integer, intent(out), optional :: rc

DESCRIPTION:

Create anESMF_Field and allocate space internally for anESMF_Array . Return a newESMF_Field . For an
example and associated documentation using this method seeSection 20.3.4.
The arguments are:

grid ESMF_Grid object.

typekind The typekind of the Field.

rank The rank of the Field.

[indexflag] Indicate how DE-local indices are defined. By default each DE’s exclusive region is placed to start at the
local index space origin, i.e. (1, 1, ..., 1). Alternativelythe DE-local index space can be aligned with the global
index space, if a global index space is well defined by the associated Grid. See section 9.2.9 for a list of valid
indexflag options.

[staggerloc] Stagger location of data in grid cells. For valid predefined values see Section 25.2.4. To create a custom
stagger location see Section 25.3.21. The default value isESMF_STAGGERLOC_CENTER.

[gridToFieldMap] List with number of elements equal to thegrid ’s dimCount. The list elements map each dimen-
sion of thegrid to a dimension in thefield by specifying the appropriatefield dimension index. The
default is to map all of thegrid ’s dimensions against the lowest dimensions of thefield in sequence, i.e.
gridToFieldMap = (/1,2,3,.../). The values of allgridToFieldMap entries must be greater than or equal
to one and smaller than or equal to thefield rank. It is erroneous to specify the samegridToFieldMap
entry multiple times. The total ungridded dimensions in thefield are the totalfield dimensions less the di-
mensions in thegrid . Ungridded dimensions must be in the same order they are stored in the⁀field. If the Field
dimCount is less than the Grid dimCount then the default gridToFieldMap will contain zeros for the rightmost
entries. A zero entry in thegridToFieldMap indicates that the particular Grid dimension will be replicating
the Field across the DEs along this direction.

[ungriddedLBound] Lower bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in thefield .

[ungriddedUBound] Upper bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in thefield .

198

[maxHaloLWidth] Lower bound of halo region. The size of this array is the number of gridded dimensions in
the Field. However, ordering of the elements needs to be the same as they appear in thefield . Values
default to 0. If values for maxHaloLWidth are specified they must be reflected in the size of thefield .
That is, for each gridded dimension thefield size should be max(maxHaloLWidth + maxHaloUWidth
+ computationalCount , exclusiveCount). Although the halo operation is not implemented, the
minHaloLWidth is checked for validity and stored in preparation for the implementation of the halo method.
HALO OPERATION NOT IMPLEMENTED

[maxHaloUWidth] Upper bound of halo region. The size of this array is the number of gridded dimensions in
the Field. However, ordering of the elements needs to be the same as they appear in thefield . Values
default to 0. If values for maxHaloUWidth are specified they must be reflected in the size of thefield .
That is, for each gridded dimension thefield size should max(maxHaloLWidth + maxHaloUWidth
+ computationalCount , exclusiveCount). Although the halo operation is not implemented, the
maxHaloUWidth is checked for validity and stored in preparation for the implementation of the halo method.
HALO OPERATION NOT IMPLEMENTED

[name] Field name.

[iospec] I/O specification. ! NOT IMPLEMENTED

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.6.4 ESMF_FieldCreate - Create a Field from Grid and ArraySpec

INTERFACE:

! Private name; call using ESMF_FieldCreate()
function ESMF_FieldCreateGridArraySpec(grid, arrayspe c, indexflag, &

staggerloc, gridToFieldMap, ungriddedLBound, ungridded UBound, &
maxHaloLWidth, maxHaloUWidth, name, iospec, rc)

RETURN VALUE:

type(ESMF_Field) :: ESMF_FieldCreateGridArraySpec

ARGUMENTS:

type(ESMF_Grid) :: grid
type(ESMF_ArraySpec), intent(inout) :: arrayspec
type(ESMF_IndexFlag), intent(in), optional :: indexflag
type(ESMF_StaggerLoc), intent(in), optional :: staggerl oc
integer, intent(in), optional :: gridToFieldMap(:)
integer, intent(in), optional :: ungriddedLBound(:)
integer, intent(in), optional :: ungriddedUBound(:)
integer, intent(in), optional :: maxHaloLWidth(:)
integer, intent(in), optional :: maxHaloUWidth(:)
character (len= *), intent(in), optional :: name
type(ESMF_IOSpec), intent(in), optional :: iospec
integer, intent(out), optional :: rc

DESCRIPTION:

Create anESMF_Field and allocate space internally for anESMF_Array . Return a newESMF_Field . For an
example and associated documentation using this method seeSection 20.3.5.
The arguments are:

grid ESMF_Grid object.

199

arrayspec Data type and kind specification.

[indexflag] Indicate how DE-local indices are defined. By default each DE’s exclusive region is placed to start at the
local index space origin, i.e. (1, 1, ..., 1). Alternativelythe DE-local index space can be aligned with the global
index space, if a global index space is well defined by the associated Grid. See section 9.2.9 for a list of valid
indexflag options.

[staggerloc] Stagger location of data in grid cells. For valid predefined values see Section 25.2.4. To create a custom
stagger location see Section 25.3.21. The default value isESMF_STAGGERLOC_CENTER.

[gridToFieldMap] List with number of elements equal to thegrid ’s dimCount. The list elements map each dimen-
sion of thegrid to a dimension in thefield by specifying the appropriatefield dimension index. The
default is to map all of thegrid ’s dimensions against the lowest dimensions of thefield in sequence, i.e.
gridToFieldMap = (/1,2,3,.../). The values of allgridToFieldMap entries must be greater than or equal
to one and smaller than or equal to thefield rank. It is erroneous to specify the samegridToFieldMap
entry multiple times. The total ungridded dimensions in thefield are the totalfield dimensions less the di-
mensions in thegrid . Ungridded dimensions must be in the same order they are stored in the⁀field. If the Field
dimCount is less than the Grid dimCount then the default gridToFieldMap will contain zeros for the rightmost
entries. A zero entry in thegridToFieldMap indicates that the particular Grid dimension will be replicating
the Field across the DEs along this direction.

[ungriddedLBound] Lower bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in thefield .

[ungriddedUBound] Upper bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in thefield .

[maxHaloLWidth] Lower bound of halo region. The size of this array is the number of gridded dimensions in
the Field. However, ordering of the elements needs to be the same as they appear in thefield . Values
default to 0. If values for maxHaloLWidth are specified they must be reflected in the size of thefield .
That is, for each gridded dimension thefield size should be max(maxHaloLWidth + maxHaloUWidth
+ computationalCount , exclusiveCount). Although the halo operation is not implemented, the
minHaloLWidth is checked for validity and stored in preparation for the implementation of the halo method.
HALO OPERATION NOT IMPLEMENTED

[maxHaloUWidth] Upper bound of halo region. The size of this array is the number of gridded dimensions in
the Field. However, ordering of the elements needs to be the same as they appear in thefield . Values
default to 0. If values for maxHaloUWidth are specified they must be reflected in the size of thefield .
That is, for each gridded dimension thefield size should max(maxHaloLWidth + maxHaloUWidth
+ computationalCount , exclusiveCount). Although the halo operation is not implemented, the
maxHaloUWidth is checked for validity and stored in preparation for the implementation of the halo method.
HALO OPERATION NOT IMPLEMENTED

[name] Field name.

[iospec] I/O specification. ! NOT IMPLEMENTED

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

200

20.6.5 ESMF_FieldCreate - Create a Field from Grid and Array

INTERFACE:

! Private name; call using ESMF_FieldCreate()
function ESMF_FieldCreateGridArray(grid, array, copyfl ag, staggerloc, &

gridToFieldMap, ungriddedLBound, ungriddedUBound, maxH aloLWidth, &
maxHaloUWidth, name, iospec, rc)

RETURN VALUE:

type(ESMF_Field) :: ESMF_FieldCreateGridArray

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid
type(ESMF_Array), intent(in) :: array
type(ESMF_CopyFlag), intent(in), optional :: copyflag
type(ESMF_StaggerLoc), intent(in), optional :: staggerl oc
integer, intent(in), optional :: gridToFieldMap(:)
integer, intent(in), optional :: ungriddedLBound(:)
integer, intent(in), optional :: ungriddedUBound(:)
integer, intent(in), optional :: maxHaloLWidth(:)
integer, intent(in), optional :: maxHaloUWidth(:)
character (len = *), intent(in), optional :: name
type(ESMF_IOSpec), intent(in), optional :: iospec
integer, intent(out), optional :: rc

DESCRIPTION:

Create anESMF_Field . This version of creation assumes the data exists already and is being passed in through an
ESMF_Array . For an example and associated documentation using this method see Section 20.3.6.
The arguments are:

grid ESMF_Grid object.

array ESMF_Array object.

[copyflag] Indicates whether to copy the contents of thearray or reference it directly. For valid values see 9.2.5.
The default isESMF_DATA_REF.

[staggerloc] Stagger location of data in grid cells. For valid predefined values see Section 25.2.4. To create a custom
stagger location see Section 25.3.21. The default value isESMF_STAGGERLOC_CENTER.

[gridToFieldMap] List with number of elements equal to thegrid ’s dimCount. The list elements map each dimen-
sion of thegrid to a dimension in thefield by specifying the appropriatefield dimension index. The
default is to map all of thegrid ’s dimensions against the lowest dimensions of thefield in sequence, i.e.
gridToFieldMap = (/1,2,3,.../). The values of allgridToFieldMap entries must be greater than or equal
to one and smaller than or equal to thefield rank. It is erroneous to specify the samegridToFieldMap
entry multiple times. The total ungridded dimensions in thefield are the totalfield dimensions less the di-
mensions in thegrid . Ungridded dimensions must be in the same order they are stored in the⁀field. If the Field
dimCount is less than the Grid dimCount then the default gridToFieldMap will contain zeros for the rightmost
entries. A zero entry in thegridToFieldMap indicates that the particular Grid dimension will be replicating
the Field across the DEs along this direction.

[ungriddedLBound] Lower bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in thefield .

201

[ungriddedUBound] Upper bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in thefield .

[maxHaloLWidth] Lower bound of halo region. The size of this array is the number of gridded dimensions in
the Field. However, ordering of the elements needs to be the same as they appear in thefield . Values
default to 0. If values for maxHaloLWidth are specified they must be reflected in the size of thefield .
That is, for each gridded dimension thefield size should be max(maxHaloLWidth + maxHaloUWidth
+ computationalCount , exclusiveCount). Although the halo operation is not implemented, the
minHaloLWidth is checked for validity and stored in preparation for the implementation of the halo method.
HALO OPERATION NOT IMPLEMENTED

[maxHaloUWidth] Upper bound of halo region. The size of this array is the number of gridded dimensions in
the Field. However, ordering of the elements needs to be the same as they appear in thefield . Values
default to 0. If values for maxHaloUWidth are specified they must be reflected in the size of thefield .
That is, for each gridded dimension thefield size should max(maxHaloLWidth + maxHaloUWidth
+ computationalCount , exclusiveCount). Although the halo operation is not implemented, the
maxHaloUWidth is checked for validity and stored in preparation for the implementation of the halo method.
HALO OPERATION NOT IMPLEMENTED

[name] Field name.

[iospec] I/O specification. NOT IMPLEMENTED

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.6.6 ESMF_FieldCreate - Create a Field from Grid and Fortran array

INTERFACE:

! Private name; call using ESMF_FieldCreate()
function ESMF_FieldCreateGridData<rank><type><kind>(grid, &
farray, indexflag, copyflag, staggerloc, gridToFieldMap , ungriddedLBound, &
ungriddedUBound, maxHaloLWidth, maxHaloUWidth, name, io spec, rc)

RETURN VALUE:

type(ESMF_Field) :: ESMF_FieldCreateGridData<rank><ty pe><kind>

ARGUMENTS:

type(ESMF_Grid) :: grid
<type> (ESMF_KIND_<kind>), dimension(<rank>), target :: farray
type(ESMF_IndexFlag), intent(in) :: indexflag
type(ESMF_CopyFlag), intent(in), optional :: copyflag
type(ESMF_StaggerLoc), intent(in), optional ::staggerl oc
integer, intent(in), optional :: gridToFieldMap(:)
integer, intent(in), optional :: ungriddedLBound(:)
integer, intent(in), optional :: ungriddedUBound(:)
integer, intent(in), optional :: maxHaloLWidth(:)
integer, intent(in), optional :: maxHaloUWidth(:)
character (len= *), intent(in), optional :: name

202

type(ESMF_IOSpec), intent(in), optional :: iospec
integer, intent(out), optional :: rc

DESCRIPTION:

Create anESMF_Field from a fortran data array andESMF_Grid . The fortran data pointer insideESMF_Field
can be queried but deallocating the retrieved data pointer is not allowed. For examples and associated documentations
using this method see Section 20.3.9, 20.3.11, 20.3.12, 20.3.13, and 20.3.8.
The arguments are:

grid ESMF_Grid object.

farray Native fortran data array to be copied/referenced in the Field The Field dimension (dimCount) will be the
same as the dimCount for thefarray .

indexflag Indicate how DE-local indices are defined. See section 9.2.9for a list of valid indexflag options.

[copyflag] Whether to copy the contents of thefarray or reference it directly. For valid values see 9.2.5. The
default isESMF_DATA_REF.

[staggerloc] Stagger location of data in grid cells. For valid predefined values see Section 25.2.4. To create a custom
stagger location see Section 25.3.21. The default value isESMF_STAGGERLOC_CENTER.

[gridToFieldMap] List with number of elements equal to thegrid ’s dimCount. The list elements map each dimen-
sion of thegrid to a dimension in thefarray by specifying the appropriatefarray dimension index. The
default is to map all of thegrid ’s dimensions against the lowest dimensions of thefarray in sequence, i.e.
gridToFieldMap = (/1,2,3,.../). The values of allgridToFieldMap entries must be greater than or equal
to one and smaller than or equal to thefarray rank. It is erroneous to specify the samegridToFieldMap
entry multiple times. The total ungridded dimensions in thefield are the totalfarray dimensions less the
total (distributed + undistributed) dimensions in thegrid . Ungridded dimensions must be in the same order
they are stored in the⁀farray. Permutations of the order of dimensions are handledvia individual communication
methods. For example, an undistributed dimension can be remapped to a distributed dimension as part of the
ESMF_ArrayRedist() operation. If the Field dimCount is less than the Grid dimCount then the default
gridToFieldMap will contain zeros for the rightmost entries. A zero entry in thegridToFieldMap indicates
that the particular Grid dimension will be replicating the Field across the DEs along this direction.

[ungriddedLBound] Lower bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in thefarray .

[ungriddedUBound] Upper bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in thefarray .

[maxHaloLWidth] Lower bound of halo region. The size of this array is the number of gridded dimensions in
the Field. However, ordering of the elements needs to be the same as they appear in thefarray . Values
default to 0. If values for maxHaloLWidth are specified they must be reflected in the size of thefarray .
That is, for each gridded dimension thefarray size should be max(maxHaloLWidth + maxHaloUWidth
+ computationalCount , exclusiveCount). Although the halo operation is not implemented, the
minHaloLWidth is checked for validity and stored in preparation for the implementation of the halo method.
HALO OPERATION NOT IMPLEMENTED

203

[maxHaloUWidth] Upper bound of halo region. The size of this array is the number of gridded dimensions in
the Field. However, ordering of the elements needs to be the same as they appear in thefarray . Values
default to 0. If values for maxHaloUWidth are specified they must be reflected in the size of thefarray .
That is, for each gridded dimension thefarray size should max(maxHaloLWidth + maxHaloUWidth
+ computationalCount , exclusiveCount). Although the halo operation is not implemented, the
maxHaloUWidth is checked for validity and stored in preparation for the implementation of the halo method.
HALO OPERATION NOT IMPLEMENTED

[name] Field name.

[iospec] I/O specification. NOT IMPLEMENTED

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.6.7 ESMF_FieldCreate - Create a Field from Grid and Fortran array pointer

INTERFACE:

! Private name; call using ESMF_FieldCreate()
function ESMF_FieldCreateGridDataPtr<rank><type><kin d>(grid, &
farrayPtr, copyflag, staggerloc, gridToFieldMap, &
maxHaloLWidth, maxHaloUWidth, name, iospec, rc)

RETURN VALUE:

type(ESMF_Field) :: ESMF_FieldCreateGridDataPtr<rank> <type><kind>

ARGUMENTS:

type(ESMF_Grid) :: grid
<type> (ESMF_KIND_<kind>), dimension(<rank>), pointer : : farrayPtr
type(ESMF_CopyFlag), intent(in), optional :: copyflag
type(ESMF_StaggerLoc), intent(in), optional ::staggerl oc
integer, intent(in), optional :: gridToFieldMap(:)
integer, intent(in), optional :: maxHaloLWidth(:)
integer, intent(in), optional :: maxHaloUWidth(:)
character (len= *), intent(in), optional :: name
type(ESMF_IOSpec), intent(in), optional :: iospec
integer, intent(out), optional :: rc

DESCRIPTION:

Create anESMF_Field from a fortran data pointer andESMF_Grid . The fortran data pointer insideESMF_Field
can be queried and deallocated when copyflag isESMF_DATA_REF. Note that theESMF_FieldDestroy call does
not deallocate the fortran data pointer in this case. This gives user more flexibility over memory management.
For examples and associated documentations using this method see Section 20.3.10, 20.3.11, 20.3.12, 20.3.13, and
20.3.8.
The arguments are:

grid ESMF_Grid object.

farrayPtr Native fortran data pointer to be copied/referenced in the Field The Field dimension (dimCount) will be
the same as the dimCount for thefarrayPtr .

204

[copyflag] Whether to copy the contents of thefarrayPtr or reference it directly. For valid values see 9.2.5. The
default isESMF_DATA_REF.

[staggerloc] Stagger location of data in grid cells. For valid predefined values see Section 25.2.4. To create a custom
stagger location see Section 25.3.21. The default value isESMF_STAGGERLOC_CENTER.

[gridToFieldMap] List with number of elements equal to thegrid ’s dimCount. The list elements map each dimen-
sion of thegrid to a dimension in thefarrayPtr by specifying the appropriatefarrayPtr dimension
index. The default is to map all of thegrid ’s dimensions against the lowest dimensions of thefarrayPtr
in sequence, i.e.gridToFieldMap = (/1,2,3,.../). The values of allgridToFieldMap entries must be
greater than or equal to one and smaller than or equal to thefarrayPtr rank. It is erroneous to specify the
samegridToFieldMap entry multiple times. The total ungridded dimensions in thefield are the total
farrayPtr dimensions less the total (distributed + undistributed) dimensions in thegrid . Ungridded dimen-
sions must be in the same order they are stored in the⁀farrayPtr. Permutations of the order of dimensions are
handled via individual communication methods. For example, an undistributed dimension can be remapped to
a distributed dimension as part of theESMF_ArrayRedist() operation. If the Field dimCount is less than
the Grid dimCount then the default gridToFieldMap will contain zeros for the rightmost entries. A zero entry
in thegridToFieldMap indicates that the particular Grid dimension will be replicating the Field across the
DEs along this direction.

[maxHaloLWidth] Lower bound of halo region. The size of this array is the number of gridded dimensions in the
Field. However, ordering of the elements needs to be the sameas they appear in thefarrayPtr . Values default
to 0. If values for maxHaloLWidth are specified they must be reflected in the size of thefarrayPtr . That
is, for each gridded dimension thefarrayPtr size should be max(maxHaloLWidth + maxHaloUWidth
+ computationalCount , exclusiveCount). Although the halo operation is not implemented, the
minHaloLWidth is checked for validity and stored in preparation for the implementation of the halo method.
HALO OPERATION NOT IMPLEMENTED

[maxHaloUWidth] Upper bound of halo region. The size of this array is the number of gridded dimensions in the
Field. However, ordering of the elements needs to be the sameas they appear in thefarrayPtr . Values default
to 0. If values for maxHaloUWidth are specified they must be reflected in the size of thefarrayPtr . That
is, for each gridded dimension thefarrayPtr size should max(maxHaloLWidth + maxHaloUWidth
+ computationalCount , exclusiveCount). Although the halo operation is not implemented, the
maxHaloUWidth is checked for validity and stored in preparation for the implementation of the halo method.
HALO OPERATION NOT IMPLEMENTED

[name] Field name.

[iospec] I/O specification. NOT IMPLEMENTED

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.6.8 ESMF_FieldCreate - Create a Field from LocStream andtypekind/rank

INTERFACE:

! Private name; call using ESMF_FieldCreate()
function ESMF_FieldCreateLSTKR(locstream, typekind, ra nk, &

gridToFieldMap, ungriddedLBound, ungriddedUBound, &
name, iospec, rc)

RETURN VALUE:

type(ESMF_Field) :: ESMF_FieldCreateLSTKR

ARGUMENTS:

205

type(ESMF_LocStream) :: locstream
type(ESMF_TypeKind), intent(in) :: typekind
integer, intent(in) :: rank
integer, intent(in), optional :: gridToFieldMap(:)
integer, intent(in), optional :: ungriddedLBound(:)
integer, intent(in), optional :: ungriddedUBound(:)
character (len= *), intent(in), optional :: name
type(ESMF_IOSpec), intent(in), optional :: iospec
integer, intent(out), optional :: rc

DESCRIPTION:

Create anESMF_Field and allocate space internally for anESMF_Array . Return a newESMF_Field . For an
example and associated documentation using this method seeSection 20.3.14.
The arguments are:

locstream ESMF_LocStream object.

typekind The typekind of the Field.

rank The rank of the Field.

[gridToFieldMap] List with number of elements equal to thegrid ’s dimCount. The list elements map each dimen-
sion of thegrid to a dimension in thefield by specifying the appropriatefield dimension index. The
default is to map all of thegrid ’s dimensions against the lowest dimensions of thefield in sequence, i.e.
gridToFieldMap = (/1,2,3,.../). The values of allgridToFieldMap entries must be greater than or equal
to one and smaller than or equal to thefield rank. It is erroneous to specify the samegridToFieldMap
entry multiple times. The total ungridded dimensions in thefield are the totalfield dimensions less the
dimensions in thegrid . Ungridded dimensions must be in the same order they are stored in the⁀field. If the
Field dimCount is less than the LocStream dimCount then the default gridToFieldMap will contain zeros for the
rightmost entries. A zero entry in thegridToFieldMap indicates that the particular LocStream dimension
will be replicating the Field across the DEs along this direction.

[ungriddedLBound] Lower bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in thefield .

[ungriddedUBound] Upper bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in thefield .

[name] Field name.

[iospec] I/O specification. ! NOT IMPLEMENTED

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.6.9 ESMF_FieldCreate - Create a Field from LocStream andArraySpec

INTERFACE:

206

! Private name; call using ESMF_FieldCreate()
function ESMF_FieldCreateLSArraySpec(locstream, array spec, &

gridToFieldMap, ungriddedLBound, ungriddedUBound, &
name, iospec, rc)

RETURN VALUE:

type(ESMF_Field) :: ESMF_FieldCreateLSArraySpec

ARGUMENTS:

type(ESMF_LocStream) :: locstream
type(ESMF_ArraySpec), intent(inout) :: arrayspec
integer, intent(in), optional :: gridToFieldMap(:)
integer, intent(in), optional :: ungriddedLBound(:)
integer, intent(in), optional :: ungriddedUBound(:)
character (len= *), intent(in), optional :: name
type(ESMF_IOSpec), intent(in), optional :: iospec
integer, intent(out), optional :: rc

DESCRIPTION:

Create anESMF_Field and allocate space internally for anESMF_Array . Return a newESMF_Field . For an
example and associated documentation using this method seeSection 20.3.15.
The arguments are:

locstream ESMF_LocStream object.

arrayspec Data type and kind specification.

[gridToFieldMap] List with number of elements equal to thegrid ’s dimCount. The list elements map each dimen-
sion of thegrid to a dimension in thefield by specifying the appropriatefield dimension index. The
default is to map all of thegrid ’s dimensions against the lowest dimensions of thefield in sequence, i.e.
gridToFieldMap = (/1,2,3,.../). The values of allgridToFieldMap entries must be greater than or equal
to one and smaller than or equal to thefield rank. It is erroneous to specify the samegridToFieldMap
entry multiple times. The total ungridded dimensions in thefield are the totalfield dimensions less the
dimensions in thegrid . Ungridded dimensions must be in the same order they are stored in the⁀field. If the
Field dimCount is less than the LocStream dimCount then the default gridToFieldMap will contain zeros for the
rightmost entries. A zero entry in thegridToFieldMap indicates that the particular LocStream dimension
will be replicating the Field across the DEs along this direction.

[ungriddedLBound] Lower bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in thefield .

[ungriddedUBound] Upper bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in thefield .

[name] Field name.

[iospec] I/O specification. ! NOT IMPLEMENTED

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

207

20.6.10 ESMF_FieldCreate - Create a Field from LocStream and Array

INTERFACE:

! Private name; call using ESMF_FieldCreate()
function ESMF_FieldCreateLSArray(locstream, array, cop yflag, &

gridToFieldMap, ungriddedLBound, ungriddedUBound, &
name, iospec, rc)

RETURN VALUE:

type(ESMF_Field) :: ESMF_FieldCreateLSArray

ARGUMENTS:

type(ESMF_LocStream), intent(in) :: locstream
type(ESMF_Array), intent(in) :: array
type(ESMF_CopyFlag), intent(in), optional :: copyflag
integer, intent(in), optional :: gridToFieldMap(:)
integer, intent(in), optional :: ungriddedLBound(:)
integer, intent(in), optional :: ungriddedUBound(:)
character (len = *), intent(in), optional :: name
type(ESMF_IOSpec), intent(in), optional :: iospec
integer, intent(out), optional :: rc

DESCRIPTION:

Create anESMF_Field . This version of creation assumes the data exists already and is being passed in through an
ESMF_Array . For an example and associated documentation using this method see Section 20.3.6.
The arguments are:

locstream ESMF_LocStream object.

array ESMF_Array object.

[copyflag] Indicates whether to copy the contents of thearray or reference it directly. For valid values see 9.2.5.
The default isESMF_DATA_REF.

[gridToFieldMap] List with number of elements equal to thegrid ’s dimCount. The list elements map each dimen-
sion of thegrid to a dimension in thefield by specifying the appropriatefield dimension index. The
default is to map all of thegrid ’s dimensions against the lowest dimensions of thefield in sequence, i.e.
gridToFieldMap = (/1,2,3,.../). The values of allgridToFieldMap entries must be greater than or equal
to one and smaller than or equal to thefield rank. It is erroneous to specify the samegridToFieldMap
entry multiple times. The total ungridded dimensions in thefield are the totalfield dimensions less the
dimensions in thegrid . Ungridded dimensions must be in the same order they are stored in the⁀field. If the
Field dimCount is less than the LocStream dimCount then the default gridToFieldMap will contain zeros for the
rightmost entries. A zero entry in thegridToFieldMap indicates that the particular LocStream dimension
will be replicating the Field across the DEs along this direction.

[ungriddedLBound] Lower bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in thefield .

[ungriddedUBound] Upper bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in thefield .

208

[name] Field name.

[iospec] I/O specification. NOT IMPLEMENTED

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.6.11 ESMF_FieldCreate - Create a Field from LocStream and Fortran array

INTERFACE:

! Private name; call using ESMF_FieldCreate()
function ESMF_FieldCreateLSData<rank><type><kind>(lo cstream, &
farray, indexflag, copyflag, gridToFieldMap, ungriddedL Bound, &
ungriddedUBound, name, iospec, rc)

RETURN VALUE:

type(ESMF_Field) :: ESMF_FieldCreateLSData<rank><type ><kind>

ARGUMENTS:

type(ESMF_LocStream) :: locstream
<type> (ESMF_KIND_<kind>), dimension(<rank>), target :: farray
type(ESMF_IndexFlag), intent(in) :: indexflag
type(ESMF_CopyFlag), intent(in), optional :: copyflag
integer, intent(in), optional :: gridToFieldMap(:)
integer, intent(in), optional :: ungriddedLBound(:)
integer, intent(in), optional :: ungriddedUBound(:)
character (len= *), intent(in), optional :: name
type(ESMF_IOSpec), intent(in), optional :: iospec
integer, intent(out), optional :: rc

DESCRIPTION:

Create anESMF_Field from a fortran data array andESMF_LocStream . The fortran data pointer insideESMF_Field
can be queried but deallocating the retrieved data pointer is not allowed.
The arguments are:

locstream ESMF_LocStream object.

farray Native fortran data array to be copied/referenced in the Field The Field dimension (dimCount) will be the
same as the dimCount for thefarray .

indexflag Indicate how DE-local indices are defined. See section 9.2.9for a list of valid indexflag options.

[copyflag] Whether to copy the contents of thefarray or reference directly. For valid values see 9.2.5. The default
is ESMF_DATA_REF.

[gridToFieldMap] List with number of elements equal to thelocstream ’s dimCount. The list elements map
each dimension of thelocstream to a dimension in thefarray by specifying the appropriatefarray
dimension index. The default is to map all of thelocstream ’s dimensions against the lowest dimensions
of the farray in sequence, i.e.gridToFieldMap = (/1,2,3,.../). The values of allgridToFieldMap
entries must be greater than or equal to one and smaller than or equal to thefarray rank. It is erroneous
to specify the samegridToFieldMap entry multiple times. The total ungridded dimensions in thefield

209

are the totalfarray dimensions less the total (distributed + undistributed) dimensions in thelocstream .
Unlocstreamded dimensions must be in the same order they arestored in the⁀farray. Permutations of the order
of dimensions are handled via individual communication methods. For example, an undistributed dimension
can be remapped to a distributed dimension as part of theESMF_ArrayRedist() operation. If the Field
dimCount is less than the LocStream dimCount then the default gridToFieldMap will contain zeros for the
rightmost entries. A zero entry in thegridToFieldMap indicates that the particular LocStream dimension
will be replicating the Field across the DEs along this direction.

[ungriddedLBound] Lower bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in thefield . All ungridded dimen-
sions of thefield are also undistributed. When field dimension count is greater than locstream dimension
count, both ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are
checked for consistency. Note that the the ordering of theseungridded dimensions is the same as their order in
thefarray .

[ungriddedUBound] Upper bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in thefield . All ungridded dimen-
sions of thefield are also undistributed. When field dimension count is greater than locstream dimension
count, both ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are
checked for consistency. Note that the the ordering of theseungridded dimensions is the same as their order in
thefarray .

[name] Field name.

[iospec] I/O specification. NOT IMPLEMENTED

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.6.12 ESMF_FieldCreate - Create a Field from LocStream and Fortran array pointer

INTERFACE:

! Private name; call using ESMF_FieldCreate()
function ESMF_FieldCreateLSDataPtr<rank><type><kind> (locstream, &
farrayPtr, copyflag, gridToFieldMap, &
name, iospec, rc)

RETURN VALUE:

type(ESMF_Field) :: ESMF_FieldCreateLSDataPtr<rank><t ype><kind>

ARGUMENTS:

type(ESMF_LocStream) :: locstream
<type> (ESMF_KIND_<kind>), dimension(<rank>), pointer : : farrayPtr
type(ESMF_CopyFlag), intent(in), optional :: copyflag
integer, intent(in), optional :: gridToFieldMap(:)
character (len= *), intent(in), optional :: name
type(ESMF_IOSpec), intent(in), optional :: iospec
integer, intent(out), optional :: rc

210

DESCRIPTION:

Create anESMF_Field from a fortran data pointer andESMF_LocStream . The fortran data pointer inside
ESMF_Field can be queried and deallocated when copyflag isESMF_DATA_REF. Note that theESMF_FieldDestroy
call does not deallocate the fortran data pointer in this case. This gives user more flexibility over memory management.
The arguments are:

locstream ESMF_LocStream object.

farrayPtr Native fortran data pointer to be copied/referenced in the Field The Field dimension (dimCount) will be
the same as the dimCount for thefarrayPtr .

[copyflag] Whether to copy the contents of thefarrayPtr or reference it directly. For valid values see 9.2.5. The
default isESMF_DATA_REF.

[gridToFieldMap] List with number of elements equal to thelocstream ’s dimCount. The list elements map each
dimension of thelocstream to a dimension in thefarrayPtr by specifying the appropriatefarrayPtr
dimension index. The default is to map all of thelocstream ’s dimensions against the lowest dimensions of
the farrayPtr in sequence, i.e.gridToFieldMap = (/1,2,3,.../). The values of allgridToFieldMap
entries must be greater than or equal to one and smaller than or equal to thefarrayPtr rank. It is erroneous to
specify the samegridToFieldMap entry multiple times. The total ungridded dimensions in thefield are
the totalfarrayPtr dimensions less the total (distributed + undistributed) dimensions in thelocstream .
Unlocstreamded dimensions must be in the same order they arestored in the⁀farrayPtr. Permutations of the order
of dimensions are handled via individual communication methods. For example, an undistributed dimension
can be remapped to a distributed dimension as part of theESMF_ArrayRedist() operation. If the Field
dimCount is less than the LocStream dimCount then the default gridToFieldMap will contain zeros for the
rightmost entries. A zero entry in thegridToFieldMap indicates that the particular LocStream dimension
will be replicating the Field across the DEs along this direction.

[name] Field name.

[iospec] I/O specification. NOT IMPLEMENTED

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.6.13 ESMF_FieldCreate - Create a Field from Mesh and typekind/rank

INTERFACE:

! Private name; call using ESMF_FieldCreate()
function ESMF_FieldCreateMeshTKR(mesh, typekind, rank, location, &

gridToFieldMap, ungriddedLBound, ungriddedUBound, &
name, iospec, rc)

RETURN VALUE:

type(ESMF_Field) :: ESMF_FieldCreateMeshTKR

ARGUMENTS:

type(ESMF_Mesh) :: mesh
type(ESMF_TypeKind), intent(in) :: typekind
integer, intent(in) :: rank
type(ESMF_MeshLoc), intent(in), optional :: location
integer, intent(in), optional :: gridToFieldMap(:)
integer, intent(in), optional :: ungriddedLBound(:)

211

integer, intent(in), optional :: ungriddedUBound(:)
character (len= *), intent(in), optional :: name
type(ESMF_IOSpec), intent(in), optional :: iospec
integer, intent(out), optional :: rc

DESCRIPTION:

Create anESMF_Field and allocate space internally for anESMF_Array . Return a newESMF_Field . For an
example and associated documentation using this method seeSection 20.3.4.
The arguments are:

mesh ESMF_Meshobject.

typekind The typekind of the Field.

rank The rank of the Field.

[location] Which part of the mesh to build the Field on. Can be set to either ESMF_MESHLOC_NODEorESMF_MESHLOC_ELEMENT.
If not set, defaults toESMF_MESHLOC_NODE.

[gridToFieldMap] List with number of elements equal to thegrid ’s dimCount. The list elements map each dimen-
sion of thegrid to a dimension in thefield by specifying the appropriatefield dimension index. The
default is to map all of thegrid ’s dimensions against the lowest dimensions of thefield in sequence, i.e.
gridToFieldMap = (/1,2,3,.../). The values of allgridToFieldMap entries must be greater than or equal
to one and smaller than or equal to thefield rank. It is erroneous to specify the samegridToFieldMap
entry multiple times. The total ungridded dimensions in thefield are the totalfield dimensions less the di-
mensions in thegrid . Ungridded dimensions must be in the same order they are stored in the⁀field. If the Field
dimCount is less than the Mesh dimCount then the default gridToFieldMap will contain zeros for the rightmost
entries. A zero entry in thegridToFieldMap indicates that the particular Mesh dimension will be replicating
the Field across the DEs along this direction.

[ungriddedLBound] Lower bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in thefield .

[ungriddedUBound] Upper bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in thefield .

[name] Field name.

[iospec] I/O specification. ! NOT IMPLEMENTED

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.6.14 ESMF_FieldCreate - Create a Field from Mesh and ArraySpec

INTERFACE:

! Private name; call using ESMF_FieldCreate()
function ESMF_FieldCreateMeshArraySpec(mesh, arrayspe c, location, &

gridToFieldMap, ungriddedLBound, ungriddedUBound, &
name, iospec, rc)

212

RETURN VALUE:

type(ESMF_Field) :: ESMF_FieldCreateMeshArraySpec

ARGUMENTS:

type(ESMF_Mesh) :: mesh
type(ESMF_ArraySpec), intent(inout) :: arrayspec
type(ESMF_MeshLoc), intent(in), optional :: location
integer, intent(in), optional :: gridToFieldMap(:)
integer, intent(in), optional :: ungriddedLBound(:)
integer, intent(in), optional :: ungriddedUBound(:)
character (len= *), intent(in), optional :: name
type(ESMF_IOSpec), intent(in), optional :: iospec
integer, intent(out), optional :: rc

DESCRIPTION:

Create anESMF_Field and allocate space internally for anESMF_Array . Return a newESMF_Field . For an
example and associated documentation using this method seeSection 20.3.5.
The arguments are:

mesh ESMF_Meshobject.

arrayspec Data type and kind specification.

[location] Which part of the mesh to build the Field on. Can be set to either ESMF_MESHLOC_NODEorESMF_MESHLOC_ELEMENT.
If not set, defaults toESMF_MESHLOC_NODE.

[gridToFieldMap] List with number of elements equal to thegrid ’s dimCount. The list elements map each dimen-
sion of thegrid to a dimension in thefield by specifying the appropriatefield dimension index. The
default is to map all of thegrid ’s dimensions against the lowest dimensions of thefield in sequence, i.e.
gridToFieldMap = (/1,2,3,.../). The values of allgridToFieldMap entries must be greater than or equal
to one and smaller than or equal to thefield rank. It is erroneous to specify the samegridToFieldMap
entry multiple times. The total ungridded dimensions in thefield are the totalfield dimensions less the di-
mensions in thegrid . Ungridded dimensions must be in the same order they are stored in the⁀field. If the Field
dimCount is less than the Mesh dimCount then the default gridToFieldMap will contain zeros for the rightmost
entries. A zero entry in thegridToFieldMap indicates that the particular Mesh dimension will be replicating
the Field across the DEs along this direction.

[ungriddedLBound] Lower bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in thefield .

[ungriddedUBound] Upper bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in thefield .

[name] Field name.

[iospec] I/O specification. ! NOT IMPLEMENTED

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

213

20.6.15 ESMF_FieldCreate - Create a Field from Mesh and Array

INTERFACE:

! Private name; call using ESMF_FieldCreate()
function ESMF_FieldCreateMeshArray(mesh, array, locati on, copyflag, &

gridToFieldMap, ungriddedLBound, ungriddedUBound, &
name, iospec, rc)

RETURN VALUE:

type(ESMF_Field) :: ESMF_FieldCreateMeshArray

ARGUMENTS:

type(ESMF_Mesh), intent(in) :: mesh
type(ESMF_Array), intent(in) :: array
type(ESMF_MeshLoc), intent(in), optional :: location
type(ESMF_CopyFlag), intent(in), optional :: copyflag
integer, intent(in), optional :: gridToFieldMap(:)
integer, intent(in), optional :: ungriddedLBound(:)
integer, intent(in), optional :: ungriddedUBound(:)
character (len = *), intent(in), optional :: name
type(ESMF_IOSpec), intent(in), optional :: iospec
integer, intent(out), optional :: rc

DESCRIPTION:

Create anESMF_Field . This version of creation assumes the data exists already and is being passed in through an
ESMF_Array . For an example and associated documentation using this method see Section 20.3.6.
The arguments are:

mesh ESMF_Meshobject.

array ESMF_Array object.

[location] Which part of the mesh to build the Field on. Can be set to either ESMF_MESHLOC_NODEorESMF_MESHLOC_ELEMENT.
If not set, defaults toESMF_MESHLOC_NODE.

[copyflag] Indicates whether to copy the contents of thearray or reference it directly. For valid values see 9.2.5.
The default isESMF_DATA_REF.

[gridToFieldMap] List with number of elements equal to thegrid ’s dimCount. The list elements map each dimen-
sion of thegrid to a dimension in thefield by specifying the appropriatefield dimension index. The
default is to map all of thegrid ’s dimensions against the lowest dimensions of thefield in sequence, i.e.
gridToFieldMap = (/1,2,3,.../). The values of allgridToFieldMap entries must be greater than or equal
to one and smaller than or equal to thefield rank. It is erroneous to specify the samegridToFieldMap
entry multiple times. The total ungridded dimensions in thefield are the totalfield dimensions less the di-
mensions in thegrid . Ungridded dimensions must be in the same order they are stored in the⁀field. If the Field
dimCount is less than the Mesh dimCount then the default gridToFieldMap will contain zeros for the rightmost
entries. A zero entry in thegridToFieldMap indicates that the particular Mesh dimension will be replicating
the Field across the DEs along this direction.

[ungriddedLBound] Lower bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in thefield .

214

[ungriddedUBound] Upper bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in thefield .

[name] Field name.

[iospec] I/O specification. NOT IMPLEMENTED

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.6.16 ESMF_FieldCreate - Create a Field from Mesh and Fortran array

INTERFACE:

! Private name; call using ESMF_FieldCreate()
function ESMF_FieldCreateMeshData<rank><type><kind>(mesh, &
farray, location, indexflag, copyflag, gridToFieldMap, u ngriddedLBound, &
ungriddedUBound, name, iospec, rc)

RETURN VALUE:

type(ESMF_Field) :: ESMF_FieldCreateMeshData<rank><ty pe><kind>

ARGUMENTS:

type(ESMF_Mesh) :: mesh
<type> (ESMF_KIND_<kind>), dimension(<rank>), target :: farray
type(ESMF_MeshLoc), intent(in), optional :: location
type(ESMF_IndexFlag), intent(in) :: indexflag
type(ESMF_CopyFlag), intent(in), optional :: copyflag
integer, intent(in), optional :: gridToFieldMap(:)
integer, intent(in), optional :: ungriddedLBound(:)
integer, intent(in), optional :: ungriddedUBound(:)
character (len= *), intent(in), optional :: name
type(ESMF_IOSpec), intent(in), optional :: iospec
integer, intent(out), optional :: rc

DESCRIPTION:

Create anESMF_Field from a fortran data array andESMF_Mesh. The fortran data pointer insideESMF_Field
can be queried but deallocating the retrieved data pointer is not allowed.
The arguments are:

mesh ESMF_Meshobject.

farray Native fortran data array to be copied/referenced in the Field The Field dimension (dimCount) will be the
same as the dimCount for thefarray .

[location] Which part of the mesh to build the Field on. Can be set to either ESMF_MESHLOC_NODEorESMF_MESHLOC_ELEMENT.
If not set, defaults toESMF_MESHLOC_NODE.

indexflag Indicate how DE-local indices are defined. See section 9.2.9for a list of valid indexflag options.

215

[copyflag] Whether to copy the contents of thefarray or reference it directly. For valid values see 9.2.5. The
default isESMF_DATA_REF.

[gridToFieldMap] List with number of elements equal to themesh’s dimCount. The list elements map each dimen-
sion of themesh to a dimension in thefarray by specifying the appropriatefarray dimension index. The
default is to map all of themesh’s dimensions against the lowest dimensions of thefarray in sequence, i.e.
gridToFieldMap = (/1,2,3,.../). The values of allgridToFieldMap entries must be greater than or equal
to one and smaller than or equal to thefarray rank. It is erroneous to specify the samegridToFieldMap
entry multiple times. The total ungridded dimensions in thefield are the totalfarray dimensions less the
total (distributed + undistributed) dimensions in themesh. Unmeshded dimensions must be in the same order
they are stored in the⁀farray. Permutations of the order of dimensions are handledvia individual communication
methods. For example, an undistributed dimension can be remapped to a distributed dimension as part of the
ESMF_ArrayRedist() operation. If the Field dimCount is less than the Mesh dimCount then the default
gridToFieldMap will contain zeros for the rightmost entries. A zero entry in thegridToFieldMap indicates
that the particular Mesh dimension will be replicating the Field across the DEs along this direction.

[ungriddedLBound] Lower bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than mesh dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in thefarray .

[ungriddedUBound] Upper bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than mesh dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in thefarray .

[name] Field name.

[iospec] I/O specification. NOT IMPLEMENTED

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.6.17 ESMF_FieldCreate - Create a Field from Mesh and Fortran array pointer

INTERFACE:

! Private name; call using ESMF_FieldCreate()
function ESMF_FieldCreateMeshDataPtr<rank><type><kin d>(mesh, &
farrayPtr, location, copyflag, gridToFieldMap, &
name, iospec, rc)

RETURN VALUE:

type(ESMF_Field) :: ESMF_FieldCreateMeshDataPtr<rank> <type><kind>

ARGUMENTS:

type(ESMF_Mesh) :: mesh
<type> (ESMF_KIND_<kind>), dimension(<rank>), pointer : : farrayPtr
type(ESMF_MeshLoc), intent(in), optional :: location
type(ESMF_CopyFlag), intent(in), optional :: copyflag
integer, intent(in), optional :: gridToFieldMap(:)

216

character (len= *), intent(in), optional :: name
type(ESMF_IOSpec), intent(in), optional :: iospec
integer, intent(out), optional :: rc

DESCRIPTION:

Create anESMF_Field from a fortran data pointer andESMF_Mesh. The fortran data pointer insideESMF_Field
can be queried and deallocated when copyflag isESMF_DATA_REF. Note that theESMF_FieldDestroy call does
not deallocate the fortran data pointer in this case. This gives user more flexibility over memory management.
The arguments are:

mesh ESMF_Meshobject.

farrayPtr Native fortran data pointer to be copied/referenced in the Field The Field dimension (dimCount) will be
the same as the dimCount for thefarrayPtr .

[location] Which part of the mesh to build the Field on. Can be set to either ESMF_MESHLOC_NODEorESMF_MESHLOC_ELEMENT.
If not set, defaults toESMF_MESHLOC_NODE.

[copyflag] Whether to copy the contents of thefarrayPtr or reference it directly. For valid values see 9.2.5. The
default isESMF_DATA_REF.

[gridToFieldMap] List with number of elements equal to themesh’s dimCount. The list elements map each dimen-
sion of themesh to a dimension in thefarrayPtr by specifying the appropriatefarrayPtr dimension
index. The default is to map all of themesh’s dimensions against the lowest dimensions of thefarrayPtr
in sequence, i.e.gridToFieldMap = (/1,2,3,.../). The values of allgridToFieldMap entries must be
greater than or equal to one and smaller than or equal to thefarrayPtr rank. It is erroneous to specify the
samegridToFieldMap entry multiple times. The total ungridded dimensions in thefield are the total
farrayPtr dimensions less the total (distributed + undistributed) dimensions in themesh. Unmeshded di-
mensions must be in the same order they are stored in the⁀farrayPtr. Permutations of the order of dimensions are
handled via individual communication methods. For example, an undistributed dimension can be remapped to
a distributed dimension as part of theESMF_ArrayRedist() operation. If the Field dimCount is less than
the Mesh dimCount then the default gridToFieldMap will contain zeros for the rightmost entries. A zero entry
in thegridToFieldMap indicates that the particular Mesh dimension will be replicating the Field across the
DEs along this direction.

[name] Field name.

[iospec] I/O specification. NOT IMPLEMENTED

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.6.18 ESMF_FieldCreate - Create a Field from XGrid and typekind/rank

INTERFACE:

! Private name; call using ESMF_FieldCreate()
function ESMF_FieldCreateXGTKR(xgrid, xgridSide, gridI ndex, typekind, rank, &

gridToFieldMap, ungriddedLBound, ungriddedUBound, &
name, iospec, rc)

RETURN VALUE:

type(ESMF_Field) :: ESMF_FieldCreateXGTKR

ARGUMENTS:

217

type(ESMF_XGrid) :: xgrid
type(ESMF_XGridSide), intent(in), optional :: xgridSide
integer, intent(in), optional :: gridIndex
type(ESMF_TypeKind), intent(in) :: typekind
integer, intent(in) :: rank
integer, intent(in), optional :: gridToFieldMap(:)
integer, intent(in), optional :: ungriddedLBound(:)
integer, intent(in), optional :: ungriddedUBound(:)
character (len= *), intent(in), optional :: name
type(ESMF_IOSpec), intent(in), optional :: iospec
integer, intent(out), optional :: rc

DESCRIPTION:

Create anESMF_Field and allocate space internally for anESMF_Array . Return a newESMF_Field . For an
example and associated documentation using this method seeSection 20.3.14.
The arguments are:

xgrid ESMF_XGrid object.

[xgridSide] Which side of the XGrid to create the Field on (either ESMF_XGRID_SIDEA, ESMF_XGRID_SIDEB,
or ESMF_XGRID_BALANCED). If not passed in then defaults to ESMF_XGRID_BALANCED.

[xgridIndex] If xgridSide is ESMF_XGRID_SIDEA or ESMF_XGRID_SIDEB thenthis index tells which Grid on
that side to create the Field on. If not provided, defaults to1.

typekind The typekind of the Field.

rank The rank of the Field.

[gridToFieldMap] List with number of elements equal to thegrid ’s dimCount. The list elements map each dimen-
sion of thegrid to a dimension in thefield by specifying the appropriatefield dimension index. The
default is to map all of thegrid ’s dimensions against the lowest dimensions of thefield in sequence, i.e.
gridToFieldMap = (/1,2,3,.../). The values of allgridToFieldMap entries must be greater than or equal
to one and smaller than or equal to thefield rank. It is erroneous to specify the samegridToFieldMap
entry multiple times. The total ungridded dimensions in thefield are the totalfield dimensions less the
dimensions in thegrid . Ungridded dimensions must be in the same order they are stored in the⁀field. If the
Field dimCount is less than the XGrid dimCount then the default gridToFieldMap will contain zeros for the
rightmost entries. A zero entry in thegridToFieldMap indicates that the particular XGrid dimension will be
replicating the Field across the DEs along this direction.

[ungriddedLBound] Lower bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in thefield .

[ungriddedUBound] Upper bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in thefield .

[name] Field name.

[iospec] I/O specification. ! NOT IMPLEMENTED

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

218

20.6.19 ESMF_FieldCreate - Create a Field from XGrid and ArraySpec

INTERFACE:

! Private name; call using ESMF_FieldCreate()
function ESMF_FieldCreateXGArraySpec(xgrid, xgridSide , gridIndex, arrayspec, &

gridToFieldMap, ungriddedLBound, ungriddedUBound, &
name, iospec, rc)

RETURN VALUE:

type(ESMF_Field) :: ESMF_FieldCreateXGArraySpec

ARGUMENTS:

type(ESMF_XGrid) :: xgrid
type(ESMF_XGridSide), intent(in), optional :: xgridSide
integer, intent(in), optional :: gridIndex
type(ESMF_ArraySpec), intent(inout) :: arrayspec
integer, intent(in), optional :: gridToFieldMap(:)
integer, intent(in), optional :: ungriddedLBound(:)
integer, intent(in), optional :: ungriddedUBound(:)
character (len= *), intent(in), optional :: name
type(ESMF_IOSpec), intent(in), optional :: iospec
integer, intent(out), optional :: rc

DESCRIPTION:

Create anESMF_Field and allocate space internally for anESMF_Array . Return a newESMF_Field . For an
example and associated documentation using this method seeSection 20.3.15.
The arguments are:

xgrid ESMF_XGrid object.

[xgridSide] Which side of the XGrid to create the Field on (either ESMF_XGRID_SIDEA, ESMF_XGRID_SIDEB,
or ESMF_XGRID_BALANCED). If not passed in then defaults to ESMF_XGRID_BALANCED.

[xgridIndex] If xgridSide is ESMF_XGRID_SIDEA or ESMF_XGRID_SIDEB thenthis index tells which Grid on
that side to create the Field on. If not provided, defaults to1.

arrayspec Data type and kind specification.

[gridToFieldMap] List with number of elements equal to thegrid ’s dimCount. The list elements map each dimen-
sion of thegrid to a dimension in thefield by specifying the appropriatefield dimension index. The
default is to map all of thegrid ’s dimensions against the lowest dimensions of thefield in sequence, i.e.
gridToFieldMap = (/1,2,3,.../). The values of allgridToFieldMap entries must be greater than or equal
to one and smaller than or equal to thefield rank. It is erroneous to specify the samegridToFieldMap
entry multiple times. The total ungridded dimensions in thefield are the totalfield dimensions less the
dimensions in thegrid . Ungridded dimensions must be in the same order they are stored in the⁀field. If the
Field dimCount is less than the XGrid dimCount then the default gridToFieldMap will contain zeros for the
rightmost entries. A zero entry in thegridToFieldMap indicates that the particular XGrid dimension will be
replicating the Field across the DEs along this direction.

[ungriddedLBound] Lower bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in thefield .

219

[ungriddedUBound] Upper bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in thefield .

[name] Field name.

[iospec] I/O specification. ! NOT IMPLEMENTED

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.6.20 ESMF_FieldCreate - Create a Field from XGrid and Array

INTERFACE:

! Private name; call using ESMF_FieldCreate()
function ESMF_FieldCreateXGArray(xgrid, xgridSide, gri dIndex, array, copyflag, &

gridToFieldMap, ungriddedLBound, ungriddedUBound, &
name, iospec, rc)

RETURN VALUE:

type(ESMF_Field) :: ESMF_FieldCreateXGArray

ARGUMENTS:

type(ESMF_XGrid) :: xgrid
type(ESMF_XGridSide), intent(in), optional :: xgridSide
integer, intent(in), optional :: gridIndex
type(ESMF_Array), intent(in) :: array
type(ESMF_CopyFlag), intent(in), optional :: copyflag
integer, intent(in), optional :: gridToFieldMap(:)
integer, intent(in), optional :: ungriddedLBound(:)
integer, intent(in), optional :: ungriddedUBound(:)
character (len = *), intent(in), optional :: name
type(ESMF_IOSpec), intent(in), optional :: iospec
integer, intent(out), optional :: rc

DESCRIPTION:

Create anESMF_Field . This version of creation assumes the data exists already and is being passed in through an
ESMF_Array . For an example and associated documentation using this method see Section 20.3.6.
The arguments are:

xgrid ESMF_XGrid object.

[xgridSide] Which side of the XGrid to create the Field on (either ESMF_XGRID_SIDEA, ESMF_XGRID_SIDEB,
or ESMF_XGRID_BALANCED). If not passed in then defaults to ESMF_XGRID_BALANCED.

[xgridIndex] If xgridSide is ESMF_XGRID_SIDEA or ESMF_XGRID_SIDEB thenthis index tells which Grid on
that side to create the Field on. If not provided, defaults to1.

array ESMF_Array object.

[copyflag] Indicates whether to copy the contents of thearray or reference it directly. For valid values see 9.2.5.
The default isESMF_DATA_REF.

220

[gridToFieldMap] List with number of elements equal to thegrid ’s dimCount. The list elements map each dimen-
sion of thegrid to a dimension in thefield by specifying the appropriatefield dimension index. The
default is to map all of thegrid ’s dimensions against the lowest dimensions of thefield in sequence, i.e.
gridToFieldMap = (/1,2,3,.../). The values of allgridToFieldMap entries must be greater than or equal
to one and smaller than or equal to thefield rank. It is erroneous to specify the samegridToFieldMap
entry multiple times. The total ungridded dimensions in thefield are the totalfield dimensions less the
dimensions in thegrid . Ungridded dimensions must be in the same order they are stored in the⁀field. If the
Field dimCount is less than the XGrid dimCount then the default gridToFieldMap will contain zeros for the
rightmost entries. A zero entry in thegridToFieldMap indicates that the particular XGrid dimension will be
replicating the Field across the DEs along this direction.

[ungriddedLBound] Lower bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in thefield .

[ungriddedUBound] Upper bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in thefield .

[name] Field name.

[iospec] I/O specification. NOT IMPLEMENTED

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.6.21 ESMF_FieldCreate - Create a Field from XGrid and Fortran array

INTERFACE:

! Private name; call using ESMF_FieldCreate()
function ESMF_FieldCreateXGData<rank><type><kind>(xg rid, &
xgridSide, gridIndex, farray, indexflag, copyflag, &
gridToFieldMap, ungriddedLBound, ungriddedUBound, name ,&
iospec, rc)

RETURN VALUE:

type(ESMF_Field) :: ESMF_FieldCreateXGData<rank><type ><kind>

ARGUMENTS:

type(ESMF_XGrid) :: xgrid
type(ESMF_XGridSide), intent(in), optional :: xgridSide
integer, intent(in), optional :: gridIndex
<type> (ESMF_KIND_<kind>), dimension(<rank>), target :: farray
type(ESMF_IndexFlag), intent(in) :: indexflag
type(ESMF_CopyFlag), intent(in), optional :: copyflag
integer, intent(in), optional :: gridToFieldMap(:)
integer, intent(in), optional :: ungriddedLBound(:)
integer, intent(in), optional :: ungriddedUBound(:)

221

character (len= *), intent(in), optional :: name
type(ESMF_IOSpec), intent(in), optional :: iospec
integer, intent(out), optional :: rc

DESCRIPTION:

Create anESMF_Field from a fortran data array andESMF_Xgrid . The fortran data pointer insideESMF_Field
can be queried but deallocating the retrieved data pointer is not allowed.
The arguments are:

xgrid ESMF_XGrid object.

[xgridSide] Which side of the XGrid to create the Field on (either ESMF_XGRID_SIDEA, ESMF_XGRID_SIDEB,
or ESMF_XGRID_BALANCED). If not passed in then defaults to ESMF_XGRID_BALANCED.

[xgridIndex] If xgridSide is ESMF_XGRID_SIDEA or ESMF_XGRID_SIDEB thenthis index tells which Grid on
that side to create the Field on. If not provided, defaults to1.

farray Native fortran data array to be copied/referenced in the Field The Field dimension (dimCount) will be the
same as the dimCount for thefarray .

indexflag Indicate how DE-local indices are defined. See section 9.2.9for a list of valid indexflag options.

[copyflag] Whether to copy the contents of thefarray or reference directly. For valid values see 9.2.5. The default
is ESMF_DATA_REF.

[gridToFieldMap] List with number of elements equal to thexgrid ’s dimCount. The list elements map each dimen-
sion of thexgrid to a dimension in thefarray by specifying the appropriatefarray dimension index. The
default is to map all of thexgrid ’s dimensions against the lowest dimensions of thefarray in sequence, i.e.
gridToFieldMap = (/1,2,3,.../). The values of allgridToFieldMap entries must be greater than or equal
to one and smaller than or equal to thefarray rank. It is erroneous to specify the samegridToFieldMap
entry multiple times. The total ungridded dimensions in thefield are the totalfarray dimensions less the
total (distributed + undistributed) dimensions in thexgrid . Unxgridded dimensions must be in the same order
they are stored in the⁀farray. Permutations of the order of dimensions are handledvia individual communication
methods. For example, an undistributed dimension can be remapped to a distributed dimension as part of the
ESMF_ArrayRedist() operation. If the Field dimCount is less than the Xgrid dimCount then the default
gridToFieldMap will contain zeros for the rightmost entries. A zero entry in thegridToFieldMap indicates
that the particular Xgrid dimension will be replicating theField across the DEs along this direction.

[ungriddedLBound] Lower bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than xgrid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in thefarray .

[ungriddedUBound] Upper bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than xgrid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in thefarray .

[name] Field name.

[iospec] I/O specification. NOT IMPLEMENTED

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

222

20.6.22 ESMF_FieldCreate - Create a Field from XGrid and Fortran array pointer

INTERFACE:

! Private name; call using ESMF_FieldCreate()
function ESMF_FieldCreateXGDataPtr<rank><type><kind> (xgrid, xgridSide, gridIndex, &
farrayPtr, copyflag, gridToFieldMap, &
name, iospec, rc)

RETURN VALUE:

type(ESMF_Field) :: ESMF_FieldCreateXGDataPtr<rank><t ype><kind>

ARGUMENTS:

type(ESMF_XGrid) :: xgrid
type(ESMF_XGridSide), intent(in), optional :: xgridSide
integer, intent(in), optional :: gridIndex
<type> (ESMF_KIND_<kind>), dimension(<rank>), pointer : : farrayPtr
type(ESMF_CopyFlag), intent(in), optional :: copyflag
integer, intent(in), optional :: gridToFieldMap(:)
character (len= *), intent(in), optional :: name
type(ESMF_IOSpec), intent(in), optional :: iospec
integer, intent(out), optional :: rc

DESCRIPTION:

Create anESMF_Field from a fortran data pointer andESMF_Xgrid . The fortran data pointer insideESMF_Field
can be queried and deallocated when copyflag isESMF_DATA_REF. Note that theESMF_FieldDestroy call does
not deallocate the fortran data pointer in this case. This gives user more flexibility over memory management.
The arguments are:

xgrid ESMF_XGrid object.

[xgridSide] Which side of the XGrid to create the Field on (either ESMF_XGRID_SIDEA, ESMF_XGRID_SIDEB,
or ESMF_XGRID_BALANCED). If not passed in then defaults to ESMF_XGRID_BALANCED.

[xgridIndex] If xgridSide is ESMF_XGRID_SIDEA or ESMF_XGRID_SIDEB thenthis index tells which Grid on
that side to create the Field on. If not provided, defaults to1.

farrayPtr Native fortran data pointer to be copied/referenced in the Field The Field dimension (dimCount) will be
the same as the dimCount for thefarrayPtr .

[copyflag] Whether to copy the contents of thefarrayPtr or reference it directly. For valid values see 9.2.5. The
default isESMF_DATA_REF.

[gridToFieldMap] List with number of elements equal to thexgrid ’s dimCount. The list elements map each dimen-
sion of thexgrid to a dimension in thefarrayPtr by specifying the appropriatefarrayPtr dimension
index. The default is to map all of thexgrid ’s dimensions against the lowest dimensions of thefarrayPtr
in sequence, i.e.gridToFieldMap = (/1,2,3,.../). The values of allgridToFieldMap entries must be
greater than or equal to one and smaller than or equal to thefarrayPtr rank. It is erroneous to specify the
samegridToFieldMap entry multiple times. The total ungridded dimensions in thefield are the total
farrayPtr dimensions less the total (distributed + undistributed) dimensions in thexgrid . Unxgridded di-
mensions must be in the same order they are stored in the⁀farrayPtr. Permutations of the order of dimensions are
handled via individual communication methods. For example, an undistributed dimension can be remapped to
a distributed dimension as part of theESMF_ArrayRedist() operation. If the Field dimCount is less than

223

the Xgrid dimCount then the default gridToFieldMap will contain zeros for the rightmost entries. A zero entry
in thegridToFieldMap indicates that the particular Xgrid dimension will be replicating the Field across the
DEs along this direction.

[name] Field name.

[iospec] I/O specification. NOT IMPLEMENTED

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.6.23 ESMF_FieldGet - Return info associated with a Field

INTERFACE:

! Private name; call using ESMF_FieldGet()
subroutine ESMF_FieldGetDefault(field, arrayspec, isCo mmitted, geomtype, grid, mesh, locstream,

array, typekind, dimCount, memDimCount, &
staggerloc, meshLocation, xgridSide, gridIndex, gridToF ieldMap, ungriddedLBound, ungriddedUBound,
maxHaloLWidth, maxHaloUWidth, localDeCount, name, iospe c, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: field
type(ESMF_ArraySpec), intent(out), optional :: arrayspe c
logical, intent(out), optional :: isCommitted
type(ESMF_GeomType), intent(out), optional :: geomtype
type(ESMF_Grid), intent(out), optional :: grid
type(ESMF_Mesh), intent(out), optional :: mesh
type(ESMF_LocStream), intent(out), optional :: locstrea m
type(ESMF_XGrid), intent(out), optional :: xgrid
type(ESMF_Array), intent(out), optional :: array
type(ESMF_TypeKind), intent(out), optional :: typekind
integer, intent(out), optional :: dimCount
integer, intent(out), optional :: memDimCount
type(ESMF_StaggerLoc), intent(out), optional :: stagger loc
type(ESMF_MeshLoc), intent(out), optional :: meshLocati on
type(ESMF_XGridSide), intent(out), optional :: xgridSid e
integer, intent(out), optional :: gridIndex
integer, intent(out), optional :: gridToFieldMap(:)
integer, intent(out), optional :: ungriddedLBound(:)
integer, intent(out), optional :: ungriddedUBound(:)
integer, intent(out), optional :: maxHaloLWidth(:)
integer, intent(out), optional :: maxHaloUWidth(:)
integer, intent(out), optional :: localDeCount
character(len= *), intent(out), optional :: name
type(ESMF_IOSpec), intent(out), optional :: iospec ! NOT I MPLEMENTED
integer, intent(out), optional :: rc

DESCRIPTION:

Query anESMF_Field for various things. All arguments after thefield are optional. To select individual items
use the named_argument=value syntax. For an example and associated documentation using this method see Section
20.3.3.
The arguments are:

field ESMF_Field object to query.

224

[arrayspec] ESMF_ArraySpec object containing the type/kind/rank information of the Field object.

[isCommitted] Indicates if the Field is fully committed and ready.

[geomtype] Specifies the type of geometry on which the Field is built. Please see Section 9.3.4 for the range of values.

[grid] ESMF_Grid .

[mesh] ESMF_Mesh.

[locstream] ESMF_LocStream .

[xgrid] ESMF_XGrid .

[array] ESMF_Array .

[typekind] TypeKind specifier for Field.

[dimCount] Number of geometrical dimensions infield . For an detailed discussion of this parameter, please see
Section 20.3.21 and Section 20.3.22.

[memDimCount] Number of dimensions in the physical memory of thefield data. It is identical to dimCount when
the corresponding grid is a non-arbitrary grid. It is less than dimCount when the grid is arbitrarily distributed.
For an detailed discussion of this parameter, please see Section 20.3.21 and Section 20.3.22.

[staggerloc] Stagger location of data in grid cells. For valid predefined values and interpretation of results see Section
25.2.4.

[meshLocation] The part of the mesh to build the Field on. Can be eitherESMF_MESHLOC_NODEorESMF_MESHLOC_ELEMENT.
If not set, defaults toESMF_MESHLOC_NODE.

[xgridSide] The side of the XGrid that the Field was created on (either ESMF_XGRID_SIDEA, ESMF_XGRID_SIDEB,
or ESMF_XGRID_BALANCED).

[gridIndex] If xgridSide is ESMF_XGRID_SIDEA or ESMF_XGRID_SIDEB thenthis index tells which Grid/Mesh
on that side the Field was created on.

[gridToFieldMap] List with number of elements equal to thegrid ’s dimCount. The list elements map each dimen-
sion of thegrid to a dimension in thefield by specifying the appropriatefield dimension index. The
default is to map all of thegrid ’s dimensions against the lowest dimensions of thefield in sequence, i.e.
gridToFieldMap = (/1,2,3,.../). The total ungridded dimensions in thefield are the totalfield dimen-
sions less the dimensions in thegrid . Ungridded dimensions must be in the same order they are stored in the
⁀field.

[ungriddedLBound] Lower bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in thefield .

[ungriddedUBound] Upper bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in thefield .

[maxHaloLWidth] Lower bound of halo region. The size of this array is the number of gridded dimensions in
the field . However, ordering of the elements needs to be the same as they appear in thefield . Values
default to 0. If values for maxHaloLWidth are specified they must be reflected in the size of thefield .
That is, for each gridded dimension thefield size should be max(maxHaloLWidth + maxHaloUWidth
+ computationalCount , exclusiveCount). Although the halo operation is not implemented, the
minHaloLWidth is checked for validity and stored in preparation for the implementation of the halo method.
HALO OPERATION NOT IMPLEMENTED

225

[maxHaloUWidth] Upper bound of halo region. The size of this array is the number of gridded dimensions in
the field . However, ordering of the elements needs to be the same as they appear in thefield . Values
default to 0. If values for maxHaloUWidth are specified they must be reflected in the size of thefield .
That is, for each gridded dimension thefield size should max(maxHaloLWidth + maxHaloUWidth
+ computationalCount , exclusiveCount). Although the halo operation is not implemented, the
maxHaloUWidth is checked for validity and stored in preparation for the implementation of the halo method.
HALO OPERATION NOT IMPLEMENTED

[localDeCount] Upon return this holds the number of PET-local DEs defined in the DELayout associated with the
Field object.

[name] Name of queried item.

[iospec] ESMF_IOSpec object which contains settings for options. NOT IMPLEMENTED

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.6.24 ESMF_FieldGet - Get Fortran data pointer from a Field

INTERFACE:

! Private name; call using ESMF_FieldGet()
subroutine ESMF_FieldGetDataPtr<rank><type><kind>(fi eld, localDe, farrayPtr, &
exclusiveLBound, exclusiveUBound, exclusiveCount, &
computationalLBound, computationalUBound, computation alCount, &
totalLBound, totalUBound, totalCount, rc)

ARGUMENTS:

type(ESMF_Field), intent(in) :: field
integer, intent(in), optional :: localDe
<type> (ESMF_KIND_<kind>), dimension(<rank>), pointer : : farrayPtr
integer, intent(out), optional :: exclusiveLBound(:)
integer, intent(out), optional :: exclusiveUBound(:)
integer, intent(out), optional :: exclusiveCount(:)
integer, intent(out), optional :: computationalLBound(:)
integer, intent(out), optional :: computationalUBound(:)
integer, intent(out), optional :: computationalCount(:)
integer, intent(out), optional :: totalLBound(:)
integer, intent(out), optional :: totalUBound(:)
integer, intent(out), optional :: totalCount(:)
integer, intent(out), optional :: rc

DESCRIPTION:

Get a Fortran pointer to DE-local memory allocation withinfield . For convenience DE-local bounds can be queried
at the same time. For an example and associated documentation using this method see Section 20.3.2.
The arguments are:

field ESMF_Field object.

[localDe] Local DE for which information is requested.[0,..,localDeCount-1] . For localDeCount==1
the localDe argument may be omitted, in which case it will default tolocalDe=0 .

226

farrayPtr Fortran array pointer which will be pointed at DE-local memory allocation. It depends on the specific entry
point ofESMF_FieldCreate() used duringfield creation, which Fortran operations are supported on the
returnedfarrayPtr . See 20.4 for more details.

[exclusiveLBound] Upon return this holds the lower bounds of the exclusive region. exclusiveLBound must be
allocated to be of size equal tofield ’s dimCount . See section 22.2.6 for a description of the regions and
their associated bounds and counts.

[exclusiveUBound] Upon return this holds the upper bounds of the exclusive region. exclusiveUBound must be
allocated to be of size equal tofield ’s dimCount . See section 22.2.6 for a description of the regions and
their associated bounds and counts.

[exclusiveCount] Upon return this holds the number of items in the exclusive region per dimension (i.e.exclusiveUBound-exclusiveLBound+1
exclusiveCount must be allocated to be of size equal tofield ’s dimCount . See section 22.2.6 for a de-
scription of the regions and their associated bounds and counts.

[computationalLBound] Upon return this holds the lower bounds of the computationalregion.computationalLBound
must be allocated to be of size equal tofield ’s dimCount . See section 22.2.6 for a description of the regions
and their associated bounds and counts.

[computationalUBound] Upon return this holds the lower bounds of the computationalregion.computationalLBound
must be allocated to be of size equal tofield ’s dimCount . See section 22.2.6 for a description of the regions
and their associated bounds and counts.

[computationalCount] Upon return this holds the number of items in the computational region per dimension (i.e.
computationalUBound-computationalLBound+1). computationalCount must be allocated to
be of size equal tofield ’s dimCount . See section 22.2.6 for a description of the regions and their associated
bounds and counts.

[totalLBound] Upon return this holds the lower bounds of the total region.totalLBound must be allocated to be
of size equal tofield ’s dimCount . See section 22.2.6 for a description of the regions and their associated
bounds and counts.

[totalUBound] Upon return this holds the lower bounds of the total region.totalUBound must be allocated to be
of size equal tofield ’s dimCount . See section 22.2.6 for a description of the regions and their associated
bounds and counts.

[totalCount] Upon return this holds the number of items in the total regionper dimension (i.e.totalUBound-totalLBound+1).
computationalCount must be allocated to be of size equal tofield ’s dimCount . See section 22.2.6 for
a description of the regions and their associated bounds andcounts.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.6.25 ESMF_FieldGetBounds - Get Field data bounds

INTERFACE:

! Private name; call using ESMF_FieldGetBounds()
subroutine ESMF_FieldGetBounds(field, localDe, exclusi veLBound, &

exclusiveUBound, exclusiveCount, computationalLBound, computationalUBound, &
computationalCount, totalLBound, totalUBound, totalCou nt, rc)

ARGUMENTS:

227

type(ESMF_Field), intent(in) :: field
integer, intent(in), optional :: localDe
integer, intent(out), optional :: exclusiveLBound(:)
integer, intent(out), optional :: exclusiveUBound(:)
integer, intent(out), optional :: exclusiveCount(:)
integer, intent(out), optional :: computationalLBound(:)
integer, intent(out), optional :: computationalUBound(:)
integer, intent(out), optional :: computationalCount(:)
integer, intent(out), optional :: totalLBound(:)
integer, intent(out), optional :: totalUBound(:)
integer, intent(out), optional :: totalCount(:)
integer, intent(out), optional :: rc

DESCRIPTION:

This method returns the bounds information of a field that consists of a internal grid and a internal array. The exclusive
and computational bounds are shared between the grid and thearray but the total bounds are the array bounds plus the
halo width. The count is the number of elements between each bound pair.
The arguments are:

field Field to get the information from.

[localDe] Local DE for which information is requested.[0,..,localDeCount-1] . For localDeCount==1
the localDe argument may be omitted, in which case it will default tolocalDe=0 .

[exclusiveLBound] Upon return this holds the lower bounds of the exclusive region. exclusiveLBound must be
allocated to be of size equal to the field rank. Please see Section 25.3.15 for a description of the regions and
their associated bounds and counts.

[exclusiveUBound] Upon return this holds the upper bounds of the exclusive region. exclusiveUBound must be
allocated to be of size equal to the field rank. Please see Section 25.3.15 for a description of the regions and
their associated bounds and counts.

[exclusiveCount] Upon return this holds the number of items in the exclusive region per dimension (i.e.exclusiveUBound-exclusiveLBound+1
exclusiveCount must be allocated to be of size equal to the field rank. Please see Section 25.3.15 for a
description of the regions and their associated bounds and counts.

[computationalLBound] Upon return this holds the lower bounds of the stagger region. computationalLBound
must be allocated to be of size equal to the field rank. Please see Section 25.3.15 for a description of the regions
and their associated bounds and counts.

[computationalUBound] Upon return this holds the upper bounds of the stagger region. computationalUBound
must be allocated to be of size equal to the field rank. Please see Section 25.3.15 for a description of the regions
and their associated bounds and counts.

[computationalCount] Upon return this holds the number of items in the computational region per dimension (i.e.
computationalUBound-computationalLBound+1). computationalCount must be allocated to
be of size equal to the field rank. Please see Section 25.3.15 for a description of the regions and their associated
bounds and counts.

[totalLBound] Upon return this holds the lower bounds of the total region.totalLBound must be allocated to be
of size equal to the field rank.

[totalUBound] Upon return this holds the upper bounds of the total region.totalUBound must be allocated to be
of size equal to the field rank.

[totalCount] Upon return this holds the number of items in the total regionper dimension (i.e.totalUBound-totalLBound+1).
totalCount must be allocated to be of size equal to the field rank.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

228

20.6.26 ESMF_FieldGet - Get precomputed Fortran data arraybounds for creating a Field from a Grid and
Fortran array

INTERFACE:

! Private name; call using ESMF_FieldGet()
subroutine ESMF_FieldGetGridAllocBounds(grid, localDe , staggerloc, &

gridToFieldMap, &
ungriddedLBound, ungriddedUBound, &
maxHaloLWidth, maxHaloUWidth, &
totalLBound, totalUBound, totalCount, rc)

ARGUMENTS:

type(ESMF_Grid), intent(inout) :: grid
integer, intent(in), optional :: localDe
type(ESMF_StaggerLoc), intent(in), optional :: staggerl oc
integer, intent(in), optional :: gridToFieldMap(:)
integer, intent(in), optional :: ungriddedLBound(:)
integer, intent(in), optional :: ungriddedUBound(:)
integer, intent(in), optional :: maxHaloLWidth(:)
integer, intent(in), optional :: maxHaloUWidth(:)
integer, intent(out), optional :: totalLBound(:)
integer, intent(out), optional :: totalUBound(:)
integer, intent(out), optional :: totalCount(:)
integer, intent(out), optional :: rc

DESCRIPTION:

Compute the lower and upper bounds of Fortran data array thatcan later be used in FieldCreate interface to create a
ESMF_Field from aESMF_Grid and the Fortran data array. For an example and associated documentation using
this method see Section 20.3.8.
The arguments are:

grid ESMF_Grid .

[localDe] Local DE for which information is requested.[0,..,localDeCount-1] . For localDeCount==1
the localDe argument may be omitted, in which case it will default tolocalDe=0 .

[staggerloc] Stagger location of data in grid cells. For valid predefined values and interpretation of results see Section
25.2.4.

[gridToFieldMap] List with number of elements equal to thegrid ’s dimCount. The list elements map each dimen-
sion of thegrid to a dimension in thefield by specifying the appropriatefield dimension index. The
default is to map all of thegrid ’s dimensions against the lowest dimensions of thefield in sequence, i.e.
gridToFieldMap = (/1,2,3,.../). The values of allgridToFieldMap entries must be greater than or equal
to one and smaller than or equal to thefield rank. It is erroneous to specify the samegridToFieldMap
entry multiple times. The total ungridded dimensions in thefield are the totalfield dimensions less the
dimensions in thegrid . Ungridded dimensions must be in the same order they are stored in the⁀field.

[ungriddedLBound] Lower bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in thefield .

[ungriddedUBound] Upper bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions

229

of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in thefield .

[maxHaloLWidth] Lower bound of halo region. The size of this array is the number of dimensions in thegrid .
However, ordering of the elements needs to be the same as theyappear in thefield . Values default to 0. If val-
ues for maxHaloLWidth are specified they must be reflected in the size of thefield . That is, for each gridded
dimension thefield size should be max(maxHaloLWidth + maxHaloUWidth + computationalCount ,
exclusiveCount). Although the halo operation is not implemented, theminHaloLWidth is checked for
validity and stored in preparation for the implementation of the halo method. HALO OPERATION NOT IM-
PLEMENTED

[maxHaloUWidth] Upper bound of halo region. The size of this array is the number of dimensions in thegrid .
However, ordering of the elements needs to be the same as theyappear in thefield . Values default to 0. If val-
ues for maxHaloUWidth are specified they must be reflected in the size of thefield . That is, for each gridded
dimension thefield size should max(maxHaloLWidth + maxHaloUWidth + computationalCount ,
exclusiveCount). Although the halo operation is not implemented, themaxHaloUWidth is checked for
validity and stored in preparation for the implementation of the halo method. HALO OPERATION NOT IM-
PLEMENTED

[totalLBound] The relative lower bounds of Fortran data array to be used later in tt ESMF_FieldCreate fromESMF_Grid
and Fortran data array. This is an output variable from this user interface.

[totalUBound] The relative upper bounds of Fortran data array to be used later in tt ESMF_FieldCreate fromESMF_Grid
and Fortran data array. This is an output variable from this user interface.

[totalCount] Number of elements need to be allocated for Fortran data array to be used later in tt ESMF_FieldCreate
from ESMF_Grid and Fortran data array. This is an output variable from this user interface.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.6.27 ESMF_FieldGet - Get precomputed Fortran data arraybounds for creating a Field from a LocStream
and Fortran array

INTERFACE:

! Private name; call using ESMF_FieldGet()
subroutine ESMF_FieldGetLSAllocBounds(locstream, loca lDe, &

gridToFieldMap, &
ungriddedLBound, ungriddedUBound, &
totalLBound, totalUBound, totalCount, rc)

ARGUMENTS:

type(ESMF_LocStream), intent(inout) :: locstream
integer, intent(in), optional :: localDe
integer, intent(in), optional :: gridToFieldMap(:)
integer, intent(in), optional :: ungriddedLBound(:)
integer, intent(in), optional :: ungriddedUBound(:)
integer, intent(out), optional :: totalLBound(:)
integer, intent(out), optional :: totalUBound(:)
integer, intent(out), optional :: totalCount(:)
integer, intent(out), optional :: rc

230

DESCRIPTION:

Compute the lower and upper bounds of Fortran data array thatcan later be used in FieldCreate interface to create a
ESMF_Field from aESMF_LocStream and the Fortran data array. For an example and associated documentation
using this method see Section 20.3.8.
The arguments are:

locstream ESMF_LocStream .

[localDe] Local DE for which information is requested.[0,..,localDeCount-1] . For localDeCount==1
the localDe argument may be omitted, in which case it will default tolocalDe=0 .

[gridToFieldMap] List with number of elements equal to 1. The list elements mapthe dimension of thelocstream
to a dimension in thefield by specifying the appropriatefield dimension index. The default is to map the
locstream ’s dimension against the lowest dimension of thefield in sequence, i.e.gridToFieldMap =
(/1/). The values of allgridToFieldMap entries must be greater than or equal to one and smaller than or
equal to thefield rank. The total ungridded dimensions in thefield are the totalfield dimensions less
the dimensions in thegrid . Ungridded dimensions must be in the same order they are stored in the⁀field.

[ungriddedLBound] Lower bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than 1, both ungriddedLBound and
ungriddedUBound must be specified. When both are specified the values are checked for consistency. Note that
the the ordering of these ungridded dimensions is the same astheir order in thefield .

[ungriddedUBound] Upper bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than 1, both ungriddedLBound and
ungriddedUBound must be specified. When both are specified the values are checked for consistency. Note that
the the ordering of these ungridded dimensions is the same astheir order in thefield .

[totalLBound] The relative lower bounds of Fortran data array to be used later in tt ESMF_FieldCreate fromESMF_LocStream
and Fortran data array. This is an output variable from this user interface.

[totalUBound] The relative upper bounds of Fortran data array to be used later in tt ESMF_FieldCreate fromESMF_LocStream
and Fortran data array. This is an output variable from this user interface.

[totalCount] Number of elements need to be allocated for Fortran data array to be used later in tt ESMF_FieldCreate
from ESMF_LocStream and Fortran data array. This is an output variable from this user interface.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.6.28 ESMF_FieldGet - Get precomputed Fortran data arraybounds for creating a Field from a Mesh and
a Fortran array

INTERFACE:

! Private name; call using ESMF_FieldGet()
subroutine ESMF_FieldGetMeshAllocBounds(mesh, localDe , &

gridToFieldMap, &
ungriddedLBound, ungriddedUBound, &
totalLBound, totalUBound, totalCount, rc)

ARGUMENTS:

231

type(ESMF_Mesh), intent(inout) :: mesh
integer, intent(in), optional :: localDe
integer, intent(in), optional :: gridToFieldMap(:)
integer, intent(in), optional :: ungriddedLBound(:)
integer, intent(in), optional :: ungriddedUBound(:)
integer, intent(out), optional :: totalLBound(:)
integer, intent(out), optional :: totalUBound(:)
integer, intent(out), optional :: totalCount(:)
integer, intent(out), optional :: rc

DESCRIPTION:

Compute the lower and upper bounds of Fortran data array thatcan later be used in FieldCreate interface to create a
ESMF_Field from aESMF_Meshand the Fortran data array. For an example and associated documentation using
this method see Section 20.3.8.
The arguments are:

mesh ESMF_Mesh.

[localDe] Local DE for which information is requested.[0,..,localDeCount-1] . For localDeCount==1
the localDe argument may be omitted, in which case it will default tolocalDe=0 .

[gridToFieldMap] List with number of elements equal to thegrid ’s dimCount. The list elements map each dimen-
sion of thegrid to a dimension in thefield by specifying the appropriatefield dimension index. The
default is to map all of thegrid ’s dimensions against the lowest dimensions of thefield in sequence, i.e.
gridToFieldMap = (/1,2,3,.../). The values of allgridToFieldMap entries must be greater than or equal
to one and smaller than or equal to thefield rank. It is erroneous to specify the samegridToFieldMap
entry multiple times. The total ungridded dimensions in thefield are the totalfield dimensions less the
dimensions in thegrid . Ungridded dimensions must be in the same order they are stored in the⁀field.

[ungriddedLBound] Lower bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in thefield .

[ungriddedUBound] Upper bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in thefield .

[totalLBound] The relative lower bounds of Fortran data array to be used later in tt ESMF_FieldCreate fromESMF_Mesh
and Fortran data array. This is an output variable from this user interface.

[totalUBound] The relative upper bounds of Fortran data array to be used later in tt ESMF_FieldCreate fromESMF_Mesh
and Fortran data array. This is an output variable from this user interface.

[totalCount] Number of elements need to be allocated for Fortran data array to be used later in tt ESMF_FieldCreate
from ESMF_Meshand Fortran data array. This is an output variable from this user interface.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.6.29 ESMF_FieldGet - Get precomputed Fortran data arraybounds for creating a Field from an XGrid
and a Fortran array

INTERFACE:

232

! Private name; call using ESMF_FieldGet()
subroutine ESMF_FieldGetXGAllocBounds(xgrid, xgridSid e, gridIndex, &

localDe, gridToFieldMap, &
ungriddedLBound, ungriddedUBound, &
totalLBound, totalUBound, totalCount, rc)

ARGUMENTS:

type(ESMF_XGrid) :: xgrid
type(ESMF_XGridSide), intent(in), optional :: xgridSide
integer, intent(in), optional :: gridIndex
integer, intent(in), optional :: localDe
integer, intent(in), optional :: gridToFieldMap(:)
integer, intent(in), optional :: ungriddedLBound(:)
integer, intent(in), optional :: ungriddedUBound(:)
integer, intent(out), optional :: totalLBound(:)
integer, intent(out), optional :: totalUBound(:)
integer, intent(out), optional :: totalCount(:)
integer, intent(out), optional :: rc

DESCRIPTION:

Compute the lower and upper bounds of Fortran data array thatcan later be used in FieldCreate interface to create a
ESMF_Field from aESMF_XGrid and the Fortran data array. For an example and associated documentation using
this method see Section 20.3.8.
The arguments are:

xgrid ESMF_XGrid object.

[xgridSide] Which side of the XGrid to create the Field on (either ESMF_XGRID_SIDEA, ESMF_XGRID_SIDEB,
or ESMF_XGRID_BALANCED). If not passed in then defaults to ESMF_XGRID_BALANCED.

[xgridIndex] If xgridSide is ESMF_XGRID_SIDEA or ESMF_XGRID_SIDEB thenthis index tells which Grid on
that side to create the Field on. If not provided, defaults to1.

[localDe] Local DE for which information is requested.[0,..,localDeCount-1] . For localDeCount==1
the localDe argument may be omitted, in which case it will default tolocalDe=0 .

[gridToFieldMap] List with number of elements equal to 1. The list elements mapthe dimension of thelocstream
to a dimension in thefield by specifying the appropriatefield dimension index. The default is to map the
locstream ’s dimension against the lowest dimension of thefield in sequence, i.e.gridToFieldMap =
(/1/). The values of allgridToFieldMap entries must be greater than or equal to one and smaller than or
equal to thefield rank. The total ungridded dimensions in thefield are the totalfield dimensions less
the dimensions in thegrid . Ungridded dimensions must be in the same order they are stored in the⁀field.

[ungriddedLBound] Lower bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than 1, both ungriddedLBound and
ungriddedUBound must be specified. When both are specified the values are checked for consistency. Note that
the the ordering of these ungridded dimensions is the same astheir order in thefield .

[ungriddedUBound] Upper bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than 1, both ungriddedLBound and
ungriddedUBound must be specified. When both are specified the values are checked for consistency. Note that
the the ordering of these ungridded dimensions is the same astheir order in thefield .

[totalLBound] The relative lower bounds of Fortran data array to be used later in tt ESMF_FieldCreate fromESMF_LocStream
and Fortran data array. This is an output variable from this user interface.

233

[totalUBound] The relative upper bounds of Fortran data array to be used later in tt ESMF_FieldCreate fromESMF_LocStream
and Fortran data array. This is an output variable from this user interface.

[totalCount] Number of elements need to be allocated for Fortran data array to be used later in tt ESMF_FieldCreate
from ESMF_LocStream and Fortran data array. This is an output variable from this user interface.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.6.30 ESMF_FieldPrint - Print the contents of a Field

INTERFACE:

subroutine ESMF_FieldPrint(field, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: field
integer, intent(out), optional :: rc

DESCRIPTION:

Prints information about thefield to stdout . This subroutine goes through the internal data members of afield
data type and prints information of each data member.

Note: ManyESMF_<class>Print methods are implemented in C++. On some platforms/compilers there is a
potential issue with interleaving Fortran and C++ output tostdout such that it doesn’t appear in the expected order.
If this occurs, theESMF_IOUnitFlush() method may be used on unit 6 to get coherent output.

The arguments are:

field An ESMF_Field object.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.6.31 ESMF_FieldRead - Read Field data from a file

INTERFACE:

subroutine ESMF_FieldRead(field, file, iofmt, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: field
character(*), intent(in) :: file
type(ESMF_IOFmtFlag), intent(in), optional :: iofmt
integer, intent(out), optional :: rc

DESCRIPTION:

Read Field data from a file and put it into an ESMF_Field object. For this API to be functional, the environment
variableESMF_PIOshould be set to "internal" when the ESMF library is built. Please see the section on Data
I/O, 30.3.
Limitations:

• Only 1 DE per PET supported.

234

• Not supported inESMF_COMM=mpiunimode.

The arguments are:

field TheESMF_Field object in which the read data is returned.

file The name of the file from which Field data is read.

[iofmt] The IO format. Please see Section 9.2.8 for the list of options. If not present, defaults toESMF_IOFMT_NETCDF.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.6.32 ESMF_FieldSetCommit - Finish a create Field from Grid started with FieldCreateEmpty

INTERFACE:

! Private name; call using ESMF_FieldSetCommit()
subroutine ESMF_FieldSetCommitGrid<rank><type><kind> (field, grid, &
farray, indexflag, copyflag, staggerloc, gridToFieldMap , ungriddedLBound, &
ungriddedUBound, maxHaloLWidth, maxHaloUWidth, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: field
type(ESMF_Grid), intent(in) :: grid
<type> (ESMF_KIND_<kind>), dimension(<rank>), target :: farray
type(ESMF_IndexFlag), intent(in) :: indexflag
type(ESMF_CopyFlag), intent(in), optional :: copyflag
type(ESMF_STAGGERLOC), intent(in), optional :: staggerl oc
integer, intent(in), optional :: gridToFieldMap(:)
integer, intent(in), optional :: ungriddedLBound(:)
integer, intent(in), optional :: ungriddedUBound(:)
integer, intent(in), optional :: maxHaloLWidth(:)
integer, intent(in), optional :: maxHaloUWidth(:)
integer, intent(inout), optional :: rc

DESCRIPTION:

This call completes anESMF_Field allocated with theESMF_FieldCreateEmpty() call. For an example and
associated documentation using this method see Section 20.3.7.
The fortran data pointer insideESMF_Field can be queried but deallocating the retrieved data pointer is not allowed.
The arguments are:

field TheESMF_Field object to be completed and committed in this call. Thefield will have the same dimension
(dimCount) as the rank of thefarray .

grid TheESMF_Grid object to finish the Field.

farray Native fortran data array to be copied/referenced in thefield . The field dimension (dimCount) will be
the same as the dimCount for thefarray .

indexflag Indicate how DE-local indices are defined. See section 9.2.9for a list of valid indexflag options.

[copyflag] Indicates whether to copy thefarray or reference it directly. For valid values see 9.2.5. The default is
ESMF_DATA_REF.

235

[staggerloc] Stagger location of data in grid cells. For valid predefined values see Section 25.2.4. To create a custom
stagger location see Section 25.3.21. The default value isESMF_STAGGERLOC_CENTER.

[gridToFieldMap] List with number of elements equal to thegrid ’s dimCount. The list elements map each dimen-
sion of thegrid to a dimension in thefarray by specifying the appropriatefarray dimension index. The
default is to map all of thegrid ’s dimensions against the lowest dimensions of thefarray in sequence, i.e.
gridToFieldMap = (/1,2,3,.../). Unmappedfarray dimensions are undistributed Field dimensions. All
gridToFieldMap entries must be greater than or equal to zero and smaller thanor equal to the Field dim-
Count. It is erroneous to specify the same entry multiple times unless it is zero. If the Field dimCount is less
than the Grid dimCount then the default gridToFieldMap willcontain zeros for the rightmost entries. A zero
entry in thegridToFieldMap indicates that the particular Grid dimension will be replicating the Field across
the DEs along this direction.

[ungriddedLBound] Lower bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in thefield .

[ungriddedUBound] Upper bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in thefield .

[maxHaloLWidth] Lower bound of halo region. The size of this array is the number of gridded dimensions in
the field . However, ordering of the elements needs to be the same as they appear in thefield . Values
default to 0. If values for maxHaloLWidth are specified they must be reflected in the size of thefield .
That is, for each gridded dimension thefield size should be max(maxHaloLWidth + maxHaloUWidth
+ computationalCount , exclusiveCount). Although the halo operation is not implemented, the
minHaloLWidth is checked for validity and stored in preparation for the implementation of the halo method.
HALO OPERATION NOT IMPLEMENTED

[maxHaloUWidth] Upper bound of halo region. The size of this array is the number of gridded dimensions in
the field . However, ordering of the elements needs to be the same as they appear in thefield . Values
default to 0. If values for maxHaloUWidth are specified they must be reflected in the size of thefield .
That is, for each gridded dimension thefield size should max(maxHaloLWidth + maxHaloUWidth
+ computationalCount , exclusiveCount). Although the halo operation is not implemented, the
maxHaloUWidth is checked for validity and stored in preparation for the implementation of the halo method.
HALO OPERATION NOT IMPLEMENTED

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.6.33 ESMF_FieldSetCommit - Finish a create Field pointer from Grid started with FieldCreateEmpty

INTERFACE:

! Private name; call using ESMF_FieldSetCommit()
subroutine ESMF_FieldSetCommitGridPtr<rank><type><ki nd>(field, grid, &
farrayPtr, copyflag, staggerloc, gridToFieldMap, &
maxHaloLWidth, maxHaloUWidth, rc)

ARGUMENTS:

236

type(ESMF_Field), intent(inout) :: field
type(ESMF_Grid), intent(in) :: grid
<type> (ESMF_KIND_<kind>), dimension(<rank>), pointer : : farrayPtr
type(ESMF_CopyFlag), intent(in), optional :: copyflag
type(ESMF_STAGGERLOC), intent(in), optional :: staggerl oc
integer, intent(in), optional :: gridToFieldMap(:)
integer, intent(in), optional :: maxHaloLWidth(:)
integer, intent(in), optional :: maxHaloUWidth(:)
integer, intent(inout), optional :: rc

DESCRIPTION:

This call completes anESMF_Field allocated with theESMF_FieldCreateEmpty() call. For an example and
associated documentation using this method see Section 20.3.7.
The fortran data pointer insideESMF_Field can be queried and deallocated when copyflag isESMF_DATA_REF.
Note that theESMF_FieldDestroy call does not deallocate the fortran data pointer in this case. This gives user
more flexibility over memory management.
The arguments are:

field TheESMF_Field object to be completed and committed in this call. Thefield will have the same dimension
(dimCount) as the rank of thefarrayPtr .

grid TheESMF_Grid object to finish the Field.

farrayPtr Native fortran data pointer to be copied/referenced in thefield . Thefield dimension (dimCount) will
be the same as the dimCount for thefarrayPtr .

[copyflag] Indicates whether to copy thefarrayPtr or reference it directly. For valid values see 9.2.5. The default
is ESMF_DATA_REF.

[staggerloc] Stagger location of data in grid cells. For valid predefined values see Section 25.2.4. To create a custom
stagger location see Section 25.3.21. The default value isESMF_STAGGERLOC_CENTER.

[gridToFieldMap] List with number of elements equal to thegrid ’s dimCount. The list elements map each dimen-
sion of thegrid to a dimension in thefarrayPtr by specifying the appropriatefarrayPtr dimension
index. The default is to map all of thegrid ’s dimensions against the lowest dimensions of thefarrayPtr in
sequence, i.e.gridToFieldMap = (/1,2,3,.../). UnmappedfarrayPtr dimensions are undistributed Field
dimensions. AllgridToFieldMap entries must be greater than or equal to zero and smaller thanor equal
to the Field dimCount. It is erroneous to specify the same entry multiple times unless it is zero. If the Field
dimCount is less than the Grid dimCount then the default gridToFieldMap will contain zeros for the rightmost
entries. A zero entry in thegridToFieldMap indicates that the particular Grid dimension will be replicating
the Field across the DEs along this direction.

[maxHaloLWidth] Lower bound of halo region. The size of this array is the number of gridded dimensions in
the field . However, ordering of the elements needs to be the same as they appear in thefield . Values
default to 0. If values for maxHaloLWidth are specified they must be reflected in the size of thefield .
That is, for each gridded dimension thefield size should be max(maxHaloLWidth + maxHaloUWidth
+ computationalCount , exclusiveCount). Although the halo operation is not implemented, the
minHaloLWidth is checked for validity and stored in preparation for the implementation of the halo method.
HALO OPERATION NOT IMPLEMENTED

[maxHaloUWidth] Upper bound of halo region. The size of this array is the number of gridded dimensions in
the field . However, ordering of the elements needs to be the same as they appear in thefield . Values
default to 0. If values for maxHaloUWidth are specified they must be reflected in the size of thefield .
That is, for each gridded dimension thefield size should max(maxHaloLWidth + maxHaloUWidth
+ computationalCount , exclusiveCount). Although the halo operation is not implemented, the
maxHaloUWidth is checked for validity and stored in preparation for the implementation of the halo method.
HALO OPERATION NOT IMPLEMENTED

237

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.6.34 ESMF_FieldSetCommit - Finish a create Field from LocStream started with FieldCreateEmpty

INTERFACE:

! Private name; call using ESMF_FieldSetCommit()
subroutine ESMF_FieldSetCommitLS<rank><type><kind>(f ield, locstream, &
farray, indexflag, copyflag, gridToFieldMap, ungriddedL Bound, &
ungriddedUBound, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: field
type(ESMF_LocStream), intent(in) :: locstream
<type> (ESMF_KIND_<kind>), dimension(<rank>), target :: farray
type(ESMF_IndexFlag), intent(in) :: indexflag
type(ESMF_CopyFlag), intent(in), optional :: copyflag
integer, intent(in), optional :: gridToFieldMap(:)
integer, intent(in), optional :: ungriddedLBound(:)
integer, intent(in), optional :: ungriddedUBound(:)
integer, intent(inout), optional :: rc

DESCRIPTION:

This call completes anESMF_Field allocated with theESMF_FieldCreateEmpty() call. For an example and
associated documentation using this method see Section 20.3.7.
The fortran data pointer insideESMF_Field can be queried but deallocating the retrieved data pointer is not allowed.
The arguments are:

field TheESMF_Field object to be completed and committed in this call. Thefield will have the same dimension
(dimCount) as the rank of thefarray .

locstream TheESMF_LocStream object to finish the Field.

farray Native fortran data array to be copied/referenced in thefield . The field dimension (dimCount) will be
the same as the dimCount for thefarray .

indexflag Indicate how DE-local indices are defined. See section 9.2.9for a list of valid indexflag options.

[copyflag] Indicates whether to copy thefarray or reference it directly. For valid values see 9.2.5. The default is
ESMF_DATA_REF.

[gridToFieldMap] List with number of elements equal to thelocstream ’s dimCount. The list elements map each
dimension of thelocstream to a dimension in thefarray by specifying the appropriatefarray dimension
index. The default is to map all of thelocstream ’s dimensions against the lowest dimensions of thefarray
in sequence, i.e.gridToFieldMap = (/1,2,3,.../). Unmappedfarray dimensions are undistributed Field
dimensions. AllgridToFieldMap entries must be greater than or equal to zero and smaller thanor equal
to the Field dimCount. It is erroneous to specify the same entry multiple times unless it is zero. If the Field
dimCount is less than the LocStream dimCount then the default gridToFieldMap will contain zeros for the
rightmost entries. A zero entry in thegridToFieldMap indicates that the particular LocStream dimension
will be replicating the Field across the DEs along this direction.

238

[ungriddedLBound] Lower bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in thefield . All ungridded dimen-
sions of thefield are also undistributed. When field dimension count is greater than locstream dimension
count, both ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are
checked for consistency. Note that the the ordering of theseungridded dimensions is the same as their order in
thefield .

[ungriddedUBound] Upper bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in thefield . All ungridded dimen-
sions of thefield are also undistributed. When field dimension count is greater than locstream dimension
count, both ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are
checked for consistency. Note that the the ordering of theseungridded dimensions is the same as their order in
thefield .

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.6.35 ESMF_FieldSetCommit - Finish a create Field pointer from LocStream started with FieldCreateEmpty

INTERFACE:

! Private name; call using ESMF_FieldSetCommit()
subroutine ESMF_FieldSetCommitLSPtr<rank><type><kind >(field, locstream, &
farrayPtr, copyflag, gridToFieldMap, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: field
type(ESMF_LocStream), intent(in) :: locstream
<type> (ESMF_KIND_<kind>), dimension(<rank>), pointer : : farrayPtr
type(ESMF_CopyFlag), intent(in), optional :: copyflag
integer, intent(in), optional :: gridToFieldMap(:)
integer, intent(inout), optional :: rc

DESCRIPTION:

This call completes anESMF_Field allocated with theESMF_FieldCreateEmpty() call. For an example and
associated documentation using this method see Section 20.3.7.
The fortran data pointer insideESMF_Field can be queried and deallocated when copyflag isESMF_DATA_REF.
Note that theESMF_FieldDestroy call does not deallocate the fortran data pointer in this case. This gives user
more flexibility over memory management.
The arguments are:

field TheESMF_Field object to be completed and committed in this call. Thefield will have the same dimension
(dimCount) as the rank of thefarrayPtr .

locstream TheESMF_LocStream object to finish the Field.

farrayPtr Native fortran data pointer to be copied/referenced in thefield . Thefield dimension (dimCount) will
be the same as the dimCount for thefarrayPtr .

[copyflag] Indicates whether to copy thefarrayPtr or reference it directly. For valid values see 9.2.5. The default
is ESMF_DATA_REF.

239

[gridToFieldMap] List with number of elements equal to thelocstream ’s dimCount. The list elements map each
dimension of thelocstream to a dimension in thefarrayPtr by specifying the appropriatefarrayPtr
dimension index. The default is to map all of thelocstream ’s dimensions against the lowest dimensions
of the farrayPtr in sequence, i.e.gridToFieldMap = (/1,2,3,.../). UnmappedfarrayPtr dimensions
are undistributed Field dimensions. AllgridToFieldMap entries must be greater than or equal to zero and
smaller than or equal to the Field dimCount. It is erroneous to specify the same entry multiple times unless it is
zero. If the Field dimCount is less than the LocStream dimCount then the default gridToFieldMap will contain
zeros for the rightmost entries. A zero entry in thegridToFieldMap indicates that the particular LocStream
dimension will be replicating the Field across the DEs alongthis direction.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.6.36 ESMF_FieldSetCommit - Finish a create Field from Mesh started with FieldCreateEmpty

INTERFACE:

! Private name; call using ESMF_FieldSetCommit()
subroutine ESMF_FieldSetCommitMesh<rank><type><kind> (field, mesh, &
farray, location, indexflag, copyflag, gridToFieldMap, u ngriddedLBound, &
ungriddedUBound, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: field
type(ESMF_Mesh), intent(in) :: mesh
<type> (ESMF_KIND_<kind>), dimension(<rank>), target :: farray
type(ESMF_MeshLoc), intent(in), optional :: location
type(ESMF_IndexFlag), intent(in) :: indexflag
type(ESMF_CopyFlag), intent(in), optional :: copyflag
integer, intent(in), optional :: gridToFieldMap(:)
integer, intent(in), optional :: ungriddedLBound(:)
integer, intent(in), optional :: ungriddedUBound(:)
integer, intent(inout), optional :: rc

DESCRIPTION:

This call completes anESMF_Field allocated with theESMF_FieldCreateEmpty() call. For an example and
associated documentation using this method see Section 20.3.7.
The fortran data pointer insideESMF_Field can be queried but deallocating the retrieved data pointer is not allowed.
The arguments are:

field TheESMF_Field object to be completed and committed in this call. Thefield will have the same dimension
(dimCount) as the rank of thefarray .

mesh TheESMF_Meshobject to finish the Field.

farray Native fortran data array to be copied/referenced in thefield . The field dimension (dimCount) will be
the same as the dimCount for thefarray .

[location] Which part of the mesh to build the Field on. Can be set to either ESMF_MESHLOC_NODEorESMF_MESHLOC_ELEMENT.
If not set, defaults toESMF_MESHLOC_NODE.

indexflag Indicate how DE-local indices are defined. See section 9.2.9for a list of valid indexflag options.

240

[copyflag] Indicates whether to copy thefarray or reference it directly. For valid values see 9.2.5. The default is
ESMF_DATA_REF.

[gridToFieldMap] List with number of elements equal to themesh’s dimCount. The list elements map each di-
mension of themesh to a dimension in thefarray by specifying the appropriatefarray dimension index.
The default is to map all of themesh’s dimensions against the lowest dimensions of thefarray in sequence,
i.e. gridToFieldMap = (/1,2,3,.../). Unmappedfarray dimensions are undistributed Field dimensions.
All gridToFieldMap entries must be greater than or equal to zero and smaller thanor equal to the Field
dimCount. It is erroneous to specify the same entry multipletimes unless it is zero. If the Field dimCount is
less than the Mesh dimCount then the default gridToFieldMapwill contain zeros for the rightmost entries. A
zero entry in thegridToFieldMap indicates that the particular Mesh dimension will be replicating the Field
across the DEs along this direction.

[ungriddedLBound] Lower bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than Mesh dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in thefield .

[ungriddedUBound] Upper bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than Mesh dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in thefield .

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.6.37 ESMF_FieldSetCommit - Finish a create Field pointer from Mesh started with FieldCreateEmpty

INTERFACE:

! Private name; call using ESMF_FieldSetCommit()
subroutine ESMF_FieldSetCommitMeshPtr<rank><type><ki nd>(field, mesh, &
farrayPtr, indexflag, copyflag, gridToFieldMap, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: field
type(ESMF_Mesh), intent(in) :: mesh
<type> (ESMF_KIND_<kind>), dimension(<rank>), pointer : : farrayPtr
type(ESMF_CopyFlag), intent(in), optional :: copyflag
integer, intent(in), optional :: gridToFieldMap(:)
integer, intent(inout), optional :: rc

DESCRIPTION:

This call completes anESMF_Field allocated with theESMF_FieldCreateEmpty() call. For an example and
associated documentation using this method see Section 20.3.7.
The fortran data pointer insideESMF_Field can be queried and deallocated when copyflag isESMF_DATA_REF.
Note that theESMF_FieldDestroy call does not deallocate the fortran data pointer in this case. This gives user
more flexibility over memory management.
The arguments are:

241

field TheESMF_Field object to be completed and committed in this call. Thefield will have the same dimension
(dimCount) as the rank of thefarrayPtr .

mesh TheESMF_Meshobject to finish the Field.

farrayPtr Native fortran data pointer to be copied/referenced in thefield . Thefield dimension (dimCount) will
be the same as the dimCount for thefarrayPtr .

[copyflag] Indicates whether to copy thefarrayPtr or reference it directly. For valid values see 9.2.5. The default
is ESMF_DATA_REF.

[gridToFieldMap] List with number of elements equal to themesh’s dimCount. The list elements map each dimen-
sion of themesh to a dimension in thefarrayPtr by specifying the appropriatefarrayPtr dimension
index. The default is to map all of themesh’s dimensions against the lowest dimensions of thefarrayPtr in
sequence, i.e.gridToFieldMap = (/1,2,3,.../). UnmappedfarrayPtr dimensions are undistributed Field
dimensions. AllgridToFieldMap entries must be greater than or equal to zero and smaller thanor equal
to the Field dimCount. It is erroneous to specify the same entry multiple times unless it is zero. If the Field
dimCount is less than the Mesh dimCount then the default gridToFieldMap will contain zeros for the rightmost
entries. A zero entry in thegridToFieldMap indicates that the particular Mesh dimension will be replicating
the Field across the DEs along this direction.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.6.38 ESMF_FieldSetCommit - Finish a create Field from XGrid started with FieldCreateEmpty

INTERFACE:

! Private name; call using ESMF_FieldSetCommit()
subroutine ESMF_FieldSetCommitXG<rank><type><kind>(f ield, xgrid, &
xgridSide, gridIndex, &
farray, indexflag, copyflag, gridToFieldMap, ungriddedL Bound, &
ungriddedUBound, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: field
type(ESMF_XGrid), intent(in) :: xgrid
type(ESMF_XGridSide), intent(in), optional :: xgridSide
integer, intent(in), optional :: gridIndex
<type> (ESMF_KIND_<kind>), dimension(<rank>), target :: farray
type(ESMF_IndexFlag), intent(in) :: indexflag
type(ESMF_CopyFlag), intent(in), optional :: copyflag
integer, intent(in), optional :: gridToFieldMap(:)
integer, intent(in), optional :: ungriddedLBound(:)
integer, intent(in), optional :: ungriddedUBound(:)
integer, intent(inout), optional :: rc

DESCRIPTION:

This call completes anESMF_Field allocated with theESMF_FieldCreateEmpty() call. For an example and
associated documentation using this method see Section 20.3.7.
The fortran data pointer insideESMF_Field can be queried but deallocating the retrieved data pointer is not allowed.
The arguments are:

242

field TheESMF_Field object to be completed and committed in this call. Thefield will have the same dimension
(dimCount) as the rank of thefarray .

xgrid TheESMF_XGrid object to finish the Field.

[xgridSide] Which side of the XGrid to create the Field on (either ESMF_XGRID_SIDEA, ESMF_XGRID_SIDEB,
or ESMF_XGRID_BALANCED). If not passed in then defaults to ESMF_XGRID_BALANCED.

[xgridIndex] If xgridSide is ESMF_XGRID_SIDEA or ESMF_XGRID_SIDEB thenthis index tells which Grid on
that side to create the Field on. If not provided, defaults to1.

farray Native fortran data array to be copied/referenced in thefield . The field dimension (dimCount) will be
the same as the dimCount for thefarray .

indexflag Indicate how DE-local indices are defined. See section 9.2.9for a list of valid indexflag options.

[copyflag] Indicates whether to copy thefarray or reference it directly. For valid values see 9.2.5. The default is
ESMF_DATA_REF.

[gridToFieldMap] List with number of elements equal to thexgrid ’s dimCount. The list elements map each di-
mension of thexgrid to a dimension in thefarray by specifying the appropriatefarray dimension index.
The default is to map all of thexgrid ’s dimensions against the lowest dimensions of thefarray in sequence,
i.e. gridToFieldMap = (/1,2,3,.../). Unmappedfarray dimensions are undistributed Field dimensions.
All gridToFieldMap entries must be greater than or equal to zero and smaller thanor equal to the Field
dimCount. It is erroneous to specify the same entry multipletimes unless it is zero. If the Field dimCount is
less than the XGrid dimCount then the default gridToFieldMap will contain zeros for the rightmost entries. A
zero entry in thegridToFieldMap indicates that the particular XGrid dimension will be replicating the Field
across the DEs along this direction.

[ungriddedLBound] Lower bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than XGrid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in thefield .

[ungriddedUBound] Upper bounds of the ungridded dimensions of thefield . The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in thefield . All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than XGrid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in thefield .

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.6.39 ESMF_FieldSetCommit - Finish a create Field pointer from XGrid started with FieldCreateEmpty

INTERFACE:

! Private name; call using ESMF_FieldSetCommit()
subroutine ESMF_FieldSetCommitXGPtr<rank><type><kind >(field, xgrid, &
xgridSide, gridIndex, &
farrayPtr, indexflag, copyflag, gridToFieldMap, rc)

ARGUMENTS:

243

type(ESMF_Field), intent(inout) :: field
type(ESMF_XGrid), intent(in) :: xgrid
type(ESMF_XGridSide), intent(in), optional :: xgridSide
integer, intent(in), optional :: gridIndex
<type> (ESMF_KIND_<kind>), dimension(<rank>), pointer : : farrayPtr
type(ESMF_CopyFlag), intent(in), optional :: copyflag
integer, intent(in), optional :: gridToFieldMap(:)
integer, intent(inout), optional :: rc

DESCRIPTION:

This call completes anESMF_Field allocated with theESMF_FieldCreateEmpty() call. For an example and
associated documentation using this method see Section 20.3.7.
The fortran data pointer insideESMF_Field can be queried and deallocated when copyflag isESMF_DATA_REF.
Note that theESMF_FieldDestroy call does not deallocate the fortran data pointer in this case. This gives user
more flexibility over memory management.
The arguments are:

field TheESMF_Field object to be completed and committed in this call. Thefield will have the same dimension
(dimCount) as the rank of thefarrayPtr .

xgrid TheESMF_XGrid object to finish the Field.

[xgridSide] Which side of the XGrid to create the Field on (either ESMF_XGRID_SIDEA, ESMF_XGRID_SIDEB,
or ESMF_XGRID_BALANCED). If not passed in then defaults to ESMF_XGRID_BALANCED.

[xgridIndex] If xgridSide is ESMF_XGRID_SIDEA or ESMF_XGRID_SIDEB thenthis index tells which Grid on
that side to create the Field on. If not provided, defaults to1.

farrayPtr Native fortran data pointer to be copied/referenced in thefield . Thefield dimension (dimCount) will
be the same as the dimCount for thefarrayPtr .

[copyflag] Indicates whether to copy thefarrayPtr or reference it directly. For valid values see 9.2.5. The default
is ESMF_DATA_REF.

[gridToFieldMap] List with number of elements equal to thexgrid ’s dimCount. The list elements map each dimen-
sion of thexgrid to a dimension in thefarrayPtr by specifying the appropriatefarrayPtr dimension
index. The default is to map all of thexgrid ’s dimensions against the lowest dimensions of thefarrayPtr
in sequence, i.e.gridToFieldMap = (/1,2,3,.../). UnmappedfarrayPtr dimensions are undistributed
Field dimensions. AllgridToFieldMap entries must be greater than or equal to zero and smaller thanor
equal to the Field dimCount. It is erroneous to specify the same entry multiple times unless it is zero. If the
Field dimCount is less than the XGrid dimCount then the default gridToFieldMap will contain zeros for the
rightmost entries. A zero entry in thegridToFieldMap indicates that the particular XGrid dimension will be
replicating the Field across the DEs along this direction.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.6.40 ESMF_FieldValidate - Check validity of a Field

INTERFACE:

subroutine ESMF_FieldValidate(field, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: field
integer, intent(out), optional :: rc

244

DESCRIPTION:

Validates that thefield is internally consistent. Currently this method determines if the field is uninitialized or
already destroyed. It validates the contained array and grid objects. The code also checks if the array and grid sizes
agree. This check compares the distgrid contained in array and grid; then it proceeds to compare the computational
bounds contained in array and grid.
The method returns an error code if problems are found.
The arguments are:

field ESMF_Field to validate.

[rc] Return code; equalsESMF_SUCCESSif the field is valid.

20.6.41 ESMF_FieldWrite - Write Field data into a file

INTERFACE:

subroutine ESMF_FieldWrite(field, file, append, timesli ce, iofmt, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: field
character(*), intent(in) :: file
logical, intent(in), optional :: append
integer, intent(in), optional :: timeslice
type(ESMF_IOFmtFlag), intent(in), optional :: iofmt
integer, intent(out), optional :: rc

DESCRIPTION:

Write Field data into a file. For this API to be functional, theenvironment variableESMF_PIOshould be set to
"internal" when the ESMF library is built. Please see the section on Data I/O, 30.3.
Limitations:

• Only 1 DE per PET supported.

• Not supported inESMF_COMM=mpiunimode.

The arguments are:

field TheESMF_Field object that contains data to be written.

file The name of the output file to which Field data is written.

[append] Logical: if .true., data is appended to an existing file; default is .false.

[timeslice] Some IO formats (e.g. NetCDF) support the output of data in form of time slices. Thetimeslice argu-
ment provides access to this capability. Usage of this feature requires that the first slice is written with a positive
timeslice value, and that subsequent slices are written with atimeslice argument that increments by one
each time. By default, i.e. by omitting thetimeslice argument, no provisions for time slicing are made in
the output file.

[iofmt] The IO format. Please see Section 9.2.8 for the list of options. If not present, defaults toESMF_IOFMT_NETCDF.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

245

20.7 Class API: Field Communications

20.7.1 ESMF_FieldGather - Gather a Fortran array from an ESMF_Field

INTERFACE:

subroutine ESMF_FieldGather<rank><type><kind>(field, farray, patch, &
rootPet, vm, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: field
mtype (ESMF_KIND_mtypekind),dimension(mdim),intent(i n),target :: farray
integer, intent(in), optional :: patch
integer, intent(in) :: rootPet
type(ESMF_VM), intent(in), optional :: vm
integer, intent(out), optional :: rc

DESCRIPTION:

Gather the data of an ESMF_Field object into thefarray located onrootPET . A single DistGrid patch ofarray
must be gathered intofarray . The optionalpatch argument allows selection of the patch. For Fields defined ona
single patch DistGrid the default selection (patch 1) will be correct. The shape offarray must match the shape of
the patch in Field.
If the Field contains replicating DistGrid dimensions datawill be gathered from the numerically higher DEs. Repli-
cated data elements in numericaly lower DEs will be ignored.
This version of the interface implements the PET-based blocking paradigm: Each PET of the VM must issue this call
exactly once forall of its DEs. The call will block until all PET-local data objects are accessible.
For examples and associated documentations using this method see Section 20.3.30.
The arguments are:

field TheESMF_Field object from which data will be gathered.

[farray] The Fortran array into which to gather data. Only root must provide a validfarray .

[patch] The DistGrid patch infield from which to gatherfarray . By defaultfarray will be gathered from
patch 1.

rootPet PET that holds the valid destination array, i.e.farray .

[vm] Optional ESMF_VMobject of the current context. Providing the VM of the current context will lower the
method’s overhead.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.7.2 ESMF_FieldHalo - Execute a FieldHalo operation

INTERFACE:

subroutine ESMF_FieldHalo(field, routehandle, commflag , &
finishedflag, checkflag, rc)

ARGUMENTS:

246

type(ESMF_Field), intent(inout) :: field
type(ESMF_RouteHandle), intent(inout) :: routehandle
type(ESMF_CommFlag), intent(in), optional :: commflag
logical, intent(out), optional :: finishedflag
logical, intent(in), optional :: checkflag
integer, intent(out), optional :: rc

DESCRIPTION:

Execute a precomputed Field halo operation forfield . Thefield argument must be weakly congruent and type-
kind conform to the Field used duringESMF_FieldHaloStore() . Congruent Fields possess matching DistGrids,
and the shape of the local array tiles matches between the Fields for every DE. For weakly congruent Fields the sizes
of the undistributed dimensions, that vary faster with memory than the first distributed dimension, are permitted to be
different. This means that the sameroutehandle can be applied to a large class of similar Fields that differ in the
number of elements in the left most undistributed dimensions.
SeeESMF_FieldHaloStore() on how to precomputeroutehandle .
This call iscollectiveacross the current VM.

field ESMF_Field containing data to be haloed.

routehandle Handle to the precomputed Route.

[commflag] Indicate communication option. Default isESMF_COMM_BLOCKING, resulting in a blocking operation.
See section 9.2.3 for a complete list of valid settings.

[finishedflag] Used in combination withcommflag = ESMF_COMM_NBTESTFINISH.Returnedfinishedflag
equal to.true. indicates that all operations have finished. A value of.false. indicates that there are still
unfinished operations that require additional calls withcommflag = ESMF_COMM_NBTESTFINISH, or a
final call with commflag = ESMF_COMM_NBWAITFINISH. For all othercommflag settings the returned
value infinishedflag is always.true. .

[checkflag] If set to .TRUE. the input Field pair will be checked for consistency with theprecomputed operation
provided byroutehandle . If set to .FALSE. (default)only a very basic input check will be performed,
leaving many inconsistencies undetected. Setcheckflag to .FALSE. to achieve highest performance.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.7.3 ESMF_FieldHaloRelease - Release resources associated with a Field halo operation

INTERFACE:

subroutine ESMF_FieldHaloRelease(routehandle, rc)

ARGUMENTS:

type(ESMF_RouteHandle), intent(inout) :: routehandle
integer, intent(out), optional :: rc

DESCRIPTION:

Release resouces associated with a Field halo operation. After this callroutehandle becomes invalid.

routehandle Handle to the precomputed Route.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

247

20.7.4 ESMF_FieldHaloStore - Store a FieldHalo operation

INTERFACE:

subroutine ESMF_FieldHaloStore(field, routehandle, hal ostartregionflag, &
haloLDepth, haloUDepth, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: field
type(ESMF_RouteHandle), intent(inout) :: routehandle
type(ESMF_HaloStartRegionFlag), intent(in), optional : : halostartregionflag
integer, intent(in), optional :: haloLDepth(:)
integer, intent(in), optional :: haloUDepth(:)
integer, intent(out), optional :: rc

DESCRIPTION:

Store a Field halo operation over the data infield . By default, i.e. without specifyinghalostartregionflag ,
haloLDepth andhaloUDepth , all elements in the total Field region that lie outside the exclusive region will
be considered potential destination elements for halo. However, only those elements that have a corresponding halo
source element, i.e. an exclusive element on one of the DEs, will be updated under the halo operation. Elements that
have no associated source remain unchanged under halo.
Specifyinghalostartregionflag allows to change the shape of the effective halo region from the inside. Setting
this flag toESMF_REGION_COMPUTATIONALmeans that only elements outside the computational region of the
Field are considered for potential destination elements for halo. The default isESMF_REGION_EXCLUSIVE.
The haloLDepth andhaloUDepth arguments allow to reduce the extent of the effective halo region. Starting
at the region specified byhalostartregionflag , the haloLDepth andhaloUDepth define a halo depth
in each direction. Note that the maximum halo region is limited by the total Field region, independent of the ac-
tual haloLDepth andhaloUDepth setting. The total Field region is local DE specific. ThehaloLDepth and
haloUDepth are interpreted as the maximum desired extent, reducing thepotentially larger region available for halo.
The routine returns anESMF_RouteHandle that can be used to callESMF_FieldHalo() on any Field that is
weakly congruent and typekind conform tofield . Congruent Fields possess matching DistGrids, and the shape of the
local field tiles matches between the Fieldss for every DE. For weakly congruent Fieldss the sizes of the undistributed
dimensions, that vary faster with memory than the first distributed dimension, are permitted to be different. This means
that the sameroutehandle can be applied to a large class of similar Fieldss that differin the number of elements
in the left most undistributed dimensions.
This call iscollectiveacross the current VM.

field ESMF_Field containing data to be haloed. The data in this Field may be destroyed by this call.

routehandle Handle to the precomputed Route.

[halostartregionflag] The start of the effective halo region on every DE. The default setting isESMF_REGION_EXCLUSIVE,
rendering all non-exclusive elements potential halo destination elments. See section 9.2.13 for a complete list
of valid settings.

[haloLDepth] This vector specifies the lower corner of the effective halo region with respect to the lower corner of
halostartregionflag . The size ofhaloLDepth must equal the number of distributed Array dimen-
sions.

[haloUDepth] This vector specifies the upper corner of the effective halo region with respect to the upper corner of
halostartregionflag . The size ofhaloUDepth must equal the number of distributed Array dimen-
sions.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

248

20.7.5 ESMF_FieldRedist - Execute a Field redistribution

INTERFACE:

subroutine ESMF_FieldRedist(srcField, dstField, routeh andle, checkflag, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout),optional :: srcField
type(ESMF_Field), intent(inout),optional :: dstField
type(ESMF_RouteHandle), intent(inout) :: routehandle
logical, intent(in), optional :: checkflag
integer, intent(out), optional :: rc

DESCRIPTION:

Execute a precomputed Field redistribution fromsrcField to dstField . Both srcField and dstField
must be congruent and typekind conform with the respective Fields used duringESMF_FieldRedistStore() .
Congruent Fields possess matching DistGrids and the shape of the local array tiles matches between the Fields for
every DE. For weakly congruent Fields the sizes of the undistributed dimensions, that vary faster with memory than
the first distributed dimension, are permitted to be different. This means that the sameroutehandle can be applied
to a large class of similar Fields that differ in the number ofelements in the left most undistributed dimensions. Because
Grid dimensions are mapped to Field in a sequence order, it’snecessary to map the ungridded dimensions to the first set
of dimensions in order to use the weakly congruent Field redist feature. Not providing a non-default gridToFieldMap
during Field creation and then using such Fields in a weakly congruent manner in Field communication methods leads
to undefined behavior.
It is erroneous to specify the identical Field object forsrcField anddstField arguments.
SeeESMF_FieldRedistStore() on how to precomputeroutehandle .
This call iscollectiveacross the current VM.
For examples and associated documentations using this method see Section 20.3.32.

[srcField] ESMF_Field with source data.

[dstField] ESMF_Field with destination data.

routehandle Handle to the precomputed Route.

[checkflag] If set to .TRUE. the input Field pair will be checked for consistency with theprecomputed operation
provided byroutehandle . If set to .FALSE. (default)only a very basic input check will be performed,
leaving many inconsistencies undetected. Setcheckflag to .FALSE. to achieve highest performance.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.7.6 ESMF_FieldRedistRelease - Release resources associated with Field redistribution

INTERFACE:

subroutine ESMF_FieldRedistRelease(routehandle, rc)

ARGUMENTS:

type(ESMF_RouteHandle), intent(inout) :: routehandle
integer, intent(out), optional :: rc

DESCRIPTION:

Release resouces associated with a Field redistribution. After this callroutehandle becomes invalid.

249

routehandle Handle to the precomputed Route.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.7.7 ESMF_FieldRedistStore - Precompute Field redistribution with a local factor argument

INTERFACE:

! Private name; call using ESMF_FieldRedistStore()
subroutine ESMF_FieldRedistStore<type><kind>(srcFiel d, dstField, &

routehandle, factor, srcToDstTransposeMap, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: srcField
type(ESMF_Field), intent(inout) :: dstField
type(ESMF_RouteHandle), intent(inout) :: routehandle
<type>(ESMF_KIND_<kind>), intent(in) :: factor
integer, intent(in), optional :: srcToDstTransposeMap(:)
integer, intent(out), optional :: rc

DESCRIPTION:

ESMF_FieldRedistStore() is a collective method across all PETs of the current Component. The interface of
the method is overloaded, allowing – in principle – each PET to call intoESMF_FieldRedistStore() through a
different entry point. Restrictions apply as to which combinations are sensible. All other combinations result in ESMF
run time errors. The complete semantics of theESMF_FieldRedistStore() method, as provided through the
separate entry points shown in 20.7.7 and 20.7.8, is described in the following paragraphs as a whole.
Store a Field redistribution operation fromsrcField to dstField . Interface 20.7.7 allows PETs to specify a
factor argument. PETs not specifying afactor argument call into interface 20.7.8. If multiple PETs specify the
factor argument, its type and kind, as well as its value must match across all PETs. If none of the PETs specify
a factor argument the default will be a factor of 1. The resulting factor is applied to all of the source data during
redistribution, allowing scaling of the data, e.g. for unittransformation.
Both srcField anddstField are interpreted as sequentialized vectors. The sequence isdefined by the order of
DistGrid dimensions and the order of patches within the DistGrid or by user-supplied arbitrary sequence indices. See
section 22.2.17 for details on the definition ofsequence indices.
Source Field, destination Field, and the factor may be of different <type><kind>. Further, source and destination
Fields may differ in shape, however, the number of elements must match.
If srcToDstTransposeMap is not specified the redistribution corresponds to an identity mapping of the sequen-
tialized source Field to the sequentialized destination Field. If thesrcToDstTransposeMap argument is provided
it must be identical on all PETs. ThesrcToDstTransposeMap allows source and destination Field dimensions to
be transposed during the redistribution. The number of source and destination Field dimensions must be equal under
this condition and the size of mapped dimensions must match.
It is erroneous to specify the identical Field object forsrcField anddstField arguments.
The routine returns anESMF_RouteHandle that can be used to callESMF_FieldRedist() on any pair of Fields
that are weakly congruent and typekind conform with thesrcField , dstField pair. Congruent Fields possess
matching DistGrids, and the shape of the local array tiles matches between the Fields for every DE. For weakly
congruent Fields the sizes of the undistributed dimensions, that vary faster with memory than the first distributed
dimension, are permitted to be different. This means that the sameroutehandle can be applied to a large class of
similar Fields that differ in the number of elements in the left most undistributed dimensions. Because Grid dimensions
are mapped to Field in a sequence order, it’s necessary to mapthe ungridded dimensions to the first set of dimensions
in order to use the weakly congruent Field redist feature. Not providing a non-default gridToFieldMap during Field

250

creation and then using such Fields in a weakly congruent manner in Field communication methods leads to undefined
behavior.
This method is overloaded for:
ESMF_TYPEKIND_I4, ESMF_TYPEKIND_I8,
ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8.

This call iscollectiveacross the current VM.
For examples and associated documentations using this method see Section 20.3.32.
The arguments are:

srcField ESMF_Field with source data.

dstField ESMF_Field with destination data. The data in this Field may be destroyed by this call.

routehandle Handle to the precomputed Route.

factor Factor by which to multiply data. Default is 1. See full method description above for details on the interplay
with other PETs.

[srcToDstTransposeMap] List with as many entries as there are dimensions insrcField . Each entry maps the
correspondingsrcField dimension against the specifieddstField dimension. Mixing of distributed and
undistributed dimensions is supported.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.7.8 ESMF_FieldRedistStore - Precompute Field redistribution without a local factor argument

INTERFACE:

! Private name; call using ESMF_FieldRedistStore()
subroutine ESMF_FieldRedistStoreNF(srcField, dstField , &

routehandle, srcToDstTransposeMap, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: srcField
type(ESMF_Field), intent(inout) :: dstField
type(ESMF_RouteHandle), intent(inout) :: routehandle
integer, intent(in), optional :: srcToDstTransposeMap(:)
integer, intent(out), optional :: rc

DESCRIPTION:

ESMF_FieldRedistStore() is a collective method across all PETs of the current Component. The interface of
the method is overloaded, allowing – in principle – each PET to call intoESMF_FieldRedistStore() through a
different entry point. Restrictions apply as to which combinations are sensible. All other combinations result in ESMF
run time errors. The complete semantics of theESMF_FieldRedistStore() method, as provided through the
separate entry points shown in 20.7.7 and 20.7.8, is described in the following paragraphs as a whole.
Store a Field redistribution operation fromsrcField to dstField . Interface 20.7.7 allows PETs to specify a
factor argument. PETs not specifying afactor argument call into interface 20.7.8. If multiple PETs specify the
factor argument, its type and kind, as well as its value must match across all PETs. If none of the PETs specify
a factor argument the default will be a factor of 1. The resulting factor is applied to all of the source data during
redistribution, allowing scaling of the data, e.g. for unittransformation.

251

Both srcField anddstField are interpreted as sequentialized vectors. The sequence isdefined by the order of
DistGrid dimensions and the order of patches within the DistGrid or by user-supplied arbitrary sequence indices. See
section 22.2.17 for details on the definition ofsequence indices.
Source Field, destination Field, and the factor may be of different <type><kind>. Further, source and destination
Fields may differ in shape, however, the number of elements must match.
If srcToDstTransposeMap is not specified the redistribution corresponds to an identity mapping of the sequen-
tialized source Field to the sequentialized destination Field. If thesrcToDstTransposeMap argument is provided
it must be identical on all PETs. ThesrcToDstTransposeMap allows source and destination Field dimensions to
be transposed during the redistribution. The number of source and destination Field dimensions must be equal under
this condition and the size of mapped dimensions must match.
It is erroneous to specify the identical Field object forsrcField anddstField arguments.
The routine returns anESMF_RouteHandle that can be used to callESMF_FieldRedist() on any pair of Fields
that are weakly congruent and typekind conform with thesrcField , dstField pair. Congruent Fields possess
matching DistGrids, and the shape of the local array tiles matches between the Fields for every DE. For weakly
congruent Fields the sizes of the undistributed dimensions, that vary faster with memory than the first distributed
dimension, are permitted to be different. This means that the sameroutehandle can be applied to a large class of
similar Fields that differ in the number of elements in the left most undistributed dimensions. Because Grid dimensions
are mapped to Field in a sequence order, it’s necessary to mapthe ungridded dimensions to the first set of dimensions
in order to use the weakly congruent Field redist feature. Not providing a non-default gridToFieldMap during Field
creation and then using such Fields in a weakly congruent manner in Field communication methods leads to undefined
behavior.
This call iscollectiveacross the current VM.
For examples and associated documentations using this method see Section 20.3.32.
The arguments are:

srcField ESMF_Field with source data.

dstField ESMF_Field with destination data. The data in this Field may be destroyed by this call.

routehandle Handle to the precomputed Route.

[srcToDstTransposeMap] List with as many entries as there are dimensions insrcField . Each entry maps the
correspondingsrcField dimension against the specifieddstField dimension. Mixing of distributed and
undistributed dimensions is supported.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.7.9 ESMF_FieldRegrid - Compute a regridding operation

INTERFACE:

! Private name; call using ESMF_FieldRegrid()
subroutine ESMF_FieldRegridRun(srcField, dstField, &

routehandle, zeroflag, checkflag, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: srcField
type(ESMF_Field), intent(inout) :: dstField
type(ESMF_RouteHandle), intent(inout) :: routeHandle
type(ESMF_RegionFlag), intent(in), optional :: zeroflag
logical, intent(in), optional :: checkflag
integer, intent(out), optional :: rc

DESCRIPTION:

252

Execute the precomputed regrid operation stored inrouteHandle to interpolate fromsrcField to dstField .
SeeESMF_FieldRegridStore() on how to precompute theroutehandle .
BothsrcField anddstField must be congruent with the respective Fields used duringESMF_FieldRegridStore() .
In the case of the Regrid operation congruent Fields are built upon the same stagger location and on the same Grid. The
routeHandle represents the interpolation between the Grids as they were during theESMF_FieldRegridStore()
call. So if the coordinates at the stagger location in the Grids change, a new call toESMF_FieldRegridStore()
is necessary to compute the interpolation between that new set of coordinates.
It is erroneous to specify the identical Field object forsrcField anddstField arguments.
This call iscollectiveacross the current VM.

[srcField] ESMF_Field with source data.

[dstField] ESMF_Field with destination data.

routehandle Handle to the precomputed Route.

[zeroflag] If set toESMF_REGION_TOTAL(default)the total regions of all DEs indstField will be initialized to
zero before updating the elements with the results of the sparse matrix multiplication. If set toESMF_REGION_EMPTY
the elements indstField will not be modified prior to the sparse matrix multiplication and results will be
added to the incoming element values. Settingzeroflag to ESMF_REGION_SELECTwill only zero out
those elements in the destination Array that will be updatedby the sparse matrix multiplication. See section
9.2.14 for a complete list of valid settings.

[checkflag] If set to .TRUE. the input Array pair will be checked for consistency with theprecomputed operation
provided byroutehandle . If set to .FALSE. (default)only a very basic input check will be performed,
leaving many inconsistencies undetected. Setcheckflag to .FALSE. to achieve highest performance.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.7.10 ESMF_FieldRegridRelease - Free resources used by aregridding operation

INTERFACE:

subroutine ESMF_FieldRegridRelease(routeHandle, rc)

ARGUMENTS:

type(ESMF_RouteHandle), intent(inout) :: routeHandle
integer, intent(out), optional :: rc

DESCRIPTION:

Free resources used by regrid objec
The arguments are:

routeHandle Handle carrying the sparse matrix

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

253

20.7.11 ESMF_FieldRegridStore - Precompute a Field regridding operation and return a RouteHandle and
weights

INTERFACE:

! Private name; call using ESMF_FieldRegridStore()
subroutine ESMF_FieldRegridStoreNX(srcField, srcMaskV alues, &

dstField, dstMaskValues, &
unmappedDstAction, &
routeHandle, indicies, weights, &
regridMethod, &
regridPoleType, regridPoleNPnts, &
regridScheme, rc)

RETURN VALUE:

ARGUMENTS:

type(ESMF_Field), intent(inout) :: srcField
integer(ESMF_KIND_I4), intent(in), optional :: srcMaskV alues(:)
type(ESMF_Field), intent(inout) :: dstField
integer(ESMF_KIND_I4), intent(in), optional :: dstMaskV alues(:)
type(ESMF_UnmappedAction), intent(in), optional :: unma ppedDstAction
type(ESMF_RouteHandle), intent(inout), optional :: rout eHandle
integer(ESMF_KIND_I4), pointer, optional :: indicies(:, :)
real(ESMF_KIND_R8), pointer, optional :: weights(:)
type(ESMF_RegridMethod), intent(in), optional :: regrid Method
type(ESMF_RegridPole), intent(in), optional :: regridPo leType
integer, intent(in),optional :: regridPoleNPnts
integer, intent(in), optional :: regridScheme
integer, intent(out), optional :: rc

DESCRIPTION:

Creates a sparse matrix operation (stored inrouteHandle) that contains the calculations and communications neces-
sary to interpolate fromsrcField todstField . The routeHandle can then be used in the callESMF_FieldRegrid()
to interpolate between the Fields. The user may also get the interpolation matrix in sparse matrix form via the optional
argumentsindices andweights .
The routeHandle generated by this call is based just on the coordinates at the Fields’ stagger locations in the Grids
contained in the Fields. If those coordinates don’t change the routehandle can be used repeatedly to interpolate from
the source Field to the destination Field. This is true even if the data in the Fields changes. The routeHandle may also
be used to interpolate between any source and destination Field which are created on the same stagger location and
Grid as the original Fields.
When it’s no longer needed the routeHandle should be destroyed by usingESMF_FieldRegridRelease() to
free the memory it’s using.
The arguments are:

srcField Source Field.

[srcMaskValues] List of values that indicate a source point should be masked out. If not specified, no masking will
occur.

dstField Destination Field.

[dstMaskValues] List of values that indicate a destination point should be masked out. If not specified, no masking
will occur.

254

[unmappedDstAction] Specifies what should happen if there are destination pointsthat can’t be mapped to a source
cell. Options areESMF_UNMAPPEDACTION_ERRORor ESMF_UNMAPPEDACTION_IGNORE. If not speci-
fied, defaults toESMF_UNMAPPEDACTION_ERROR.

[routeHandle] The handle that implements the regrid and that can be used in laterESMF_FieldRegrid .

[indices] The indices for the sparse matrix.

[weights] The weights for the sparse matrix.

[regridMethod] The type of interpolation. Please see Section 20.2.1 for a list of valid options. If not specified,
defaults toESMF_REGRID_METHOD_BILINEAR.

[regridPoleType] Which type of artificial pole to construct on the source Grid for regridding. Only valid when
regridScheme is set toESMF_REGRID_SCHEME_FULL3D. Please see Section 20.2.2 for a list of valid
options. If not specified, defaults toESMF_REGRIDPOLE_ALLAVG.

[regridPoleNPnts] If regridPoleType is ESMF_REGRIDPOLE_NPNTAVG. This parameter indicates how many
points should be averaged over. Must be specified ifregridPoleType is ESMF_REGRIDPOLE_NPNTAVG.

[regridScheme] Whether to convert to spherical coordinates (ESMF_REGRID_SCHEME_FULL3D), or to leave in
native coordinates (ESMF_REGRID_SCHEME_NATIVE).

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.7.12 ESMF_FieldRegridStore - Precompute a Field regridding operation and return a RouteHandle using
XGrid

INTERFACE:

! Private name; call using ESMF_FieldRegridStore()
subroutine ESMF_FieldRegridStoreX(xgrid, srcField, dst Field, &

routeHandle, &
rc)

RETURN VALUE:

ARGUMENTS:

type(ESMF_XGrid), intent(inout) :: xgrid
type(ESMF_Field), intent(inout) :: srcField
type(ESMF_Field), intent(inout) :: dstField
type(ESMF_RouteHandle), intent(inout), optional :: rout eHandle
integer, intent(out), optional :: rc

DESCRIPTION:

Creates a sparse matrix operation (stored inrouteHandle) that contains the calculations and communications neces-
sary to interpolate fromsrcField todstField . The routeHandle can then be used in the callESMF_FieldRegrid()
to interpolate between the Fields. Informaton such as indexmapping and weights are obtained from the XGrid by
matching the Field Grids in the XGrid. It’s important the Grids in thesrcField anddstField donot match, i.e.
they are different in either tological or geometric characteristic.
The routeHandle generated by this call is subsequently computed based on these information. If those information
don’t change the routehandle can be used repeatedly to interpolate from the source Field to the destination Field. This

255

is true even if the data in the Fields changes. The routeHandle may also be used to interpolate between any source and
destination Field which are created on the same stagger location and Grid as the original Fields.
When it’s no longer needed the routeHandle should be destroyed by usingESMF_FieldRegridRelease() to
free the memory it’s using.
The arguments are:

xgrid Exchange Grid.

srcField Source Field.

dstField Destination Field.

[routeHandle] The handle that implements the regrid and that can be used in laterESMF_FieldRegrid .

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.7.13 ESMF_FieldScatter - Scatter a Fortran array acrossthe ESMF_Field

INTERFACE:

subroutine ESMF_FieldScatter<rank><type><kind>(field , farray, patch, &
rootPet, vm, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: field
mtype (ESMF_KIND_mtypekind),dimension(mdim),intent(i n),target :: farray
integer, intent(in), optional :: patch
integer, intent(in) :: rootPet
type(ESMF_VM), intent(in), optional :: vm
integer, intent(out), optional :: rc

DESCRIPTION:

Scatter the data offarray located onrootPET across an ESMF_Field object. A singlefarray must be scattered
across a single DistGrid patch in Field. The optionalpatch argument allows selection of the patch. For Fields defined
on a single patch DistGrid the default selection (patch 1) will be correct. The shape offarray must match the shape
of the patch in Field.
If the Field contains replicating DistGrid dimensions datawill be scattered across all of the replicated pieces.
This version of the interface implements the PET-based blocking paradigm: Each PET of the VM must issue this call
exactly once forall of its DEs. The call will block until all PET-local data objects are accessible.
For examples and associated documentations using this method see Section 20.3.31.
The arguments are:

field TheESMF_Field object across which data will be scattered.

[farray] The Fortran array that is to be scattered. Only root must provide a validfarray .

[patch] The DistGrid patch infield into which to scatterfarray . By defaultfarray will be scattered into patch
1.

rootPet PET that holds the valid data infarray .

[vm] Optional ESMF_VMobject of the current context. Providing the VM of the current context will lower the
method’s overhead.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

256

20.7.14 ESMF_FieldSMM - Execute a Field sparse matrix multiplication

INTERFACE:

subroutine ESMF_FieldSMM(srcField, dstField, routehand le, zeroflag, checkflag, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout),optional :: srcField
type(ESMF_Field), intent(inout),optional :: dstField
type(ESMF_RouteHandle), intent(inout) :: routehandle
type(ESMF_RegionFlag), intent(in), optional :: zeroflag
logical, intent(in), optional :: checkflag
integer, intent(out), optional :: rc

DESCRIPTION:

Execute a precomputed Field sparse matrix multiplication from srcField to dstField . Both srcField and
dstField must be congruent and typekind conform with the respective Fields used duringESMF_FieldSMMStore() .
Congruent Fields possess matching DistGrids and the shape of the local array tiles matches between the Fields for ev-
ery DE. For weakly congruent Fields the sizes of the undistributed dimensions, that vary faster with memory than the
first distributed dimension, are permitted to be different.This means that the sameroutehandle can be applied to
a large class of similar Fields that differ in the number of elements in the left most undistributed dimensions. Because
Grid dimensions are mapped to Field in a sequence order, it’snecessary to map the ungridded dimensions to the first set
of dimensions in order to use the weakly congruent Field SMM feature. Not providing a non-default gridToFieldMap
during Field creation and then using such Fields in a weakly congruent manner in Field communication methods leads
to undefined behavior.
It is erroneous to specify the identical Field object forsrcField anddstField arguments.
SeeESMF_FieldSMMStore() on how to precomputeroutehandle .
This call iscollectiveacross the current VM.
For examples and associated documentations using this method see Section 20.3.34.

[srcField] ESMF_Field with source data.

[dstField] ESMF_Field with destination data.

routehandle Handle to the precomputed Route.

[zeroflag] If set toESMF_REGION_TOTAL(default)the total regions of all DEs indstField will be initialized to
zero before updating the elements with the results of the sparse matrix multiplication. If set toESMF_REGION_EMPTY
the elements indstField will not be modified prior to the sparse matrix multiplication and results will be
added to the incoming element values. Settingzeroflag to ESMF_REGION_SELECTwill only zero out
those elements in the destination Field that will be updatedby the sparse matrix multiplication. See section
9.2.14 for a complete list of valid settings.

[checkflag] If set to .TRUE. the input Field pair will be checked for consistency with theprecomputed operation
provided byroutehandle . If set to .FALSE. (default)only a very basic input check will be performed,
leaving many inconsistencies undetected. Setcheckflag to .FALSE. to achieve highest performance.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.7.15 ESMF_FieldSMMRelease - Release resources associated with Field

sparse matrix multiplication

INTERFACE:

257

subroutine ESMF_FieldSMMRelease(routehandle, rc)

ARGUMENTS:

type(ESMF_RouteHandle), intent(inout) :: routehandle
integer, intent(out), optional :: rc

DESCRIPTION:

Release resouces associated with a Field sparse matrix multiplication. After this callroutehandle becomes invalid.

routehandle Handle to the precomputed Route.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.7.16 ESMF_FieldSMMStore - Precompute Field sparse matrix multiplication with local factors

INTERFACE:

! Private name; call using ESMF_FieldSMMStore()
subroutine ESMF_FieldSMMStore<type><kind>(srcField, d stField, &

routehandle, factorList, factorIndexList, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: srcField
type(ESMF_Field), intent(inout) :: dstField
type(ESMF_RouteHandle), intent(inout) :: routehandle
<type>(ESMF_KIND_<kind>), intent(in) :: factorList(:)
integer, intent(in), :: factorIndexList(:,:)
integer, intent(out), optional :: rc

DESCRIPTION:

Store a Field sparse matrix multiplication operation fromsrcField to dstField . PETs that specify non-zero ma-
trix coefficients must use the <type><kind> overloaded interface and provide thefactorList andfactorIndexList
arguments. ProvidingfactorList andfactorIndexList arguments withsize(factorList) = (/0/)
andsize(factorIndexList) = (/2,0/) or (/4,0/) indicates that a PET does not provide matrix ele-
ments. Alternatively, PETs that do not provide matrix elements may also call into the overloaded interfacewithout
factorList andfactorIndexList arguments.
Both srcField anddstField are interpreted as sequentialized vectors. The sequence isdefined by the order of
DistGrid dimensions and the order of patches within the DistGrid or by user-supplied arbitrary sequence indices. See
section 22.2.17 for details on the definition ofsequence indices. SMM corresponds to an identity mapping of the
source Field vector to the destination Field vector.
Source and destination Fields may be of different <type><kind>. Further source and destination Fields may differ in
shape, however, the number of elements must match.
It is erroneous to specify the identical Field object for srcField and dstField arguments.
The routine returns anESMF_RouteHandle that can be used to callESMF_FieldSMM() on any pair of Fields
that are weakly congruent and typekind conform with thesrcField , dstField pair. Congruent Fields possess
matching DistGrids, and the shape of the local array tiles matches between the Fields for every DE. For weakly
congruent Fields the sizes of the undistributed dimensions, that vary faster with memory than the first distributed
dimension, are permitted to be different. This means that the sameroutehandle can be applied to a large class of
similar Fields that differ in the number of elements in the left most undistributed dimensions. Because Grid dimensions

258

are mapped to Field in a sequence order, it’s necessary to mapthe ungridded dimensions to the first set of dimensions
in order to use the weakly congruent Field SMM feature. Not providing a non-default gridToFieldMap during Field
creation and then using such Fields in a weakly congruent manner in Field communication methods leads to undefined
behavior.
This method is overloaded for:
ESMF_TYPEKIND_I4, ESMF_TYPEKIND_I8,
ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8.

This call is collective across the current VM.
For examples and associated documentations using this method see Section 20.3.34.
The arguments are:

srcField ESMF_Field with source data.

dstField ESMF_Field with destination data. The data in this Field may be destroyed by this call.

routehandle Handle to the precomputed Route.

factorList List of non-zero coefficients.

factorIndexList Pairs of sequence indices for the factors stored infactorList .

The second dimension offactorIndexList steps through the list of pairs, i.e.size(factorIndexList,2)
== size(factorList) . The first dimension offactorIndexList is either of size 2 or size 4.

In the size 2 formatfactorIndexList(1,:) specifies the sequence index of the source element in the
srcField while factorIndexList(2,:) specifies the sequence index of the destination element in
dstField . For this format to be a valid option source and destination Fields must have matching number of
tensor elements (the product of the sizes of all Field tensordimensions). Under this condition an identiy matrix
can be applied within the space of tensor elements for each sparse matrix factor.

Thesize 4 formatis more general and does not require a matching tensor element count. Here thefactorIndexList(1,:)
specifies the sequence index whilefactorIndexList(2,:) specifies the tensor sequence index of the
source element in thesrcField . FurtherfactorIndexList(3,:) specifies the sequence index and
factorIndexList(4,:) specifies the tensor sequence index of the destination element in thedstField .

See section 22.2.17 for details on the definition of Fieldsequence indicesandtensor sequence indices.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

20.7.17 ESMF_FieldSMMStore - Precompute Field sparse matrix multiplication without local factors

INTERFACE:

! Private name; call using ESMF_FieldSMMStore()
subroutine ESMF_FieldSMMStoreNF(srcField, dstField, &

routehandle, factorList, factorIndexList, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: srcField
type(ESMF_Field), intent(inout) :: dstField
type(ESMF_RouteHandle), intent(inout) :: routehandle
integer, intent(out), optional :: rc

259

DESCRIPTION:

Store a Field sparse matrix multiplication operation fromsrcField to dstField . PETs that specify non-zero ma-
trix coefficients must use the <type><kind> overloaded interface and provide thefactorList andfactorIndexList
arguments. ProvidingfactorList andfactorIndexList arguments withsize(factorList) = (/0/)
andsize(factorIndexList) = (/2,0/) or (/4,0/) indicates that a PET does not provide matrix ele-
ments. Alternatively, PETs that do not provide matrix elements may also call into the overloaded interfacewithout
factorList andfactorIndexList arguments.
Both srcField anddstField are interpreted as sequentialized vectors. The sequence isdefined by the order of
DistGrid dimensions and the order of patches within the DistGrid or by user-supplied arbitrary sequence indices. See
section 22.2.17 for details on the definition ofsequence indices. SMM corresponds to an identity mapping of the
source Field vector to the destination Field vector.
Source and destination Fields may be of different <type><kind>. Further source and destination Fields may differ in
shape, however, the number of elements must match.
It is erroneous to specify the identical Field object for srcField and dstField arguments.
The routine returns anESMF_RouteHandle that can be used to callESMF_FieldSMM() on any pair of Fields
that are weakly congruent and typekind conform with thesrcField , dstField pair. Congruent Fields possess
matching DistGrids, and the shape of the local array tiles matches between the Fields for every DE. For weakly
congruent Fields the sizes of the undistributed dimensions, that vary faster with memory than the first distributed
dimension, are permitted to be different. This means that the sameroutehandle can be applied to a large class of
similar Fields that differ in the number of elements in the left most undistributed dimensions. Because Grid dimensions
are mapped to Field in a sequence order, it’s necessary to mapthe ungridded dimensions to the first set of dimensions
in order to use the weakly congruent Field SMM feature. Not providing a non-default gridToFieldMap during Field
creation and then using such Fields in a weakly congruent manner in Field communication methods leads to undefined
behavior.
This method is overloaded for:
ESMF_TYPEKIND_I4, ESMF_TYPEKIND_I8,
ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8.

This call is collective across the current VM.
For examples and associated documentations using this method see Section 20.3.34.
The arguments are:

srcField ESMF_Field with source data.

dstField ESMF_Field with destination data. The data in this Field may be destroyed by this call.

routehandle Handle to the precomputed Route.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

21 ArrayBundle Class

21.1 Description

The ESMF_ArrayBundle class allows a set of Arrays to be bundled into a single object. The Arrays in an Ar-
rayBundle may be of different type, kind, rank and distribution. Besides ease of use resulting from bundling, the
ArrayBundle class offers the opportunity for performance optimization when operating on a bundle of Arrays as a sin-
gle entity. Communication methods are especially good candidates for performance optimization. Best optimization
results are expected for ArrayBundles that contain Arrays that share a common distribution, i.e. DistGrid, and are of
same type, kind and rank.
ArrayBundles are one of the data objects that can be added to States, which are used for providing to or receiving data
from other Components.

260

21.2 Use and Examples

Examples of creating, destroying and accessing ArrayBundles and their constituent Arrays are provided in this section,
along with some notes on ArrayBundle methods.

21.2.1 Create an ArrayBundle from a list of Arrays

First create a Fortran array of twoESMF_Array objects.

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEK IND_R8, rank=2, rc=rc)

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIn dex=(/5,5/), &
regDecomp=(/2,3/), rc=rc)

allocate(arrayList(2))
arrayList(1) = ESMF_ArrayCreate(arrayspec=arrayspec, d istgrid=distgrid, rc=rc)

arrayList(2) = ESMF_ArrayCreate(arrayspec=arrayspec, d istgrid=distgrid, rc=rc)

Now thearrayList of Arrays can be used to create an ArrayBundle object.

arraybundle = ESMF_ArrayBundleCreate(arrayList=arrayL ist, &
name="MyArrayBundle", rc=rc)

The temporaryarrayList can be deallocated now. This will not affect the ESMF Array objects. The Array objects
must not be deallocated while the ArrayBundle refers to them!

deallocate(arrayList)

The ArrayBundle object can be printed.

call ESMF_ArrayBundlePrint(arraybundle, rc=rc)

21.2.2 Access Arrays inside the ArrayBundle

UseESMF_ArrayBundleGet() to determine how many Arrays are stored in an ArrayBundle.

call ESMF_ArrayBundleGet(arraybundle, arrayCount=arra yCount, rc=rc)

ThearrayCount can be used to correctly allocate thearrayList variable for a second call toESMF_ArrayBundleGet()
to gain access to the bundled Array objects.

allocate(arrayList(arrayCount))
call ESMF_ArrayBundleGet(arraybundle, arrayList=array list, rc=rc)

ThearrayList variable can be used to access the individual Arrays, e.g. toprint them.

do i=1, arrayCount
call ESMF_ArrayPrint(arrayList(i), rc=rc)
if (rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT)

enddo

261

21.2.3 Destroy an ArrayBundle and its constituents

The ArrayBundle object can be destroyed.

call ESMF_ArrayBundleDestroy(arraybundle, rc=rc)

After the ArrayBundle object has been destroyed it is safe todestroy its constituents.

call ESMF_ArrayDestroy(arrayList(1), rc=rc)

call ESMF_ArrayDestroy(arrayList(2), rc=rc)

deallocate(arrayList)

call ESMF_DistGridDestroy(distgrid, rc=rc)

21.2.4 Halo communication

One of the most fundamental communication pattern in domaindecomposition codes is thehalooperation. The ESMF
Array class supports halos by allowing memory for extra elements to be allocated on each DE. See section 22.2.14 for
a discussion of the Array level halo operation. The ArrayBundle level extents the Array halo operation to bundles of
Arrays.
First create anESMF_ArrayBundle object containing a set of ESMF Arrays.

arraybundle = ESMF_ArrayBundleCreate(arrayList=arrayL ist, &
name="MyArrayBundle", rc=rc)

The ArrayBundle object can be treated as a single entity. TheESMF_ArrayBundleHaloStore() call determines
the most efficient halo exchange pattern forall Arrays that are part ofarraybundle .

call ESMF_ArrayBundleHaloStore(arraybundle=arraybund le, &
routehandle=haloHandle, rc=rc)

The halo exchange pattern stored inhaloHandle can now be applied to thearraybundle object, or any other
ArrayBundle that is weakly congruent to the one used during theESMF_ArrayBundleHaloStore() call.

call ESMF_ArrayBundleHalo(arraybundle=arraybundle, ro utehandle=haloHandle, &
rc=rc)

Finally, when no longer needed, the resources held byhaloHandle need to be returned to the system by calling
ESMF_ArrayBundleHaloRelease() .

call ESMF_ArrayBundleHaloRelease(routehandle=haloHan dle, rc=rc)

Finally the ArrayBundle object can be destroyed.

call ESMF_ArrayBundleDestroy(arraybundle, rc=rc)

262

21.3 Restrictions and Future Work

• Adding Arrays to an existing ArrayBundle is currently not supported. In the future this functionality will be
provided via theESMF_ArrayBundleAdd() method.

• Removing Arrays from an existing ArrayBundle is currently not supported. Inthe future this functionality will
be provided via theESMF_ArrayBundleRemove() method.

• Non-blocking ArrayBundle communications option is not yet implemented.In the future this functionality will
be provided via thecommflag option.

21.4 Design and Implementation Notes

The following is a list of implementation specific details about the current ESMF ArrayBundle.

• Implementation language is C++.

• All precomputed communication methods are based on sparse matrix multiplication.

21.5 Class API

21.5.1 ESMF_ArrayBundleCreate - Create an ArrayBundle from a list of Arrays

INTERFACE:

! Private name; call using ESMF_ArrayBundleCreate()
function ESMF_ArrayBundleCreate(arrayList, arrayCount , name, rc)

ARGUMENTS:

type(ESMF_Array), intent(in) :: arrayList(:)
integer, intent(in), optional :: arrayCount
character (len= *),intent(in), optional :: name
integer, intent(out), optional :: rc

RETURN VALUE:

type(ESMF_ArrayBundle) :: ESMF_ArrayBundleCreate

DESCRIPTION:

Create anESMF_ArrayBundle object from a list of Arrays.
The creation of an ArrayBundle leaves the bundled Arrays unchanged, they remain valid individual objects. An
ArrayBundle is a light weight container of Array references. The actual data remains in place, there are no data
movements or duplications associated with the creation of an ArrayBundle.

arrayList List of ESMF_Array objects to be bundled.

[arrayCount] If provided specifies that only firstarrayCount Arrays in thearrayList argument are to be
included in the ArrayBundle. By defaultarrayCount is equal tosize(arrayList) .

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

263

21.5.2 ESMF_ArrayBundleDestroy - Destroy an ArrayBundle

INTERFACE:

subroutine ESMF_ArrayBundleDestroy(arraybundle, rc)

ARGUMENTS:

type(ESMF_ArrayBundle), intent(inout) :: arraybundle
integer, intent(out), optional :: rc

DESCRIPTION:

Destroy anESMF_ArrayBundle object. The member Arrays are not touched by this operation and remain valid
objects that need to be destroyed individually if necessary.
The arguments are:

arraybundle ESMF_ArrayBundle object to be destroyed.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

21.5.3 ESMF_ArrayBundleGet - Get a list of Arrays out of an ArrayBundle

INTERFACE:

! Private name; call using ESMF_ArrayBundleGet()
subroutine ESMF_ArrayBundleGet(arraybundle, arrayCoun t, arrayList, &

name, rc)

ARGUMENTS:

type(ESMF_ArrayBundle), intent(in) :: arraybundle
integer, intent(out), optional :: arrayCount
type(ESMF_Array), intent(inout), optional :: arrayList(:)
character(len= *), intent(out), optional :: name
integer, intent(out), optional :: rc

DESCRIPTION:

Get the list of Arrays bundled in an ArrayBundle.

arraybundle ESMF_ArrayBundle to be queried.

[arrayCount] Upon return holds the number of Arrays bundled in the ArrayBundle.

[arrayList] Upon return holds a List of Arrays bundled in ArrayBundle. The argument must be allocated to be at
least of sizearrayCount .

[name] Name of the ArrayBundle object.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

264

21.5.4 ESMF_ArrayBundleHalo - Execute an ArrayBundle halooperation

INTERFACE:

subroutine ESMF_ArrayBundleHalo(arraybundle, routehan dle, &
checkflag, rc)

ARGUMENTS:

type(ESMF_ArrayBundle), intent(inout) :: arraybundle
type(ESMF_RouteHandle), intent(inout) :: routehandle
logical, intent(in), optional :: checkflag
integer, intent(out), optional :: rc

DESCRIPTION:

Execute a precomputed ArrayBundle halo operation for the Arrays inarrayBundle .
SeeESMF_ArrayBundleHaloStore() on how to precomputeroutehandle .
This call iscollectiveacross the current VM.

arraybundle ESMF_ArrayBundle containing data to be haloed.

routehandle Handle to the precomputed Route.

[checkflag] If set to .TRUE. the input Array pairs will be checked for consistency with the precomputed operation
provided byroutehandle . If set to .FALSE. (default)only a very basic input check will be performed,
leaving many inconsistencies undetected. Setcheckflag to .FALSE. to achieve highest performance.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

21.5.5 ESMF_ArrayBundleHaloRelease - Release resources associated with an ArrayBundle halo operation

INTERFACE:

subroutine ESMF_ArrayBundleHaloRelease(routehandle, r c)

ARGUMENTS:

type(ESMF_RouteHandle), intent(inout) :: routehandle
integer, intent(out), optional :: rc

DESCRIPTION:

Release resouces associated with an ArrayBundle halo operation. After this callroutehandle becomes invalid.

routehandle Handle to the precomputed Route.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

265

21.5.6 ESMF_ArrayBundleHaloStore - Precompute an ArrayBundle halo operation

INTERFACE:

subroutine ESMF_ArrayBundleHaloStore(arraybundle, rou tehandle, &
halostartregionflag, haloLDepth, haloUDepth, rc)

ARGUMENTS:

type(ESMF_ArrayBundle), intent(inout) :: arraybundle
type(ESMF_RouteHandle), intent(inout) :: routehandle
type(ESMF_HaloStartRegionFlag), intent(in), optional : : halostartregionflag
integer, intent(in), optional :: haloLDepth(:)
integer, intent(in), optional :: haloUDepth(:)
integer, intent(out), optional :: rc

DESCRIPTION:

Store an ArrayBundle halo operation over the data inarraybundle . By default, i.e. without specifyinghalostartregionflag ,
haloLDepth andhaloUDepth , all elements in the total Array regions that lie outside theexclusive regions will
be considered potential destination elements for halo. However, only those elements that have a corresponding halo
source element, i.e. an exclusive element on one of the DEs, will be updated under the halo operation. Elements that
have no associated source remain unchanged under halo.
Specifyinghalostartregionflag allows to change the shape of the effective halo region from the inside. Setting
this flag toESMF_REGION_COMPUTATIONALmeans that only elements outside the computational region for each
Array are considered for potential destination elements for halo. The default isESMF_REGION_EXCLUSIVE.
The haloLDepth andhaloUDepth arguments allow to reduce the extent of the effective halo region. Starting
at the region specified byhalostartregionflag , thehaloLDepth andhaloUDepth define a halo depth in
each direction. Note that the maximum halo region is limitedby the total region for each Array, independent of the
actualhaloLDepth andhaloUDepth setting. The total Array regions are local DE specific. ThehaloLDepth
andhaloUDepth are interpreted as the maximum desired extent, reducing thepotentially larger region available for
halo.
The routine returns anESMF_RouteHandle that can be used to callESMF_ArrayBundleHalo() on any Array-
Bundle that is weakly congruent and typekind conform toarraybundle . Congruency for ArrayBundles is given by
the congruency of its constituents. Congruent Arrays possess matching DistGrids, and the shape of the local array tiles
matches between the Arrays for every DE. For weakly congruent Arrays the sizes of the undistributed dimensions, that
vary faster with memory than the first distributed dimension, are permitted to be different. This means that the same
routehandle can be applied to a large class of similar Arrays that differ in the number of elements in the left most
undistributed dimensions.
This call iscollectiveacross the current VM.

arraybundle ESMF_ArrayBundle containing data to be haloed. The data in the halo regions maybe destroyed by
this call.

routehandle Handle to the precomputed Route.

[halostartregionflag] The start of the effective halo region on every DE. The default setting isESMF_REGION_EXCLUSIVE,
rendering all non-exclusive elements potential halo destination elments. See section 9.2.13 for a complete list
of valid settings.

[haloLDepth] This vector specifies the lower corner of the effective halo region with respect to the lower corner of
halostartregionflag . The size ofhaloLDepth must equal the number of distributed Array dimen-
sions.

[haloUDepth] This vector specifies the upper corner of the effective halo region with respect to the upper corner of
halostartregionflag . The size ofhaloUDepth must equal the number of distributed Array dimen-
sions.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

266

21.5.7 ESMF_ArrayBundlePrint - Print ArrayBundle interna ls

INTERFACE:

subroutine ESMF_ArrayBundlePrint(arraybundle, options , rc)

ARGUMENTS:

type(ESMF_ArrayBundle), intent(in) :: arraybundle
character(len= *), intent(in), optional :: options
integer, intent(out), optional :: rc

DESCRIPTION:

Print internal information of the specifiedESMF_ArrayBundle object.

Note: ManyESMF_<class>Print methods are implemented in C++. On some platforms/compilers there is a
potential issue with interleaving Fortran and C++ output tostdout such that it doesn’t appear in the expected order.
If this occurs, theESMF_IOUnitFlush() method may be used on unit 6 to get coherent output.

The arguments are:

arraybundle ESMF_ArrayBundle object.

[options] Print options are not yet supported.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

21.5.8 ESMF_ArrayBundleRead - Read Arrays to an ArrayBundle from file(s)

INTERFACE:

subroutine ESMF_ArrayBundleRead(arraybundle, file, sin gleFile, iofmt, rc)

ARGUMENTS:

type(ESMF_ArrayBundle), intent(in) :: arraybundle
character(*), intent(in) :: file
logical, intent(in), optional :: singleFile
type(ESMF_IOFmtFlag), intent(in), optional :: iofmt
integer, intent(out), optional :: rc

DESCRIPTION:

Read Array data to an ArrayBundle object from file(s). For this API to be functional, the environment variable
ESMF_PIOshould be set to "internal" when the ESMF library is built. Please see the section on Data I/O, 30.3.
Limitations:

• Only 1 DE per PET supported.

• Not supported inESMF_COMM=mpiunimode.

The arguments are:

arraybundle An ESMF_ArrayBundle object.

267

file The name of the file from which ArrayBundle data is read.

[singleFile] A logical flag, the default is .true., i.e., all Arrays in the bundle are stored in one single file. If .false., each
Array is stored in separate files; these files are numbered with the name based on the argument "file". That is, a
set of files are named: [file_name]001, [file_name]002, [file_name]003,...

[iofmt] The IO format. Please see Section 9.2.8 for the list of options. If not present, defaults toESMF_IOFMT_NETCDF.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

21.5.9 ESMF_ArrayBundleRedist - Execute an ArrayBundle redistribution

INTERFACE:

subroutine ESMF_ArrayBundleRedist(srcArrayBundle, dst ArrayBundle, &
routehandle, checkflag, rc)

ARGUMENTS:

type(ESMF_ArrayBundle), intent(in), optional :: srcArra yBundle
type(ESMF_ArrayBundle), intent(inout), optional :: dstA rrayBundle
type(ESMF_RouteHandle), intent(inout) :: routehandle
logical, intent(in), optional :: checkflag
integer, intent(out), optional :: rc

DESCRIPTION:

Execute a precomputed ArrayBundle redistribution from theArrays insrcArrayBundle to the Arrays indstArrayBundle .
This call iscollectiveacross the current VM.

[srcArrayBundle] ESMF_ArrayBundle with source data.

[dstArrayBundle] ESMF_ArrayBundle with destination data.

routehandle Handle to the precomputed Route.

[checkflag] If set to .TRUE. the input Array pairs will be checked for consistency with the precomputed operation
provided byroutehandle . If set to .FALSE. (default)only a very basic input check will be performed,
leaving many inconsistencies undetected. Setcheckflag to .FALSE. to achieve highest performance.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

21.5.10 ESMF_ArrayBundleRedistRelease - Release resources associated with ArrayBundle redistribution

INTERFACE:

subroutine ESMF_ArrayBundleRedistRelease(routehandle , rc)

ARGUMENTS:

type(ESMF_RouteHandle), intent(inout) :: routehandle
integer, intent(out), optional :: rc

DESCRIPTION:

Release resouces associated with an ArrayBundle redistribution. After this callroutehandle becomes invalid.

routehandle Handle to the precomputed Route.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

268

21.5.11 ESMF_ArrayBundleRedistStore - Precompute an ArrayBundle redistribution with local factor argu-
ment

INTERFACE:

! Private name; call using ESMF_ArrayBundleRedistStore()
subroutine ESMF_ArrayBundleRedistStore<type><kind>(s rcArrayBundle, &

dstArrayBundle, routehandle, factor, srcToDstTranspose Map, rc)

ARGUMENTS:

type(ESMF_ArrayBundle), intent(in) :: srcArrayBundle
type(ESMF_ArrayBundle), intent(inout) :: dstArrayBundl e
type(ESMF_RouteHandle), intent(inout) :: routehandle
<type>(ESMF_KIND_<kind>), intent(in) :: factor
integer, intent(in), optional :: srcToDstTransposeMap(:)
integer, intent(out), optional :: rc

DESCRIPTION:

Store an ArrayBundle redistribution operation fromsrcArrayBundle to dstArrayBundle . The redistribution
between ArrayBundles is defined as the sequence of individual Array redistributions over all source and destination Ar-
ray pairs in sequence. The method requires thatsrcArrayBundle anddstArrayBundle reference an identical
number ofESMF_Array objects.
The effect of this method on ArrayBundles that contain aliased members is undefined.
PETs that specify afactor argument must use the <type><kind> overloaded interface. Other PETs call into the
interface withoutfactor argument. If multiple PETs specify thefactor argument its type and kind as well as its
value must match across all PETs. If none of the PETs specifiesa factor argument the default will be a factor of 1.
See the description of methodESMF_ArrayRedistStore() for the definition of the Array based operation.
The routine returns anESMF_RouteHandle that can be used to callESMF_ArrayBundleRedist() on any pair
of ArrayBundles that are weakly congruent and typekind conform with the Arrays contained insrcArrayBundle
anddstArrayBundle . Congruent Arrays possess matching DistGrids, and the shape of the local array tiles matches
between the Arrays for every DE. For weakly congruent Arraysthe sizes of the undistributed dimensions, that vary
faster with memory than the first distributed dimension, arepermitted to be different. This means that the same
routehandle can be applied to a large class of similar Arrays that differ in the number of elements in the left most
undistributed dimensions.
This method is overloaded for:
ESMF_TYPEKIND_I4, ESMF_TYPEKIND_I8,
ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8.

This call iscollectiveacross the current VM.

srcArrayBundle ESMF_ArrayBundle with source data.

dstArrayBundle ESMF_ArrayBundle with destination data. The data in these Arrays may be destroyed by this
call.

routehandle Handle to the precomputed Route.

[factor] Factor by which to multipy source data. Default is 1.

[srcToDstTransposeMap] List with as many entries as there are dimensions in the Arrays in srcArrayBundle .
Each entry maps the corresponding source Array dimension against the specified destination Array dimension.
Mixing of distributed and undistributed dimensions is supported.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

269

21.5.12 ESMF_ArrayBundleRedistStore - Precompute an ArrayBundle redistribution without local factor
argument

INTERFACE:

! Private name; call using ESMF_ArrayBundleRedistStore()
subroutine ESMF_ArrayBundleRedistStoreNF(srcArrayBun dle, dstArrayBundle, &

routehandle, srcToDstTransposeMap, rc)

ARGUMENTS:

type(ESMF_ArrayBundle), intent(in) :: srcArrayBundle
type(ESMF_ArrayBundle), intent(inout) :: dstArrayBundl e
type(ESMF_RouteHandle), intent(inout) :: routehandle
integer, intent(in), optional :: srcToDstTransposeMap(:)
integer, intent(out), optional :: rc

DESCRIPTION:

Store an ArrayBundle redistribution operation fromsrcArrayBundle to dstArrayBundle . The redistribution
between ArrayBundles is defined as the sequence of individual Array redistributions over all source and destination Ar-
ray pairs in sequence. The method requires thatsrcArrayBundle anddstArrayBundle reference an identical
number ofESMF_Array objects.
The effect of this method on ArrayBundles that contain aliased members is undefined.
PETs that specify afactor argument must use the <type><kind> overloaded interface. Other PETs call into the
interface withoutfactor argument. If multiple PETs specify thefactor argument its type and kind as well as its
value must match across all PETs. If none of the PETs specifiesa factor argument the default will be a factor of 1.
See the description of methodESMF_ArrayRedistStore() for the definition of the Array based operation.
The routine returns anESMF_RouteHandle that can be used to callESMF_ArrayBundleRedist() on any pair
of ArrayBundles that are weakly congruent and typekind conform with the Arrays contained insrcArrayBundle
anddstArrayBundle . Congruent Arrays possess matching DistGrids, and the shape of the local array tiles matches
between the Arrays for every DE. For weakly congruent Arraysthe sizes of the undistributed dimensions, that vary
faster with memory than the first distributed dimension, arepermitted to be different. This means that the same
routehandle can be applied to a large class of similar Arrays that differ in the number of elements in the left most
undistributed dimensions.

This call iscollectiveacross the current VM.

srcArrayBundle ESMF_ArrayBundle with source data.

dstArrayBundle ESMF_ArrayBundle with destination data. The data in these Arrays may be destroyed by this
call.

routehandle Handle to the precomputed Route.

[srcToDstTransposeMap] List with as many entries as there are dimensions in the Arrays in srcArrayBundle .
Each entry maps the corresponding source Array dimension against the specified destination Array dimension.
Mixing of distributed and undistributed dimensions is supported.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

21.5.13 ESMF_ArrayBundleSMM - Execute an ArrayBundle sparse matrix multiplication

INTERFACE:

270

subroutine ESMF_ArrayBundleSMM(srcArrayBundle, dstArr ayBundle, routehandle, &
zeroflag, checkflag, rc)

ARGUMENTS:

type(ESMF_ArrayBundle), intent(in), optional :: srcArra yBundle
type(ESMF_ArrayBundle), intent(inout),optional :: dstA rrayBundle
type(ESMF_RouteHandle), intent(inout) :: routehandle
type(ESMF_RegionFlag), intent(in), optional :: zeroflag
logical, intent(in), optional :: checkflag
integer, intent(out), optional :: rc

DESCRIPTION:

Execute a precomputed ArrayBundle sparse matrix multiplication from the Arrays insrcArrayBundle to the
Arrays indstArrayBundle .
This call iscollectiveacross the current VM.

[srcArrayBundle] ESMF_ArrayBundle with source data.

[dstArrayBundle] ESMF_ArrayBundle with destination data.

routehandle Handle to the precomputed Route.

[zeroflag] If set toESMF_REGION_TOTAL(default)the total regions of all DEs in all Arrays indstArrayBundle
will be initialized to zero before updating the elements with the results of the sparse matrix multiplication. If set
to ESMF_REGION_EMPTYthe elements in the Arrays indstArrayBundle will not be modified prior to the
sparse matrix multiplication and results will be added to the incoming element values. Settingzeroflag to
ESMF_REGION_SELECTwill only zero out those elements in the destination Arrays that will be updated by
the sparse matrix multiplication. See section 9.2.14 for a complete list of valid settings.

[checkflag] If set to .TRUE. the input Array pairs will be checked for consistency with the precomputed operation
provided byroutehandle . If set to .FALSE. (default)only a very basic input check will be performed,
leaving many inconsistencies undetected. Setcheckflag to .FALSE. to achieve highest performance.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

21.5.14 ESMF_ArrayBundleSMMRelease - Release resources associated with ArrayBundle sparse matrix
multiplication

INTERFACE:

subroutine ESMF_ArrayBundleSMMRelease(routehandle, rc)

ARGUMENTS:

type(ESMF_RouteHandle), intent(inout) :: routehandle
integer, intent(out), optional :: rc

DESCRIPTION:

Release resouces associated with an ArrayBundle sparse matrix multiplication. After this callroutehandle be-
comes invalid.

routehandle Handle to the precomputed Route.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

271

21.5.15 ESMF_ArrayBundleSMMStore - Precompute an ArrayBundle sparse matrix multiplication with lo-
cal factors

INTERFACE:

! Private name; call using ESMF_ArrayBundleSMMStore()
subroutine ESMF_ArrayBundleSMMStore<type><kind>(srcA rrayBundle, &

dstArrayBundle, routehandle, factorList, factorIndexLi st, rc)

ARGUMENTS:

type(ESMF_ArrayBundle), intent(in) :: srcArrayBundle
type(ESMF_ArrayBundle), intent(inout) :: dstArrayBundl e
type(ESMF_RouteHandle), intent(inout) :: routehandle
<type>(ESMF_KIND_<kind>), target, intent(in) :: factorL ist(:)
integer, intent(in) :: factorIndexList(:,:)
integer, intent(out), optional :: rc

DESCRIPTION:

Store an ArrayBundle sparse matrix multiplication operation fromsrcArrayBundle to dstArrayBundle . The
sparse matrix multiplication between ArrayBundles is defined as the sequence of individual Array sparse matrix mul-
tiplications over all source and destination Array pairs insequence. The method requires thatsrcArrayBundle
anddstArrayBundle reference an identical number ofESMF_Array objects.
The effect of this method on ArrayBundles that contain aliased members is undefined.
PETs that specify non-zero matrix coefficients must use the <type><kind> overloaded interface and provide the
factorList and factorIndexList arguments. ProvidingfactorList and factorIndexList argu-
ments withsize(factorList) = (/0/) andsize(factorIndexList) = (/2,0/) or (/4,0/) in-
dicates that a PET does not provide matrix elements. Alternatively, PETs that do not provide matrix elements may
also call into the overloaded interfacewithoutfactorList andfactorIndexList arguments.
See the description of methodESMF_ArraySMMStore() for the definition of the Array based operation.
The routine returns anESMF_RouteHandle that can be used to callESMF_ArrayBundleSMM() on any pair of
ArrayBundles that are weakly congruent and typekind conform with the Arrays contained insrcArrayBundle and
dstArrayBundle . Congruent Arrays possess matching DistGrids, and the shape of the local array tiles matches
between the Arrays for every DE. For weakly congruent Arraysthe sizes of the undistributed dimensions, that vary
faster with memory than the first distributed dimension, arepermitted to be different. This means that the same
routehandle can be applied to a large class of similar Arrays that differ in the number of elements in the left most
undistributed dimensions.
This method is overloaded for:
ESMF_TYPEKIND_I4, ESMF_TYPEKIND_I8,
ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8.

This call iscollectiveacross the current VM.

srcArrayBundle ESMF_ArrayBundle with source data.

dstArrayBundle ESMF_ArrayBundle with destination data. The data in these Arrays may be destroyed by this
call.

routehandle Handle to the precomputed Route.

factorList List of non-zero coefficients.

factorIndexList Pairs of sequence indices for the factors stored infactorList .

The second dimension offactorIndexList steps through the list of pairs, i.e.size(factorIndexList,2)
== size(factorList) . The first dimension offactorIndexList is either of size 2 or size 4.

272

In the size 2 formatfactorIndexList(1,:) specifies the sequence index of the source element in the
source Array whilefactorIndexList(2,:) specifies the sequence index of the destination element in
the destination Array. For this format to be a valid option source and destination Arrays must have matching
number of tensor elements (the product of the sizes of all Array tensor dimensions). Under this condition an
identiy matrix can be applied within the space of tensor elements for each sparse matrix factor.

Thesize 4 formatis more general and does not require a matching tensor element count. Here thefactorIndexList(1,:)
specifies the sequence index whilefactorIndexList(2,:) specifies the tensor sequence index of the
source element in the source Array. FurtherfactorIndexList(3,:) specifies the sequence index and
factorIndexList(4,:) specifies the tensor sequence index of the destination element in the destination
Array.

See section 22.2.17 for details on the definition of Arraysequence indicesandtensor sequence indices.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

21.5.16 ESMF_ArrayBundleSMMStore - Precompute an ArrayBundle sparse matrix multiplication without
local factors

INTERFACE:

! Private name; call using ESMF_ArrayBundleSMMStore()
subroutine ESMF_ArrayBundleSMMStoreNF(srcArrayBundle , dstArrayBundle, &

routehandle, rc)

ARGUMENTS:

type(ESMF_ArrayBundle), intent(in) :: srcArrayBundle
type(ESMF_ArrayBundle), intent(inout) :: dstArrayBundl e
type(ESMF_RouteHandle), intent(inout) :: routehandle
integer, intent(out), optional :: rc

DESCRIPTION:

Store an ArrayBundle sparse matrix multiplication operation fromsrcArrayBundle to dstArrayBundle . The
sparse matrix multiplication between ArrayBundles is defined as the sequence of individual Array sparse matrix mul-
tiplications over all source and destination Array pairs insequence. The method requires thatsrcArrayBundle
anddstArrayBundle reference an identical number ofESMF_Array objects.
The effect of this method on ArrayBundles that contain aliased members is undefined.
PETs that specify non-zero matrix coefficients must use the <type><kind> overloaded interface and provide the
factorList and factorIndexList arguments. ProvidingfactorList and factorIndexList argu-
ments withsize(factorList) = (/0/) andsize(factorIndexList) = (/2,0/) or (/4,0/) in-
dicates that a PET does not provide matrix elements. Alternatively, PETs that do not provide matrix elements may
also call into the overloaded interfacewithoutfactorList andfactorIndexList arguments.
See the description of methodESMF_ArraySMMStore() for the definition of the Array based operation.
The routine returns anESMF_RouteHandle that can be used to callESMF_ArrayBundleSMM() on any pair of
ArrayBundles that are weakly congruent and typekind conform with the Arrays contained insrcArrayBundle and
dstArrayBundle . Congruent Arrays possess matching DistGrids, and the shape of the local array tiles matches
between the Arrays for every DE. For weakly congruent Arraysthe sizes of the undistributed dimensions, that vary
faster with memory than the first distributed dimension, arepermitted to be different. This means that the same
routehandle can be applied to a large class of similar Arrays that differ in the number of elements in the left most
undistributed dimensions.

This call iscollectiveacross the current VM.

srcArrayBundle ESMF_ArrayBundle with source data.

273

dstArrayBundle ESMF_ArrayBundle with destination data. The data in these Arrays may be destroyed by this
call.

routehandle Handle to the precomputed Route.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

21.5.17 ESMF_ArrayBundleWrite - Write the Arrays into a file

INTERFACE:

subroutine ESMF_ArrayBundleWrite(arraybundle, file, si ngleFile, timeslice, iofmt, rc)

ARGUMENTS:

type(ESMF_ArrayBundle), intent(in) :: arraybundle
character(*), intent(in) :: file
logical, intent(in), optional :: singleFile
integer, intent(in), optional :: timeslice
type(ESMF_IOFmtFlag), intent(in), optional :: iofmt
integer, intent(out), optional :: rc

DESCRIPTION:

Write the Arrays into a file. For this API to be functional, theenvironment variableESMF_PIOshould be set to
"internal" when the ESMF library is built. Please see the section on Data I/O, 30.3.
Limitations:

• Only 1 DE per PET supported.

• Not supported inESMF_COMM=mpiunimode.

The arguments are:

arraybundle An ESMF_ArrayBundle object.

file The name of the output file to which array bundle data is written.

[singleFile] A logical flag, the default is .true., i.e., all arrays in the bundle are written in one single file. If .false.,
each array will be written in separate files; these files are numbered with the name based on the argument "file".
That is, a set of files are named: [file_name]001, [file_name]002, [file_name]003,...

[timeslice] Some IO formats (e.g. NetCDF) support the output of data in form of time slices. Thetimeslice argu-
ment provides access to this capability. Usage of this feature requires that the first slice is written with a positive
timeslice value, and that subsequent slices are written with atimeslice argument that increments by one
each time. By default, i.e. by omitting thetimeslice argument, no provisions for time slicing are made in
the output file.

[iofmt] The IO format. Please see Section 9.2.8 for the list of options. If not present, defaults toESMF_IOFMT_NETCDF.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

274

22 Array Class

22.1 Description

The Array class is an alternative to the Field class for representing distributed, structured data. Unlike Fields, which
are built to carry grid coordinate information, Arrays can only carry information about theindicesassociated with
grid cells. Since they do not have coordinate information, Arrays cannot be used to calculate interpolation weights.
However, if the user can supply interpolation weights, the Array sparse matrix multiply operation can be used to apply
the weights and transfer data to the new grid. Arrays can alsoperform redistribution, scatter, and gather communication
operations.
Like Fields, Arrays can be added to a State and used in inter-Component data communications. Arrays can also be
grouped together into ArrayBundles so that collective operations can be performed on the whole group. One motivation
for this is convenience; another is the ability to schedule optimized, collective data transfers.
From a technical standpoint, the ESMF Array class is an indexspace based, distributed data storage class. It provides
DE-local memory allocations within DE-centric index regions and defines the relationship to the index space described
by the ESMF DistGrid. The Array class offers common communication patterns within the index space formalism.
As part of the ESMF index space layer, Array has close relationship to the DistGrid and DELayout classes.

22.2 Use and Examples

An ESMF_Array is a distributed object that must exist on all PETs of the current context. Each PET-local instance of
an Array object contains memory allocations for all PET-local DEs. There may be 0, 1, or more DEs per PET and the
number of DEs per PET can differ between PETs for the same Array object. Memory allocations may be provided for
each PET by the user during Array creation or can be allocatedas part of the Array create call. Many of the concepts
of the proposedESMF_Array class are illustrated by the following examples.

22.2.1 Array from native Fortran array with 1 DE per PET

The create call of theESMF_Array class has been overloaded extensively to facilitate the need for generality while
keeping simple cases simple. The following program demonstrates one of the simpler cases, where existing local
Fortran arrays are to be used to provide the PET-local memoryallocations for the Array object.

program ESMF_ArrayFarrayEx

use ESMF_Mod

implicit none

The Fortran language provides a variety of ways to define and allocate an array. Actual Fortran array objects must either
be explicit-shape or deferred-shape. In the first case the memory allocation and deallocation is automatic from the
user’s perspective and the details of the allocation (static or dynamic, heap or stack) are left to the compiler. (Compiler
flags may be used to control some of the details). In the secondcase, i.e. for deferred-shape actual objects, the array
definition must include the pointer or allocatable attribute and it is the user’s responsibility to allocate memory. While
it is also the user’s responsibility to deallocate memory for arrays with pointer attribute the compiler will automatically
deallocate allocatable arrays under certain circumstances defined by the Fortran standard.
TheESMF_ArrayCreate() interface has been written to accept native Fortran arrays of any flavor as a means to
allow user-controlled memory management. The Array createcall will check on each PET if sufficient memory has
been provided by the specified Fortran arrays and will indicate an error if a problem is detected. However, the Array
create call cannot validate the lifetime of the provided memory allocations. If, for instance, an Array object was created
in a subroutine from an automatic explicit-shape array or anallocatable array, the memory allocations referenced by
the Array object will be automatically deallocated on return from the subroutine unless provisions are made by the
application writer to prevent such behavior. The Array object cannot control when memory that has been provided by
the user during Array creation becomes deallocated, however, the Array will indicate an error if its memory references
have been invalidated.

275

The easiest, portable way to provide safe native Fortran memory allocations to Array create is to use arrays with the
pointer attribute. Memory allocated for an array pointer will not be deallocated automatically. However, in this case
the possibility of memory leaks becomes an issue of concern.The deallocation of memory provided to an Array in
form of a native Fortran allocation will remain the users responsibility.
None of the concerns discussed above are an issue in this example where the native Fortran arrayfarray is defined
in the main program. All different types of array memory allocation are demonstrated in this example. FirstfarrayE
is defined as a 2D explicit-shape array on each PET which will automatically provide memory for10 × 10 elements.

! local variables
real(ESMF_KIND_R8) :: farrayE(10,10) ! explicit shape For tran array

Then an allocatable arrayfarrayA is declared which will be used to show user-controlled dynamic memory alloca-
tion.

real(ESMF_KIND_R8), allocatable :: farrayA(:,:) ! alloca table Fortran array

Finally an array with pointer attributefarrayP is declared, also used for user-controlled dynamic memory allocation.

real(ESMF_KIND_R8), pointer :: farrayP(:,:) ! Fortran arr ay pointer

A matching array pointer must also be available to gain access to the arrays held by an Array object.

real(ESMF_KIND_R8), pointer :: farrayPtr(:,:) ! matching Fortran array pointer
type(ESMF_DistGrid) :: distgrid ! DistGrid object
type(ESMF_Array) :: array ! Array object
integer :: rc

call ESMF_Initialize(defaultlogfilename="ArrayFarray Ex.Log", &
defaultlogtype=ESMF_LOG_MULTI, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT)

On each PETfarrayE can be accessed directly to initialize the entire PET-localarray.

farrayE = 12.45d0 ! initialize to some value

In order to create an Array object a DistGrid must first be created that describes the total index space and how it is
decomposed and distributed. In the simplest case only theminIndex andmaxIndex of the total space must be
provided.

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIn dex=(/40,10/), rc=rc)

This example is assumed to run on 4 PETs. The default 2D decomposition will then be into 4 x 1 DEs as to ensure 1
DE per PET.
Now the Array object can be created using thefarrayE and the DistGrid just created.

array = ESMF_ArrayCreate(farray=farrayE, distgrid=dist grid, &
indexflag=ESMF_INDEX_DELOCAL, rc=rc)

The 40 x 10 index space defined by theminIndex andmaxIndex arguments paired with the default decomposition
will result in the following distributed Array.

276

+---------------------------> 2nd dimension
| (1,1)-------+
| | |
| | DE 0 | <--- farray on PET 0
| | |
| +------(10,10)
| (11,1)-------+
| | |
| | DE 1 | <--- farray on PET 1
| | |
| +------(20,10)
| (21,1)-------+
| | |
| | DE 2 | <--- farray on PET 2
| | |
| +------(30,10)
| (31,1)-------+
| | |
| | DE 3 | <--- farray on PET 3
| | |
| +------(40,10)
v

1st dimension

ProvidingfarrayE during Array creation does not change anything about the actual farrayE object. This means
that each PET can use its localfarrayE directly to access the memory referenced by the Array object.

print * , farrayE

Another way of accessing the memory associated with an Arrayobject is to useArrayGet() to obtain an Fortran
pointer that references the PET-local array.

call ESMF_ArrayGet(array, farrayPtr=farrayPtr, rc=rc)

print * , farrayPtr

Finally the Array object must be destroyed. The PET-local memory of thefarrayE s will remain in user control and
will not be altered byArrayDestroy() .

call ESMF_ArrayDestroy(array, rc=rc)

Since the memory allocation for eachfarrayE is automatic there is nothing more to do.
The interaction betweenfarrayE and the Array class is representative also for the two other casesfarrayA and
farrayP . The only difference is in the handling of memory allocations.

allocate(farrayA(10,10)) ! user controlled allocation
farrayA = 23.67d0 ! initialize to some value
array = ESMF_ArrayCreate(farray=farrayA, distgrid=dist grid, &

indexflag=ESMF_INDEX_DELOCAL, rc=rc)

277

print * , farrayA ! print PET-local farrayA directly
call ESMF_ArrayGet(array, farrayPtr=farrayPtr, rc=rc)! obtain array pointer
print * , farrayPtr ! print PET-local piece of Array through pointer
call ESMF_ArrayDestroy(array, rc=rc) ! destroy the Array
deallocate(farrayA) ! user controlled de-allocation

ThefarrayP case is identical.

allocate(farrayP(10,10)) ! user controlled allocation
farrayP = 56.81d0 ! initialize to some value
array = ESMF_ArrayCreate(farray=farrayP, distgrid=dist grid, &

indexflag=ESMF_INDEX_DELOCAL, rc=rc)

print * , farrayP ! print PET-local farrayA directly
call ESMF_ArrayGet(array, farrayPtr=farrayPtr, rc=rc)! obtain array pointer
print * , farrayPtr ! print PET-local piece of Array through pointer
call ESMF_ArrayDestroy(array, rc=rc) ! destroy the Array
deallocate(farrayP) ! user controlled de-allocation

To wrap things up the DistGrid object is destroyed and ESMF can be finalized.

call ESMF_DistGridDestroy(distgrid, rc=rc) ! destroy the DistGrid

call ESMF_Finalize(rc=rc)

end program

22.2.2 Array from native Fortran array with extra elements for halo or padding

The example of the previous section showed how easy it is to create an Array object from existing PET-local Fortran
arrays. The example did, however, not define any halo elements around the DE-local regions. The following code
demonstrates how an Array object with space for a halo can be set up.

program ESMF_ArrayFarrayHaloEx

use ESMF_Mod

implicit none

The allocatable arrayfarrayA will be used to provide the PET-local Fortran array for this example.

! local variables
real(ESMF_KIND_R8), allocatable :: farrayA(:,:) ! alloca table Fortran array
real(ESMF_KIND_R8), pointer :: farrayPtr(:,:) ! matching Fortran array pointer
type(ESMF_DistGrid) :: distgrid ! DistGrid object
type(ESMF_Array) :: array ! Array object

278

integer :: rc, i, j
real :: localSum

call ESMF_Initialize(defaultlogfilename="ArrayFarray HaloEx.Log", &
defaultlogtype=ESMF_LOG_MULTI, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT)

The Array is to cover the exact same index space as in the previous example. Furthermore decomposition and distribu-
tion are also kept the same. Hence the same DistGrid object will be created and it is expected to execute this example
with 4 PETs.

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIn dex=(/40,10/), rc=rc)

This DistGrid describes a 40 x 10 index space that will be decomposed into 4 DEs when executed on 4 PETs, associ-
ating 1 DE per PET. Each DE-local exclusive region contains 10 x 10 elements. The DistGrid also stores and provides
information about the relationship between DEs in index space, however, DistGrid does not contain information about
halos. Arrays contain halo information and it is possible tocreate multiple Arrays covering the same index space with
identical decomposition and distribution using the same DistGrid object, while defining different, Array-specific halo
regions.
The extra memory required to cover the halo in the Array object must be taken into account when allocating the
PET-localfarrayA arrays. For a halo of 2 elements in each direction the following allocation will suffice.

allocate(farrayA(14,14)) ! Fortran array with halo: 14 = 10 + 2 * 2

ThefarrayA can now be used to create an Array object with enough space fora two element halo in each direction.
The Array creation method checks for each PET that the local Fortran array can accommodate the requested regions.
The default behavior of ArrayCreate() is to center the exclusive region within the total region. Consequently the
following call will provide the 2 extra elements on each sideof the exclusive 10 x 10 region without having to specify
any additional arguments.

array = ESMF_ArrayCreate(farray=farrayA, distgrid=dist grid, &
indexflag=ESMF_INDEX_DELOCAL, rc=rc)

The exclusive Array region on each PET can be accessed through a suitable Fortran array pointer. See section 22.2.6
for more details on Array regions.

call ESMF_ArrayGet(array, farrayPtr=farrayPtr, rc=rc)

Following Array bounds convention, which by default puts the beginning of the exclusive region at (1, 1, ...), the
following loop will add up the values of the local exclusive region for each DE, regardless of how the bounds were
chosen for the original PET-localfarrayA arrays.

localSum = 0.
do j=1, 10

do i=1, 10
localSum = localSum + farrayPtr(i, j)

enddo
enddo

279

Elements withi or j in the [-1,0] or [11,12] ranges are located outside the exclusive region and may be used to define
extra computational points or halo operations.
Cleanup and shut down ESMF.

call ESMF_ArrayDestroy(array, rc=rc)
deallocate(farrayA)
call ESMF_DistGridDestroy(distgrid, rc=rc)

call ESMF_Finalize(rc=rc)

end program

22.2.3 Array from ESMF_LocalArray

Alternative to the direct usage of Fortran arrays during Array creation it is also possible to first create anESMF_LocalArray
and create the Array from it. While this may seem more burdensome for the 1 DE per PET cases discussed in the
previous sections it allows a straight forward generalization to the multiple DE per PET case. The following example
first recaptures the previous example using anESMF_LocalArray and then expands to the multiple DE per PET
case.

program ESMF_ArrayLarrayEx

use ESMF_Mod

implicit none

The currentESMF_LocalArray interface requires Fortran arrays to be defined with pointerattribute.

! local variables
real(ESMF_KIND_R8), pointer :: farrayP(:,:) ! Fortran arr ay pointer
real(ESMF_KIND_R8), pointer :: farrayPtr(:,:) ! matching Fortran array pointer
type(ESMF_LocalArray) :: larray ! ESMF_LocalArray object
type(ESMF_LocalArray) :: larrayRef ! ESMF_LocalArray obj ect
type(ESMF_DistGrid) :: distgrid ! DistGrid object
type(ESMF_Array) :: array ! Array object
integer :: rc, i, j, de
real :: localSum
type(ESMF_LocalArray), allocatable :: larrayList(:) ! ES MF_LocalArray object list
type(ESMF_LocalArray), allocatable :: larrayRefList(:) ! ESMF_LocalArray object list

type(ESMF_VM):: vm
integer:: localPet, petCount

call ESMF_Initialize(vm=vm, defaultlogfilename="Array LarrayEx.Log", &
defaultlogtype=ESMF_LOG_MULTI, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT)
call ESMF_VMGet(vm, localPet=localPet, petCount=petCou nt, rc=rc)
if (rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT)

280

if (petCount /= 4) then
finalrc = ESMF_FAILURE
goto 10

endif

DistGrid and array allocation remains unchanged.

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIn dex=(/40,10/), rc=rc)

allocate(farrayP(14,14)) ! allocate Fortran array on each PET with halo

Now instead of directly creating an Array object using the PET-local farrayP s anESMF_LocalArray object will
be created on each PET.

larray = ESMF_LocalArrayCreate(farrayP, ESMF_DATA_REF, rc=rc)

The Array object can now be created fromlarray . The Array creation method checks for each PET that the Lo-
calArray can accommodate the requested regions.

array = ESMF_ArrayCreate(larrayList=(/larray/), distgr id=distgrid, rc=rc)

Once created there is no difference in how the Array object can be used. The exclusive Array region on each PET can
be accessed through a suitable Fortran array pointer as before.

call ESMF_ArrayGet(array, farrayPtr=farrayPtr, rc=rc)

Alternatively it is also possible (independent of how the Array object was created) to obtain the reference to the array
allocation held by Array in form of anESMF_LocalArray object. ThefarrayPtr can then be extracted using
LocalArray methods.

call ESMF_ArrayGet(array, larray=larrayRef, rc=rc)

call ESMF_LocalArrayGet(larrayRef, farrayPtr, rc=rc)

Either way thefarrayPtr reference can be used now to add up the values of the local exclusive region for each DE.
The following loop works regardless of how the bounds were chosen for the original PET-localfarrayP arrays and
consequently the PET-locallarray objects.

localSum = 0.
do j=1, 10

do i=1, 10
localSum = localSum + farrayPtr(i, j)

enddo
enddo
print * , "localSum=", localSum

Cleanup.

281

call ESMF_ArrayDestroy(array, rc=rc)
call ESMF_LocalArrayDestroy(larray, rc=rc)
deallocate(farrayP) ! use the pointer that was used in alloc ate statement
call ESMF_DistGridDestroy(distgrid, rc=rc)

While the usage of LocalArrays is unnecessarily cumbersomefor 1 DE per PET Arrays, it provides a straight forward
path for extending the interfaces to multiple DEs per PET.
In the following example a 8 x 8 index space will be decomposedinto 2 x 4 = 8 DEs. The situation is captured by the
following DistGrid object.

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIn dex=(/8,8/), &
regDecomp=(/2,4/), rc=rc)

The distgrid object created in this manner will contain 8 DEs no matter howmany PETs are available during
execution. Assuming an execution on 4 PETs will result in thefollowing distribution of the decomposition.

+---------------------------------------> 2nd dimensi on
| (1,1)
| +-----------+-----------+-----------+-----------+
	DE0, PET0	DE2, PET1	DE4, PET2	DE6, PET3
	* *	* *	* *	* *
	* *	* *	* *	* *
	* *	* *	* *	* *
	* *	* *	* *	* *
+-----------+-----------+-----------+-----------+				
	DE1, PET0	DE3, PET1	DE5, PET2	DE7, PET3
	* *	* *	* *	* *
	* *	* *	* *	* *
	* *	* *	* *	* *
	* *	* *	* *	* *
+-----------+-----------+-----------+-----------+				
(8,8)				
v

1st dimension

Obviously each PET is associated with 2 DEs. Each PET must allocate enough space forall its DEs. This is done by
allocating as many DE-local arrays as there are DEs on the PET. The reference to these array allocations is passed into
ArrayCreate via a LocalArray list argument that holds as many elements as there are DEs on the PET. Here each PET
must allocate for two DEs.

allocate(larrayList(2)) ! 2 DEs per PET
allocate(farrayP(4, 2)) ! without halo each DE is of size 4 x 2
farrayP = 123.456d0
larrayList(1) = ESMF_LocalArrayCreate(farrayP, ESMF_DA TA_REF, rc=rc) ! 1st DE
allocate(farrayP(4, 2)) ! without halo each DE is of size 4 x 2
farrayP = 456.789d0

282

larrayList(2) = ESMF_LocalArrayCreate(farrayP, ESMF_DA TA_REF, rc=rc) ! 2nd DE

Notice that it is perfectly fine tore-usefarrayP for all allocations of DE-local Fortran arrays. The allocated memory
can be deallocated at the end using the array pointer contained in thelarrayList .
With this information an Array object can be created. Thedistgrid object indicates 2 DEs for each PET and
ArrayCreate() expects to find two LocalArray elements inlarrayList .

array = ESMF_ArrayCreate(larrayList=larrayList, distgr id=distgrid, rc=rc)

Usage of a LocalArray list is the only way to provide a list of variable length of Fortran array allocations to ArrayCre-
ate() for each PET. Thearray object created by the above call is an ESMF distributed object. As such it must follow
the ESMF convention that requires that the call toESMF_ArrayCreate() must be issued in unison by all PETs of
the current context. Each PET only calls ArrayCreate() once, even if there are multiple DEs per PET.
The ArrayGet() method provides access to the list of LocalArrays on each PET.

allocate(larrayRefList(2))
call ESMF_ArrayGet(array, larrayList=larrayRefList, rc =rc)

Finally, access to the actual Fortran pointers is done on a per DE basis. Generally each PET will loop over its DEs.

do de=1, 2
call ESMF_LocalArrayGet(larrayRefList(de), farrayPtr, rc=rc)
localSum = 0.
do j=1, 2

do i=1, 4
localSum = localSum + farrayPtr(i, j)

enddo
enddo
print * , "localSum=", localSum

enddo

Note: If the VM associates multiple PEs with a PET the application writer may decide to use OpenMP loop paral-
lelization on thede loop.
Cleanup requires that the PET-local deallocations are donebefore the pointers to the actual Fortran arrays are lost.
Notice thatlarrayList is used to obtain the pointers used in the deallocate statement. Pointers obtained from the
larrayRefList , while pointing to the same data,cannotbe used to deallocated the array allocations!

do de=1, 2
call ESMF_LocalArrayGet(larrayList(de), farrayPtr, rc= rc)
deallocate(farrayPtr)
call ESMF_LocalArrayDestroy(larrayList(de), rc=rc)

enddo
deallocate(larrayList)
deallocate(larrayRefList)
call ESMF_ArrayDestroy(array, rc=rc)
call ESMF_DistGridDestroy(distgrid, rc=rc)

With that ESMF can be shut down cleanly.

call ESMF_Finalize(rc=rc)

end program

283

22.2.4 Create Array with automatic memory allocation

In the examples of the previous sections the user provided memory allocations for each of the DE-local regions
for an Array object. The user was able to use any of the Fortranmethods to allocate memory, or go through the
ESMF_LocalArray interfaces to obtain memory allocations before passing them into ArrayCreate(). Alternatively
ESMF offers methods that handle Array memory allocations inside the library.
As before, to create anESMF_Array object anESMF_DistGrid must be created. The DistGrid object holds
information about the entire index space and how it is dcomposed into DE-local exclusive regions. The following line
of code creates a DistGrid for a 5x5 global index space that isdecomposed into 2 x 3 = 6 DEs.

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIn dex=(/5,5/), &
regDecomp=(/2,3/), rc=rc)

The following is a representation of the index space and its decompositon into DEs. Each asterix (*) represents a
single element.

+---------------------------------------> 2nd dimensi on
| (1,1)
| +-----------+-----------+------+
	DE 0	DE 2	DE 4
	* *	* *	*
	* *	* *	*
	* *	* *	*
+-----------+-----------+------+			
	DE 1	DE 3	DE 5
	* *	* *	*
	* *	* *	*
+-----------+-----------+------+			
(5,5)			
v

1st dimension

Besides the DistGrid it is thetype, kindandrank information, "tkr" for short, that is required to create an Array object.
It turns out that the rank of the Array object is fully determined by the DistGrid and other (optional) arguments passed
into ArrayCreate(), so that explicit specification of the Array rank is redundant.
The simplest way to supply the type and kind information of the Array is directly through thetypekind argument.
Here a double precision Array is created on the previously created DistGrid. Since no other arguments are specified
that could alter the rank of the Array it becomes equal to the dimCount of the DistGrid, i.e a 2D Array is created on
top of the DistGrid.

array = ESMF_ArrayCreate(typekind=ESMF_TYPEKIND_R8, di stgrid=distgrid, rc=rc)

The different methods on how an Array object is created have no effect on the use ofESMF_ArrayDestroy() .

call ESMF_ArrayDestroy(array, rc=rc)

284

Alternatively the same Array can be created specifying the "tkr" information in form of an ArraySpec variable. The
ArraySpec explicitly contains the Array rank and thus results in an overspecification on the ArrayCreate() interface.
ESMF checks all input information for consistency and returns appropriate error codes in case any inconsistencies are
found.

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEK IND_R8, rank=2, rc=rc)

array = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid =distgrid, rc=rc)

The Array object created by the above call is an ESMF distributed object. As such it must follow the ESMF convention
that requires that the call toESMF_ArrayCreate() must be issued in unison by all PETs of the current context.

22.2.5 Native language memory access

Access to the data held inside an ESMF Array object is provided through native language objects. Specifically, the
farrayPtr argument returned by theESMF_ArrayGet() method is a Fortran array pointer that can be used do
access the PET-local data inside the Array object.
Many applications work in the 1 DE per PET mode, i.e. there is only a single DE on each PET. The Array class
does not assume this special case, instead it supports multiple separate memory allocations on each PET. The number
of such PET-local allocations is given by thelocalDeCount of the underlying DistGrid. Access to the DE-local
memory allocations in this general case requires a loop overlocalDeCount .

call ESMF_ArrayGet(array, localDeCount=localDeCount, r c=rc)

do de=0, localDeCount-1
call ESMF_ArrayGet(array, farrayPtr=myFarray, localDe= de, rc=rc)

! use myFarray to access local DE data
enddo

The 1 DE per PET case is so common that the ESMF Array provides simplified support for it. In this case the
ESMF_ArrayGet() can be called without specifyinglocalDe to access the unique PET-localfarrayPtr . An
error will be returned iflocalDe was omitted for an Array that holds multiple DEs per PET.
Besides direct access to the DE-local memory allocation through the Fortran array pointer, the Array can also be
queried for a list of PET-local LocalArray objects. See section 22.2.3 for more on LocalArray usage in Array. In
most cases this approach is less convenient than the directfarrayPtr method, because it adds an extra object level
between the Array and the native language array. Further, the 1 DE per PET case is not treated in a simplified manner.

allocate(larrayList(localDeCount))
call ESMF_ArrayGet(array, larrayList=larrayList, rc=rc)

do de=1, localDeCount
call ESMF_LocalArrayGet(larrayList(de), myFarray, ESMF _DATA_REF, rc=rc)

! use myFarray to access local DE data
enddo

285

22.2.6 Regions and default bounds

EachESMF_Array object is decomposed into DEs as specified by the associatedESMF_DistGrid object. Each
piece of this decomposition, i.e. each DE, holds a chunk of the Array data in its own local piece of memory. The
details of the Array decomposition are described in the following paragraphs.
At the center of the Array decomposition is theESMF_DistGrid class. The DistGrid object specified during Array
creation contains three essential pieces of information:

• The extent and topology of the global domain covered by the Array object in terms of indexed elements. The
total extent may be a composition or patchwork of smaller logically rectangular (LR) domain pieces or patches.

• The decomposition of the entire domain into "element exclusive" DE-local LR chunks.Element exclusivemeans
that there is no element overlap between DE-local chunks. This, however, does not exclude degeneracies on edge
boundaries for certain topologies (e.g. bipolar).

• The layout of DEs over the available PETs and thus the distribution of the Array data.

Each element of an Array is associated with asingleDE. The union of elements associated with a DE, as defined by
the DistGrid above, corresponds to a LR chunk of index space,called theexclusive regionof the DE.
There is a hierarchy of four regions that can be identified foreach DE in an Array object. Their definition and
relationship to each other is as follows:

• Interior Region: Region that only contains local elements that arenot mapped into the halo of any other DE.
The shape and size of this region for a particular DE depends non-locally on the halos defined by other DEs and
may change during computation as halo operations are precomputed and released. Knowledge of the interior
elements may be used to improve performance by overlapping communications with ongoing computation for
a DE.

• Exclusive Region: Elements for which a DE claims exclusive ownership. Practically this means that the DE
will be the sole source for these elements in halo and reduce operations. There are exceptions to this in some
topologies. The exclusive region includes all elements of the interior region.

• Computational Region: Region that can be set arbitrarily within the bounds of the total region (defined next).
The typical use of the computation region is to define bounds that only include elements that are updated by a
DE-local computation kernel. The computational region does not need to include all exclusive elements and it
may also contain elements that lie outside the exclusive region.

• Total (Memory) Region: Total of all DE-locally allocated elements. The size and shape of the total memory
region must accommodate the union of exclusive and computational region but may contain additional elements.
Elements outside the exclusive region may overlap with the exclusive region of another DE which makes them
potential receivers for Array halo operations. Elements outside the exclusive region that do not overlap with the
exclusive region of another DE can be used to set boundary conditions and/or serve as extra memory padding.

+-totalLBound(:)----------------------------------+
|\ |
| \ <--- totalLWidth(:) |
| \ |
| +-computationalLBound(:)------------------+ |
	\							
	\ <--- computationalLWidth(:)							
	\							
	+-exclusiveLBound(:)-------------+							
		+------+ +-----+						
			+------+					
			"Interior Region"					
		+-----+						

286

		+-------------+				
		"Exclusive Region"				
	+-------------exclusiveUBound(:)-+					
	\					
	computationalUWidth(:) --> \					
	\					
	"Computational Region" \|					
+------------------computationalUBound(:)-+						
\						
totalUWidth(:) -> \						
"Total Region" \|						
+--------------------------------- totalUBound(:)-+

With the following definitions:

computationalLWidth(:) = exclusiveLBound(:) - computati onalLBound(:)
computationalUWidth(:) = computationalUBound(:) - exclu siveUBound(:)

and

totalLWidth(:) = exclusiveLBound(:) - totalLBound(:)
totalUWidth(:) = totalUBound(:) - exclusiveUBound(:)

Theexclusive regionis determined during Array creation by the DistGrid argument. Optional arguments may be used
to specify thecomputational regionwhen the Array is created, by default it will be set equal to the exclusive region.
The total region, i.e. the actual memory allocation for each DE, is also determined during Array creation. When
creating the Array object from existing Fortran arrays the total region is set equal to the memory provided by the
Fortran arrays. Otherwise the default is to allocate as muchmemory as is needed to accommodate the union of the
DE-local exclusive and computational region. Finally it isalso possible to use optional arguments to the ArrayCreate()
call to specify the total region of the object explicitly.
The ESMF_ArrayCreate() call checks that the input parameters are consistent and will result in an Array that
fulfills all of the above mentioned requirements for its DE-local regions.
Once an Array object has been created the exclusive and totalregions are fixed. The computational region, however,
may be adjusted within the limits of the total region using theArraySet() call.
The interior region is very different from the other regions in that it cannot be specified. Theinterior region for each
DE is aconsequenceof the choices made for the other regions collectively across all DEs into which an Array object
is decomposed. An Array object can be queried for its DE-local interior regionsas to offer additional information to
the user necessary to write more efficient code.
By default the bounds of each DE-localtotal regionare defined as to put the start of the DE-localexclusive regionat
the "origin" of the local index space, i.e. at(1, 1, ..., 1) . With that definition the following loop will access
each element of the DE-local memory segment for each PET-local DE of the Array object used in the previous sections
and print its content.

do de=1, localDeCount
call ESMF_LocalArrayGet(larrayList(de), myFarray, ESMF _DATA_REF, rc=rc)
do i=1, size(myFarray, 1)

do j=1, size(myFarray, 2)
print * , "PET-local DE=", de, ": array(",i,",",j,")=", myFarray(i,j)

287

enddo
enddo

enddo

22.2.7 Array bounds

The loop over Array elements at the end of the last section only works correctly because of the default definition of
thecomputationalandtotal regionsused in the example. In general, without such specific knowledge about an Array
object, it is necessary to use a more formal approach to access its regions with DE-local indices.
The DE-localexclusive regiontakes a central role in the definition of Array bounds. Even asthecomputational region
may adjust during the course of execution theexclusive regionremains unchanged. Theexclusive regionprovides a
unique reference frame for the index space of all Arrays associated with the same DistGrid.
There is a choice between two indexing options that needs to be made during Array creation. By default each DE-local
exclusive region starts at(1, 1, ..., 1) . However, for some computational kernels it may be more convenient
to choose the index bounds of the DE-local exclusive regionsto match the index space coordinates as they are defined
in the corresponding DistGrid object. The second option is only available if the DistGrid object does not contain any
non-contiguous decompositions (such as cyclically decomposed dimensions).
The following example code demonstrates the safe way of dereferencing the DE-local exclusive regions of the previ-
ously createdarray object.

allocate(exclusiveUBound(2, localDeCount)) ! dimCount= 2
allocate(exclusiveLBound(2, localDeCount)) ! dimCount= 2
call ESMF_ArrayGet(array, indexflag=indexflag, &

exclusiveLBound=exclusiveLBound, exclusiveUBound=exc lusiveUBound, rc=rc)
if (indexflag == ESMF_INDEX_DELOCAL) then

! this is the default
! print * , "DE-local exclusive regions start at (1,1)"

do de=1, localDeCount
call ESMF_LocalArrayGet(larrayList(de), myFarray, ESMF _DATA_REF, rc=rc)
do i=1, exclusiveUBound(1, de)

do j=1, exclusiveUBound(2, de)
! print * , "DE-local exclusive region for PET-local DE=", de, &
! ": array(",i,",",j,")=", myFarray(i,j)

enddo
enddo

enddo
else if (indexflag == ESMF_INDEX_GLOBAL) then

! only if set during ESMF_ArrayCreate()
! print * , "DE-local exclusive regions of this Array have global boun ds"

do de=1, localDeCount
call ESMF_LocalArrayGet(larrayList(de), myFarray, ESMF _DATA_REF, rc=rc)
do i=exclusiveLBound(1, de), exclusiveUBound(1, de)

do j=exclusiveLBound(2, de), exclusiveUBound(2, de)
! print * , "DE-local exclusive region for PET-local DE=", de, &
! ": array(",i,",",j,")=", myFarray(i,j)

enddo
enddo

enddo
endif
call ESMF_ArrayDestroy(array, rc=rc) ! destroy the array o bject

Obviously the second branch of this simple code will work foreither case, however, if a complex computational kernel
was written assumingESMF_INDEX_DELOCALtype bounds the second branch would simply be used to indicate the
problem and bail out.

288

The advantage of theESMF_INDEX_GLOBALindex option is that the Array bounds directly contain information on
where the DE-local Array piece is located in a global index space sense. When theESMF_INDEX_DELOCALoption
is used the correspondence between local and global index space must be made by querying the associated DistGrid
for the DE-localindexList arguments.

22.2.8 Computational region and extra elements for halo or padding

In the previous examples the computational region ofarray was chosen by default to be identical to the exclusive re-
gion defined by the DistGrid argument during Array creation.In the following the samearrayspec anddistgrid
objects as before will be used to create an Array but now a larger computational region shall be defined around each
DE-local exclusive region. Furthermore, extra space will be defined around the computational region of each DE to
accommodate a halo and/or serve as memory padding.
In this example theindexflag argument is set toESMF_INDEX_GLOBALindicating that the bounds of the exclu-
sive region correspond to the index space coordinates as they are defined by the DistGrid object.
The samearrayspec anddistgrid objects as before are used which also allows the reuse of the already allocated
larrayList variable.

array = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid =distgrid, &
computationalLWidth=(/0,3/), computationalUWidth=(/1 ,1/), &
totalLWidth=(/1,4/), totalUWidth=(/3,1/), &
indexflag=ESMF_INDEX_GLOBAL, rc=rc)

Obtain thelarrayList on every PET.

allocate(localDeList(localDeCount))
call ESMF_ArrayGet(array, larrayList=larrayList, local DeList=localDeList, &

rc=rc)

The bounds of DE 1 forarray are shown in the following diagram to illustrate the situation. Notice that the
totalLWidth andtotalUWidth arguments in the ArrayCreate() call define the total region with respect to the
exclusive region given for each DE by thedistgrid argument.

+-(3,-3)---------------------------------+
|\ |
| +-(4,-2)-+-(4,1)--------------------+--+
		DE 1	
		Exclusive Region	
	+--------------------(5,2)-+		
	Computational Region		
+-------------------------------(6,3)--+			
Total Region			
+---------------------------------(8,3)--+

When working with thisarray it is possible for the computational kernel to overstep the exclusive region for both
read/write access (computational region) and potentiallyread-only access into the total region outside of the compu-
tational region, if a halo operation provides valid entriesfor these elements.
The Array object can be queried for absolutebounds

289

allocate(computationalLBound(2, localDeCount)) ! dimCo unt=2
allocate(computationalUBound(2, localDeCount)) ! dimCo unt=2
allocate(totalLBound(2, localDeCount)) ! dimCount=2
allocate(totalUBound(2, localDeCount)) ! dimCount=2
call ESMF_ArrayGet(array, exclusiveLBound=exclusiveLB ound, &

exclusiveUBound=exclusiveUBound, computationalLBound =computationalLBound, &
computationalUBound=computationalUBound, totalLBound =totalLBound, &
totalUBound=totalUBound, rc=rc)

or for the relativewidths.

allocate(computationalLWidth(2, localDeCount)) ! dimCo unt=2
allocate(computationalUWidth(2, localDeCount)) ! dimCo unt=2
allocate(totalLWidth(2, localDeCount)) ! dimCount=2
allocate(totalUWidth(2, localDeCount)) ! dimCount=2
call ESMF_ArrayGet(array, computationalLWidth=computa tionalLWidth, &

computationalUWidth=computationalUWidth, totalLWidth =totalLWidth, &
totalUWidth=totalUWidth, rc=rc)

Either way the dereferencing of Array data is centered around the DE-local exclusive region:

do de=1, localDeCount
call ESMF_LocalArrayGet(larrayList(de), myFarray, ESMF _DATA_REF, rc=rc)
! initialize the DE-local array
myFarray = 0.1d0 * localDeList(de)
! first time through the total region of array

! print * , "myFarray bounds for DE=", localDeList(de), lbound(myFa rray), &
! ubound(myFarray)

do j=exclusiveLBound(2, de), exclusiveUBound(2, de)
do i=exclusiveLBound(1, de), exclusiveUBound(1, de)

! print * , "Excl region DE=", localDeList(de), ": array(",i,",",j, ")=", &
! myFarray(i,j)

enddo
enddo
do j=computationalLBound(2, de), computationalUBound(2 , de)

do i=computationalLBound(1, de), computationalUBound(1 , de)
! print * , "Excl region DE=", localDeList(de), ": array(",i,",",j, ")=", &
! myFarray(i,j)

enddo
enddo
do j=totalLBound(2, de), totalUBound(2, de)

do i=totalLBound(1, de), totalUBound(1, de)
! print * , "Total region DE=", localDeList(de), ": array(",i,",",j ,")=", &
! myFarray(i,j)

enddo
enddo

! second time through the total region of array
do j=exclusiveLBound(2, de)-totalLWidth(2, de), &

exclusiveUBound(2, de)+totalUWidth(2, de)
do i=exclusiveLBound(1, de)-totalLWidth(1, de), &

exclusiveUBound(1, de)+totalUWidth(1, de)
! print * , "Excl region DE=", localDeList(de), ": array(",i,",",j, ")=", &
! myFarray(i,j)

290

enddo
enddo

enddo

22.2.9 Create 1D and 3D Arrays

All previous examples were written for the 2D case. There is,however, no restriction within the Array or DistGrid
class that limits the dimensionality of Array objects beyond the language specific limitations (7D for Fortran).
In order to create ann-dimensional Array the rank indicated by both thearrayspec and thedistgrid arguments
specified during Array create must be equal ton. A 1D Array of double precision real data hence requires the following
arrayspec .

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEK IND_R8, rank=1, rc=rc)

The index space covered by the Array and the decomposition description is provided to the Array create method by
the distgrid argument. The index space in this example has 16 elements andcovers the interval[−10, 5]. It is
decomposed into as many DEs as there are PETs in the current context.

distgrid1D = ESMF_DistGridCreate(minIndex=(/-10/), max Index=(/5/), &
regDecomp=(/petCount/), rc=rc)

A 1D Array object with default regions can now be created.

array1D = ESMF_ArrayCreate(arrayspec=arrayspec, distgr id=distgrid1D, rc=rc)

The creation of a 3D Array proceeds analogous to the 1D case. The rank of thearrayspec must be changed to 3

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEK IND_R8, rank=3, rc=rc)

and an appropriate 3D DistGrid object must be created

distgrid3D = ESMF_DistGridCreate(minIndex=(/1,1,1/), m axIndex=(/16,16,16/), &
regDecomp=(/4,4,4/), rc=rc)

before an Array object can be created.

array3D = ESMF_ArrayCreate(arrayspec=arrayspec, distgr id=distgrid3D, rc=rc)

The distgrid3D object decomposes the 3-dimensional index space into4 × 4 × 4 = 64 DEs. These DEs are
laid out across the computational resources (PETs) of the current component according to a default DELayout that is
created during the DistGrid create call. Notice that in the index space proposal a DELayout does not have a sense of
dimensionality. The DELayout function is simply to map DEs to PETs. The DistGrid maps chunks of index space
against DEs and thus its rank is equal to the number of index space dimensions.
The previously defined DistGrid and the derived Array objectdecompose the index space along all three dimension.
It is, however, not a requirement that the decomposition be along all dimensions. An Array with the same 3D index
space could as well be decomposed along just one or along two of the dimensions. The following example shows how
for the same index space only the last two dimensions are decomposed while the first Array dimension has full extent
on all DEs.

call ESMF_ArrayDestroy(array3D, rc=rc)
call ESMF_DistGridDestroy(distgrid3D, rc=rc)
distgrid3D = ESMF_DistGridCreate(minIndex=(/1,1,1/), m axIndex=(/16,16,16/), &

regDecomp=(/1,4,4/), rc=rc)
array3D = ESMF_ArrayCreate(arrayspec=arrayspec, distgr id=distgrid3D, rc=rc)

291

22.2.10 Working with Arrays of different rank

Assume a computational kernel that involves thearray3D object as it was created at the end of the previous section.
Assume further that the kernel also involves a 2D Array on a 16x16 index space where each point (j,k) was interacting
with each (i,j,k) column of the 3D Array. An efficient formulation would require that the decomposition of the 2D
Array must match that of the 3D Array and further the DELayoutbe identical. The following code shows how this can
be accomplished.

call ESMF_DistGridGet(distgrid3D, delayout=delayout, r c=rc) ! get DELayout
distgrid2D = ESMF_DistGridCreate(minIndex=(/1,1/), max Index=(/16,16/), &

regDecomp=(/4,4/), delayout=delayout, rc=rc)
call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEK IND_R8, rank=2, rc=rc)
array2D = ESMF_ArrayCreate(arrayspec=arrayspec, distgr id=distgrid2D, rc=rc)

Now the following kernel is sure to work witharray3D andarray2D .

call ESMF_DELayoutGet(delayout, localDeCount=localDeC ount, rc=rc)
allocate(larrayList1(localDeCount))
call ESMF_ArrayGet(array3D, larrayList=larrayList1, rc =rc)
allocate(larrayList2(localDeCount))
call ESMF_ArrayGet(array2D, larrayList=larrayList2, rc =rc)
do de=1, localDeCount

call ESMF_LocalArrayGet(larrayList1(de), myFarray3D, E SMF_DATA_REF, &
rc=rc)

myFarray3D = 0.1d0 * de ! initialize
call ESMF_LocalArrayGet(larrayList2(de), myFarray2D, E SMF_DATA_REF, &

rc=rc)
myFarray2D = 0.5d0 * de ! initialize
do k=1, 4

do j=1, 4
dummySum = 0.d0
do i=1, 16

dummySum = dummySum + myFarray3D(i,j,k) ! sum up the (j,k) co lumn
enddo
dummySum = dummySum* myFarray2D(j,k) ! multiply with local 2D element

! print * , "dummySum(",j,k,")=",dummySum
enddo

enddo
enddo

22.2.11 Array and DistGrid rank – 2D+1 Arrays

Except for the special Array create interface that implements a copy from an existing Array object all other Array
create interfaces require the specification of at least two arguments:farray anddistgrid , larrayList and
distgrid , or arrayspec anddistgrid . In all these cases both required arguments contain a sense of dimen-
sionality. The relationship between these two arguments deserves extra attention.
The first argument,farray , larrayList or arrayspec , determines the rank of the created Array object, i.e. the
dimensionality of the actual data storage. The rank of a native language array, extracted from an Array object, is equal
to the rank specified by either of these arguments. So is therank that is returned by theESMF_ArrayGet() call.
The rank specification contained in thedistgrid argument, which is of typeESMF_DistGrid , on the other hand
has no affect on the rank of the Array. ThedimCount specified by the DistGrid object, which may be equal, greater
or less than the Array rank, determines the dimensionality of thedecomposition.
While there is no constraint between DistGriddimCount and Arrayrank , there is an important relationship between
the two, resulting in the concept of index space dimensionality. Array dimensions can be arbitrarily mapped against

292

DistGrid dimension, rendering themdecomposeddimensions. The index space dimensionality is equal to the number
of decomposed Array dimensions.
Array dimensions that are not mapped to DistGrid dimensionsare theundistributeddimensions of the Array. They are
not part of the index space. The mapping is specified duringESMF_ArrayCreate() via thedistgridToArrayMap
argument. DistGrid dimensions that have not been associated with Array dimensions arereplicatingdimensions. The
Array will be replicated across the DEs that lie along replication DistGrid dimensions.
Undistributed Array dimensions can be used to store multi-dimensional data for each Array index space element. One
application of this is to store the components of a vector quantity in a single Array. The same 2Ddistgrid object
as before will be used.

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIn dex=(/5,5/), &
regDecomp=(/2,3/), rc=rc)

The rank in thearrayspec argument, however, must change from 2 to 3 in order to providefor the extra Array
dimension.

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEK IND_R8, rank=3, rc=rc)

During Array creation with extra dimension(s) it is necessary to specify the bounds of these undistributed dimen-
sion(s). This requires two additional arguments,undistLBound andundistUBound , which are vectors in order
to accommodate multiple undistributed dimensions. The other arguments remain unchanged and apply across all
undistributed components.

array = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid =distgrid, &
totalLWidth=(/0,1/), totalUWidth=(/0,1/), &
undistLBound=(/1/), undistUBound=(/2/), rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT)

This will createarray with 2+1 dimensions. The 2D DistGrid is used to describe decomposition into DEs with
2 Array dimensions mapped to the DistGrid dimensions resulting in a 2D index space. The extra Array dimension
provides storage for multi component user data within the Array object.
By default thedistgrid dimensions are associated with the first Array dimensions insequence. For the example
above this means that the first 2 Array dimensions are decomposed according to the provided 2D DistGrid. The 3rd
Array dimension does not have an associated DistGrid dimension, rendering it an undistributed Array dimension.
Native language access to an Array with undistributed dimensions is in principle the same as without extra dimensions.

call ESMF_ArrayGet(array, localDeCount=localDeCount, r c=rc)
allocate(larrayList(localDeCount))
call ESMF_ArrayGet(array, larrayList=larrayList, rc=rc)

The following loop shows how a Fortran pointer to the DE-local data chunks can be obtained and used to set data
values in the exclusive regions. ThemyFarray3D variable must be of rank 3 to match the Array rank ofarray .
However, variables such asexclusiveUBound that store the information about the decomposition, remainto be
allocated for the 2D index space.

call ESMF_ArrayGet(array, exclusiveLBound=exclusiveLB ound, &
exclusiveUBound=exclusiveUBound, rc=rc)

do de=1, localDeCount
call ESMF_LocalArrayGet(larrayList(de), myFarray3D, ES MF_DATA_REF, rc=rc)
myFarray3D = 0.0 ! initialize
myFarray3D(exclusiveLBound(1,de):exclusiveUBound(1, de), &

exclusiveLBound(2,de):exclusiveUBound(2,de), 1) = 5.1 ! dummy assignment
myFarray3D(exclusiveLBound(1,de):exclusiveUBound(1, de), &

293

exclusiveLBound(2,de):exclusiveUBound(2,de), 2) = 2.5 ! dummy assignment
enddo
deallocate(larrayList)

For some applications the default association rules between DistGrid and Array dimensions may not satisfy the user’s
needs. The optionaldistgridToArrayMap argument can be used during Array creation to explicitly specify the
mapping between DistGrid and Array dimensions. To demonstrate this the following lines of code reproduce the above
example but with rearranged dimensions. Here thedistgridToArrayMap argument is a list with two elements
corresponding to the DistGriddimCount of 2. The first element indicates which Array dimension the first DistGrid
dimension is mapped against. Here the 1st DistGrid dimension maps against the 3rd Array dimension and the 2nd
DistGrid dimension maps against the 1st Array dimension. This leaves the 2nd Array dimension to be the extra and
undistributed dimension in the resulting Array object.

call ESMF_ArrayDestroy(array, rc=rc)
array = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid =distgrid, &

distgridToArrayMap=(/3, 1/), totalLWidth=(/0,1/), tota lUWidth=(/0,1/), &
undistLBound=(/1/), undistUBound=(/2/), rc=rc)

Operations on the Array object as a whole are unchanged by thedifferent mapping of dimensions.
When working with Arrays that contain explicitly mapped Array and DistGrid dimensions it is critical to know the
order in which the entries ofwidth andboundarguments that are associated with distributed Array dimensions are
specified. The size of these arguments is equal to the DistGrid dimCount , because the maximum number of dis-
tributed Array dimensions is given by the dimensionality ofthe index space.
The order of dimensions in these arguments, however, isnot that of the associated DistGrid. Instead each entry
corresponds to the distributed Array dimensions in sequence. In the example above the entries intotalLWidth and
totalUWidth correspond to Array dimensions 1 and 3 in this sequence.
The distgridToArrrayMap argument optionally provided during Array create indicates how the DistGrid di-
mensions map to Array dimensions. The inverse mapping, i.e.Array to DistGrid dimensions, is just as important.
TheESMF_ArrayGet() call offers both mappings asdistgridToArrrayMap andarrayToDistGridMap ,
respectively. The number of elements inarrayToDistGridMap is equal to the rank of the Array. Each element
corresponds to an Array dimension and indicates the associated DistGrid dimension by an integer number. An entry
of "0" in arrayToDistGridMap indicates that the corresponding Array dimension is undistributed.
Correct understanding about the association between Arrayand DistGrid dimensions becomes critical for correct data
access into the Array.

allocate(arrayToDistGridMap(3)) ! arrayRank = 3
call ESMF_ArrayGet(array, arrayToDistGridMap=arrayToD istGridMap, &

exclusiveLBound=exclusiveLBound, exclusiveUBound=exc lusiveUBound, &
localDeCount=localDeCount, rc=rc)

if (arrayToDistGridMap(2) /= 0) then ! check if extra dimens ion at expected index
! indicate problem and bail out

endif
! obtain larrayList for local DEs
allocate(larrayList(localDeCount))
call ESMF_ArrayGet(array, larrayList=larrayList, rc=rc)
do de=1, localDeCount

call ESMF_LocalArrayGet(larrayList(de), myFarray3D, ES MF_DATA_REF, rc=rc)
myFarray3D(exclusiveLBound(1,de):exclusiveUBound(1, de), &

1, exclusiveLBound(2,de):exclusiveUBound(2,de)) = 10.5 ! dummy assignment
myFarray3D(exclusiveLBound(1,de):exclusiveUBound(1, de), &

2, exclusiveLBound(2,de):exclusiveUBound(2,de)) = 23.3 ! dummy assignment
enddo
deallocate(exclusiveLBound, exclusiveUBound)
deallocate(arrayToDistGridMap)

294

deallocate(larrayList)
call ESMF_ArrayDestroy(array, rc=rc)
if (rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT)

22.2.12 Arrays with replicated dimensions

Thus far most examples demonstrated cases where the DistGrid dimCount was equal to the Arrayrank . The
previous section introduced the concept of Arraytensordimensions whendimCount < rank . In this section
dimCount andrank are assumed completely unconstrained and the relationshipto distgridToArrayMap and
arrayToDistGridMap will be discussed.
The Array class allows completely arbitrary mapping between Array and DistGrid dimensions. Most cases considered
in the previous sections used the default mapping which assigns the DistGrid dimensions in sequence to the lower
Array dimensions. Extra Array dimensions, if present, are considered non-distributed tensor dimensions for which the
optionalundistLBound andundistUBound arguments must be specified.
The optionaldistgridToArrayMap argument provides the option to override the default DistGrid to Array dimen-
sion mapping. The entries of thedistgridToArrayMap array correspond to the DistGrid dimensions in sequence
and assign a unique Array dimension to each DistGrid dimension. DistGrid and Array dimensions are indexed starting
at 1 for the lowest dimension. A value of"0" in the distgridToArrayMap array indicates that the respective
DistGrid dimension isnot mapped against any Array dimension. What this means is that the Array will be replicated
along this DistGrid dimension.
As a first example consider the case where a 1D Array

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEK IND_R8, rank=1, rc=rc)

is created on the 2D DistGrid used during the previous section.

array = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid =distgrid, rc=rc)

Here the default DistGrid to Array dimension mapping is usedwhich assigns the Array dimensions in sequence to
the DistGrid dimensions starting with dimension "1". ExtraDistGrid dimensions are considered replicator dimensions
because the Array will be replicated along those dimensions. In the above example the 2nd DistGrid dimension will
cause 1D Array pieces to be replicated along the DEs of the 2ndDistGrid dimension. Replication in the context of
ESMF_ArrayCreate() does not mean that data values are communicated and replicated between different DEs,
but it means that different DEs provide memory allocations for identicalexclusive elements.
Access to the data storage of an Array that has been replicated along DistGrid dimensions is the same as for Arrays
without replication.

call ESMF_ArrayGet(array, localDeCount=localDeCount, r c=rc)

allocate(larrayList(localDeCount))
allocate(localDeList(localDeCount))
call ESMF_ArrayGet(array, larrayList=larrayList, local DeList=localDeList, &

rc=rc)

Thearray object was created without additional padding which means that the bounds of the Fortran array pointer
correspond to the bounds of the exclusive region. The following loop will cycle through all local DEs, print the DE
number as well as the Fortran array pointer bounds. The bounds should be:

lbound ubound

DE 0: 1 3 --+
DE 2: 1 3 --| 1st replication set

295

DE 4: 1 3 --+

DE 1: 1 2 --+
DE 3: 1 2 --| 2nd replication set
DE 5: 1 2 --+

do de=1, localDeCount
call ESMF_LocalArrayGet(larrayList(de), myFarray1D, ES MF_DATA_REF, &

rc=rc)

print * , "DE ",localDeList(de)," [", lbound(myFarray1D), &
ubound(myFarray1D),"]"

enddo
deallocate(larrayList)
deallocate(localDeList)
call ESMF_ArrayDestroy(array, rc=rc)

The Fortran array pointer in the above loop was of rank 1 because the Array object was of rank 1. However, the
distgrid object associated witharray is 2-dimensional! Consequently DistGrid based information queried from
array will be 2D. ThedistgridToArrayMap andarrayToDistGridMap arrays provide the necessary map-
ping to correctly associate DistGrid based information with Array dimensions.
The next example creates a 2D Array

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEK IND_R8, rank=2, rc=rc)

on the previously used 2D DistGrid. By default, i.e. withoutthedistgridToArrayMap argument, both DistGrid
dimensions would be associated with the two Array dimensions. However, thedistgridToArrayMap specified in
the following call will only associate the second DistGrid dimension with the first Array dimension. This will render
the first DistGrid dimension a replicator dimension and the second Array dimension a tensor dimension for which 1D
undistLBound andundistUBound arguments must be supplied.

array = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid =distgrid, &
distgridToArrayMap=(/0,1/), undistLBound=(/11/), undi stUBound=(/14/), rc=rc)

call ESMF_ArrayDestroy(array, rc=rc)

Finally, the samearrayspec anddistgrid arguments are used to create a 2D Array that is fully replicated in
both dimensions of the DistGrid. Both Array dimensions are now tensor dimensions and both DistGrid dimensions
are replicator dimensions.

array = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid =distgrid, &
distgridToArrayMap=(/0,0/), undistLBound=(/11,21/), u ndistUBound=(/14,22/), &
rc=rc)

The result will be an Array with local lower bound (/11,21/) and upper bound (/14,22/) on all 6 DEs of the DistGrid.

call ESMF_ArrayDestroy(array, rc=rc)

call ESMF_DistGridDestroy(distgrid, rc=rc)

296

Replicated Arrays can also be created from existing local Fortran arrays. The following Fortran array allocation will
provide a 3 x 10 array on each PET.

allocate(myFarray2D(3,10))

Assuming a petCount of 4 the following DistGrid defines a 2D index space that is distributed across the PETs along
the first dimension.

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIn dex=(/40,10/), rc=rc)

The following call creates an Array object on the above distgrid using the locally existingmyFarray2D Fortran
arrays. The difference compared to the case with automatic memory allocation is that instead ofarrayspec the
Fortran array is provided as argument. Furthermore, theundistLBound andundistUBound arguments can be
omitted, defaulting into Array tensor dimension lower bound of 1 and an upper bound equal to the size of the respective
Fortran array dimension.

array = ESMF_ArrayCreate(farray=myFarray2D, distgrid=d istgrid, &
indexflag=ESMF_INDEX_DELOCAL, distgridToArrayMap=(/0 ,2/), rc=rc)

Thearray object associates the 2nd DistGrid dimension with the 2nd Array dimension. The first DistGrid dimension
is not associated with any Array dimension and will lead to replication of the Array along the DEs of this direction.

call ESMF_ArrayDestroy(array, rc=rc)

call ESMF_DistGridDestroy(distgrid, rc=rc)

22.2.13 Communication – Scatter and Gather

It is a common situation, particularly in legacy code, that an ESMF Array object must be filled with data originating
from a large Fortran array stored on a single PET.

if (localPet == 0) then
allocate(farray(10,20,30))
do k=1, 30

do j=1, 20
do i=1, 10

farray(i, j, k) = k * 1000 + j * 100 + i
enddo

enddo
enddo

endif

distgrid = ESMF_DistGridCreate(minIndex=(/1,1,1/), max Index=(/10,20,30/), &
rc=rc)

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEK IND_I4, rank=3, rc=rc)

array = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid =distgrid, rc=rc)

297

TheESMF_ArrayScatter() method provides a convenient way of scattering array data from a single root PET
across the DEs of an ESMF Array object.

call ESMF_ArrayScatter(array, farray=farray, rootPet=0 , rc=rc)

if (localPet == 0) then
deallocate(farray)

endif

The destination of the ArrayScatter() operation are all theDEs of a single patch. For multi-patch Arrays the destination
patch can be specified. The shape of the scattered Fortran array must match the shape of the destination patch in the
ESMF Array.
Gathering data decomposed and distributed across the DEs ofan ESMF Array object into a single Fortran array on
root PET is accomplished by callingESMF_ArrayGather() .

if (localPet == 3) then
allocate(farray(10,20,30))

endif

call ESMF_ArrayGather(array, farray=farray, rootPet=3, rc=rc)

if (localPet == 3) then
deallocate(farray)

endif

The source of the ArrayGather() operation are all the DEs of asingle patch. For multi-patch Arrays the source patch
can be specified. The shape of the gathered Fortran array mustmatch the shape of the source patch in the ESMF Array.
TheESMF_ArrayScatter() operation allows to fill entire replicated Array objects with data coming from a single
root PET.

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIn dex=(/5,5/), &
regDecomp=(/2,3/), rc=rc)

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEK IND_R8, rank=2, rc=rc)

array = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid =distgrid, &
distgridToArrayMap=(/0,0/), undistLBound=(/11,21/), u ndistUBound=(/14,22/), &
rc=rc)

The shape of the Fortran source array used in the Scatter() call must be that of the contracted Array, i.e. contracted
DistGrid dimensions do not count. For thearray just created this means that the source array onrootPet must be
of shape 4 x 2.

if (localPet == 0) then
allocate(myFarray2D(4,2))
do j=1,2

do i=1,4
myFarray2D(i,j) = i * 100.d0 + j * 1.2345d0 ! initialize

enddo
enddo

298

endif

call ESMF_ArrayScatter(array, farray=myFarray2D, rootP et=0, rc=rc)

if (localPet == 0) then
deallocate(myFarray2D)

endif

This will have filled each local 4 x 2 Array piece with the replicated data ofmyFarray2D .

call ESMF_ArrayDestroy(array, rc=rc)

call ESMF_DistGridDestroy(distgrid, rc=rc)

As a second example for the use of Scatter() and Gather() consider the following replicated Array created from existing
local Fortran arrays.

allocate(myFarray2D(3,10))
distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIn dex=(/40,10/), rc=rc)

array = ESMF_ArrayCreate(farray=myFarray2D, distgrid=d istgrid, &
indexflag=ESMF_INDEX_DELOCAL, distgridToArrayMap=(/0 ,2/), rc=rc)

Thearray object associates the 2nd DistGrid dimension with the 2nd Array dimension. The first DistGrid dimension
is not associated with any Array dimension and will lead to replication of the Array along the DEs of this direction.
Still, the local arrays that comprise thearray object refer to independent pieces of memory and can be initialized
independently.

myFarray2D = localPet ! initialize

However, the notion of replication becomes visible when an array of shape 3 x 10 on root PET 0 is scattered across
the Array object.

if (localPet == 0) then
allocate(myFarray2D2(5:7,11:20))

do j=11,20
do i=5,7

myFarray2D2(i,j) = i * 100.d0 + j * 1.2345d0 ! initialize
enddo

enddo
endif

call ESMF_ArrayScatter(array, farray=myFarray2D2, root Pet=0, rc=rc)

if (localPet == 0) then
deallocate(myFarray2D2)

endif

299

The Array pieces on every DE will receive the same source data, resulting in a replication of data along DistGrid
dimension 1.
When the inverse operation, i.e.ESMF_ArrayGather() , is applied to a replicated Array an intrinsic ambiguity
needs to be considered. ESMF defines the gathering of data of areplicated Array as the collection of data originating
from the numerically higher DEs. This means that data in replicated elements associated with numerically lower
DEs will be ignored duringESMF_ArrayGather() . For the current example this means that changing the Array
contents on PET 1, which here corresponds to DE 1,

if (localPet == 1) then
myFarray2D = real(1.2345, ESMF_KIND_R8)

endif

will notaffect the result of

allocate(myFarray2D2(3,10))
myFarray2D2 = 0.d0 ! initialize to a known value
call ESMF_ArrayGather(array, farray=myFarray2D2, rootP et=0, rc=rc)

The result remains completely defined by the unmodified values of Array in DE 3, the numerically highest DE.
However, overriding the DE-local Array piece on DE 3

if (localPet==3) then
myFarray2D = real(5.4321, ESMF_KIND_R8)

endif

will change the outcome of

call ESMF_ArrayGather(array, farray=myFarray2D2, rootP et=0, rc=rc)

as expected.

deallocate(myFarray2D2)

call ESMF_ArrayDestroy(array, rc=rc)

call ESMF_DistGridDestroy(distgrid, rc=rc)

22.2.14 Communication – Halo

One of the most fundamental communication pattern in domaindecomposition codes is thehalooperation. The ESMF
Array class supports halos by allowing memory for extra elements to be allocated on each DE. See sections 22.2.2 and
22.2.8 for examples and details on how to create an Array withextra DE-local elements.
Here we consider an Array object that is created on a DistGridthat defines a 10 x 20 index space, decomposed into 4
DEs using a regular 2 x 2 decomposition.

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIn dex=(/10,20/), &
regDecomp=(/2,2/), rc=rc)

The Array holds 2D double precision float data.

300

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEK IND_R8, rank=2, rc=rc)

The totalLWidth and totalUWidth arguments are used during Array creation to allocate 2 extraelements
along every direction outside the exclusive region defined by the DistGrid for every DE. (Theindexflag set to
ESMF_INDEX_GLOBALin this example does not affect the halo behavior of Array. The setting is simply more
convenient for the following code.)

array = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid =distgrid, &
totalLWidth=(/2,2/), totalUWidth=(/2,2/), indexflag=E SMF_INDEX_GLOBAL, &
rc=rc)

Without the explicit definition of boundary conditions in the DistGrid the following inner connections are defined.

+-------------------+ +-------------------+
\ 2 /		\ 2 /				
+-------------+		+-------------+				
	DE 0				DE 2	
2	5 x 10	2	<->	2	5 x 10	2
+-------------+		+-------------+				
/ 2 \		/ 2 \				
+-------------------+ +-------------------+

^ \/ ^
| /\ |
v v

+-------------------+ +-------------------+
\ 2 /		\ 2 /				
+-------------+		+-------------+				
	DE 1				DE 3	
2	5 x 10	2	<->	2	5 x 10	2
+-------------+		+-------------+				
/ 2 \		/ 2 \				
+-------------------+ +-------------------+

The exclusive region on each DE is of shape 5 x 10, while the total region on each DE is of shape (5+2+2) x (10+2+2)
= 9 x 14. In a typical application the elements in the exclusive region are updated exclusively by the PET that owns the
DE. In this example the exclusive elements on every DE are initialized to the valuef(i, j) of the geometric function

f(i, j) = sin(αi) cos(βj), (1)

where
α = 2π/Ni, i = 1, ...Ni (2)

and
β = 2π/Nj , j = 1, ...Nj , (3)

with Ni = 10 andNj = 20.

301

a = 2. * 3.14159 / 10.
b = 2. * 3.14159 / 20.

call ESMF_ArrayGet(array, farrayPtr=farrayPtr, rc=rc)

call ESMF_ArrayGet(array, exclusiveLBound=eLB, exclusi veUBound=eUB, rc=rc)

do j=eLB(2,1), eUB(2,1)
do i=eLB(1,1), eUB(1,1)

farrayPtr(i,j) = sin(a * i) * cos(b * j) ! test function
enddo

enddo

The above loop only initializes the exclusive elements on each DE. The extra elements, outside the exclusive region,
are left untouched, holding undefined values. Elements outside the exclusive region that correspond to exclusive
elements in neighboring DEs can be filled with the data valuesin those neighboring elements. This is the definition of
the halo operation.
In ESMF the halo communication pattern is first precomputed and stored in a RouteHandle object. This RouteHandle
can then be used repeatedly to perform the same halo operation in the most efficient way.
The default halo operation for an Array is precomputed by thefollowing call.

call ESMF_ArrayHaloStore(array=array, routehandle=hal oHandle, rc=rc)

The haloHandle now holds the default halo operation forarray , which matches as many elements as possible
outside the exclusive region to their corresponding halo source elements in neighboring DEs. Elements that could not
be matched, e.g. at the edge of the global domain with open boundary conditions, will not be updated by the halo
operation.
ThehaloHandle is applied through theESMF_ArrayHalo() method.

call ESMF_ArrayHalo(array=array, routehandle=haloHand le, rc=rc)

Finally the resources held byhaloHandle need to be released.

call ESMF_ArrayHaloRelease(routehandle=haloHandle, rc =rc)

Thearray object created above defines a 2 element wide rim around the exclusive region on each DE. Consequently
the default halo operation used above will have resulted in updating both elements along the inside edges. For simple
numerical kernels often a single halo element is sufficient.One way to achieve this would be to reduce the size of
the rim surrounding the exclusive region to 1 element along each direction. However, if the same Array object is also
used for higher order kernels during a different phase of thecalculation, a larger element rim is required. For this
caseESMF_ArrayHaloStore() offers two optional argumentshaloLDepth andhaloUDepth . Using these
arguments a reduced halo depth can be specified.

call ESMF_ArrayHaloStore(array=array, routehandle=hal oHandle, &
haloLDepth=(/1,1/), haloUDepth=(/1,1/), rc=rc)

This halo operation with a depth of 1 is sufficient to support asimple quadratic differentiation kernel.

302

allocate(farrayTemp(eLB(1,1):eUB(1,1), eLB(2,1):eUB(2,1)))

do step=1, 4
call ESMF_ArrayHalo(array=array, routehandle=haloHand le, rc=rc)

do j=eLB(2,1), eUB(2,1)
do i=eLB(1,1), eUB(1,1)

if (i==1) then
! global edge
farrayTemp(i,j) = 0.5 * (-farrayPtr(i+2,j) + 4. * farrayPtr(i+1,j) &

- 3. * farrayPtr(i,j)) / a
else if (i==10) then

! global edge
farrayTemp(i,j) = 0.5 * (farrayPtr(i-2,j) - 4. * farrayPtr(i-1,j) &

+ 3. * farrayPtr(i,j)) / a
else

farrayTemp(i,j) = 0.5 * (farrayPtr(i+1,j) - farrayPtr(i-1,j)) / a
endif

enddo
enddo
farrayPtr(eLB(1,1):eUB(1,1), eLB(2,1):eUB(2,1)) = farr ayTemp

enddo

deallocate(farrayTemp)

call ESMF_ArrayHaloRelease(routehandle=haloHandle, rc =rc)

The special treatment of the global edges in the above kernelis due to the fact that the underlying DistGrid object
does not define any special boundary conditions. By default open global boundaries are assumed which means that
the rim elements on the global edges are untouched during thehalo operation, and cannot be used in the symmetric
numerical derivative formula. The kernel can be simplified (and the calculation is more precise) with periodic boundary
conditions along the first Array dimension.
First destroy the current Array and DistGrid objects.

call ESMF_ArrayDestroy(array, rc=rc)

call ESMF_DistGridDestroy(distgrid, rc=rc)

Create a DistGrid with periodic boundary condition along the first dimension.

allocate(connectionList(2 * 2+2, 1)) ! (2 * dimCount+2, number of connections)
call ESMF_DistGridConnection(connection=connectionLi st(:,1), &

patchIndexA=1, patchIndexB=1, &
positionVector=(/10, 0/), rc=rc)

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIn dex=(/10,20/), &
regDecomp=(/2,2/), connectionList=connectionList, rc= rc)

deallocate(connectionList)
array = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid =distgrid, &

totalLWidth=(/2,2/), totalUWidth=(/2,2/), indexflag=E SMF_INDEX_GLOBAL, &
rc=rc)

303

Initialize the exclusive elements to the same geometric function as before.

call ESMF_ArrayGet(array, farrayPtr=farrayPtr, rc=rc)

call ESMF_ArrayGet(array, exclusiveLBound=eLB, exclusi veUBound=eUB, rc=rc)

do j=eLB(2,1), eUB(2,1)
do i=eLB(1,1), eUB(1,1)

farrayPtr(i,j) = sin(a * i) * cos(b * j) ! test function
enddo

enddo

The numerical kernel only operates along the first dimension. An asymmetric halo depth can be used to take this fact
into account.

call ESMF_ArrayHaloStore(array=array, routehandle=hal oHandle, &
haloLDepth=(/1,0/), haloUDepth=(/1,0/), rc=rc)

Now the same numerical kernel can be used without special treatment of global edge elements. The symmetric
derivative formula can be used for all exclusive elements.

allocate(farrayTemp(eLB(1,1):eUB(1,1), eLB(2,1):eUB(2,1)))

do step=1, 4
call ESMF_ArrayHalo(array=array, routehandle=haloHand le, rc=rc)

do j=eLB(2,1), eUB(2,1)
do i=eLB(1,1), eUB(1,1)

farrayTemp(i,j) = 0.5 * (farrayPtr(i+1,j) - farrayPtr(i-1,j)) / a
enddo

enddo
farrayPtr(eLB(1,1):eUB(1,1), eLB(2,1):eUB(2,1)) = farr ayTemp

enddo

The precision of the above kernel can be improved by going to ahigher order interpolation. Doing so requires that the
halo depth must be increased. The following code resets the exclusive Array elements to the test function, precomputes
a RouteHandle for a halo operation with depth 2 along the firstdimension, and finally uses the deeper halo in the higher
order kernel.

do j=eLB(2,1), eUB(2,1)
do i=eLB(1,1), eUB(1,1)

farrayPtr(i,j) = sin(a * i) * cos(b * j) ! test function
enddo

enddo

call ESMF_ArrayHaloStore(array=array, routehandle=hal oHandle2, &
haloLDepth=(/2,0/), haloUDepth=(/2,0/), rc=rc)

304

do step=1, 4
call ESMF_ArrayHalo(array=array, routehandle=haloHand le2, rc=rc)

do j=eLB(2,1), eUB(2,1)
do i=eLB(1,1), eUB(1,1)

farrayTemp(i,j) = (-farrayPtr(i+2,j) + 8. * farrayPtr(i+1,j) &
- 8. * farrayPtr(i-1,j) + farrayPtr(i-2,j)) / (12. * a)

enddo
enddo
farrayPtr(eLB(1,1):eUB(1,1), eLB(2,1):eUB(2,1)) = farr ayTemp

enddo

deallocate(farrayTemp)

ESMF supports having multiple halo operations defined on thesame Array object at the same time. Each operation
can be accessed through its unique RouteHandle. The above kernel could have madeESMF_ArrayHalo() calls
with a depth of 1 along the first dimension using the previously precomputedhaloHandle if it needed to. Both
RouteHandles need to release their resources when no longerused.

call ESMF_ArrayHaloRelease(routehandle=haloHandle, rc =rc)

call ESMF_ArrayHaloRelease(routehandle=haloHandle2, r c=rc)

Finally the Array and DistGrid objects can be destroyed.

call ESMF_ArrayDestroy(array, rc=rc)

call ESMF_DistGridDestroy(distgrid, rc=rc)

22.2.15 Communication – Halo for arbitrary distribution

In the previous section the Arrayhalooperation was demonstrated for regularly decomposed ESMF Arrays. However,
the ESMF halo operation is not restricted to regular decompositions. The same Array halo methods apply unchanged
to Arrays that are created on arbitrarily distributed DistGrids. This includes the non-blocking features discussed in
section 22.2.19.
All of the examples in this section are based on the same arbitrarily distributed DistGrid. Section 29.2.6 discusses
DistGrids with user-supplied, arbitrary sequence indicesin detail. Here a global index space range from 1 through 20
is decomposed across 4 DEs. There are 4 PETs in this example with 1 DE per PET. Each PET constructs its local
seqIndexList variable.

do i=1, 5
seqIndexList(i) = localPet + (i - 1) * petCount + 1

enddo

This results in the following cylic distribution scheme:

305

DE 0 on PET 0: seqIndexList = (/1, 5, 9, 13, 17/)
DE 1 on PET 1: seqIndexList = (/2, 6, 10, 14, 18/)
DE 2 on PET 2: seqIndexList = (/3, 7, 11, 15, 19/)
DE 3 on PET 3: seqIndexList = (/4, 8, 12, 16, 20/)

The localarbIndexList variables are then used to create a DistGrid with the indicated arbitrary distribution pattern.

distgrid = ESMF_DistGridCreate(arbSeqIndexList=seqInd exList, rc=rc)

The resulting DistGrid is one-dimensional, although the user code may interpret the sequence indices as a 1D map
into a problem of higher dimensionality.
In this example the local DE on each PET is associated with a 5 element exclusive region. ProvidingarbIndexList
of different size on the different PETs is supported and would result in different number of exclusive elements on each
PET.
Creating an ESMF Array on top of a DistGrid with arbitrary sequence indices is in principle no different from creating
an Array on a regular DistGrid. However, while an Array that was created on a regular DistGrid automatically inherits
the index space topology information that is contained within the DistGrid object, there is no such topology information
available for DistGrid objects with arbitrary sequence indices. As a consequence of this, Arrays created on arbitrary
DistGrids do not automatically have the information that isrequired to associated halo elements with the exclusive
elements across DEs. Instead the user must supply this information explicitly during Array creation.
Multiple ArrayCreate() interfaces exist that allow the creation of an Array on a DistGrid with arbitrary sequence
indices, while supplying the sequence indices for the halo region of the local DE through an additional argument with
dummy namehaloSeqIndexList . As in the regular case the ArrayCreate() interfaces differin the way that the
memory allocations for the Array elements are passed into the call. The following code shows how an ESMF Array
can be wrapped around existing PET-local memory allocations. The allocations are of different size on each PET as to
accommodate the correct number of local Array elements.

allocate(farrayPtr1d(5+localPet+1)) ! use explicit Fort ran allocate statement

if (localPet==0) then
array = ESMF_ArrayCreate(farrayPtr1d, distgrid=distgri d, &

haloSeqIndexList=(/1/), rc=rc)
if (rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT)

endif
if (localPet==1) then

array = ESMF_ArrayCreate(farrayPtr1d, distgrid=distgri d, &
haloSeqIndexList=(/1,2/), rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT)
endif
if (localPet==2) then

array = ESMF_ArrayCreate(farrayPtr1d, distgrid=distgri d, &
haloSeqIndexList=(/1,2,3/), rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT)
endif
if (localPet==3) then

array = ESMF_ArrayCreate(farrayPtr1d, distgrid=distgri d, &
haloSeqIndexList=(/1,2,3,4/), rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT)
endif

ThehaloSeqIndexList arguments are 1D arrays of sequence indices. It is through this argument that the user
associates the halo elements with exclusive Array elementscovered by the DistGrid. In this example there are different
number of halo elements on each DE. They are associated with exclusive elements as follows:

306

halo on DE 0 on PET 0: <seqIndex=1> first exclusive element on DE 0
halo on DE 1 on PET 1: <seqIndex=1> first exclusive element on DE 0

<seqIndex=2> first exclusive element on DE 1
halo on DE 2 on PET 2: <seqIndex=1> first exclusive element on DE 0

<seqIndex=2> first exclusive element on DE 1
<seqIndex=3> first exclusive element on DE 2

halo on DE 3 on PET 3: <seqIndex=1> first exclusive element on DE 0
<seqIndex=2> first exclusive element on DE 1
<seqIndex=3> first exclusive element on DE 2
<seqIndex=4> first exclusive element on DE 3

The ArrayCreate() call checks that the provided Fortran memory allocation is correctly sized to hold the exclusive
elements, as indicated by the DistGrid object, plus the haloelements as indicated by the localhaloSeqIndexList
argument. The size of the Fortran allocation must match exactly or a runtime error will be returned.
Analogous to the case of Arrays on regular DistGrids, it is the exclusive region of the local DE that is typically
modified by the code running on each PET. All of the ArrayCreate() calls that accept thehaloSeqIndexList
argument place the exclusive region at the beginning of the memory allocation on each DE and use the remaining
space for the halo elements. The following loop demonstrates this by filling the exclusive elements on each DE with
initial values. Remember that in this example each DE holds 5exclusive elements associated with different arbitrary
sequence indices.

do i=1, 5
farrayPtr1d(i) = seqIndexList(i) / 10.

enddo

Now the exclusive elements ofarray are initialized on each DE, however, the halo elements remain unchanged. A
RouteHandle can be set up that encodes the required communication pattern for a halo exchange. The halo exchange is
precomputed according to the arbitrary sequence indices specified for the exclusive elements by the DistGrid and the
sequence indices provided by the user for each halo element on the local DE in form of thehaloSeqIndexList
argument during ArrayCreate().

call ESMF_ArrayHaloStore(array, routehandle=haloHandl e, rc=rc)

Executing this halo operation will update the local halo elements according to the associated sequence indices.

call ESMF_ArrayHalo(array, routehandle=haloHandle, rc= rc)

As always it is good practice to release the RouteHandle whendone with it.

call ESMF_ArrayHaloRelease(haloHandle, rc=rc)

Also the Array object should be destroyed when no longer needed.

call ESMF_ArrayDestroy(array, rc=rc)

Further, since the memory allocation was done explicitly using the Fortranallocate() statement, it is necessary to
explicitly deallocate in order to prevent memory leaks in the user application.

deallocate(farrayPtr1d)

Alternatively the exact same Array can be created where ESMFdoes the memory allocation and deallocation. In this
case thetypekind of the Array must be specified explicitly.

307

if (localPet==0) then
array = ESMF_ArrayCreate(typekind=ESMF_TYPEKIND_R8, di stgrid=distgrid, &

haloSeqIndexList=(/1/), rc=rc)
if (rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT)

endif
if (localPet==1) then

array = ESMF_ArrayCreate(typekind=ESMF_TYPEKIND_R8, di stgrid=distgrid, &
haloSeqIndexList=(/1,2/), rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT)
endif
if (localPet==2) then

array = ESMF_ArrayCreate(typekind=ESMF_TYPEKIND_R8, di stgrid=distgrid, &
haloSeqIndexList=(/1,2,3/), rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT)
endif
if (localPet==3) then

array = ESMF_ArrayCreate(typekind=ESMF_TYPEKIND_R8, di stgrid=distgrid, &
haloSeqIndexList=(/1,2,3,4/), rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT)
endif

Use ArrayGet() to gain access to the local memory allocation.

call ESMF_ArrayGet(array, farrayPtr=farrayPtr1d, rc=rc)

The returned Fortran pointer can now be used to initialize the exclusive elements on each DE as in the previous case.

do i=1, 5
farrayPtr1d(i) = seqIndexList(i) / 10.

enddo

Identical halo operations are constructed and used.

call ESMF_ArrayHaloStore(array, routehandle=haloHandl e, rc=rc)

call ESMF_ArrayHalo(array, routehandle=haloHandle, rc= rc)

call ESMF_ArrayHaloRelease(haloHandle, rc=rc)

call ESMF_ArrayDestroy(array, rc=rc)

A current limitation of the Array implementation restrictsDistGrids that contain user-specified, arbitrary sequence
indices to be exactly 1D when used to create Arrays. See section 22.3 for a list of current implementation restrictions.
However, an Array created on such a 1D arbitrary DistGrid is allowed to have undistributed dimensions. The follow-
ing example creates an Array on the same arbitrary DistGrid,with the same arbitrary sequence indices for the halo
elements as before, but with one undistributed dimension with a size of 3.

if (localPet==0) then
array = ESMF_ArrayCreate(typekind=ESMF_TYPEKIND_R8, di stgrid=distgrid, &

haloSeqIndexList=(/1/), undistLBound=(/1/), undistUBo und=(/3/), rc=rc)

308

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT)
endif
if (localPet==1) then

array = ESMF_ArrayCreate(typekind=ESMF_TYPEKIND_R8, di stgrid=distgrid, &
haloSeqIndexList=(/1,2/), undistLBound=(/1/), undistU Bound=(/3/), rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT)
endif
if (localPet==2) then

array = ESMF_ArrayCreate(typekind=ESMF_TYPEKIND_R8, di stgrid=distgrid, &
haloSeqIndexList=(/1,2,3/), undistLBound=(/1/), undis tUBound=(/3/), rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT)
endif
if (localPet==3) then

array = ESMF_ArrayCreate(typekind=ESMF_TYPEKIND_R8, di stgrid=distgrid, &
haloSeqIndexList=(/1,2,3,4/), undistLBound=(/1/), und istUBound=(/3/), rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT)
endif

By default the DistGrid dimension is mapped to the first Arraydimension, associating the remaining Array dimensions
with the undistributed dimensions in sequence. The dimension order is important when accessing the individual Array
elements. Here the same initialization as before is extended to cover the undistributed dimension.

call ESMF_ArrayGet(array, farrayPtr=farrayPtr2d, rc=rc)

do j=1, 3
do i=1, 5

farrayPtr2d(i,j) = seqIndexList(i) / 10. + 100. * j
enddo

enddo

In the context of the Array halo operation additional undistributed dimensions are treated in a simple factorized manner.
The same halo association between elements that is encoded in the 1D arbitrary sequence index scheme is applied to
each undistributed element separately. This is completelytransparent on the user level and the same halo methods are
used as before.

call ESMF_ArrayHaloStore(array, routehandle=haloHandl e, rc=rc)

call ESMF_ArrayHalo(array, routehandle=haloHandle, rc= rc)

call ESMF_ArrayHaloRelease(haloHandle, rc=rc)

call ESMF_ArrayDestroy(array, rc=rc)

In some situations it is more convenient to associate some orall of the undistributed dimensions with the first Array
dimensions. This can be done easily by explicitly mapping the DistGrid dimension to an Array dimension other than
the first one. The following code creates essentially the same Array as before, but with swapped dimension order.

if (localPet==0) then
array = ESMF_ArrayCreate(typekind=ESMF_TYPEKIND_R8, di stgrid=distgrid, &

distgridToArrayMap=(/2/), haloSeqIndexList=(/1/), &

309

undistLBound=(/1/), undistUBound=(/3/), rc=rc)
if (rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT)

endif
if (localPet==1) then

array = ESMF_ArrayCreate(typekind=ESMF_TYPEKIND_R8, di stgrid=distgrid, &
distgridToArrayMap=(/2/), haloSeqIndexList=(/1,2/), &
undistLBound=(/1/), undistUBound=(/3/), rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT)
endif
if (localPet==2) then

array = ESMF_ArrayCreate(typekind=ESMF_TYPEKIND_R8, di stgrid=distgrid, &
distgridToArrayMap=(/2/), haloSeqIndexList=(/1,2,3/) , &
undistLBound=(/1/), undistUBound=(/3/), rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT)
endif
if (localPet==3) then

array = ESMF_ArrayCreate(typekind=ESMF_TYPEKIND_R8, di stgrid=distgrid, &
distgridToArrayMap=(/2/), haloSeqIndexList=(/1,2,3,4 /), &
undistLBound=(/1/), undistUBound=(/3/), rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT)
endif

The swapped dimension order results in a swapping ofi andj when accessing Array elements in the loop.

call ESMF_ArrayGet(array, farrayPtr=farrayPtr2d, rc=rc)

do j=1, 3
do i=1, 5

farrayPtr2d(j,i) = seqIndexList(i) / 10. + 100. * j
enddo

enddo

Again there is no difference in how the the halo operations are applied.

call ESMF_ArrayHaloStore(array, routehandle=haloHandl e, rc=rc)

call ESMF_ArrayHalo(array, routehandle=haloHandle, rc= rc)

call ESMF_ArrayDestroy(array, rc=rc)

One of the benefits of mapping the undistributed dimension(s) to the "left side" of the Array dimensions is that Arrays
that only differ in the size of the undistributed dimension(s) are weakly congruent in this arrangement. Weakly con-
gruent Arrays can reuse the same RouteHandle, saving the overhead that is caused by the precompute step. In order
to demonstrate this the RouteHandle of the previous halo call was not yet released and will be applied to a weakly
congruent Array.
The following code creates an Array that is weakly congruentto the the previous Array by using the same input
information as before, only that the size of the undistributed dimension is now 6 instead of 3.

if (localPet==0) then
array2 = ESMF_ArrayCreate(typekind=ESMF_TYPEKIND_R8, d istgrid=distgrid, &

distgridToArrayMap=(/2/), haloSeqIndexList=(/1/), &

310

undistLBound=(/1/), undistUBound=(/6/), rc=rc)
if (rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT)

endif
if (localPet==1) then

array2 = ESMF_ArrayCreate(typekind=ESMF_TYPEKIND_R8, d istgrid=distgrid, &
distgridToArrayMap=(/2/), haloSeqIndexList=(/1,2/), &
undistLBound=(/1/), undistUBound=(/6/), rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT)
endif
if (localPet==2) then

array2 = ESMF_ArrayCreate(typekind=ESMF_TYPEKIND_R8, d istgrid=distgrid, &
distgridToArrayMap=(/2/), haloSeqIndexList=(/1,2,3/) , &
undistLBound=(/1/), undistUBound=(/6/), rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT)
endif
if (localPet==3) then

array2 = ESMF_ArrayCreate(typekind=ESMF_TYPEKIND_R8, d istgrid=distgrid, &
distgridToArrayMap=(/2/), haloSeqIndexList=(/1,2,3,4 /), &
undistLBound=(/1/), undistUBound=(/6/), rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT)
endif

Again the exclusive Array elements must be initialized.

call ESMF_ArrayGet(array2, farrayPtr=farrayPtr2d, rc=r c)

do j=1, 6
do i=1, 5

farrayPtr2d(j,i) = seqIndexList(i) / 10. + 100. * j
enddo

enddo

Now thehaloHandle that was previously pre-computed forarray can be used directly for the weakly congruent
array2 .

call ESMF_ArrayHalo(array2, routehandle=haloHandle, rc =rc)

Release the RouteHandle after its last use and clean up the remaining Array and DistGrid objects.

call ESMF_ArrayHaloRelease(haloHandle, rc=rc)

call ESMF_ArrayDestroy(array2, rc=rc)

call ESMF_DistGridDestroy(distgrid, rc=rc)

22.2.16 Communication – Redist

Arrays used in different models often cover the same index space region, however, the distribution of the Arrays may
be different, e.g. the models run on exclusive sets of PETs. Even if the Arrays are defined on the same list of PETs the
decomposition may be different.

311

srcDistgrid = ESMF_DistGridCreate(minIndex=(/1,1/), ma xIndex=(/10,20/), &
regDecomp=(/4,1/), rc=rc)

dstDistgrid = ESMF_DistGridCreate(minIndex=(/1,1/), ma xIndex=(/10,20/), &
regDecomp=(/1,4/), rc=rc)

The number of elements covered bysrcDistgrid is identical to the number of elements covered bydstDistgrid
– in fact the index space regions covered by both DistGrid objects are congruent.

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEK IND_R8, rank=2, rc=rc)

srcArray = ESMF_ArrayCreate(arrayspec=arrayspec, distg rid=srcDistgrid, rc=rc)

dstArray = ESMF_ArrayCreate(arrayspec=arrayspec, distg rid=dstDistgrid, rc=rc)

By constructionsrcArray anddstArray are of identical type and kind. Further the number of exclusive elements
matches between both Arrays. These are the prerequisites for the application of an Array redistribution in default
mode. In order to increase performance of the actual redistribution the communication patter must be precomputed
and stored.

call ESMF_ArrayRedistStore(srcArray=srcArray, dstArra y=dstArray, &
routehandle=redistHandle, rc=rc)

The redistHandle can now be used repeatedly on thesrcArray , dstArray pair to redistributed data from
source to destination Array.

call ESMF_ArrayRedist(srcArray=srcArray, dstArray=dst Array, &
routehandle=redistHandle, rc=rc)

The use of the precomputedredistHandle is notrestricted tosrcArray anddstArray . TheredistHandle
can be used to redistribute data between any Array pairs thatare weakly congruent to the Array pair used during pre-
computation. Arrays are congruent if they are defined on matching DistGrids and the shape of local array allocations
match for all DEs. For weakly congruent Arrays the sizes of the undistributed dimensions, that vary faster with mem-
ory than the first distributed dimension, are permitted to bedifferent. This means that the sameredistHandle
can be applied to a large class of similar Arrays that differ in the number of elements in the left most undistributed
dimensions.
NeithersrcArray nordstArray from above hold an undistributed dimension. However, the following srcArray1
anddstArray1 objects are constructed to have an undistributed dimensioneach, that varies fastest with memory.
There is only one element in the undistributed dimension in each Array.

call ESMF_ArraySpecSet(arrayspec3d, typekind=ESMF_TYP EKIND_R8, rank=3, rc=rc)

srcArray1 = ESMF_ArrayCreate(arrayspec=arrayspec3d, di stgrid=srcDistgrid, &
distgridToArrayMap=(/2,3/), undistLBound=(/1/), undis tUBound=(/1/), rc=rc)

dstArray1 = ESMF_ArrayCreate(arrayspec=arrayspec3d, di stgrid=dstDistgrid, &
distgridToArrayMap=(/2,3/), undistLBound=(/1/), undis tUBound=(/1/), rc=rc)

312

call ESMF_ArrayRedistStore(srcArray=srcArray1, dstArr ay=dstArray1, &
routehandle=redistHandle, rc=rc)

The weak congruency feature permits theredistHandle to be used on Array pairs that have the same arrangement
of distributed and undistributed dimensions, but where thefirst dimension is of different size, e.g. 10 elements instead
of 1.

srcArray2 = ESMF_ArrayCreate(arrayspec=arrayspec3d, di stgrid=srcDistgrid, &
distgridToArrayMap=(/2,3/), undistLBound=(/1/), undis tUBound=(/10/), rc=rc)

dstArray2 = ESMF_ArrayCreate(arrayspec=arrayspec3d, di stgrid=dstDistgrid, &
distgridToArrayMap=(/2,3/), undistLBound=(/1/), undis tUBound=(/10/), rc=rc)

call ESMF_ArrayRedist(srcArray=srcArray2, dstArray=ds tArray2, &
routehandle=redistHandle, rc=rc)

When done, the resources held byredistHandle need to be deallocated by the user code before the handle becomes
inaccessible.

call ESMF_ArrayRedistRelease(routehandle=redistHandl e, rc=rc)

In defaultmode, i.e. without providing the optionalsrcToDstTransposeMap argument,ESMF_ArrayRedistStore()
does not require equal number of dimensions in source and destination Array. Only the total number of elements must
match.
SpecifyingsrcToDstTransposeMap switchesESMF_ArrayRedistStore() into transposemode. In this
mode each dimension ofsrcArray is uniquely associated with a dimension indstArray . The sizes of associated
dimensions must match for each pair.

dstDistgrid = ESMF_DistGridCreate(minIndex=(/1,1/), ma xIndex=(/20,10/), rc=rc)

dstArray = ESMF_ArrayCreate(arrayspec=arrayspec, distg rid=dstDistgrid, rc=rc)

This dstArray object covers a 20 x 10 index space while thesrcArray , defined further up, covers a 10 x 20
index space. SettingsrcToDstTransposeMap = (/2,1/) will associate the first and second dimension of
srcArray with the second and first dimension ofdstArray , respectively. This corresponds to a transpose of
dimensions. Since the decomposition and distribution of dimensions may be different for source and destination
redistribution may occur at the same time.

call ESMF_ArrayRedistStore(srcArray=srcArray, dstArra y=dstArray, &
routehandle=redistHandle, srcToDstTransposeMap=(/2,1 /), rc=rc)

call ESMF_ArrayRedist(srcArray=srcArray, dstArray=dst Array, &
routehandle=redistHandle, rc=rc)

The transpose mode ofESMF_ArrayRedist() is not limited to distributed dimensions of Arrays. ThesrcToDstTransposeMap
argument can be used to transpose undistributed dimensionsin the same manner. Furthermore transposing distributed
and undistributed dimensions between Arrays is also supported.
ThesrcArray used in the following examples is of rank 4 with 2 distributedand 2 undistributed dimensions. The
distributed dimensions are the two first dimensions of the Array and are distributed according to thesrcDistgrid
which describes a total index space region of 100 x 200 elements. The last two Array dimensions are undistributed
dimensions of size 2 and 3, respectively.

313

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEK IND_R8, rank=4, rc=rc)

srcDistgrid = ESMF_DistGridCreate(minIndex=(/1,1/), ma xIndex=(/100,200/), &
rc=rc)

srcArray = ESMF_ArrayCreate(arrayspec=arrayspec, distg rid=srcDistgrid, &
undistLBound=(/1,1/), undistUBound=(/2,3/), rc=rc)

The firstdstArray to consider is defined on a DistGrid that also describes a 100 x200 index space region. The
distribution indicated bydstDistgrid may be different from the source distribution. Again the first two Array
dimensions are associated with the DistGrid dimensions in sequence. Furthermore, the last two Array dimensions are
undistributed dimensions, however, the sizes are 3 and 2, respectively.

dstDistgrid = ESMF_DistGridCreate(minIndex=(/1,1/), ma xIndex=(/100,200/), &
rc=rc)

dstArray = ESMF_ArrayCreate(arrayspec=arrayspec, distg rid=dstDistgrid, &
undistLBound=(/1,1/), undistUBound=(/3,2/), rc=rc)

The desired mapping betweensrcArray anddstArray dimensions is expressed bysrcToDstTransposeMap
= (/1,2,4,3/) , transposing only the two undistributed dimensions.

call ESMF_ArrayRedistStore(srcArray=srcArray, dstArra y=dstArray, &
routehandle=redistHandle, srcToDstTransposeMap=(/1,2 ,4,3/), rc=rc)

call ESMF_ArrayRedist(srcArray=srcArray, dstArray=dst Array, &
routehandle=redistHandle, rc=rc)

Next consider adstArray that is defined on the samedstDistgrid , but with a different order of Array di-
mensions. The desired order is specified during Array creation using the argumentdistgridToArrayMap =
(/2,3/) . This map associates the first and second DistGrid dimensions with the second and third Array dimensions,
respectively, leaving Array dimensions one and four undistributed.

dstArray = ESMF_ArrayCreate(arrayspec=arrayspec, distg rid=dstDistgrid, &
distgridToArrayMap=(/2,3/), undistLBound=(/1,1/), und istUBound=(/3,2/), &
rc=rc)

Again the sizes of the undistributed dimensions are chosen in reverse order compared tosrcArray . The desired
transpose mapping in this case will besrcToDstTransposeMap = (/2,3,4,1/) .

call ESMF_ArrayRedistStore(srcArray=srcArray, dstArra y=dstArray, &
routehandle=redistHandle, srcToDstTransposeMap=(/2,3 ,4,1/), rc=rc)

call ESMF_ArrayRedist(srcArray=srcArray, dstArray=dst Array, &
routehandle=redistHandle, rc=rc)

Finally consider the case wheredstArray is constructed on a 200 x 3 index space and where the undistributed
dimensions are of size 100 and 2.

314

dstDistgrid = ESMF_DistGridCreate(minIndex=(/1,1/), ma xIndex=(/200,3/), &
rc=rc)

dstArray = ESMF_ArrayCreate(arrayspec=arrayspec, distg rid=dstDistgrid, &
undistLBound=(/1,1/), undistUBound=(/100,2/), rc=rc)

By constructionsrcArray anddstArray hold the same number of elements, albeit in a very different layout.
Nevertheless, with asrcToDstTransposeMap that maps matching dimensions from source to destination an
Array redistribution becomes a well defined operation betweensrcArray anddstArray .

call ESMF_ArrayRedistStore(srcArray=srcArray, dstArra y=dstArray, &
routehandle=redistHandle, srcToDstTransposeMap=(/3,1 ,4,2/), rc=rc)

call ESMF_ArrayRedist(srcArray=srcArray, dstArray=dst Array, &
routehandle=redistHandle, rc=rc)

The default mode of Array redistribution, i.e. without providing asrcToDstTransposeMap to ESMF_ArrayRedistStore() ,
also supports undistributed Array dimensions. The requirement in this case is that the total undistributed element count,
i.e. the product of the sizes of all undistributed dimensions, be the same for source and destination Array. In this mode
the number of undistributed dimensions need not match between source and destination.

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEK IND_R8, rank=4, rc=rc)

srcDistgrid = ESMF_DistGridCreate(minIndex=(/1,1/), ma xIndex=(/10,20/), &
regDecomp=(/4,1/), rc=rc)

srcArray = ESMF_ArrayCreate(arrayspec=arrayspec, distg rid=srcDistgrid, &
undistLBound=(/1,1/), undistUBound=(/2,4/), rc=rc)

dstDistgrid = ESMF_DistGridCreate(minIndex=(/1,1/), ma xIndex=(/10,20/), &
regDecomp=(/1,4/), rc=rc)

dstArray = ESMF_ArrayCreate(arrayspec=arrayspec, distg rid=dstDistgrid, &
distgridToArrayMap=(/2,3/), undistLBound=(/1,1/), und istUBound=(/2,4/), &
rc=rc)

Both srcArray anddstArray have two undistributed dimensions and a total count of undistributed elements of
2 × 4 = 8.
The Array redistribution operation is defined in terms of sequentialized undistributed dimensions. In the above case
this means that a unique sequence index will be assigned to each of the 8 undistributed elements. The sequence indices
will be 1, 2, ..., 8, where sequence index 1 is assigned to the first element in the first (i.e. fastest varying in memory)
undistributed dimension. The following undistributed elements are labeled in consecutive order as they are stored in
memory.

call ESMF_ArrayRedistStore(srcArray=srcArray, dstArra y=dstArray, &
routehandle=redistHandle, rc=rc)

315

The redistribution operation by default applies the identity operation between the elements of undistributed dimen-
sions. This means that source element with sequence index 1 will be mapped against destination element with sequence
index 1 and so forth. Because of the way source and destination Arrays in the current example were constructed this
corresponds to a mapping of dimensions 3 and 4 onsrcArray to dimensions 1 and 4 ondstArray , respectively.

call ESMF_ArrayRedist(srcArray=srcArray, dstArray=dst Array, &
routehandle=redistHandle, rc=rc)

Array redistribution doesnot require the same number of undistributed dimensions in source and destination Array,
merely the total number of undistributed elements must match.

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEK IND_R8, rank=3, rc=rc)

dstArray = ESMF_ArrayCreate(arrayspec=arrayspec, distg rid=dstDistgrid, &
distgridToArrayMap=(/1,3/), undistLBound=(/11/), undi stUBound=(/18/), &
rc=rc)

This dstArray object only has a single undistributed dimension, while thesrcArray , defined further back, has
two undistributed dimensions. However, the total undistributed element count for both Arrays is 8.

call ESMF_ArrayRedistStore(srcArray=srcArray, dstArra y=dstArray, &
routehandle=redistHandle, rc=rc)

In this case the default identity operation between the elements of undistributed dimensions corresponds to amerging
of dimensions 3 and 4 onsrcArray into dimension 2 ondstArray .

call ESMF_ArrayRedist(srcArray=srcArray, dstArray=dst Array, &
routehandle=redistHandle, rc=rc)

22.2.17 Communication – SparseMatMul

Sparse matrix multiplication is a fundamental Array communication method. One frequently used application of this
method is the interpolation between pairs of Arrays. The principle is this: the value of each element in the exclusive
region of the destination Array is expressed as a linear combination of potentially all the exclusive elements of the
source Array. Naturally most of the coefficients of these linear combinations will be zero and it is more efficient to
store explicit information about the non-zero elements than to keep track of all the coefficients.
There is a choice to be made with respect to the format in whichto store the information about the non-zero elements.
One option is to store the value of each coefficient together with the corresponding destination element index and
source element index. Destination and source indices couldbe expressed in terms of the corresponding DistGrid patch
index together with the coordinate tuple within the patch. While this format may be the most natural way to express
elements in the source and destination Array, it has two major drawbacks. First the coordinate tuple isdimCount
specific and second the format is extremely bulky. For 2D source and destination Arrays it would require 6 integers
to store the source and destination element information foreach non-zero coefficient and matters get worse for higher
dimensions.
Both problems can be circumvented byinterpretingsource and destination Arrays as sequentialized strings orvectors
of elements. This is done by assigning a uniquesequence indexto each exclusive element in both Arrays. With that
the operation of updating the elements in the destination Array as linear combinations of source Array elements takes
the form of asparse matrix multiplication.
The default sequence index rule assigns index1 to theminIndex corner element of the first patch of the DistGrid
on which the Array is defined. It then increments the sequenceindex by1 for each element running through the
DistGrid dimensions by order. The index space position of the DistGrid patches does not affect the sequence labeling
of elements. The default sequence indices for

316

srcDistgrid = ESMF_DistGridCreate(minIndex=(/-1,0/), m axIndex=(/1,3/), rc=rc)

for each element are:

-------------------------------------> 2nd dim
|
| +------+------+------+------+
	(-1,0)			(-1,3)
	1	4	7	10
+------+------+------+------+				
	2	5	8	11
+------+------+------+------+				
	(1,0)			(1,3)
	3	6	9	12
+------+------+------+------+				
v

1st dim

The assigned sequence indices are decomposition and distribution invariant by construction. Furthermore, when an
Array is created with extra elements per DE on a DistGrid the sequence indices (which only cover the exclusive
elements) remain unchanged.

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEK IND_R8, rank=2, rc=rc)

srcArray = ESMF_ArrayCreate(arrayspec=arrayspec, distg rid=srcDistgrid, &
totalLWidth=(/1,1/), totalUWidth=(/1,1/), indexflag=E SMF_INDEX_GLOBAL, &
rc=rc)

The extra padding of 1 element in each direction around the exclusive elements on each DE are "invisible" to the Array
spare matrix multiplication method. These extra elements are either updated by the computational kernel or by Array
halo operations (not yet implemented!).
An alternative way to assign sequence indices to all the elements in the patches covered by a DistGrid object is to
use a specialESMF_DistGridCreate() call. This call has been specifically designed for 1D cases with arbitrary,
user-supplied sequence indices.

seqIndexList(1) = localPet * 10
seqIndexList(2) = localPet * 10 + 1
dstDistgrid = ESMF_DistGridCreate(arbSeqIndexList=seq IndexList, rc=rc)

This call toESMF_DistGridCreate() is collective across the current VM. ThearbSeqIndexList argument
specifies the PET-local arbitrary sequence indices that need to be covered by the local DE. The resulting DistGrid has
one local DE per PET which covers the entire PET-local index range. The user supplied sequence indices must be
unique, but the sequence may be interrupted. The four DEs ofdstDistgrid have the following local 1D index
space coordinates (given between "()") and sequence indices:

covered by DE 0 covered by DE 1 covered by DE 2 covered by DE 3
on PET 0 on PET 1 on PET 2 on PET 3

317

--- -------------------
(1) : 0 (1) : 10 (1) : 20 (1) : 30
(2) : 1 (2) : 11 (2) : 21 (2) : 31

Again the DistGrid object provides the sequence index labeling for the exclusive elements of an Array created on the
DistGrid regardless of extra, non-exclusive elements.

dstArray = ESMF_ArrayCreate(arrayspec=arrayspec, distg rid=dstDistgrid, rc=rc)

With the definition of sequence indices, either by the default rule or as user provided arbitrary sequence indices, it
is now possible to uniquely identify each exclusive elementin the source and destination Array by a single integer
number. Specifying a pair of source and destination elements takes two integer number regardless of the number of
dimensions.
The information required to carry out a sparse matrix multiplication are the pair of source and destination sequence
indices and the associated multiplication factor for each pair. ESMF requires this information in form of two Fortran ar-
rays. The factors are stored in a 1D array of the appropriate type and kind, e.g.real(ESMF_KIND_R8)::factorList(:) .
Array sparse matrix multiplications are supported betweenArrays of different type and kind. The type and kind of
the factors can also be chosen freely. The sequence index pairs associated with the factors provided byfactorList
are stored in a 2D Fortran array of default integer kind of theshapeinteger::factorIndexList(2,:) . The
sequence indices of the source Array elements are stored in the first row offactorIndexList while the sequence
indices of the destination Array elements are stored in the second row.
Each PET in the current VM must call intoESMF_ArraySMMStore() to precompute and store the communication
pattern for the sparse matrix multiplication. The multiplication factors may be provided in parallel, i.e. multiple PETs
may specifyfactorList and factorIndexList arguments when calling intoESMF_ArraySMMStore() .
PETs that do not provide factors either call withfactorList andfactorIndexList arguments containing zero
elements or issue the call omitting both arguments.

if (localPet == 0) then
allocate(factorList(1)) ! PET 0 specifies 1 factor
allocate(factorIndexList(2,1))
factorList = (/0.2/) ! factors
factorIndexList(1,:) = (/5/) ! seq indices into srcArray
factorIndexList(2,:) = (/30/) ! seq indices into dstArray

call ESMF_ArraySMMStore(srcArray=srcArray, dstArray=d stArray, &
routehandle=sparseMatMulHandle, factorList=factorLis t, &
factorIndexList=factorIndexList, rc=rc)

deallocate(factorList)
deallocate(factorIndexList)

else if (localPet == 1) then
allocate(factorList(3)) ! PET 1 specifies 3 factor
allocate(factorIndexList(2,3))
factorList = (/0.5, 0.5, 0.8/) ! factors
factorIndexList(1,:) = (/8, 2, 12/) ! seq indices into srcAr ray
factorIndexList(2,:) = (/11, 11, 30/) ! seq indices into dst Array

call ESMF_ArraySMMStore(srcArray=srcArray, dstArray=d stArray, &
routehandle=sparseMatMulHandle, factorList=factorLis t, &
factorIndexList=factorIndexList, rc=rc)

deallocate(factorList)
deallocate(factorIndexList)

else
! PETs 2 and 3 do not provide factors

318

call ESMF_ArraySMMStore(srcArray=srcArray, dstArray=d stArray, &
routehandle=sparseMatMulHandle, rc=rc)

endif

The RouteHandle objectsparseMatMulHandle produced byESMF_ArraySMMStore() can now be used to
call ESMF_ArraySMM() collectively across all PETs of the current VM to perform

dstArray = 0.0
do n=1, size(combinedFactorList)

dstArray(combinedFactorIndexList(2, n)) +=
combinedFactorList(n) * srcArray(combinedFactorIndexList(1, n))

enddo

in parallel. HerecombinedFactorList andcombinedFactorIndexList are the combined lists defined by
the respective local lists provided by PETs 0 and 1 in parallel. For this example

call ESMF_ArraySMM(srcArray=srcArray, dstArray=dstArr ay, &
routehandle=sparseMatMulHandle, rc=rc)

will initialize the entiredstArray to 0.0 and then update two elements:

on DE 1:
dstArray(2) = 0.5 * srcArray(0,0) + 0.5 * srcArray(0,2)

and

on DE 3:
dstArray(1) = 0.2 * srcArray(0,1) + 0.8 * srcArray(1,3).

The call toESMF_ArraySMM() does provide the option to turn the defaultdstArray initialization off. If argument
zeroflag is set toESMF_REGION_EMPTY

call ESMF_ArraySMM(srcArray=srcArray, dstArray=dstArr ay, &
routehandle=sparseMatMulHandle, zeroflag=ESMF_REGION _EMPTY, rc=rc)

skips the initialization and elements indstArray are updated according to:

do n=1, size(combinedFactorList)
dstArray(combinedFactorIndexList(2, n)) +=

combinedFactorList(n) * srcArray(combinedFactorIndexList(1, n)).
enddo

TheESMF_RouteHandle object returned byESMF_ArraySMMStore() can be applied to any src/dst Array pairs
that are weakly congurent to the Array pair used during precomputation. Arrays are congruent if they are defined on
matching DistGrids and the shape of local array allocationsmatch for all DEs. For weakly congruent Arrays the sizes
of the undistributed dimensions, that vary faster with memory than the first distributed dimension, are permitted to
be different. See section 22.2.16 for an example of this feature demonstrated for the Redist case. The exact same
principle applies to the SMM case.
The resources held bysparseMatMulHandle need to be deallocated by the user code before the handle becomes
inaccessible.

319

call ESMF_ArraySMMRelease(routehandle=sparseMatMulHa ndle, rc=rc)

The Array sparse matrix multiplication also applies to Arrays with undistributed dimensions. The undistributed dimen-
sions are interpreted in a sequentialized manner, much likethe distributed dimensions, introducing a second sequence
index for source and destination elements. Sequence index 1is assigned to the first element in the first (i.e. fastest
varying in memory) undistributed dimension. The followingundistributed elements are labeled in consecutive order
as they are stored in memory.
In the simplest case the Array sparse matrix multiplicationwill apply an identity matrix to the vector of sequentialized
undistributed Array elements for every non-zero element inthe sparse matrix. The requirement in this case is that the
total undistributed element count, i.e. the product of the sizes of all undistributed dimensions, be the same for source
and destination Array.

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEK IND_R8, rank=3, rc=rc)
srcArray = ESMF_ArrayCreate(arrayspec=arrayspec, distg rid=srcDistgrid, &

totalLWidth=(/1,1/), totalUWidth=(/1,1/), indexflag=E SMF_INDEX_GLOBAL, &
distgridToArrayMap=(/1,2/), undistLBound=(/1/), undis tUBound=(/2/), rc=rc)

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEK IND_R8, rank=2, rc=rc)
dstArray = ESMF_ArrayCreate(arrayspec=arrayspec, distg rid=dstDistgrid, &

distgridToArrayMap=(/2/), undistLBound=(/1/), undistU Bound=(/2/), rc=rc)

Setting upfactorList and factorIndexList is identical to the case for Arrays without undistributed di-
mensions. Also the call toESMF_ArraySMMStore() remains unchanged. Internally, however, the source and
destination Arrays are checked to make sure the total undistributed element count matches.

if (localPet == 0) then
allocate(factorList(1)) ! PET 0 specifies 1 factor
allocate(factorIndexList(2,1))
factorList = (/0.2/) ! factors
factorIndexList(1,:) = (/5/) ! seq indices into srcArray
factorIndexList(2,:) = (/30/) ! seq indices into dstArray

call ESMF_ArraySMMStore(srcArray=srcArray, dstArray=d stArray, &
routehandle=sparseMatMulHandle, factorList=factorLis t, &
factorIndexList=factorIndexList, rc=rc)

deallocate(factorList)
deallocate(factorIndexList)

else if (localPet == 1) then
allocate(factorList(3)) ! PET 1 specifies 3 factor
allocate(factorIndexList(2,3))
factorList = (/0.5, 0.5, 0.8/) ! factors
factorIndexList(1,:) = (/8, 2, 12/) ! seq indices into srcAr ray
factorIndexList(2,:) = (/11, 11, 30/) ! seq indices into dst Array

call ESMF_ArraySMMStore(srcArray=srcArray, dstArray=d stArray, &
routehandle=sparseMatMulHandle, factorList=factorLis t, &
factorIndexList=factorIndexList, rc=rc)

deallocate(factorList)
deallocate(factorIndexList)

else
! PETs 2 and 3 do not provide factors

320

call ESMF_ArraySMMStore(srcArray=srcArray, dstArray=d stArray, &
routehandle=sparseMatMulHandle, rc=rc)

endif

The call into theESMF_ArraySMM() operation is completely transparent with respect to whether source and/or
destination Arrays contain undistributed dimensions.

call ESMF_ArraySMM(srcArray=srcArray, dstArray=dstArr ay, &
routehandle=sparseMatMulHandle, rc=rc)

This operation will initialize the entiredstArray to 0.0 and then update four elements:

on DE 1:
dstArray[1](2) = 0.5 * srcArray(0,0)[1] + 0.5 * srcArray(0,2)[1],
dstArray2 = 0.5 * srcArray(0,0)[2] + 0.5 * srcArray(0,2)[2]

and

on DE 3:
dstArray1 = 0.2 * srcArray(0,1)[1] + 0.8 * srcArray(1,3)[1],
dstArray[2](1) = 0.2 * srcArray(0,1)[2] + 0.8 * srcArray(1,3)[2].

Here indices between "()" refer to distributed dimensions while indices between "[]" correspond to undistributed
dimensions.
In a more general version of the Array sparse matrix multiplication the total undistributed element count, i.e. the
product of the sizes of all undistributed dimensions, need not be the same for source and destination Array. In this
formulation each non-zero element of the sparse matrix is identified with a unique element in the source and destination
Array. This requires a generalization of thefactorIndexList argument which now must contain four integer
numbers for each element. These numbers in sequence are the sequence index of the distributed dimensions and the
sequence index of the undistributed dimensions of the element in the source Array, followed by the sequence index of
the distributed dimensions and the sequence index of the undistributed dimensions of the element in the destination
Array.

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEK IND_R8, rank=3, rc=rc)
srcArray = ESMF_ArrayCreate(arrayspec=arrayspec, distg rid=srcDistgrid, &

totalLWidth=(/1,1/), totalUWidth=(/1,1/), indexflag=E SMF_INDEX_GLOBAL, &
distgridToArrayMap=(/1,2/), undistLBound=(/1/), undis tUBound=(/2/), rc=rc)

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEK IND_R8, rank=2, rc=rc)
dstArray = ESMF_ArrayCreate(arrayspec=arrayspec, distg rid=dstDistgrid, &

distgridToArrayMap=(/2/), undistLBound=(/1/), undistU Bound=(/4/), rc=rc)

Setting upfactorList is identical to the previous cases since there is still only one value associated with each
non-zero matrix element. However, each entry infactorIndexList now has 4 instead of just 2 components.

if (localPet == 0) then
allocate(factorList(1)) ! PET 0 specifies 1 factor
allocate(factorIndexList(4,1))
factorList = (/0.2/) ! factors
factorIndexList(1,:) = (/5/) ! seq indices into srcArray
factorIndexList(2,:) = (/1/) ! undistr. seq indices into sr cArray

321

factorIndexList(3,:) = (/30/) ! seq indices into dstArray
factorIndexList(4,:) = (/2/) ! undistr. seq indices into ds tArray

call ESMF_ArraySMMStore(srcArray=srcArray, dstArray=d stArray, &
routehandle=sparseMatMulHandle, factorList=factorLis t, &
factorIndexList=factorIndexList, rc=rc)

deallocate(factorList)
deallocate(factorIndexList)

else if (localPet == 1) then
allocate(factorList(3)) ! PET 1 specifies 3 factor
allocate(factorIndexList(4,3))
factorList = (/0.5, 0.5, 0.8/) ! factors
factorIndexList(1,:) = (/8, 2, 12/) ! seq indices into srcAr ray
factorIndexList(2,:) = (/2, 1, 1/) ! undistr. seq indices in to srcArray
factorIndexList(3,:) = (/11, 11, 30/) ! seq indices into dst Array
factorIndexList(4,:) = (/4, 4, 2/) ! undistr. seq indices in to dstArray

call ESMF_ArraySMMStore(srcArray=srcArray, dstArray=d stArray, &
routehandle=sparseMatMulHandle, factorList=factorLis t, &
factorIndexList=factorIndexList, rc=rc)

deallocate(factorList)
deallocate(factorIndexList)

else
! PETs 2 and 3 do not provide factors

call ESMF_ArraySMMStore(srcArray=srcArray, dstArray=d stArray, &
routehandle=sparseMatMulHandle, rc=rc)

endif

The call into theESMF_ArraySMM() operation remains unchanged.

call ESMF_ArraySMM(srcArray=srcArray, dstArray=dstArr ay, &
routehandle=sparseMatMulHandle, rc=rc)

This operation will initialize the entiredstArray to 0.0 and then update two elements:

on DE 1:
dstArray[4](2) = 0.5 * srcArray(0,0)[1] + 0.5 * srcArray(0,2)[2],

and

on DE 3:
dstArray[2](1) = 0.2 * srcArray(0,1)[1] + 0.8 * srcArray(1,3)[1],

Here indices in() refer to distributed dimensions while indices in[] correspond to undistributed dimensions.

22.2.18 Communication – Scatter and Gather, revisited

TheESMF_ArrayScatter() andESMF_ArrayGather() calls, introduced in section 22.2.13, provide a con-
venient way of communicating data between a Fortran array and all of the DEs of a single Array patch. A key
requirement ofESMF_ArrayScatter() andESMF_ArrayGather() is that theshapeof the Fortran array and

322

the Array patch must match. This means that thedimCount must be equal, and that the size of each dimension
must match. Element reordering during scatter and gather isonly supported on a per dimension level, based on the
decompflag option available during DistGrid creation.
While theESMF_ArrayScatter() andESMF_ArrayGather() methods cover a broad, and important spectrum
of cases, there are situations that require a different set of rules to scatter and gather data between a Fortran array andan
ESMF Array object. For instance, it is often convenient to create an Array on a DistGrid that was created with arbitrary,
user-supplied sequence indices. See section 29.2.6 for more background on DistGrids with arbitrary sequence indices.

allocate(arbSeqIndexList(10)) ! each PET will have 10 elem ents

do i=1, 10
arbSeqIndexList(i) = (i-1) * petCount + localPet+1 ! initialize unique seq. indices

enddo

distgrid = ESMF_DistGridCreate(arbSeqIndexList=arbSeq IndexList, rc=rc)

deallocate(arbSeqIndexList)

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEK IND_I4, rank=1, rc=rc)

array = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid =distgrid, rc=rc)

This array object holds 10 elements on each DE, and there is one DE per PET, for a total element count of 10 x
petCount . ThearbSeqIndexList , used during DistGrid creation, was constructed cyclic across all DEs. DE 0,
for example, on a 4 PET run, would hold sequence indices 1, 5, 9, DE 1 would hold 2, 6, 10, ..., and so on.
The usefulness of the user-specified arbitrary sequence indices becomes clear when they are interpreted as global
element ids. The ArrayRedist() and ArraySMM() communication methods are based on sequence index mapping
between source and destination Arrays. Other than providing a canonical sequence index order via the default sequence
scheme, outlined in 22.2.17, ESMF does not place any restrictions on the sequence indices. Objects that were not
created with user supplied sequence indices default to the ESMF sequence index order.
A common, and useful interpretation of the arbitrary sequence indices, specified during DistGrid creation, is that of
relating them to the canonical ESMF sequence index order of another data object. Within this interpretation thearray
object created above could be viewed as an arbitrary distribution of a (petCount x 10) 2D array.

if (localPet == 0) then
allocate(farray(petCount,10)) ! allocate 2D Fortran arra y petCount x 10
do j=1, 10

do i=1, petCount
farray(i,j) = 100 + (j-1) * petCount + i ! initialize to something

enddo
enddo

else
allocate(farray(0,0)) ! must allocate an array of size 0 on a ll other PETs

endif

For a 4 PET run,farray on PET 0 now holds the following data.

-----1----2----3------------10-----> j
|
1 101, 105, 109, , 137
|
2 102, 106, 110, , 138
|

323

3 103, 107, 111, , 139
|
4 104, 108, 112, , 140
|
|
v

i

On all other PETsfarray has a zero size allocation.
Following the sequence index interpretation from above, scattering the data contained infarray on PET 0 across the
array object created further up, seems like a well defined operation. Looking at it a bit closer, it becomes clear that it
is in fact more of a redistribution than a simple scatter operation. The general rule for such a "redist-scatter" operation,
of a Fortran array, located on a single PET, into an ESMF Array, is to use the canonical ESMF sequence index scheme
to label the elements of the Fortran array, and to send the data to the Array element with the same sequence index.
The just described "redist-scatter" operation is much moregeneral than the standardESMF_ArrayScatter()
method. It does not require shape matching, and supports full element reordering based on the sequence indices.
Beforefarray can be scattered acrossarray in the described way, it must be wrapped into an ESMF Array object
itself, essentially labeling the array elements accordingto the canonical sequence index scheme.

distgridAux = ESMF_DistGridCreate(minIndex=(/1,1/), ma xIndex=(/petCount,10/), &
regDecomp=(/1,1/), rc=rc) ! DistGrid with only 1 DE

The first step is to create a DistGrid object with only a singleDE. This DE must be located on the PET on which the
Fortran data array resides. In this examplefarray holds data on PET 0, which is where the default DELayout will
place the single DE defined in the DistGrid. If thefarray was setup on a different PET, an explicit DELayout would
need to be created first, mapping the only DE to the PET on whichthe data is defined.
Next the Array wrapper object can be created from thefarray and the just created DistGrid object.

arrayAux = ESMF_ArrayCreate(farray=farray, distgrid=di stgridAux, &
indexflag=ESMF_INDEX_DELOCAL, rc=rc)

At this point all of the pieces are in place to useESMF_ArrayRedist() to do the "redist-scatter" operation. The
typical store/execute/release pattern must be followed.

call ESMF_ArrayRedistStore(srcArray=arrayAux, dstArra y=array, &
routehandle=scatterHandle, rc=rc)

call ESMF_ArrayRedist(srcArray=arrayAux, dstArray=arr ay, &
routehandle=scatterHandle, rc=rc)

In this example, afterESMF_ArrayRedist() was called, the content ofarray on a 4 PET run would look like
this:

PET 0: 101, 105, 109, , 137
PET 1: 102, 106, 110, , 138
PET 2: 103, 107, 111, , 139
PET 3: 104, 108, 112, , 140

Once set up,scatterHandle can be used repeatedly to scatter data fromfarray on PET 0 to all the DEs of
array . All of the resources should be released oncescatterHandle is no longer needed.

call ESMF_ArrayRedistRelease(routehandle=scatterHand le, rc=rc)

324

The opposite operation, i.e.gatheringof thearray data intofarray on PET 0, follows a very similar setup. In
fact, thearrayAux object already constructed for the scatter direction, can directly be re-used. The only thing that
is different for the "redist-gather", are thesrcArray anddstArray argument assignments, reflecting the opposite
direction of data movement.

call ESMF_ArrayRedistStore(srcArray=array, dstArray=a rrayAux, &
routehandle=gatherHandle, rc=rc)

call ESMF_ArrayRedist(srcArray=array, dstArray=arrayA ux, &
routehandle=gatherHandle, rc=rc)

Just as for the scatter case, thegatherHandle can be used repeatedly to gather data fromarray into farray on
PET 0. All of the resources should be released oncegatherHandle is no longer needed.

call ESMF_ArrayRedistRelease(routehandle=gatherHandl e, rc=rc)

Finally the wrapper ArrayarrayAux and the associated DistGrid object can also be destroyed.

call ESMF_ArrayDestroy(arrayAux, rc=rc)

call ESMF_DistGridDestroy(distgridAux, rc=rc)

Further, the primary data objects of this example must be deallocated and destroyed.

deallocate(farray)

call ESMF_ArrayDestroy(array, rc=rc)

call ESMF_DistGridDestroy(distgrid, rc=rc)

22.2.19 Non-blocking Communications

All ESMF_RouteHandle based communcation methods, likeESMF_ArrayRedist() , ESMF_ArrayHalo()
andESMF_ArraySMM() , can be executed in blocking or non-blocking mode. The non-blocking feature is useful, for
example, to overlap computation with communication, or to implement a more loosely synchronized inter-Component
interaction scheme than is possible with the blocking communication mode.
Access to the non-blocking execution mode is provided uniformly across all RouteHandle based communication calls.
Every such call contains the optionalcommflag argument of typeESMF_CommFlag. Section 9.2.3 lists all of the
valid settings for this flag.
It is an execution time decision to select whether to invoke aprecomputed communication pattern, stored in a Route-
Handle, in the blocking or non-blocking mode. Neither requires specifically precomputed RouteHandles - i.e. a
RouteHandle is neither specifically blocking nor specifically non-blocking.

call ESMF_ArrayRedistStore(srcArray=srcArray, dstArra y=dstArray, &
routehandle=routehandle, rc=rc)

325

The returned RouteHandleroutehandle can be used in blocking or non-blocking execution calls. Theapplication
is free to switch between both modes for the same RouteHandle.
By defaultcommflag is set toESMF_COMM_BLOCKINGin all of the RouteHandle execution methods, and the
behavior is that of the VM-wide collective communication calls described in the previous sections. In the blocking
mode the user must assume that the communication call will not return until all PETs have exchanged the precomputed
information. On the other hand, the user has no guarante about the exact synchronization behavior, and it is unsafe
to make specific assumtions. What is guaranteed in the blocking communication mode is that when the call returns
on the local PET, all data exchanges associated with all local DEs have finished. This means that all in-bound data
elements are valid and that all out-bound data elements can safely be overwritten by the user.

call ESMF_ArrayRedist(srcArray=srcArray, dstArray=dst Array, &
routehandle=routehandle, commflag=ESMF_COMM_BLOCKING , rc=rc)

The same exchange pattern, that is encoded inroutehandle , can be executed in non-blocking mode, simply by
setting the appropriatecommflag when calling intoESMF_ArrayRedist() .
At first sight there are obvious similarities between the non-blocking RouteHandle based execution paradigm and the
non-blocking message passing calls provided by MPI. However, there are significant differences in the behavior of
the non-blocking point-to-point calls that MPI defines and the non-blocking mode of the collective exchange patterns
described by ESMF RouteHandles.
Settingcommflag to ESMF_COMM_NBSTARTin any RouteHandle execution call returns immediatly afterall out-
bound data has been moved into ESMF internal transfer buffers and the exchange has been initiated.

call ESMF_ArrayRedist(srcArray=srcArray, dstArray=dst Array, &
routehandle=routehandle, commflag=ESMF_COMM_NBSTART, rc=rc)

Once a call withcommflag = ESMF_COMM_NBSTARTreturns, it is safe to modify the out-bound data elements in
thesrcArray object. However, no guarantees are made for the in-bound data elements indstArray at this phase
of the non-blocking execution. It is unsafe to access these elements until the exchange has finished locally.
One way to ensure that the exchange has finished locally is to call with commflag set toESMF_COMM_NBWAITFINISH.

call ESMF_ArrayRedist(srcArray=srcArray, dstArray=dst Array, &
routehandle=routehandle, commflag=ESMF_COMM_NBWAITFI NISH, rc=rc)

Calling withcommflag = ESMF_COMM_NBWAITFINISHinstructs the communication method to wait and block
until the previously started exchange has finished, and has been processed locally according to the RouteHandle.
Once the call returns, it is safe to access both in-bound and out-bound data elements indstArray andsrcArray ,
respectively.
Some situations require more flexibility than is provided bytheESMF_COMM_NBSTART- ESMF_COMM_NBWAITFINISH
pair. For instance, a Component that needs to interact with several other Components, virtually simultanously, would
initiated several different exchanges withESMF_COMM_NBSTART. Calling withESMF_COMM_NBWAITFINISHfor
any of the outstanding exchanges may potentially block for along time, lowering the throughput. In the worst case a
dead lock situation may arrise. Calling withcommflag = ESMF_COMM_NBTESTFINISHaddresses this problem.

call ESMF_ArrayRedist(srcArray=srcArray, dstArray=dst Array, &
routehandle=routehandle, commflag=ESMF_COMM_NBTESTFI NISH, &
finishedflag=finishflag, rc=rc)

This call tests the locally outstanding data transfer operation in routehandle , and finishes the exchange as much as
currently possible. It does not block until the entire exchange has finished locally, instead it returns immediatly after
one round of testing has been completed. The optional returnargumentfinishedflag is set to.true. if the
exchange is completely finished locally, and set to.false. otherwise.
The user code must decide, depending on the value of the returnedfinishedflag , whether additional calls are re-
quired to finish an outstanding non-blockingexchange. If so, it can be done by repeatedly calling withESMF_COMM_NBTESTFINISH

326

until finishedflag comes back with a value of.true. . Such a loop allows other pieces of user code to be ex-
ecuted between the calls. Alternatively a call withESMF_COMM_NBWAITFINISHcan be used to block until the
exchange has locally finished.
Noteworthy property.It is fine to invoke a RouteHandle based communication call withcommflag set toESMF_COMM_NBTESTFINISH
or ESMF_COMM_NBWAITFINISHon a specific RouteHandle without there being an outstandingnon-blocking ex-
change. In fact, it is not required that there was ever a call made withESMF_COMM_NBSTARTfor the RouteHandle.
In these cases the calls made withESMF_COMM_NBTESTFINISHor ESMF_COMM_NBWAITFINISHwill simply
return immediatly (withfinishedflag set to.true.).
Noteworthy property.It is fine to mix blocking and non-blocking invokations of thesame RouteHandle based commu-
nication call across the PETs. This means that it is fine for some PETs to issue the call withESMF_COMM_BLOCKING
(or using the default), while other PETs call the same communication call withESMF_COMM_NBSTART.
Noteworthy restriction.A RouteHandle that is currently involved in an outstanding non-blocking exchange maynot
be used to start any further exchanges, neither blocking nornon-blocking. This restriction is independent of whether
the newly started RouteHandle based exchange is made for thesame or for different data objects.

22.3 Restrictions and Future Work

• CAUTION: Depending on the specificESMF_ArrayCreate() entry point used during Array creation, cer-
tain Fortran operations are not supported on the Fortran array pointerfarrayPtr , returned byESMF_ArrayGet() .
Only if the ESMF_ArrayCreate() from pointervariant was used, will the returnedfarrayPtr variable
contain the original bounds information, and be suitable for the Fortrandeallocate() call. This limitation is
a direct consequence of the Fortran 95 standard relating to the passing of array arguments. Fortran array pointers
returned from an Array that was created through theassumed shape arrayvariant ofESMF_ArrayCreate()
will have bounds that are consistent with the other arguments specified during Array creation. These pointers
are not suitable for deallocation in accordance to the Fortran 95 standard.

• 1D limit: ArrayHalo(), ArrayRedist() and ArraySMM() operations on Arrays created on DistGrids with arbi-
trary sequence indices are currently limited to 1D arbitrary DistGrids. There is no restriction on the number,
size and mapping of undistributed Array dimensions in the presence of such a 1D arbitrary DistGrid.

22.4 Design and Implementation Notes

The Array class is part of the ESMF index space layer and is built ontop of the DistGrid and DELayout classes. The
DELayout class introduces the notion ofdecomposition elements(DEs) and their layout across the available PETs. The
DistGrid describes how index space is decomposed by assigning logically rectangular index space piecesor DE-local
tiles to the DEs. The Array finally associates alocal memory allocationwith each local DE.
The following is a list of implementation specific details about the current ESMF Array.

• Implementation language is C++.

• Local memory allocations are internally held inESMF_LocalArray objects.

• All precomputed communication methods are based on sparse matrix multiplication.

22.5 Class API

22.5.1 ESMF_ArrayCreate - Create Array object from Fortran array pointer

INTERFACE:

! Private name; call using ESMF_ArrayCreate()
function ESMF_ArrayCreateFromPtr<rank><type><kind>(f arrayPtr, &
distgrid, copyflag, distgridToArrayMap, computationalE dgeLWidth, &
computationalEdgeUWidth, computationalLWidth, &
computationalUWidth, totalLWidth, &
totalUWidth, name, rc)

327

ARGUMENTS:

<type> (ESMF_KIND_<kind>),dimension(<rank>),pointer : : farrayPtr
type(ESMF_DistGrid), intent(in) :: distgrid
type(ESMF_CopyFlag), intent(in), optional :: copyflag
integer, intent(in), optional :: distgridToArrayMap(:)
integer, intent(in), optional :: computationalEdgeLWidt h(:)
integer, intent(in), optional :: computationalEdgeUWidt h(:)
integer, intent(in), optional :: computationalLWidth(:)
integer, intent(in), optional :: computationalUWidth(:)
integer, intent(in), optional :: totalLWidth(:)
integer, intent(in), optional :: totalUWidth(:)
character (len= *), intent(in), optional :: name
integer, intent(out), optional :: rc

RETURN VALUE:

type(ESMF_Array) :: ESMF_ArrayCreateFromPtrmrankDmtyp ekind

DESCRIPTION:

Create anESMF_Array object from existing local native Fortran arrays with pointer attribute, according to distgrid.
BesidesfarrayPtr each PET must issue this call with identical arguments in order to create a consistent Array
object. The bounds of the local arrays are preserved by this call and determine the bounds of the total region of the
resulting Array object. Bounds of the DE-local exclusive regions are set to be consistent with the total regions and the
specified distgrid argument. Bounds for Array dimensions that are not distributed are automatically set to the bounds
provided byfarrayPtr .
This interface requires a 1 DE per PET decomposition. The Array object will not be created and an error will be
returned if this condition is not met.
The not distributed Array dimensions form a tensor of rank = array.rank - distgrid.dimCount. By default all tensor
elements are associated with stagger location 0. The widthsof the computational region are set to the provided value,
or zero by default, for all tensor elements. UseESMF_ArraySet() to change these default settings after the Array
object has been created.
The return value is the newly createdESMF_Array object.
The arguments are:

farrayPtr Valid native Fortran array with pointer attribute. Memory must be associated with the actual argument. The
type/kind/rank information offarrayPtr will be used to setArray ’s properties accordingly. The shape of
farrayPtr will be checked against the information contained in thedistgrid . The bounds offarrayPtr
will be preserved by this call and the bounds of the resultingArray object are set accordingly.

distgrid ESMF_DistGrid object that describes how the array is decomposed and distributed over DEs. The dim-
Count of distgrid must be smaller or equal to the rank offarrayPtr .

[copyflag] Specifies whether the Array object will reference the memoryallocation provided byfarrayPtr directly
or will copy the data fromfarrayPtr into a new memory allocation. Valid options areESMF_DATA_REF
(default) orESMF_DATA_COPY. Depending on the specific situation theESMF_DATA_REFoption may be
unsafe when specifying an array slice forfarrayPtr .

[distgridToArrayMap] List that contains as many elements as is indicated bydistgrids ’s dimCount. The list
elements map each dimension of the DistGrid object to a dimension in farrayPtr by specifying the ap-
propriate Array dimension index. The default is to map all ofdistgrid ’s dimensions against the lower
dimensions of thefarrayPtr argument in sequence, i.e.distgridToArrayMap = (/1, 2, .../) .
UnmappedfarrayPtr dimensions are not decomposed dimensions and form a tensor of rank = Array.rank
- DistGrid.dimCount. AlldistgridToArrayMap entries must be greater than or equal to zero and smaller
than or equal to the Array rank. It is erroneous to specify thesame entry multiple times unless it is zero. If the

328

Array rank is less than the DistGrid dimCount then the default distgridToArrayMap will contain zeros for the
dimCount - rank rightmost entries. A zero entry in thedistgridToArrayMap indicates that the particular
DistGrid dimension will be replicating the Array across theDEs along this direction.

[computationalEdgeLWidth] This vector argument must have dimCount elements, where dimCount is specified
in distgrid. It specifies the lower corner of the computational region with respect to the lower corner of the
exclusive region for DEs that are located on the edge of a patch. The default is a zero vector.

[computationalEdgeUWidth] This vector argument must have dimCount elements, where dimCount is specified
in distgrid. It specifies the upper corner of the computational region with respect to the upper corner of the
exclusive region for DEs that are located on the edge of a patch. The default is a zero vector.

[computationalLWidth] This vector argument must have dimCount elements, where dimCount is specified in dist-
grid. It specifies the lower corner of the computational region with respect to the lower corner of the exclusive
region. The default is a zero vector.

[computationalUWidth] This vector argument must have dimCount elements, where dimCount is specified in dist-
grid. It specifies the upper corner of the computational region with respect to the upper corner of the exclusive
region. The default is a zero vector.

[totalLWidth] This vector argument must have dimCount elements, where dimCount is specified in distgrid. It
specifies the lower corner of the total memory region with respect to the lower corner of the computational
region. The default is to accommodate the union of exclusiveand computational region exactly.

[totalUWidth] This vector argument must have dimCount elements, where dimCount is specified in distgrid. It
specifies the upper corner of the total memory region with respect to the upper corner of the computational
region. The default is a vector that contains the remaining number of elements in each direction as to fit the
union of exclusive and computational region into the memoryregion provided by thefarrayPtr argument.

[name] Name of the Array object.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

22.5.2 ESMF_ArrayCreate - Create Array object from Fortran array pointer w/ arbitrary seqIndices for halo

INTERFACE:

! Private name; call using ESMF_ArrayCreate()
function ESMF_ArrayCreateFromPtrArb<rank><type><kind >(farrayPtr, &
distgrid, haloSeqIndexList, copyflag, distgridToArrayM ap, name, rc)

ARGUMENTS:

<type> (ESMF_KIND_<kind>),dimension(<rank>),pointer : : farrayPtr
type(ESMF_DistGrid), intent(in) :: distgrid
integer, intent(in) :: haloSeqIndexList(:)
type(ESMF_CopyFlag), intent(in), optional :: copyflag
integer, intent(in), optional :: distgridToArrayMap(:)
character (len= *), intent(in), optional :: name
integer, intent(out), optional :: rc

RETURN VALUE:

type(ESMF_Array) :: ESMF_ArrayCreateFromPtrArbmrankDm typekind

329

DESCRIPTION:

Create anESMF_Array object from existing local native Fortran arrays with pointer attribute, according to distgrid.
BesidesfarrayPtr each PET must issue this call with identical arguments in order to create a consistent Array
object. The bounds of the local arrays are preserved by this call and determine the bounds of the total region of the
resulting Array object. Bounds of the DE-local exclusive regions are set to be consistent with the total regions and the
specified distgrid argument. Bounds for Array dimensions that are not distributed are automatically set to the bounds
provided byfarrayPtr .
This interface requires a 1 DE per PET decomposition. The Array object will not be created and an error will be
returned if this condition is not met.
The not distributed Array dimensions form a tensor of rank = array.rank - distgrid.dimCount. By default all tensor
elements are associated with stagger location 0. The widthsof the computational region are set to the provided value,
or zero by default, for all tensor elements. UseESMF_ArraySet() to change these default settings after the Array
object has been created.
The return value is the newly createdESMF_Array object.
The arguments are:

farrayPtr Valid native Fortran array with pointer attribute. Memory must be associated with the actual argument. The
type/kind/rank information offarrayPtr will be used to setArray ’s properties accordingly. The shape of
farrayPtr will be checked against the information contained in thedistgrid . The bounds offarrayPtr
will be preserved by this call and the bounds of the resultingArray object are set accordingly.

distgrid ESMF_DistGrid object that describes how the array is decomposed and distributed over DEs. The dim-
Count of distgrid must be smaller or equal to the rank offarrayPtr .

haloSeqIndexList One dimensional array containing sequence indices of localhalo region. The size (and content) of
haloSeqIndexList can (and typically will) be different on each PET.

[copyflag] Specifies whether the Array object will reference the memoryallocation provided byfarrayPtr directly
or will copy the data fromfarrayPtr into a new memory allocation. Valid options areESMF_DATA_REF
(default) orESMF_DATA_COPY. Depending on the specific situation theESMF_DATA_REFoption may be
unsafe when specifying an array slice forfarrayPtr .

[distgridToArrayMap] List that contains as many elements as is indicated bydistgrids ’s dimCount. The list
elements map each dimension of the DistGrid object to a dimension in farrayPtr by specifying the ap-
propriate Array dimension index. The default is to map all ofdistgrid ’s dimensions against the lower
dimensions of thefarrayPtr argument in sequence, i.e.distgridToArrayMap = (/1, 2, .../) .
UnmappedfarrayPtr dimensions are not decomposed dimensions and form a tensor of rank = Array.rank
- DistGrid.dimCount. AlldistgridToArrayMap entries must be greater than or equal to zero and smaller
than or equal to the Array rank. It is erroneous to specify thesame entry multiple times unless it is zero. If the
Array rank is less than the DistGrid dimCount then the default distgridToArrayMap will contain zeros for the
dimCount - rank rightmost entries. A zero entry in thedistgridToArrayMap indicates that the particular
DistGrid dimension will be replicating the Array across theDEs along this direction.

[name] Name of the Array object.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

22.5.3 ESMF_ArrayCreate - Create Array object from Fortran array

INTERFACE:

! Private name; call using ESMF_ArrayCreate()
function ESMF_ArrayCreateAssmdShape<rank><type><kind >(farray, &
distgrid, indexflag, copyflag, distgridToArrayMap, &

330

computationalEdgeLWidth, computationalEdgeUWidth, com putationalLWidth, &
computationalUWidth, totalLWidth, &
totalUWidth, undistLBound, undistUBound, name, rc)

ARGUMENTS:

<type> (ESMF_KIND_<kind>),dimension(<rank>),intent(i n),target :: farray
type(ESMF_DistGrid), intent(in) :: distgrid
type(ESMF_IndexFlag), intent(in) :: indexflag
type(ESMF_CopyFlag), intent(in), optional :: copyflag
integer, intent(in), optional :: distgridToArrayMap(:)
integer, intent(in), optional :: computationalEdgeLWidt h(:)
integer, intent(in), optional :: computationalEdgeUWidt h(:)
integer, intent(in), optional :: computationalLWidth(:)
integer, intent(in), optional :: computationalUWidth(:)
integer, intent(in), optional :: totalLWidth(:)
integer, intent(in), optional :: totalUWidth(:)
integer, intent(in), optional :: undistLBound(:)
integer, intent(in), optional :: undistUBound(:)
character (len= *), intent(in), optional :: name
integer, intent(out), optional :: rc

RETURN VALUE:

type(ESMF_Array) :: ESMF_ArrayCreateAssmdShapemrankDm typekind

DESCRIPTION:

Create anESMF_Array object from an existing local native Fortran array according to distgrid. Besidesfarray
each PET must issue this call with identical arguments in order to create a consistent Array object. The local arrays
provided must be dimensioned according to the DE-local total region. Bounds of the exclusive regions are set as
specified in the distgrid argument. Bounds for Array dimensions that are not distributed can be chosen freely using
theundistLBound andundistUBound arguments.
This interface requires a 1 DE per PET decomposition. The Array object will not be created and an error will be
returned if this condition is not met.
The not distributed Array dimensions form a tensor of rank = array.rank - distgrid.dimCount. By default all tensor
elements are associated with stagger location 0. The widthsof the computational region are set to the provided value,
or zero by default, for all tensor elements. UseESMF_ArraySet() to change these default settings after the Array
object has been created.
The return value is the newly createdESMF_Array object.
The arguments are:

farray Valid native Fortran array, i.e. memory must be associated with the actual argument. The type/kind/rank
information of farray will be used to setArray ’s properties accordingly. The shape offarray will be
checked against the information contained in thedistgrid .

distgrid ESMF_DistGrid object that describes how the array is decomposed and distributed over DEs. The dim-
Count of distgrid must be smaller or equal to the rank of farray.

indexflag Indicate how DE-local indices are defined. See section 9.2.9for a list of valid indexflag options.

[copyflag] Specifies whether the Array object will reference the memoryallocation provided byfarray directly or
will copy the data fromfarray into a new memory allocation. Valid options areESMF_DATA_REF(default)
or ESMF_DATA_COPY. Depending on the specific situation theESMF_DATA_REFoption may be unsafe when
specifying an array slice forfarray .

331

[distgridToArrayMap] List that contains as many elements as is indicated bydistgrids ’s dimCount. The list el-
ements map each dimension of the DistGrid object to a dimension in farray by specifying the appropriate Ar-
ray dimension index. The default is to map all ofdistgrid ’s dimensions against the lower dimensions of the
farray argument in sequence, i.e.distgridToArrayMap = (/1, 2, .../) . Unmappedfarray
dimensions are not decomposed dimensions and form a tensor of rank = Array.rank - DistGrid.dimCount. All
distgridToArrayMap entries must be greater than or equal to zero and smaller thanor equal to the Array
rank. It is erroneous to specify the same entry multiple times unless it is zero. If the Array rank is less than the
DistGrid dimCount then the default distgridToArrayMap will contain zeros for the dimCount - rank rightmost
entries. A zero entry in thedistgridToArrayMap indicates that the particular DistGrid dimension will be
replicating the Array across the DEs along this direction.

[computationalEdgeLWidth] This vector argument must have dimCount elements, where dimCount is specified
in distgrid. It specifies the lower corner of the computational region with respect to the lower corner of the
exclusive region for DEs that are located on the edge of a patch. The default is a zero vector.

[computationalEdgeUWidth] This vector argument must have dimCount elements, where dimCount is specified
in distgrid. It specifies the upper corner of the computational region with respect to the upper corner of the
exclusive region for DEs that are located on the edge of a patch. The default is a zero vector.

[computationalLWidth] This vector argument must have dimCount elements, where dimCount is specified in dist-
grid. It specifies the lower corner of the computational region with respect to the lower corner of the exclusive
region. The default is a zero vector.

[computationalUWidth] This vector argument must have dimCount elements, where dimCount is specified in dist-
grid. It specifies the upper corner of the computational region with respect to the upper corner of the exclusive
region. The default is a zero vector.

[totalLWidth] This vector argument must have dimCount elements, where dimCount is specified in distgrid. It
specifies the lower corner of the total memory region with respect to the lower corner of the computational
region. The default is to accommodate the union of exclusiveand computational region exactly.

[totalUWidth] This vector argument must have dimCount elements, where dimCount is specified in distgrid. It
specifies the upper corner of the total memory region with respect to the upper corner of the computational
region. The default is a vector that contains the remaining number of elements in each direction as to fit the
union of exclusive and computational region into the memoryregion provided by thefarray argument.

[undistLBound] Lower bounds for the array dimensions that are not distributed. By default lbound is 1.

[undistUBound] Upper bounds for the array dimensions that are not distributed. By default ubound is equal to the
extent of the corresponding dimension infarray .

[name] Name of the Array object.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

22.5.4 ESMF_ArrayCreate - Create Array object from a list of LocalArray objects

INTERFACE:

! Private name; call using ESMF_ArrayCreate()
function ESMF_ArrayCreateLocalArray(larrayList, distg rid, indexflag, &

copyflag, distgridToArrayMap, computationalEdgeLWidth , &
computationalEdgeUWidth, computationalLWidth, computa tionalUWidth, &
totalLWidth, totalUWidth, undistLBound, undistUBound, n ame, rc)

ARGUMENTS:

332

type(ESMF_LocalArray), intent(in) :: larrayList(:)
type(ESMF_DistGrid), intent(in) :: distgrid
type(ESMF_IndexFlag), intent(in), optional :: indexflag
type(ESMF_CopyFlag), intent(in), optional :: copyflag
integer, intent(in), optional :: distgridToArrayMap(:)
integer, intent(in), optional :: computationalEdgeLWidt h(:)
integer, intent(in), optional :: computationalEdgeUWidt h(:)
integer, intent(in), optional :: computationalLWidth(:)
integer, intent(in), optional :: computationalUWidth(:)
integer, intent(in), optional :: totalLWidth(:)
integer, intent(in), optional :: totalUWidth(:)
integer, intent(in), optional :: undistLBound(:)
integer, intent(in), optional :: undistUBound(:)
character (len= *), intent(in), optional :: name
integer, intent(out), optional :: rc

RETURN VALUE:

type(ESMF_Array) :: ESMF_ArrayCreateLocalArray

DESCRIPTION:

Create anESMF_Array object from existingESMF_LocalArray objects according to distgrid. BesideslarrayList
each PET must issue this call with identical arguments in order to create a consistent Array object. The local arrays
provided must be dimensioned according to the DE-local total region. Bounds of the exclusive regions are set as
specified in the distgrid argument. Bounds for array dimensions that are not distributed can be chosen freely using the
undistLBound andundistUBound arguments.
This interface is able to handle multiple DEs per PET.
The not distributed Array dimensions form a tensor of rank = array.rank - distgrid.dimCount. By default all tensor
elements are associated with stagger location 0. The widthsof the computational region are set to the provided value,
or zero by default, for all tensor elements. UseESMF_ArraySet() to change these default settings after the Array
object has been created.
The return value is the newly createdESMF_Array object.
The arguments are:

larrayList List of valid ESMF_LocalArray objects, i.e. memory must be associated with the actual arguments.
The type/kind/rank information of alllarrayList elements must be identical and will be used to setArray ’s
properties accordingly. The shape of eachlarrayList element will be checked against the information
contained in thedistgrid .

distgrid ESMF_DistGrid object that describes how the array is decomposed and distributed over DEs. The dim-
Count of distgrid must be smaller or equal to the rank specified in arrayspec, otherwise a runtime ESMF error
will be raised.

[indexflag] Indicate how DE-local indices are defined. By default, the exclusive region of each DE is placed to start
at the local index space origin, i.e. (1, 1, ..., 1). Alternatively the DE-local index space can be aligned with the
global index space, if a global index space is well defined by the associated DistGrid. See section 9.2.9 for a list
of valid indexflag options.

[copyflag] Specifies whether the Array object will reference the memoryallocation provided byfarray directly or
will copy the data fromfarray into a new memory allocation. Valid options areESMF_DATA_REF(default)
or ESMF_DATA_COPY. Depending on the specific situation theESMF_DATA_REFoption may be unsafe when
specifying an array slice forfarray .

[distgridToArrayMap] List that contains as many elements as is indicated bydistgrids ’s dimCount. The list
elements map each dimension of the DistGrid object to a dimension in thelarrayList elements by specifying
the appropriate Array dimension index. The default is to mapall of distgrid ’s dimensions against the lower
dimensions of thelarrayList elements in sequence, i.e.distgridToArrayMap = (/1, 2, .../) .

333

Unmapped dimensions in thelarrayList elements are not decomposed dimensions and form a tensor of rank
= Array.rank - DistGrid.dimCount. AlldistgridToArrayMap entries must be greater than or equal to zero
and smaller than or equal to the Array rank. It is erroneous tospecify the same entry multiple times unless it
is zero. If the Array rank is less than the DistGrid dimCount then the default distgridToArrayMap will contain
zeros for the dimCount - rank rightmost entries. A zero entryin thedistgridToArrayMap indicates that
the particular DistGrid dimension will be replicating the Array across the DEs along this direction.

[computationalEdgeLWidth] This vector argument must have dimCount elements, where dimCount is specified
in distgrid. It specifies the lower corner of the computational region with respect to the lower corner of the
exclusive region for DEs that are located on the edge of a patch.

[computationalEdgeUWidth] This vector argument must have dimCount elements, where dimCount is specified
in distgrid. It specifies the upper corner of the computational region with respect to the upper corner of the
exclusive region for DEs that are located on the edge of a patch.

[computationalLWidth] This vector argument must have dimCount elements, where dimCount is specified in dist-
grid. It specifies the lower corner of the computational region with respect to the lower corner of the exclusive
region. The default is a zero vector.

[computationalUWidth] This vector argument must have dimCount elements, where dimCount is specified in dist-
grid. It specifies the upper corner of the computational region with respect to the upper corner of the exclusive
region. The default is a zero vector.

[totalLWidth] This vector argument must have dimCount elements, where dimCount is specified in distgrid. It
specifies the lower corner of the total memory region with respect to the lower corner of the computational
region. The default is to accommodate the union of exclusiveand computational region exactly.

[totalUWidth] This vector argument must have dimCount elements, where dimCount is specified in distgrid. It
specifies the upper corner of the total memory region with respect to the upper corner of the exclusive region.
The default is a vector that contains the remaining number ofelements in each direction as to fit the union of
exclusive and computational region into the memory region provided by thelarrayList argument.

[undistLBound] Lower bounds for the array dimensions that are not distributed. By default lbound is 1.

[undistUBound] Upper bounds for the array dimensions that are not distributed. By default ubound is equal to the
extent of the corresponding dimension inlarrayList .

[name] Name of the Array object.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

22.5.5 ESMF_ArrayCreate - Create Array object from a list of LocalArray objects w/ arbitrary seqIndices
for halo

INTERFACE:

! Private name; call using ESMF_ArrayCreate()
function ESMF_ArrayCreateLocalArrayArb(larrayList, di stgrid, &

haloSeqIndexList, copyflag, distgridToArrayMap, undist LBound, &
undistUBound, name, rc)

ARGUMENTS:

type(ESMF_LocalArray), intent(in) :: larrayList(:)
type(ESMF_DistGrid), intent(in) :: distgrid
integer, intent(in) :: haloSeqIndexList(:)
type(ESMF_CopyFlag), intent(in), optional :: copyflag

334

integer, intent(in), optional :: distgridToArrayMap(:)
integer, intent(in), optional :: undistLBound(:)
integer, intent(in), optional :: undistUBound(:)
character (len= *), intent(in), optional :: name
integer, intent(out), optional :: rc

RETURN VALUE:

type(ESMF_Array) :: ESMF_ArrayCreateLocalArrayArb

DESCRIPTION:

Create anESMF_Array object from existingESMF_LocalArray objects according to distgrid. Each PET must
issue this call in unison in order to create a consistent Array object. The local arrays provided must be dimensioned
according to the DE-local total region. Bounds of the exclusive regions are set as specified in the distgrid argu-
ment. Bounds for array dimensions that are not distributed can be chosen freely using theundistLBound and
undistUBound arguments.
The return value is the newly createdESMF_Array object.
The arguments are:

larrayList List of valid ESMF_LocalArray objects, i.e. memory must be associated with the actual arguments.
The type/kind/rank information of alllarrayList elements must be identical and will be used to setArray ’s
properties accordingly. The shape of eachlarrayList element will be checked against the information
contained in thedistgrid .

distgrid ESMF_DistGrid object that describes how the array is decomposed and distributed over DEs. The dim-
Count of distgrid must be smaller or equal to the rank specified in arrayspec, otherwise a runtime ESMF error
will be raised.

haloSeqIndexList One dimensional array containing sequence indices of localhalo region. The size (and content) of
haloSeqIndexList can (and typically will) be different on each PET.

[copyflag] Specifies whether the Array object will reference the memoryallocation provided byfarray directly or
will copy the data fromfarray into a new memory allocation. Valid options areESMF_DATA_REF(default)
or ESMF_DATA_COPY. Depending on the specific situation theESMF_DATA_REFoption may be unsafe when
specifying an array slice forfarray .

[distgridToArrayMap] List that contains as many elements as is indicated bydistgrids ’s dimCount. The list
elements map each dimension of the DistGrid object to a dimension in thelarrayList elements by specifying
the appropriate Array dimension index. The default is to mapall of distgrid ’s dimensions against the lower
dimensions of thelarrayList elements in sequence, i.e.distgridToArrayMap = (/1, 2, .../) .
Unmapped dimensions in thelarrayList elements are not decomposed dimensions and form a tensor of rank
= Array.rank - DistGrid.dimCount. AlldistgridToArrayMap entries must be greater than or equal to zero
and smaller than or equal to the Array rank. It is erroneous tospecify the same entry multiple times unless it
is zero. If the Array rank is less than the DistGrid dimCount then the default distgridToArrayMap will contain
zeros for the dimCount - rank rightmost entries. A zero entryin thedistgridToArrayMap indicates that
the particular DistGrid dimension will be replicating the Array across the DEs along this direction.

[undistLBound] Lower bounds for the array dimensions that are not distributed. By default lbound is 1.

[undistUBound] Upper bounds for the array dimensions that are not distributed. By default ubound is equal to the
extent of the corresponding dimension inlarrayList .

[name] Name of the Array object.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

335

22.5.6 ESMF_ArrayCreate - Create Array object from typekind (allocate memory)

INTERFACE:

! Private name; call using ESMF_ArrayCreate()
function ESMF_ArrayCreateAllocate(typekind, distgrid, indexflag, &

distgridToArrayMap, computationalEdgeLWidth, computat ionalEdgeUWidth, &
computationalLWidth, computationalUWidth, totalLWidth , totalUWidth, &
undistLBound, undistUBound, name, rc)

ARGUMENTS:

type(ESMF_TypeKind), intent(in) :: typekind
type(ESMF_DistGrid), intent(in) :: distgrid
type(ESMF_IndexFlag), intent(in), optional :: indexflag
integer, intent(in), optional :: distgridToArrayMap(:)
integer, intent(in), optional :: computationalEdgeLWidt h(:)
integer, intent(in), optional :: computationalEdgeUWidt h(:)
integer, intent(in), optional :: computationalLWidth(:)
integer, intent(in), optional :: computationalUWidth(:)
integer, intent(in), optional :: totalLWidth(:)
integer, intent(in), optional :: totalUWidth(:)
integer, intent(in), optional :: undistLBound(:)
integer, intent(in), optional :: undistUBound(:)
character (len= *), intent(in), optional :: name
integer, intent(out), optional :: rc

RETURN VALUE:

type(ESMF_Array) :: ESMF_ArrayCreateAllocate

DESCRIPTION:

Create anESMF_Array object and allocate uninitialized data space according to typekind and distgrid. The Array
rank is indirectly determined by the incoming information.Each PET must issue this call in unison in order to create
a consistent Array object. DE-local allocations are made according to the total region defined by thedistgrid and
the optionalWidth arguments.
The return value is the newly createdESMF_Array object.
The arguments are:

typekind The typekind of the Array.

distgrid ESMF_DistGrid object that describes how the array is decomposed and distributed over DEs. The dim-
Count of distgrid must be smaller or equal to the rank specified in arrayspec, otherwise a runtime ESMF error
will be raised.

[indexflag] Indicate how DE-local indices are defined. By default, the exclusive region of each DE is placed to start
at the local index space origin, i.e. (1, 1, ..., 1). Alternatively the DE-local index space can be aligned with the
global index space, if a global index space is well defined by the associated DistGrid. See section 9.2.9 for a list
of valid indexflag options.

[distgridToArrayMap] List that contains as many elements as is indicated bydistgrids ’s dimCount. The list
elements map each dimension of the DistGrid object to a dimension in the newly allocated Array object by
specifying the appropriate Array dimension index. The default is to map all ofdistgrid ’s dimensions against
the lower dimensions of the Array object in sequence, i.e.distgridToArrayMap = (/1, 2, .../) .
Unmapped dimensions in the Array object are not decomposed dimensions and form a tensor of rank = Ar-
ray.rank - DistGrid.dimCount. AlldistgridToArrayMap entries must be greater than or equal to zero and
smaller than or equal to the Array rank. It is erroneous to specify the same entry multiple times unless it is

336

zero. If the Array rank is less than the DistGrid dimCount then the default distgridToArrayMap will contain
zeros for the dimCount - rank rightmost entries. A zero entryin thedistgridToArrayMap indicates that
the particular DistGrid dimension will be replicating the Array across the DEs along this direction.

[computationalEdgeLWidth] This vector argument must have dimCount elements, where dimCount is specified
in distgrid. It specifies the lower corner of the computational region with respect to the lower corner of the
exclusive region for DEs that are located on the edge of a patch.

[computationalEdgeUWidth] This vector argument must have dimCount elements, where dimCount is specified
in distgrid. It specifies the upper corner of the computational region with respect to the upper corner of the
exclusive region for DEs that are located on the edge of a patch.

[computationalLWidth] This vector argument must have dimCount elements, where dimCount is specified in dist-
grid. It specifies the lower corner of the computational region with respect to the lower corner of the exclusive
region. The default is a zero vector.

[computationalUWidth] This vector argument must have dimCount elements, where dimCount is specified in dist-
grid. It specifies the upper corner of the computational region with respect to the upper corner of the exclusive
region. The default is a zero vector.

[totalLWidth] This vector argument must have dimCount elements, where dimCount is specified in distgrid. It
specifies the lower corner of the total memory region with respect to the lower corner of the computational
region. The default is to accommodate the union of exclusiveand computational region.

[totalUWidth] This vector argument must have dimCount elements, where dimCount is specified in distgrid. It
specifies the upper corner of the total memory region with respect to the upper corner of the computational
region. The default is to accommodate the union of exclusiveand computational region.

[undistLBound] Lower bounds for the array dimensions that are not distributed.

[undistUBound] Upper bounds for the array dimensions that are not distributed.

[name] Name of the Array object.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

22.5.7 ESMF_ArrayCreate - Create Array object from typekind (allocate memory) w/ arbitrary seqIndices
for halo

INTERFACE:

! Private name; call using ESMF_ArrayCreate()
function ESMF_ArrayCreateAllocateArb(typekind, distgr id, &

haloSeqIndexList, distgridToArrayMap, undistLBound, un distUBound, &
name, rc)

ARGUMENTS:

type(ESMF_TypeKind), intent(in) :: typekind
type(ESMF_DistGrid), intent(in) :: distgrid
integer, intent(in) :: haloSeqIndexList(:)
integer, intent(in), optional :: distgridToArrayMap(:)
integer, intent(in), optional :: undistLBound(:)
integer, intent(in), optional :: undistUBound(:)
character (len= *), intent(in), optional :: name
integer, intent(out), optional :: rc

337

RETURN VALUE:

type(ESMF_Array) :: ESMF_ArrayCreateAllocateArb

DESCRIPTION:

Create anESMF_Array object and allocate uninitialized data space according to typekind and distgrid. The Array
rank is indirectly determined by the incoming information.Each PET must issue this call in unison in order to create
a consistent Array object. DE-local allocations are made according to the total region defined by thedistgrid and
haloSeqIndexList arguments.
The return value is the newly createdESMF_Array object.
The arguments are:

typekind The typekind of the Array.

distgrid ESMF_DistGrid object that describes how the array is decomposed and distributed over DEs. The dim-
Count of distgrid must be smaller or equal to the rank specified in arrayspec, otherwise a runtime ESMF error
will be raised.

haloSeqIndexList One dimensional array containing sequence indices of localhalo region. The size (and content) of
haloSeqIndexList can (and typically will) be different on each PET.

[distgridToArrayMap] List that contains as many elements as is indicated bydistgrids ’s dimCount. The list
elements map each dimension of the DistGrid object to a dimension in the newly allocated Array object by
specifying the appropriate Array dimension index. The default is to map all ofdistgrid ’s dimensions against
the lower dimensions of the Array object in sequence, i.e.distgridToArrayMap = (/1, 2, .../) .
Unmapped dimensions in the Array object are not decomposed dimensions and form a tensor of rank = Ar-
ray.rank - DistGrid.dimCount. AlldistgridToArrayMap entries must be greater than or equal to zero and
smaller than or equal to the Array rank. It is erroneous to specify the same entry multiple times unless it is
zero. If the Array rank is less than the DistGrid dimCount then the default distgridToArrayMap will contain
zeros for the dimCount - rank rightmost entries. A zero entryin thedistgridToArrayMap indicates that
the particular DistGrid dimension will be replicating the Array across the DEs along this direction.

[undistLBound] Lower bounds for the array dimensions that are not distributed.

[undistUBound] Upper bounds for the array dimensions that are not distributed.

[name] Name of the Array object.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

22.5.8 ESMF_ArrayCreate - Create Array object from ArraySpec (allocate memory)

INTERFACE:

! Private name; call using ESMF_ArrayCreate()
function ESMF_ArrayCreateAllocateAS(arrayspec, distgr id, indexflag, &

distgridToArrayMap, computationalEdgeLWidth, computat ionalEdgeUWidth, &
computationalLWidth, computationalUWidth, totalLWidth , totalUWidth, &
undistLBound, undistUBound, name, rc)

ARGUMENTS:

type(ESMF_ArraySpec), intent(inout) :: arrayspec
type(ESMF_DistGrid), intent(in) :: distgrid
type(ESMF_IndexFlag), intent(in), optional :: indexflag
integer, intent(in), optional :: distgridToArrayMap(:)

338

integer, intent(in), optional :: computationalEdgeLWidt h(:)
integer, intent(in), optional :: computationalEdgeUWidt h(:)
integer, intent(in), optional :: computationalLWidth(:)
integer, intent(in), optional :: computationalUWidth(:)
integer, intent(in), optional :: totalLWidth(:)
integer, intent(in), optional :: totalUWidth(:)
integer, intent(in), optional :: undistLBound(:)
integer, intent(in), optional :: undistUBound(:)
character (len= *), intent(in), optional :: name
integer, intent(out), optional :: rc

RETURN VALUE:

type(ESMF_Array) :: ESMF_ArrayCreateAllocateAS

DESCRIPTION:

Create anESMF_Array object and allocate uninitialized data space according to arrayspec and distgrid. Each PET
must issue this call with identical arguments in order to create a consistent Array object. DE-local allocations are made
according to the total region defined by the arguments to thiscall: distgrid and the optionalWidth arguments.
The return value is the newly createdESMF_Array object.
The arguments are:

arrayspec ESMF_ArraySpec object containing the type/kind/rank information.

distgrid ESMF_DistGrid object that describes how the array is decomposed and distributed over DEs. The dim-
Count of distgrid must be smaller or equal to the rank specified in arrayspec, otherwise a runtime ESMF error
will be raised.

[indexflag] Indicate how DE-local indices are defined. By default, the exclusive region of each DE is placed to start
at the local index space origin, i.e. (1, 1, ..., 1). Alternatively the DE-local index space can be aligned with the
global index space, if a global index space is well defined by the associated DistGrid. See section 9.2.9 for a list
of valid indexflag options.

[distgridToArrayMap] List that contains as many elements as is indicated bydistgrids ’s dimCount. The list
elements map each dimension of the DistGrid object to a dimension in the newly allocated Array object by
specifying the appropriate Array dimension index. The default is to map all ofdistgrid ’s dimensions against
the lower dimensions of the Array object in sequence, i.e.distgridToArrayMap = (/1, 2, .../) .
Unmapped dimensions in the Array object are not decomposed dimensions and form a tensor of rank = Ar-
ray.rank - DistGrid.dimCount. AlldistgridToArrayMap entries must be greater than or equal to zero and
smaller than or equal to the Array rank. It is erroneous to specify the same entry multiple times unless it is
zero. If the Array rank is less than the DistGrid dimCount then the default distgridToArrayMap will contain
zeros for the dimCount - rank rightmost entries. A zero entryin thedistgridToArrayMap indicates that
the particular DistGrid dimension will be replicating the Array across the DEs along this direction.

[computationalEdgeLWidth] This vector argument must have dimCount elements, where dimCount is specified
in distgrid. It specifies the lower corner of the computational region with respect to the lower corner of the
exclusive region for DEs that are located on the edge of a patch.

[computationalEdgeUWidth] This vector argument must have dimCount elements, where dimCount is specified
in distgrid. It specifies the upper corner of the computational region with respect to the upper corner of the
exclusive region for DEs that are located on the edge of a patch.

[computationalLWidth] This vector argument must have dimCount elements, where dimCount is specified in dist-
grid. It specifies the lower corner of the computational region with respect to the lower corner of the exclusive
region. The default is a zero vector.

[computationalUWidth] This vector argument must have dimCount elements, where dimCount is specified in dist-
grid. It specifies the upper corner of the computational region with respect to the upper corner of the exclusive
region. The default is a zero vector.

339

[totalLWidth] This vector argument must have dimCount elements, where dimCount is specified in distgrid. It
specifies the lower corner of the total memory region with respect to the lower corner of the computational
region. The default is to accommodate the union of exclusiveand computational region.

[totalUWidth] This vector argument must have dimCount elements, where dimCount is specified in distgrid. It
specifies the upper corner of the total memory region with respect to the upper corner of the computational
region. The default is to accommodate the union of exclusiveand computational region.

[undistLBound] Lower bounds for the array dimensions that are not distributed.

[undistUBound] Upper bounds for the array dimensions that are not distributed.

[name] Name of the Array object.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

22.5.9 ESMF_ArrayCreate - Create Array object from rank and typekind (allocate memory) w/ arbitrary
seqIndices for halo

INTERFACE:

! Private name; call using ESMF_ArrayCreate()
function ESMF_ArrayCreateAllocateASArb(arrayspec, dis tgrid, &

haloSeqIndexList, distgridToArrayMap, undistLBound, un distUBound, &
name, rc)

ARGUMENTS:

type(ESMF_ArraySpec), intent(inout) :: arrayspec
type(ESMF_DistGrid), intent(in) :: distgrid
integer, intent(in) :: haloSeqIndexList(:)
integer, intent(in), optional :: distgridToArrayMap(:)
integer, intent(in), optional :: undistLBound(:)
integer, intent(in), optional :: undistUBound(:)
character (len= *), intent(in), optional :: name
integer, intent(out), optional :: rc

RETURN VALUE:

type(ESMF_Array) :: ESMF_ArrayCreateAllocateASArb

DESCRIPTION:

Create anESMF_Array object and allocate uninitialized data space according to arrayspec and distgrid. Each PET
must issue this call in unison in order to create a consistentArray object. DE-local allocations are made according to
the total region defined by the arguments to this call:distgrid andhaloSeqIndexList arguments.
The return value is the newly createdESMF_Array object.
The arguments are:

arrayspec ESMF_ArraySpec object containing the type/kind/rank information.

distgrid ESMF_DistGrid object that describes how the array is decomposed and distributed over DEs. The dim-
Count of distgrid must be smaller or equal to the rank specified in arrayspec, otherwise a runtime ESMF error
will be raised.

haloSeqIndexList One dimensional array containing sequence indices of localhalo region. The size (and content) of
haloSeqIndexList can (and typically will) be different on each PET.

340

[distgridToArrayMap] List that contains as many elements as is indicated bydistgrids ’s dimCount. The list
elements map each dimension of the DistGrid object to a dimension in the newly allocated Array object by
specifying the appropriate Array dimension index. The default is to map all ofdistgrid ’s dimensions against
the lower dimensions of the Array object in sequence, i.e.distgridToArrayMap = (/1, 2, .../) .
Unmapped dimensions in the Array object are not decomposed dimensions and form a tensor of rank = Ar-
ray.rank - DistGrid.dimCount. AlldistgridToArrayMap entries must be greater than or equal to zero and
smaller than or equal to the Array rank. It is erroneous to specify the same entry multiple times unless it is
zero. If the Array rank is less than the DistGrid dimCount then the default distgridToArrayMap will contain
zeros for the dimCount - rank rightmost entries. A zero entryin thedistgridToArrayMap indicates that
the particular DistGrid dimension will be replicating the Array across the DEs along this direction.

[undistLBound] Lower bounds for the array dimensions that are not distributed.

[undistUBound] Upper bounds for the array dimensions that are not distributed.

[name] Name of the Array object.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

22.5.10 ESMF_ArrayCreate - Create Array object as copy of existing Array object

INTERFACE:

! Private name; call using ESMF_ArrayCreate()
function ESMF_ArrayCreateCopy(array, rc)

ARGUMENTS:

type(ESMF_Array), intent(in) :: array
integer, intent(out), optional :: rc

RETURN VALUE:

type(ESMF_Array) :: ESMF_ArrayCreateCopy

DESCRIPTION:

Create anESMF_Array object as the copy of an existing Array.
The return value is the newly createdESMF_Array object.
The arguments are:

array ESMF_Array object to be copied.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

22.5.11 ESMF_ArrayDestroy - Destroy Array object

INTERFACE:

subroutine ESMF_ArrayDestroy(array, rc)

ARGUMENTS:

type(ESMF_Array), intent(inout) :: array
integer, intent(out), optional :: rc

341

DESCRIPTION:

Destroy anESMF_Array object.
The arguments are:

array ESMF_Array object to be destroyed.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

22.5.12 ESMF_ArrayGather - Gather a Fortran array from an ESMF_Array

INTERFACE:

subroutine ESMF_ArrayGather<rank><type><kind>(array, farray, patch, &
rootPet, vm, rc)

ARGUMENTS:

type(ESMF_Array), intent(inout) :: array
mtype (ESMF_KIND_mtypekind),dimension(mdim),intent(i n),target :: farray
integer, intent(in), optional :: patch
integer, intent(in) :: rootPet
type(ESMF_VM), intent(in), optional :: vm
integer, intent(out), optional :: rc

DESCRIPTION:

Gather the data of an ESMF_Array object into thefarray located onrootPET . A single DistGrid patch ofarray
must be gathered intofarray . The optionalpatch argument allows selection of the patch. For Arrays defined ona
single patch DistGrid the default selection (patch 1) will be correct. The shape offarray must match the shape of
the patch in Array.
If the Array contains replicating DistGrid dimensions datawill be gathered from the numerically higher DEs. Repli-
cated data elements in numericaly lower DEs will be ignored.
This version of the interface implements the PET-based blocking paradigm: Each PET of the VM must issue this call
exactly once forall of its DEs. The call will block until all PET-local data objects are accessible.
The arguments are:

array TheESMF_Array object from which data will be gathered.

[farray] The Fortran array into which to gather data. Only root must provide a validfarray .

[patch] The DistGrid patch inarray from which to gatherfarray . By defaultfarray will be gathered from
patch 1.

rootPet PET that holds the valid destination array, i.e.farray .

[vm] Optional ESMF_VMobject of the current context. Providing the VM of the current context will lower the
method’s overhead.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

342

22.5.13 ESMF_ArrayGet - Access to Array internals

INTERFACE:

! Private name; call using ESMF_ArrayGet()
subroutine ESMF_ArrayGetDefault(array, arrayspec, type kind, rank, &

larrayList, indexflag, distgridToArrayMap, distgridToP ackedArrayMap, &
arrayToDistGridMap, undistLBound, undistUBound, exclus iveLBound, &
exclusiveUBound, computationalLBound, computationalUB ound, totalLBound, &
totalUBound, computationalLWidth, computationalUWidth , totalLWidth, &
totalUWidth, name, distgrid, dimCount, patchCount, minIn dexPDimPPatch, &
maxIndexPDimPPatch, patchListPDe, indexCountPDimPDe, d elayout, deCount, &
localDeCount, localDeList, rc)

ARGUMENTS:

type(ESMF_Array), intent(in) :: array
type(ESMF_ArraySpec), intent(out), optional :: arrayspe c
type(ESMF_TypeKind), intent(out), optional :: typekind
integer, intent(out), optional :: rank
type(ESMF_LocalArray), target, intent(out), optional :: larrayList(:)
type(ESMF_IndexFlag), intent(out), optional :: indexfla g
integer, target, intent(out), optional :: distgridToArra yMap(:)
integer, target, intent(out), optional :: distgridToPack edArrayMap(:)
integer, target, intent(out), optional :: arrayToDistGri dMap(:)
integer, target, intent(out), optional :: undistLBound(:)
integer, target, intent(out), optional :: undistUBound(:)
integer, target, intent(out), optional :: exclusiveLBoun d(:,:)
integer, target, intent(out), optional :: exclusiveUBoun d(:,:)
integer, target, intent(out), optional :: computationalL Bound(:,:)
integer, target, intent(out), optional :: computationalU Bound(:,:)
integer, target, intent(out), optional :: totalLBound(:, :)
integer, target, intent(out), optional :: totalUBound(:, :)
integer, target, intent(out), optional :: computationalL Width(:,:)
integer, target, intent(out), optional :: computationalU Width(:,:)
integer, target, intent(out), optional :: totalLWidth(:, :)
integer, target, intent(out), optional :: totalUWidth(:, :)
character(len= *), intent(out), optional :: name
type(ESMF_DistGrid), intent(out), optional :: distgrid
integer, intent(out), optional :: dimCount
integer, intent(out), optional :: patchCount
integer, intent(out), optional :: minIndexPDimPPatch(:, :)
integer, intent(out), optional :: maxIndexPDimPPatch(:, :)
integer, intent(out), optional :: patchListPDe(:)
integer, intent(out), optional :: indexCountPDimPDe(:,:)
type(ESMF_DELayout), intent(out), optional :: delayout
integer, intent(out), optional :: deCount
integer, intent(out), optional :: localDeCount
integer, intent(out), optional :: localDeList(:)
integer, intent(out), optional :: rc

DESCRIPTION:

Get internal information.
This interface works for any number of DEs per PET.
The arguments are:

343

array QueriedESMF_Array object.

[arrayspec] ESMF_ArraySpec object containing the type/kind/rank information of the Array object.

[typekind] TypeKind of the Array object.

[rank] Rank of the Array object.

[larrayList] Upon return this holds a list of the associatedESMC_LocalArray objects. larrayList must be
allocated to be of sizelocalDeCount , i.e. the number of DEs associated with the calling PET.

[indexflag] Upon return this flag indicates how the DE-local indices are defined. See section 9.2.9 for a list of possible
return values.

[distgridToArrayMap] Upon return this list holds the Array dimensions against which the DistGrid dimensions are
mapped.distgridToArrayMap must be allocated to be of sizedimCount . An entry of zero indicates that
the respective DistGrid dimension is replicating the Arrayacross the DEs along this direction.

[distgridToPackedArrayMap] Upon return this list holds the indices of the Array dimensions in packed format
against which the DistGrid dimensions are mapped.distgridToPackedArrayMap must be allocated to
be of sizedimCount . An entry of zero indicates that the respective DistGrid dimension is replicating the Array
across the DEs along this direction.

[arrayToDistGridMap] Upon return this list holds the DistGrid dimensions againstwhich the Array dimensions are
mapped.arrayToDistGridMap must be allocated to be of sizerank . An entry of zero indicates that the
respective Array dimension is not decomposed, rendering ita tensor dimension.

[undistLBound] Upon return this array holds the lower bounds of the undistributed dimensions of the Array.UndistLBound
must be allocated to be of sizerank-dimCount .

[undistUBound] Upon return this array holds the upper bounds of the undistributed dimensions of the Array.UndistUBound
must be allocated to be of sizerank-dimCount .

[exclusiveLBound] Upon return this holds the lower bounds of the exclusive regions for all PET-local DEs.exclusiveLBound
must be allocated to be of size(dimCount, localDeCount) .

[exclusiveUBound] Upon return this holds the upper bounds of the exclusive regions for all PET-local DEs.exclusiveUBound
must be allocated to be of size(dimCount, localDeCount) .

[computationalLBound] Upon return this holds the lower bounds of the computationalregions for all PET-local
DEs.computationalLBound must be allocated to be of size(dimCount, localDeCount) .

[computationalUBound] Upon return this holds the upper bounds of the computationalregions for all PET-local
DEs.computationalUBound must be allocated to be of size(dimCount, localDeCount) .

[totalLBound] Upon return this holds the lower bounds of the total regions for all PET-local DEs.totalLBound
must be allocated to be of size(dimCount, localDeCount) .

[totalUBound] Upon return this holds the upper bounds of the total regions for all PET-local DEs.totalUBound
must be allocated to be of size(dimCount, localDeCount) .

[computationalLWidth] Upon return this holds the lower width of the computational regions for all PET-local DEs.
computationalLWidth must be allocated to be of size(dimCount, localDeCount) .

[computationalUWidth] Upon return this holds the upper width of the computational regions for all PET-local DEs.
computationalUWidth must be allocated to be of size(dimCount, localDeCount) .

[totalLWidth] Upon return this holds the lower width of the total memory regions for all PET-local DEs.totalLWidth
must be allocated to be of size(dimCount, localDeCount) .

[totalUWidth] Upon return this holds the upper width of the total memory regions for all PET-local DEs.totalUWidth
must be allocated to be of size(dimCount, localDeCount) .

344

[name] Name of the Array object.

[distgrid] Upon return this holds the associatedESMF_DistGrid object.

[dimCount] Number of dimensions (rank) ofdistgrid .

[patchCount] Number of patches indistgrid .

[minIndexPDimPPatch] Lower index space corner perdim , perpatch , with size(minIndexPDimPPatch)
== (/dimCount, patchCount/) .

[maxIndexPDimPPatch] Upper index space corner perdim , perpatch , with size(maxIndexPDimPPatch)
== (/dimCount, patchCount/) .

[patchListPDe] List of patch id numbers, one for each DE, withsize(patchListPDe) == (/deCount/)

[indexCountPDimPDe] Array of extents perdim , perde , with size(indexCountPDimPDe) == (/dimCount,
deCount/) .

[delayout] Upon return this holds the associatedESMF_DELayout object.

[deCount] Upon return this holds the total number of DEs defined in the DELayout associated with the Array object.

[localDeCount] Upon return this holds the number of PET-local DEs defined in the DELayout associated with the
Array object.

[localDeList] Upon return this holds the list of DE ids for the PET-local DEsdefined in the DELayout associated with
the Array object. The provided argument must be of sizelocalDeCount .

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

22.5.14 ESMF_ArrayGet - Access to Array internals per dim per local DE

INTERFACE:

! Private name; call using ESMF_ArrayGet()
subroutine ESMF_ArrayGetPLocalDePDim(array, dim, local De, indexCount, &

indexList, rc)

ARGUMENTS:

type(ESMF_Array), intent(in) :: array
integer, intent(in) :: dim
integer, intent(in) :: localDe
integer, intent(out), optional :: indexCount
integer, intent(out), optional :: indexList(:)
integer, intent(out), optional :: rc

DESCRIPTION:

Get internal information per local DE, per dim.
This interface works for any number of DEs per PET.
The arguments are:

array QueriedESMF_Array object.

localDe Local DE for which information is requested.[0,..,localDeCount-1]

dim Dimension for which information is requested.[1,..,dimCount]

345

[indexCount] DistGrid indexCount associated withlocalDe, dim .

[indexList] List of DistGrid patch-local indices forlocalDe along dimensiondim .

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

22.5.15 ESMF_ArrayGet - Access to PET-local Array patch viaFortran array pointer

INTERFACE:

! Private name; call using ESMF_ArrayGet()
subroutine ESMF_ArrayGetFPtr<rank><type><kind>(array , localDe, farrayPtr, rc)

ARGUMENTS:

type(ESMF_Array), intent(in) :: array
integer, intent(in), optional :: localDe
<type> (ESMF_KIND_<kind>),dimension(<rank>),pointer : : farrayPtr
integer, intent(out), optional :: rc

DESCRIPTION:

Access Fortran array pointer to the specified DE-local memory allocation of the Array object.
The arguments are:

array QueriedESMF_Array object.

[localDe] Local DE for which information is requested.[0,..,localDeCount-1] . For localDeCount==1
the localDe argument may be omitted, in which case it will default tolocalDe=0 .

farrayPtr Upon return,farrayPtr points to the DE-local data allocation oflocalDe in array . It depends on
the specific entry point ofESMF_ArrayCreate() used duringarray creation, which Fortran operations
are supported on the returnedfarrayPtr . See 22.3 for more details.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

22.5.16 ESMF_ArrayGet - Access to PET-local Array patch viaLocalArray object.

INTERFACE:

! Private name; call using ESMF_ArrayGet()
subroutine ESMF_ArrayGetLarray(array, localDe, larray, rc)

ARGUMENTS:

type(ESMF_Array), intent(in) :: array
integer, intent(in), optional :: localDe
type(ESMF_LocalArray), intent(inout) :: larray
integer, intent(out), optional :: rc

DESCRIPTION:

Provide access toESMF_LocalArray object that holds data for the specified local DE.
The arguments are:

346

array QueriedESMF_Array object.

[localDe] Local DE for which information is requested.[0,..,localDeCount-1] . For localDeCount==1
the localDe argument may be omitted, in which case it will default tolocalDe=0 .

larray Upon returnlarray refers to the DE-local data allocation ofarray .

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

22.5.17 ESMF_ArrayHalo - Execute an Array halo operation

INTERFACE:

subroutine ESMF_ArrayHalo(array, routehandle, commflag , &
finishedflag, cancelledflag, checkflag, rc)

ARGUMENTS:

type(ESMF_Array), intent(inout) :: array
type(ESMF_RouteHandle), intent(inout) :: routehandle
type(ESMF_CommFlag), intent(in), optional :: commflag
logical, intent(out), optional :: finishedflag
logical, intent(out), optional :: cancelledflag
logical, intent(in), optional :: checkflag
integer, intent(out), optional :: rc

DESCRIPTION:

Execute a precomputed Array halo operation forarray . The array argument must be weakly congruent and
typekind conform to the Array used duringESMF_ArrayHaloStore() . Congruent Arrays possess matching Dist-
Grids, and the shape of the local array tiles matches betweenthe Arrays for every DE. For weakly congruent Arrays the
sizes of the undistributed dimensions, that vary faster with memory than the first distributed dimension, are permitted
to be different. This means that the sameroutehandle can be applied to a large class of similar Arrays that differ
in the number of elements in the left most undistributed dimensions.
SeeESMF_ArrayHaloStore() on how to precomputeroutehandle .
This call iscollectiveacross the current VM.

array ESMF_Array containing data to be haloed.

routehandle Handle to the precomputed Route.

[commflag] Indicate communication option. Default isESMF_COMM_BLOCKING, resulting in a blocking operation.
See section 9.2.3 for a complete list of valid settings.

[finishedflag] Used in combination withcommflag = ESMF_COMM_NBTESTFINISH.Returnedfinishedflag
equal to.true. indicates that all operations have finished. A value of.false. indicates that there are still
unfinished operations that require additional calls withcommflag = ESMF_COMM_NBTESTFINISH, or a
final call with commflag = ESMF_COMM_NBWAITFINISH. For all othercommflag settings the returned
value infinishedflag is always.true. .

[cancelledflag] A value of .true. indicates that were cancelled communication operations. In this case the data
in the dstArray must be considered invalid. It may have been partially modified by the call. A value of
.false. indicates that none of the communication operations was cancelled. The data indstArray is valid
if finishedflag returns equal.true. .

[checkflag] If set to .TRUE. the input Array pair will be checked for consistency with theprecomputed operation
provided byroutehandle . If set to .FALSE. (default)only a very basic input check will be performed,
leaving many inconsistencies undetected. Setcheckflag to .FALSE. to achieve highest performance.

347

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

22.5.18 ESMF_ArrayHaloRelease - Release resources associated with Array halo operation

INTERFACE:

subroutine ESMF_ArrayHaloRelease(routehandle, rc)

ARGUMENTS:

type(ESMF_RouteHandle), intent(inout) :: routehandle
integer, intent(out), optional :: rc

DESCRIPTION:

Release resouces associated with an Array halo operation. After this callroutehandle becomes invalid.

routehandle Handle to the precomputed Route.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

22.5.19 ESMF_ArrayHaloStore - Precompute an Array halo operation

INTERFACE:

subroutine ESMF_ArrayHaloStore(array, routehandle, hal ostartregionflag, &
haloLDepth, haloUDepth, rc)

ARGUMENTS:

type(ESMF_Array), intent(inout) :: array
type(ESMF_RouteHandle), intent(inout) :: routehandle
type(ESMF_HaloStartRegionFlag), intent(in), optional : : halostartregionflag
integer, intent(in), optional :: haloLDepth(:)
integer, intent(in), optional :: haloUDepth(:)
integer, intent(out), optional :: rc

DESCRIPTION:

Store an Array halo operation over the data inarray . By default, i.e. without specifyinghalostartregionflag ,
haloLDepth andhaloUDepth , all elements in the total Array region that lie outside the exclusive region will be
considered potential destination elements for halo. However, only those elements that have a corresponding halo
source element, i.e. an exclusive element on one of the DEs, will be updated under the halo operation. Elements that
have no associated source remain unchanged under halo.
Specifyinghalostartregionflag allows to change the shape of the effective halo region from the inside. Setting
this flag toESMF_REGION_COMPUTATIONALmeans that only elements outside the computational region of the
Array are considered for potential destination elements for halo. The default isESMF_REGION_EXCLUSIVE.
The haloLDepth andhaloUDepth arguments allow to reduce the extent of the effective halo region. Starting
at the region specified byhalostartregionflag , thehaloLDepth andhaloUDepth define a halo depth in
each direction. Note that the maximum halo region is limitedby the total Array region, independent of the actual
haloLDepth and haloUDepth setting. The total Array region is local DE specific. ThehaloLDepth and
haloUDepth are interpreted as the maximum desired extent, reducing thepotentially larger region available for
halo.

348

The routine returns anESMF_RouteHandle that can be used to callESMF_ArrayHalo() on any Array that is
weakly congruent and typekind conform toarray . Congruent Arrays possess matching DistGrids, and the shape of
the local array tiles matches between the Arrays for every DE. For weakly congruent Arrays the sizes of the undis-
tributed dimensions, that vary faster with memory than the first distributed dimension, are permitted to be different.
This means that the sameroutehandle can be applied to a large class of similar Arrays that differ in the number of
elements in the left most undistributed dimensions.
This call iscollectiveacross the current VM.

array ESMF_Array containing data to be haloed. The data in the halo region may be destroyed by this call.

routehandle Handle to the precomputed Route.

[halostartregionflag] The start of the effective halo region on every DE. The default setting isESMF_REGION_EXCLUSIVE,
rendering all non-exclusive elements potential halo destination elments. See section 9.2.13 for a complete list
of valid settings.

[haloLDepth] This vector specifies the lower corner of the effective halo region with respect to the lower corner of
halostartregionflag . The size ofhaloLDepth must equal the number of distributed Array dimen-
sions.

[haloUDepth] This vector specifies the upper corner of the effective halo region with respect to the upper corner of
halostartregionflag . The size ofhaloUDepth must equal the number of distributed Array dimen-
sions.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

22.5.20 ESMF_ArrayPrint - Print Array internals

INTERFACE:

subroutine ESMF_ArrayPrint(array, options, rc)

ARGUMENTS:

type(ESMF_Array), intent(in) :: array
character(len= *), intent(in), optional :: options
integer, intent(out), optional :: rc

DESCRIPTION:

Print internal information of the specifiedESMF_Array object.

Note: ManyESMF_<class>Print methods are implemented in C++. On some platforms/compilers there is a
potential issue with interleaving Fortran and C++ output tostdout such that it doesn’t appear in the expected order.
If this occurs, theESMF_IOUnitFlush() method may be used on unit 6 to get coherent output.

The arguments are:

array ESMF_Array object.

[options] Print options are not yet supported.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

349

22.5.21 ESMF_ArrayRead - Read Array data from a file

INTERFACE:

subroutine ESMF_ArrayRead(array, file, variableName, io fmt, rc)

ARGUMENTS:

type(ESMF_Array), intent(inout) :: array
character(*), intent(in) :: file
character(*), intent(in), optional :: variableName
type(ESMF_IOFmtFlag), intent(in), optional :: iofmt
integer, intent(out), optional :: rc

DESCRIPTION:

Read Array data from file and put it into anESMF_Array object. For this API to be functional, the environment
variableESMF_PIOshould be set to "internal" when the ESMF library is built. Please see the section on Data
I/O, 30.3.
Limitations:

• Only 1 DE per PET supported.

• Not supported inESMF_COMM=mpiunimode.

The arguments are:

array TheESMF_Array object in which the read data is returned.

file The name of the file from which Array data is read.

[variableName] Variable name in the file; default is the "name" of Array. Use this argument only in the IO format
(such as NetCDF) that supports variable name. If the IO format does not support this (such as binary format),
ESMF will return an error code.

[iofmt] The IO format. Please see Section 9.2.8 for the list of options. If not present, defaults toESMF_IOFMT_NETCDF.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

22.5.22 ESMF_ArrayRedist - Execute an Array redistribution

INTERFACE:

subroutine ESMF_ArrayRedist(srcArray, dstArray, routeh andle, commflag, &
finishedflag, cancelledflag, checkflag, rc)

ARGUMENTS:

type(ESMF_Array), intent(in), optional :: srcArray
type(ESMF_Array), intent(inout),optional :: dstArray
type(ESMF_RouteHandle), intent(inout) :: routehandle
type(ESMF_CommFlag), intent(in), optional :: commflag
logical, intent(out), optional :: finishedflag
logical, intent(out), optional :: cancelledflag
logical, intent(in), optional :: checkflag
integer, intent(out), optional :: rc

350

DESCRIPTION:

Execute a precomputed Array redistribution fromsrcArray to dstArray . BothsrcArray anddstArray must
be weakly congruent and typekind conform with the respective Arrays used duringESMF_ArrayRedistStore() .
Congruent Arrays possess matching DistGrids, and the shapeof the local array tiles matches between the Arrays for
every DE. For weakly congruent Arrays the sizes of the undistributed dimensions, that vary faster with memory than
the first distributed dimension, are permitted to be different. This means that the sameroutehandle can be applied
to a large class of similar Arrays that differ in the number ofelements in the left most undistributed dimensions.
It is erroneous to specify the identical Array object forsrcArray anddstArray arguments.
SeeESMF_ArrayRedistStore() on how to precomputeroutehandle .
This call iscollectiveacross the current VM.

[srcArray] ESMF_Array with source data.

[dstArray] ESMF_Array with destination data.

routehandle Handle to the precomputed Route.

[commflag] Indicate communication option. Default isESMF_COMM_BLOCKING, resulting in a blocking operation.
See section 9.2.3 for a complete list of valid settings.

[finishedflag] Used in combination withcommflag = ESMF_COMM_NBTESTFINISH.Returnedfinishedflag
equal to.true. indicates that all operations have finished. A value of.false. indicates that there are still
unfinished operations that require additional calls withcommflag = ESMF_COMM_NBTESTFINISH, or a
final call with commflag = ESMF_COMM_NBWAITFINISH. For all othercommflag settings the returned
value infinishedflag is always.true. .

[cancelledflag] A value of .true. indicates that were cancelled communication operations. In this case the data
in the dstArray must be considered invalid. It may have been partially modified by the call. A value of
.false. indicates that none of the communication operations was cancelled. The data indstArray is valid
if finishedflag returns equal.true. .

[checkflag] If set to .TRUE. the input Array pair will be checked for consistency with theprecomputed operation
provided byroutehandle . If set to .FALSE. (default)only a very basic input check will be performed,
leaving many inconsistencies undetected. Setcheckflag to .FALSE. to achieve highest performance.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

22.5.23 ESMF_ArrayRedistRelease - Release resources associated with Array redistribution

INTERFACE:

subroutine ESMF_ArrayRedistRelease(routehandle, rc)

ARGUMENTS:

type(ESMF_RouteHandle), intent(inout) :: routehandle
integer, intent(out), optional :: rc

DESCRIPTION:

Release resouces associated with an Array redistribution.After this callroutehandle becomes invalid.

routehandle Handle to the precomputed Route.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

351

22.5.24 ESMF_ArrayRedistStore - Precompute Array redistribution with local factor argument

INTERFACE:

! Private name; call using ESMF_ArrayRedistStore()
subroutine ESMF_ArrayRedistStore<type><kind>(srcArra y, dstArray, routehandle, &

factor, srcToDstTransposeMap, rc)

ARGUMENTS:

type(ESMF_Array), intent(in) :: srcArray
type(ESMF_Array), intent(inout) :: dstArray
type(ESMF_RouteHandle), intent(inout) :: routehandle
<type>(ESMF_KIND_<kind>), intent(in) :: factor
integer, intent(in), optional :: srcToDstTransposeMap(:)
integer, intent(out), optional :: rc

DESCRIPTION:

ESMF_ArrayRedistStore() is a collective method across all PETs of the current Component. The interface of
the method is overloaded, allowing – in principle – each PET to call intoESMF_ArrayRedistStore() through a
different entry point. Restrictions apply as to which combinations are sensible. All other combinations result in ESMF
run time errors. The complete semantics of theESMF_ArrayRedistStore() method, as provided through the
separate entry points shown in 22.5.24 and 22.5.25, is described in the following paragraphs as a whole.
Store an Array redistribution operation fromsrcArray to dstArray . Interface 22.5.24 allows PETs to specify a
factor argument. PETs not specifying afactor argument call into interface 22.5.25. If multiple PETs specify the
factor argument, its type and kind, as well as its value must match across all PETs. If none of the PETs specify
a factor argument the default will be a factor of 1. The resulting factor is applied to all of the source data during
redistribution, allowing scaling of the data, e.g. for unittransformation.
Both srcArray anddstArray are interpreted as sequentialized vectors. The sequence isdefined by the order of
DistGrid dimensions and the order of patches within the DistGrid or by user-supplied arbitrary sequence indices. See
section 22.2.17 for details on the definition ofsequence indices.
Source Array, destination Array, and the factor may be of different <type><kind>. Further, source and destination
Arrays may differ in shape, however, the number of elements must match.
If srcToDstTransposeMap is not specified the redistribution corresponds to an identity mapping of the sequen-
tialized source Array to the sequentialized destination Array. If thesrcToDstTransposeMap argument is provided
it must be identical on all PETs. ThesrcToDstTransposeMap allows source and destination Array dimensions to
be transposed during the redistribution. The number of source and destination Array dimensions must be equal under
this condition and the size of mapped dimensions must match.
It is erroneous to specify the identical Array object forsrcArray anddstArray arguments.
The routine returns anESMF_RouteHandle that can be used to callESMF_ArrayRedist() on any pair of Arrays
that are weakly congruent and typekind conform with thesrcArray , dstArray pair. Congruent Arrays possess
matching DistGrids, and the shape of the local array tiles matches between the Arrays for every DE. For weakly
congruent Arrays the sizes of the undistributed dimensions, that vary faster with memory than the first distributed
dimension, are permitted to be different. This means that the sameroutehandle can be applied to a large class of
similar Arrays that differ in the number of elements in the left most undistributed dimensions.
This method is overloaded for:
ESMF_TYPEKIND_I4, ESMF_TYPEKIND_I8,
ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8.

This call iscollectiveacross the current VM.

srcArray ESMF_Array with source data.

dstArray ESMF_Array with destination data. The data in this Array may be destroyed by this call.

routehandle Handle to the precomputed Route.

352

factor Factor by which to multipy source data. Default is 1.

[srcToDstTransposeMap] List with as many entries as there are dimensions insrcArray . Each entry maps the
correspondingsrcArray dimension against the specifieddstArray dimension. Mixing of distributed and
undistributed dimensions is supported.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

22.5.25 ESMF_ArrayRedistStore - Precompute Array redistribution without local factor argument

INTERFACE:

! Private name; call using ESMF_ArrayRedistStore()
subroutine ESMF_ArrayRedistStoreNF(srcArray, dstArray , routehandle, &

srcToDstTransposeMap, rc)

ARGUMENTS:

type(ESMF_Array), intent(in) :: srcArray
type(ESMF_Array), intent(inout) :: dstArray
type(ESMF_RouteHandle), intent(inout) :: routehandle
integer, intent(in), optional :: srcToDstTransposeMap(:)
integer, intent(out), optional :: rc

DESCRIPTION:

ESMF_ArrayRedistStore() is a collective method across all PETs of the current Component. The interface of
the method is overloaded, allowing – in principle – each PET to call intoESMF_ArrayRedistStore() through a
different entry point. Restrictions apply as to which combinations are sensible. All other combinations result in ESMF
run time errors. The complete semantics of theESMF_ArrayRedistStore() method, as provided through the
separate entry points shown in 22.5.24 and 22.5.25, is described in the following paragraphs as a whole.
Store an Array redistribution operation fromsrcArray to dstArray . Interface 22.5.24 allows PETs to specify a
factor argument. PETs not specifying afactor argument call into interface 22.5.25. If multiple PETs specify the
factor argument, its type and kind, as well as its value must match across all PETs. If none of the PETs specify
a factor argument the default will be a factor of 1. The resulting factor is applied to all of the source data during
redistribution, allowing scaling of the data, e.g. for unittransformation.
Both srcArray anddstArray are interpreted as sequentialized vectors. The sequence isdefined by the order of
DistGrid dimensions and the order of patches within the DistGrid or by user-supplied arbitrary sequence indices. See
section 22.2.17 for details on the definition ofsequence indices.
Source Array, destination Array, and the factor may be of different <type><kind>. Further, source and destination
Arrays may differ in shape, however, the number of elements must match.
If srcToDstTransposeMap is not specified the redistribution corresponds to an identity mapping of the sequen-
tialized source Array to the sequentialized destination Array. If thesrcToDstTransposeMap argument is provided
it must be identical on all PETs. ThesrcToDstTransposeMap allows source and destination Array dimensions to
be transposed during the redistribution. The number of source and destination Array dimensions must be equal under
this condition and the size of mapped dimensions must match.
It is erroneous to specify the identical Array object forsrcArray anddstArray arguments.
The routine returns anESMF_RouteHandle that can be used to callESMF_ArrayRedist() on any pair of
Arrays that are weakly congruent and typekind conform with the srcArray , dstArray pair. Congruent Arrays
possess matching DistGrids, and the shape of the local arraytiles matches between the Arrays for every DE. For
weakly congruent Arrays the sizes of the undistributed dimensions, that vary faster with memory than the first dis-
tributed dimension, are permitted to be different. This means that the sameroutehandle can be applied to a large
class of similar Arrays that differ in the number of elementsin the left most undistributed dimensions.

This call iscollectiveacross the current VM.

353

srcArray ESMF_Array with source data.

dstArray ESMF_Array with destination data. The data in this Array may be destroyed by this call.

routehandle Handle to the precomputed Route.

[srcToDstTransposeMap] List with as many entries as there are dimensions insrcArray . Each entry maps the
correspondingsrcArray dimension against the specifieddstArray dimension. Mixing of distributed and
undistributed dimensions is supported.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

22.5.26 ESMF_ArrayScatter - Scatter a Fortran array acrossthe ESMF_Array

INTERFACE:

subroutine ESMF_ArrayScatter<rank><type><kind>(array , farray, patch, &
rootPet, vm, rc)

ARGUMENTS:

type(ESMF_Array), intent(inout) :: array
mtype (ESMF_KIND_mtypekind),dimension(mdim),intent(i n),target :: farray
integer, intent(in), optional :: patch
integer, intent(in) :: rootPet
type(ESMF_VM), intent(in), optional :: vm
integer, intent(out), optional :: rc

DESCRIPTION:

Scatter the data offarray located onrootPET across an ESMF_Array object. A singlefarray must be scattered
across a single DistGrid patch in Array. The optionalpatch argument allows selection of the patch. For Arrays
defined on a single patch DistGrid the default selection (patch 1) will be correct. The shape offarray must match
the shape of the patch in Array.
If the Array contains replicating DistGrid dimensions datawill be scattered across all of the replicated pieces.
This version of the interface implements the PET-based blocking paradigm: Each PET of the VM must issue this call
exactly once forall of its DEs. The call will block until all PET-local data objects are accessible.
The arguments are:

array TheESMF_Array object across which data will be scattered.

[farray] The Fortran array that is to be scattered. Only root must provide a validfarray .

[patch] The DistGrid patch inarray into which to scatterfarray . By defaultfarray will be scattered into patch
1.

rootPet PET that holds the valid data infarray .

[vm] Optional ESMF_VMobject of the current context. Providing the VM of the current context will lower the
method’s overhead.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

354

22.5.27 ESMF_ArraySet - Set Array properties

INTERFACE:

! Private name; call using ESMF_ArraySet()
subroutine ESMF_ArraySetDefault(array, name, computati onalLWidth, &

computationalUWidth, rc)

ARGUMENTS:

type(ESMF_Array), intent(inout) :: array
character(len = *), intent(in), optional :: name
integer, intent(in), optional :: computationalLWidth(:, :)
integer, intent(in), optional :: computationalUWidth(:, :)
integer, intent(out), optional :: rc

DESCRIPTION:

Sets adjustable settings in anESMF_Array object. Arrays with tensor dimensions will set values forall tensor
components.
The arguments are:

array ESMF_Array object for which to set properties.

[name] The Array name.

[computationalLWidth] This argument must have of size(dimCount, localDeCount) . computationalLWidth
specifies the lower corner of the computational region with respect to the lower corner of the exclusive region
for all local DEs.

[computationalUWidth] This argument must have of size(dimCount, localDeCount) . computationalUWidth
specifies the upper corner of the computational region with respect to the upper corner of the exclusive region
for all local DEs.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

22.5.28 ESMF_ArraySet - Set Array properties

INTERFACE:

! Private name; call using ESMF_ArraySet()
subroutine ESMF_ArraySetPLocalDe(array, localDe, rimSe qIndex, rc)

ARGUMENTS:

type(ESMF_Array), intent(inout) :: array
integer, intent(in) :: localDe
integer, intent(in), optional :: rimSeqIndex(:)
integer, intent(out), optional :: rc

DESCRIPTION:

Sets adjustable settings in anESMF_Array object for a specific localDe.
The arguments are:

355

array ESMF_Array object for which to set properties.

localDe Local DE for which to set values.

[rimSeqIndex] Sequence indices in the halo rim of localDe.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

22.5.29 ESMF_ArraySMM - Execute an Array sparse matrix multiplication

INTERFACE:

subroutine ESMF_ArraySMM(srcArray, dstArray, routehand le, commflag, &
finishedflag, cancelledflag, zeroflag, checkflag, rc)

ARGUMENTS:

type(ESMF_Array), intent(in), optional :: srcArray
type(ESMF_Array), intent(inout),optional :: dstArray
type(ESMF_RouteHandle), intent(inout) :: routehandle
type(ESMF_CommFlag), intent(in), optional :: commflag
logical, intent(out), optional :: finishedflag
logical, intent(out), optional :: cancelledflag
type(ESMF_RegionFlag), intent(in), optional :: zeroflag
logical, intent(in), optional :: checkflag
integer, intent(out), optional :: rc

DESCRIPTION:

Execute a precomputed Array sparse matrix multiplication from srcArray to dstArray . Both srcArray and
dstArray must be weakly congruent and typekind conform to the respective Arrays used duringESMF_ArraySMMStore() .
Congruent Arrays possess matching DistGrids, and the shapeof the local array tiles matches between the Arrays for
every DE. For weakly congruent Arrays the size of the undistributed dimensions, that vary faster with memory than
the first distributed dimension, is permitted to be different. This means that the sameroutehandle can be applied
to a large class of similar Arrays that differ in the number ofelements in the left most undistributed dimensions.
It is erroneous to specify the identical Array object forsrcArray anddstArray arguments.
SeeESMF_ArraySMMStore() on how to precomputeroutehandle . See section 22.2.17 for details on the
operationESMF_ArraySMM() performs.
This call iscollectiveacross the current VM.

[srcArray] ESMF_Array with source data.

[dstArray] ESMF_Array with destination data.

routehandle Handle to the precomputed Route.

[commflag] Indicate communication option. Default isESMF_COMM_BLOCKING, resulting in a blocking operation.
See section 9.2.3 for a complete list of valid settings.

[finishedflag] Used in combination withcommflag = ESMF_COMM_NBTESTFINISH.Returnedfinishedflag
equal to.true. indicates that all operations have finished. A value of.false. indicates that there are still
unfinished operations that require additional calls withcommflag = ESMF_COMM_NBTESTFINISH, or a
final call with commflag = ESMF_COMM_NBWAITFINISH. For all othercommflag settings the returned
value infinishedflag is always.true. .

356

[cancelledflag] A value of .true. indicates that were cancelled communication operations. In this case the data
in the dstArray must be considered invalid. It may have been partially modified by the call. A value of
.false. indicates that none of the communication operations was cancelled. The data indstArray is valid
if finishedflag returns equal.true. .

[zeroflag] If set toESMF_REGION_TOTAL(default)the total regions of all DEs indstArray will be initialized to
zero before updating the elements with the results of the sparse matrix multiplication. If set toESMF_REGION_EMPTY
the elements indstArray will not be modified prior to the sparse matrix multiplication and results will be
added to the incoming element values. Settingzeroflag to ESMF_REGION_SELECTwill only zero out
those elements in the destination Array that will be updatedby the sparse matrix multiplication. See section
9.2.14 for a complete list of valid settings.

[checkflag] If set to .TRUE. the input Array pair will be checked for consistency with theprecomputed operation
provided byroutehandle . If set to .FALSE. (default)only a very basic input check will be performed,
leaving many inconsistencies undetected. Setcheckflag to .FALSE. to achieve highest performance.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

22.5.30 ESMF_ArraySMMRelease - Release resources associated with Array sparse matrix multiplication

INTERFACE:

subroutine ESMF_ArraySMMRelease(routehandle, rc)

ARGUMENTS:

type(ESMF_RouteHandle), intent(inout) :: routehandle
integer, intent(out), optional :: rc

DESCRIPTION:

Release resouces associated with an Array sparse matrix multiplication. After this callroutehandle becomes
invalid.

routehandle Handle to the precomputed Route.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

22.5.31 ESMF_ArraySMMStore - Precompute Array sparse matrix multiplication with local factors

INTERFACE:

! Private name; call using ESMF_ArraySMMStore()
subroutine ESMF_ArraySMMStore<type><kind>(srcArray, d stArray, &

routehandle, factorList, factorIndexList, rc)

ARGUMENTS:

type(ESMF_Array), intent(in) :: srcArray
type(ESMF_Array), intent(inout) :: dstArray
type(ESMF_RouteHandle), intent(inout) :: routehandle
<type>(ESMF_KIND_<kind>), target, intent(in) :: factorL ist(:)
integer, intent(in) :: factorIndexList(:,:)
integer, intent(out), optional :: rc

357

DESCRIPTION:

ESMF_ArraySMMStore() is a collective method across all PETs of the current Component. The interface of the
method is overloaded, allowing – in principle – each PET to call into ESMF_ArraySMMStore() through a different
entry point. Restrictions apply as to which combinations are sensible. All other combinations result in ESMF run time
errors. The complete semantics of theESMF_ArraySMMStore() method, as provided through the separate entry
points shown in 22.5.31 and 22.5.32, is described in the following paragraphs as a whole.
Store an Array sparse matrix multiplication operation fromsrcArray to dstArray . PETs that specify non-zero
matrix coefficients must use the <type><kind> overloaded interface and provide thefactorList andfactorIndexList
arguments. ProvidingfactorList andfactorIndexList arguments withsize(factorList) = (/0/)
andsize(factorIndexList) = (/2,0/) or (/4,0/) indicates that a PET does not provide matrix ele-
ments. Alternatively, PETs that do not provide matrix elements may also call into the overloaded interfacewithout
factorList andfactorIndexList arguments.
Both srcArray anddstArray are interpreted as sequentialized vectors. The sequence isdefined by the order of
DistGrid dimensions and the order of patches within the DistGrid or by user-supplied arbitrary sequence indices. See
section 22.2.17 for details on the definition ofsequence indices.
Source and destination Arrays, as well as the suppliedfactorList argument, may be of different <type><kind>.
Further source and destination Arrays may differ in shape and number of elements.
It is erroneous to specify the identical Array object forsrcArray anddstArray arguments.
The routine returns anESMF_RouteHandle that can be used to callESMF_ArraySMM() on any pair of Arrays
that are weakly congruent and typekind conform with thesrcArray , dstArray pair. Congruent Arrays possess
matching DistGrids, and the shape of the local array tiles matches between the Arrays for every DE. For weakly
congruent Arrays the size of the undistributed dimensions,that vary faster with memory than the first distributed
dimension, is permitted to be different. This means that thesameroutehandle can be applied to a large class of
similar Arrays that differ in the number of elements in the left most undistributed dimensions.
This method is overloaded for:
ESMF_TYPEKIND_I4, ESMF_TYPEKIND_I8,
ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8.

This call iscollectiveacross the current VM.

srcArray ESMF_Array with source data.

dstArray ESMF_Array with destination data. The data in this Array may be destroyed by this call.

routehandle Handle to the precomputed Route.

factorList List of non-zero coefficients.

factorIndexList Pairs of sequence indices for the factors stored infactorList .

The second dimension offactorIndexList steps through the list of pairs, i.e.size(factorIndexList,2)
== size(factorList) . The first dimension offactorIndexList is either of size 2 or size 4.

In the size 2 formatfactorIndexList(1,:) specifies the sequence index of the source element in the
srcArray while factorIndexList(2,:) specifies the sequence index of the destination element in
dstArray . For this format to be a valid option source and destination Arrays must have matching number of
tensor elements (the product of the sizes of all Array tensordimensions). Under this condition an identiy matrix
can be applied within the space of tensor elements for each sparse matrix factor.

Thesize 4 formatis more general and does not require a matching tensor element count. Here thefactorIndexList(1,:)
specifies the sequence index whilefactorIndexList(2,:) specifies the tensor sequence index of the
source element in thesrcArray . FurtherfactorIndexList(3,:) specifies the sequence index and
factorIndexList(4,:) specifies the tensor sequence index of the destination element in thedstArray .

See section 22.2.17 for details on the definition of Arraysequence indicesandtensor sequence indices.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

358

22.5.32 ESMF_ArraySMMStore - Precompute Array sparse matrix multiplication without local factors

INTERFACE:

! Private name; call using ESMF_ArraySMMStore()
subroutine ESMF_ArraySMMStoreNF(srcArray, dstArray, ro utehandle, rc)

ARGUMENTS:

type(ESMF_Array), intent(in) :: srcArray
type(ESMF_Array), intent(inout) :: dstArray
type(ESMF_RouteHandle), intent(inout) :: routehandle
integer, intent(out), optional :: rc

DESCRIPTION:

ESMF_ArraySMMStore() is a collective method across all PETs of the current Component. The interface of the
method is overloaded, allowing – in principle – each PET to call into ESMF_ArraySMMStore() through a different
entry point. Restrictions apply as to which combinations are sensible. All other combinations result in ESMF run time
errors. The complete semantics of theESMF_ArraySMMStore() method, as provided through the separate entry
points shown in 22.5.31 and 22.5.32, is described in the following paragraphs as a whole.
Store an Array sparse matrix multiplication operation fromsrcArray to dstArray . PETs that specify non-zero
matrix coefficients must use the <type><kind> overloaded interface and provide thefactorList andfactorIndexList
arguments. ProvidingfactorList andfactorIndexList arguments withsize(factorList) = (/0/)
andsize(factorIndexList) = (/2,0/) or (/4,0/) indicates that a PET does not provide matrix ele-
ments. Alternatively, PETs that do not provide matrix elements may also call into the overloaded interfacewithout
factorList andfactorIndexList arguments.
Both srcArray anddstArray are interpreted as sequentialized vectors. The sequence isdefined by the order of
DistGrid dimensions and the order of patches within the DistGrid or by user-supplied arbitrary sequence indices. See
section 22.2.17 for details on the definition ofsequence indices.
Source and destination Arrays, as well as the suppliedfactorList argument, may be of different <type><kind>.
Further source and destination Arrays may differ in shape and number of elements.
It is erroneous to specify the identical Array object forsrcArray anddstArray arguments.
The routine returns anESMF_RouteHandle that can be used to callESMF_ArraySMM() on any pair of Arrays
that are weakly congruent and typekind conform with thesrcArray , dstArray pair. Congruent Arrays possess
matching DistGrids, and the shape of the local array tiles matches between the Arrays for every DE. For weakly
congruent Arrays the size of the undistributed dimensions,that vary faster with memory than the first distributed di-
mension, is permitted to be different. This means that the same routehandle can be applied to a large class of
similar Arrays that differ in the number of elements in the left most undistributed dimensions.

This call iscollectiveacross the current VM.

srcArray ESMF_Array with source data.

dstArray ESMF_Array with destination data. The data in this Array may be destroyed by this call.

routehandle Handle to the precomputed Route.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

22.5.33 ESMF_ArrayValidate - Validate Array internals

INTERFACE:

subroutine ESMF_ArrayValidate(array, rc)

359

ARGUMENTS:

type(ESMF_Array), intent(in) :: array
integer, intent(out), optional :: rc

DESCRIPTION:

Validates that theArray is internally consistent. The method returns an error code if problems are found.
The arguments are:

array SpecifiedESMF_Array object.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

22.5.34 ESMF_ArrayWrite - Write Array data into a file

INTERFACE:

subroutine ESMF_ArrayWrite(array, file, variableName, a ppend, timeslice, iofmt, rc)

ARGUMENTS:

type(ESMF_Array), intent(inout) :: array
character(*), intent(in) :: file
character(*), intent(in), optional :: variableName
logical, intent(in), optional :: append
integer, intent(in), optional :: timeslice
type(ESMF_IOFmtFlag), intent(in), optional :: iofmt
integer, intent(out), optional :: rc

DESCRIPTION:

Write Array data into a file. For this API to be functional, theenvironment variableESMF_PIOshould be set to
"internal" when the ESMF library is built. Please see the section on Data I/O, 30.3.
Limitations:

• Only 1 DE per PET supported.

• Not supported inESMF_COMM=mpiunimode.

The arguments are:

array TheESMF_Array object that contains data to be written.

file The name of the output file to which Array data is written.

[variableName] Variable name in the output file; default is the "name" of Array. Use this argument only in the IO
format (such as NetCDF) that supports variable name. If the IO format does not support this (such as binary
format), ESMF will return an error code.

[append] Logical: if .true., data is appended to an existing file; default is .false.

[timeslice] Some IO formats (e.g. NetCDF) support the output of data in form of time slices. Thetimeslice argu-
ment provides access to this capability. Usage of this feature requires that the first slice is written with a positive
timeslice value, and that subsequent slices are written with atimeslice argument that increments by one
each time. By default, i.e. by omitting thetimeslice argument, no provisions for time slicing are made in
the output file.

[iofmt] The IO format. Please see Section 9.2.8 for the list of options. If not present, defaults toESMF_IOFMT_NETCDF.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

360

23 LocalArray Class

23.1 Description

TheESMF_LocalArray class provides a language independent representation of data in array format. One of the
major functions of the LocalArray class is to bridge the Fortran/C/C++ language difference that exists with respect
to array representation. All ESMF Field and Array data is internally stored in ESMF LocalArray objects allowing
transparent access from Fortran and C/C++.
In the ESMF Fortran API the LocalArray becomes visible in those cases where a local PET may be associated with
multiple pieces of an Array, e.g. if there are multiple DEs associated with a single PET. The Fortran language standard
does not provide an array of arrays construct, however arrays of derived types holding arrays are possible. ESMF calls
use arguments that are of typeESMF_LocalArray with dimension attributes where necessary.

23.2 Restrictions and Future Work

• The TKR (type/kind/rank) overloaded LocalArray interfaces declare the dummy Fortran array arguments with
the pointer attribute. The advantage of doing this is that itallows ESMF to inquire information about the
provided Fortran array. The disadvantage of this choice is that actual Fortran arrays passed into these interfaces
mustalso be defined with pointer attribute in the user code.

23.3 Class API

23.3.1 ESMF_LocalArrayCreate – Create a LocalArray by explicitly specifying typekind and rank arguments

INTERFACE:

! Private name; call using ESMF_LocalArrayCreate()
function ESMF_LocalArrayCreateByTKR(typekind, rank, co unts, lbounds, &

ubounds, rc)

RETURN VALUE:

type(ESMF_LocalArray) :: ESMF_LocalArrayCreateByTKR

ARGUMENTS:

type(ESMF_TypeKind), intent(in) :: typekind
integer, intent(in) :: rank
integer, intent(in), optional :: counts(:)
integer, intent(in), optional :: lbounds(:)
integer, intent(in), optional :: ubounds(:)
integer, intent(out), optional :: rc

DESCRIPTION:

Create a newESMF_LocalArray and allocate data space, which remains uninitialized. The return value is a new
LocalArray.
The arguments are:

typekind Array typekind. See section 9.3.1 for valid values.

rank Array rank (dimensionality, 1D, 2D, etc). Maximum allowed is 7D.

[counts] The number of items in each dimension of the array. This is a 1Dinteger array the same length as the rank.
Thecount argument may be omitted if bothlbounds andubounds arguments are present.

[lbounds] An integer array of length rank, with the lower index for eachdimension.

361

[ubounds] An integer array of length rank, with the upper index for eachdimension.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

23.3.2 ESMF_LocalArrayCreate – Create a LocalArray by specifying an ArraySpec

INTERFACE:

! Private name; call using ESMF_LocalArrayCreate()
function ESMF_LocalArrayCreateBySpec(arrayspec, count s, lbounds, ubounds, rc)

RETURN VALUE:

type(ESMF_LocalArray) :: ESMF_LocalArrayCreateBySpec

ARGUMENTS:

type(ESMF_ArraySpec), intent(inout) :: arrayspec
integer, intent(in), optional :: counts(:)
integer, intent(in), optional :: lbounds(:)
integer, intent(in), optional :: ubounds(:)
integer, intent(out), optional :: rc

DESCRIPTION:

Create a newESMF_LocalArray and allocate data space, which remains uninitialized. The return value is a new
LocalArray.
The arguments are:

arrayspec ArraySpec object specifying typekind and rank.

[counts] The number of items in each dimension of the array. This is a 1Dinteger array the same length as the rank.
Thecount argument may be omitted if bothlbounds andubounds arguments are present.

[lbounds] An integer array of length rank, with the lower index for eachdimension.

[ubounds] An integer array of length rank, with the upper index for eachdimension.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

23.3.3 ESMF_LocalArrayCreate – Create a LocalArray from pre-existing LocalArray

INTERFACE:

! Private name; call using ESMF_LocalArrayCreate()
function ESMF_LocalArrayCreateCopy(larray, rc)

RETURN VALUE:

type(ESMF_LocalArray) :: ESMF_LocalArrayCreateCopy

ARGUMENTS:

type(ESMF_LocalArray), intent(in) :: larray
integer, intent(out), optional :: rc

362

DESCRIPTION:

Perform a deep copy of an existingESMF_LocalArray object. The return value is a new LocalArray.
The arguments are:

larray Existing LocalArray to be copied.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

23.3.4 ESMF_LocalArrayCreate - Create a LocalArray from a Fortran pointer (associated or unassociated)

INTERFACE:

! Private name; call using ESMF_LocalArrayCreate()
function ESMF_LocalArrCreateByPtr<rank><type><kind>(fptr, docopy, counts, &
lbounds, ubounds, rc)

RETURN VALUE:

type(ESMF_LocalArray) :: ESMF_LocalArrCreateByPtr<ran k><type><kind>

ARGUMENTS:

<type> (ESMF_KIND_<kind>), dimension(<rank>), pointer : : fptr
type(ESMF_CopyFlag), intent(in), optional :: docopy
integer, intent(in), optional :: counts(:)
integer, intent(in), optional :: lbounds(:)
integer, intent(in), optional :: ubounds(:)
integer, intent(out), optional :: rc

DESCRIPTION:

Creates anESMF_LocalArray based on a Fortran array pointer. Two cases must be distinguished.
First, if fptr is associated the optionaldocopy argument may be used to indicate whether the associated datais to
be copied or referenced. For associatedfptr the optionalcounts , lbounds andubounds arguments need not
be specified. However, all present arguments will be checkedagainstfptr for consistency.
Second, iffptr is unassociated the optional argumentdocopy must not be specified. However, in this case a
complete set of counts and bounds information must be provided. Any combination of presentcounts lbounds
andubounds arguments that provides a complete specification is valid. All input information will be checked for
consistency.
The arguments are:

fptr A Fortran array pointer (associated or unassociated).

[docopy] Indicate copy vs. reference behavior in case of associatedfptr . This argument mustnot be present for
unassociatedfptr . Default toESMF_DATA_REF, makes theESMF_LocalArray reference the associated
data array. If set toESMF_DATA_COPYthis routine allocates new memory and copies the data from the pointer
into the new LocalArray allocation.

[counts] The number of items in each dimension of the array. This is a 1Dinteger array the same length as the rank.
Thecount argument may be omitted if bothlbounds andubounds arguments are present.

[lbounds] An integer array of lower index values. Must be the same length as the rank.

[ubounds] An integer array of upper index values. Must be the same length as the rank.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

363

23.3.5 ESMF_LocalArrayDestroy - Destroy a LocalArray object

INTERFACE:

subroutine ESMF_LocalArrayDestroy(larray, rc)

ARGUMENTS:

type(ESMF_LocalArray), intent(inout) :: larray
integer, intent(out), optional :: rc

DESCRIPTION:

Releases all resources associated with thisESMF_LocalArray object.
The arguments are:

larray Destroy contents of thisESMF_LocalArray .

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

23.3.6 ESMF_LocalArrayGet - Return LocalArray informatio n

INTERFACE:

! Private name; call using ESMF_LocalArrayGet()
subroutine ESMF_LocalArrayGetDefault(larray, typekind , rank, counts, &

lbounds, ubounds, base, name, rc)

ARGUMENTS:

type(ESMF_LocalArray), intent(in) :: larray
type(ESMF_TypeKind), intent(out), optional :: typekind
integer, intent(out), optional :: rank
integer, intent(out), optional :: counts(:)
integer, intent(out), optional :: lbounds(:)
integer, intent(out), optional :: ubounds(:)
type(ESMF_Pointer), intent(out), optional :: base
character(len=ESMF_MAXSTR), intent(out), optional :: na me
integer, intent(out), optional :: rc

DESCRIPTION:

Returns information about theESMF_LocalArray .
The arguments are:

larray QueriedESMF_LocalArray object.

[typekind] TypeKind of the LocalArray object.

[rank] Rank of the LocalArray object.

[counts] Count per dimension.

[lbounds] Lower bound per dimension.

[ubounds] Upper bound per dimension.

[base] Base class object.

[name] Name of the LocalArray object.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

364

23.3.7 ESMF_LocalArrayGet - Get access to data in a LocalArray object

INTERFACE:

! Private name; call using ESMF_LocalArrayGet()
subroutine ESMF_LocalArrayGetData<rank><type><kind>(larray, fptr, docopy, rc)

ARGUMENTS:

type(ESMF_LocalArray) :: larray
<type> (ESMF_KIND_<kind>), dimension(<rank>), pointer : : fptr
type(ESMF_CopyFlag), intent(in), optional :: docopy
integer, intent(out), optional :: rc

DESCRIPTION:

Return a Fortran pointer to the data buffer, or return a Fortran pointer to a new copy of the data.
The arguments are:

larray TheESMF_LocalArray to get the value from.

fptr An unassociated or associated Fortran pointer correctly allocated.

[docopy] An optional copy flag which can be specified. Can either make a new copy of the data or reference existing
data. See section 9.2.5 for a list of possible values.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

24 ArraySpec Class

24.1 Description

An ArraySpec is a very simple class that contains type, kind,and rank information about an Array. This information
is stored in two parameters.TypeKind describes the data type of the elements in the Array and theirprecision.Rank
is the number of dimensions in the Array.
The only methods that are associated with the ArraySpec class are those that allow you to set and retrieve this infor-
mation.

24.2 Use and Examples

The ArraySpec is passed in as an argument at Field and FieldBundle creation in order to describe an Array that
will be allocated or attached at a later time. There are any number of situations in which this approach is useful. One
common example is a case in which the user wants to create a very flexible export State with many diagnostic variables
predefined, but only a subset desired and consequently allocated for a particular run.

! !PROGRAM: ESMF_ArraySpecEx - ArraySpec manipulation exa mples
!
! !DESCRIPTION:
!
! This program shows examples of ArraySpec set and get usage
!-- ---------------------------

! ESMF Framework module

365

use ESMF_Mod
implicit none

! local variables
type(ESMF_ArraySpec) :: arrayDS
integer :: myrank
type(ESMF_TypeKind) :: mytypekind

! return code
integer:: rc

! initialize ESMF framework
call ESMF_Initialize(defaultlogfilename="ArraySpecEx .Log", &

defaultlogtype=ESMF_LOG_MULTI, rc=rc)

24.2.1 Set ArraySpec values

This example shows how to set values in anESMF_ArraySpec .

call ESMF_ArraySpecSet(arrayDS, rank=2, &
typekind=ESMF_TYPEKIND_R8, rc=rc)

24.2.2 Get ArraySpec values

This example shows how to query anESMF_ArraySpec .

call ESMF_ArraySpecGet(arrayDS, myrank, mytypekind, rc)
print * , "Returned values from ArraySpec:"
print * , "rank =", myrank

! finalize ESMF framework
call ESMF_Finalize(rc=rc)

end program ESMF_ArraySpecEx

24.3 Restrictions and Future Work

1. Limit on rank. The values for type, kind and rank passed into the ArraySpec class are subject to the same
limitations as Arrays. The maximum array rank is 7, which is the highest rank supported by Fortran.

24.4 Design and Implementation Notes

The information contained in anESMF_ArraySpec is used to createESMF_Array objects.
ESMF_ArraySpec is a shallow class, and only set and get methods are needed. They do not need to be created or
destroyed.

366

24.5 Class API

24.5.1 ESMF_ArraySpecGet - Get values from an ArraySpec

INTERFACE:

subroutine ESMF_ArraySpecGet(arrayspec, rank, typekind , rc)

ARGUMENTS:

type(ESMF_ArraySpec), intent(inout) :: arrayspec
integer, intent(out), optional :: rank
type(ESMF_TypeKind), intent(out), optional :: typekind
integer, intent(out), optional :: rc

DESCRIPTION:

Returns information about the contents of anESMF_ArraySpec .
The arguments are:

arrayspec TheESMF_ArraySpec to query.

rank Array rank (dimensionality – 1D, 2D, etc). Maximum possibleis 7D.

typekind Array typekind. See section 9.3.1 for valid values.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

24.5.2 ESMF_ArraySpecSet - Set values for an ArraySpec

INTERFACE:

subroutine ESMF_ArraySpecSet(arrayspec, rank, typekind , rc)

ARGUMENTS:

type(ESMF_ArraySpec), intent(inout) :: arrayspec
integer, intent(in) :: rank
type(ESMF_TypeKind), intent(in) :: typekind
integer, intent(out), optional :: rc

DESCRIPTION:

Creates a description of the data – the typekind, the rank, and the dimensionality.
The arguments are:

arrayspec TheESMF_ArraySpec to set.

rank Array rank (dimensionality – 1D, 2D, etc). Maximum allowed is 7D.

typekind Array typekind. See section 9.3.1 for valid values.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

367

24.5.3 ESMF_ArraySpecValidate - Validate ArraySpec internals

INTERFACE:

subroutine ESMF_ArraySpecValidate(arrayspec, rc)

ARGUMENTS:

type(ESMF_ArraySpec), intent(inout) :: arrayspec
integer, intent(out), optional :: rc

DESCRIPTION:

Validates that thearrayspec is internally consistent. The method returns an error code if problems are found.
The arguments are:

arrayspec SpecifiedESMF_ArraySpec object.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

24.5.4 ESMF_ArraySpecPrint - Print information of ArraySp ec

INTERFACE:

subroutine ESMF_ArraySpecPrint(arrayspec, rc)

ARGUMENTS:

type(ESMF_ArraySpec), intent(in) :: arrayspec
integer, intent(out), optional :: rc

DESCRIPTION:

Print ArraySpec internals.

Note: ManyESMF_<class>Print methods are implemented in C++. On some platforms/compilers there is a
potential issue with interleaving Fortran and C++ output tostdout such that it doesn’t appear in the expected order.
If this occurs, theESMF_IOUnitFlush() method may be used on unit 6 to get coherent output.

The arguments are:

arrayspec SpecifiedESMF_ArraySpec object.

25 Grid Class

25.1 Description

The ESMF Grid class is used to describe the geometry and discretization of logically rectangular physical grids. It
also contains the description of the grid’s underlying topology and the decomposition of the physical grid across the
available computational resources. The most frequent use of the Grid class is to describe physical grids in user code
so that sufficient information is available to perform ESMF methods such as regridding.
In the current release (v5.1.0) the functionality in this class is partially implemented. Multi-tile grids are not supported,
and edge connectivities are not implemented and default to aperiodic. Other constraints of the current implementation
are noted in the usage section and in the API descriptions.

368

Key Features
Representation of grids formed by logically rectangular regions, including uniform and rectilinear grids (e.g.
lat-lon grids), curvilinear grids (e.g. displaced pole grids), and grids formed by connected logically rectangu-
lar regions (e.g. cubed sphere grids) [CONNECTED REGIONS ARE NOT YET SUPPORTED].
Support for 1D, 2D, 3D, and higher dimension grids.
Distribution of grids across computational resources for parallel operations - users set which grid dimensions
are distributed.
Grids can be created already distributed, so that no single resource needs global information during the
creation process.
Options to define periodicity and other edge connectivitieseither explicitly or implicitly via shape shortcuts
[EDGE CONNECTIVITIES CURRENTLY DEFAULT TO APERIODIC BOUNDS].
Options for users to define grid coordinates themselves or call prefabricated coordinate generation routines
for standard grids [NO GENERATION ROUTINES YET].
Options for incremental construction of grids.
Options for using a set of pre-defined stagger locations or for setting custom stagger locations.

25.1.1 Grid Representation in ESMF

ESMF Grids are based on the concepts described inA Standard Description of Grids Used in Earth System Models
[Balaji 2006]. In this document Balaji introduces the mosaic concept as a means of describing a wide variety of Earth
system model grids. Amosaicis composed of grid tiles connected at their edges. Mosaic grids includes simple, single
tile grids as a special case.
The ESMF Grid class is a representation of a mosaic grid. EachESMF Grid is constructed of one or more logically
rectangularTiles. A Tile will usually have some physical significance (e.g. the region of the world covered by one
face of a cubed sphere grid).
The piece of a Tile that resides on one DE (for simple cases, a DE can be thought of as a processor - see section on the
DELayout) is called aLocalTile. For example, the six faces of a cubed sphere grid are each Tiles, and each Tile can
be divided into many LocalTiles.
Every ESMF Grid contains a DistGrid object, which defines theGrid’s index space, topology, distribution, and con-
nectivities. It enables the user to define the complex edge relationships of tripole and other grids. The DistGrid can be
created explicitly and passed into a Grid creation routine,or it can be created implicitly if the user takes a Grid creation
shortcut. Options for grid creation are described in more detail in section 25.1.8. The DistGrid used in Grid creation
describes the properties of the Grid cells. In addition to this one, the Grid internally creates DistGrids for each stagger
location. These stagger DistGrids are related to the original DistGrid, but may contain extra padding to represent the
extent of the index space of the stagger. These DistGrids arewhat are used when a Field is created on a Grid.

25.1.2 Supported Grids

The range of supported grids in ESMF can be defined by:

• Types of topologies and shapes supported. ESMF supports oneor more logically rectangular grid Tiles with
connectivities specified between cells. For more details see section 25.1.3.

• Types of distributions supported. ESMF supports regular, irregular, or arbitrary distributions of data. For more
details see section 25.1.4.

• Types of coordinates supported. ESMF supports uniform, rectilinear, and curvilinear coordinates. For more
details see section 25.1.5.

25.1.3 Grid Topologies and Periodicity

ESMF has shortcuts for the creation of standard Grid topologies orshapesup to 3D. In many cases, these enable the
user to bypass the step of creating a DistGrid before creating the Grid. The basic call isESMF_GridCreateShapeTile() .
With this call, the user can specify for each dimension whether there is no connection, it is periodic, it is a pole, or it is

369

Regular distribution Irregular distribution Arbitrary distribution

a11

a
21

a12

a
22

a
23

a13

a31

a
41

a32

a
42

a
43

a33

a51

a
61

a52

a
62

a
63

a53

a14

a
24

a15

a
22

a
23

a16

a34

a
44

a35

a
45

a
46

a36

a54

a
64

a55

a
65

a
66

a56

a11

a
21

a12

a
22

a
23

a13

a
31

a
41

a
32

a
42

a
43

a
33

a51

a
61

a52

a
62

a
63

a53

a14

a
24

a15

a
22

a
23

a16

a
34

a
44

a
35

a
45

a
46

a
36

a54

a
64

a55

a
65

a
66

a56
b21 b22

b23

b31

b41

b32

b42 b43

b33 b51

b61

b52

b62 b63

b53

b
11

b
12

b
13

Figure 12: Examples of regular and irregular decompositionof a grida that is 6x6, and an arbitrary decomposition of
a gridb that is 6x3.

a bipole. The assumed connectivities for poles and bipoles are described in section 25.2.1. Connectivities are specified
using the ESMF_GridConn parameter, which has values such asESMF_GRIDCONN_PERIODIC.
The table below shows the ESMF_GridConn settings used to create standard shapes in 2D using the ESMF_GridCreateShapeTile()
call. Two values are specified for each dimension, one for thelow end and one for the high end of the dimension’s
index values. Note that connectivities have not been implemented as of v5.1.0 and default to aperiodic bounds.

2D Shape connDim1(1) connDim1(2) connDim2(1) connDim2(2)
Rectangle NONE NONE NONE NONE
Bipole Sphere POLE POLE PERIODIC PERIODIC
Tripole Sphere POLE BIPOLE PERIODIC PERIODIC
Cylinder NONE NONE PERIODIC PERIODIC
Torus PERIODIC PERIODIC PERIODIC PERIODIC

If the user’s grid shape is too complex for an ESMF shortcut routine, or involves more than three dimensions, a
DistGrid can be created to specify the shape in detail. This DistGrid is then passed into a Grid create call.

25.1.4 Grid Distribution

ESMF Grids have several options for data distribution (alsoreferred to as decomposition). As ESMF Grids are cell
based, these options are all specified in terms of how the cells in the Grid are broken up between DEs.
The main distribution options are regular, irregular, and arbitrary. A regular distribution is one in which the same
number of contiguous grid cells are assigned to each DE in thedistributed dimension. Airregular distribution is one
in which unequal numbers of contiguous grid cells are assigned to each DE in the distributed dimension. Anarbitrary
distribution is one in which any grid cell can be assigned to any DE. Any of these distribution options can be applied to
any of the grid shapes (i.e., rectangle) or types (i.e., rectilinear). Support for arbitrary distribution is limited inv5.1.0,
See section 25.3.6 for more detail descriptions.
Figure 12 illustrates options for distribution.
A distribution can also be specified using the DistGrid, by passing object into a Grid create call.

25.1.5 Grid Coordinates

Grid Tiles can have uniform, rectilinear, or curvilinear coordinates. The coordinates ofuniform grids are equally
spaced along their axes, and can be fully specified by the coordinates of the two opposing points that define the grid’s
physical span. The coordinates ofrectilinear grids are unequally spaced along their axes, and can be fullyspecified
by giving the spacing of grid points along each axis. The coordinates ofcurvilinear grids must be specified by giving
the explicit set of coordinates for each grid point. Curvilinear grids are often uniform or rectilinear grids that have
been warped; for example, to place a pole over a land mass so that it does not affect the computations performed on
an ocean model grid. Figure 13 shows examples of each type of grid.

370

Uniform grid Rectilinear grid Curvilinear grid

Figure 13: Types of logically rectangular grid tiles. Red circles show the values needed to specify grid coordinates for
each type.

Any of these logically rectangular grid types can be combined through edge connections to form a mosaic. Cubed
sphere and yin-yang grids are examples of mosaic grids. Notethat as of v5.1.0 multi-tile grids have not yet been
implemented.
Each of these coordinate types can be set for each of the standard grid shapes described in section 25.1.3.
The table below shows how examples of common single Tile grids fall into this shape and coordinate taxonomy. Note
that any of the grids in the table can have a regular or arbitrary distribution.

Uniform Rectilinear Curvilinear
Sphere Global uniform lat-lon grid Gaussian grid Displaced pole grid
Rectangle Regional uniform lat-lon grid Gaussian grid section Polar stereographic grid sec-

tion

25.1.6 Coordinate Specification and Generation

There are two ways of specifying coordinates in ESMF. The first way is for the user tosetthe coordinates. The second
way is to take a shortcut and have the frameworkgeneratethe coordinates.
No ESMF generation routines are currently available.
See Section 25.3.9 for more description and examples of setting coordinates.

25.1.7 Staggering

Staggeringis a finite difference technique in which the values of different physical quantities are placed at different
locations within a grid cell.
The ESMF Grid class supports a variety of stagger locations,including cell centers, corners, and edge centers. The
default stagger location in ESMF is the cell center, and cellcounts in Grid are based on this assumption. Combinations
of the 2D ESMF stagger locations are sufficient to specify anyof the Arakawa staggers. ESMF also supports staggering
in 3D and higher dimensions. There are shortcuts for standard staggers, and interfaces through which users can create
custom staggers.
As a default the ESMF Grid class provides symmetric staggering, so that cell centers are enclosed by cell perimeter
(e.g. corner) stagger locations. This means the coordinatearrays for stagger locations other than the center will have
an additional element of padding in order to enclose the cellcenter locations. However, to achieve other types of
staggering, the user may alter or eliminate this padding by using the appropriate options when adding coordinates to a
Grid.
In v5.1.0, only the cell center stagger location is supported for an arbitrarily distributed grid. For examples and a full
description of the stagger interface see Section 25.3.9.

371

25.1.8 Options for Building Grids

ESMF Grid objects must represent a wide range of grid types and use cases, some of them quite complex. As a result,
multiple ways to build Grid objects are required. This section describes the stages to building Grids, the options for
each stage, and typical calling sequences.
In ESMF there are two main stages to building Grids. TheESMF_GridStatus value stored within the Grid object
reflects the stage the Grid has attained (see Section 25.2.2). These stages are:

1. Create the Grid topology or shape. At the completion of this stage, the Grid has a specific topology and distribu-
tion, but empty coordinate arrays. The Grid can be used as thebasis for allocating a Field. ItsESMF_GridStatus
parameter has a value ofESMF_GRIDSTATUS_SHAPE_READY.

The options for specifying the Grid shape are:

• Use theESMF_GridCreateShapeTile() shortcut method to specify the Grid size and dimension,
and to select from a limited set of edge connectivities.

• Create a DistGrid using theESMF_DistGridCreate() method. This enables the user to specify
connectivities in greater detail than usingESMF_GridCreateShapeTile() . Then pass the DistGrid
into a generalESMF_GridCreate() method.

2. Specify the Grid coordinates and any other information required for regridding (this can vary depending on the
particular regridding method). At the completion of this stage, the Grid can be used in a regridding operation.

When creating the Grid shape and specifying the Grid coordinates, the user can either specify all required information
at once, or can provide information incrementally. The callESMF_GridCreateEmpty() builds a Grid object
container that can be filled in with a subsequent call to theESMF_GridSetCommitShapeTile() method. The
ESMF_GridSetCommitShapeTile() creates the grid and sets the appropriate flag to indicate that its usable (the
status equalsESMF_GRIDSTATUS_SHAPE_READYafter the commit). The Grid is implicitly in a valid state after
being committed.
For consistency’s sake theESMF_GridSetCommitShapeTile() call must occur on the same or a subset of the
PETs as theESMF_GridCreateEmpty() call. TheESMF_GridSetCommitShapeTile() call uses the VM
for the context in which it’s executed and the "empty" Grid contains no information about the VM in which it was run.
If theESMF_GridSetCommitShapeTile() call occurs in a subset of the PETs in which theESMF_GridCreateEmpty()
was executed, the Grid is created only in that subset. The grid objects outside the subset will still be "empty" and not
usable.
The following table summarizes possible call sequences forbuilding Grids.

Create Shape
From shape shortcut
grid = ESMF_GridCreateShapeTile(...)
Using DistGrid with general create interface
distgrid = ESMF_DistGridCreate(...)
grid = ESMF_GridCreate(distgrid, ...)
Incremental
grid = ESMF_GridCreateEmpty(...)
call ESMF_GridSetCommitShapeTile(grid, ...)
Set Coordinates
Set coordinates by copy or reference
call ESMF_GridSetCoord(grid, ...)
Retrieve ESMF Array of coordinates from Grid and set values
call ESMF_GridGetCoord(grid, esmfArray, ...), set values
Retrieve local bounds and native array from Grid and set values
call ESMF_GridGetCoord(grid, lbound, ubound, array), set values

372

25.2 Grid Options

25.2.1 ESMF_GridConn

DESCRIPTION:
TheESMF_GridCreateShapeTile command has three specific argumentsconnDim1 , connDim2 , andconnDim3 .
These can be used to setup different types of connections at the ends of each dimension of a Tile. Each of these parame-
ters is a two element array. The first element is the connection type at the minimum end of the dimension and the second
is the connection type at the maximum end. The default value for all the connections is ESMF_GRIDCONN_NONE,
specifying no connection.

ESMF_GRIDCONN_NONE No connection.

ESMF_GRIDCONN_PERIODIC Periodic connection.

ESMF_GRIDCONN_POLE This edge is connected to itself. Given that the edge is n elements long, then element i
is connected to element i+n/2.

ESMF_GRIDCONN_BIPOLE This edge is connected to itself. Given that the edge is n elements long, element i is
connected to element n-i-1.

25.2.2 ESMF_GridStatus

DESCRIPTION:
The ESMF Grid class can exist in three states. These states are present so that the library code can detect if a Grid has
been appropriately setup for the task at hand. The followingare the valid values of ESMF_GRIDSTATUS.

ESMF_GRIDSTATUS_NOT_READY: Status after a Grid has been created withESMF_GridCreateEmpty . A
Grid object container is allocated but space for internal objects is not. Topology information and coordinate
information is incomplete. This object can be used inESMF_GridSet() methods in which additional infor-
mation is added to the Grid.

ESMF_GRIDSTATUS_SHAPE_READY: The Grid has a specific topology and distribution, but incomplete coor-
dinate arrays. The Grid can be used as the basis for allocating a Field.

25.2.3 ESMF_GridItem

DESCRIPTION:
The ESMF Grid can contain other kinds of data besides coordinates. This data is referred to as Grid “items”.
Some items may be used by ESMF for calculations involving theGrid. The following are the valid values of
ESMF_GRIDITEM.

Item Label Type Restriction Type Default ESMF Uses Controls
ESMF_GRIDITEM_MASK ESMF_TYPEKIND_I4 ESMF_TYPEKIND_I4 YES Masking in Regrid
ESMF_GRIDITEM_AREA NONE ESMF_TYPEKIND_R8 NO N/A
ESMF_GRIDITEM_AREAM NONE ESMF_TYPEKIND_R8 NO N/A
ESMF_GRIDITEM_FRAC NONE ESMF_TYPEKIND_R8 NO N/A

25.2.4 ESMF_StaggerLoc

DESCRIPTION:
In the ESMF Grid class, data can be located at different positions in a Grid cell. When setting or retrieving coordinate
data the stagger location is specified to tell the Grid methodfrom where in the cell to get the data. Although the user
may define their own custom stagger locations, ESMF providesa set of predefined locations for ease of use. The
following are the valid predefined stagger locations.

373

ESMF_STAGGERLOC_CORNER ESMF_STAGGERLOC_CORNER

ESMF_STAGGERLOC_CORNERESMF_STAGGERLOC_CORNER

ESMF_STAGGERLOC_CENTER

ESMF_STAGGERLOC_EDGE2

ESMF_STAGGERLOC_EDGE2

ESMF_STAGGERLOC_EDGE1 ESMF_STAGGERLOC_EDGE1

Dim. 2

Dim. 1

Figure 14: 2D Predefined Stagger Locations

The 2D predefined stagger locations (illustrated in figure 14) are:

ESMF_STAGGERLOC_CENTER: The center of the cell.

ESMF_STAGGERLOC_CORNER: The corners of the cell.

ESMF_STAGGERLOC_EDGE1: The edges offset from the center in the 1st dimension.

ESMF_STAGGERLOC_EDGE2: The edges offset from the center in the 2nd dimension.

The 3D predefined stagger locations (illustrated in figure 15) are:

ESMF_STAGGERLOC_CENTER_VCENTER: The center of the 3D cell.

ESMF_STAGGERLOC_CORNER_VCENTER: Half way up the vertical edges of the cell.

ESMF_STAGGERLOC_EDGE1_VCENTER: The center of the face bounded by edge 1 and the vertical dimen-
sion.

ESMF_STAGGERLOC_EDGE2_VCENTER: The center of the face bounded by edge 2 and the vertical dimen-
sion.

ESMF_STAGGERLOC_CORNER_VFACE: The corners of the 3D cell.

ESMF_STAGGERLOC_EDGE1_VFACE: The center of the edges of the 3D cell parallel offset from thecenter in
the 1st dimension.

ESMF_STAGGERLOC_EDGE2_VFACE: The center of the edges of the 3D cell parallel offset from thecenter in
the 2nd dimension.

ESMF_STAGGERLOC_CENTER_VFACE: The center of the top and bottom face. The face bounded by the 1st
and 2nd dimensions.

374

CORNER_VFACE

EDGE2_VFACE

CORNER_VFACE

CORNER_VCENTER

EDGE2_VCENTER

CORNER_VCENTER

CORNER_VFACE

EDGE2_VFACE

EDGE1_VFACE
CORNER_VFACE

EDGE1_VFACE

EDGE2_VFACE

CORNER_VFACE

CENTER_VFACE

CENTER_VCENTER

EDGE1_VCENTER

EDGE1_VCENTER

Dim. 2

Dim. 1

Dim. 3

CORNER_VFACE

CORNER_VFACE

CORNER_VCENTER

CORNER_VCENTER

EDGE2_VCENTER

EDGE2_VFACE
CENTER_VFACE

EDGE1_VFACE

EDGE1_VFACE

Figure 15: 3D Predefined Stagger Locations

25.3 Use and Examples

This section describes the use of the ESMF Grid class. It firstdiscusses the more user friendly shape specific interface
to the Grid. During this discussion it covers creation and options, adding stagger locations, coordinate data access,
and other grid functionality. After this initial phase the document discusses the more advanced options which the user
can employ should they need more customized interaction with the Grid class.

25.3.1 Create single-tile Grid shortcut method

The methodESMF_GridCreateShapeTile() is a shortcut for building single tile logically rectangular Grids up
to three dimensions. It is partially implemented. The user can specify Grid size, dimension and distribution, but cannot
specify tile edge connectivities yet. The default is that Grid edges are not connected. Once completed, this method
will enable users to create many common grid shapes, including rectangle, bipole sphere, and tripole sphere.
In v5.1.0, theESMF_GridCreateShapeTile() method supports all three types of distributions describedin
Section 25.1.4: regular, irregular and arbitrary.
The ESMF Grid is cell based and so for all distribution options the methods take as input the number of cells to
describe the total index space and the number of cells to specify distribution.
To create a Grid with a regular distribution the user specifies the global maximum and minimum ranges of the Grid
cell index space (maxIndex andminIndex), and the number of pieces in which to partition each dimension (via a
regDecomp argument). ESMF then divides the index space as evenly as possible into the specified number of pieces.
If there are cells left over then they are distributed one perDE starting from the first DE until they are gone.
If minIndex is not specified, then the bottom of the Grid cell index range is assumed to be (1,1,...,1). IfregDecomp
is not specified, then by default ESMF creates a distributionthat partitions the grid cells in the first dimension (e.g.
NPx1x1...1) as evenly as possible by the number of processors NP. The remaining dimensions are not partitioned. The
dimension of the Grid is the size ofmaxIndex . The following is an example of creating a 10x20x30 3D grid where
the first dimensions is broken into 2 pieces, the second is broken into 4 pieces, and the third is "distributed" across
only one processor.

grid3D=ESMF_GridCreateShapeTile(regDecomp=(/2,4,1/) , maxIndex=(/10,20,30/), &

375

rc=rc)

Irregular distribution requires the user to specify the exact number of Grid cells per DE in each dimension. In the
ESMF_GridCreateShapeTile() call thecountsPerDEDim1 , countsPerDim2 , andcountsPerDim3
arguments are used to specify a rectangular distribution containing size(countsPerDEDim1) by size(countsPerDEDim2)
by size(countsPerDEDim3) DEs. The entries in each of these arrays specify the number of grid cells per DE in that
dimension. The dimension of the grid is determined by the presence ofcountsPerDEDim3 . If it’s present the Grid
will be 3D. If just countsPerDEDim1 andcountsPerDEDim2 are specified the Grid will be 2D.
The following call illustrates the creation of a 10x20 two dimensional rectangular Grid distributed across six DEs that
are arranged 2x3. In the first dimension there are 3 grid cellson the first DE and 7 cells on the second DE. The second
dimension has 3 DEs with 11,2, and 7 cells, respectively.

grid2D=ESMF_GridCreateShapeTile(countsPerDEDim1=(/3 ,7/), &
countsPerDEDim2=(/11,2,7/), rc=rc)

To add a distributed third dimension of size 30, broken up into two groups of 15, the above call would be altered as
follows.

grid3d=ESMF_GridCreateShapeTile(countsPerDEDim1=(/3 ,7/), &
countsPerDEDim2=(/11,2,7/), countsPerDEDim3=(/15,15/), rc=rc)

To make a third dimension distributed across only 1 DE, thencountsPerDEDim3 in the call should only have a
single term.

grid3D=ESMF_GridCreateShapeTile(countsPerDEDim1=(/3 ,7/), &
countsPerDEDim2=(/11,2,7/), countsPerDEDim3=(/30/), r c=rc)

The petMap parameter may be used to specify on to which specific PETs the DEs in the Grid are assigned. Note
that this parameter is only available for the regular and irregular distribution types. ThepetMap array is a 3D array,
for a 3D Grid each of its dimensions correspond to a Grid dimension. If the Grid is 2D, then the first two dimensions
correspond to Grid dimensions and the last dimension shouldbe of size 1. The size of eachpetMap dimension is the
number of DE’s along that dimension in the Grid. For a regularGrid, the size is equal to the number in regDecomp (i.e.
size(petMap,d)=regDecomp(d) for all dimensionsd in the Grid). For an irregular Grid the size is equal to the
number of items in the correspondingcountsPerDEDim variable (i.e.size(petMap,d)=size(countsPerDEDimd)
for all dimensionsd in the Grid).
Each entry inpetMap specifies to which PET the corresponding DE should be assigned. For example,petMap(3,2)=4
tells the Grid create call to put the DE located at column 3 row2 on PET 4.
The following example demonstrates how to specify the PET toDE association for anESMF_GridCreateShapeTile()
call.

! allocate memory for petMap
allocate(petMap(2,2,1))

! Set petMap
petMap(:,1,1) = (/3,2/) ! DE (1,1,1) on PET 3 and DE (2,1,1) on PET 2
petMap(:,2,1) = (/1,0/) ! DE (1,2,1) on PET 1 and DE (2,2,1) on PET 0

! Let the 3D grid be be distributed only in the first two dimens ions.
grid2D=ESMF_GridCreateShapeTile(countsPerDEDim1=(/3 ,7/), &

countsPerDEDim2=(/7,6/), petMap=petMap, rc=rc)

376

To create an grid with arbitrary distribution, the user specifies the global minimum and maximum ranges of the index
space with the argumentsminIndex andmaxIndex , the total number of cells and their index space locations resid-
ing on the local PET through alocalArbIndexCount and alocalArbIndex argument.localArbIndex is
a 2D array with size(localArbIndexCount, n) where n is the total number dimensions distributed arbitrarily.
Again, if minIndex is not specified, then the bottom of the index range is assumedto be (1,1,...). The dimension
of the Grid is equal to the size ofmaxIndex . If n (number of arbitrarily distributed dimension) is lessthan the grid
dimension, an optional argumentdistDim is used to specify which of the grid dimension is arbitrarilydistributed. If
not given, the first n dimensions are assumed to be distributed.
The following example creates a 2D Grid of dimensions 5x5, and places the diagonal elements (i.e. indices (i,i)
where i goes from 1 to 5) on the local PET. The remaining PETs would individually declare the remainder of the Grid
locations.

! allocate memory for localArbIndex
allocate(localArbIndex(5,2))
! Set local indices
localArbIndex(1,:)=(/1,1/)
localArbIndex(2,:)=(/2,2/)
localArbIndex(3,:)=(/3,3/)
localArbIndex(4,:)=(/4,4/)
localArbIndex(5,:)=(/5,5/)

! Create a 2D Arbitrarily distributed Grid
grid2D=ESMF_GridCreateShapeTile(maxIndex=(/5,5/), &

localArbIndex=localArbIndex, localArbIndexCount=5, rc =rc)

To create a 3D Grid of dimensions 5x6x5 with the first and the third dimensions distributed arbitrarily,distDim is
used.

! Create a 3D Grid with the 1st and 3rd dimension arbitrarily d istributed
grid3D=ESMF_GridCreateShapeTile(maxIndex=(/5,6,5/), &

localArbIndex=localArbIndex, localArbIndexCount=5, di stDim=(/1,3/), rc=rc)

25.3.2 Create a 2D regularly distributed rectilinear Grid with uniformly spaced coordinates

The following is an example of creating a simple rectilineargrid and loading in a set of coordinates. It illustrates
a straightforward use of theESMF_GridCreateShapeTile() call described in the previous section. This code
creates a 10x20 2D grid with uniformly spaced coordinates varying from (10,10) to (100,200). The grid is partitioned
using a regular distribution. The first dimension is dividedinto two pieces, and the second dimension is divided into
3. This example assumes that the code is being run with a 1-1 mapping between PETs and DEs because we are only
accessing the first DE on each PET (localDE=0). Because we have 6 DEs (2x3), this example would only work when
run on 6 PETs. The Grid is created with global indices. After Grid creation the local bounds and native Fortran arrays
are retrieved and the coordinates are set by the user.

!-- -----------------
! Create the Grid: Allocate space for the Grid object, define the
! topology and distribution of the Grid, and specify that it
! will have global indices. Note that aperiodic bounds are
! specified by default - if periodic bounds were desired they
! would need to be specified using an additional gridConn arg ument
! (which isn’t implemented yet). In this call the minIndex ha sn’t
! been set, so it defaults to (1,1,...). The default is to
! divide the index range as equally as possible among the DEs
! specified in regDecomp. This behavior can be changed by
! specifying decompFlag.

377

!-- -----------------
grid2D=ESMF_GridCreateShapeTile(&

! Define a regular distribution
maxIndex=(/10,20/), & ! define index space
regDecomp=(/2,3/), & ! define how to divide among DEs
! Specify mapping of coords dim to Grid dim
coordDep1=(/1/), & ! 1st coord is 1D and depends on 1st Grid di m
coordDep2=(/2/), & ! 2nd coord is 1D and depends on 2nd Grid di m
indexflag=ESMF_INDEX_GLOBAL, &
rc=rc)

!-- -----------------
! Allocate coordinate storage and associate it with the cent er
! stagger location. Since no coordinate values are specifie d in
! this call no coordinate values are set yet.
!-- -----------------
call ESMF_GridAddCoord(grid2D, &

staggerloc=ESMF_STAGGERLOC_CENTER, rc=rc)

!-- -----------------
! Get the pointer to the first coordinate array and the bounds
! of its global indices on the local DE.
!-- -----------------
call ESMF_GridGetCoord(grid2D, coordDim=1, localDE=0, &

staggerloc=ESMF_STAGGERLOC_CENTER, &
computationalLBound=lbnd, computationalUBound=ubnd, f ptr=coordX, rc=rc)

!-- -----------------
! Calculate and set coordinates in the first dimension [10-1 00].
!-- -----------------
do i=lbnd(1),ubnd(1)

coordX(i) = i * 10.0
enddo

!-- -----------------
! Get the pointer to the second coordinate array and the bound s of
! its global indices on the local DE.
!-- -----------------
call ESMF_GridGetCoord(grid2D, coordDim=2, localDE=0, &

staggerloc=ESMF_STAGGERLOC_CENTER, &
computationalLBound=lbnd, computationalUBound=ubnd, f ptr=coordY, rc=rc)

!-- -----------------
! Calculate and set coordinates in the second dimension [10- 200]
!-- -----------------
do j=lbnd(1),ubnd(1)

coordY(j) = j * 10.0
enddo

The remaining examples in this section will use the irregular distribution because of its greater generality. To create
code similar to these, but using a regular distribution, replace thecountsPerDEDim arguments in the Grid create
with the appropriatemaxIndex andregDecomp arguments.

378

25.3.3 Create a 2D irregularly distributed rectilinear Gri d with uniformly spaced coordinates

This example serves as an illustration of the difference between using a regular and irregular distribution. It repeats
the previous example except using an irregular distribution to give the user more control over how the cells are divided
between the DEs. As before, this code creates a 10x20 2D Grid with uniformly spaced coordinates varying from
(10,10) to (100,200). In this example, the Grid is partitioned using an irregular distribution. The first dimension is
divided into two pieces, the first with 3 Grid cells per DE and the second with 7 Grid cells per DE. In the second
dimension, the Grid is divided into 3 pieces, with 11, 2, and 7cells per DE respectively. This example assumes that
the code is being run with a 1-1 mapping between PETs and DEs because we are only accessing the first DE on each
PET (localDE=0). Because we have 6 DEs (2x3), this example would only work when run on 6 PETs. The Grid
is created with global indices. After Grid creation the local bounds and native Fortran arrays are retrieved and the
coordinates are set by the user.

!-- -----------------
! Create the Grid: Allocate space for the Grid object, define the
! topology and distribution of the Grid, and specify that it
! will have global coordinates. Note that aperiodic bounds a re
! specified by default - if periodic bounds were desired they
! would need to be specified using an additional gridConn arg ument
! (which isn’t implemented yet). In this call the minIndex ha sn’t
! been set, so it defaults to (1,1,...).
!-- -----------------
grid2D=ESMF_GridCreateShapeTile(&

! Define an irregular distribution
countsPerDEDim1=(/3,7/), &
countsPerDEDim2=(/11,2,7/), &
! Specify mapping of coords dim to Grid dim
coordDep1=(/1/), & ! 1st coord is 1D and depends on 1st Grid di m
coordDep2=(/2/), & ! 2nd coord is 1D and depends on 2nd Grid di m
indexflag=ESMF_INDEX_GLOBAL, &
rc=rc)

!-- -----------------
! Allocate coordinate storage and associate it with the cent er
! stagger location. Since no coordinate values are specifie d in
! this call no coordinate values are set yet.
!-- -----------------
call ESMF_GridAddCoord(grid2D, &

staggerloc=ESMF_STAGGERLOC_CENTER, rc=rc)

!-- -----------------
! Get the pointer to the first coordinate array and the bounds
! of its global indices on the local DE.
!-- -----------------
call ESMF_GridGetCoord(grid2D, coordDim=1, localDE=0, &

staggerloc=ESMF_STAGGERLOC_CENTER, &
computationalLBound=lbnd, computationalUBound=ubnd, f ptr=coordX, rc=rc)

!-- -----------------
! Calculate and set coordinates in the first dimension [10-1 00].
!-- -----------------
do i=lbnd(1),ubnd(1)

coordX(i) = i * 10.0
enddo

!-- -----------------

379

! Get the pointer to the second coordinate array and the bound s of
! its global indices on the local DE.
!-- -----------------
call ESMF_GridGetCoord(grid2D, coordDim=2, localDE=0, &

staggerloc=ESMF_STAGGERLOC_CENTER, &
computationalLBound=lbnd, computationalUBound=ubnd, f ptr=coordY, rc=rc)

!-- -----------------
! Calculate and set coordinates in the second dimension [10- 200]
!-- -----------------
do j=lbnd(1),ubnd(1)

coordY(j) = j * 10.0
enddo

25.3.4 Create a 2D irregularly distributed Grid with curvil inear coordinates

The following is an example of creating a simple curvilinearGrid and loading in a set of coordinates. It creates a 10x20
2D Grid where the coordinates vary along every dimension. The Grid is partitioned using an irregular distribution. The
first dimension is divided into two pieces, the first with 3 Grid cells per DE and the second with 7 Grid cells per DE.
In the second dimension, the Grid is divided into 3 pieces, with 11, 2, and 7 cells per DE respectively. This example
assumes that the code is being run with a 1-1 mapping between PETs and DEs because we are only accessing the first
DE on each PET (localDE=0). Because we have 6 DEs (2x3), this example would only work when run on 6 PETs.
The Grid is created with global indices. After Grid creationthe local bounds and native Fortran arrays are retrieved
and the coordinates are set by the user.

!-- -----------------
! Create the Grid: Allocate space for the Grid object, define the
! distribution of the Grid, and specify that it
! will have global indices. Note that aperiodic bounds are
! specified by default - if periodic bounds were desired they
! would need to be specified using an additional gridConn arg ument
! (which isn’t implemented yet). In this call the minIndex ha sn’t
! been set, so it defaults to (1,1,...).
!-- -----------------
grid2D=ESMF_GridCreateShapeTile(&

! Define an irregular distribution
countsPerDEDim1=(/3,7/), &
countsPerDEDim2=(/11,2,7/), &
! Specify mapping of coords dim to Grid dim
coordDep1=(/1,2/), & ! 1st coord is 2D and depends on both Gri d dim
coordDep2=(/1,2/), & ! 2nd coord is 1D and depends on both Gri d dim
indexflag=ESMF_INDEX_GLOBAL, &
rc=rc)

!-- -----------------
! Allocate coordinate storage and associate it with the cent er
! stagger location. Since no coordinate values are specifie d in
! this call no coordinate values are set yet.
!-- -----------------
call ESMF_GridAddCoord(grid2D, &

staggerloc=ESMF_STAGGERLOC_CENTER, rc=rc)

!-- -----------------
! Get the pointer to the first coordinate array and the bounds
! of its global indices on the local DE.

380

!-- -----------------
call ESMF_GridGetCoord(grid2D, coordDim=1, localDE=0, &

staggerloc=ESMF_STAGGERLOC_CENTER, &
computationalLBound=lbnd, computationalUBound=ubnd, f ptr=coordX2D, rc=rc)

!-- -----------------
! Calculate and set coordinates in the first dimension [10-1 00].
!-- -----------------
do j=lbnd(2),ubnd(2)
do i=lbnd(1),ubnd(1)

coordX2D(i,j) = i+j
enddo
enddo

!-- -----------------
! Get the pointer to the second coordinate array and the bound s of
! its global indices on the local DE.
!-- -----------------
call ESMF_GridGetCoord(grid2D, coordDim=2, localDE=0, &

staggerloc=ESMF_STAGGERLOC_CENTER, &
computationalLBound=lbnd, computationalUBound=ubnd, f ptr=coordY2D, rc=rc)

!-- -----------------
! Calculate and set coordinates in the second dimension [10- 200]
!-- -----------------
do j=lbnd(2),ubnd(2)
do i=lbnd(1),ubnd(1)

coordY2D(i,j) = j-i/100.0
enddo
enddo

25.3.5 Create an irregularly distributed rectilinear Grid with a non-distributed vertical dimension

This example demonstrates how a user can build a rectilinearhorizontal Grid with a non-distributed vertical dimension.
The Grid contains both the center and corner stagger locations (i.e. Arakawa B-Grid). In contrast to the previous
examples, this example doesn’t assume that the code is beingrun with a 1-1 mapping between PETs and DEs. It
should work when run on any number of PETs.

!-- -----------------
! Create the Grid: Allocate space for the Grid object. The
! Grid is defined to be 180 Grid cells in the first dimension
! (e.g. longitude), 90 Grid cells in the second dimension (e. g. latitude), and
! 40 Grid cells in the third dimension (e.g. height). The firs t dimension is
! decomposed over 4 DEs, the second over 3 DEs, and the third is
! not distributed. The connectivities in each dimension def ault
! to aperiodic since they are not yet implemented. In this cal l
! the minIndex hasn’t been set, so it defaults to (1,1,...).
!-- -----------------
grid3D=ESMF_GridCreateShapeTile(&

! Define an irregular distribution
countsPerDEDim1=(/45,75,40,20/), &
countsPerDEDim2=(/30,40,20/), &
countsPerDEDim3=(/40/), &
! Specify mapping of coords dim to Grid dim
coordDep1=(/1/), & ! 1st coord is 1D and depends on 1st Grid di m

381

coordDep2=(/2/), & ! 2nd coord is 1D and depends on 2nd Grid di m
coordDep3=(/3/), & ! 3rd coord is 1D and depends on 3rd Grid di m
indexflag=ESMF_INDEX_GLOBAL, & ! Use global indices
rc=rc)

!-- -----------------
! Allocate coordinate storage for both center and corner sta gger
! locations. Since no coordinate values are specified in thi s
! call no coordinate values are set yet.
!-- -----------------
call ESMF_GridAddCoord(grid3D, &

staggerloc=ESMF_STAGGERLOC_CENTER_VCENTER, rc=rc)
call ESMF_GridAddCoord(grid3D, &

staggerloc=ESMF_STAGGERLOC_CORNER_VCENTER, rc=rc)

!-- -----------------
! Get the number of DEs on this PET, so that the program
! can loop over them when accessing data.
!-- -----------------
call ESMF_GridGet(grid3D, localDECount=localDECount, r c=rc)

!-- -----------------
! Loop over each localDE when accessing data
!-- -----------------
do lDE=0,localDECount-1

!-- ----------------
! Fill in the coordinates for the corner stagger location fir st.
!-- ----------------

!-- --------------
! Get the local bounds of the global indexing for the first
! coordinate array on the local DE. If the number of PETs
! is less than the total number of DEs then the rest of this
! example would be in a loop over the local DEs. Also get the
! pointer to the first coordinate array.
!-- --------------
call ESMF_GridGetCoord(grid3D, coordDim=1, localDE=lDE , &

staggerLoc=ESMF_STAGGERLOC_CORNER_VCENTER, &
computationalLBound=lbnd_corner, &
computationalUBound=ubnd_corner, &
fptr=cornerX, rc=rc)

!-- --------------
! Calculate and set coordinates in the first dimension.
!-- --------------
do i=lbnd_corner(1),ubnd_corner(1)

cornerX(i) = (i-1) * (360.0/180.0)
enddo

!-- --------------
! Get the local bounds of the global indexing for the second
! coordinate array on the local DE. Also get the pointer to the
! second coordinate array.
!-- --------------

382

call ESMF_GridGetCoord(grid3D, coordDim=2, localDE=lDE , &
staggerLoc=ESMF_STAGGERLOC_CORNER_VCENTER, &
computationalLBound=lbnd_corner, &
computationalUBound=ubnd_corner, &
fptr=cornerY, rc=rc)

!-- --------------
! Calculate and set coordinates in the second dimension.
!-- --------------
do j=lbnd_corner(1),ubnd_corner(1)

cornerY(j) = (j-1) * (180.0/90.0)
enddo

!-- --------------
! Get the local bounds of the global indexing for the third
! coordinate array on the local DE, and the pointer to the arra y.
!-- --------------
call ESMF_GridGetCoord(grid3D, coordDim=3, localDE=lDE , &

staggerloc=ESMF_STAGGERLOC_CENTER_VCENTER, &
computationalLBound=lbnd, computationalUBound=ubnd,&
fptr=cornerZ, rc=rc)

!-- --------------
! Calculate and set the vertical coordinates
!-- --------------
do k=lbnd(1),ubnd(1)

cornerZ(k) = 4000.0 * ((1./39.) * (k-1)) ** 2
enddo

!-- ----------------
! Now fill the coordinates for the center stagger location wi th
! the average of the corner coordinate location values.
!-- ----------------

!-- --------------
! Get the local bounds of the global indexing for the first
! coordinate array on the local DE, and the pointer to the arra y.
!-- --------------
call ESMF_GridGetCoord(grid3D, coordDim=1, localDE=lDE , &

staggerloc=ESMF_STAGGERLOC_CENTER_VCENTER, &
computationalLBound=lbnd, computationalUBound=ubnd, &
fptr=centerX, rc=rc)

!-- --------------
! Calculate and set coordinates in the first dimension.
!-- --------------
do i=lbnd(1),ubnd(1)

centerX(i) = 0.5 * (i-1 + i) * (360.0/180.0)
enddo

!-- --------------
! Get the local bounds of the global indexing for the second
! coordinate array on the local DE, and the pointer to the arra y.
!-- --------------

call ESMF_GridGetCoord(grid3D, coordDim=2, localDE=lDE , &
staggerloc=ESMF_STAGGERLOC_CENTER_VCENTER, &

383

computationalLBound=lbnd, computationalUBound=ubnd, &
fptr=centerY, rc=rc)

!-- --------------
! Calculate and set coordinates in the second dimension.
!-- --------------
do j=lbnd(1),ubnd(1)

centerY(j) = 0.5 * (j-1 + j) * (180.0/90.0)
enddo

!-- --------------
! Get the local bounds of the global indexing for the third
! coordinate array on the local DE, and the pointer to the arra y.
!-- --------------
call ESMF_GridGetCoord(grid3D, coordDim=3, localDE=lDE , &

staggerloc=ESMF_STAGGERLOC_CENTER_VCENTER, &
computationalLBound=lbnd, computationalUBound=ubnd,&
fptr=centerZ, rc=rc)

!-- --------------
! Calculate and set the vertical coordinates
!-- --------------
do k=lbnd(1),ubnd(1)

centerZ(k) = 4000.0 * ((1./39.) * (k-1)) ** 2
enddo

!-- -----------------
! End of loop over DEs
!-- -----------------
enddo

25.3.6 Create an arbitrarily distributed rectilinear Grid with a non-distributed vertical dimension

There are more restrictions in defining an arbitrarily distributed grid. First, there is always one DE per PET. Secondly,
only local index (ESMF_INDEX_LOCAL) is supported. Third, only one stagger location, i.e.ESMF_STAGGERLOC_CENTER
is allowed and last there is no extra paddings on the edge of the grid.
This example demonstrates how a user can build a 3D grid with its rectilinear horizontal Grid distributed arbitrarily
and a non-distributed vertical dimension.

!-- -----------------
! Set up the local index array: Assuming the grid is 360x180x1 0. First
! calculate the localArbIndexCount and localArbIndex arra y for each PET based on
! the total number of PETS. The cells are evenly distributed i n all the
! PETs. If the total number of cells are not divisible by the to tal PETs,
! the remaining cells are assigned to the last PET. The cells a re card
! dealed to each PET in y dimension first, i.e. (1,1) -> PET 0, (1,2)->
! PET 1, (1,3)-> PET 2, and so forth.
!-- -----------------
xdim = 360
ydim = 180
zdim = 10
localArbIndexCount = (xdim * ydim)/petCount
remain = (xdim * ydim)-localArbIndexCount * petCount

384

if (localPet == petCount-1) localArbIndexCount = localArb IndexCount+remain

allocate(localArbIndex(localArbIndexCount,2))
ind = localPet
do i=1, localArbIndexCount

localArbIndex(i,1)=mod(ind,ydim)+1
localArbIndex(i,2)=ind/ydim + 1
ind = ind + petCount

enddo
if (localPet == petCount-1) then

ind = xdim * ydim-remain+1
do i=localArbIndexCount-remain+1,localArbIndexCount

localArbIndex(i,1)=mod(ind,ydim)+1
localArbIndex(i,2)=ind/ydim+1
ind = ind + 1

enddo
endif

!-- -----------------
! Create the Grid: Allocate space for the Grid object.
! the minIndex hasn’t been set, so it defaults to (1,1,...). T he
! default coordDep1 and coordDep2 are (/ESMF_GRID_ARBDIM/) where
! ESMF_GRID_ARBDIM represents the collapsed dimension for the
! arbitrarily distributed grid dimensions. For the undistr ibuted
! grid dimension, the default value for coordDep3 is (/3/). T he
! default values for coordDepX in the arbitrary distributio n are
! different from the non-arbitrary distributions.
!-- -----------------
grid3D=ESMF_GridCreateShapeTile(&

maxIndex = (/xdim, ydim, zdim/), &
localArbIndex = localArbIndex, &
localArbIndexCount = localArbIndexCount, &
rc=rc)

!-- -----------------
! Allocate coordinate storage for the center stagger locati on, the
! only stagger location supported for the arbitrary distrib ution.
!-- -----------------
call ESMF_GridAddCoord(grid3D, &

staggerloc=ESMF_STAGGERLOC_CENTER_VCENTER, rc=rc)

!-- ----------------
! Fill in the coordinates for the center stagger location. Th ere is
! always one DE per PET, so localDE is always 0
!-- ----------------
call ESMF_GridGetCoord(grid3D, coordDim=1, localDE=0, &

staggerLoc=ESMF_STAGGERLOC_CENTER, &
computationalLBound=lbnd, &
computationalUBound=ubnd, &
fptr=centerX, rc=rc)

!-- --------------
! Calculate and set coordinates in the first dimension.
!-- --------------

385

do i=lbnd(1),ubnd(1)
centerX(i) = (localArbIndex(i,1)-0.5) * (360.0/xdim)

enddo

!-- --------------
! Get the local bounds of the global indexing for the second
! coordinate array on the local DE, and the pointer to the arra y.
!-- --------------
call ESMF_GridGetCoord(grid3D, coordDim=2, localDE=0, &

staggerloc=ESMF_STAGGERLOC_CENTER, &
computationalLBound=lbnd, computationalUBound=ubnd, &
fptr=centerY, rc=rc)

!-- --------------
! Calculate and set coordinates in the second dimension.
!-- --------------
do j=lbnd(1),ubnd(1)

centerY(j) = (localArbIndex(j,2)-0.5) * (180.0/ydim)-90.0
enddo

!-- --------------
! Get the local bounds of the global indexing for the third
! coordinate array on the local DE, and the pointer to the arra y.
!-- --------------
call ESMF_GridGetCoord(grid3D, coordDim=3, localDE=0, &

staggerloc=ESMF_STAGGERLOC_CENTER, &
computationalLBound=lbnd, computationalUBound=ubnd,&
fptr=centerZ, rc=rc)

!-- --------------
! Calculate and set the vertical coordinates
!-- --------------
do k=lbnd(1),ubnd(1)

centerZ(k) = 4000.0 * ((1./zdim) * (k-1)) ** 2
enddo

25.3.7 Create a curvilinear Grid using the coordinates defined in a SCRIP file

ESMF supports the creation of a 2D curvilinear Grid using thecoordinates defined in a SCRIP format Grid file [10].
The grid contained in the file must be a 2D logically rectangular grid withgrid_rank in the file set to 2. The center
coordinates variablesgrid_center_lat andgrid_center_lon in the file are placed in the ESMF_STAGGERLOC_CENTER
location. If the parameteraddCornerStagger in theESMF_GridCreate call is set to .true., then the variables
grid_corner_lat andgrid_corner_lon in the file are used to set the ESMF_STAGGERLOC_CORNER
coordinates, otherwise they are ignored. The values in thegrid_imask variable in the file are used to set the
ESMF_GRIDITEM_MASK in the Grid.
The following example code shows you how to create a 2D Grid with both center and corner coordinates using a
SCRIP file and a row only regular distribution:

grid2D = ESMF_GridCreate(filename="data/T42_grid.nc", regDecomp=(/PetCount,1/), &
addCornerStagger=.true., rc=rc)

Where T42_grid.nc is a 2D global grid of size (128x64) and theresulting Grid is distributed by partitioning the rows
evenly over all the PETs.

386

25.3.8 Create an empty Grid in a parent Component for completion in a child Component

ESMF Grids can be created incrementally. To do this, the userfirst callsESMF_GridCreateEmpty() to allocate
the shell of a Grid. Next, we use theESMF_GridSetCommitShapeTile() call that fills in the Grid and does an
internal commit to make it usable. For consistency’s sake theESMF_GridSetCommitShapeTile() call must oc-
cur on the same or a subset of the PETs as theESMF_GridCreateEmpty() call. TheESMF_GridSetCommitShapeTile()
call uses the VM for the context in which it’s executed and the"empty" Grid contains no information about the VM
in which its create was run. This means that if theESMF_GridSetCommitShapeTile() call occurs in a subset
of the PETs in which theESMF_GridCreateEmpty() was executed that the Grid is created only in that subset.
Inside the subset the Grid will be fine, but outside the subsetthe Grid objects will still be "empty" and not usable. The
following example uses the incremental technique to createa rectangular 10x20 Grid with coordinates at the center
and corner stagger locations.

!-- -------------------------
! IN THE PARENT COMPONENT:
! Create an empty Grid in the parent component for use in a chil d component.
! The parent may be defined on more PETs than the child compone nt.
! The child’s [vm or pet list] is passed into the create call so that
! the Grid is defined on the appropriate subset of the parent’ s PETs.
!-- -------------------------

grid2D=ESMF_GridCreateEmpty(rc=rc)

!-- -------------------------
! IN THE CHILD COMPONENT:
! Set the Grid topology. Here we define an irregularly distri buted
! rectangular Grid.
!-- -------------------------

call ESMF_GridSetCommitShapeTile(grid2D, &
countsPerDEDim1=(/6,4/), &
countsPerDEDim2=(/10,3,7/), rc=rc)

!-- -------------------------
! Add Grid coordinates at the cell center location.
!-- -------------------------

call ESMF_GridAddCoord(grid2D, staggerLoc=ESMF_STAGGE RLOC_CENTER, rc=rc)

!-- -------------------------
! Add Grid coordinates at the corner stagger location.
!-- -------------------------

call ESMF_GridAddCoord(grid2D, staggerLoc=ESMF_STAGGE RLOC_CORNER, rc=rc)

25.3.9 Grid stagger locations

A useful finite difference technique is to place different physical quantities at different locations within a grid cell.
Thisstaggeringof the physical variables on the mesh is introduced so that the difference of a field is naturally defined
at the location of another variable. This method was first formalized by Mesinger and Arakawa (1976).
To support the staggering of variables, the Grid provides the idea ofstagger locations. Stagger locations refer to the
places in a Grid cell that can contain coordinates or other data and once a Grid is associated with a Field object, field
data. Typically Grid data can be located at the cell center, at the cell corners, or at the cell faces, in 2D, 3D, and
higher dimensions. (Note that any Arakawa stagger can be constructed of a set of Grid stagger locations.) There are
predefined stagger locations (see Section 25.2.4), or, should the user wish to specify their own, there is also a set of
methods for generating custom locations (See Section 25.3.21). Users can put Grid data (e.g. coordinates) at multiple
stagger locations in a Grid. In addition, the user can createa Field at any of the stagger locations in a Grid.
By default the Grid data array at the center stagger locationstarts at the bottom index of the Grid (default (1,1..,1)) and

387

extends up to the maximum cell index in the Grid (e.g. given bythemaxIndex argument). Other stagger locations
also start at the bottom index of the Grid, however, they can extend to +1 element beyond the center in some dimensions
to allow for the extra space to surround the center elements.See Section 25.3.21 for a description of this extra
space and how to adjust if it necessary. There areESMF_GridGet subroutines (e.g.ESMF_GridGetCoord() or
ESMF_GridGetItem()) which can be used to retrieve the stagger bounds for the piece of Grid data on a particular
DE.

25.3.10 Associate coordinates with stagger locations

The primary type of data the Grid is resposible for storing iscoordinates. The coordinate values in a Grid can be
employed by the user in calculations or to describe the geometry of a Field. The Grid coordinate values are also
used byESMF_FieldRegridStore() when calculating the interpolation matrix between two Fields. The user
can allocate coordinate arrays without setting coordinatevalues using theESMF_GridAddCoord() call. (See
Section 25.3.12 for a discussion of setting/getting coordinate values.) When adding or accessing coordinate data, the
stagger location is specified to tell the Grid method where inthe cell to get the data. The different stagger locations
may also have slightly different index ranges and sizes. Please see Section 25.3.9 for a discussion of Grid stagger
locations.
The following example adds coordinate storage to the cornerstagger location in a Grid using one of the predefined
stagger locations.

call ESMF_GridAddCoord(grid2D, staggerLoc=ESMF_STAGGE RLOC_CORNER, rc=rc)

Note only the center stagger locationESMF_STAGGERLOC_CENTERis supported in an arbitrarily distributed Grid.

25.3.11 Specify the relationship of coordinate Arrays to index space dimensions

To specify how the coordinate arrays are mapped to the index dimensions the argumentscoordDep1 , coordDep2 ,
andcoordDep3 are used, each of which is a Fortran array. The values of the elements in acoordDep array specify
which index dimension the corresponding coordinate dimension maps to. For example,coordDep1=(/1,2/)
means that the first dimension of coordinate 1 maps to index dimension 1 and the second maps to index dimension
2. For a grid with non-arbitrary distribution, the default values forcoordDep1 , coordDep2 andcoordDep3 are
/1,2..,gridDimCount/ . This default thus specifies a curvilinear grid.
The following call demonstrates the creation of a 10x20 2D rectilinear grid where the first coordinate component is
mapped to the second index dimension (i.e. is of size 20) and the second coordinate component is mapped to the first
index dimension (i.e. is of size 10).

grid2D=ESMF_GridCreateShapeTile(countsPerDEDim1=(/5 ,5/), &
countsPerDEDim2=(/7,7,6/), &
coordDep1=(/2/), &
coordDep2=(/1/), rc=rc)

The following call demonstrates the creation of a 10x20x30 2D plus 1 curvilinear grid where coordinate component 1
and 2 are still 10x20, but coordinate component 3 is mapped just to the third index dimension.

grid2D=ESMF_GridCreateShapeTile(countsPerDEDim1=(/6 ,4/), &
countsPerDEDim2=(/10,7,3/), countsPerDEDim3=(/30/), &
coordDep1=(/1,2/), coordDep2=(/1,2/), &
coordDep3=(/3/), rc=rc)

By default the local piece of the array on each PET starts at (1,1,..), however, the indexing for each grid coordinate
array on each DE may be shifted to the global indices by using the indexflag . For example, the following call
switches the grid to use global indices.

388

grid2D=ESMF_GridCreateShapeTile(countsPerDEDim1=(/6 ,4/), &
countsPerDEDim2=(/10,7,3/), indexflag=ESMF_INDEX_GLO BAL, rc=rc)

For an arbitrarily distributed grid, the default value of a coordinate array dimension isESMF_GRID_ARBDIMif the
index dimension is arbitrarily distributed and isn wheren is the index dimension itself when it is not distributed. The
following call is equivalent to the example in Section 25.3.6

grid3D=ESMF_GridCreateShapeTile(&
maxIndex = (/xdim, ydim, zdim/), &

localArbIndex = localArbIndex, &
localArbIndexCount = localArbIndexCount, &

coordDep1 = (/ESMF_GRID_ARBDIM/), &
coordDep2 = (/ESMF_GRID_ARBDIM/), &
coordDep3 = (/3/), &

rc=rc)

The following call uses non-defaultcoordDep1 , coordDep2 , andcoordDep3 to create a 3D curvilinear grid
with its horizontal dimensions arbitrarily distributed.

grid3D=ESMF_GridCreateShapeTile(&
maxIndex = (/xdim, ydim, zdim/), &

localArbIndex = localArbIndex, &
localArbIndexCount = localArbIndexCount, &

coordDep1 = (/ESMF_GRID_ARBDIM, 3/), &
coordDep2 = (/ESMF_GRID_ARBDIM, 3/), &
coordDep3 = (/ESMF_GRID_ARBDIM, 3/), &

rc=rc)

25.3.12 Access coordinates

Once a Grid has been created, the user has several options to access the Grid coordinate data. The first of these,
ESMF_GridSetCoord() , enables the user to use ESMF Arrays to set data for one stagger location across the
whole Grid. For example, the following sets the coordinatesin the first dimension (e.g. x) for the corner stagger
location to those in the ESMF ArrayarrayCoordX .

call ESMF_GridSetCoord(grid2D, &
staggerLoc=ESMF_STAGGERLOC_CORNER, &
coordDim=1, array=arrayCoordX, rc=rc)

The methodESMF_GridGetCoord() allows the user to obtain a reference to an ESMF Array which contains the
coordinate data for a stagger location in a Grid. The user canthen employ any of the standardESMF_Array tools to
operate on the data. The following copies the coordinates from the second component of the corner and puts it into the
ESMF ArrayarrayCoordY .

call ESMF_GridGetCoord(grid2D, &
staggerLoc=ESMF_STAGGERLOC_CORNER, &
coordDim=2, &
array=arrayCoordY, rc=rc)

Alternatively, the callESMF_GridGetCoord() gets a Fortran pointer to the coordinate data. The user can then
operate on this array in the usual manner. The following callgets a reference to the Fortran array which holds the data
for the second coordinate (e.g. y).

389

call ESMF_GridGetCoord(grid2D, coordDim=2, localDE=0, &
staggerloc=ESMF_STAGGERLOC_CORNER, fptr=coordY2D, rc= rc)

25.3.13 Associate items with stagger locations

The ESMF Grids contain the ability to store other kinds of data beyond coordinates. These kinds of data are referred
to as "items". Although the user is free to use this data as they see fit, the user should be aware that this data may
also be used by other parts of ESMF (e.g. the ESMF_GRIDITEM_MASK item is used in regridding). Please see
Section 25.2.3 for a list of valid items.
Like coordinates items are also created on stagger locations. When adding or accessing item data, the stagger location
is specified to tell the Grid method where in the cell to get thedata. The different stagger locations may also have
slightly different index ranges and sizes. Please see Section 25.3.9 for a discussion of Grid stagger locations. The user
can allocate item arrays without setting item values using the ESMF_GridAddItem() call. (See Section 25.3.14
for a discussion of setting/getting item values.)
The following example adds mask item storage to the corner stagger location in a grid.

call ESMF_GridAddItem(grid2D, staggerLoc=ESMF_STAGGER LOC_CORNER, &
item=ESMF_GRIDITEM_MASK, rc=rc)

25.3.14 Access items

Once an item has been added to a Grid, the user has several options to access the data. The first of these,ESMF_GridSetItem() ,
enables the user to use ESMF Arrays to set data for one staggerlocation across the whole Grid. For example, the fol-
lowing sets the mask item in the corner stagger location to those in the ESMF ArrayarrayMask .

call ESMF_GridSetItem(grid2D, &
staggerLoc=ESMF_STAGGERLOC_CORNER, &
item=ESMF_GRIDITEM_MASK, array=arrayMask, rc=rc)

The methodESMF_GridGetItem() allows the user to get a reference to the Array which containsitem data for a
stagger location on a Grid. The user can then employ any of thestandardESMF_Array tools to operate on the data.
The following gets the mask data from the corner and puts it into the ESMF ArrayarrayMask .

call ESMF_GridGetItem(grid2D, &
staggerLoc=ESMF_STAGGERLOC_CORNER, &
item=ESMF_GRIDITEM_MASK, &
array=arrayMask, rc=rc)

Alternatively, the callESMF_GridGetItem() gets a Fortran pointer to the item data. The user can then operate on
this array in the usual manner. The following call gets a reference to the Fortran array which holds the data for the
mask data.

call ESMF_GridGetItem(grid2D, localDE=0, &
staggerloc=ESMF_STAGGERLOC_CORNER, &
item=ESMF_GRIDITEM_MASK, fptr=mask2D, rc=rc)

25.3.15 Grid regions and bounds

Like an Array or a Field, the index space of each stagger location in the Grid contains an exclusive region, a compu-
tational region and a total region. Please see Section 22.2.6 for an in depth description of these regions.
The exclusive region is the index space defined by the distgrid of each stagger location of the Grid. This region is the re-
gion which is owned by the DE and is the region operated on by communication methods such asESMF_FieldRegrid() .

390

21 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

5

6

Figure 16: An example of a Grid’s exclusive region for the corner stagger

The exclusive region for a stagger location is based on the exclusive region defined by the DistGrid used to create the
Grid. The size of the stagger exclusive region is the index space for the Grid cells, plus the stagger padding.
The default stagger padding depends on the topology of the Grid. For an unconnected dimension the stagger padding
is a width of 1 on the upper side (i.e.gridEdgeUWidth=(1,1,1,1...)). For a periodic dimension there is no
stagger padding. By adjustinggridEdgeLWidth andgridEdgeUWidth , the user can set the stagger padding
for the whole Grid and thus the exclusive region can be adjusted at will around the index space corresponding to
the cells. The user can also usestaggerEdgeLWidth andstaggerEdgeUWidth to adjust individual stagger
location padding within the Grid’s padding (Please see Section 25.3.22 for further discussion of customizing the
stagger padding).

Figure 16 shows an example of a Grid exclusive region for theESMF_STAGGERLOC_CORNERstagger with default
stagger padding. This exclusive region would be for a Grid generated by either of the following calls:

grid2D=ESMF_GridCreateShapeTile(regDecomp=(/2,4/), m axIndex=(/5,15/), &
indexflag=ESMF_INDEX_GLOBAL, rc=rc)

grid2D=ESMF_GridCreateShapeTile(countsPerDEDim1=(/4 ,4,4,3/), &
countsPerDEDim2=(/3,2/), indexflag=ESMF_INDEX_GLOBAL , rc=rc)

Each rectangle in this diagram represents a DE and the numbers along the sides are the index values of the locations in
the DE. Note that the exclusive region has one extra index location in each dimension than the number of cells because
of the padding for the larger corner stagger location.
The computational region is a user setable region which can be used to distinguish a particular area for computation.
The Grid doesn’t currently contain functionality to let theuser set the computational region so it defaults to the
exclusive region, however, if the user sets an Array holdingdifferent computational bounds into the Grid then that
Array’s computational bounds will be used.
The total region is the outermost boundary of the memory allocated on each DE to hold the data for the stagger location
on that DE. This region can be as small as the exclusive region, but may be larger to include space for halos, memory
padding, etc. The total region is what is enlarged to includespace for halos, and the total region must be large enough
to contain the maximum halo operation on the Grid. The Grid doesn’t currently contain functionality to let the user set
the total region so it defaults to the exclusive region, however, if the user sets an Array holding different total bounds
into the Grid then that Array’s total bounds will be used.

391

The user can retrieve a set of bounds for each index space region described above: exclusive bounds, computational
bounds, and total bounds. Note that although some of these are similar to bounds provided by ESMF_Array subrou-
tines (see Section 22.2.6) the format here is different. TheArray bounds are only for distributed dimensions and are
ordered to correspond to the dimension order in the associated DistGrid. The bounds provided by the Grid are ordered
according to the order of dimensions of the data in question.This means that the bounds provided should be usable
"as is" to access the data.
Each of the three types of bounds refers to the maximum and minimum per dimension of the index ranges of a par-
ticular region. The paramters referring to the maximums contain a ’U’ for upper. The parameters referring to the
minimums contain an ’L’ for lower. The bounds and associatedquantities are almost always given on a per DE
basis. The three types of boundsexclusiveBounds , computationalBounds , andtotalBounds refer to
the ranges of the exlusive region, the computational region, and the total region. Each of these bounds also has a
corresponding count parameter which gives the number of items across that region (on a DE) in each dimension.
(e.g. totalCount(d)=totallUBound(i)-totalLBound(i)+1). Width parameters give the spacing be-
tween two different types of region. ThecomputationalWidth argument gives the spacing between the exclusive
region and the computational region. ThetotalWidth argument gives the spacing between the total region and the
computational region. Like the other bound information these are typically on a per DE basis, for example specifying
totalLWidth=(1,1) makes the bottom of the total region one lower in each dimension than the computational
region on each DE. The exceptions to the per DE rule arestaggerEdgeWidth , andgridEdgeWidth which give
the spacing only on the DEs along the boundary of the Grid.
All the above bound discussions only apply to the grid with non-arbitrary distributions, i.e., regular or irregular
distributions. For an arbitrarily distributed grid, only center stagger location is supported and there is no padding
around the grid. Thus, the exclusive bounds, the total bounds and the computational bounds are identical and
staggerEdgeWidth , andgridEdgeWidth are all zeros.

25.3.16 Get Grid coordinate bounds

When operating on coordinates the user may often wish to retrieve the bounds of the piece of coordinate data on a par-
ticular local DE. This is useful for iterating through the data to set coordinates, retrieve coordinates, or do calculations.
The methodESMF_GridGetCoord allows the user to retrieve bound information for a particular coordinate array.
As described in the previous section there are three types ofbounds the user can get: exclusive bounds, computational
bounds, and total bounds. The bounds provided byESMF_GridGetCoord are for both distributed and undistributed
dimensions and are ordered according to the order of dimensions in the coordinate. This means that the bounds
provided should be usable "as is" to access data in the coordinate array. In the case of factorized coordinate Arrays
where a coordinate may have a smaller dimension than its associated Grid, then the dimension of the coordinate’s
bounds are the dimension of the coordinate, not the Grid.
The following is an example of retrieving the bounds for localDE 0 for the first coordinate array from the corner
stagger location.

call ESMF_GridGetCoord(grid2D, coordDim=1, localDE=0, &
staggerLoc=ESMF_STAGGERLOC_CORNER, &
exclusiveLBound=elbnd, exclusiveUBound=eubnd, &
computationalLBound=clbnd, computationalUBound=cubnd , &
totalLBound=tlbnd, totalUBound=tubnd, rc=rc)

25.3.17 Get Grid stagger location bounds

When operating on data stored at a particular stagger in a Grid the user may find it useful to be able to retrieve the
bounds of the data on a particular local DE. This is useful foriterating through the data for computations or allocating
arrays to hold the data. The methodESMF_GridGet allows the user to retrieve bound information for a particular
stagger location.
As described in Section 25.3.15 there are three types of bounds the user can typically get, however, the Grid doesn’t
hold data at a stagger location (that is the job of the Field),and so no Array is contained there and so no total region
exists, so the user may only retrieve exclusive and computational bounds from a stagger location. The bounds provided
by ESMF_GridGet are ordered according to the order of dimensions in the Grid.
The following is an example of retrieving the bounds for localDE 0 from the corner stagger location.

392

call ESMF_GridGet(grid2D, localDE=0, &
staggerLoc=ESMF_STAGGERLOC_CORNER, &
exclusiveLBound=elbnd, exclusiveUBound=eubnd, &
computationalLBound=clbnd, computationalUBound=cubnd , rc=rc)

25.3.18 Get Grid stagger location information

In addition to the per DE information that can be accessed about a stagger location there is some global information
that can accessed by usingESMF_GridGet without specifying a localDE. One of the uses of this information is to
create an ESMF Array to hold data for a stagger location.
The information currently available from a stagger location is thestaggerDistgrid andminIndex andmaxIndex .
ThestaggerDistgrid gives the distgrid which describes the size and distribution of the elements in the stagger
location. TheminIndex andmaxIndex describe the lower and upper bounds of the stagger location.
The following is an example of retrieving information for localDE 0 from the corner stagger location.

! Get info about staggerloc
call ESMF_GridGet(grid2D, staggerLoc=ESMF_STAGGERLOC_ CORNER, &

staggerDistgrid=staggerDistgrid, &
minIndex=minIndex, maxIndex=maxIndex, &
rc=rc)

25.3.19 Create an Array at a stagger location

In order to create an Array to correspond to a Grid stagger location several pieces of information need to be obtained
from both the Grid and the stagger location in the Grid.
The information that needs to be obtained from the Grid is thedistgridToGridMap to ensure that the new Array
has its dimensions are mapped correctly to the Grid. These are obtained using theESMF_GridGet method.
The information that needs to be obtained from the stagger location is the distgrid that describes the size and distri-
bution of the elements in the stagger location. This information can be obtained using the stagger location specific
ESMF_GridGet method.
The following is an example of using information from a 2D Grid with non-arbitrary distribution to create an Array
corresponding to a stagger location.

! Get info from Grid
call ESMF_GridGet(grid2D, distgridToGridMap=distgridT oGridMap, rc=rc)

! Get info about staggerloc
call ESMF_GridGet(grid2D, staggerLoc=ESMF_STAGGERLOC_ CORNER, &

staggerDistgrid=staggerDistgrid, &
rc=rc)

! construct ArraySpec
call ESMF_ArraySpecSet(arrayspec, rank=2, typekind=ESM F_TYPEKIND_R8, rc=rc)

! Create an Array based on info from grid
array=ESMF_ArrayCreate(arrayspec=arrayspec, &

distgrid=staggerDistgrid, distgridToArrayMap=distgri dToGridMap, &
rc=rc)

Creating an Array for a Grid with arbitrary distribution is different. For a 2D Grid with both dimension arbitrarily
distributed, the Array dimension is 1. For a 3D Grid with two arbitrarily distributed dimensions and one undistributed

393

dimension, the Array dimension is 2. In general, if the Arraydoes not have any ungridded dimension, the Array
dimension should be 1 plus the number of undistributed dimensions of the Grid.
The following is an example of creating an Array for a 3D Grid with 2 arbitrarily distributed dimensions such as the
one defined in Section 25.3.6.

! Get distGrid from Grid
call ESMF_GridGet(grid3D, distgrid=distgrid, rc=rc)

! construct ArraySpec
call ESMF_ArraySpecSet(arrayspec, rank=2, typekind=ESM F_TYPEKIND_R8, rc=rc)

! Create an Array based on the presence of distributed dimens ions
array=ESMF_ArrayCreate(arrayspec=arrayspec,distgrid =distgrid, rc=rc)

25.3.20 Create more complex Grids using DistGrid

Besides the shortcut methods for creating a Grid object suchasESMF_GridCreateShapeTile() , there is a set
of methods which give the user more control over the specificsof the grid. The following describes the more general
interface, using DistGrid. The basic idea is to first create an ESMF DistGrid object describing the distribution and
shape of the Grid, and then to employ that to either directly create the Grid or first create Arrays and then create the
Grid from those. This method gives the user maximum control over the topology and distribution of the Grid. See the
DistGrid documentation in Section 29.1 for an in-depth description of its interface and use.
As an example, the following call constructs a 10x20 Grid with a lower bound of (1,2).

! Create DistGrid
distgrid2D = ESMF_DistGridCreate(minIndex=(/1,2/), max Index=(/11,22/), rc=rc)

! Create Grid
grid3D=ESMF_GridCreate(distGrid=distgrid2D, rc=rc)

To alter which dimensions are distributed, thedistgridToGridMap argument can be used. ThedistgridToGridMap
is used to set which dimensions of the Grid are mapped to the dimensions described bymaxIndex . In other
words, it describes how the dimensions of the underlying default DistGrid are mapped to the Grid. Each entry in
distgridToGridMap contains the Grid dimension to which the cooresponding DistGrid dimension should be
mapped. The following example illustrates the creation of aGrid where the largest dimension is first. To accomplish
this the two dimensions are swapped.

! Create DistGrid
distgrid2D = ESMF_DistGridCreate(minIndex=(/1,2/), max Index=(/11,22/), rc=rc)

! Create Grid
grid2D=ESMF_GridCreate(distGrid=distgrid2D, distgrid ToGridMap=(/2,1/), rc=rc)

25.3.21 Specify custom stagger locations

Although ESMF provides a set of predefined stagger locations(See Section 25.2.4), the user may need one outside
this set. This section describes the construction of customstagger locations.
To completely specify stagger for an arbitrary number of dimensions, we define the stagger location in terms of a set
of cartesian coordinates. The cell is represented by a n-dimensional cube with sides of length 2, and the coordinate
origin located at the center of the cell. The geometry of the cell is for reference purposes only, and does not literally
represent the actual shape of the cell. Think of this method instead as an easy way to specify a part (e.g. center, corner,
face) of a higher dimensional cell which is extensible to anynumber of dimensions.

394

Dim. 2

Dim. 1

0

0-1

-1

1

1

0

0

1

1

(0,1) – EDGE1 (1,1) – CORNER

(1,0) – EDGE2

Full Cell 1st Quadrant

Figure 17: An example of specifying 2D stagger locations using coordinates.

To illustrate this approach, consider a 2D cell. In 2 dimensions the cell is represented by a square. An xy axis is placed
at its center, with the positive x-axis orientedEastand the positive y-axis orientedNorth. The resulting coordinate for
the lower left corner is at(−1,−1), and upper right corner at(1, 1). However, because our staggers are symmetric
they don’t need to distinguish between the−1, and the1, so we only need concern ourselves with the first quadrant of
this cell. We only need to use the1, and the0, and many of the cell locations collapse together (e.g. we only need to
represent one corner). See figure 17 for an illustration of these concepts.

The cell center is represented by the coordinate pair(0, 0) indicating the origin. The cell corner is+1 in each direction,
giving a coordinate pair of(1, 1). The edges are each+1 in one dimension and0 in the other indicating that they’re
even with the center in one dimension and offset in the other.
For three dimensions, the vertical component of the staggerlocation can be added by simply adding an additional
coordinate. The three dimensional generalization of the cell center becomes(0, 0, 0) and the cell corner becomes
(1, 1, 1). The rest of the 3D stagger locations are combinations of+1 offsets from the center.
To generalize this tod dimensions, to represent ad dimensional stagger location. A set ofd 0 and1 is used to specify
for each dimension whether a stagger location is aligned with the cell center in that dimension (0), or offset by+1 in
that dimension (1). Using this scheme we can represent any symmetric stagger location.
To construct a custom stagger location in ESMF the subroutine ESMF_StaggerLocSet() is used to specify, for
each dimension, whether the stagger is located at the interior (0) or on the boundary (1) of the cell. This method
allows users to construct stagger locations for which thereis no predefined value. In this example, it’s used to set the
4D center and 4D corner locations.

! Set Center
call ESMF_StaggerLocSet(staggerLoc,loc=(/0,0,0,0/),r c=rc)
call ESMF_GridAddCoord(grid4D, staggerLoc=staggerLoc, rc=rc)

! Set Corner
call ESMF_StaggerLocSet(staggerLoc,loc=(/1,1,1,1/),r c=rc)
call ESMF_GridAddCoord(grid4D, staggerLoc=staggerLoc, rc=rc)

395

Figure 18: An example 2D Grid with cell centers and corners.

25.3.22 Specify custom stagger padding

There is an added complication with the data (e.g. coordinates) stored at stagger locations in that they can require
different amounts of storage depending on the underlying Grid type.

Consider the example 2D grid in figure 18, where the dots represent the cell corners and the “+” represents the cell
centers. For the corners to completely enclose the cell centers (symmetric stagger), the number of corners in each
dimension needs to be one greater then the number of cell centers. In the above figure, there are two rows and three
columns of cell centers. To enclose the cell centers, there must be three rows and four columns of cell corners. This is
true in general for Grids without periodicity or other connections. In fact, for a symmetric stagger, given that the center
location requires n x m storage, the corresponding corner location requires n+1 x m+1, and the edges, depending on
the side, require n+1 x m or m+1 x n. In order to add the extra storage, a new DistGrid is created at each stagger
location. This Distgrid is similar to the DistGrid used to create the Grid, but has an extra set of elements added to
hold the index locations for the stagger padding. By default, when the coordinate arrays are created, one extra layer of
padding is added to the index space to create symmetric staggers (i.e. the center location is surrounded). The default
is to add this padding on the positive side, and to only add this padding where needed (e.g. no padding for the center,
padding on both dimensions for the corner, in only one dimension for the edge in 2D.) There are two ways for the user
to change these defaults.
One way is to use theGridEdgeWidth or GridAlign arguments when creating a Grid. These arguments can
be used to change the default padding around the Grid cell index space. This extra padding is used by default when
setting the padding for a stagger location.
The gridEdgeLWidth andgridEdgeUWidth arguments are both 1D arrays of the same size as the Grid di-
mension. The entries in the arrays give the extra offset fromthe outer boundary of the grid cell index space. The
following example shows the creation of a Grid with all the extra space to hold stagger padding on the negative side
of a Grid. This is the reverse of the default behavior. The resulting Grid will have an exclusive region which extends
from (−1,−1) to (10, 10), however, the cell center stagger location will still extend from (1, 1) to (10, 10).

grid2D=ESMF_GridCreateShapeTile(minIndex=(/1,1/),ma xIndex=(/10,10/), &
gridEdgeLWidth=(/1,1/), gridEdgeUWidth=(/0,0/), rc=rc)

To indicate how the data in a Grid’s stagger locations are aligned with the cell centers, the optionalgridAlign
parameter may be used. This parameter indicates which stagger elements in a cell share the same index values as the
cell center. For example, in a 2D cell, it would indicate which of the four corners has the same index value as the
center. To setgridAlign , the values -1,+1 are used to indicate the alignment in each dimension. This parameter is
mostly informational, however, if thegridEdgeWidth parameters are not set then its value determines where the

396

default padding is placed. If not specified, then the defaultis to align all staggers to the most negative, so the padding
is on the positive side. The following code illustrates creating a Grid aligned to the reverse of default (with everything
to the positive side). This creates a Grid identical to that created in the previous example.

grid2D=ESMF_GridCreateShapeTile(minIndex=(/1,1/),ma xIndex=(/10,10/), &
gridAlign=(/1,1/), rc=rc)

The gridEdgeWidth andgridAlign arguments both allow the user to set the default padding to beused by
stagger locations in a Grid. By default, stagger locations allocated in a Grid set their stagger padding based on these
values. A stagger location’s padding in each dimension is equal to the value ofgridEdgeWidth (or the value
implied bygridAlign), unless the stagger location is centered in a dimension in which case the stagger padding
is 0. For example, the cell center stagger location has 0 stagger padding in all dimensions, whereas the edge stagger
location lower padding is equal togridEdgeLWidth and the upper padding is equal togridEdgeUWidth in one
dimension, but both are 0 in the other, centered, dimension.If the user wishes to set the stagger padding individually
for each stagger location they may use thestaggerEdgeWidth andstaggerAlign arguments.
ThestaggerEdgeLWidth andstaggerEdgeUWidth arguments are both 1D arrays of the same size as the Grid
dimension. The entries in the arrays give the extra offset from the Grid cell index space for a stagger location. The
following example shows the addition of two stagger locations. The corner location has no extra boundary and the
center has a single layer of extra padding on the negative side and none on the positive. This is the reverse of the
default behavior.

grid2D=ESMF_GridCreate(distgrid=distgrid2D, &
gridEdgeLWidth=(/1,1/), gridEdgeUWidth=(/0,0/), rc=rc)

call ESMF_GridAddCoord(grid2D, &
staggerLoc=ESMF_STAGGERLOC_CORNER, &
staggerEdgeLWidth=(/0,0/), staggerEdgeUWidth=(/0,0/) , rc=rc)

call ESMF_GridAddCoord(grid2D, &
staggerLoc=ESMF_STAGGERLOC_CENTER, &
staggerEdgeLWidth=(/1,1/), staggerEdgeUWidth=(/0,0/) , rc=rc)

To indicate how the data at a particular stagger location is aligned with the cell center, the optionalstaggerAlign
parameter may be used. This parameter indicates which stagger elements in a cell share the same index values as the
cell center. For example, in a 2D cell, it would indicate which of the four corners has the same index value as the center.
To setstaggerAlign , the values -1,+1 are used to indicate the alignment in each dimension. If a stagger location
is centered in a dimension (e.g. an edge in 2D), then that dimension is ignored in the alignment. This parameter is
mostly informational, however, if thestaggerEdgeWidth parameters are not set then its value determines where
the default padding is placed. If not specified, then the default is to align all staggers to the most negative, so the
padding is on the positive side. The following code illustrates aligning the positive (northeast in 2D) corner with the
center.

call ESMF_GridAddCoord(grid2D, &
staggerLoc=ESMF_STAGGERLOC_CORNER, staggerAlign=(/1, 1/), rc=rc)

25.3.23 Create a 2D regularly distributed rectilinear Grid from file

This example shows how to read an ESMF GridSpec Attribute Package from an XML file and use it to create a grid.
The XML file contains Attribute values filled-in by the user. The standard GridSpec Attribute Package is supplied
with ESMF and is defined in an XSD file, which is used to validatethe XML file. See

ESMF_DIR/src/Infrastructure/Grid/etc/esmf_grid_shape_tile.xml (Attribute Package values) and

397

ESMF_DIR/src/Infrastructure/Grid/etc/esmf_grid.xsd (Attribute Package definition).

The following XML attributes, from the file mentioned above,specifies a two dimensional, 10x20 single-tile rectilinear
grid that is regularly distributed into 2 DEs in the first dimension and 3 DEs in the second dimension, for a total of 6
DEs (2x3):

<?xml version="1.0"?>
<GridSpec>

<Mosaic>
<attribute_package convention="ESMF" purpose="General ">

<NX>10</NX>
<NY>20</NY>

</attribute_package>
<RegDecompX>2</RegDecompX>
<RegDecompY>3</RegDecompY>

</Mosaic>
</GridSpec>

Read the file and create the grid,

! Read an XML file containing user-filled-in values for a Gri dSpec Attribute
! package and use it to create a grid. The file is validated aga inst an
! internal, ESMF-supplied XSD file defining the standard Gr idSpec Attribute
! package (see file pathnames above).
grid2D=ESMF_GridCreate("esmf_grid_shape_tile.xml", r c=rc)

then show that the minimum and maximum global indices of the Grid are (1,1)∼ (11,21) (one extra default stagger
pad in each dimension):

call ESMF_GridGet(grid2D, minIndex=minIndex, maxIndex= maxIndex, rc=rc)
print * , "minIndex(1), minIndex(2) = ", minIndex(1), minIndex(2)
print * , "maxIndex(1), maxIndex(2) = ", maxIndex(1), maxIndex(2)

Get the resulting computational bounds for each local DE within the local PET, for center stagger locations:

call ESMF_VMGet(vm, localPet=localPet, petCount=petCou nt, rc=rc)
print * , "localPet = ", localPet, "petCount = ", petCount

call ESMF_GridGet(grid2D, localDECount=localDECount, r c=rc)
print * , "localDECount = ", localDECount

do i=0,localDECount-1
call ESMF_GridGet(grid2D, localDE=i, &

staggerLoc=ESMF_STAGGERLOC_CENTER, &
computationalLBound=clbnd, computationalUBound=cubnd , &
rc=rc)

print * , "clbnd,cubnd = ", clbnd(1), ", ", clbnd(2), " ", &
cubnd(1), ", ", cubnd(2)

print * , " "
enddo

For a 4 PET run, this will show the following (lower)∼ (upper) computational bounds per DE, 6 DEs total (2x3):

398

PET 0:
local DE 0 - (1,1) ~ (5,7)
local DE 1 - (1,15) ~ (5,20)

PET 1:
local DE 0 - (6,1) ~ (10,7)
local DE 1 - (6,15) ~ (10,20)

PET 2:
local DE 0 - (1,8) ~ (5,14)

PET 3:
local DE 0 - (6,8) ~ (10,14)

For a 1 PET run, the distribution will be

local DE 0 - (1,1) ~ (5,7)
local DE 1 - (6,1) ~ (10,7)
local DE 2 - (1,8) ~ (5,14)
local DE 3 - (6,8) ~ (10,14)
local DE 4 - (1,15) ~ (5,20)
local DE 5 - (6,15) ~ (10,20)

The Grid and its distribution, represented graphically:

--- ----> 2nd dim
|
| (1,1)-------(1,7)(1,8)------(1,14)(1,15)-----(1,20)
(5,1)-------(5,7)(5,8)------(5,14)(5,15)-----(5,20)					
(6,1)-------(6,7)(6,8)------(6,14)(6,15)-----(6,20)					
(10,1)-----(10,7)(10,8)----(10,14)(10,15)---(10,20)					
v

1st dim

Write the attributes back out to an xml file.

! Write an XML file
call ESMF_AttributeWrite(grid2D, ’ESMF’, ’General’, &

attwriteflag=ESMF_ATTWRITE_XML, rc=rc)

25.4 Restrictions and Future Work

• 7D limit. Only grids up to 7D will be supported.

399

• During the first development phase only single tile grids aresupported. In the near future, support for
mosaic grids will be added. The initial implementation willbe to create mosaics that contain tiles of the same
grid type, e.g. rectilinear.

• Future adaptation. Currently Grids are created and then remain unchanged. In the future, it would be useful
to provide support for the various forms of grid adaptation.This would allow the grids to dynamically change
their resolution to more closely match what is needed at a particular time and postion during a computation for
front tracking or adaptive meshes.

• Future Grid generation. This class for now only contains the basic functionality foroperating on the grid. In
the future methods will be added to enable the automatic generation of various types of grids.

25.5 Design and Implementation Notes

25.5.1 Grid Topology

TheESMF_Grid class depends upon theESMF_DistGrid class for the specification of its topology. That is, when
creating a Grid, first anESMF_DistGrid is created to describe the appropriate index space topology. This decision
was made because it seemed redundant to have a system for doing this in both classes. It also seems most appropriate
for the machinary for topology creation to be located at the lowest level possible so that it can be used by other
classes (e.g. theESMF_Array class). Because of this, however, the authors recommend that as a natural part of
the implementation of subroutines to generate standard grid shapes (e.g.ESMF_GridGenSphere) a set of standard
topology generation subroutines be implemented (e.g.ESMF_DistGridGenSphere) for users who want to create
a standard topology, but a custom geometry.

25.6 Class API: General Grid Methods

25.6.1 ESMF_GridAddCoord - Allocate coordinate arrays butdon’t set their values

INTERFACE:

! Private name; call using ESMF_GridAddCoord()
subroutine ESMF_GridAddCoordNoValues(grid, staggerloc , &

staggerEdgeLWidth, staggerEdgeUWidth, staggerAlign, &
staggerMemLBound, totalLWidth, totalUWidth,rc)

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid
type (ESMF_StaggerLoc), intent(in),optional :: staggerl oc
integer, intent(in),optional :: staggerEdgeLWidth(:)
integer, intent(in),optional :: staggerEdgeUWidth(:)
integer, intent(in),optional :: staggerAlign(:)
integer, intent(in),optional :: staggerMemLBound(:)
integer, intent(in), optional :: totalLWidth(:) ! N. IMP
integer, intent(in), optional :: totalUWidth(:) ! N. IMP
integer, intent(out),optional :: rc

DESCRIPTION:

When a Grid is created all of its potential stagger locationscan hold coordinate data, but none of them have storage
allocated. This call allocates coordinate storage (creates internal ESMF_Arrays and associated memory) for a partic-
ular stagger location. Note that this call doesn’t assign any values to the storage, it only allocates it. The remaining
optionsstaggerEdgeLWidth , etc. allow the user to adjust the padding on the coordinate arrays.
The arguments are:

400

grid Grid to allocate coordinate storage in.

[staggerloc] The stagger location to add. Please see Section 25.2.4 for a list of predefined stagger locations. If not
present, defaults to ESMF_STAGGERLOC_CENTER.

[staggerEdgeLWidth] This array should be the same dimCount as the grid. It specifies the lower corner of the stagger
region with respect to the lower corner of the exclusive region.

[staggerEdgeUWidth] This array should be the same dimCount as the grid. It specifies the upper corner of the
stagger region with respect to the upper corner of the exclusive region.

[staggerAlign] This array is of size grid dimCount. For this stagger location, it specifies which element has the same
index value as the center. For example, for a 2D cell with corner stagger it specifies which of the 4 corners
has the same index as the center. If this is set and either staggerEdgeUWidth or staggerEdgeLWidth is not, this
determines the default array padding for a stagger. If not set, then this defaults to all negative. (e.g. The most
negative part of the stagger in a cell is aligned with the center and the padding is all on the postive side.)

[staggerMemLBound] Specifies the lower index range of the memory of every DE in this staggerloc in this Grid.
Only used when Grid indexflag isESMF_INDEX_USER.

[totalLWidth] The lower boundary of the computatational region in reference to the computational region. Note, the
computational region includes the extra padding specified by ccordLWidth . [CURRENTLY NOT IMPLE-
MENTED]

[totalUWidth] The lower boundary of the computatational region in reference to the computational region. Note, the
computational region includes the extra padding specified by staggerEdgeLWidth . [CURRENTLY NOT
IMPLEMENTED]

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

25.6.2 ESMF_GridAddItem - Allocate item array but don’t set their values

INTERFACE:

! Private name; call using ESMF_GridAddItem()
subroutine ESMF_GridAddItemNoValues(grid, staggerloc, item, itemTypeKind, &

staggerEdgeLWidth, staggerEdgeUWidth, staggerAlign, &
staggerMemLBound, totalLWidth, totalUWidth,rc)

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid
type (ESMF_StaggerLoc), intent(in),optional :: staggerl oc
type (ESMF_GridItem), intent(in) :: item
type (ESMF_TypeKind), intent(in),optional :: itemTypeKi nd
integer, intent(in),optional :: staggerEdgeLWidth(:)
integer, intent(in),optional :: staggerEdgeUWidth(:)
integer, intent(in),optional :: staggerAlign(:)
integer, intent(in),optional :: staggerMemLBound(:)
integer, intent(in), optional :: totalLWidth(:) ! N. IMP
integer, intent(in), optional :: totalUWidth(:) ! N. IMP
integer, intent(out),optional :: rc

DESCRIPTION:

When a Grid is created all of its potential stagger locationscan hold item data, but none of them have storage allocated.
This call allocates item storage (creates an internal ESMF_Array and associated memory) for a particular stagger

401

location. Note that this call doesn’t assign any values to the storage, it only allocates it. The remaining options
staggerEdgeLWidth , etc. allow the user to adjust the padding on the item array.
The arguments are:

grid Grid to allocate coordinate storage in.

[staggerloc] The stagger location to add. Please see Section 25.2.4 for a list of predefined stagger locations. If not
present, defaults to ESMF_STAGGERLOC_CENTER.

item The grid item to add. Please see Section 25.2.3 for a list of valid items.

itemTypeKind The typekind of the item to add.

[staggerEdgeLWidth] This array should be the same dimCount as the grid. It specifies the lower corner of the stagger
region with respect to the lower corner of the exclusive region.

[staggerEdgeUWidth] This array should be the same dimCount as the grid. It specifies the upper corner of the
stagger region with respect to the upper corner of the exclusive region.

[staggerAlign] This array is of size grid dimCount. For this stagger location, it specifies which element has the same
index value as the center. For example, for a 2D cell with corner stagger it specifies which of the 4 corners
has the same index as the center. If this is set and either staggerEdgeUWidth or staggerEdgeLWidth is not, this
determines the default array padding for a stagger. If not set, then this defaults to all negative. (e.g. The most
negative part of the stagger in a cell is aligned with the center and the padding is all on the postive side.)

[staggerMemLBound] Specifies the lower index range of the memory of every DE in this staggerloc in this Grid.
Only used when Grid indexflag isESMF_INDEX_USER.

[totalLWidth] The lower boundary of the computatational region in reference to the computational region. Note, the
computational region includes the extra padding specified by ccordLWidth . [CURRENTLY NOT IMPLE-
MENTED]

[totalUWidth] The lower boundary of the computatational region in reference to the computational region. Note, the
computational region includes the extra padding specified by staggerEdgeLWidth . [CURRENTLY NOT
IMPLEMENTED]

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

25.6.3 ESMF_GridCreate - Create a Grid from a DistGrid

INTERFACE:

! Private name; call using ESMF_GridCreate()
function ESMF_GridCreateFrmDistGrid(name,coordTypeKi nd,distgrid, &

distgridToGridMap, coordDimCount, coordDimMap, &
gridEdgeLWidth, gridEdgeUWidth, gridAlign, gridMemLBou nd, &
indexflag, destroyDistGrid, destroyDELayout, rc)

RETURN VALUE:

type(ESMF_Grid) :: ESMF_GridCreateFrmDistGrid

ARGUMENTS:

402

character (len= *), intent(in), optional :: name
type(ESMF_TypeKind), intent(in), optional :: coordTypeK ind
type(ESMF_DistGrid), intent(in) :: distgrid
integer, intent(in), optional :: distgridToGridMap(:)
integer, intent(in), optional :: coordDimCount(:)
integer, intent(in), optional :: coordDimMap(:,:)
integer, intent(in), optional :: gridEdgeLWidth(:)
integer, intent(in), optional :: gridEdgeUWidth(:)
integer, intent(in), optional :: gridAlign(:)
integer, intent(in), optional :: gridMemLBound(:)
type(ESMF_IndexFlag), intent(in), optional :: indexflag
logical, intent(in), optional :: destroyDistGrid
logical, intent(in), optional :: destroyDELayout
integer, intent(out), optional :: rc

DESCRIPTION:

This is the most general form of creation for anESMF_Grid object. It allows the user to fully specify the topology
and index space using the DistGrid methods and then build a grid out of the resulting DistGrid. Note that since the Grid
created by this call usesdistgrid as a description of its index space, the resulting Grid will have exactly the same
number of dimensions (i.e. the same dimCount) asdistgrid . ThedistgridToGridMap argument specifies
how the Grid dimensions are mapped to thedistgrid . ThecoordDimCount andcoordDimMap arguments
allow the user to specify how the coordinate arrays should map to the grid dimensions. (Note, though, that creating a
grid does not allocate coordinate storage. A method such asESMF_GridAddCoord() must be called before adding
coordinate values.)
The arguments are:

[name] ESMF_Grid name.

[coordTypeKind] The type/kind of the grid coordinate data. If not specified then the type/kind will be 8 byte reals.

distgrid ESMF_DistGrid object that describes how the array is decomposed and distributed over DEs.

[distgridToGridMap] List that has dimCount elements. The elements map each dimension of distgrid to a dimension
in the grid. (i.e. the values should range from 1 to dimCount). If not specified, the default is to map all of
distgrid’s dimensions against the dimensions of the grid insequence.

[coordDimCount] List that has dimCount elements. Gives the dimension of eachcomponent (e.g. x) array. This is
to allow factorization of the coordinate arrays. If not specified all arrays are the same size as the grid.

[coordDimMap] 2D list of size dimCount x dimCount. This array describes themap of each component array’s di-
mensions onto the grids dimensions. Each entrycoordDimMap(i,j) tells which grid dimension component
i’s, jth dimension maps to. Note that if j is bigger thancoordDimCount(i) it is ignored. The default for
each row i iscoordDimMap(i,:)=(1,2,3,4,...) .

[gridEdgeLWidth] The padding around the lower edges of the grid. This padding is between the index space cor-
responding to the cells and the boundary of the the exclusiveregion. This extra space is to contain the extra
padding for non-center stagger locations, and should be bigenough to hold any stagger in the grid.

[gridEdgeUWidth] The padding around the upper edges of the grid. This padding is between the index space cor-
responding to the cells and the boundary of the the exclusiveregion. This extra space is to contain the extra
padding for non-center stagger locations, and should be bigenough to hold any stagger in the grid.

[gridAlign] Specification of how the stagger locations should align withthe cell index space (can be overridden
by the individual staggerAligns). If thegridEdgeWidths are not specified than this parameter implies the
EdgeWidths.

[gridMemLBound] Specifies the lower index range of the memory of every DE in this Grid. Only used when
indexflag isESMF_INDEX_USER. May be overridden by staggerMemLBound.

403

[indexflag] Indicates the indexing scheme to be used in the new Grid. Please see Section 9.2.9 for the list of options.
If not present, defaults to ESMF_INDEX_DELOCAL.

[destroyDistgrid] If true, when the Grid is destroyed the DistGrid will be destroyed also. Defaults to false.

[destroyDELayout] If true, when the Grid is destroyed the DELayout will be destroyed also. Defaults to false.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

25.6.4 ESMF_GridCreate - Create a Arbitrary Grid from a Dist Grid

INTERFACE:

! Private name; call using ESMF_GridCreate()
function ESMF_GridCreateFrmDistGridArb(name,coordTyp eKind,distgrid, &

indexArray, distDim, coordDimCount, coordDimMap, &
destroyDistGrid, destroyDELayout, rc)

RETURN VALUE:

type(ESMF_Grid) :: ESMF_GridCreateFrmDistGridArb

ARGUMENTS:

character (len= *), intent(in), optional :: name
type(ESMF_TypeKind), intent(in), optional :: coordTypeK ind
type(ESMF_DistGrid), intent(in) :: distgrid
integer, intent(in) :: indexArray(:,:)
integer, intent(in), optional :: distDim(:)
integer, intent(in), optional :: coordDimCount(:)
integer, intent(in), optional :: coordDimMap(:,:)
logical, intent(in), optional :: destroyDistGrid
logical, intent(in), optional :: destroyDELayout
integer, intent(out), optional :: rc

DESCRIPTION:

This is the lower level function to create an arbitrailiy distributedESMF_Grid object. It allows the user to fully
specify the topology and index space (of the distributed dimensions) using the DistGrid methods and then build a grid
out of the resultingdistgrid . TheindexArray(2,dimCount) , argument is required to specifies the topology
of the grid.
The arguments are:

[name] ESMF_Grid name.

[coordTypeKind] The type/kind of the grid coordinate data. If not specified then the type/kind will be 8 byte reals.

distgrid ESMF_DistGrid object that describes how the array is decomposed and distributed over DEs.

[indexArray] The minIndex and maxIndex array of size2 x dimCount indexArray(1,:) is the minIndex and
indexArray(2,:) is the maxIndex

[distDim] This array specifies which dimensions are arbitrarily distributed. The size of the array specifies the total
distributed dimensions. if not specified, the default is that all dimensions will be arbitrarily distributed.

[coordDimCount] List that has dimCount elements. Gives the dimension of eachcomponent (e.g. x) array. This is
to allow factorization of the coordinate arrays. If not specified each component is assumed to be size 1. Note,
the default value is different from the same argument for a non-arbitrarily distributed grid.

404

[coordDimMap] 2D list of size dimCount x dimCount. This array describes themap of each coordinate array’s
dimensions onto the grids dimensions.coordDimMap(i,j) is the grid dimension of the jth dimension of the
i’th coordinate array. If not specified, the default value ofcoordDimMap(i,1) is /ESMF_GRID_ARBDIM/
if the ith dimension of the grid is arbitrarily distributed,or i if the ith dimension is not distributed. Note that if
j is bigger thancoordDimCount(i) then it’s ignored.

[destroyDistgrid] If true, when the Grid is destroyed the DistGrid will be destroyed also. Defaults to false.

[destroyDELayout] If true, when the Grid is destroyed the DELayout will be destroyed also. Defaults to false.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

25.6.5 ESMF_GridCreate - Create a Grid from a file

INTERFACE:

! Private name; call using ESMF_GridCreate()
function ESMF_GridCreateFrmFile(fileName, convention, purpose, rc)

RETURN VALUE:

type(ESMF_Grid) :: ESMF_GridCreateFrmFile

ARGUMENTS:

character (len= *), intent(in) :: fileName
character (len= *), intent(in), optional :: convention
character (len= *), intent(in), optional :: purpose
integer, intent(out), optional :: rc

DESCRIPTION:

Create anESMF_Grid object from specifications in a file containing an ESMF GridSpec Attribute package in XML
format. Currently limited to creating a 2D regularly distributed rectilinear Grid; in the future more dimensions, grid
types and distributions will be supported. See Section 25.3.23 for an example, as well as the accompanying file
ESMF_DIR/src/Infrastructure/Grid/etc/esmf_grid_shape_tile.xml.
Requires the third party Xerces C++ XML Parser library to be installed. For more details, see the "ESMF Users Guide",
"Building and Installing the ESMF, Third Party Libraries, Xerces" and the website http://xerces.apache.org/xerces-c.
The arguments are:

fileName The name of the XML file to be read, containing ESMF GridSpec Attributes.

[convention] The convention of a grid Attribute package. [CURRENTLY NOT IMPLEMENTED]

[purpose] The purpose of a grid Attribute package. [CURRENTLY NOT IMPLEMENTED]

[rc] Return code; equalsESMF_SUCCESSif there are no errors. EqualsESMF_RC_LIB_NOT_PRESENTif Xerces
is not present.

25.6.6 ESMF_GridCreate - Create a Grid from a SCRIP grid file and a DistGrid

INTERFACE:

405

! Private name; call using ESMF_GridCreate()
function ESMF_GridCreateFrmScripDistGrd(distgrid, fil ename, rc)

RETURN VALUE:

type(ESMF_Grid) :: ESMF_GridCreateFrmScripDistGrd

ARGUMENTS:

type(ESMF_DistGrid), intent(in) :: distgrid
character(len= *), intent(in) :: filename
integer, intent(out), optional :: rc

DESCRIPTION:

This function creates aESMF_Grid object using the grid definition from a SCRIP grid file. The grid distribution is
defined by a DistGrid object. The distrgrid has to match the grid defined in the file. This means the distgrid should
consist of one 2D tile with the same size in each dimension as the grid in the file. The grid defined in the file has to be
a 2D logically rectangular grid (i.e.grid_rank in the file needs to be 2).
This call iscollectiveacross the current VM.
The arguments are:

distgrid ESMF_DistGrid object that describes how the array is decomposed and distributed over DEs.

[filename] The SCRIP Grid filename.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

25.6.7 ESMF_GridCreate - Create a Grid from a SCRIP grid file with a regular distribution

INTERFACE:

! Private name; call using ESMF_GridCreate()
function ESMF_GridCreateFrmScripReg(filename, regDeco mp, decompflag, &

addCornerStagger, rc)

RETURN VALUE:

type(ESMF_Grid) :: ESMF_GridCreateFrmScripReg

ARGUMENTS:

character(len= *), intent(in) :: filename
integer, intent(in) :: regDecomp(:)
type(ESMF_DecompFlag), intent(in),optional :: decompfl ag(:)
logical, intent(in), optional :: addCornerStagger
integer, intent(out), optional :: rc

DESCRIPTION:

This function creates aESMF_Grid object using the grid definition from a SCRIP grid file. To specify the distribution,
the user passes in an array (regDecomp) specifying the number of DEs to divide each dimension into.The array
decompflag indicates how the division into DEs is to occur. The default is to divide the range as evenly as possible.
The grid defined in the file has to be a 2D logically rectangulargrid (i.e.grid_rank in the file needs to be 2).
This call iscollectiveacross the current VM.
The arguments are:

406

[filename] The SCRIP Grid filename.

[regDecomp] A 2 element array specifying how the grid is decomposed. Eachentry is the number of decounts for
that dimension.

[decompflag] List of decomposition flags indicating how each dimension ofthe patch is to be divided between the
DEs. The default setting isESMF_DECOMP_HOMOGENin all dimensions. Please see Section 9.2.7 for a full
description of the possible options.

[addCornerStagger] Uses the information in the SCRIP file to add the Corner stagger to the Grid. If not specified,
defaults to false.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

25.6.8 ESMF_GridCreateEmpty - Create a Grid that has no contents

INTERFACE:

function ESMF_GridCreateEmpty(rc)

RETURN VALUE:

type(ESMF_Grid) :: ESMF_GridCreateEmpty

ARGUMENTS:

integer, intent(out), optional :: rc

DESCRIPTION:

Partially create anESMF_Grid object. This function allocates anESMF_Grid object, but doesn’t allocate any
coordinate storage or other internal structures. TheESMF_GridSetCommitShapeTile calls can be used to set
the values in the grid object and to construct the internal structure.
The arguments are:

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

25.6.9 ESMF_GridCreateShapeTile - Create a Grid with an irregular distribution

INTERFACE:

! Private name; call using ESMF_GridCreateShapeTile()
function ESMF_GridCreateShapeTileIrreg(name,coordTyp eKind, minIndex, &

countsPerDEDim1,countsPerDeDim2, countsPerDEDim3, &
connDim1, connDim2, connDim3, &
poleStaggerLoc1, poleStaggerLoc2, poleStaggerLoc3, &
bipolePos1, bipolePos2, bipolePos3, &
coordDep1, coordDep2, coordDep3, &
gridEdgeLWidth, gridEdgeUWidth, gridAlign, &
gridMemLBound, indexflag, petMap, rc)

RETURN VALUE:

type(ESMF_Grid) :: ESMF_GridCreateShapeTileIrreg

407

ARGUMENTS:

character (len= *), intent(in), optional :: name
type(ESMF_TypeKind), intent(in), optional :: coordTypeK ind
integer, intent(in), optional :: minIndex(:)
integer, intent(in) :: countsPerDEDim1(:)
integer, intent(in) :: countsPerDEDim2(:)
integer, intent(in), optional :: countsPerDEDim3(:)
type(ESMF_GridConn), intent(in), optional :: connDim1(:) ! N. IMP.
type(ESMF_GridConn), intent(in), optional :: connDim2(:) ! N. IMP.
type(ESMF_GridConn), intent(in), optional :: connDim3(:) ! N. IMP.
type(ESMF_StaggerLoc), intent(in), optional :: poleStag gerLoc1(2) ! N. IMP.
type(ESMF_StaggerLoc), intent(in), optional :: poleStag gerLoc2(2) ! N. IMP.
type(ESMF_StaggerLoc), intent(in), optional :: poleStag gerLoc3(2) ! N. IMP.
integer, intent(in), optional :: bipolePos1(2) ! N. IMP.
integer, intent(in), optional :: bipolePos2(2) ! N. IMP.
integer, intent(in), optional :: bipolePos3(2) ! N. IMP.
integer, intent(in), optional :: coordDep1(:)
integer, intent(in), optional :: coordDep2(:)
integer, intent(in), optional :: coordDep3(:)
integer, intent(in), optional :: gridEdgeLWidth(:)
integer, intent(in), optional :: gridEdgeUWidth(:)
integer, intent(in), optional :: gridAlign(:)
integer, intent(in), optional :: gridMemLBound(:)
type(ESMF_IndexFlag), intent(in), optional :: indexflag
integer, intent(in), optional :: petMap(:,:,:)
integer, intent(out), optional :: rc

DESCRIPTION:

This method creates a single tile, irregularly distributedgrid (see Figure 12). To specify the irregular distribution, the
user passes in an array for each grid dimension, where the length of the array is the number of DEs in the dimension. Up
to three dimensions can be specified, using the countsPerDEDim1, countsPerDEDim2, countsPerDEDim3 arguments.
The index of each array element corresponds to a DE number. The array value at the index is the number of grid cells
on the DE in that dimension. The dimCount of the grid is equal to the number of countsPerDEDim arrays that are
specified.
Section 25.3.3 shows an example of using this method to create a 2D Grid with uniformly spaced coordinates. This
creation method can also be used as the basis for grids with rectilinear coordinates or curvilinear coordinates.
The arguments are:

[name] ESMF_Grid name.

[coordTypeKind] The type/kind of the grid coordinate data. If not specified then the type/kind will be 8 byte reals.

[minIndex] Tuple to start the index ranges at. If not present, defaults to /1,1,1,.../.

countsPerDEDim1 This arrays specifies the number of cells per DE for index dimension 1 for the exclusive region
(the center stagger location).

countsPerDEDim2 This array specifies the number of cells per DE for index dimension 2 for the exclusive region
(center stagger location).

[countsPerDEDim3] This array specifies the number of cells per DE for index dimension 3 for the exclusive region
(center stagger location). If not specified then grid is 2D.

[connDim1] Fortran array describing the index dimension 1 connections. The first element represents the minimum
end of dimension 1. The second element represents the maximum end of dimension 1. If array is only one
element long, then that element is used for both the minimum and maximum end. Please see Section 25.2.1 for
a list of valid options. If not present, defaults to ESMF_GRIDCONN_NONE. [CURRENTLY NOT IMPLE-
MENTED]

408

[connDim2] Fortran array describing the index dimension 2 connections. The first element represents the minimum
end of dimension 2. The second element represents the maximum end of dimension 2. If array is only one
element long, then that element is used for both the minimum and maximum end. Please see Section 25.2.1 for
a list of valid options. If not present, defaults to ESMF_GRIDCONN_NONE. [CURRENTLY NOT IMPLE-
MENTED]

[connDim3] Fortran array describing the index dimension 3 connections. The first element represents the minimum
end of dimension 3. The second element represents the maximum end of dimension 3. If array is only one
element long, then that element is used for both the minimum and maximum end. Please see Section 25.2.1 for
a list of valid options. If not present, defaults to ESMF_GRIDCONN_NONE. [CURRENTLY NOT IMPLE-
MENTED]

[poleStaggerLoc1] Two element array describing the index dimension 1 connections. The first element represents
the minimum end of dimension 1. The second element represents the maximum end of dimension 1. If a
pole, this describes which staggerlocation is at the pole ateach end. Please see Section 25.2.4 for a list of
predefined stagger locations. If not present, defaults to ESMF_STAGGERLOC_CENTER. [CURRENTLY NOT
IMPLEMENTED]

[poleStaggerLoc2] Two element array describing the index dimension 2 connections. The first element represents
the minimum end of dimension 2. The second element represents the maximum end of dimension 2. If a
pole, this describes which staggerlocation is at the pole ateach end. Please see Section 25.2.4 for a list of
predefined stagger locations. If not present, defaults to ESMF_STAGGERLOC_CENTER. [CURRENTLY NOT
IMPLEMENTED]

[poleStaggerLoc3] Two element array describing the index dimension 3 connections. The first element represents
the minimum end of dimension 3. The second element represents the maximum end of dimension 3. If a
pole, this describes which staggerlocation is at the pole ateach end. Please see Section 25.2.4 for a list of
predefined stagger locations. If not present, defaults to ESMF_STAGGERLOC_CENTER. [CURRENTLY NOT
IMPLEMENTED]

[bipolePos1] Two element array describing the index dimension 1 connections. The first element represents the
minimum end of dimension 1. The second element represents the maximum end of dimension 1. If a bipole,
this gives the index position of one of the poles. The other ishalf way around. If not present, the default is 1.
[CURRENTLY NOT IMPLEMENTED]

[bipolePos2] Two element array describing the index dimension 2 connections. The first element represents the
minimum end of dimension 2. The second element represents the maximum end of dimension 2. If a bipole,
this gives the index position of one of the poles. The other ishalf way around. If not present, the default is 1.
[CURRENTLY NOT IMPLEMENTED]

[bipolePos3] Two element array describing the index dimension 3 connections. The first element represents the
minimum end of dimension 3. The second element represents the maximum end of dimension 3. If a bipole,
this gives the index position of one of the poles. The other ishalf way around. If not present, the default is 1.
[CURRENTLY NOT IMPLEMENTED]

[coordDep1] This array specifies the dependence of the first coordinate component on the three index dimensions
described bycoordsPerDEDim1,2,3 . The size of the array specifies the number of dimensions of the first
coordinate component array. The values specify which of theindex dimensions the corresponding coordinate
arrays map to. If not present the default is 1,2,...,grid rank.

[coordDep2] This array specifies the dependence of the second coordinatecomponent on the three index dimen-
sions described bycoordsPerDEDim1,2,3 . The size of the array specifies the number of dimensions of
the second coordinate component array. The values specify which of the index dimensions the corresponding
coordinate arrays map to. If not present the default is 1,2,...,grid rank.

[coordDep3] This array specifies the dependence of the third coordinate component on the three index dimensions
described bycoordsPerDEDim1,2,3 . The size of the array specifies the number of dimensions of the third
coordinate component array. The values specify which of theindex dimensions the corresponding coordinate
arrays map to. If not present the default is 1,2,...,grid rank.

409

[gridEdgeLWidth] The padding around the lower edges of the grid. This padding is between the index space cor-
responding to the cells and the boundary of the the exclusiveregion. This extra space is to contain the extra
padding for non-center stagger locations, and should be bigenough to hold any stagger in the grid.

[gridEdgeUWidth] The padding around the upper edges of the grid. This padding is between the index space cor-
responding to the cells and the boundary of the the exclusiveregion. This extra space is to contain the extra
padding for non-center stagger locations, and should be bigenough to hold any stagger in the grid.

[gridAlign] Specification of how the stagger locations should align withthe cell index space (can be overridden
by the individual staggerAligns). If thegridEdgeWidths are not specified than this parameter implies the
EdgeWidths.

[gridMemLBound] Specifies the lower index range of the memory of every DE in this Grid. Only used when
indexflag isESMF_INDEX_USER. May be overridden by staggerMemLBound.

[indexflag] Indicates the indexing scheme to be used in the new Grid. Please see Section 9.2.9 for the list of options.
If not present, defaults to ESMF_INDEX_DELOCAL.

[petMap] Sets the mapping of pets to the created DEs. This 3D should be of size size(countsPerDEDim1) x size(countsPerDEDim2)
x size(countsPerDEDim3). If countsPerDEDim3 isn’t present, then the last dimension is of size 1.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

25.6.10 ESMF_GridCreateShapeTile - Create a Grid with a regular distribution

INTERFACE:

! Private name; call using ESMF_GridCreateShapeTile()
function ESMF_GridCreateShapeTileReg(name, coordTypeK ind, &

regDecomp, decompFlag, minIndex, maxIndex, &
connDim1, connDim2, connDim3, &
poleStaggerLoc1, poleStaggerLoc2, poleStaggerLoc3, &
bipolePos1, bipolePos2, bipolePos3, &
coordDep1, coordDep2, coordDep3, &
gridEdgeLWidth, gridEdgeUWidth, gridAlign, &
gridMemLBound, indexflag, petMap, rc)

RETURN VALUE:

type(ESMF_Grid) :: ESMF_GridCreateShapeTileReg

ARGUMENTS:

character (len= *), intent(in), optional :: name
type(ESMF_TypeKind), intent(in), optional :: coordTypeK ind
integer, intent(in), optional :: regDecomp(:)
type(ESMF_DecompFlag), intent(in), optional :: decompfl ag(:)
integer, intent(in), optional :: minIndex(:)
integer, intent(in) :: maxIndex(:)
type(ESMF_GridConn), intent(in), optional :: connDim1(:) ! N. IMP.
type(ESMF_GridConn), intent(in), optional :: connDim2(:) ! N. IMP.
type(ESMF_GridConn), intent(in), optional :: connDim3(:) ! N. IMP.
type(ESMF_StaggerLoc), intent(in), optional :: poleStag gerLoc1(2) ! N. IMP.
type(ESMF_StaggerLoc), intent(in), optional :: poleStag gerLoc2(2) ! N. IMP.

410

type(ESMF_StaggerLoc), intent(in), optional :: poleStag gerLoc3(2) ! N. IMP.
integer, intent(in), optional :: bipolePos1(2) ! N. IMP.
integer, intent(in), optional :: bipolePos2(2) ! N. IMP.
integer, intent(in), optional :: bipolePos3(2) ! N. IMP.
integer, intent(in), optional :: coordDep1(:)
integer, intent(in), optional :: coordDep2(:)
integer, intent(in), optional :: coordDep3(:)
integer, intent(in), optional :: gridEdgeLWidth(:)
integer, intent(in), optional :: gridEdgeUWidth(:)
integer, intent(in), optional :: gridAlign(:)
integer, intent(in), optional :: gridMemLBound(:)
type(ESMF_IndexFlag), intent(in), optional :: indexflag
integer, intent(in), optional :: petMap(:,:,:)
integer, intent(out), optional :: rc

DESCRIPTION:

This method creates a single tile, regularly distributed grid (see Figure 12). To specify the distribution, the user passes
in an array (regDecomp) specifying the number of DEs to divide each dimension into.The arraydecompFlag
indicates how the division into DEs is to occur. The default is to divide the range as evenly as possible.
The arguments are:

[name] ESMF_Grid name.

[coordTypeKind] The type/kind of the grid coordinate data. If not specified then the type/kind will be 8 byte reals.

[regDecomp] List that has the same number of elements asmaxIndex . Each entry is the number of decounts for
that dimension. If not specified, the default decompositionwill be petCountx1x1..x1.

[decompflag] List of decomposition flags indicating how each dimension ofthe patch is to be divided between the
DEs. The default setting isESMF_DECOMP_HOMOGENin all dimensions. Please see Section 9.2.7 for a full
description of the possible options.

[minIndex] The bottom extent of the grid array. If not given then the value defaults to /1,1,1,.../.

maxIndex The upper extent of the grid array.

[connDim1] Fortran array describing the index dimension 1 connections. The first element represents the minimum
end of dimension 1. The second element represents the maximum end of dimension 1. If array is only one
element long, then that element is used for both the minimum and maximum end. Please see Section 25.2.1 for
a list of valid options. If not present, defaults to ESMF_GRIDCONN_NONE. [CURRENTLY NOT IMPLE-
MENTED]

[connDim2] Fortran array describing the index dimension 2 connections. The first element represents the minimum
end of dimension 2. The second element represents the maximum end of dimension 2. If array is only one
element long, then that element is used for both the minimum and maximum end. Please see Section 25.2.1 for
a list of valid options. If not present, defaults to ESMF_GRIDCONN_NONE. [CURRENTLY NOT IMPLE-
MENTED]

[connDim3] Fortran array describing the index dimension 3 connections. The first element represents the minimum
end of dimension 3. The second element represents the maximum end of dimension 3. If array is only one
element long, then that element is used for both the minimum and maximum end. Please see Section 25.2.1 for
a list of valid options. If not present, defaults to ESMF_GRIDCONN_NONE. [CURRENTLY NOT IMPLE-
MENTED]

[poleStaggerLoc1] Two element array describing the index dimension 1 connections. The first element represents
the minimum end of dimension 1. The second element represents the maximum end of dimension 1. If a
pole, this describes which staggerlocation is at the pole ateach end. Please see Section 25.2.4 for a list of
predefined stagger locations. If not present, defaults to ESMF_STAGGERLOC_CENTER. [CURRENTLY NOT
IMPLEMENTED]

411

[poleStaggerLoc2] Two element array describing the index dimension 2 connections. The first element represents
the minimum end of dimension 2. The second element represents the maximum end of dimension 2. If a
pole, this describes which staggerlocation is at the pole ateach end. Please see Section 25.2.4 for a list of
predefined stagger locations. If not present, defaults to ESMF_STAGGERLOC_CENTER. [CURRENTLY NOT
IMPLEMENTED]

[poleStaggerLoc3] Two element array describing the index dimension 3 connections. The first element represents
the minimum end of dimension 3. The second element represents the maximum end of dimension 3. If a
pole, this describes which staggerlocation is at the pole ateach end. Please see Section 25.2.4 for a list of
predefined stagger locations. If not present, defaults to ESMF_STAGGERLOC_CENTER. [CURRENTLY NOT
IMPLEMENTED]

[bipolePos1] Two element array describing the index dimension 1 connections. The first element represents the
minimum end of dimension 1. The second element represents the maximum end of dimension 1. If a bipole,
this gives the index position of one of the poles. The other ishalf way around. If not present, the default is 1.
[CURRENTLY NOT IMPLEMENTED]

[bipolePos2] Two element array describing the index dimension 2 connections. The first element represents the
minimum end of dimension 2. The second element represents the maximum end of dimension 2. If a bipole,
this gives the index position of one of the poles. The other ishalf way around. If not present, the default is 1.
[CURRENTLY NOT IMPLEMENTED]

[bipolePos3] Two element array describing the index dimension 3 connections. The first element represents the
minimum end of dimension 3. The second element represents the maximum end of dimension 3. If a bipole,
this gives the index position of one of the poles. The other ishalf way around. If not present, the default is 1.
[CURRENTLY NOT IMPLEMENTED]

[coordDep1] This array specifies the dependence of the first coordinate component on the three index dimensions
described bycoordsPerDEDim1,2,3 . The size of the array specifies the number of dimensions of the first
coordinate component array. The values specify which of theindex dimensions the corresponding coordinate
arrays map to. If not present the default is 1,2,...,grid rank.

[coordDep2] This array specifies the dependence of the second coordinatecomponent on the three index dimen-
sions described bycoordsPerDEDim1,2,3 . The size of the array specifies the number of dimensions of
the second coordinate component array. The values specify which of the index dimensions the corresponding
coordinate arrays map to. If not present the default is 1,2,...,grid rank.

[coordDep3] This array specifies the dependence of the third coordinate component on the three index dimensions
described bycoordsPerDEDim1,2,3 . The size of the array specifies the number of dimensions of the third
coordinate component array. The values specify which of theindex dimensions the corresponding coordinate
arrays map to. If not present the default is 1,2,...,grid rank.

[gridEdgeLWidth] The padding around the lower edges of the grid. This padding is between the index space cor-
responding to the cells and the boundary of the the exclusiveregion. This extra space is to contain the extra
padding for non-center stagger locations, and should be bigenough to hold any stagger in the grid.

[gridEdgeUWidth] The padding around the upper edges of the grid. This padding is between the index space cor-
responding to the cells and the boundary of the the exclusiveregion. This extra space is to contain the extra
padding for non-center stagger locations, and should be bigenough to hold any stagger in the grid.

[gridAlign] Specification of how the stagger locations should align withthe cell index space (can be overridden
by the individual staggerAligns). If thegridEdgeWidths are not specified than this parameter implies the
EdgeWidths.

[gridMemLBound] Specifies the lower index range of the memory of every DE in this Grid. Only used when
indexflag isESMF_INDEX_USER. May be overridden by staggerMemLBound.

[indexflag] Indicates the indexing scheme to be used in the new Grid. Please see Section 9.2.9 for the list of options.
If not present, defaults to ESMF_INDEX_DELOCAL.

412

[petMap] Sets the mapping of pets to the created DEs. This 3D should be of size regDecomp(1) x regDecomp(2) x
regDecomp(3) If the Grid is 2D, then the last dimension is of size 1.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

25.6.11 ESMF_GridCreateShapeTile - Create a Grid with an arbitrary distribution

INTERFACE:

! Private name; call using ESMF_GridCreateShapeTile()
function ESMF_GridCreateShapeTileArb(name,coordTypeK ind, minIndex, &

maxIndex, localArbIndex, localArbIndexCount, &
connDim1, connDim2, connDim3, &
poleStaggerLoc1, poleStaggerLoc2, poleStaggerLoc3, &
bipolePos1, bipolePos2, bipolePos3, &
coordDep1, coordDep2, coordDep3, &
distDim, rc)

RETURN VALUE:

type(ESMF_Grid) :: ESMF_GridCreateShapeTileArb

ARGUMENTS:

character (len= *), intent(in), optional :: name
type(ESMF_TypeKind), intent(in), optional :: coordTypeK ind
integer, intent(in), optional :: minIndex(:)
integer, intent(in) :: maxIndex(:)
integer, intent(in) :: localArbIndex(:,:)
integer, intent(in) :: localArbIndexCount
type(ESMF_GridConn), intent(in), optional :: connDim1(:) ! N. IMP.
type(ESMF_GridConn), intent(in), optional :: connDim2(:) ! N. IMP.
type(ESMF_GridConn), intent(in), optional :: connDim3(:) ! N. IMP.
type(ESMF_StaggerLoc), intent(in), optional :: poleStag gerLoc1(2) ! N. IMP.
type(ESMF_StaggerLoc), intent(in), optional :: poleStag gerLoc2(2) ! N. IMP.
type(ESMF_StaggerLoc), intent(in), optional :: poleStag gerLoc3(2) ! N. IMP.
integer, intent(in), optional :: bipolePos1(2) ! N. IMP.
integer, intent(in), optional :: bipolePos2(2) ! N. IMP.
integer, intent(in), optional :: bipolePos3(2) ! N. IMP.
integer, intent(in), optional :: coordDep1(:)
integer, intent(in), optional :: coordDep2(:)
integer, intent(in), optional :: coordDep3(:)
integer, intent(in), optional :: distDim(:)
integer, intent(out), optional :: rc

DESCRIPTION:

This method creates a single tile, arbitrarily distributedgrid (see Figure 12). To specify the arbitrary distribution, the
user passes in an 2D array of local indices, where the first dimension is the number of local grid cells specified by
localArbIndexCount and the second dimension is the number of distributed dimensions.
distDim specifies which grid dimensions are arbitrarily distributed. The size ofdistDim has to agree with the size
of the second dimension oflocalArbIndex .
The arguments are:

[name] ESMF_Grid name.

413

[coordTypeKind] The type/kind of the grid coordinate data. If not specified then the type/kind will be 8 byte reals.

[minIndex] Tuple to start the index ranges at. If not present, defaults to /1,1,1,.../.

[maxIndex] The upper extend of the grid index ranges.

[localArbIndex] This 2D array specifies the indices of the local grid cells. The dimensions should be localArbIndex-
Count * number of Distributed grid dimensions where localArbIndexCount is the input argument specified
below

localArbIndexCount number of grid cells in the local DE. It is okay to have 0 grid cell in a local DE.

[connDim1] Fortran array describing the index dimension 1 connections. The first element represents the minimum
end of dimension 1. The second element represents the maximum end of dimension 1. If array is only one
element long, then that element is used for both the minimum and maximum end. Please see Section 25.2.1 for
a list of valid options. If not present, defaults to ESMF_GRIDCONN_NONE. [CURRENTLY NOT IMPLE-
MENTED]

[connDim2] Fortran array describing the index dimension 2 connections. The first element represents the minimum
end of dimension 2. The second element represents the maximum end of dimension 2. If array is only one
element long, then that element is used for both the minimum and maximum end. Please see Section 25.2.1 for
a list of valid options. If not present, defaults to ESMF_GRIDCONN_NONE. [CURRENTLY NOT IMPLE-
MENTED]

[connDim3] Fortran array describing the index dimension 3 connections. The first element represents the minimum
end of dimension 3. The second element represents the maximum end of dimension 3. If array is only one
element long, then that element is used for both the minimum and maximum end. Please see Section 25.2.1 for
a list of valid options. If not present, defaults to ESMF_GRIDCONN_NONE. [CURRENTLY NOT IMPLE-
MENTED]

[poleStaggerLoc1] Two element array describing the index dimension 1 connections. The first element represents
the minimum end of dimension 1. The second element represents the maximum end of dimension 1. If a
pole, this describes which staggerlocation is at the pole ateach end. Please see Section 25.2.4 for a list of
predefined stagger locations. If not present, defaults to ESMF_STAGGERLOC_CENTER. [CURRENTLY NOT
IMPLEMENTED]

[poleStaggerLoc2] Two element array describing the index dimension 2 connections. The first element represents
the minimum end of dimension 2. The second element represents the maximum end of dimension 2. If a
pole, this describes which staggerlocation is at the pole ateach end. Please see Section 25.2.4 for a list of
predefined stagger locations. If not present, defaults to ESMF_STAGGERLOC_CENTER. [CURRENTLY NOT
IMPLEMENTED]

[poleStaggerLoc3] Two element array describing the index dimension 3 connections. The first element represents
the minimum end of dimension 3. The second element represents the maximum end of dimension 3. If a
pole, this describes which staggerlocation is at the pole ateach end. Please see Section 25.2.4 for a list of
predefined stagger locations. If not present, defaults to ESMF_STAGGERLOC_CENTER. [CURRENTLY NOT
IMPLEMENTED]

[bipolePos1] Two element array describing the index dimension 1 connections. The first element represents the
minimum end of dimension 1. The second element represents the maximum end of dimension 1. If a bipole,
this gives the index position of one of the poles. The other ishalf way around. If not present, the default is 1.
[CURRENTLY NOT IMPLEMENTED]

[bipolePos2] Two element array describing the index dimension 2 connections. The first element represents the
minimum end of dimension 2. The second element represents the maximum end of dimension 2. If a bipole,
this gives the index position of one of the poles. The other ishalf way around. If not present, the default is 1.
[CURRENTLY NOT IMPLEMENTED]

414

[bipolePos3] Two element array describing the index dimension 3 connections. The first element represents the
minimum end of dimension 3. The second element represents the maximum end of dimension 3. If a bipole,
this gives the index position of one of the poles. The other ishalf way around. If not present, the default is 1.
[CURRENTLY NOT IMPLEMENTED]

[coordDep1] The size of the array specifies the number of dimensions of thefirst coordinate component array. The
values specify which of the index dimensions the corresponding coordinate arrays map to. The format should
be /ESMF_GRID_ARBDIM/ where /ESMF_GRID_ARBDIM/ is mappedto the collapsed 1D dimension from
all the arbitrarily distributed dimensions. n is the dimension that is not distributed (if exists). If not present the
default is /ESMF_GRID_ARBDIM/ if the first dimension is arbitararily distributed, or /n/ if not distributed (i.e.
n=1)

[coordDep2] The size of the array specifies the number of dimensions of thesecond coordinate component array. The
values specify which of the index dimensions the corresponding coordinate arrays map to. The format should
be /ESMF_GRID_ARBDIM/ where /ESMF_GRID_ARBDIM/ is mappedto the collapsed 1D dimension from
all the arbitrarily distributed dimensions. n is the dimension that is not distributed (if exists). If not present
the default is /ESMF_GRID_ARBDIM/ if this dimension is arbitararily distributed, or /n/ if not distributed (i.e.
n=2)

[coordDep3] The size of the array specifies the number of dimensions of thethird coordinate component array. The
values specify which of the index dimensions the corresponding coordinate arrays map to. The format should
be /ESMF_GRID_ARBDIM/ where /ESMF_GRID_ARBDIM/ is mappedto the collapsed 1D dimension from
all the arbitrarily distributed dimensions. n is the dimension that is not distributed (if exists). If not present
the default is /ESMF_GRID_ARBDIM/ if this dimension is arbitararily distributed, or /n/ if not distributed (i.e.
n=3)

[distDim] This array specifies which dimensions are arbitrarily distributed. The size of the array specifies the total
distributed dimensions. if not specified, defaults is all dimensions will be arbitrarily distributed. The size has to
agree with the size of the second dimension oflocalArbIndex .

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

25.6.12 ESMF_GridDestroy - Free all resources associated with a Grid

INTERFACE:

subroutine ESMF_GridDestroy(grid, rc)

ARGUMENTS:

type(ESMF_Grid) :: grid
integer, intent(out), optional :: rc

DESCRIPTION:

Destroys anESMF_Grid object and related internal structures. This call does destroy internally created DistGrid and
DELayout classes, for example those created byESMF_GridCreateShapeTile() . It also destroys internally
created coordinate/item Arrays, for example those createdby ESMF_GridAddCoord() . However, if the user uses
an externally created class, for example creating an Array and setting it usingESMF_GridSetCoord() , then that
class is not destroyed by this method.
The arguments are:

grid ESMF_Grid to be destroyed.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

415

25.6.13 ESMF_GridGet - Get information about a Grid

INTERFACE:

! Private name; call using ESMF_GridGet()
subroutine ESMF_GridGetDefault(grid, name, coordTypeKi nd, &

dimCount, tileCount, staggerlocsCount, localDECount, di stgrid, &
distgridToGridMap, coordDimCount, coordDimMap, &
localArbIndexCount, localArbIndex, arbDim, &
memDimCount, arbDimCount, &
gridEdgeLWidth, gridEdgeUWidth, gridAlign, &
indexFlag, rc)

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid
character (len= *), intent(out), optional :: name
type(ESMF_TypeKind), intent(out), optional :: coordType Kind
integer, intent(out), optional :: dimCount
integer, intent(out), optional :: tileCount
integer, intent(out), optional :: staggerlocsCount
integer, intent(out), optional :: localDECount
type(ESMF_DistGrid), intent(out), optional :: distgrid
integer, target, intent(out), optional :: distgridToGrid Map(:)
integer, target, intent(out), optional :: coordDimCount(:)
integer, target, intent(out), optional :: coordDimMap(:, :)
integer, intent(out), optional :: localArbIndexCount
integer, target, intent(out), optional :: localArbIndex(:,:)
integer, intent(out), optional :: arbDim
integer, intent(out), optional :: memDimCount
integer, intent(out), optional :: arbDimCount
integer, target, intent(out), optional :: gridEdgeLWidth (:)
integer, target, intent(out), optional :: gridEdgeUWidth (:)
integer, target, intent(out), optional :: gridAlign(:)
type(ESMF_IndexFlag), intent(out), optional :: indexfla g
integer, intent(out), optional :: rc

DESCRIPTION:

Gets various types of information about a grid.
The arguments are:

grid Grid to get the information from.

[name] ESMF_Grid name.

[coordTypeKind] The type/kind of the grid coordinate data. If not specified then the type/kind will be 8 byte reals.

[dimCount] DimCount of the Grid object.

[tileCount] The number of logically rectangular tiles in the grid.

[staggerlocsCount] The number of stagger locations.

[localDECount] The number of DEs in this grid on this PET.

[distgrid] The structure describing the distribution of the grid.

[distgridToGridMap] List that has as many elements as the distgrid dimCount. Thisarray describes mapping be-
tween the grids dimensions and the distgrid.

416

[coordDimCount] List that has as many elements as the grid dimCount (from arrayspec). Gives the dimension of
each component (e.g. x) array. This is to allow factorization of the coordinate arrays. If not specified all arrays
are the same size as the grid.

[coordDimMap] 2D list of size grid dimCount x grid dimCount. This array describes the map of each component
array’s dimensions onto the grids dimensions.

[localArbIndexCount] The number of local cells for an arbitrarily distributed grid

[localArbIndex] The 2D array storing the local cell indices for an arbitrarily distributed grid. The size of the array is
localArbIndexCount * arbDimCount

[arbDim] The distgrid dimension that is mapped by the arbitrarily distributed grid dimensions.

[memDimCount] The count of the memory dimensions, it is the same as dimCountfor a non-arbitrarily distributed
grid, and equal or less for a arbitrarily distributed grid.

[arbDimCount] The number of dimensions distributed arbitrarily for an arbitrary grid, 0 if the grid is non-arbitrary.

[gridEdgeLWidth] The padding around the lower edges of the grid. The array should be of size greater or equal to
the Grid dimCount.

[gridEdgeUWidth] The padding around the upper edges of the grid. The array should be of size greater or equal to
the Grid dimCount.

[gridAlign] Specification of how the stagger locations should align withthe cell index space. The array should be of
size greater or equal to the Grid dimCount.

[indexflag] Flag indicating the indexing scheme being used in the Grid. Please see Section 9.2.9 for the list of options.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

25.6.14 ESMF_GridGet - Get information about a particular DE in a Grid

INTERFACE:

! Private name; call using ESMF_GridGet()
subroutine ESMF_GridGetPLocalDe(grid, localDe, &

isLBound,isUBound, rc)

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid
integer, intent(in) :: localDe
logical, intent(out), optional :: isLBound(:)
logical, intent(out), optional :: isUBound(:)
integer, intent(out), optional :: rc

DESCRIPTION:

This call gets information about a particular local DE in a Grid.
The arguments are:

grid Grid to get the information from.

[localDe] The local DE from which to get the information.[0,..,localDeCount-1]

417

[isLBound] Upon return, for each dimension this indicates if the DE is a lower bound of the Grid.isLBound must
be allocated to be of size equal to the Grid dimCount.

[isUBound] Upon return, for each dimension this indicates if the DE is anupper bound of the Grid.isUBound must
be allocated to be of size equal to the Grid dimCount.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

25.6.15 ESMF_GridGet - Get information about a particular DE in a stagger location in a Grid

INTERFACE:

! Private name; call using ESMF_GridGet()
subroutine ESMF_GridGetPLocalDePSloc(grid, localDe, st aggerloc, &

exclusiveLBound, exclusiveUBound, exclusiveCount, &
computationalLBound, computationalUBound, computation alCount, rc)

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid
integer, intent(in) :: localDe
type (ESMF_StaggerLoc), intent(in) :: staggerloc
integer, target, intent(out), optional :: exclusiveLBoun d(:)
integer, target, intent(out), optional :: exclusiveUBoun d(:)
integer, target, intent(out), optional :: exclusiveCount (:)
integer, target, intent(out), optional :: computationalL Bound(:)
integer, target, intent(out), optional :: computationalU Bound(:)
integer, target, intent(out), optional :: computationalC ount(:)
integer, intent(out), optional :: rc

DESCRIPTION:

This method gets information about the range of index space which a particular stagger location occupies. This call
differs from the coordinate bound calls (e.g.ESMF_GridGetCoord) in that a given coordinate array may only
occupy a subset of the Grid’s dimensions, and so these calls may not give all the bounds of the stagger location. The
bounds from this call are the full bounds, and so for example,give the appropriate bounds for allocating a Fortran array
to hold data residing on the stagger location. Note that unlike the output from the Array, these values also include the
undistributed dimensions and are ordered to reflect the order of the indices in the Grid. This call will still give correct
values even if the stagger location does not contain coordinate arrays (e.g. ifESMF_GridAddCoord hasn’t yet been
called on the stagger location).
The arguments are:

grid Grid to get the information from.

[localDe] The local DE from which to get the information.[0,..,localDeCount-1]

staggerloc The stagger location to get the information for. Please see Section 25.2.4 for a list of predefined stagger
locations.

[exclusiveLBound] Upon return this holds the lower bounds of the exclusive region. exclusiveLBound must be
allocated to be of size equal to the Grid dimCount. Please seeSection 25.3.15 for a description of the regions
and their associated bounds and counts.

[exclusiveUBound] Upon return this holds the upper bounds of the exclusive region. exclusiveUBound must be
allocated to be of size equal to the Grid dimCount. Please seeSection 25.3.15 for a description of the regions
and their associated bounds and counts.

418

[exclusiveCount] Upon return this holds the number of items in the exclusive region per dimension (i.e.exclusiveUBound-exclusiveLBound+1
exclusiveCount must be allocated to be of size equal to the Grid dimCount. Please see Section 25.3.15 for
a description of the regions and their associated bounds andcounts.

[computationalLBound] Upon return this holds the lower bounds of the computationalregion.computationalLBound
must be allocated to be of size equal to the Grid dimCount. Please see Section 25.3.15 for a description of the
regions and their associated bounds and counts.

[computationalUBound] Upon return this holds the upper bounds of the computationalregion.computationalUBound
must be allocated to be of size equal to the Grid dimCount. Please see Section 25.3.15 for a description of the
regions and their associated bounds and counts.

[computationalCount] Upon return this holds the number of items in the computational region per dimension. (i.e.
computationalUBound-computationalLBound+1). computationalCount must be allocated to
be of size equal to the Grid dimCount. Please see Section 25.3.15 for a description of the regions and their
associated bounds and counts.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

25.6.16 ESMF_GridGet - Get information about a particular stagger location in a Grid

INTERFACE:

! Private name; call using ESMF_GridGet()
subroutine ESMF_GridGetPSloc(grid, staggerloc, &

staggerDistgrid, minIndex, maxIndex, rc)

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid
type (ESMF_StaggerLoc), intent(in) :: staggerloc
type(ESMF_DistGrid), intent(out), optional :: staggerDi stgrid
integer, target, intent(out), optional :: minIndex(:)
integer, target, intent(out), optional :: maxIndex(:)
integer, intent(out), optional :: rc

DESCRIPTION:

This method gets information about a particular stagger location. This information is useful for creating an ESMF
Array to hold the data at the stagger location.
The arguments are:

grid Grid to get the information from.

staggerloc The stagger location to get the information for. Please see Section 25.2.4 for a list of predefined stagger
locations.

[staggerDistgrid] The structure describing the distribution of this staggerloc in this grid.

[minIndex] Upon return this holds the global lower index of this staggerlocation.minIndex must be allocated to
be of size equal to the grid DimCount. Note that this value is only for the first Grid tile, as multigrid support is
added, this interface will likely be changed or moved to adapt.

[maxIndex] Upon return this holds the global upper index of this staggerlocation.maxIndex must be allocated to
be of size equal to the grid DimCount. Note that this value is only for the first Grid tile, as multigrid support is
added, this interface will likely be changed or moved to adapt.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

419

25.6.17 ESMF_GridGetCoord - Get Grid coordinate bounds anda Fortran pointer to coordinate data

INTERFACE:

subroutine ESMF_GridGetCoord(grid, localDE, coordDim, s taggerloc, &
exclusiveLBound, exclusiveUBound, exclusiveCount, &
computationalLBound, computationalUBound, computation alCount, &
totalLBound, totalUBound, totalCount, &
<pointer argument>, doCopy, rc)

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid
integer, intent(in) :: localDE
integer, intent(in) :: coordDim
type (ESMF_StaggerLoc), intent(in), optional :: staggerl oc
integer, intent(out), optional :: exclusiveLBound(:)
integer, intent(out), optional :: exclusiveUBound(:)
integer, intent(out), optional :: exclusiveCount(:)
integer, intent(out), optional :: computationalLBound(:)
integer, intent(out), optional :: computationalUBound(:)
integer, intent(out), optional :: computationalCount(:)
integer, intent(out), optional :: totalLBound(:)
integer, intent(out), optional :: totalUBound(:)
integer, intent(out), optional :: totalCount(:)
<pointer argument>, see below for supported values
type(ESMF_CopyFlag), intent(in), optional :: docopy
integer, intent(out), optional :: rc

DESCRIPTION:

This method gets a Fortran pointer to the piece of memory which holds the coordinate data on the local DE for the
given coordinate dimension and stagger locations. This is useful, for example, for setting the coordinate values in a
Grid, or for reading the coordinate values. Currently this method supports up to three coordinate dimensions, of either
R4 or R8 datatype. See below for specific supported values. Ifthe coordinates that you are trying to retrieve are of
higher dimension, use theESMF_GetCoord() interface that returns coordinate values in anESMF_Array instead.
That interface supports the retrieval of coordinates up to 7D.
Supported values for the <pointer argument> are:

real(ESMF_KIND_R4), pointer :: fptr(:)

real(ESMF_KIND_R4), pointer :: fptr(:,:)

real(ESMF_KIND_R4), pointer :: fptr(:,:,:)

real(ESMF_KIND_R8), pointer :: fptr(:)

real(ESMF_KIND_R8), pointer :: fptr(:,:)

real(ESMF_KIND_R8), pointer :: fptr(:,:,:)

The arguments are:

grid Grid to get the information from.

[localDE] The local DE to get the information for.[0,..,localDeCount-1]

coordDim The coordinate dimension to get the data from (e.g. 1=x).

420

staggerloc The stagger location to get the information for. Please see Section 25.2.4 for a list of predefined stagger
locations. If not present, defaults to ESMF_STAGGERLOC_CENTER.

[exclusiveLBound] Upon return this holds the lower bounds of the exclusive region. exclusiveLBound must be
allocated to be of size equal to the coord dimCount.

[exclusiveUBound] Upon return this holds the upper bounds of the exclusive region. exclusiveUBound must be
allocated to be of size equal to the coord dimCount.

[exclusiveCount] Upon return this holds the number of items in the exclusive region per dimension (i.e.exclusiveUBound-exclusiveLBound+1
exclusiveCount must be allocated to be of size equal to the coord dimCount. Please see Section 25.3.15
for a description of the regions and their associated boundsand counts.

[computationalLBound] Upon return this holds the lower bounds of the stagger region. computationalLBound
must be allocated to be of size equal to the coord dimCount. Please see Section 25.3.15 for a description of the
regions and their associated bounds and counts.

[computationalUBound] Upon return this holds the upper bounds of the stagger region. exclusiveUBound must
be allocated to be of size equal to the coord dimCount. Pleasesee Section 25.3.15 for a description of the regions
and their associated bounds and counts.

[computationalCount] Upon return this holds the number of items in the computational region per dimension (i.e.
computationalUBound-computationalLBound+1). computationalCount must be allocated to
be of size equal to the coord dimCount. Please see Section 25.3.15 for a description of the regions and their
associated bounds and counts.

[totalLBound] Upon return this holds the lower bounds of the total region.totalLBound must be allocated to
be of size equal to the coord dimCount. Please see Section 25.3.15 for a description of the regions and their
associated bounds and counts.

[totalUBound] Upon return this holds the upper bounds of the total region.totalUBound must be allocated to
be of size equal to the coord dimCount. Please see Section 25.3.15 for a description of the regions and their
associated bounds and counts.

[totalCount] Upon return this holds the number of items in the total regionper dimension (i.e.totalUBound-totalLBound+1).
totalCount must be allocated to be of size equal to the coord dimCount. Please see Section 25.3.15 for a
description of the regions and their associated bounds and counts.

fptr The pointer to the coordinate data.

[doCopy] If not specified, default toESMF_DATA_REF, in this case fptr is a reference to the data in the Grid coordi-
nate arrays. Please see Section 9.2.5 for further description and a list of valid values.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

25.6.18 ESMF_GridGetCoord - Get Grid coordinate bounds

INTERFACE:

! Private name; call using ESMF_GridGetCoord()
subroutine ESMF_GridGetCoordBounds(grid, localDE, coor dDim, staggerloc, &

exclusiveLBound, exclusiveUBound, exclusiveCount, &
computationalLBound, computationalUBound, computation alCount, &
totalLBound, totalUBound, totalCount, rc)

ARGUMENTS:

421

type(ESMF_Grid), intent(in) :: grid
integer, intent(in) :: localDE
integer, intent(in) :: coordDim
type (ESMF_StaggerLoc), intent(in), optional :: staggerl oc
integer, target, intent(out), optional :: exclusiveLBoun d(:)
integer, target, intent(out), optional :: exclusiveUBoun d(:)
integer, target, intent(out), optional :: exclusiveCount (:)
integer, target, intent(out), optional :: computationalL Bound(:)
integer, target, intent(out), optional :: computationalU Bound(:)
integer, target, intent(out), optional :: computationalC ount(:)
integer, target, intent(out), optional :: totalLBound(:)
integer, target, intent(out), optional :: totalUBound(:)
integer, target, intent(out), optional :: totalCount(:)
integer, intent(out), optional :: rc

DESCRIPTION:

This method gets information about the range of index space which a particular piece of coordinate data occupies. In
other words, this method returns the bounds of the coordinate arrays. Note that unlike the output from the Array, these
values also include the undistributed dimensions and are ordered to reflect the order of the indices in the coordinate.
So, for example,totalLBound and totalUBound should match the bounds of the Fortran array retrieved by
ESMF_GridGetCoord .
The arguments are:

grid Grid to get the information from.

[localDE] The local DE from which to get the information.[0,..,localDeCount-1]

coordDim The coordinate dimension to get the information for (e.g. 1=x).

staggerloc The stagger location to get the information for. Please see Section 25.2.4 for a list of predefined stagger
locations. If not present, defaults to ESMF_STAGGERLOC_CENTER.

[exclusiveLBound] Upon return this holds the lower bounds of the exclusive region. exclusiveLBound must be
allocated to be of size equal to the coord dimCount. Please see Section 25.3.15 for a description of the regions
and their associated bounds and counts.

[exclusiveUBound] Upon return this holds the upper bounds of the exclusive region. exclusiveUBound must be
allocated to be of size equal to the coord dimCount. Please see Section 25.3.15 for a description of the regions
and their associated bounds and counts.

[exclusiveCount] Upon return this holds the number of items in the exclusive region per dimension (i.e.exclusiveUBound-exclusiveLBound+1
exclusiveCount must be allocated to be of size equal to the coord dimCount. Please see Section 25.3.15
for a description of the regions and their associated boundsand counts.

[computationalLBound] Upon return this holds the lower bounds of the stagger region. computationalLBound
must be allocated to be of size equal to the coord dimCount. Please see Section 25.3.15 for a description of the
regions and their associated bounds and counts.

[computationalUBound] Upon return this holds the upper bounds of the stagger region. computationalUBound
must be allocated to be of size equal to the coord dimCount. Please see Section 25.3.15 for a description of the
regions and their associated bounds and counts.

[computationalCount] Upon return this holds the number of items in the computational region per dimension (i.e.
computationalUBound-computationalLBound+1). computationalCount must be allocated to
be of size equal to the coord dimCount. Please see Section 25.3.15 for a description of the regions and their
associated bounds and counts.

422

[totalLBound] Upon return this holds the lower bounds of the total region.totalLBound must be allocated to
be of size equal to the coord dimCount. Please see Section 25.3.15 for a description of the regions and their
associated bounds and counts.

[totalUBound] Upon return this holds the upper bounds of the total region.totalUBound must be allocated to
be of size equal to the coord dimCount. Please see Section 25.3.15 for a description of the regions and their
associated bounds and counts.

[totalCount] Upon return this holds the number of items in the total regionper dimension (i.e.totalUBound-totalLBound+1).
totalCount must be allocated to be of size equal to the coord dimCount. Please see Section 25.3.15 for a
description of the regions and their associated bounds and counts.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

25.6.19 ESMF_GridGetCoord - Get coordinates and put in an Array

INTERFACE:

! Private name; call using ESMF_GridGetCoord()
subroutine ESMF_GridGetCoordIntoArray(grid, staggerlo c,coordDim, array, &

docopy, rc)

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid
type (ESMF_StaggerLoc), intent(in),optional :: staggerl oc
integer, intent(in) :: coordDim
type(ESMF_Array), intent(out) :: array
type(ESMF_CopyFlag), intent(in), optional :: docopy ! NOT IMPLEMENTED
integer, intent(out), optional :: rc

DESCRIPTION:

This method allows the user to get access to the ESMF Array holding coordinate data at a particular stagger location.
This is useful, for example, to set the coordinate values. Tohave an Array to access, the coordinate Arrays must have
already been allocated, for example byESMF_GridAddCoord or ESMF_GridSetCoord .
The arguments are:

staggerloc The stagger location from which to get the arrays. Please seeSection 25.2.4 for a list of predefined stagger
locations. If not present, defaults to ESMF_STAGGERLOC_CENTER.

coordDim The coordinate dimension to get the data from (e.g. 1=x).

array An array into which to put the coordinate infomation.

[doCopy] If not specified, default toESMF_DATA_REF, in this casearray will contain a reference to the Grid coor-
dinate Arrays. Please see Section 9.2.5 for further description and a list of valid values. [THE ESMF_DATA_COPY
OPTION IS CURRENTLY NOT IMPLEMENTED]

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

423

25.6.20 ESMF_GridGetCoord - Get coordinates from a specificindex location

INTERFACE:

! Private name; call using ESMF_GridGetCoord()
subroutine ESMF_GridGetCoordR4(grid, localDE, staggerl oc, index, coord, rc)

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid
type (ESMF_StaggerLoc), intent(in),optional :: staggerl oc
integer, intent(in) :: localDE
integer, intent(in) :: index(:)
real(ESMF_KIND_R4) :: coord(:)
integer, intent(out), optional :: rc

DESCRIPTION:

Given a specific index location in a Grid, this method returnsthe full set of coordinates from that index location. This
method will eventually be overloaded to support the full complement of types supported by the Grid.
The arguments are:

grid Grid to get the information from.

[localDE] The local DE to get the information for.[0,..,localDeCount-1]

staggerloc The stagger location to get the information for. Please see Section 25.2.4 for a list of predefined stagger
locations. If not present, defaults to ESMF_STAGGERLOC_CENTER.

index This array holds the index location to be queried in the Grid.This array must at least be of the size Grid rank.

coord This array will be filled with the coordinate data. This arraymust at least be of the size Grid rank.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

25.6.21 ESMF_GridGetCoord - Get coordinates from a specificindex location

INTERFACE:

! Private name; call using ESMF_GridGetCoord()
subroutine ESMF_GridGetCoordR8(grid, localDE, staggerl oc, index, coord, rc)

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid
type (ESMF_StaggerLoc), intent(in),optional :: staggerl oc
integer, intent(in) :: localDE
integer, intent(in) :: index(:)
real(ESMF_KIND_R8) :: coord(:)
integer, intent(out), optional :: rc

DESCRIPTION:

Given a specific index location in a Grid, this method returnsthe full set of coordinates from that index location. This
method will eventually be overloaded to support the full complement of types supported by the Grid.
The arguments are:

424

grid Grid to get the information from.

[localDE] The local DE to get the information for.[0,..,localDeCount-1]

staggerloc The stagger location to get the information for. Please see Section 25.2.4 for a list of predefined stagger
locations. If not present, defaults to ESMF_STAGGERLOC_CENTER.

index This array holds the index location to be queried in the Grid.This array must at least be of the size Grid rank.

coord This array will be filled with the coordinate data. This arraymust at least be of the size Grid rank.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

25.6.22 ESMF_GridGetItem - Get Grid coordinate bounds and an F90 pointer to coordinate data

INTERFACE:

subroutine ESMF_GridGetItem(grid, localDE, staggerloc, item, &
exclusiveLBound, exclusiveUBound, exclusiveCount, &
computationalLBound, computationalUBound, computation alCount, &
totalLBound, totalUBound, totalCount, &
<pointer argument>, doCopy, rc)

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid
integer, intent(in) :: localDE
type (ESMF_StaggerLoc), intent(in), optional :: staggerl oc
type (ESMF_GridItem), intent(in) :: item
integer, intent(out), optional :: exclusiveLBound(:)
integer, intent(out), optional :: exclusiveUBound(:)
integer, intent(out), optional :: exclusiveCount(:)
integer, intent(out), optional :: computationalLBound(:)
integer, intent(out), optional :: computationalUBound(:)
integer, intent(out), optional :: computationalCount(:)
integer, intent(out), optional :: totalLBound(:)
integer, intent(out), optional :: totalUBound(:)
integer, intent(out), optional :: totalCount(:)
<pointer argument>, see below for supported values
type(ESMF_CopyFlag), intent(in), optional :: docopy
integer, intent(out), optional :: rc

DESCRIPTION:

This method gets a Fortran pointer to the piece of memory which holds the item data on the local DE for the given
stagger locations. This is useful, for example, for settingthe item values in a Grid, or for reading the item values.
Currently this method supports up to three grid dimensions,but is limited to the I4 datatype. See below for specific
supported values. If the item values that you are trying to retrieve are of higher dimension, use theESMF_GetItem()
interface that returns coordinate values in anESMF_Array instead. That interface supports the retrieval of coordinates
up to 7D.
Supported values for the <pointer argument> are:

integer(ESMF_KIND_I4), pointer :: fptr(:)

integer(ESMF_KIND_I4), pointer :: fptr(:,:)

425

integer(ESMF_KIND_I4), pointer :: fptr(:,:,:)

real(ESMF_KIND_R4), pointer :: fptr(:)

real(ESMF_KIND_R4), pointer :: fptr(:,:)

real(ESMF_KIND_R4), pointer :: fptr(:,:,:)

real(ESMF_KIND_R8), pointer :: fptr(:)

real(ESMF_KIND_R8), pointer :: fptr(:,:)

real(ESMF_KIND_R8), pointer :: fptr(:,:,:)

The arguments are:

grid Grid to get the information from.

localDE The local DE to get the information for.[0,..,localDeCount-1]

staggerloc The stagger location to get the information for. Please see Section 25.2.4 for a list of predefined stagger
locations. If not present, defaults to ESMF_STAGGERLOC_CENTER.

item The item to get the information for. Please see Section 25.2.3 for a list of valid items.

[exclusiveLBound] Upon return this holds the lower bounds of the exclusive region. exclusiveLBound must be
allocated to be of size equal to the grid dimCount.

[exclusiveUBound] Upon return this holds the upper bounds of the exclusive region. exclusiveUBound must be
allocated to be of size equal to the grid dimCount.

[exclusiveCount] Upon return this holds the number of items in the exclusive region per dimension (i.e.exclusiveUBound-exclusiveLBound+1
exclusiveCount must be allocated to be of size equal to the grid dimCount. Please see Section 25.3.15 for
a description of the regions and their associated bounds andcounts.

[computationalLBound] Upon return this holds the lower bounds of the stagger region. computationalLBound
must be allocated to be of size equal to the grid dimCount. Please see Section 25.3.15 for a description of the
regions and their associated bounds and counts.

[computationalUBound] Upon return this holds the upper bounds of the stagger region. exclusiveUBound must
be allocated to be of size equal to the grid dimCount. Please see Section 25.3.15 for a description of the regions
and their associated bounds and counts.

[computationalCount] Upon return this holds the number of items in the computational region per dimension (i.e.
computationalUBound-computationalLBound+1). computationalCount must be allocated to
be of size equal to the grid dimCount. Please see Section 25.3.15 for a description of the regions and their
associated bounds and counts.

[totalLBound] Upon return this holds the lower bounds of the total region.totalLBound must be allocated to
be of size equal to the grid dimCount. Please see Section 25.3.15 for a description of the regions and their
associated bounds and counts.

[totalUBound] Upon return this holds the upper bounds of the total region.totalUBound must be allocated to
be of size equal to the grid dimCount. Please see Section 25.3.15 for a description of the regions and their
associated bounds and counts.

[totalCount] Upon return this holds the number of items in the total regionper dimension (i.e.totalUBound-totalLBound+1).
totalCount must be allocated to be of size equal to the grid dimCount. Please see Section 25.3.15 for a de-
scription of the regions and their associated bounds and counts.

fptr The pointer to the item data.

426

[doCopy] If not specified, default toESMF_DATA_REF, in this case fptr is a reference to the data in the Grid item
arrays. Please see Section 9.2.5 for further description and a list of valid values.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

25.6.23 ESMF_GridGetItem - Get Grid item bounds

INTERFACE:

! Private name; call using ESMF_GridGetItem()
subroutine ESMF_GridGetItemBounds(grid, localDE, stagg erloc, item, &

exclusiveLBound, exclusiveUBound, exclusiveCount, &
computationalLBound, computationalUBound, computation alCount, &
totalLBound, totalUBound, totalCount, rc)

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid
integer, intent(in) :: localDE
type (ESMF_StaggerLoc), intent(in), optional :: staggerl oc
type (ESMF_GridItem), intent(in) :: item
integer, target, intent(out), optional :: exclusiveLBoun d(:)
integer, target, intent(out), optional :: exclusiveUBoun d(:)
integer, target, intent(out), optional :: exclusiveCount (:)
integer, target, intent(out), optional :: computationalL Bound(:)
integer, target, intent(out), optional :: computationalU Bound(:)
integer, target, intent(out), optional :: computationalC ount(:)
integer, target, intent(out), optional :: totalLBound(:)
integer, target, intent(out), optional :: totalUBound(:)
integer, target, intent(out), optional :: totalCount(:)
integer, intent(out), optional :: rc

DESCRIPTION:

This method gets information about the range of index space which a particular piece of item data occupies. In
other words, this method returns the bounds of the item arrays. Note that unlike the output from the Array, these
values also include the undistributed dimensions and are ordered to reflect the order of the indices in the item.
So, for example,totalLBound and totalUBound should match the bounds of the Fortran array retrieved by
ESMF_GridGetItem .
The arguments are:

grid Grid to get the information from.

localDE The local DE from which to get the information.[0,..,localDeCount-1]

staggerloc The stagger location to get the information for. Please see Section 25.2.4 for a list of predefined stagger
locations. If not present, defaults to ESMF_STAGGERLOC_CENTER.

item The item to get the information for. Please see Section 25.2.3 for a list of valid items.

[exclusiveLBound] Upon return this holds the lower bounds of the exclusive region. exclusiveLBound must be
allocated to be of size equal to the item dimCount. Please seeSection 25.3.15 for a description of the regions
and their associated bounds and counts.

427

[exclusiveUBound] Upon return this holds the upper bounds of the exclusive region. exclusiveUBound must be
allocated to be of size equal to the item dimCount. Please seeSection 25.3.15 for a description of the regions
and their associated bounds and counts.

[exclusiveCount] Upon return this holds the number of items in the exclusive region per dimension (i.e.exclusiveUBound-exclusiveLBound+1
exclusiveCount must be allocated to be of size equal to the item dimCount. Please see Section 25.3.15 for
a description of the regions and their associated bounds andcounts.

[computationalLBound] Upon return this holds the lower bounds of the stagger region. computationalLBound
must be allocated to be of size equal to the item dimCount. Please see Section 25.3.15 for a description of the
regions and their associated bounds and counts.

[computationalUBound] Upon return this holds the upper bounds of the stagger region. computationalUBound
must be allocated to be of size equal to the item dimCount. Please see Section 25.3.15 for a description of the
regions and their associated bounds and counts.

[computationalCount] Upon return this holds the number of items in the computational region per dimension (i.e.
computationalUBound-computationalLBound+1). computationalCount must be allocated to
be of size equal to the item dimCount. Please see Section 25.3.15 for a description of the regions and their
associated bounds and counts.

[totalLBound] Upon return this holds the lower bounds of the total region.totalLBound must be allocated to
be of size equal to the item dimCount. Please see Section 25.3.15 for a description of the regions and their
associated bounds and counts.

[totalUBound] Upon return this holds the upper bounds of the total region.totalUBound must be allocated to
be of size equal to the item dimCount. Please see Section 25.3.15 for a description of the regions and their
associated bounds and counts.

[totalCount] Upon return this holds the number of items in the total regionper dimension (i.e.totalUBound-totalLBound+1).
totalCount must be allocated to be of size equal to the item dimCount. Please see Section 25.3.15 for a de-
scription of the regions and their associated bounds and counts.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

25.6.24 ESMF_GridGetItem - Get item and put into an Array

INTERFACE:

! Private name; call using ESMF_GridGetItem()
subroutine ESMF_GridGetItemIntoArray(grid, staggerloc , item, array, &

docopy, rc)

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid
type (ESMF_StaggerLoc), intent(in),optional :: staggerl oc
type (ESMF_GridItem), intent(in) :: item
type(ESMF_Array), intent(out) :: array
type(ESMF_CopyFlag), intent(in), optional :: docopy ! NOT IMPLEMENTED
integer, intent(out), optional :: rc

DESCRIPTION:

This method allows the user to get access to the ESMF Array holding item data at a particular stagger location. This
is useful, for example, to set the item values. To have an Array to access, the item Array must have already been
allocated, for example byESMF_GridAddItem or ESMF_GridSetItem .
The arguments are:

428

staggerloc The stagger location from which to get the arrays. Please seeSection 25.2.4 for a list of predefined stagger
locations. If not present, defaults to ESMF_STAGGERLOC_CENTER.

item The item from which to get the arrays. Please see Section 25.2.3 for a list of valid items.

array An array into which to put the item infomation.

[doCopy] If not specified, default toESMF_DATA_REF, in this casearray will contain a reference to the Grid item
Arrays. Please see Section 9.2.5 for further description and a list of valid values. [THE ESMF_DATA_COPY
OPTION IS CURRENTLY NOT IMPLEMENTED]

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

25.6.25 ESMF_GridGetStatus - Return the status of the Grid

INTERFACE:

function ESMF_GridGetStatus(grid)

RETURN VALUE:

type(ESMF_GridStatus) :: ESMF_GridGetStatus

ARGUMENTS:

type(ESMF_Grid) :: grid

DESCRIPTION:

Returns the status of the passed in Grid object.
The arguments are:

grid The grid to return the status from.

25.6.26 ESMF_GridMatch - Check if two Grid objects match

INTERFACE:

function ESMF_GridMatch(grid1, grid2, rc)

RETURN VALUE:

logical :: ESMF_GridMatch

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid1
type(ESMF_Grid), intent(in) :: grid2
integer, intent(out), optional :: rc

429

DESCRIPTION:

Check if grid1 and grid2 match. Returns .true. if Grid objects match, .false. otherwise. This method con-
siders most parts of the Grids when testing for a match (coordinates, items, Distgrids, Arrays, etc). The parts
which aren’t considered for a match are thedestroyDistgrid and thedestroyDELayout flags used in the
ESMF_GridCreateFrmDistgrid() call. Please also note that this call returns the match for the piece of the
Grids on the local PET only. It’s entirely possible for this call to return a different match on different PETs for the
same Grids. The user is responsible for computing the globalmatch across the set of PETs.
The arguments are:

grid1 ESMF_Grid object.

grid2 ESMF_Grid object.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

25.6.27 ESMF_GridSetCoord - Set coordinates using Arrays

INTERFACE:

subroutine ESMF_GridSetCoordFromArray(grid, staggerlo c, coordDim, &
array, doCopy, rc)

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid
type (ESMF_StaggerLoc), intent(in), optional :: staggerl oc
integer, intent(in) :: coordDim
type(ESMF_Array), intent(in) :: array
type(ESMF_CopyFlag), intent(in), optional :: docopy ! NOT IMPLEMENTED
integer, intent(out), optional :: rc

DESCRIPTION:

This method sets the passed in Array as the holder of the coordinate data for stagger locationstaggerloc and
coordinatecoord . If the location already contains an Array, then this one overwrites it.
The arguments are:

staggerloc The stagger location into which to copy the arrays. Please see Section 25.2.4 for a list of predefined stagger
locations. If not present, defaults to ESMF_STAGGERLOC_CENTER.

coordDim The coordinate dimension to put the data in (e.g. 1=x).

array An array to set the grid coordinate information from.

[doCopy] If not specified, default toESMF_DATA_REF, in this case the Grid coordinate Array will be set to a refer-
ence toarray . Please see Section 9.2.5 for further description and a listof valid values. [THE ESMF_DATA_COPY
OPTION IS CURRENTLY NOT IMPLEMENTED]

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

430

25.6.28 ESMF_GridSetCommitShapeTile - Set and complete a Grid with an irregular distribution

INTERFACE:

! Private name; call using ESMF_GridSetCommitShapeTile()
subroutine ESMF_GridSetCmmitShapeTileIrreg(grid, name ,coordTypeKind, minIndex, &

countsPerDEDim1, countsPerDeDim2, countsPerDEDim3, &
connDim1, connDim2, connDim3, &
poleStaggerLoc1, poleStaggerLoc2, poleStaggerLoc3, &
bipolePos1, bipolePos2, bipolePos3, &
coordDep1, coordDep2, coordDep3, &
gridEdgeLWidth, gridEdgeUWidth, gridAlign, gridMemLBou nd, &
indexflag, petMap, rc)

ARGUMENTS:

type (ESMF_Grid) :: grid
character (len= *), intent(in), optional :: name

type(ESMF_TypeKind), intent(in), optional :: coordTypeK ind
integer, intent(in), optional :: minIndex(:)
integer, intent(in) :: countsPerDEDim1(:)
integer, intent(in) :: countsPerDEDim2(:)
integer, intent(in), optional :: countsPerDEDim3(:)
type(ESMF_GridConn), intent(in), optional :: connDim1(:) ! N. IMP.
type(ESMF_GridConn), intent(in), optional :: connDim2(:) ! N. IMP.
type(ESMF_GridConn), intent(in), optional :: connDim3(:) ! N. IMP.
type(ESMF_StaggerLoc), intent(in), optional :: poleStag gerLoc1(2) ! N. IMP.
type(ESMF_StaggerLoc), intent(in), optional :: poleStag gerLoc2(2) ! N. IMP.
type(ESMF_StaggerLoc), intent(in), optional :: poleStag gerLoc3(2) ! N. IMP.
integer, intent(in), optional :: bipolePos1(2) ! N. IMP.
integer, intent(in), optional :: bipolePos2(2) ! N. IMP.
integer, intent(in), optional :: bipolePos3(2) ! N. IMP.
integer, intent(in), optional :: coordDep1(:)
integer, intent(in), optional :: coordDep2(:)
integer, intent(in), optional :: coordDep3(:)
integer, intent(in), optional :: gridEdgeLWidth(:)
integer, intent(in), optional :: gridEdgeUWidth(:)
integer, intent(in), optional :: gridAlign(:)
integer, intent(in), optional :: gridMemLBound(:)
type(ESMF_IndexFlag), intent(in), optional :: indexflag
integer, intent(in), optional :: petMap(:,:,:)
integer, intent(out), optional :: rc

DESCRIPTION:

This method sets information into an empty Grid and then commits it to create a single tile, irregularly distributed
grid (see Figure 12). To specify the irregular distribution, the user passes in an array for each grid dimension, where
the length of the array is the number of DEs in the dimension. Up to three dimensions can be specified, using the
countsPerDEDim1, countsPerDEDim2, countsPerDEDim3 arguments. The index of each array element corresponds
to a DE number. The array value at the index is the number of grid cells on the DE in that dimension. The dimCount
of the grid is equal to the number of countsPerDEDim arrays that are specified.
Section 25.3.3 shows an example of using this method to create a 2D Grid with uniformly spaced coordinates. This
creation method can also be used as the basis for grids with rectilinear coordinates or curvilinear coordinates.
For consistency’s sake theESMF_GridSetCommitShapeTile() call should be executed in the same set or a
subset of the PETs in which theESMF_GridCreateEmpty() call was made. If the call is made in a subset, the
Grid objects outside that subset will still be "empty" and not usable.

431

The arguments are:

grid The emptyESMF_Grid to set information into and then commit.

[name] ESMF_Grid name.

[coordTypeKind] The type/kind of the grid coordinate data. If not specified then the type/kind will be 8 byte reals.

[minIndex] Tuple to start the index ranges at. If not present, defaults to /1,1,1,.../.

countsPerDEDim1 This arrays specifies the number of cells per DE for index dimension 1 for the exclusive region
(the center stagger location). If the array has only one entry, then the dimension is undistributed.

countsPerDEDim2 This array specifies the number of cells per DE for index dimension 2 for the exclusive region
(center stagger location). If the array has only one entry, then the dimension is undistributed.

[countsPerDEDim3] This array specifies the number of cells per DE for index dimension 3 for the exclusive region
(center stagger location). If not specified then grid is 2D. Also, If the array has only one entry, then the dimension
is undistributed.

[connDim1] Fortran array describing the index dimension 1 connections. The first element represents the minimum
end of dimension 1. The second element represents the maximum end of dimension 1. If array is only one
element long, then that element is used for both the minimum and maximum end. Please see Section 25.2.1 for
a list of valid options. If not present, defaults to ESMF_GRIDCONN_NONE. [CURRENTLY NOT IMPLE-
MENTED]

[connDim2] Fortran array describing the index dimension 2 connections. The first element represents the minimum
end of dimension 2. The second element represents the maximum end of dimension 2. If array is only one
element long, then that element is used for both the minimum and maximum end. Please see Section 25.2.1 for
a list of valid options. If not present, defaults to ESMF_GRIDCONN_NONE. [CURRENTLY NOT IMPLE-
MENTED]

[connDim3] Fortran array describing the index dimension 3 connections. The first element represents the minimum
end of dimension 3. The second element represents the maximum end of dimension 3 If array is only one element
long, then that element is used for both the minimum and maximum end. Please see Section 25.2.1 for a list of
valid options. If not present, defaults to ESMF_GRIDCONN_NONE. [CURRENTLY NOT IMPLEMENTED]

[poleStaggerLoc1] Two element array describing the index dimension 1 connections. The first element represents
the minimum end of dimension 1. The second element represents the maximum end of dimension 1. If a
pole, this describes which staggerlocation is at the pole ateach end. Please see Section 25.2.4 for a list of
predefined stagger locations. If not present, defaults to ESMF_STAGGERLOC_CENTER. [CURRENTLY NOT
IMPLEMENTED]

[poleStaggerLoc2] Two element array describing the index dimension 2 connections. The first element represents
the minimum end of dimension 2. The second element represents the maximum end of dimension 2. If a
pole, this describes which staggerlocation is at the pole ateach end. Please see Section 25.2.4 for a list of
predefined stagger locations. If not present, defaults to ESMF_STAGGERLOC_CENTER. [CURRENTLY NOT
IMPLEMENTED]

[poleStaggerLoc3] Two element array describing the index dimension 3 connections. The first element represents the
minimum end of dimension 3. The second element represents the maximum end of dimension 3. If a pole, this
describes which staggerlocation is at the pole at each end. If not present, the default is the edge. Please see Sec-
tion 25.2.4 for a list of predefined stagger locations. If notpresent, defaults to ESMF_STAGGERLOC_CENTER.
[CURRENTLY NOT IMPLEMENTED]

[bipolePos1] Two element array describing the index dimension 1 connections. The first element represents the
minimum end of dimension 1. The second element represents the maximum end of dimension 1. If a bipole,
this gives the index position of one of the poles. The other ishalf way around. If not present, the default is 1.
[CURRENTLY NOT IMPLEMENTED]

432

[bipolePos2] Two element array describing the index dimension 2 connections. The first element represents the
minimum end of dimension 2. The second element represents the maximum end of dimension 2. If a bipole,
this gives the index position of one of the poles. The other ishalf way around. If not present, the default is 1.
[CURRENTLY NOT IMPLEMENTED]

[bipolePos3] Two element array describing the index dimension 3 connections. The first element represents the
minimum end of dimension 3. The second element represents the maximum end of dimension 3. If a bipole,
this gives the index position of one of the poles. The other ishalf way around. If not present, the default is 1.
[CURRENTLY NOT IMPLEMENTED]

[coordDep1] This array specifies the dependence of the first coordinate component on the three index dimensions
described bycoordsPerDEDim1,2,3 . The size of the array specifies the number of dimensions of the first
coordinate component array. The values specify which of theindex dimensions the corresponding coordinate
arrays map to. If not present the default is 1,2,...,grid rank.

[coordDep2] This array specifies the dependence of the second coordinatecomponent on the three index dimen-
sions described bycoordsPerDEDim1,2,3 . The size of the array specifies the number of dimensions of
the second coordinate component array. The values specify which of the index dimensions the corresponding
coordinate arrays map to. If not present the default is 1,2,...,grid rank.

[coordDep3] This array specifies the dependence of the third coordinate component on the three index dimensions
described bycoordsPerDEDim1,2,3 . The size of the array specifies the number of dimensions of the third
coordinate component array. The values specify which of theindex dimensions the corresponding coordinate
arrays map to. If not present the default is 1,2,...,grid rank.

[gridEdgeLWidth] The padding around the lower edges of the grid. This padding is between the index space cor-
responding to the cells and the boundary of the the exclusiveregion. This extra space is to contain the extra
padding for non-center stagger locations, and should be bigenough to hold any stagger in the grid.

[gridEdgeUWidth] The padding around the upper edges of the grid. This padding is between the index space cor-
responding to the cells and the boundary of the the exclusiveregion. This extra space is to contain the extra
padding for non-center stagger locations, and should be bigenough to hold any stagger in the grid.

[gridAlign] Specification of how the stagger locations should align withthe cell index space (can be overridden
by the individual staggerAligns). If thegridEdgeWidths are not specified than this parameter implies the
EdgeWidths.

[gridMemLBound] Specifies the lower index range of the memory of every DE in this Grid. Only used when
indexflag isESMF_INDEX_USER. May be overridden by staggerMemLBound.

[indexflag] Indicates the indexing scheme to be used in the new Grid. Please see Section 9.2.9 for the list of options.
If not present, defaults to ESMF_INDEX_DELOCAL.

[petMap] Sets the mapping of pets to the created DEs. This 3D should be of size size(countsPerDEDim1) x size(countsPerDEDim2)
x size(countsPerDEDim3). If countsPerDEDim3 isn’t present, then the last dimension is of size 1.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

25.6.29 ESMF_GridSetCommitShapeTile - Set and complete a Grid with a regular distribution

INTERFACE:

! Private name; call using ESMF_GridSetCommitShapeTile()
subroutine ESMF_GridSetCmmitShapeTileReg(grid, name, c oordTypeKind, &

regDecomp, decompFlag, minIndex, maxIndex, &
connDim1, connDim2, connDim3, &

433

poleStaggerLoc1, poleStaggerLoc2, poleStaggerLoc3, &
bipolePos1, bipolePos2, bipolePos3, &
coordDep1, coordDep2, coordDep3, &
gridEdgeLWidth, gridEdgeUWidth, gridAlign, &
gridMemLBound, indexflag, petMap, rc)

ARGUMENTS:

type(ESMF_Grid), intent(inout) :: grid
character (len= *), intent(in), optional :: name
type(ESMF_TypeKind), intent(in), optional :: coordTypeK ind
integer, intent(in), optional :: regDecomp(:)
type(ESMF_DecompFlag), intent(in), optional :: decompfl ag(:)
integer, intent(in), optional :: minIndex(:)
integer, intent(in) :: maxIndex(:)
type(ESMF_GridConn), intent(in), optional :: connDim1(:) ! N. IMP.
type(ESMF_GridConn), intent(in), optional :: connDim2(:) ! N. IMP.
type(ESMF_GridConn), intent(in), optional :: connDim3(:) ! N. IMP.
type(ESMF_StaggerLoc), intent(in), optional :: poleStag gerLoc1(2) ! N. IMP.
type(ESMF_StaggerLoc), intent(in), optional :: poleStag gerLoc2(2) ! N. IMP.
type(ESMF_StaggerLoc), intent(in), optional :: poleStag gerLoc3(2) ! N. IMP.
integer, intent(in), optional :: bipolePos1(2) ! N. IMP.
integer, intent(in), optional :: bipolePos2(2) ! N. IMP.
integer, intent(in), optional :: bipolePos3(2) ! N. IMP.
integer, intent(in), optional :: coordDep1(:)
integer, intent(in), optional :: coordDep2(:)
integer, intent(in), optional :: coordDep3(:)
integer, intent(in), optional :: gridEdgeLWidth(:)
integer, intent(in), optional :: gridEdgeUWidth(:)
integer, intent(in), optional :: gridAlign(:)
integer, intent(in), optional :: gridMemLBound(:)
type(ESMF_IndexFlag), intent(in), optional :: indexflag
integer, intent(in), optional :: petMap(:,:,:)
integer, intent(out), optional :: rc

DESCRIPTION:

This method sets information into an empty Grid and then commits it to create a single tile, regularly distributed grid
(see Figure 12). To specify the distribution, the user passes in an array (regDecomp) specifying the number of DEs
to divide each dimension into. If the number of DEs is 1 than the dimension is undistributed. The arraydecompFlag
indicates how the division into DEs is to occur. The default is to divide the range as evenly as possible.
For consistency’s sake theESMF_GridSetCommitShapeTile() call should be executed in the same set or a
subset of the PETs in which theESMF_GridCreateEmpty() call was made. If the call is made in a subset, the
Grid objects outside that subset will still be "empty" and not usable.
The arguments are:

grid ESMF_Grid to set information into and then commit.

[name] ESMF_Grid name.

[coordTypeKind] The type/kind of the grid coordinate data. If not specified then the type/kind will be 8 byte reals.

[regDecomp] List that has the same number of elements asmaxIndex . Each entry is the number of decounts for
that dimension. If not specified, the default decompositionwill be petCountx1x1..x1.

[decompflag] List of decomposition flags indicating how each dimension ofthe patch is to be divided between the
DEs. The default setting isESMF_DECOMP_HOMOGENin all dimensions. Please see Section 9.2.7 for a full
description of the possible options.

434

[minIndex] The bottom extent of the grid array. If not given then the value defaults to /1,1,1,.../.

maxIndex The upper extent of the grid array.

[connDim1] Fortran array describing the index dimension 1 connections. The first element represents the minimum
end of dimension 1. The second element represents the maximum end of dimension 1. If array is only one
element long, then that element is used for both the minimum and maximum end. Please see Section 25.2.1 for
a list of valid options. If not present, defaults to ESMF_GRIDCONN_NONE. [CURRENTLY NOT IMPLE-
MENTED]

[connDim2] Fortran array describing the index dimension 2 connections. The first element represents the minimum
end of dimension 2. The second element represents the maximum end of dimension 2. If array is only one
element long, then that element is used for both the minimum and maximum end. Please see Section 25.2.1 for
a list of valid options. If not present, defaults to ESMF_GRIDCONN_NONE. [CURRENTLY NOT IMPLE-
MENTED]

[connDim3] Fortran array describing the index dimension 3 connections. The first element represents the minimum
end of dimension 3. The second element represents the maximum end of dimension 3. If array is only one
element long, then that element is used for both the minimum and maximum end. Please see Section 25.2.1 for
a list of valid options. If not present, defaults to ESMF_GRIDCONN_NONE. [CURRENTLY NOT IMPLE-
MENTED]

[poleStaggerLoc1] Two element array describing the index dimension 1 connections. The first element represents
the minimum end of dimension 1. The second element represents the maximum end of dimension 1. If a
pole, this describes which staggerlocation is at the pole ateach end. Please see Section 25.2.4 for a list of
predefined stagger locations. If not present, defaults to ESMF_STAGGERLOC_CENTER. [CURRENTLY NOT
IMPLEMENTED]

[poleStaggerLoc2] Two element array describing the index dimension 2 connections. The first element represents
the minimum end of dimension 2. The second element represents the maximum end of dimension 2. If a
pole, this describes which staggerlocation is at the pole ateach end. Please see Section 25.2.4 for a list of
predefined stagger locations. If not present, defaults to ESMF_STAGGERLOC_CENTER. [CURRENTLY NOT
IMPLEMENTED]

[poleStaggerLoc3] Two element array describing the index dimension 3 connections. The first element represents
the minimum end of dimension 3. The second element represents the maximum end of dimension 3. If a
pole, this describes which staggerlocation is at the pole ateach end. Please see Section 25.2.4 for a list of
predefined stagger locations. If not present, defaults to ESMF_STAGGERLOC_CENTER. [CURRENTLY NOT
IMPLEMENTED]

[bipolePos1] Two element array describing the index dimension 1 connections. The first element represents the
minimum end of dimension 1. The second element represents the maximum end of dimension 1. If a bipole,
this gives the index position of one of the poles. The other ishalf way around. If not present, the default is 1.
[CURRENTLY NOT IMPLEMENTED]

[bipolePos2] Two element array describing the index dimension 2 connections. The first element represents the
minimum end of dimension 2. The second element represents the maximum end of dimension 2. If a bipole,
this gives the index position of one of the poles. The other ishalf way around. If not present, the default is 1.
[CURRENTLY NOT IMPLEMENTED]

[bipolePos3] Two element array describing the index dimension 3 connections. The first element represents the
minimum end of dimension 3. The second element represents the maximum end of dimension 3. If a bipole,
this gives the index position of one of the poles. The other ishalf way around. If not present, the default is 1.
[CURRENTLY NOT IMPLEMENTED]

[coordDep1] This array specifies the dependence of the first coordinate component on the three index dimensions
described bycoordsPerDEDim1,2,3 . The size of the array specifies the number of dimensions of the first
coordinate component array. The values specify which of theindex dimensions the corresponding coordinate
arrays map to. If not present the default is 1,2,...,grid rank.

435

[coordDep2] This array specifies the dependence of the second coordinatecomponent on the three index dimen-
sions described bycoordsPerDEDim1,2,3 . The size of the array specifies the number of dimensions of
the second coordinate component array. The values specify which of the index dimensions the corresponding
coordinate arrays map to. If not present the default is 1,2,...,grid rank.

[coordDep3] This array specifies the dependence of the third coordinate component on the three index dimensions
described bycoordsPerDEDim1,2,3 . The size of the array specifies the number of dimensions of the third
coordinate component array. The values specify which of theindex dimensions the corresponding coordinate
arrays map to. If not present the default is 1,2,...,grid rank.

[gridEdgeLWidth] The padding around the lower edges of the grid. This padding is between the index space cor-
responding to the cells and the boundary of the the exclusiveregion. This extra space is to contain the extra
padding for non-center stagger locations, and should be bigenough to hold any stagger in the grid.

[gridEdgeUWidth] The padding around the upper edges of the grid. This padding is between the index space cor-
responding to the cells and the boundary of the the exclusiveregion. This extra space is to contain the extra
padding for non-center stagger locations, and should be bigenough to hold any stagger in the grid.

[gridAlign] Specification of how the stagger locations should align withthe cell index space (can be overridden
by the individual staggerAligns). If thegridEdgeWidths are not specified than this parameter implies the
EdgeWidths.

[gridMemLBound] Specifies the lower index range of the memory of every DE in this Grid. Only used when
indexflag isESMF_INDEX_USER. May be overridden by staggerMemLBound.

[indexflag] Indicates the indexing scheme to be used in the new Grid. Please see Section 9.2.9 for the list of options.
If not present, defaults to ESMF_INDEX_DELOCAL.

[petMap] Sets the mapping of pets to the created DEs. This 3D should be of size regDecomp(1) x regDecomp(2)
x regDecomp(3) If the Grid is 2D, then the last dimension is ofsize 1. If the Grid contains undistributed
dimensions then these should also be of size 1.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

25.6.30 ESMF_GridSetCommitShapeTile - Create a Grid with an arbitrary distribution

INTERFACE:

! Private name; call using ESMF_GridSetCommitShapeTile()
subroutine ESMF_GridSetCmmitShapeTileArb(grid, name,c oordTypeKind, &

minIndex, maxIndex, localArbIndex, localArbIndexCount, &
connDim1, connDim2, connDim3, &
poleStaggerLoc1, poleStaggerLoc2, poleStaggerLoc3, &
bipolePos1, bipolePos2, bipolePos3, &
coordDep1, coordDep2, coordDep3, &
distDim, rc)

ARGUMENTS:

type(ESMF_Grid), intent(inout) :: grid
character (len= *), intent(in), optional :: name
type(ESMF_TypeKind), intent(in), optional :: coordTypeK ind
integer, intent(in), optional :: minIndex(:)
integer, intent(in) :: maxIndex(:)
integer, intent(in) :: localArbIndex(:,:)
integer, intent(in) :: localArbIndexCount

436

type(ESMF_GridConn), intent(in), optional :: connDim1(:) ! N. IMP.
type(ESMF_GridConn), intent(in), optional :: connDim2(:) ! N. IMP.
type(ESMF_GridConn), intent(in), optional :: connDim3(:) ! N. IMP.
type(ESMF_StaggerLoc), intent(in), optional :: poleStag gerLoc1(2) ! N. IMP.
type(ESMF_StaggerLoc), intent(in), optional :: poleStag gerLoc2(2) ! N. IMP.
type(ESMF_StaggerLoc), intent(in), optional :: poleStag gerLoc3(2) ! N. IMP.
integer, intent(in), optional :: bipolePos1(2) ! N. IMP.
integer, intent(in), optional :: bipolePos2(2) ! N. IMP.
integer, intent(in), optional :: bipolePos3(2) ! N. IMP.
integer, intent(in), optional :: coordDep1(:)
integer, intent(in), optional :: coordDep2(:)
integer, intent(in), optional :: coordDep3(:)
integer, intent(in), optional :: distDim(:)
integer, intent(out), optional :: rc

DESCRIPTION:

This method set an empty grid as a single tile, arbitrarily distributed grid (see Figure 12). To specify the arbitrary
distribution, the user passes in an 2D array of local indices, where the first dimension is the number of local grid cells
specified by localArbIndexCount and the second dimension isthe number of distributed dimensions.
distDim specifies which grid dimensions are arbitrarily distributed. The size ofdistDim has to agree with the size
of the second dimension oflocalArbIndex .
For consistency’s sake theESMF_GridSetCommitShapeTile() call should be executed in the same set or a
subset of the PETs in which theESMF_GridCreateEmpty() call was made. If the call is made in a subset, the
Grid objects outside that subset will still be "empty" and not usable.
The arguments are:

[grid] The emptyESMF_Grid to set information into and then commit.

[name] ESMF_Grid name.

[coordTypeKind] The type/kind of the grid coordinate data. If not specified then the type/kind will be 8 byte reals.

[minIndex] Tuple to start the index ranges at. If not present, defaults to /1,1,1,.../.

[maxIndex] The upper extend of the grid index ranges.

[localArbIndex] This 2D array specifies the indices of the local grid cells. The dimensions should be localArbIndex-
Count * number of Distributed grid dimensions where localArbIndexCount is the input argument specified
below

localArbIndexCount number of grid cells in the local DE

[connDim1] Fortran array describing the index dimension 1 connections. The first element represents the minimum
end of dimension 1. The second element represents the maximum end of dimension 1. If array is only one
element long, then that element is used for both the minimum and maximum end. Please see Section 25.2.1 for
a list of valid options. If not present, defaults to ESMF_GRIDCONN_NONE. [CURRENTLY NOT IMPLE-
MENTED]

[connDim2] Fortran array describing the index dimension 2 connections. The first element represents the minimum
end of dimension 2. The second element represents the maximum end of dimension 2. If array is only one
element long, then that element is used for both the minimum and maximum end. Please see Section 25.2.1 for
a list of valid options. If not present, defaults to ESMF_GRIDCONN_NONE. [CURRENTLY NOT IMPLE-
MENTED]

[connDim3] Fortran array describing the index dimension 3 connections. The first element represents the minimum
end of dimension 3. The second element represents the maximum end of dimension 3. If array is only one
element long, then that element is used for both the minimum and maximum end. Please see Section 25.2.1 for
a list of valid options. If not present, defaults to ESMF_GRIDCONN_NONE. [CURRENTLY NOT IMPLE-
MENTED]

437

[poleStaggerLoc1] Two element array describing the index dimension 1 connections. The first element represents
the minimum end of dimension 1. The second element represents the maximum end of dimension 1. If a
pole, this describes which staggerlocation is at the pole ateach end. Please see Section 25.2.4 for a list of
predefined stagger locations. If not present, defaults to ESMF_STAGGERLOC_CENTER. [CURRENTLY NOT
IMPLEMENTED]

[poleStaggerLoc2] Two element array describing the index dimension 2 connections. The first element represents
the minimum end of dimension 2. The second element represents the maximum end of dimension 2. If a
pole, this describes which staggerlocation is at the pole ateach end. Please see Section 25.2.4 for a list of
predefined stagger locations. If not present, defaults to ESMF_STAGGERLOC_CENTER. [CURRENTLY NOT
IMPLEMENTED]

[poleStaggerLoc3] Two element array describing the index dimension 3 connections. The first element represents
the minimum end of dimension 3. The second element represents the maximum end of dimension 3. If a
pole, this describes which staggerlocation is at the pole ateach end. Please see Section 25.2.4 for a list of
predefined stagger locations. If not present, defaults to ESMF_STAGGERLOC_CENTER. [CURRENTLY NOT
IMPLEMENTED]

[bipolePos1] Two element array describing the index dimension 1 connections. The first element represents the
minimum end of dimension 1. The second element represents the maximum end of dimension 1. If a bipole,
this gives the index position of one of the poles. The other ishalf way around. If not present, the default is 1.
[CURRENTLY NOT IMPLEMENTED]

[bipolePos2] Two element array describing the index dimension 2 connections. The first element represents the
minimum end of dimension 2. The second element represents the maximum end of dimension 2. If a bipole,
this gives the index position of one of the poles. The other ishalf way around. If not present, the default is 1.
[CURRENTLY NOT IMPLEMENTED]

[bipolePos3] Two element array describing the index dimension 3 connections. The first element represents the
minimum end of dimension 3. The second element represents the maximum end of dimension 3. If a bipole,
this gives the index position of one of the poles. The other ishalf way around. If not present, the default is 1.
[CURRENTLY NOT IMPLEMENTED]

[coordDep1] The size of the array specifies the number of dimensions of thefirst coordinate component array. The
values specify which of the index dimensions the corresponding coordinate arrays map to. The format should
be /ESMF_GRID_ARBDIM/ where /ESMF_GRID_ARBDIM/ is mappedto the collapsed 1D dimension from
all the arbitrarily distributed dimensions. n is the dimension that is not distributed (if exists). If not present the
default is /ESMF_GRID_ARBDIM/ if the first dimension is arbitararily distributed, or /n/ if not distributed (i.e.
n=1)

[coordDep2] The size of the array specifies the number of dimensions of thesecond coordinate component array. The
values specify which of the index dimensions the corresponding coordinate arrays map to. The format should
be /ESMF_GRID_ARBDIM/ where /ESMF_GRID_ARBDIM/ is mappedto the collapsed 1D dimension from
all the arbitrarily distributed dimensions. n is the dimension that is not distributed (if exists). If not present
the default is /ESMF_GRID_ARBDIM/ if this dimension is arbitararily distributed, or /n/ if not distributed (i.e.
n=2)

[coordDep3] The size of the array specifies the number of dimensions of thethird coordinate component array. The
values specify which of the index dimensions the corresponding coordinate arrays map to. The format should
be /ESMF_GRID_ARBDIM/ where /ESMF_GRID_ARBDIM/ is mappedto the collapsed 1D dimension from
all the arbitrarily distributed dimensions. n is the dimension that is not distributed (if exists). If not present
the default is /ESMF_GRID_ARBDIM/ if this dimension is arbitararily distributed, or /n/ if not distributed (i.e.
n=3)

[distDim] This array specifies which dimensions are arbitrarily distributed. The size of the array specifies the total
distributed dimensions. if not specified, defaults is all dimensions will be arbitrarily distributed. The size has to
agree with the size of the second dimension oflocalArbIndex .

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

438

25.6.31 ESMF_GridSetItem - Set an item using an Array

INTERFACE:

subroutine ESMF_GridSetItemFromArray(grid, staggerloc , item, &
array, doCopy, rc)

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid
type (ESMF_StaggerLoc), intent(in), optional :: staggerl oc
type (ESMF_GridItem), intent(in) :: item
type(ESMF_Array), intent(in) :: array
type(ESMF_CopyFlag), intent(in), optional :: docopy ! NOT IMPLEMENTED
integer, intent(out), optional :: rc

DESCRIPTION:

This method sets the passed in Array as the holder of the item data for stagger locationstaggerloc and coordinate
coord . If the location already contains an Array, then this one overwrites it.
Eventually there should be an Add, Get,... like for the Coords to make things easy for the user (except restricted to
just I4??)
The arguments are:

staggerloc The stagger location into which to copy the arrays. Please see Section 25.2.4 for a list of predefined stagger
locations. If not present, defaults to ESMF_STAGGERLOC_CENTER.

item The item into which to copy the arrays. Please see Section 25.2.3 for a list of valid items.

array An array to set the grid item information from.

[doCopy] If not specified, default toESMF_DATA_REF, in this case the Grid coordinate Array will be set to a refer-
ence toarray . Please see Section 9.2.5 for further description and a listof valid values. [THE ESMF_DATA_COPY
OPTION IS CURRENTLY NOT IMPLEMENTED]

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

25.6.32 ESMF_GridValidate - Validate Grid internals

INTERFACE:

subroutine ESMF_GridValidate(grid, rc)

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid
integer, intent(out), optional :: rc

DESCRIPTION:

Validates that theGrid is internally consistent. Note that one of the checks that the Grid validate does is the Grid sta-
tus. Currently, the validate will return an error if the gridis not at leastESMF_GRIDSTATUS_SHAPE_READY. This
means if a Grid was created withESMF_GridCreateEmpty it must also have been finished withESMF_GridSetCommitShapeTile
to be valid. If a Grid was created with another create call it should automatically have the correct status level to pass
the status part of the validate. The Grid validate at this time doesn’t check for the presence or consistency of the Grid
coordinates. The method returns an error code if problems are found.
The arguments are:

439

grid SpecifiedESMF_Grid object.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

25.7 Class API: StaggerLoc Methods

25.7.1 ESMF_StaggerLocSet - Set a StaggerLoc to a particular position in the cell

INTERFACE:

! Private name; call using ESMF_StaggerLocSet()
subroutine ESMF_StaggerLocSetAllDim(staggerloc,loc,r c)

ARGUMENTS:

type (ESMF_StaggerLoc), intent(inout) :: staggerloc
integer, intent(in) :: loc(:)
integer, optional :: rc

DESCRIPTION:

Sets a customstaggerloc to a position in a cell by using the arrayloc . The values in the array should only be
0,1. If loc(i) is 0 it means the position should be in the center in that dimension. If loc(i) is 1 then for dimension i, the
position should be on the side of the cell. Please see Section25.3.21 for diagrams and further discussion of custom
stagger locations.
The arguments are:

staggerloc Grid location to be initialized

loc Array holding position data. Each entry inloc should only be 0 or 1. note that dimensions beyond those specified
are set to 0.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

25.7.2 ESMF_StaggerLocSet - Set one dimension of a StaggerLoc to a particular position

INTERFACE:

! Private name; call using ESMF_StaggerLocSet()
subroutine ESMF_StaggerLocSetDim(staggerloc,dim,loc, rc)

ARGUMENTS:

type (ESMF_StaggerLoc), intent(inout) :: staggerloc
integer, intent(in) :: dim,loc
integer, optional :: rc

DESCRIPTION:

Sets a particular dimension of a customstaggerloc to a position in a cell by using the variableloc . The variable
loc should only be 0,1. Ifloc is 0 it means the position should be in the center in that dimension. If loc is +1 then
for the dimension, the position should be on the positive side of the cell. Please see Section 25.3.21 for diagrams and
further discussion of custom stagger locations.
The arguments are:

440

staggerloc Stagger location to be initialized

dim Dimension to be changed (1-7).

loc Position data should be either 0,1.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

25.7.3 ESMF_StaggerLocString - Return a StaggerLoc as a string

INTERFACE:

subroutine ESMF_StaggerLocString(staggerloc, string, r c)

ARGUMENTS:

type(ESMF_StaggerLoc), intent(in) :: staggerloc
character (len = *), intent(out) :: string
integer, intent(out), optional :: rc

DESCRIPTION:

Return anESMF_StaggerLoc as a printable string.
The arguments are:

staggerloc TheESMF_StaggerLoc to be turned into a string.

string Return string.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

25.7.4 ESMF_StaggerLocPrint - Print information of a StaggerLoc object

INTERFACE:

subroutine ESMF_StaggerLocPrint(staggerloc, rc)

ARGUMENTS:

type (ESMF_StaggerLoc), intent(in) :: staggerloc
integer, intent(out), optional :: rc

DESCRIPTION:

Print the internal data members of anESMF_StaggerLoc object.

Note: ManyESMF_<class>Print methods are implemented in C++. On some platforms/compilers there is a
potential issue with interleaving Fortran and C++ output tostdout such that it doesn’t appear in the expected order.
If this occurs, theESMF_IOUnitFlush() method may be used on unit 6 to get coherent output.

The arguments are:

staggerloc ESMF_StaggerLoc object as the method input

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

441

26 LocStream Class

26.1 Description

A location stream (LocStream) is used to represent the locations of a set of data points. The values of the data points
are stored within a Field or FieldBundle created using the LocStream.
In the data assimilation world, LocStreams can be thought ofas a set of observations. Their locations are generally
described using Cartesian (x, y, z), or (lat, lon, height) coordinates. There is no assumption of any regularity in the
positions of the points. To make the concept more general, the locations for each data point are represented using a
construct calledkeys, which can include other descriptors besides location.
Although keys are similar in concept to ESMF Attributes theyhave important differences. First, keys always occur
as vectors, never as scalars. Second, keys are local to the DE: each DE can have a different key list with a different
number of of elements. Third, the local key list always has the same number of elements as there are local observations
on that DE. Finally, keys may be used for the distribution of LocStreams. As such, they must be defined before the
LocStream is distributed.
LocStreams can be very large. Data assimilation systems might use LocStreams with up to108 observations, so
efficiency is critical.
Common operations involving LocStreams are similar to those involving Grids. In data assimilation, for example,
there is an immediate need to:

1. Create a Field or FieldBundle on a LocStream

2. Redistribute data between Fields defined on LocStreams

3. Gather or scatter a FieldBundle defined on a LocStream from/to a root DE

4. Halo region exchange for a Field defined by a haloed LocStream

5. Extract Fortran array from Field which was defined by a LocStream

The operations on the Fortran arrays underlying LocStreamsare usually simple numerical ones. However, it is nec-
essary to sort them in place, and access only portions of the them. It would not be efficient to continually create new
LocStreams to reflect this sorting. Instead, the sorting is managed by the application through permutation arrays while
keeping the data in place. Locations can become inactive, e.g., if the quality control asserts that observation is invalid.
This can be managed again by the application through masks.
A LocStream differs from a Grid in that no topological structure is maintained between the points (e.g. the class
contains no information about which point is the neighbor ofwhich other point).
A LocStream is similar to a Mesh consists in that both are collections of irregularly positioned points. However, the
two structures differ in that a Mesh has connectivity also: each data point has a set of neighboring data points. There
is no requirement that the points in a LocStream have connectivity, in fact there is no requirement that a point has any
particular spatial relationship to another.

26.2 Use and Examples

26.2.1 Create a LocStream with user allocated memory

The following is an example of creating a LocStream object. After creation, key data is added, and a Field is created
to hold data (temperature) at each location.

!-- -----------------
! Allocate and set example location information
!-- -----------------
allocate(lon(numLocationsOnThisPet))
allocate(lat(numLocationsOnThisPet))

do i=1,numLocationsOnThisPet
lon(i)=360.0/numLocationsOnThisPet
lat(i)=0.0

442

enddo

!-- -----------------
! Allocate and set example Field data
!-- -----------------
allocate(temperature(numLocationsOnThisPet))

do i=1,numLocationsOnThisPet
temperature(i)=90.0

enddo

!-- -----------------
! Create the LocStream: Allocate space for the LocStream obj ect,
! define the number and distribution of the locations.
!-- -----------------
locstream=ESMF_LocStreamCreate(name="Equatorial Meas urements", &

localCount=numLocationsOnThisPet, &
rc=rc)

!-- -----------------
! Add key data, referencing a user data pointer. By changing t he
! copyFlag to ESMF_DATA_COPY an internally allocated copy o f the
! user data may also be set.
!-- -----------------
call ESMF_LocStreamAddKey(locstream, &

keyName="Lat", &
farray=lat, &
copyFlag=ESMF_DATA_REF, &
keyUnits="Degrees", &
keyLongName="Latitude", rc=rc)

call ESMF_LocStreamAddKey(locstream, &
keyName="Lon", &
farray=lon, &
copyFlag=ESMF_DATA_REF, &
keyUnits="Degrees", &
keyLongName="Longitude", rc=rc)

!-- -----------------
! Create a Field on the Location Stream. In this case the
! Field is created from a user array, but any of the other
! Field create methods (e.g. from ArraySpec) would also appl y.
!-- -----------------
field_temperature=ESMF_FieldCreate(locstream, &

temperature, &
name="temperature", &
rc=rc)

443

26.2.2 Create a LocStream with internally allocated memory

The following is an example of creating a LocStream object. After creation, key data is internally allocated, the pointer
is retrieved, and the data is set. A Field is also created on the LocStream to hold data (temperature) at each location.

!-- -----------------
! Allocate and set example Field data
!-- -----------------
allocate(temperature(numLocationsOnThisPet))

do i=1,numLocationsOnThisPet
temperature(i)=80.0

enddo

!-- -----------------
! Create the LocStream: Allocate space for the LocStream obj ect,
! define the number and distribution of the locations.
!-- -----------------
locstream=ESMF_LocStreamCreate(name="Equatorial Meas urements", &

localCount=numLocationsOnThisPet, &
rc=rc)

!-- -----------------
! Add key data (internally allocating memory).
!-- -----------------
call ESMF_LocStreamAddKey(locstream, &

keyName="Lat", &
KeyTypeKind=ESMF_TYPEKIND_R8, &
keyUnits="Degrees", &
keyLongName="Latitude", rc=rc)

call ESMF_LocStreamAddKey(locstream, &
keyName="Lon", &
KeyTypeKind=ESMF_TYPEKIND_R8, &
keyUnits="Degrees", &
keyLongName="Longitude", rc=rc)

!-- -----------------
! Get key data.
!-- -----------------
call ESMF_LocStreamGetKey(locstream, &

localDE=0, &
keyName="Lat", &
farray=lat, &
rc=rc)

call ESMF_LocStreamGetKey(locstream, &
localDE=0, &
keyName="Lon", &
farray=lon, &
rc=rc)

!-- -----------------
! Set key data.

444

!-- -----------------
do i=1,numLocationsOnThisPet

lon(i)=360.0/numLocationsOnThisPet
lat(i)=0.0

enddo

!-- -----------------
! Create a Field on the Location Stream. In this case the
! Field is created from a user array, but any of the other
! Field create methods (e.g. from ArraySpec) would also appl y.
!-- -----------------
field_temperature=ESMF_FieldCreate(locstream, &

temperature, &
name="temperature", &
rc=rc)

26.2.3 Create a LocStream from a background Grid

The following is an example of creating a LocStream object from another LocStream object using a background Grid.
The new LocStream contains the data present in the old LocStream, but is redistributed so that entries with a given set
of coordinates are on the same PET as the piece of the background Grid which contains those coordinates.

!-- -----------------
! Create the LocStream: Allocate space for the LocStream obj ect,
! define the number and distribution of the locations.
!-- -----------------
locstream=ESMF_LocStreamCreate(name="Equatorial Meas urements", &

localCount=numLocationsOnThisPet, &
rc=rc)

!-- -----------------
! Add key data (internally allocating memory).
!-- -----------------
call ESMF_LocStreamAddKey(locstream, &

keyName="Lon", &
KeyTypeKind=ESMF_TYPEKIND_R8, &
keyUnits="Degrees", &
keyLongName="Longitude", rc=rc)

call ESMF_LocStreamAddKey(locstream, &
keyName="Lat", &
KeyTypeKind=ESMF_TYPEKIND_R8, &
keyUnits="Degrees", &
keyLongName="Latitude", rc=rc)

!-- -----------------
! Get Fortran arrays which hold the key data, so that it can be s et.
! Using localDE=0, because the locstream was created with 1 D E per PET.
!-- -----------------
call ESMF_LocStreamGetKey(locstream, &

localDE=0, &
keyName="Lon", &

445

farray=lon, &
rc=rc)

call ESMF_LocStreamGetKey(locstream, &
localDE=0, &
keyName="Lat", &
farray=lat, &
rc=rc)

!-- -----------------
! Set the longitude and latitude coordinates of the points in the
! LocStream. Each PET contains points scattered around the e quator.
!-- -----------------
do i=1,numLocationsOnThisPet

lon(i)=0.5+REAL(i-1) * 360.0/numLocationsOnThisPet
lat(i)=0.0

enddo

!-- -----------------
! Create a Grid to use as the background. The Grid is
! GridLonSize by GridLatSize with the default distribution
! (The first dimension split across the PETs). The coordinat e range
! is 0 to 360 in longitude and -90 to 90 in latitude. Note that we
! use indexflag=ESMF_INDEX_GLOBAL for the Grid creation. A t this time
! this is required for a Grid to be usable as a background Grid.
!-- -----------------
grid=ESMF_GridCreateShapeTile(maxIndex=(/GridLonSiz e,GridLatSize/), &

indexflag=ESMF_INDEX_GLOBAL, &
rc=rc)

!-- -----------------
! Allocate the corner stagger location in which to put the coo rdinates.
! (The corner stagger must be used for the Grid to be usable as a
! background Grid.)
!-- -----------------
call ESMF_GridAddCoord(grid, staggerloc=ESMF_STAGGERL OC_CORNER, rc=rc)

!-- -----------------
! Get access to the Fortran array pointers that hold the Grid
! coordinate information and then set the coordinates to be u niformly
! distributed around the globe.
!-- -----------------
call ESMF_GridGetCoord(grid, localDE=0, staggerLoc=ESM F_STAGGERLOC_CORNER, &

coordDim=1, &
computationalLBound=clbnd, computationalUBound=cubnd , &
fptr=fptrLonC, rc=rc)

call ESMF_GridGetCoord(grid, localDE=0, staggerLoc=ESM F_STAGGERLOC_CORNER, &
coordDim=2, &
fptr=fptrLatC, rc=rc)

do i1=clbnd(1),cubnd(1)
do i2=clbnd(2),cubnd(2)

! Set Grid longitude coordinates as 0 to 360

446

fptrLonC(i1,i2) = REAL(i1-1) * 360.0/REAL(GridLonSize)

! Set Grid latitude coordinates as -90 to 90
fptrLatC(i1,i2) = -90. + REAL(i2-1) * 180.0/REAL(GridLatSize) + &

0.5 * 180.0/REAL(GridLatSize)
enddo
enddo

!-- -----------------
! Create newLocstream on the background Grid using the
! "Lon" and "Lat" keys as the coordinates for the entries in
! locstream. The entries in newLocstream with coordinates (lon,lat)
! are on the same PET as the piece of grid which contains (lon,l at).
!-- -----------------
newLocstream=ESMF_LocStreamCreate(locstream, coordKe yNames="Lon:Lat", &

background=grid, rc=rc)

!-- -----------------
! A Field can now be created on newLocstream and
! ESMF_FieldRedist() can be used to move data between Fields built
! on locstream and Fields built on newLocstream.
!-- -----------------

26.3 Class API

26.3.1 ESMF_LocStreamAddKey - Add a key Array and allocate the internal memory

INTERFACE:

! Private name; call using ESMF_LocStreamAddKey()
subroutine ESMF_LocStreamAddKeyAlloc(locstream, keyNa me, keyTypeKind, &

keyUnits, keyLongName, rc)

ARGUMENTS:

type(ESMF_Locstream), intent(in) :: locstream
character (len= *), intent(in) :: keyName
type(ESMF_TypeKind), intent(in), optional :: keyTypeKin d
character (len= *), intent(in), optional :: keyUnits
character (len= *), intent(in), optional :: keyLongName
integer, intent(out), optional :: rc

DESCRIPTION:

Add a key to a locstream. Once a key has been added its internaldata can be retrieved and used to set key values.
The arguments are:

locstream TheESMF_LocStream object to add key to.

keyName The name of the key to add.

[keyTypeKind] The type/kind of the key data. If not specified then the type/kind will default to 8 byte reals.

[keyUnits] The units of the key data. If not specified, then the item remains blank.

447

[keyLongName] The long name of the key data. If not specified, then the item remains blank.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

26.3.2 ESMF_LocStreamAddKey - Add a key Array

INTERFACE:

! Private name; call using ESMF_LocStreamAddKey()
subroutine ESMF_LocStreamAddKeyArray(locstream, keyNa me, keyArray, destroyKey, &

keyUnits, keyLongName, rc)

ARGUMENTS:

type(ESMF_Locstream), intent(in) :: locstream
character (len= *), intent(in) :: keyName
type(ESMF_Array), intent(in) :: keyArray
logical, intent(in), optional :: destroyKey
character (len= *), intent(in), optional :: keyUnits
character (len= *), intent(in), optional :: keyLongName
integer, intent(out), optional :: rc

DESCRIPTION:

Add a key to a locstream. Once a key has been added its internaldata can be retrieved and used to set key values.
The arguments are:

locstream TheESMF_LocStream object to add key to.

keyName The name of the key to add.

keyArray An ESMF Array which contains the key data

[destroyKey] if .true. destroy this key array when the locstream is destroyed. Defaults to .false.

[keyUnits] The units of the key data. If not specified, then the item remains blank.

[keyLongName] The long name of the key data. If not specified, then the item remains blank.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

26.3.3 ESMF_LocStreamAddKey - Add a key Array created around user memory

INTERFACE:

! Private name; call using ESMF_LocStreamAddKey()
subroutine ESMF_LocStreamAddKeyI4(locstream, keyName, farray, copyflag, &

keyUnits, keyLongName, rc)

ARGUMENTS:

type(ESMF_Locstream), intent(in) :: locstream
character (len= *), intent(in) :: keyName
<farray>
type(ESMF_CopyFlag), intent(in), optional :: copyflag
character (len= *), intent(in), optional :: keyUnits
character (len= *), intent(in), optional :: keyLongName
integer, intent(out), optional :: rc

448

DESCRIPTION:

Add a key to a locstream. Once a key has been added its internaldata can be retrieved and used to set key values.
Supported values for <farray> are:

integer(ESMF_KIND_I4), dimension(:), intent(in) :: farray

real(ESMF_KIND_R4), dimension(:), intent(in) :: farray

real(ESMF_KIND_R8), dimension(:), intent(in) :: farray

The arguments are:

locstream TheESMF_LocStream object to add key to.

keyName The name of the key to add.

farray Valid native Fortran array, i.e. memory must be associated with the actual argument. The type/kind/rank
information offarray will be used to set the key Array’s properties accordingly.

[copyflag] Specifies whether the Array object will reference the memoryallocation provided byfarray directly or
will copy the data fromfarray into a new memory allocation. Valid options areESMF_DATA_REF(default)
or ESMF_DATA_COPY. Depending on the specific situation theESMF_DATA_REFoption may be unsafe when
specifying an array slice forfarray .

[keyUnits] The units of the key data. If not specified, then the item remains blank.

[keyLongName] The long name of the key data. If not specified, then the item remains blank.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

26.3.4 ESMF_LocStreamCreate - Create a new LocStream by projecting onto a Grid

INTERFACE:

! Private name; call using ESMF_LocStreamCreate()
function ESMF_LocStreamCreateByBkgGrid(locstream, nam e, coordKeyNames, &

background, maskValues, unmappedAction, rc)

RETURN VALUE:

type(ESMF_LocStream) :: ESMF_LocStreamCreateByBkgGrid

ARGUMENTS:

type(ESMF_LocStream), intent(in) :: locstream
character (len= *), intent(in), optional :: name
character (len= *), intent(in) :: coordKeyNames
type(ESMF_Grid), intent(in) :: background
integer(ESMF_KIND_I4), intent(in), optional :: maskValu es(:)
type(ESMF_UnmappedAction), intent(in), optional :: unma ppedAction
integer, intent(out), optional :: rc

449

DESCRIPTION:

Create an location stream from an existing one in accordancewith the distribution of the background Grid. The entries
in the new location stream are redistributed, so that they lie on the same PET as the piece of Grid which contains the
coordinates of the entries. The coordinates of the entries are the data in the keys named bycoordKeyNames . To
copy data in Fields or FieldBundles built onlocstream to the new one simply useESMF_FieldRedist() or
ESMF_FieldBundleRedist() .
The arguments are:

locstream Location stream from which the new location stream is to be created

[name] Name of the resulting location stream

coordKeyNamesNames of the keys used to determine the link to background Grid. The first key in this list matches
up with the first coordinate of the Grid, the second key in thislist matches up with the second coordinate of the
Grid, and so on. The key names should be separated by the : character.

background Background Grid which determines the distribution of the entries in the new location stream. The back-
ground Grid needs to have the same number of dimensions as thenumber of keys incoordKeyNames . Note
also that this subroutine uses the corner stagger location in the Grid for determining where a point lies, because
this is the stagger location which fully contains the cell. AGrid must have coordinate data in this stagger location
to be used in this subroutine. For a 2D Grid this stagger location is ESMF_STAGGERLOC_CORNER for a 3D
Grid this stagger location is ESMF_STAGGERLOC_CORNER_VFACE. Note that currently the background
Grid also needs to have been created with indexflag=ESMF_INDEX_GLOBAL to be usable here.

[maskValues] List of values that indicate a background grid point should be masked out. If not specified, no masking
will occur.

[unmappedAction] Specifies what should happen if there are destination pointsthat can’t be mapped to a source
cell. Options areESMF_UNMAPPEDACTION_ERRORor ESMF_UNMAPPEDACTION_IGNORE[NOT IM-
PLEMENTED]. If not specified, defaults toESMF_UNMAPPEDACTION_ERROR.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

26.3.5 ESMF_LocStreamCreate - Create a new LocStream by projecting onto a Mesh

INTERFACE:

! Private name; call using ESMF_LocStreamCreate()
function ESMF_LocStreamCreateByBkgMesh(locstream, nam e, coordKeyNames, &

background, unmappedAction, rc)

RETURN VALUE:

type(ESMF_LocStream) :: ESMF_LocStreamCreateByBkgMesh

ARGUMENTS:

type(ESMF_LocStream), intent(in) :: locstream
character (len= *), intent(in), optional :: name
character (len= *), intent(in) :: coordKeyNames
type(ESMF_Mesh), intent(in) :: background
type(ESMF_UnmappedAction), intent(in), optional :: unma ppedAction
integer, intent(out), optional :: rc

450

DESCRIPTION:

Create an location stream from an existing one in accordancewith the distribution of the background Mesh. The entries
in the new location stream are redistributed, so that they lie on the same PET as the piece of Mesh which contains the
coordinates of the entries. The coordinates of the entries are the data in the keys named bycoordKeyNames . To
copy data in Fields or FieldBundles built onlocstream to the new one simply useESMF_FieldRedist() or
ESMF_FieldBundleRedist() .
The arguments are:

locstream Location stream from which the new location stream is to be created

[name] Name of the resulting location stream

coordKeyNamesNames of the keys used to determine the link to background Mesh. The first key in this list matches
up with the first coordinate of the Mesh, the second key in thislist matches up with the second coordinate of the
Mesh, and so on. The key names should be separated by the : character.

background Background Mesh which determines the distribution of entries in the new locatiion stream. The Mesh
must have the same spatial dimension as the number of keys incoordKeyNames .

[unmappedAction] Specifies what should happen if there are destination pointsthat can’t be mapped to a source
cell. Options areESMF_UNMAPPEDACTION_ERRORor ESMF_UNMAPPEDACTION_IGNORE[NOT IM-
PLEMENTED]. If not specified, defaults toESMF_UNMAPPEDACTION_ERROR.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

26.3.6 ESMF_LocStreamCreate - Create a new LocStream from adistgrid

INTERFACE:

! Private name: call using ESMF_LocStreamCreate()
function ESMF_LocStreamCreateFromDG(name, distgrid, &

destroyDistgrid, indexflag, rc)

RETURN VALUE:

type(ESMF_LocStream) :: ESMF_LocStreamCreateFromDG

ARGUMENTS:

character (len= *), intent(in), optional :: name
type(ESMF_DistGrid), intent(in) :: distgrid
logical, intent(in), optional :: destroyDistgrid
type(ESMF_IndexFlag), intent(in), optional :: indexflag
integer, intent(out), optional :: rc

DESCRIPTION:

Allocates memory for a newESMF_LocStream object, constructs its internal derived types.
The arguments are:

name Name of the location stream

distgrid Distgrid specifying size and distribution. Only 1D distgrids are allowed.

[destroyDistgrid] If .true. the locstream is responsible for destroying the distgrid. Defaults to .false.

451

[indexflag] Flag that indicates how the DE-local indices are to be defined. Defaults toESMF_INDEX_DELOCAL,
which indicates that the index range on each DE starts at 1. See Section 9.2.9 for the full range of options.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

26.3.7 ESMF_LocStreamCreate - Create a new LocStream from an irregular distribution

INTERFACE:

! Private name: call using ESMF_LocStreamCreate()
function ESMF_LocStreamCreateIrreg(name, minIndex, cou ntsPerDE, indexflag, rc)

RETURN VALUE:

type(ESMF_LocStream) :: ESMF_LocStreamCreateIrreg

ARGUMENTS:

character (len= *), intent(in), optional :: name
integer, intent(in), optional :: minIndex
integer, intent(in) :: countsPerDE(:)
type(ESMF_IndexFlag), intent(in), optional :: indexflag
integer, intent(out), optional :: rc

DESCRIPTION:

Allocates memory for a newESMF_LocStream object, constructs its internal derived types. TheESMF_DistGrid
is set up, indicating how the LocStream is distributed.
The arguments are:

name Name of the location stream

[minIndex] Number to start the index ranges at. If not present, defaultsto 1.

countsPerDE This array specifies the number of locations per DE.

[indexflag] Flag that indicates how the DE-local indices are to be defined. Defaults toESMF_INDEX_DELOCAL,
which indicates that the index range on each DE starts at 1. See Section 9.2.9 for the full range of options.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

26.3.8 ESMF_LocStreamCreate - Create a new LocStream from alocal count

INTERFACE:

! Private name: call using ESMF_LocStreamCreate()
function ESMF_LocStreamCreateFromLocal(name, localCou nt, indexflag, rc)

RETURN VALUE:

type(ESMF_LocStream) :: ESMF_LocStreamCreateFromLocal

ARGUMENTS:

452

character (len= *), intent(in), optional :: name
integer, intent(in) :: localCount
type(ESMF_IndexFlag), intent(in), optional :: indexflag
integer, intent(out), optional :: rc

DESCRIPTION:

Allocates memory for a newESMF_LocStream object, constructs its internal derived types. TheESMF_DistGrid
is set up, indicating how the LocStream is distributed.
The arguments are:

name Name of the location stream

localCount Number of grid cells to be distributed to this DE.

[indexflag] Flag that indicates how the DE-local indices are to be defined. Defaults toESMF_INDEX_DELOCAL,
which indicates that the index range on each DE starts at 1. See Section 9.2.9 for the full range of options.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

26.3.9 ESMF_LocStreamCreate - Create a new LocStream usinga regular distribution

INTERFACE:

! Private name: call using ESMF_LocStreamCreate()
function ESMF_LocStreamCreateReg(name, &

regDecomp, decompFlag, minIndex, maxIndex, indexflag, rc)

RETURN VALUE:

type(ESMF_LocStream) :: ESMF_LocStreamCreateReg

ARGUMENTS:

character (len= *), intent(in), optional :: name
integer, intent(in), optional :: regDecomp
type(ESMF_DecompFlag), intent(in), optional :: decompfl ag
integer, intent(in), optional :: minIndex
integer, intent(in) :: maxIndex
type(ESMF_IndexFlag), intent(in), optional :: indexflag
integer, intent(out), optional :: rc

DESCRIPTION:

Allocates memory for a newESMF_LocStream object, constructs its internal derived types. TheESMF_DistGrid
is set up, indicating how the LocStream is distributed. at a later time.
The arguments are:

name Name of the location stream

[regDecomp] Specify into how many chunks to divide the locations. If not specified, defaults to the number of PETs.

[decompFlag] Specify what to do with leftover locations after division. If not specified, defaults toESMF_DECOMP_HOMOGEN.
Please see Section 9.2.7 for a full description of the possible options.

453

[[minIndex]] The minimum index across all PETs. If not set defaults to 1.

maxIndex The maximum index across all PETs.

[indexflag] Flag that indicates how the DE-local indices are to be defined. Defaults toESMF_INDEX_DELOCAL,
which indicates that the index range on each DE starts at 1. See Section 9.2.9 for the full range of options.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

26.3.10 ESMF_LocStreamDestroy - Destroy a LocStream

INTERFACE:

subroutine ESMF_LocStreamDestroy(locstream,rc)

ARGUMENTS:

type(ESMF_LocStream), intent(inout) :: locstream
integer, intent(out), optional :: rc

DESCRIPTION:

Deallocate anESMF_LocStream object and all appropriate internal structures.
The arguments are:

locstream locstream to destroy

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

26.3.11 ESMF_LocStreamGet - Return info associated with a LocStream

INTERFACE:

! Private name; call using ESMF_LocStreamGet()
subroutine ESMF_LocStreamGetDefault(locstream, distgr id, keyCount, &

keyNames, localDECount, indexflag, name, rc)

ARGUMENTS:

type(ESMF_Locstream), intent(in) :: locstream
type(ESMF_DistGrid), intent(out), optional :: distgrid
integer, intent(out),optional :: keyCount
character(len=ESMF_MAXSTR),optional :: keyNames(:)
integer, intent(out),optional :: localDECount
type(ESMF_IndexFlag), intent(out), optional :: indexfla g
character(len= *), intent(out), optional :: name
integer, intent(out), optional :: rc

DESCRIPTION:

Query anESMF_LocStream for various information. All arguments after thelocstream are optional.
The arguments are:

locstream TheESMF_LocStream object to query.

454

[distgrid] TheESMF_DistGrid object that descibes

[keyCount] Number of keys in thelocstream .

[keyNames] The names of the keys in thelocstream . Keynames should be an array of character strings. The
character strings should be of length ESMF_MAXSTR and the array’s length should be at least keyCount.

[localDECount] Number of DEs on this PET in thelocstream .

[indexflag] The indexflag for this indexflag.

[name] Name of queried item.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

26.3.12 ESMF_LocStreamGetKey - Get an Array associated with a key

INTERFACE:

! Private name; call using ESMF_LocStreamGetKey()
subroutine ESMF_LocStreamGetKeyArray(locstream, keyNa me, keyArray, rc)

ARGUMENTS:

type(ESMF_Locstream), intent(in) :: locstream
character (len= *), intent(in) :: keyName
type(ESMF_Array), intent(out) :: keyArray
integer, intent(out), optional :: rc

DESCRIPTION:

Get ESMF Array associated with key.
The arguments are:

locstream TheESMF_LocStream object to get key from.

keyName The name of the key to get.

keyArray Array associated with key.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

26.3.13 ESMF_LocStreamGetKey - Get the bounds of a key Array

INTERFACE:

! Private name; call using ESMF_LocStreamGetKey()
subroutine ESMF_LocStreamGetKeyBounds(locstream, loca lDE, keyName, &

exclusiveLBound, exclusiveUBound, exclusiveCount, &
computationalLBound, computationalUBound, computation alCount, &
totalLBound, totalUBound, totalCount, &
rc)

ARGUMENTS:

455

type(ESMF_LocStream), intent(in) :: locstream
integer, intent(in) :: localDE
character (len= *), intent(in) :: keyName
integer, intent(out), optional :: exclusiveLBound
integer, intent(out), optional :: exclusiveUBound
integer, intent(out), optional :: exclusiveCount
integer, intent(out), optional :: computationalLBound
integer, intent(out), optional :: computationalUBound
integer, intent(out), optional :: computationalCount
integer, intent(out), optional :: totalLBound
integer, intent(out), optional :: totalUBound
integer, intent(out), optional :: totalCount
integer, intent(out), optional :: rc

DESCRIPTION:

This method gets the bounds of a localDE for a locstream.
The arguments are:

locstream LocStream to get the information from.

localDE The local DE to get the information for.[0,..,localDeCount-1]

[exclusiveLBound] Upon return this holds the lower bounds of the exclusive region.

[exclusiveUBound] Upon return this holds the upper bounds of the exclusive region.

[exclusiveCount] Upon return this holds the number of items in the exclusive region (i.e.exclusiveUBound-exclusiveLBound+1
exclusiveCount .

[computationalLBound] Upon return this holds the lower bounds of the computationalregion.

[computationalUBound] Upon return this holds the upper bounds of the computationalregion.

[computationalCount] Upon return this holds the number of items in the computational region (i.e.computationalUBound-computationalLBou

[totalLBound] Upon return this holds the lower bounds of the total region.

[totalUBound] Upon return this holds the upper bounds of the total region.

[totalCount] Upon return this holds the number of items in the total region(i.e. totalUBound-totalLBound+1).

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

26.3.14 ESMF_LocStreamGetKey - Get info associated with a key

INTERFACE:

! Private name; call using ESMF_LocStreamGetKey()
subroutine ESMF_LocStreamGetKeyInfo(locstream, keyNam e, keyUnits, keyLongName, typekind,

ARGUMENTS:

type(ESMF_Locstream), intent(in) :: locstream
character (len= *), intent(in) :: keyName
character (len= *), intent(out), optional :: keyUnits
character (len= *), intent(out), optional :: keyLongName
type(ESMF_TypeKind), intent(out), optional :: typekind
integer, intent(out), optional :: rc

456

DESCRIPTION:

Get ESMF Array associated with key.
The arguments are:

locstream TheESMF_LocStream object to get key from.

keyName The name of the key to get.

[keyUnits] The units of the key data. If not specified, then the item remains blank.

[keyLongName] The long name of the key data. If not specified, then the item remains blank.

[typekind] The typekind of the key data

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

26.3.15 ESMF_LocStreamGetKey - Get a pointer to key values

INTERFACE:

! Private name; call using ESMF_LocStreamGetKey()
subroutine ESMF_LocStreamGetKeyI4(locstream, localDE, keyName, &

exclusiveLBound, exclusiveUBound, exclusiveCount, &
computationalLBound, computationalUBound, computation alCount, &
totalLBound, totalUBound, totalCount, &
farray, doCopy, rc)

ARGUMENTS:

type(ESMF_LocStream), intent(in) :: locstream
integer, intent(in) :: localDE
character (len= *), intent(in) :: keyName
integer, intent(out), optional :: exclusiveLBound
integer, intent(out), optional :: exclusiveUBound
integer, intent(out), optional :: exclusiveCount
integer, intent(out), optional :: computationalLBound
integer, intent(out), optional :: computationalUBound
integer, intent(out), optional :: computationalCount
integer, intent(out), optional :: totalLBound
integer, intent(out), optional :: totalUBound
integer, intent(out), optional :: totalCount
<farray>
type(ESMF_CopyFlag), intent(in), optional :: docopy
integer, intent(out), optional :: rc

DESCRIPTION:

This method gets a Fortran pointer to the piece of memory which holds the key data for a particular key on the given
local DE. This is useful, for example, for setting the key values in a LocStream, or for reading the values.
Supported values for <farray> are:

integer(ESMF_KIND_I4), pointer :: farray(:)

real(ESMF_KIND_R4), pointer :: farray(:)

real(ESMF_KIND_R8), pointer :: farray(:)

457

The arguments are:

locstream LocStream to get the information from.

localDE The local DE to get the information for.[0,..,localDeCount-1]

keyName The key to get the information from.

[exclusiveLBound] Upon return this holds the lower bounds of the exclusive region.

[exclusiveUBound] Upon return this holds the upper bounds of the exclusive region.

[exclusiveCount] Upon return this holds the number of items in the exclusive region (i.e.exclusiveUBound-exclusiveLBound+1
exclusiveCount .

[computationalLBound] Upon return this holds the lower bounds of the computationalregion.

[computationalUBound] Upon return this holds the upper bounds of the computationalregion.

[computationalCount] Upon return this holds the number of items in the computational region (i.e.computationalUBound-computationalLBou

[totalLBound] Upon return this holds the lower bounds of the total region.

[totalUBound] Upon return this holds the upper bounds of the total region.

[totalCount] Upon return this holds the number of items in the total region(i.e. totalUBound-totalLBound+1).

farray The pointer to the coordinate data.

[doCopy] If not specified, default toESMF_DATA_REF, in this case farray is a reference to the data in the Grid
coordinate arrays. Please see Section 9.2.5 for further description and a list of valid values.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

26.3.16 ESMF_LocStreamGet - Get the local bounds of a LocStream

INTERFACE:

! Private name; call using ESMF_LocStreamGet()
subroutine ESMF_LocStreamGetBounds(locstream, localDE , &

exclusiveLBound, exclusiveUBound, exclusiveCount, &
computationalLBound, computationalUBound, computation alCount, &
rc)

ARGUMENTS:

type(ESMF_LocStream), intent(in) :: locstream
integer, intent(in) :: localDE
integer, intent(out), optional :: exclusiveLBound
integer, intent(out), optional :: exclusiveUBound
integer, intent(out), optional :: exclusiveCount
integer, intent(out), optional :: computationalLBound
integer, intent(out), optional :: computationalUBound
integer, intent(out), optional :: computationalCount
integer, intent(out), optional :: rc

DESCRIPTION:

This method gets the bounds of a localDE for a locstream.
The arguments are:

458

locstream LocStream to get the information from.

localDE The local DE to get the information for.[0,..,localDeCount-1]

[exclusiveLBound] Upon return this holds the lower bounds of the exclusive region.

[exclusiveUBound] Upon return this holds the upper bounds of the exclusive region.

[exclusiveCount] Upon return this holds the number of items in the exclusive region (i.e.exclusiveUBound-exclusiveLBound+1
exclusiveCount .

[computationalLBound] Upon return this holds the lower bounds of the computationalregion.

[computationalUBound] Upon return this holds the upper bounds of the computationalregion.

[computationalCount] Upon return this holds the number of items in the computational region (i.e.computationalUBound-computationalLBou
computationalCount .

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

26.3.17 ESMF_LocStreamPrint - Print the contents of a LocStream

INTERFACE:

subroutine ESMF_LocStreamPrint(locstream, options, rc)

ARGUMENTS:

type(ESMF_LocStream), intent(inout) :: locstream
character (len = *), intent(in), optional :: options
integer, intent(out), optional :: rc

DESCRIPTION:

Prints information about thelocstream to stdout . This subroutine goes through the internal data members of a
locstream data type and prints information of each data member.
The arguments are:

locstream

[options] Print options are not yet supported.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

26.3.18 ESMF_LocStreamValidate - Check validity of a LocStream

INTERFACE:

subroutine ESMF_LocStreamValidate(locstream, options, rc)

ARGUMENTS:

type(ESMF_LocStream), intent(inout) :: locstream
character (len = *), intent(in), optional :: options
integer, intent(out), optional :: rc

459

DESCRIPTION:

Validates that thelocstream is internally consistent. Currently this method determines if the locstream is
uninitialized or already destroyed.
The method returns an error code if problems are found.
The arguments are:

locstream ESMF_LocStream to validate.

[options] Validation options are not yet supported.

[rc] Return code; equalsESMF_SUCCESSif the locstream is valid.

27 Mesh Class

27.1 Description

Unstructured grids are commonly used in the computational solution of partial differential equations. These are es-
pecially useful for problems that involve complex geometry, where using the less flexible structured grids can result
in grid representation of regions where no computation is needed. Finite element and finite volume methods map
naturally to unstructured grids and are used commonly in hydrology, ocean modeling, and many other applications.
In order to provide support for application codes using unstructured grids, the ESMF library provides a class for
representing unstructured grids called theMesh. Fields can be created on a Mesh to hold data. Fields created on a Mesh
can also be used as either the source or destination or both ofan interpolaton (i.e. anESMF_FieldRegridStore()
call) which allows data to be moved between unstructured grids. This section describes the Mesh and how to create
and use them in ESMF.

27.1.1 Mesh representation in ESMF

A Mesh in ESMF is described in terms ofnodesandelements. A node is a point in space which represents where the
coordinate information in a Mesh is located. An element is a higher dimensional shape constructed of nodes. Elements
give a Mesh its shape and define the relationship of the nodes to one another. Field data may be located on either the
nodes or elements of a Mesh.

27.1.2 Supported Meshes

The range of Meshes supported by ESMF are defined by several factors: dimension, element types, and distribution.
ESMF currently only supports Meshes whose number of coordinate dimensions (spatial dimension) is 2 or 3. The
dimension of the elements in a Mesh (parametric dimension) must be less than or equal to the spatial dimension, but
also must be either 2 or 3. This means that a Mesh may be either 2D elements in 2D space, 3D elements in 3D space,
or a manifold constructed of 2D elements embedded in 3D space.
ESMF currently supports two types of elements for each Mesh parametric dimension. For a parametric dimension of
2, the supported element types are triangles or quadralaterals. For a parametric dimension of 3, the supported element
types are tetrahedrons and hexahedrons. See Section 27.2.1for diagrams of these. The Mesh supports any combination
of element types within a particular dimension, but types from different dimensions may not be mixed. For example,
a Mesh cannot be constructed of both quadralaterals and tetrahedra.
ESMF currently only supports distributions where every node on a PET must be a part of an element on that PET. In
other words, there must not be nodes without a correspondingelement on any PET.

27.2 Mesh Options

27.2.1 ESMF_MeshElemType

DESCRIPTION:
An ESMF Mesh can be constructed from a combination of different elements. The type of elements that can be used

460

in a Mesh depends on the Mesh’s parameteric dimension, whichis set during Mesh creation. The following are the
valid Mesh element types for each valid Mesh parametric dimension (2D or 3D) .

3 4 ---------- 3
/ \ | |

/ \ | |
/ \ | |

/ \ | |
/ \ | |

1 --------- 2 1 ---------- 2

ESMF_MESHELEMTYPE_TRI ESMF_MESHELEMTYPE_QUAD

2D element types (numbers are the order for elementConn duri ng Mesh create)

For a Mesh with parametric dimension of 2 the valid element types (illustrated above) are:

Element Type Number of Nodes Description
ESMF_MESHELEMTYPE_TRI 3 A triangle
ESMF_MESHELEMTYPE_QUAD 4 A quadrilateral (e.g. a rectangle)

3 8---------------7
/|\ /| /|

/ | \ / | / |
/ | \ / | / |

/ | \ / | / |
/ | \ 5---------------6 |

4-----|-----2 | | | |
\ | / | 4----------|----3

\ | / | / | /
\ | / | / | /

\ | / | / | /
\|/ |/ |/

1 1---------------2

ESMF_MESHELEMTYPE_TETRA ESMF_MESHELEMTYPE_HEX

3D element types (numbers are the order for elementConn duri ng Mesh create)

For a Mesh with parametric dimension of 3 the valid element types (illustrated above) are:

Element Type Number of Nodes Description
ESMF_MESHELEMTYPE_TETRA 4 A tetrahedron (CAN’T BE USED IN REGRID)
ESMF_MESHELEMTYPE_HEX 8 A hexahedron (e.g. a cube)

27.2.2 ESMF_FileFormatType

DESCRIPTION:
This option is used byESMF_MeshCreate to specify the type of the input grid file. See section 27.3.5 for more
detailed description of the two file formats.

461

ESMF_FILEFORMAT_SCRIP SCRIP format grid file. The SCRIP format is the format accepted by the SCRIP
regridding tool [10]. For Mesh creation, files of this type only work when thegrid_rank in the file is equal
to 1.

ESMF_FILEFORMAT_ESMFMESH ESMF unstructured grid file format. This format was developed by the
ESMF team to match the capabilities of the Mesh class and to beefficient to convert to that class.

27.3 Use and Examples

This section describes the use of the ESMF Mesh class. It starts with an explanation and examples of creating a Mesh
and then goes through other Mesh methods. This set of sections covers the use of the Mesh class interfaces, for further
detail which applies to using a Field specifically on createdon a Mesh, please see Section 20.3.17.

27.3.1 Mesh creation

To create a Mesh we need to set some properties of the Mesh as a whole, some properties of each node in the mesh
and then some properties of each element which connects the nodes.
For the Mesh as a whole we set its parametric dimension (parametricDim) and spatial dimension (spatialDim).
The parametric dimension of a Mesh is the dimension of the topology of the Mesh, this can be thought of as the
dimension of the elements which make up the Mesh. For example, a Mesh composed of triangles would have a
parametric dimension of 2, whereas a Mesh composed of tetrahedra would have a parametric dimension of 3. A
Mesh’s spatial dimension, on the other hand, is the dimension of the space the Mesh is embedded in, in other words
the number of coordinate dimensions needed to describe the location of the nodes making up the Mesh. For example, a
Mesh constructed of squares on a plane would have a parametric dimension of 2 and a spatial dimension of 2, whereas
if that same Mesh were used to represent the 2D surface of a sphere then the Mesh would still have a parametric
dimension of 2, but now its spatial dimension would be 3.
The structure of the per node and element information used tocreate a Mesh is influenced by the Mesh distribution
strategy. The Mesh class is distributed by elements. This means that a node must be present on any PET that contains
an element associated with that node, but not on any other PET(a node can’t be on a PET without an element ""home").
Since a node may be used by two or more elements located on different PETs, a node may be duplicated on muliple
PETs. When a node is duplicated in this manner, one and only one of the PETs that contain the node must "own" the
node. The user sets this ownership when they define the nodes during Mesh creation. When a Field is created on a
Mesh (i.e. on the Mesh nodes), on each PET the Field is only created on the nodes which are owned by that PET.
This means that the size of the Field memory on the PET can be smaller than the number of nodes used to create the
Mesh on that PET. Please see Section 20.3.17 in Field for further explanation and examples of this issue and others in
working with Fields on Meshes.
For each node in the Mesh we set three properties: the global id of the node (nodeIds), node coordinates (nodeCoords),
and which PET owns the node (nodeOwners). The node id is a unique (across all PETs) integer attached to the partic-
ular node. It is used to indicate which nodes are the same whenconnecting together pieces of the Mesh on different pro-
cessors. The node coordinates indicate the location of a node in space and are used in theESMF_FieldRegrid()
functionality when interpolating. The node owner indicates which PET is in charge of the node. This is used when
creating a Field on the Mesh to indicate which PET should contain a Field location for the data.
For each element in the Mesh we set three properties: the global id of the element (elementIds), the topology type
of the element (elementTypes), and which nodes are connected together to form the element(elementConn).
The element id is a unique (across all PETs) integer attachedto the particular element. The element type describes the
topology of the element (e.g. a triangle vs. a quadralateral). The range of choices for the topology of the elements in a
Mesh are restricted by the Mesh’s parametric dimension (e.g. a Mesh can’t contain a 2D element like a triangle, when
its parametric dimension is 3D), but it can contain any combination of elements appropriate to its dimension. The
element connectivity indicates which nodes are to be connected together to form the element. The number of nodes
connected together for each element is implied by the elements topology type (elementTypes). It is IMPORTANT
to note, that the entries in this list are NOT the global ids ofthe nodes, but are indices into the PET local lists of
node info used in the Mesh Create. In other words, the elementconnectivity isn’t specified in terms of the global
list of nodes, but instead is specified in terms of the locallydescribed node info. One other important point about
connectivities is that the order of the nodes in the connectivity list of an element is important. Please see Section 27.2.1
for diagrams illustrating the correct order of nodes in an element.

462

Mesh creation may either be performed as a one step process using the full ESMF_MeshCreate() call, or may
be done in three steps. The three step process starts with a more minimalESMF_MeshCreate() call. It is then
followed by theESMF_MeshAddNodes() to specify nodes, and then theESMF_MeshAddElements() call to
specify elements. This three step sequence is useful to conserve memory because the node arrays being used for the
ESMF_MeshAddNodes() call can be deallocated before creating the arrays to be usedin theESMF_MeshAddElements()
call.

27.3.2 Create a small single PET Mesh in one step

2.0 7 ------- 8 ------- 9
4	5

1.0 4 ------- 5 ------- 6
	\ 3
1	\
	2 \

0.0 1 ------- 2 ------- 3

0.0 1.0 2.0

Node Id labels at corners
Element Id labels in centers
(Everything owned by PET 0)

This example is intended to illustrate the creation of a small Mesh on one PET. The reason for starting with a single
PET case is so that the user can start to familiarize themselves with the concepts of Mesh creation without the added
complication of multiple processors. Later examples illustrate the multiple processor case. This example creates the
small 2D Mesh which can be seen in the figure above. Note that this Mesh consists of 9 nodes and 5 elements, where
the elements are a mixture of quadralaterals and triangles.The coordinates of the nodes in the Mesh range from 0.0
to 2.0 in both dimensions. The node ids are in the corners of the elements whereas the element ids are in the centers.
The following section of code illustrates the creation of this Mesh.

! Set number of nodes
numNodes=9

! Allocate and fill the node id array.
allocate(nodeIds(numNodes))
nodeIds=(/1,2,3,4,5,6,7,8,9/)

! Allocate and fill node coordinate array.
! Since this is a 2D Mesh the size is 2x the
! number of nodes.
allocate(nodeCoords(2 * numNodes))
nodeCoords=(/0.0,0.0, & ! node id 1

1.0,0.0, & ! node id 2
2.0,0.0, & ! node id 3
0.0,1.0, & ! node id 4
1.0,1.0, & ! node id 5
2.0,1.0, & ! node id 6
0.0,2.0, & ! node id 7

463

1.0,2.0, & ! node id 8
2.0,2.0 /) ! node id 9

! Allocate and fill the node owner array.
! Since this Mesh is all on PET 0, it’s just set to all 0.
allocate(nodeOwners(numNodes))
nodeOwners=0 ! everything on PET 0

! Set the number of each type of element, plus the total number .
numQuadElems=3
numTriElems=2
numTotElems=numQuadElems+numTriElems

! Allocate and fill the element id array.
allocate(elemIds(numTotElems))
elemIds=(/1,2,3,4,5/)

! Allocate and fill the element topology type array.
allocate(elemTypes(numTotElems))
elemTypes=(/ESMF_MESHELEMTYPE_QUAD, & ! elem id 1

ESMF_MESHELEMTYPE_TRI, & ! elem id 2
ESMF_MESHELEMTYPE_TRI, & ! elem id 3
ESMF_MESHELEMTYPE_QUAD, & ! elem id 4
ESMF_MESHELEMTYPE_QUAD/) ! elem id 5

! Allocate and fill the element connection type array.
! Note that entries in this array refer to the
! positions in the nodeIds, etc. arrays and that
! the order and number of entries for each element
! reflects that given in the Mesh options
! section for the corresponding entry
! in the elemTypes array. The number of
! entries in this elemConn array is the
! number of nodes in a quad. (4) times the
! number of quad. elements plus the number
! of nodes in a triangle (3) times the number
! of triangle elements.
allocate(elemConn(4 * numQuadElems+3* numTriElems))
elemConn=(/1,2,5,4, & ! elem id 1

2,3,5, & ! elem id 2
3,6,5, & ! elem id 3
4,5,8,7, & ! elem id 4
5,6,9,8/) ! elem id 5

! Create Mesh structure in 1 step
mesh=ESMF_MeshCreate(parametricDim=2,spatialDim=2, &

nodeIds=nodeIds, nodeCoords=nodeCoords, &
nodeOwners=nodeOwners, elementIds=elemIds,&
elementTypes=elemTypes, elementConn=elemConn, &
rc=localrc)

464

! After the creation we are through with the arrays, so they ma y be
! deallocated.
deallocate(nodeIds)
deallocate(nodeCoords)
deallocate(nodeOwners)
deallocate(elemIds)
deallocate(elemTypes)
deallocate(elemConn)

! Set arrayspec for example field create
! Use a dimension of 1, because Mesh data is linearized
! into a one dimensional array.
call ESMF_ArraySpecSet(arrayspec, 1, ESMF_TYPEKIND_R8, rc=localrc)

! At this point the mesh is ready to use. For example, as is
! illustrated here, to have a field created on it. Note that
! the Field only contains data for nodes owned by the current P ET.
! Please see Section "Create a Field from a Mesh" under Field
! for more information on creating a Field on a Mesh.
field = ESMF_FieldCreate(mesh, arrayspec, rc=localrc)

27.3.3 Create a small single PET Mesh in three steps

This example is intended to illustrate the creation of a small Mesh in three steps on one PET. The Mesh being created
is exactly the same one as in the last example (Section 27.3.2), but the three step process allows the creation to occur
in a more memory efficient manner.

! Create the mesh structure setting the dimensions
mesh = ESMF_MeshCreate(parametricDim=2,spatialDim=2, r c=localrc)

! Set number of nodes
numNodes=9

! Allocate and fill the node id array.
allocate(nodeIds(numNodes))
nodeIds=(/1,2,3,4,5,6,7,8,9/)

! Allocate and fill node coordinate array.
! Since this is a 2D Mesh the size is 2x the
! number of nodes.
allocate(nodeCoords(2 * numNodes))
nodeCoords=(/0.0,0.0, & ! node id 1

1.0,0.0, & ! node id 2
2.0,0.0, & ! node id 3
0.0,1.0, & ! node id 4
1.0,1.0, & ! node id 5
2.0,1.0, & ! node id 6
0.0,2.0, & ! node id 7
1.0,2.0, & ! node id 8
2.0,2.0 /) ! node id 9

465

! Allocate and fill the node owner array.
! Since this Mesh is all on PET 0, it’s just set to all 0.
allocate(nodeOwners(numNodes))
nodeOwners=0 ! everything on PET 0

! Add the nodes to the Mesh
call ESMF_MeshAddNodes(mesh, nodeIds=nodeIds, &

nodeCoords=nodeCoords, nodeOwners=nodeOwners, rc=loca lrc)

!!!
! HERE IS THE POINT OF THE THREE STEP METHOD
! WE CAN DELETE THESE NODE ARRAYS BEFORE
! ALLOCATING THE ELEMENT ARRAYS, THEREBY
! REDUCING THE AMOUNT OF MEMORY NEEDED
! AT ONE TIME.
!!!
deallocate(nodeIds)
deallocate(nodeCoords)
deallocate(nodeOwners)

! Set the number of each type of element, plus the total number .
numQuadElems=3
numTriElems=2
numTotElems=numQuadElems+numTriElems

! Allocate and fill the element id array.
allocate(elemIds(numTotElems))
elemIds=(/1,2,3,4,5/)

! Allocate and fill the element topology type array.
allocate(elemTypes(numTotElems))
elemTypes=(/ESMF_MESHELEMTYPE_QUAD, & ! elem id 1

ESMF_MESHELEMTYPE_TRI, & ! elem id 2
ESMF_MESHELEMTYPE_TRI, & ! elem id 3
ESMF_MESHELEMTYPE_QUAD, & ! elem id 4
ESMF_MESHELEMTYPE_QUAD/) ! elem id 5

! Allocate and fill the element connection type array.
! Note that entries in this array refer to the
! positions in the nodeIds, etc. arrays and that
! the order and number of entries for each element
! reflects that given in the Mesh options
! section for the corresponding entry
! in the elemTypes array. The number of
! entries in this elemConn array is the
! number of nodes in a quad. (4) times the
! number of quad. elements plus the number
! of nodes in a triangle (3) times the number
! of triangle elements.
allocate(elemConn(4 * numQuadElems+3* numTriElems))
elemConn=(/1,2,5,4, & ! elem id 1

2,3,5, & ! elem id 2

466

3,6,5, & ! elem id 3
4,5,8,7, & ! elem id 4
5,6,9,8/) ! elem id 5

! Finish the creation of the Mesh by adding the elements
call ESMF_MeshAddElements(mesh, elementIds=elemIds,&

elementTypes=elemTypes, elementConn=elemConn, &
rc=localrc)

! After the creation we are through with the arrays, so they ma y be
! deallocated.
deallocate(elemIds)
deallocate(elemTypes)
deallocate(elemConn)

! Set arrayspec for example field create
! Use a dimension of 1, because Mesh data is linearized
! into a one dimensional array.
call ESMF_ArraySpecSet(arrayspec, 1, ESMF_TYPEKIND_R8, rc=localrc)

! At this point the mesh is ready to use. For example, as is
! illustrated here, to have a field created on it. Note that
! the Field only contains data for nodes owned by the current P ET.
! Please see Section "Create a Field from a Mesh" under Field
! for more information on creating a Field on a Mesh.
field = ESMF_FieldCreate(mesh, arrayspec, rc=localrc)

27.3.4 Create a small Mesh on 4 PETs in one step

2.0 7 ------- 8 [8] ------ 9
4		5

1.0 [4] ----- [5] [5] ----- [6]

0.0 1.0 1.0 2.0

PET 2 PET 3

1.0 4 ------- 5 [5] ------ 6
		\ 3
1		\
		2 \

0.0 1 ------- 2 [2] ------ 3

0.0 1.0 1.0 2.0

PET 0 PET 1

467

Node Id labels at corners
Element Id labels in centers

This example is intended to illustrate the creation of a small Mesh on multiple PETs. This example creates the same
small 2D Mesh as the previous two examples (See Section 27.3.2 for a diagram), however, in this case the Mesh is
broken up across 4 PETs. The figure above illustrates the distribution of the Mesh across the PETs. As in the previous
diagram, the node ids are in the corners of the elements and the element ids are in the centers. In this figure ’[’ and ’]’
around a character indicate a node which is owned by another PET. The nodeOwner parameter indicates which PET
owns the node. Note that the three step creation illustratedin Section 27.3.3 could also be used in a parallel Mesh
creation such as this by simply interleaving the three callsin the appropriate places between the node and element
array definitions.

! Break up what’s being set by PET
if (localPET .eq. 0) then !!! This part only for PET 0

! Set number of nodes
numNodes=4

! Allocate and fill the node id array.
allocate(nodeIds(numNodes))
nodeIds=(/1,2,4,5/)

! Allocate and fill node coordinate array.
! Since this is a 2D Mesh the size is 2x the
! number of nodes.
allocate(nodeCoords(2 * numNodes))
nodeCoords=(/0.0,0.0, & ! node id 1

1.0,0.0, & ! node id 2
0.0,1.0, & ! node id 4
1.0,1.0 /) ! node id 5

! Allocate and fill the node owner array.
allocate(nodeOwners(numNodes))
nodeOwners=(/0, & ! node id 1

0, & ! node id 2
0, & ! node id 4
0/) ! node id 5

! Set the number of each type of element, plus the total number .
numQuadElems=1
numTriElems=0
numTotElems=numQuadElems+numTriElems

! Allocate and fill the element id array.
allocate(elemIds(numTotElems))
elemIds=(/1/)

! Allocate and fill the element topology type array.
allocate(elemTypes(numTotElems))
elemTypes=(/ESMF_MESHELEMTYPE_QUAD/) ! elem id 1

! Allocate and fill the element connection type array.
! Note that entry are local indices

468

allocate(elemConn(4 * numQuadElems+3* numTriElems))
elemConn=(/1,2,4,3/) ! elem id 1

else if (localPET .eq. 1) then !!! This part only for PET 1
! Set number of nodes

numNodes=4

! Allocate and fill the node id array.
allocate(nodeIds(numNodes))
nodeIds=(/2,3,5,6/)

! Allocate and fill node coordinate array.
! Since this is a 2D Mesh the size is 2x the
! number of nodes.
allocate(nodeCoords(2 * numNodes))
nodeCoords=(/1.0,0.0, & ! node id 2

2.0,0.0, & ! node id 3
1.0,1.0, & ! node id 5
2.0,1.0 /) ! node id 6

! Allocate and fill the node owner array.
allocate(nodeOwners(numNodes))
nodeOwners=(/0, & ! node id 2

1, & ! node id 3
0, & ! node id 5
1/) ! node id 6

! Set the number of each type of element, plus the total number .
numQuadElems=0
numTriElems=2
numTotElems=numQuadElems+numTriElems

! Allocate and fill the element id array.
allocate(elemIds(numTotElems))
elemIds=(/2,3/)

! Allocate and fill the element topology type array.
allocate(elemTypes(numTotElems))
elemTypes=(/ESMF_MESHELEMTYPE_TRI, & ! elem id 2

ESMF_MESHELEMTYPE_TRI/) ! elem id 3

! Allocate and fill the element connection type array.
allocate(elemConn(4 * numQuadElems+3* numTriElems))
elemConn=(/1,2,3, & ! elem id 2

2,4,3/) ! elem id 3

else if (localPET .eq. 2) then !!! This part only for PET 2
! Set number of nodes

numNodes=4

! Allocate and fill the node id array.
allocate(nodeIds(numNodes))
nodeIds=(/4,5,7,8/)

! Allocate and fill node coordinate array.

469

! Since this is a 2D Mesh the size is 2x the
! number of nodes.
allocate(nodeCoords(2 * numNodes))
nodeCoords=(/0.0,1.0, & ! node id 4

1.0,1.0, & ! node id 5
0.0,2.0, & ! node id 7
1.0,2.0 /) ! node id 8

! Allocate and fill the node owner array.
! Since this Mesh is all on PET 0, it’s just set to all 0.
allocate(nodeOwners(numNodes))
nodeOwners=(/0, & ! node id 4

0, & ! node id 5
2, & ! node id 7
2/) ! node id 8

! Set the number of each type of element, plus the total number .
numQuadElems=1
numTriElems=0
numTotElems=numQuadElems+numTriElems

! Allocate and fill the element id array.
allocate(elemIds(numTotElems))
elemIds=(/4/)

! Allocate and fill the element topology type array.
allocate(elemTypes(numTotElems))
elemTypes=(/ESMF_MESHELEMTYPE_QUAD/) ! elem id 4

! Allocate and fill the element connection type array.
allocate(elemConn(4 * numQuadElems+3* numTriElems))
elemConn=(/1,2,4,3/) ! elem id 4

else if (localPET .eq. 3) then !!! This part only for PET 3
! Set number of nodes

numNodes=4

! Allocate and fill the node id array.
allocate(nodeIds(numNodes))
nodeIds=(/5,6,8,9/)

! Allocate and fill node coordinate array.
! Since this is a 2D Mesh the size is 2x the
! number of nodes.
allocate(nodeCoords(2 * numNodes))
nodeCoords=(/1.0,1.0, & ! node id 5

2.0,1.0, & ! node id 6
1.0,2.0, & ! node id 8
2.0,2.0 /) ! node id 9

! Allocate and fill the node owner array.
allocate(nodeOwners(numNodes))
nodeOwners=(/0, & ! node id 5

1, & ! node id 6
2, & ! node id 8

470

3/) ! node id 9

! Set the number of each type of element, plus the total number .
numQuadElems=1
numTriElems=0
numTotElems=numQuadElems+numTriElems

! Allocate and fill the element id array.
allocate(elemIds(numTotElems))
elemIds=(/5/)

! Allocate and fill the element topology type array.
allocate(elemTypes(numTotElems))
elemTypes=(/ESMF_MESHELEMTYPE_QUAD/) ! elem id 5

! Allocate and fill the element connection type array.
allocate(elemConn(4 * numQuadElems+3* numTriElems))
elemConn=(/1,2,4,3/) ! elem id 5

endif

! Create Mesh structure in 1 step
mesh=ESMF_MeshCreate(parametricDim=2, spatialDim=2, &

nodeIds=nodeIds, nodeCoords=nodeCoords, &
nodeOwners=nodeOwners, elementIds=elemIds,&
elementTypes=elemTypes, elementConn=elemConn, &
rc=localrc)

! After the creation we are through with the arrays, so they ma y be
! deallocated.
deallocate(nodeIds)
deallocate(nodeCoords)
deallocate(nodeOwners)
deallocate(elemIds)
deallocate(elemTypes)
deallocate(elemConn)

! Set arrayspec for example field create
! Use a dimension of 1, because Mesh data is linearized
! into a one dimensional array.
call ESMF_ArraySpecSet(arrayspec, 1, ESMF_TYPEKIND_R8, rc=localrc)

! At this point the mesh is ready to use. For example, as is
! illustrated here, to have a field created on it. Note that
! the Field only contains data for nodes owned by the current P ET.
! Please see Section "Create a Field from a Mesh" under Field
! for more information on creating a Field on a Mesh.
field = ESMF_FieldCreate(mesh, arrayspec, rc=localrc)

471

27.3.5 Create a Mesh from a SCRIP Grid file or an ESMF unstructured Grid file

ESMF supports the creation of a Mesh from a 2D unstructured grid defined in a SCRIP format grid file [10] or a ESMF
format grid file. Both the SCRIP grid file and the ESMF grid file are in NetCDF format. Here is a sample header from
a SCRIP unstructured grid file:

netcdf ne4np4-pentagons {
dimensions:

grid_size = 866 ;
grid_corners = 5 ;
grid_rank = 1 ;

variables:
double grid_area(grid_size) ;
grid_area:units = "radians^2" ;
grid_area:long_name = "area weights" ;
double grid_center_lat(grid_size) ;
grid_center_lat:units = "degrees" ;
double grid_center_lon(grid_size) ;
grid_center_lon:units = "degrees" ;
double grid_corner_lon(grid_size, grid_corners) ;
grid_corner_lon:units = "degrees" ;
grid_corner_lon:_FillValue = -9999. ;
double grid_corner_lat(grid_size, grid_corners) ;
grid_corner_lat:units = "degrees" ;
grid_corner_lat:_FillValue = -9999. ;
double grid_imask(grid_size) ;
grid_imask:_FillValue = -9999. ;
int grid_dims(grid_rank) ;

}

The grid cells are organized as a one dimensional array (grid_rank = 1). The cell connection is defined using
grid_corner_lat andgrid_corner_lon with the maximum number of corners defined ingrid_corners .
grid_imask is not used in the Mesh object in the current implementation.The data is located at the center of the grid
cell in a SCRIP grid; whereas the data is located at the cornerof a cell in an ESMF Mesh object. Therefore, we create
a Mesh object by default by constructing a "dual" mesh usinggrid_center_lat andgrid_center_lon . If
the user wishes to not construct the dual mesh, the optional argumentconvertToDual may be used to control this
behavior. WhencomvertToDual is set to .false. the Mesh constructed from the file will not bethe dual. This is
necessary when using the Mesh as part of a conservative regridding in theESMF_FieldRegridStore() call, so
the conservative weights are properly generated for the cell centers in the file.
The following example code dipicts how to create a Mesh usinga SCRIP file. Note that you have to set the filetype to
ESMF_FILEFORMAT_SCRIP. If the optional argumentconvert3D is set to .true., the coordinates will be converted
into 3D Cartisian first. If the grid is a global grid and will beused in a regrid operation, this flag should be set to .true.

mesh = ESMF_MeshCreate(filename="data/ne4np4-pentagon s.nc", filetype=ESMF_FILEFORMAT_SCRIP,
convert3D=.true., rc=localrc)

In addition to the SCRIP format, ESMF also supports a more general unstructured grid file format for describing
meshes. In the ESMF file format, the node coordinates are defined in a separate arraynodeCoords and indicies to
the nodeCoords array are used in the element connectitivity arrayelementConn . While in the SCRIP format,
the two are combined intogrid_corner_lat andgrid_corner_lon arrays. The ESMF file format matches
better with the methods used to create an ESMF Mesh object, soless conversion needs to be done to create a Mesh.
The ESMF format is also more general than the SCRIP format because it supports higher dimension coordinates and
more general topologies. This format does not support conversion to a dual mesh. The following is a sample header
of a mesh described in the ESMF format.

netcdf ne4np4-esmf {

472

dimensions:
nodeCount = 866 ;
elementCount = 936 ;
maxNodePElement = 4 ;
coordDim = 2 ;

variables:
double nodeCoords(numNode, coordDim);
nodeCoords:units = "degrees,degrees" ;
int elementConn(numElement, maxNodePElement) ;
elementConn:long_name = "Node Indices that define the elem ent connectivity" ;
elementConn:_FillValue = -1 ;
byte numElementConn(numElement) ;
numElementConn:long_name = "Number of nodes per element" ;
double centerCoords(numElement, coordDim) ;
centerCoords:units = "degrees" ;
double elementArea(numElement) ;
elementArea:units = "radians^2" ;
elementArea:long_name = "area weights" ;
int elementMask(numElement) ;
elementMask:_FillValue = -9999. ;

// global attributes:
:gridType="unstructured";
:version = "0.9" ;
:inputFile = "ne4np4-pentagons.nc" ;
:timeGenerated = "Fri Apr 16 16:05:24 2010" ;

}

Here is an example of creating a Mesh from an ESMF unstructured grid file. Note you have to set the filetype to
ESMF_FILEFORMAT_ESMFMESH. As with the previous example, we setconvert3D to true because this is a
global grid.

mesh = ESMF_MeshCreate(filename="data/ne4np4-esmf.nc" , filetype=ESMF_FILEFORMAT_ESMFMESH,
convert3D=.true., rc=localrc)

27.3.6 Remove Mesh memory

There are two different levels that the memory in a Mesh can beremoved. The first of these is the standard destroy
call, ESMF_MeshDestroy() . As with other classes, this call removes all memory associated with the object, and
afterwards the object can not be used further (i.e. should not be used in any methods). The second, which is unique
to Mesh, is theESMF_MeshFreeMemory() call. This call removes the connection and coordinate information
associated with the Mesh, but leaves the distgrid information. The coordinate and connection information held in the
Mesh can consume a large amount of memory for a big Mesh, so using this call can very significantly reduce the
amount of memory used. However, once this method has been used on a Mesh there are some restriction on what may
be done with it. Once a Mesh has had its memory freed using thismethod, any Field built on the Mesh can no longer
be used as part of anESMF_FieldRegridStore() call. However, because the distgrid information is still part of
the Mesh, Fields built on such a Mesh can still be part of anESMF_FieldRegrid() call (where the routehandle
was generated previous to theESMF_MeshFreeMemory() operation). Fields may also still be created on these
Meshes. The following short piece of code illustrates the use of this call.

! Here a Field built on a mesh may be used
! as part of a ESMF_FieldRegridStore() call

! This call removes connection and coordinate

473

! information, significantly reducing the memory used by
! mesh, but limiting what can be done with it.
call ESMF_MeshFreeMemory(mesh, rc=localrc)

! Here a new Field may be built on mesh, or
! a field built on a mesh may be used as part
! of an ESMF_FieldRegrid() call

! Destroy the mesh
call ESMF_MeshDestroy(mesh, rc=localrc)

! Here mesh can’t be used for anything

27.4 Class API

27.4.1 ESMF_MeshAddElements - Add elements to a Mesh

INTERFACE:

subroutine ESMF_MeshAddElements(mesh, elementIds, elem entTypes, elementConn, rc)

ARGUMENTS:

type(ESMF_Mesh), intent(inout) :: mesh
integer, dimension(:), intent(in) :: elementIds
integer, dimension(:), intent(in) :: elementTypes
integer, dimension(:), intent(in) :: elementConn
integer, intent(out), optional :: rc

DESCRIPTION:

This call is the third and last part of the three part mesh create sequence and should be called after the mesh is created
with ESMF_MeshCreate() (27.4.3) and after the nodes are added withESMF_MeshAddNodes() (27.4.2). This
call adds the elements to the mesh and finalizes the create. After this call the Mesh is usable, for example a Field may
be built on the created Mesh object and this Field may be used in aESMF_FieldRegridStore() call.
The parameters to this callelementIds , elementTypes , andelementConn describe the elements to be cre-
ated. The description for a particular element lies at the same index location inelementIds andelementTypes .
Each entry inelementConn consists of the list of nodes used to create that element, so the connections for elemente
in theelementIds array will start atnumber_of_nodes_in_element(1)+number_of_nodes_in_element(2)+
· · · + number_of_nodes_in_element(e− 1) + 1 in elementConn .
This call iscollectiveacross the current VM.

elementIds An array containing the global ids of the elements to be created on this PET. This input consists of a 1D
array the size of the number of elements on this PET.

elementTypesAn array containing the types of the elements to be created onthis PET. The types used must be
appropriate for the parametric dimension of the Mesh. Please see Section 27.2.1 for the list of options. This
input consists of a 1D array the size of the number of elementson this PET.

elementConn An array containing the indexes of the sets of nodes to be connected together to form the elements to
be created on this PET. The entries in this list are NOT node global ids, but rather each entry is a local index
(1 based) into the list of nodes which were created on this PETby the previousESMF_MeshAddNodes()
call. In other words, an entry of 1 indicates that this element contains the node described bynodeIds(1) ,
nodeCoords(1) , etc. passed into theESMF_MeshAddNodes() call on this PET. It is also important to

474

note that the order of the nodes in an element connectivity list matters. Please see Section 27.2.1 for diagrams
illustrating the correct order of nodes in a element. This input consists of a 1D array with a total size equal to the
sum of the number of nodes in each element on this PET. The number of nodes in each element is implied by its
element type inelementTypes . The nodes for each element are in sequence in this array (e.g. the nodes for
element 1 are elementConn(1), elementConn(2), etc.).

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

27.4.2 ESMF_MeshAddNodes - Add nodes to a Mesh

INTERFACE:

subroutine ESMF_MeshAddNodes(mesh, nodeIds, nodeCoords , nodeOwners, rc)

ARGUMENTS:

type(ESMF_Mesh), intent(inout) :: mesh
integer, dimension(:), intent(in) :: nodeIds
real(ESMF_KIND_R8), dimension(:), intent(in) :: nodeCoo rds
integer, dimension(:), intent(in) :: nodeOwners
integer, intent(out), optional :: rc

DESCRIPTION:

This call is the second part of the three part mesh create sequence and should be called after the mesh’s dimen-
sions are set usingESMF_MeshCreate() (27.4.3). This call adds the nodes to the mesh. The next step is to call
ESMF_MeshAddElements() (27.4.1).
The parameters to this callnodeIds , nodeCoords , andnodeOwners describe the nodes to be created on this
PET. The description for a particular node lies at the same index location innodeIds andnodeOwners . Each entry
in nodeCoords consists of spatial dimension coordinates, so the coordinates for noden in thenodeIds array will
start at(n − 1) ∗ spatialDim + 1.

nodeIds An array containing the global ids of the nodes to be created on this PET. This input consists of a 1D array
the size of the number of nodes on this PET.

nodeCoords An array containing the physical coordinates of the nodes tobe created on this PET. This input consists
of a 1D array the size of the number of nodes on this PET times the Mesh’s spatial dimension (spatialDim).
The coordinates in this array are ordered so that the coordinates for a node lie in sequence in memory. (e.g.
for a Mesh with spatial dimension 2, the coordinates for node1 are in nodeCoords(0) and nodeCoords(1), the
coordinates for node 2 are in nodeCoords(2) and nodeCoords(3), etc.).

nodeOwners An array containing the PETs that own the nodes to be created on this PET. If the node is shared with
another PET, the value may be a PET other than the current one.Only nodes owned by this PET will have PET
local entries in a Field created on the Mesh. This input consists of a 1D array the size of the number of nodes
on this PET.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

27.4.3 ESMF_MeshCreate - Create a Mesh as a 3 step process

INTERFACE:

475

! Private name; call using ESMF_MeshCreate()
function ESMF_MeshCreate3Part(parametricDim, spatialD im, rc)

RETURN VALUE:

type(ESMF_Mesh) :: ESMF_MeshCreate3Part

ARGUMENTS:

integer, intent(in) :: parametricDim
integer, intent(in) :: spatialDim
integer, intent(out), optional :: rc

DESCRIPTION:

This call is the first part of the three part mesh create sequence. This call sets the dimension of the elements in the
mesh (parametricDim) and the number of coordinate dimensions in the mesh (spatialDim). The next step is to
call ESMF_MeshAddNodes() (27.4.2) to add the nodes and thenESMF_MeshAddElements() (27.4.1) to add
the elements and finalize the mesh.
This call iscollectiveacross the current VM.

parametricDim Dimension of the topology of the Mesh. (E.g. a mesh constructed of squares would have a parametric
dimension of 2, whereas a Mesh constructed of cubes would have one of 3.)

spatialDim The number of coordinate dimensions needed to describe the locations of the nodes making up the Mesh.
For a manifold, the spatial dimesion can be larger than the parametric dim (e.g. the 2D surface of a sphere in
3D space), but it can’t be smaller.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

27.4.4 ESMF_MeshCreate - Create a Mesh all at once

INTERFACE:

! Private name; call using ESMF_MeshCreate()
function ESMF_MeshCreate1Part(parametricDim, spatialD im, &

nodeIds, nodeCoords, nodeOwners, &
elementIds, elementTypes, elementConn, &
rc)

RETURN VALUE:

type(ESMF_Mesh) :: ESMF_MeshCreate1Part

ARGUMENTS:

integer, intent(in) :: parametricDim
integer, intent(in) :: spatialDim
integer, dimension(:), intent(in) :: nodeIds
real(ESMF_KIND_R8), dimension(:), intent(in) :: nodeCoo rds
integer, dimension(:), intent(in) :: nodeOwners
integer, dimension(:), intent(in) :: elementIds
integer, dimension(:), intent(in) :: elementTypes
integer, dimension(:), intent(in) :: elementConn
integer, intent(out), optional :: rc

476

DESCRIPTION:

Create a Mesh object in one step. After this call the Mesh is usable, for example, a Field may be built on the created
Mesh object and this Field may be used in aESMF_FieldRegridStore() call.
This call sets the dimension of the elements in the mesh (parametricDim) and the number of coordinate dimensions
in the mesh (spatialDim). It then creates the nodes, and then creates the elements byconnecting together the nodes.
The parameters to this callnodeIds , nodeCoords , andnodeOwners describe the nodes to be created on this
PET. The description for a particular node lies at the same index location innodeIds andnodeOwners . Each entry
in nodeCoords consists of spatial dimension coordinates, so the coordinates for noden in thenodeIds array will
start at(n − 1) ∗ spatialDim + 1.
The parameters to this callelementIds , elementTypes , andelementConn describe the elements to be cre-
ated. The description for a particular element lies at the same index location inelementIds andelementTypes .
Each entry inelementConn consists of the list of nodes used to create that element, so the connections for elemente
in theelementIds array will start atnumber_of_nodes_in_element(1)+number_of_nodes_in_element(2)+
· · · + number_of_nodes_in_element(e− 1) + 1 in elementConn .
This call iscollectiveacross the current VM.

parametricDim Dimension of the topology of the Mesh. (E.g. a mesh constructed of squares would have a parametric
dimension of 2, whereas a Mesh constructed of cubes would have one of 3.)

spatialDim The number of coordinate dimensions needed to describe the locations of the nodes making up the Mesh.
For a manifold, the spatial dimesion can be larger than the parametric dim (e.g. the 2D surface of a sphere in
3D space), but it can’t be smaller.

nodeIds An array containing the global ids of the nodes to be created on this PET. This input consists of a 1D array
the size of the number of nodes on this PET.

nodeCoords An array containing the physical coordinates of the nodes tobe created on this PET. This input consists
of a 1D array the size of the number of nodes on this PET times the Mesh’s spatial dimension (spatialDim).
The coordinates in this array are ordered so that the coordinates for a node lie in sequence in memory. (e.g.
for a Mesh with spatial dimension 2, the coordinates for node1 are in nodeCoords(0) and nodeCoords(1), the
coordinates for node 2 are in nodeCoords(2) and nodeCoords(3), etc.).

nodeOwners An array containing the PETs that own the nodes to be created on this PET. If the node is shared with
another PET, the value may be a PET other than the current one.Only nodes owned by this PET will have PET
local entries in a Field created on the Mesh. This input consists of a 1D array the size of the number of nodes
on this PET.

elementIds An array containing the global ids of the elements to be created on this PET. This input consists of a 1D
array the size of the number of elements on this PET.

elementTypesAn array containing the types of the elements to be created onthis PET. The types used must be
appropriate for the parametric dimension of the Mesh. Please see Section 27.2.1 for the list of options. This
input consists of a 1D array the size of the number of elementson this PET.

elementConn An array containing the indexes of the sets of nodes to be connected together to form the elements to
be created on this PET. The entries in this list are NOT node global ids, but rather each entry is a local index
(1 based) into the list of nodes to be created on this PET by this call. In other words, an entry of 1 indicates
that this element contains the node described bynodeIds(1) , nodeCoords(1) , etc. on this PET. It is also
important to note that the order of the nodes in an element connectivity list matters. Please see Section 27.2.1
for diagrams illustrating the correct order of nodes in a element. This input consists of a 1D array with a total
size equal to the sum of the number of nodes contained in each element on this PET. The number of nodes in
each element is implied by its element type inelementTypes . The nodes for each element are in sequence
in this array (e.g. the nodes for element 1 are elementConn(1), elementConn(2), etc.).

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

477

27.4.5 ESMF_MeshCreate - Create a Mesh from a file

INTERFACE:

! Private name; call using ESMF_MeshCreate()
function ESMF_MeshCreateFromFile(filename, filetype, c onvert3D, convertToDual, rc)

RETURN VALUE:

type(ESMF_Mesh) :: ESMF_MeshCreateFromFile

ARGUMENTS:

character(len= *), intent(in) :: filename
type(ESMF_FileFormatType), intent(in) :: filetype
logical, intent(in), optional :: convert3D
logical, intent(in), optional :: convertToDual
integer, intent(out), optional :: rc

DESCRIPTION:

Create a Mesh from a file. Provides options to convert to 3D andin the case of SCRIP format files, allows the dual of
the mesh to be created.
This call iscollectiveacross the current VM.

filename The name of the grid file

filetype The file type of the grid file to be read, please see Section 27.2.2 for a list of valid options.

convert3D if TRUE, the node coordinates will be converted into 3D Cartisian, which is required for a global grid

convertToDual if TRUE, the mesh will be converted to its dual. If not specified, defaults to true. Converting to dual
is not supported with file typeESMF_FILEFORMAT_ESMFMESH, so when using that file type this parameter
has no effect.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

27.4.6 ESMF_MeshDestroy - Destroy a Mesh

INTERFACE:

subroutine ESMF_MeshDestroy(mesh, rc)

RETURN VALUE:

ARGUMENTS:

type(ESMF_Mesh), intent(inout) :: mesh
integer, intent(out), optional :: rc

DESCRIPTION:

Destroy the Mesh. This call removes all internal memory associated withmesh. After this callmesh will no longer
be usable.
The arguments are:

mesh Mesh object to be destroyed.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

478

27.4.7 ESMF_MeshFreeMemory - Remove a Mesh and its memory

INTERFACE:

subroutine ESMF_MeshFreeMemory(mesh, rc)

RETURN VALUE:

ARGUMENTS:

type(ESMF_Mesh), intent(inout) :: mesh
integer, intent(out), optional :: rc

DESCRIPTION:

This call removes the portions ofmesh which contain connection and coordinate information. After this call, Fields
build onmesh will no longer be usable as part of anESMF_FieldRegridStore() operation. However, after this
call Fields built onmesh can still be used in anESMF_FieldRegrid() operation if the routehandle was generated
beforehand. New Fields may also be built onmesh after this call.
The arguments are:

mesh Mesh object whose memory is to be freed.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

27.4.8 ESMF_MeshGet - Get information from a Mesh

INTERFACE:

subroutine ESMF_MeshGet(mesh, parametricDim, spatialDi m, &
nodalDistgrid, elementDistgrid, &
numOwnedNodes, ownedNodeCoords, numOwnedElements, isMe mFreed, rc)

RETURN VALUE:

ARGUMENTS:

type(ESMF_Mesh), intent(inout) :: mesh
integer, intent(out), optional :: parametricDim
integer, intent(out), optional :: spatialDim
type(ESMF_DistGrid), intent(out), optional :: nodalDist grid
type(ESMF_DistGrid), intent(out), optional :: elementDi stgrid
integer, intent(out), optional :: numOwnedNodes
real(ESMF_KIND_R8), dimension(:), intent(out), optiona l :: ownedNodeCoords
integer, intent(out), optional :: numOwnedElements
logical, intent(out), optional :: isMemFreed
integer, intent(out), optional :: rc

DESCRIPTION:

Get various information from a mesh.
The arguments are:

479

mesh Mesh object to retrieve information from.

[parametricDim] Dimension of the topology of the Mesh. (E.g. a mesh constructed of squares would have a para-
metric dimension of 2, whereas a Mesh constructed of cubes would have one of 3.)

[spatialDim] The number of coordinate dimensions needed to describe the locations of the nodes making up the
Mesh. For a manifold, the spatial dimesion can be larger thanthe parametric dim (e.g. the 2D surface of a
sphere in 3D space), but it can’t be smaller.

[nodalDistgrid] A 1D arbitrary distgrid describing the distribution of the nodes across the PETs. Note that on each
PET the distgrid will only contain entries for nodes owned bythat PET. This is the DistGrid that would be used
to construct the Array in a Field that is constructed onmesh.

[elementDistgrid] A 1D arbitrary distgrid describing the distribution of elements across the PETs. Note that on each
PET the distgrid will only contain entries for elements owned by that PET.

[numOwnedNodes] The number of local nodes which are owned by this PET. This is the number of PET local entries
in the nodalDistgrid.

[ownedNodeCoords]The coordinates for the local nodes. These coordinates willbe in the proper order to correspond
with the nodes in thenodalDistgrid returned by this call, and hence with a Field built onmesh. The size
of the input array should be the spatial dim ofmesh timesnumOwnedNodes.

[numOwnedElements] The number of local elements which are owned by this PET. Notethat every element is owned
by the PET it resides on, so unlike for nodes,numOwnedElements is identical to the number of elements on
the PET. It is also the number of PET local entries in the elementDistgrid.

[isMemFreed] Indicates if the coordinate and connection memory been freed from mesh. If so, it can no longer be
used as part of anESMF_FieldRegridStore() call.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

28 XGrid Class

28.1 Description

An exchange grid represents the 2D boundary layer usually between the atmosphere on one side and ocean and land
on the other in an Earth system model. There are dynamical andthermodynamical processes on either side of the
boundary layer and on the boundary layer itself. The boundary layer exchanges fluxes from either side and adjusts
boundary conditions for the model components involved. Forclimate modeling, it is critical that the fluxes transferred
by the boundary layer are conservative.
The exchange grid is implemented as a collection of the intersected cells between atmosphere and ocean/land[19].
These cells can have irregular shapes and can be broken down into triangles facilitating a finite element approach. In
practice, there is a threshold of minimum cell area below which intersections are discarded.

28.2 Use and Examples

28.2.1 Create an XGrid from user input data then use it for regridding

XGrid can be created from user input data, such as Grids on either side, area and centroid information of XGrid cells,
sparse matrix matmul information such as factorList and factorIndexList. The functionalities provided by the XGrid
object is constrained by the user supplied input during its creation time.
In this example, we will set up a simple XGrid from overlapping Grids on either side of the XGrid. Then we perform
a flux exchange from one side to the other side of the XGrid. TheGrids are laid out in the following figure:

We start by creating the Grids on both sides and associate coordinates with the Grids. For details of Grid creation and
coordinate use, please refer to Grid class documentation.

480

1

2

3

4

5

6

7

8

9

10

11

12

1

2

3

4

1

2

3

4

(0,0) (0,3)

(2,0) (2,3)

(1.5,1.5)

1

2

Figure 19: Grid layout for simple XGrid creation example. Overlapping of 3 Grids (Green 2x2, Red 2x1, Blue 2x2).
Green and red Grids on side A, blue Grid on side B, black indicates the resulting XGrid. Color coded sequence indices
are shown. Physical coordinates are the tuples in parenthese, e.g. at the four corners of rectangular computational
domain.

481

sideA(1) = ESMF_GridCreateShapeTile(minIndex=(/1,1/), maxIndex=(/2,2/), &
coordDep1=(/1/), &
coordDep2=(/2/), &
name=’source Grid 1 on side A’, rc=localrc)

sideA(2) = ESMF_GridCreateShapeTile(minIndex=(/1,1/), maxIndex=(/2,1/), &
coordDep1=(/1/), &
coordDep2=(/2/), &
name=’source Grid 2 on side A’, rc=localrc)

do i = 1, 2
call ESMF_GridAddCoord(sideA(i), staggerloc=ESMF_STAG GERLOC_CENTER, &

rc=localrc)
if(localrc /= ESMF_SUCCESS) call ESMF_Finalize(rc=local rc, terminationflag=ESMF_ABORT)

enddo

Coordinate for the Grids on sideA, refer to the Grid layout diagram for the interpretation of the coordinate values:

! SideA first grid
centroidA1X=(/0.5, 1.5/)
centroidA1Y=(/0.5, 1.5/)
call ESMF_GridGetCoord(sideA(1), localDE=0, staggerLoc =ESMF_STAGGERLOC_CENTER, &

coordDim=1, fptr=coordX, rc=localrc)
if(localrc /= ESMF_SUCCESS) call ESMF_Finalize(rc=local rc, terminationflag=ESMF_ABORT)
coordX = centroidA1X
call ESMF_GridGetCoord(sideA(1), localDE=0, staggerLoc =ESMF_STAGGERLOC_CENTER, &

coordDim=2, fptr=coordY, rc=localrc)
if(localrc /= ESMF_SUCCESS) call ESMF_Finalize(rc=local rc, terminationflag=ESMF_ABORT)
coordY = centroidA1Y

! SideA second grid
centroidA2X=(/0.5, 1.5/)
centroidA2Y=(/2.5/)
call ESMF_GridGetCoord(sideA(2), localDE=0, staggerLoc =ESMF_STAGGERLOC_CENTER, &

coordDim=1, fptr=coordX, rc=localrc)
if(localrc /= ESMF_SUCCESS) call ESMF_Finalize(rc=local rc, terminationflag=ESMF_ABORT)
coordX = centroidA2X
call ESMF_GridGetCoord(sideA(2), localDE=0, staggerLoc =ESMF_STAGGERLOC_CENTER, &

coordDim=2, fptr=coordY, rc=localrc)
if(localrc /= ESMF_SUCCESS) call ESMF_Finalize(rc=local rc, terminationflag=ESMF_ABORT)
coordY = centroidA2Y

Create the destination grid on side B, only one Grid exists onside B. Also associate coordinate with the Grid:

sideB(1) = ESMF_GridCreateShapeTile(minIndex=(/1,1/), maxIndex=(/2,2/), &
coordDep1=(/1/), coordDep2=(/2/), &
name=’destination Grid on side B’, rc=localrc)

if(localrc /= ESMF_SUCCESS) call ESMF_Finalize(rc=local rc, terminationflag=ESMF_ABORT)
do i = 1, 1

call ESMF_GridAddCoord(sideB(i), staggerloc=ESMF_STAG GERLOC_CENTER, &
rc=localrc)

if(localrc /= ESMF_SUCCESS) call ESMF_Finalize(rc=local rc, terminationflag=ESMF_ABORT)
enddo

482

! SideB grid
centroidBX=(/0.75, 1.75/)
centroidBY=(/0.75, 2.25/)
call ESMF_GridGetCoord(sideB(1), localDE=0, staggerLoc =ESMF_STAGGERLOC_CENTER, &

coordDim=1, fptr=coordX, rc=localrc)
if(localrc /= ESMF_SUCCESS) call ESMF_Finalize(rc=local rc, terminationflag=ESMF_ABORT)
coordX = centroidBX
call ESMF_GridGetCoord(sideB(1), localDE=0, staggerLoc =ESMF_STAGGERLOC_CENTER, &

coordDim=2, fptr=coordY, rc=localrc)
if(localrc /= ESMF_SUCCESS) call ESMF_Finalize(rc=local rc, terminationflag=ESMF_ABORT)
coordY = centroidBY

Set up the mapping indices and weights from A side to the XGrid. For details of sequence indices, factorIndexList,
and factorList, please see section 22.2.17 in the referencemanual. Please refer to the figure above for interpretation of
the sequence indices used here.
In order to compute the destination flux on sideB through the XGrid as an mediator, we need to set up the factorList
(weights) and factorIndexList (indices) for sparse matrixmatmul in this formulation: dst_flux = W’*W*src_flux,
where W’ is the weight matrix from the XGrid to destination; and W is the weight matrix from source to the XGrid.
The weight matrix is generated using destination area weighted algorithm. Please refer to figure 19 for details.

! Set up mapping from A1 -> X
sparseMatA2X(1)%factorIndexList(1,1)=1 ! src seq index (green)
sparseMatA2X(1)%factorIndexList(1,2)=2 ! src seq index (green)
sparseMatA2X(1)%factorIndexList(1,3)=2 ! src seq index (green)
sparseMatA2X(1)%factorIndexList(1,4)=3 ! src seq index (green)
sparseMatA2X(1)%factorIndexList(1,5)=4 ! src seq index (green)
sparseMatA2X(1)%factorIndexList(1,6)=4 ! src seq index (green)
sparseMatA2X(1)%factorIndexList(1,7)=3 ! src seq index (green)
sparseMatA2X(1)%factorIndexList(1,8)=4 ! src seq index (green)
sparseMatA2X(1)%factorIndexList(1,9)=4 ! src seq index (green)

sparseMatA2X(1)%factorIndexList(2,1)=1 ! dst seq index (black)
sparseMatA2X(1)%factorIndexList(2,2)=2 ! dst seq index (black)
sparseMatA2X(1)%factorIndexList(2,3)=3 ! dst seq index (black)
sparseMatA2X(1)%factorIndexList(2,4)=4 ! dst seq index (black)
sparseMatA2X(1)%factorIndexList(2,5)=5 ! dst seq index (black)
sparseMatA2X(1)%factorIndexList(2,6)=6 ! dst seq index (black)
sparseMatA2X(1)%factorIndexList(2,7)=7 ! dst seq index (black)
sparseMatA2X(1)%factorIndexList(2,8)=8 ! dst seq index (black)
sparseMatA2X(1)%factorIndexList(2,9)=9 ! dst seq index (black)

! Set up mapping from A2 -> X
sparseMatA2X(2)%factorIndexList(1,1)=1 ! src seq index (red)
sparseMatA2X(2)%factorIndexList(1,2)=2 ! src seq index (red)
sparseMatA2X(2)%factorIndexList(1,3)=2 ! src seq index (red)

sparseMatA2X(2)%factorIndexList(2,1)=10 ! dst seq index (black)
sparseMatA2X(2)%factorIndexList(2,2)=11 ! dst seq index (black)
sparseMatA2X(2)%factorIndexList(2,3)=12 ! dst seq index (black)

Set up the mapping weights from side A to the XGrid:

! Note that the weights are dest area weighted, they are ratio of areas with

483

! destination area as the denominator.
! Set up mapping weights from A1 -> X
sparseMatA2X(1)%factorList(:)=1.

! Set up mapping weights from A2 -> X
sparseMatA2X(2)%factorList(:)=1.

Set up the mapping indices and weights from the XGrid to B side:

! Set up mapping from X -> B
sparseMatX2B(1)%factorIndexList(1,1)=1 ! src seq index (black)
sparseMatX2B(1)%factorIndexList(1,2)=2 ! src seq index (black)
sparseMatX2B(1)%factorIndexList(1,3)=3 ! src seq index (black)
sparseMatX2B(1)%factorIndexList(1,4)=4 ! src seq index (black)
sparseMatX2B(1)%factorIndexList(1,5)=5 ! src seq index (black)
sparseMatX2B(1)%factorIndexList(1,6)=6 ! src seq index (black)
sparseMatX2B(1)%factorIndexList(1,7)=7 ! src seq index (black)
sparseMatX2B(1)%factorIndexList(1,8)=8 ! src seq index (black)
sparseMatX2B(1)%factorIndexList(1,9)=9 ! src seq index (black)
sparseMatX2B(1)%factorIndexList(1,10)=10 ! src seq inde x (black)
sparseMatX2B(1)%factorIndexList(1,11)=11 ! src seq inde x (black)
sparseMatX2B(1)%factorIndexList(1,12)=12 ! src seq inde x (black)

sparseMatX2B(1)%factorIndexList(2,1)=1 ! dst seq index (blue)
sparseMatX2B(1)%factorIndexList(2,2)=1 ! dst seq index (blue)
sparseMatX2B(1)%factorIndexList(2,3)=2 ! dst seq index (blue)
sparseMatX2B(1)%factorIndexList(2,4)=1 ! dst seq index (blue)
sparseMatX2B(1)%factorIndexList(2,5)=1 ! dst seq index (blue)
sparseMatX2B(1)%factorIndexList(2,6)=2 ! dst seq index (blue)
sparseMatX2B(1)%factorIndexList(2,7)=3 ! dst seq index (blue)
sparseMatX2B(1)%factorIndexList(2,8)=3 ! dst seq index (blue)
sparseMatX2B(1)%factorIndexList(2,9)=4 ! dst seq index (blue)
sparseMatX2B(1)%factorIndexList(2,10)=3 ! dst seq index (blue)
sparseMatX2B(1)%factorIndexList(2,11)=3 ! dst seq index (blue)
sparseMatX2B(1)%factorIndexList(2,12)=4 ! dst seq index (blue)

! Set up mapping weights from X -> B
sparseMatX2B(1)%factorList(1)=4./9.
sparseMatX2B(1)%factorList(2)=2./9.
sparseMatX2B(1)%factorList(3)=2./3.
sparseMatX2B(1)%factorList(4)=2./9.
sparseMatX2B(1)%factorList(5)=1./9.
sparseMatX2B(1)%factorList(6)=1./3.
sparseMatX2B(1)%factorList(7)=2./9.
sparseMatX2B(1)%factorList(8)=1./9.
sparseMatX2B(1)%factorList(9)=1./3.
sparseMatX2B(1)%factorList(10)=4./9.
sparseMatX2B(1)%factorList(11)=2./9.
sparseMatX2B(1)%factorList(12)=2./3.

Optionally the area can be setup to compute surface area weighted flux integrals:

! Set up destination areas to adjust weighted flux
xgrid_area(1) = 1.

484

xgrid_area(2) = 0.5
xgrid_area(3) = 0.5
xgrid_area(4) = 0.5
xgrid_area(5) = 0.25
xgrid_area(6) = 0.25
xgrid_area(7) = 0.5
xgrid_area(8) = 0.25
xgrid_area(9) = 0.25
xgrid_area(10) = 1.
xgrid_area(11) = 0.5
xgrid_area(12) = 0.5

Create an XGrid based on the user supplied regridding parameters:

xgrid = ESMF_XGridCreate(sideA, sideB, area=xgrid_area, centroid=centroid, &
sparseMatA2X=sparseMatA2X, sparseMatX2B=sparseMatX2B , rc=localrc)

Create anESMF_Field on the XGrid:

field = ESMF_FieldCreate(xgrid, typekind=ESMF_TYPEKIND _R8, rank=1, rc=localrc)

Query the Field for its Fortran data pointer and its exclusive bounds:

call ESMF_FieldGet(field, farrayPtr=xfptr, &
exclusiveLBound=xlb, exclusiveUBound=xub, rc=localrc)

Setup and initialize src and dst Fields on side A and side B Grids, source Fields have different source flux:

do i = 1, 2
srcField(i) = ESMF_FieldCreate(sideA(i), typekind=ESMF _TYPEKIND_R8, rank=2, rc=localrc)
if(localrc /= ESMF_SUCCESS) call ESMF_Finalize(rc=local rc, terminationflag=ESMF_ABORT)
call ESMF_FieldGet(srcField(i), farrayPtr=fptr, rc=loc alrc)
if(localrc /= ESMF_SUCCESS) call ESMF_Finalize(rc=local rc, terminationflag=ESMF_ABORT)
fptr = i

enddo
do i = 1, 1

dstField(i) = ESMF_FieldCreate(sideB(i), typekind=ESMF _TYPEKIND_R8, rank=2, rc=localrc)
if(localrc /= ESMF_SUCCESS) call ESMF_Finalize(rc=local rc, terminationflag=ESMF_ABORT)
call ESMF_FieldGet(dstField(i), farrayPtr=fptr, rc=loc alrc)
if(localrc /= ESMF_SUCCESS) call ESMF_Finalize(rc=local rc, terminationflag=ESMF_ABORT)
fptr = 0.0

enddo

The current implementation requires that Grids used to generate the XGrid must not match, i.e. they are different
either topologically or geometrically or both. In this example, the first source Grid is topologically identical to the
destination Grid but their geometric coordinates are different. This requirement will be relaxed in a future release.
First we compute the regrid routehandles, these routehandles can be used repeatedly afterwards. Then we initialize the
values in the Fields. Finally we execute the Regrid.

! Compute regrid routehandles. The routehandles can be used repeatedly afterwards.
! From A -> X
do i = 1, 2

485

call ESMF_FieldRegridStore(xgrid, srcField(i), field, r outehandle=rh_src2xgrid(i),
rc = localrc)

if(localrc /= ESMF_SUCCESS) call ESMF_Finalize(rc=local rc, terminationflag=ESMF_ABORT)
enddo
! from X -> B
do i = 1, 1

call ESMF_FieldRegridStore(xgrid, field, dstField(i), r outehandle=rh_xgrid2dst(i),
rc = localrc)

if(localrc /= ESMF_SUCCESS) call ESMF_Finalize(rc=local rc, terminationflag=ESMF_ABORT)
enddo

! Initialize values in the source Fields on side A
do i = 1, 2

call ESMF_FieldGet(srcField(i), farrayPtr=fptr, rc=loc alrc)
if(localrc /= ESMF_SUCCESS) call ESMF_Finalize(rc=local rc, terminationflag=ESMF_ABORT)
fptr = i

enddo
! Initialize values in the destination Field on XGrid
xfptr = 0.0
! Initialize values in the destination Field on Side B
do i = 1, 1

call ESMF_FieldGet(dstField(i), farrayPtr=fptr, rc=loc alrc)
if(localrc /= ESMF_SUCCESS) call ESMF_Finalize(rc=local rc, terminationflag=ESMF_ABORT)
fptr = 0.0

enddo

First we regrid from the Fields on side A to the Field on the XGrid:

! Execute regrid from A -> X
do i = 1, 2

call ESMF_FieldRegrid(srcField(i), field, routehandle= rh_src2xgrid(i), &
zeroflag=ESMF_REGION_SELECT, &
rc = localrc)

if(localrc /= ESMF_SUCCESS) call ESMF_Finalize(rc=local rc, terminationflag=ESMF_ABORT)
enddo

Next we regrid from the Field on XGrid to the destination Field on side B:

! Execute the regrid store
do i = 1, 1

call ESMF_FieldRegrid(field, dstField(i), routehandle= rh_xgrid2dst(i), &
rc = localrc)

if(localrc /= ESMF_SUCCESS) call ESMF_Finalize(rc=local rc, terminationflag=ESMF_ABORT)
enddo

In the above example, we first set up all the required paramters to create an XGrid from user supplied input. Then
we create Fields on the XGrid and the Grids on either side. Finally we use theESMF_FieldRegrid() interface to
perform a flux exchange from the source side to the destination side.

28.2.2 Query the XGrid for its internal information

One can query the XGrid for its internal information:

486

call ESMF_XGridGet(xgrid, &
ngridA=ngridA, & ! number of Grids on side A
ngridB=ngridB, & ! number of Grids on side B
sideA=l_sideA, & ! list of Grids on side A
sideB=l_sideB, & ! list of Grids on side B
area=l_area, & ! list of area of XGrid
centroid=l_centroid, & ! list of centroid of XGrid
distgridA=l_sideAdg, & ! list of Distgrids on side A
distgridM = distgrid, & ! balanced distgrid
sparseMatA2X=l_sparseMatA2X, & ! sparse matrix matmul par ameters from A to X
sparseMatX2B=l_sparseMatX2B, & ! sparse matrix matmul par ameters from X to B
rc=localrc)

call ESMF_XGridGet(xgrid, localDe=0, &
elementCount=eleCount, & ! elementCount on the localDE
exclusiveCount=ec, & ! exclusive count
exclusiveLBound=elb, & ! exclusive lower bound
exclusiveUBound=eub, & ! exclusive upper bound
rc=localrc)

call ESMF_XGridGet(xgrid, &
xgridSide=ESMF_XGRID_SIDEA, & ! side of the XGrid to query
gridIndex=1, & ! index of the distgrid
distgrid=distgrid, & ! the distgrid returned
rc=localrc)

28.2.3 Destroying the XGrid and other resources

Clean up the resources by destroy the XGrid and other objects:

! After the regridding is successful. Clean up all the alloca ted resources:
call ESMF_FieldDestroy(field, rc=localrc)
if(localrc /= ESMF_SUCCESS) call ESMF_Finalize(rc=local rc, terminationflag=ESMF_ABORT)

call ESMF_XGridDestroy(xgrid, rc=localrc)
if(localrc /= ESMF_SUCCESS) call ESMF_Finalize(rc=local rc, terminationflag=ESMF_ABORT)

do i = 1, 2
call ESMF_FieldDestroy(srcField(i), rc = localrc)
if(localrc /= ESMF_SUCCESS) call ESMF_Finalize(rc=local rc, terminationflag=ESMF_ABORT)
call ESMF_GridDestroy(sideA(i), rc = localrc)
if(localrc /= ESMF_SUCCESS) call ESMF_Finalize(rc=local rc, terminationflag=ESMF_ABORT)

enddo

do i = 1, 1
call ESMF_FieldDestroy(dstField(i), rc = localrc)
if(localrc /= ESMF_SUCCESS) call ESMF_Finalize(rc=local rc, terminationflag=ESMF_ABORT)
call ESMF_GridDestroy(sideB(i), rc = localrc)
if(localrc /= ESMF_SUCCESS) call ESMF_Finalize(rc=local rc, terminationflag=ESMF_ABORT)

enddo

deallocate(sparseMatA2X(1)%factorIndexList, sparseMa tA2X(1)%factorList)
deallocate(sparseMatA2X(2)%factorIndexList, sparseMa tA2X(2)%factorList)

487

deallocate(sparseMatX2B(1)%factorIndexList, sparseMa tX2B(1)%factorList)

28.3 Restrictions and Future Work

28.3.1 Restrictions and Future Work

1. CAUTION: The XGrid class and its APIs are only tested in a uni-processor setup, however in principle it should
also work multi-processor. This limitation will be removedin a future release.

2. More convenientESMF_XGridCreate() API will be provided in the future that will not require a userto
supply the interpolation matrix.

28.4 Design and Implementation Notes

1. The XGrid class is implemented in Fortran, and as such is defined inside the framework by a XGrid derived
type and a set of subprograms (functions and subroutines) which operate on that derived type. The XGrid class
contains information needed to create Grid, Field, and Sparse Matrix MatMul.

2. XGrids follow the framework-wide convention of theunisoncreation and operation rule: All PETs which are
part of the currently executing VM must create the same XGrids at the same point in their execution. Since an
early user request was that global object creation not impose the overhead of a barrier or synchronization point,
XGrid creation does no inter-PET communication. For this towork, each PET must query the total number of
PETs in this VM, and which local PET number it is. It can then compute which DE(s) are part of the local
decomposition, and any global information can be computed in unison by all PETs independently of the others.
In this way the overhead of communication is avoided, at the cost of more difficulty in diagnosing program bugs
which result from not all PETs executing the same create calls.

28.5 Class API

28.5.1 ESMF_XGridCreate - Create an XGrid from raw input par ameters

INTERFACE:

! Private name; call using ESMF_XGridCreate()

function ESMF_XGridCreateRaw(sideA, sideB, area, centro id, &
sparseMatA2X, sparseMatX2A, sparseMatB2X, sparseMatX2B , &
name, &
rc)

ARGUMENTS:

type(ESMF_Grid), intent(in) :: sideA(:), sideB(:)
real(ESMF_KIND_R8), intent(in), optional :: area(:)
real(ESMF_KIND_R8), intent(in), optional :: centroid(:, :)
type(ESMF_XGridSpec), intent(in), optional :: sparseMat A2X(:), sparseMatX2A(:)
type(ESMF_XGridSpec), intent(in), optional :: sparseMat B2X(:), sparseMatX2B(:)
character (len= *), intent(in), optional :: name
integer, intent(out), optional :: rc

RETURN VALUE:

type(ESMF_XGrid) :: ESMF_XGridCreateRaw

488

DESCRIPTION:

Create an XGrid directly from raw input parameters
The arguments are:

sideA 2D Grids on side A

sideB 2D Grids on side B

[area] area of the xgrid cells

[centroid] coordinates at the area weighted center of the xgrid cells

[sparseMatA2X] indexlist from a Grid index space on side A to xgrid index space indexFactorlist from a Grid index
space on side A to xgrid index space

[sparseMatX2A] indexlist from xgrid index space to a Grid index space on sideA indexFactorlist from xgrid index
space to a Grid index space on side A

[sparseMatB2X] indexlist from a Grid index space on side B to xgrid index space indexFactorlist from a Grid index
space on side B to xgrid index space

[sparseMatX2B] indexlist from xgrid index space to a Grid index space on sideB indexFactorlist from xgrid index
space to a Grid index space on side B

[name] name of the xgrid object.

[rc] Return code; equalsESMF_SUCCESSonly if theESMF_XGrid is created.

28.5.2 ESMF_XGridDestroy - Free all resources associated with an XGrid

INTERFACE:

subroutine ESMF_XGridDestroy(xgrid, rc)

ARGUMENTS:

type(ESMF_XGrid), intent(inout) :: xgrid
integer, intent(out), optional :: rc

DESCRIPTION:

Releases all resources associated with theESMF_XGrid .
The arguments are:

xgrid ESMF_XGrid object.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

28.5.3 ESMF_XGridGet - Get default information from an XGri d

INTERFACE:

489

! Private name; call using ESMF_XGridGet()

subroutine ESMF_XGridGetDefault(xgrid, &
sideA, sideB, ngridA, ngridB, area, centroid, &
distgridA, distgridB, distgridM, &
dimCount, localDECount, &
sparseMatA2X, sparseMatX2A, sparseMatB2X, sparseMatX2B , &
name, &
rc)

ARGUMENTS:

type(ESMF_XGrid), intent(in) :: xgrid
type(ESMF_Grid), intent(out), optional :: sideA(:), side B(:)
integer, intent(out), optional :: ngridA, ngridB
real * 8, intent(out), optional :: area(:)
real * 8, intent(out), optional :: centroid(:,:)
type(ESMF_DistGrid), intent(out), optional :: distgridA (:)
type(ESMF_DistGrid), intent(out), optional :: distgridB (:)
type(ESMF_DistGrid), intent(out), optional :: distgridM
integer, intent(out), optional :: dimCount
integer, intent(out), optional :: localDECount
type(ESMF_XGridSpec), intent(out), optional :: sparseMa tA2X(:), sparseMatX2A(:)
type(ESMF_XGridSpec), intent(out), optional :: sparseMa tB2X(:), sparseMatX2B(:)
character (len= *), intent(out), optional :: name
integer, intent(out), optional :: rc

DESCRIPTION:

Get information about XGrid
The arguments are:

xgrid The xgrid object used to retrieve information from.

[sideA] 2D Grids on side A

[sideB] 2D Grids on side B

[ngridA] Number of grids on the A side

[ngridB] Number of grids on the B side

[area] area of the xgrid cells

[centroid] coordinates at the area weighted center of the xgrid cells

[distgridA] list of distgrids whose sequence index list is an overlap between a Grid on sideA and the xgrid object.

[distgridB] list of distgrids whose sequence index list is an overlap between a Grid on sideB and the xgrid object.

[distgridM] the distgrid whose sequence index list fully describes the xgrid object.

[dimCount] dimension of the xgrid

[localDECount] number of local DEs on local PET

[sparseMatA2X] indexlist from a Grid index space on side A to xgrid index space indexFactorlist from a Grid index
space on side A to xgrid index space

490

[sparseMatX2A] indexlist from xgrid index space to a Grid index space on sideA indexFactorlist from xgrid index
space to a Grid index space on side A

[sparseMatB2X] indexlist from a Grid index space on side B to xgrid index space indexFactorlist from a Grid index
space on side B to xgrid index space

[sparseMatX2B] indexlist from xgrid index space to a Grid index space on sideB indexFactorlist from xgrid index
space to a Grid index space on side B

[name] name of the xgrid object.

[rc] Return code; equalsESMF_SUCCESSonly if theESMF_XGrid is created.

28.5.4 ESMF_XGridGet - Get an individual DistGrid

INTERFACE:

! Private name; call using ESMF_XGridGet()

subroutine ESMF_XGridGetDG(xgrid, distgrid, xgridSide, gridIndex, &
rc)

ARGUMENTS:

type(ESMF_XGrid), intent(in) :: xgrid
type(ESMF_DistGrid), intent(out) :: distgrid
type(ESMF_XGridSide), intent(in), optional :: xgridSide
integer, intent(in), optional :: gridIndex
integer, intent(out), optional :: rc

DESCRIPTION:

Get a distgrid from XGrid from a specific side.
The arguments are:

xgrid The xgrid object used to retrieve information from.

distgrid Distgrid whose sequence index list is an overlap between gridIndex-th Grid on xgridSide and the xgrid object.

[xgridSide] Which side of the XGrid to retrieve the distgrid from (eitherESMF_XGRID_SIDEA, ESMF_XGRID_SIDEB,
or ESMF_XGRID_BALANCED). If not passed in then defaults to ESMF_XGRID_BALANCED.

[xgridIndex] If xgridSide is ESMF_XGRID_SIDEA or ESMF_XGRID_SIDEB thenthis index selects the Distgrid
associated with the Grid on that side. If not provided, defaults to 1.

[rc] Return code; equalsESMF_SUCCESSonly if theESMF_XGrid is created.

28.5.5 ESMF_XGridGet - Get information about an XGrid

INTERFACE:

491

! Private name; call using ESMF_XGridGet()

subroutine ESMF_XGridGetEle(xgrid, &
localDE, elementCount, &
exclusiveCount, exclusiveLBound, exclusiveUBound, &
rc)

ARGUMENTS:

type(ESMF_XGrid), intent(in) :: xgrid
integer, intent(in) :: localDE
integer, intent(out), optional :: elementCount
integer, intent(out), optional :: exclusiveCount
integer, intent(out), optional :: exclusiveLBound
integer, intent(out), optional :: exclusiveUBound
integer, intent(out), optional :: rc

DESCRIPTION:

Get localDE specific information about XGrid
The arguments are:

xgrid The xgrid object used to retrieve information from.

localDE Local DE for which information is requested. [0,..,localDeCount-1]

[elementCount] Number of elements in exclusive region per DE

[exclusiveLBound] Lower bound of sequence indices in exclusive region per DE

[exclusiveUBound] Upper bound of sequence indices in exclusive region per DE

[rc] Return code; equalsESMF_SUCCESSonly if theESMF_XGrid is created.

29 DistGrid Class

29.1 Description

The ESMF DistGrid class sits on top of the DELayout class and holds domain information in index space. A DistGrid
object captures the index space topology and describes its decomposition in terms of DEs. Combined with DELayout
and VM the DistGrid defines the data distribution of a domain decomposition across the computational resources of
an ESMF Component.
The global domain is defined as the union or “patchwork” of logically rectangular (LR) sub-domains orpatches.
The DistGrid create methods allow the specification of such apatchwork global domain and its decomposition into
exclusive, DE-local LR regions according to various degrees of user specified constraints. Complex index space
topologies can be constructed by specifying connection relationships between patches during creation.
The DistGrid class holds domain information for all DEs. Each DE is associated with a local LR region. No overlap of
the regions is allowed. The DistGrid offers query methods that allow DE-local topology information to be extracted,
e.g. for the construction of halos by higher classes.
A DistGrid object only contains decomposable dimensions. The minimum rank for a DistGrid object is 1. A maximum
rank does not exist for DistGrid objects, however, ranks greater than 7 may lead to difficulties with respect to the
Fortran API of higher classes based on DistGrid. The rank of aDELayout object contained within a DistGrid object
must be equal to the DistGrid rank. Higher class objects thatuse the DistGrid, such as an Array object, may be of
different rank than the associated DistGrid object. The higher class object will hold the mapping information between
its dimensions and the DistGrid dimensions.

492

29.2 Use and Examples

The following examples demonstrate how to create, use and destroy DistGrid objects. In order to produce complete
and valid DistGrid objects all of theESMF_DistGridCreate() calls require to be called in unison i.e. onall
PETs of a component with a complete set of valid arguments.

29.2.1 Single patch DistGrid with regular decomposition

The minimum information required to create anESMF_DistGrid object for a single patch with default decompo-
sition are the corners of the patch in index space. The following call will create a 1D DistGrid for a 1D index space
patch with elements from 1 through 1000.

distgrid = ESMF_DistGridCreate(minIndex=(/1/), maxInde x=(/1000/), rc=rc)

A default DELayout with 1 DE per PET will be created duringESMF_DistGridCreate() . The 1000 elements
of the specified 1D patch will then be block decomposed acrossthe available DEs, i.e. across all PETs. Hence, for 4
PETs the (min)∼ (max) corners of the DE-local LR regions will be:

DE 0 - (1) ~ (250)
DE 1 - (251) ~ (500)
DE 2 - (501) ~ (750)
DE 3 - (751) ~ (1000)

DistGrids with rank > 1 can also be created with default decompositions, specifying only the corners of the patch. The
following will create a 2D DistGrid for a 5x5 patch with default decomposition.

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIn dex=(/5,5/), rc=rc)

The default decomposition for a DistGrid of rankN will be (nDEs×1× ...×1), wherenDEs is the number of DEs
in the DELayout and there areN −1 factors of1. For the 2D example above this means a4×1 regular decomposition
if executed on 4 PETs and will result in the following DE-local LR regions:

DE 0 - (1,1) ~ (2,5)
DE 1 - (3,1) ~ (3,5)
DE 2 - (4,1) ~ (4,5)
DE 3 - (5,1) ~ (5,5)

In many cases the default decomposition will not suffice for higher rank DistGrids (rank > 1). For this reason a
decomposition descriptorregDecomp argument is available duringESMF_DistGridCreate() . The following
call creates a DistGrid on the same 2D patch as before, but nowwith a user specified regular decomposition of2×3 = 6
DEs.

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIn dex=(/5,5/), &
regDecomp=(/2,3/), rc=rc)

The default DE labeling sequence follows column major orderfor theregDecomp argument:

-----------> 2nd dimension
| 0 2 4
| 1 3 5
v

1st dimension

493

By default grid points along all dimensions are homogeneously divided between the DEs. The maximum element
count difference between DEs along any dimension is 1. The (min) ∼ (max) corners of the DE-local LR domains of
the above example are as follows:

DE 0 - (1,1) ~ (3,2)
DE 1 - (4,1) ~ (5,2)
DE 2 - (1,3) ~ (3,4)
DE 3 - (4,3) ~ (5,4)
DE 4 - (1,5) ~ (3,5)
DE 5 - (4,5) ~ (5,5)

The specifics of the patch decomposition into DE-local LR domains can be modified by the optionaldecompflag
argument. The following line shows how this argument is usedto keep ESMF’s default decomposition in the first
dimension but move extra grid points of the second dimensionto the last DEs in that direction. Extra elements occur
if the number of DEs for a certain dimension does not evenly divide its extent. In this example there are 2 extra grid
points for the second dimension because its extent is 5 but there are 3 DEs along this index space axis.

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIn dex=(/5,5/), &
regDecomp=(/2,3/), decompflag=(/ESMF_DECOMP_DEFAULT, ESMF_DECOMP_RESTLAST/),&
rc=rc)

Now DE 4 and DE 5 will hold the extra elements along the 2nd dimension.

DE 0 - (1,1) ~ (3,1)
DE 1 - (4,1) ~ (5,1)
DE 2 - (1,2) ~ (3,2)
DE 3 - (4,2) ~ (5,2)
DE 4 - (1,3) ~ (3,5)
DE 5 - (4,3) ~ (5,5)

An alternative way of indicating the DE-local LR regions is to list the index space coordinate as given by the associated
DistGrid patch for each dimension. For this 2D example thereare two lists (dim 1) / (dim 2) for each DE:

DE 0 - (1,2,3) / (1)
DE 1 - (4,5) / (1)
DE 2 - (1,2,3) / (2)
DE 3 - (4,5) / (2)
DE 4 - (1,2,3) / (3,4,5)
DE 5 - (4,5) / (3,4,5)

Information about DE-local LR regions in the latter format can be obtained from the DistGrid object by use of
ESMF_DistGridGet() methods:

allocate(dimExtent(2, 0:5)) ! (dimCount, deCount)
call ESMF_DistGridGet(distgrid, delayout=delayout, &

indexCountPDimPDe=dimExtent, rc=rc)
if (rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT)
call ESMF_DELayoutGet(delayout, localDeCount=localDeC ount, rc=rc)
if (rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT)
allocate(localDeList(0:localDeCount-1))
call ESMF_DELayoutGet(delayout, localDeList=localDeLi st, rc=rc)
if (rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT)
do localDe=0, localDeCount-1

de = localDeList(localDe)

494

do dim=1, 2
allocate(localIndexList(dimExtent(dim, de))) ! allocat e list to hold indices
call ESMF_DistGridGet(distgrid, localDe=localDe, dim=d im, &

indexList=localIndexList, rc=rc)
if (rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT)
print * , "local DE ", localDe," - DE ",de," localIndexList along dim =", &

dim," :: ", localIndexList
deallocate(localIndexList)

enddo
enddo
deallocate(localDeList)
deallocate(dimExtent)

The advantage of thelocalIndexList format over the min-/max-corner format is that it can be useddirectly for
DE-local to patch index dereferencing. Furthermore thelocalIndexList allows to express very general decom-
positions such as the cyclic decompositions in the first dimension generated by the following call:

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIn dex=(/5,5/), &
regDecomp=(/2,3/), decompflag=(/ESMF_DECOMP_CYCLIC,E SMF_DECOMP_RESTLAST/),&
rc=rc)

with decomposition:

DE 0 - (1,3,5) / (1)
DE 1 - (2,4) / (1)
DE 2 - (1,3,5) / (2)
DE 3 - (2,4) / (2)
DE 4 - (1,3,5) / (3,4,5)
DE 5 - (2,4) / (3,4,5)

Finally, a DistGrid object is destroyed by calling

call ESMF_DistGridDestroy(distgrid, rc=rc)

29.2.2 DistGrid and DELayout

The examples of this section use the 2D DistGrid of the previous section to show the interplay between DistGrid and
DELayout. By default, i.e. without specifying thedelayout argument, a DELayout will be created during DistGrid
creation that provides as many DEs as the DistGrid object requires. The implicit call toESMF_DELayoutCreate()
is issued with a fixed number of DEs and default settings in allother aspects. The resulting DE to PET mapping
depends on the number of PETs of the current VM context. Assuming 6 PETs in the VM

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIn dex=(/5,5/), &
regDecomp=(/2,3/), rc=rc)

will result in the following domain decomposition in terms of DEs

0 2 4
1 3 5

and their layout or distribution over the available PETs:

495

DE 0 -> PET 0
DE 1 -> PET 1
DE 2 -> PET 2
DE 3 -> PET 3
DE 4 -> PET 4
DE 5 -> PET 5

Running the same example on a 4 PET VM will not change the domain decomposition into 6 DEs as specified by

0 2 4
1 3 5

but the layout across PETs will now contain multiple DE-to-PET mapping with default cyclic distribution:

DE 0 -> PET 0
DE 1 -> PET 1
DE 2 -> PET 2
DE 3 -> PET 3
DE 4 -> PET 0
DE 5 -> PET 1

Sometimes it may be desirable for performance tuning to construct a DELayout with specific characteristics. For
instance, if the 6 PETs of the above example are running on 3 nodes of a dual-SMP node cluster and there is a higher
communication load along the first dimension of the model than along the second dimension it would be sensible to
place DEs according to this knowledge.
The following example first creates a DELayout with 6 DEs where groups of 2 DEs are to be in fast connection. This
DELayout is then used to create a DistGrid.

delayout = ESMF_DELayoutCreate(deCount=6, deGrouping=(/(i/2,i=0,5)/), rc=rc)

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIn dex=(/5,5/), &
regDecomp=(/2,3/), delayout=delayout, rc=rc)

This will ensure a distribution of DEs across the cluster resource in the following way:

0 2 4
1 3 5

SMP SMP SMP

The interplay between DistGrid and DELayout may at first seemcomplicated. The simple but important rule to
understand is that DistGrid describes a domain decomposition and each domain is labeled with a DE number. The
DELayout describes how these DEs are laid out over the compute resources of the VM, i.e. PETs. The DEs are purely
logical elements of decomposition and may be relabeled to fitthe algorithm or legacy code better. The following
example demonstrates this by describing the exact same distribution of the domain data across the fictitious cluster of
SMP-nodes with a different choice of DE labeling:

delayout = ESMF_DELayoutCreate(deCount=6, deGrouping=(/(mod(i,3),i=0,5)/), &
rc=rc)

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIn dex=(/5,5/), &
regDecomp=(/2,3/), deLabelList=(/0,3,1,4,2,5/), delay out=delayout, rc=rc)

496

Here thedeLabelList argument changes the default DE label sequence from column major to row major. The
DELayout compensates for this change in DE labeling by changing the deGrouping argument to map the first
dimension to SMP nodes as before. The decomposition and layout now looks as follows:

0 1 2
3 4 5

SMP SMP SMP

Finally, in order to achieve a completely user-defined distribution of the domain data across the PETs of the VM a
DELayout may be created from apetMap before using it in the creation of a DistGrid. If for instancethe desired
distribution of a 2 x 3 decomposition puts the DEs of the first row onto 3 separate PETs (PET 0, 1, 2) and groups
the DEs of the second row onto PET 3 apetMap must first be setup that takes the DE labeling of the DistGrid into
account.The following lines of code result in the desired distribution using column major DE labeling by first create a
DELayout and then using it in the DistGrid creation.

delayout = ESMF_DELayoutCreate(petMap=(/0,3,1,3,2,3/) , rc=rc)

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIn dex=(/5,5/), &
regDecomp=(/2,3/), delayout=delayout, rc=rc)

This decomposes the global domain into

0 2 4
1 3 5

and associates the DEs to the following PETs:

DE 0 -> PET 0
DE 1 -> PET 3
DE 2 -> PET 1
DE 3 -> PET 3
DE 4 -> PET 2
DE 5 -> PET 3

29.2.3 Single patch DistGrid with decomposition by DE blocks

The examples of the previous sections showed how DistGrid objects with regular decompositions are created. How-
ever, in some cases a regular decomposition may not be specific enough. The following example shows how the
deBlockList argument is used to create a DistGrid object with completelyuser-defined decomposition.
A single 5x5 LR domain is to be decomposed into 6 DEs. To this end a list is constructed that holds the min and max
corners of all six DE LR blocks. The DE-local LR blocks are arranged as to cover the whole patch domain without
overlap.

allocate(deBlockList(2, 2, 6)) ! (dimCount, 2, deCount)
deBlockList(:,1,1) = (/1,1/) ! minIndex 1st deBlock
deBlockList(:,2,1) = (/3,2/) ! maxIndex 1st deBlock
deBlockList(:,1,2) = (/4,1/) ! minIndex 2nd deBlock
deBlockList(:,2,2) = (/5,2/) ! maxIndex 2nd deBlock
deBlockList(:,1,3) = (/1,3/)
deBlockList(:,2,3) = (/2,4/)
deBlockList(:,1,4) = (/3,3/)
deBlockList(:,2,4) = (/5,4/)
deBlockList(:,1,5) = (/1,5/)

497

deBlockList(:,2,5) = (/3,5/)
deBlockList(:,1,6) = (/4,5/) ! minIndex 6th deBlock
deBlockList(:,2,6) = (/5,5/) ! maxInbex 6th deBlock

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIn dex=(/5,5/), &
deBlockList=deBlockList, rc=rc)

29.2.4 Single patch DistGrid with periodic boundaries

By default the edges of all patches have solid wall boundary conditions. Periodic boundary conditions can be imposed
by specifying connections between patches. For the single LR domain of the last section periodic boundaries along
the first dimension are imposed by adding aconnectionList argument with only one element to the create call.
EachconnectionList element is a vector of(2 * dimCount + 2) integer numbers:

allocate(connectionList(2 * 2+2, 1)) ! (2 * dimCount+2, number of connections)

and has the following format:
(/patchIndex_A, patchIndex_B, positionVector, orientat ionVector/) .
The following constructor call can be used to construct a suitable connectionList element.

call ESMF_DistGridConnection(connection=connectionLi st(:,1), &
patchIndexA=1, patchIndexB=1, &
positionVector=(/5, 0/), &
orientationVector=(/1, 2/), &
rc=rc)

ThepatchIndexA andpatchIndexB arguments specify that this is a connection within patch 1. ThepositionVector
indicates that there is no offset between patchB and patchA along the second dimension, but there is an offset of 5
along the first dimension (which in this case is the length of dimension 1). This aligns patchB (which is patch 1) right
next to patchA (which is also patch 1).
The orientationVector fixes the orientation of the patchB index space to be the same as the orientation of
patchA (it maps index 1 of patchA to index 1 of patchB and the same for index 2). TheorientationVector
could have been omitted in this case which corresponds to thedefault orientation.
TheconnectionList can now be used to create aDistGrid object with the desired boundary conditions.

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIn dex=(/5,5/), &
deBlockList=deBlockList, connectionList=connectionLi st, rc=rc)

deallocate(connectionList)

This closes the patch along the first dimension on itself, thus imposing periodic boundaries along this direction.

29.2.5 2D patchwork DistGrid with regular decomposition

Creating a DistGrid from a list of LR domains is a straight forward extension of the case with a single LR domain.
The first four arguments ofESMF_DistGridCreate() are promoted to rank 2, the second dimension being the
patch count index.
The following 2D patchwork domain consisting of 3 LR patcheswill be used in the examples of this section:

--> 2nd dim
|

498

| (1,11)-----(1,20)
(10,11)---(10,20)	
(11,1)----(11,10)(11,11)---(11,20)	
(20,1)----(20,10)(20,11)---(20,20)	
v

1st dim

The first step in creating a patchwork global domain is to construct theminIndex andmaxIndex arrays.

allocate(minIndex(2,3)) ! (dimCount, number of patches)
allocate(maxIndex(2,3)) ! (dimCount, number of patches)
minIndex(:,1) = (/11,1/)
maxIndex(:,1) = (/20,10/)
minIndex(:,2) = (/11,11/)
maxIndex(:,2) = (/20,20/)
minIndex(:,3) = (/1,11/)
maxIndex(:,3) = (/10,20/)

Next the regular decomposition for each patch is set up in theregDecomp array. In this example each patch is
associated with a single DE.

allocate(regDecomp(2,3)) ! (dimCount, number of patches)
regDecomp(:,1) = (/1,1/) ! one DE
regDecomp(:,2) = (/1,1/) ! one DE
regDecomp(:,3) = (/1,1/) ! one DE

Finally the DistGrid can be created by calling

distgrid = ESMF_DistGridCreate(minIndex=minIndex, maxI ndex=maxIndex, &
regDecomp=regDecomp, rc=rc)

The default DE labeling sequence is identical to the patch labeling sequence and follows the sequence in which the
patches are defined during the create call. However, DE labels start at 0 whereas patch labels start at 1. In this case the
DE labels look as:

2
0 1

Each patch can be decomposed differently into DEs. The default DE labeling follows the column major order for each
patch. This is demonstrated in the following case where the patchwork global domain is decomposed into 9 DEs,

499

regDecomp(:,1) = (/2,2/) ! 4 DEs
regDecomp(:,2) = (/1,3/) ! 3 DEs
regDecomp(:,3) = (/2,1/) ! 2 DEs

distgrid = ESMF_DistGridCreate(minIndex=minIndex, maxI ndex=maxIndex, &
regDecomp=regDecomp, rc=rc)

resulting in the following decomposition:

+-------+
| 7 |
| |
| 8 |

+-------+-------+
0 2	
	4 5 6
1 3	
+-------+-------+

DE 0 - (11,1) ~ (15,5)
DE 1 - (16,1) ~ (20,5)
DE 2 - (11,6) ~ (15,10)
DE 3 - (16,6) ~ (20,10)
DE 4 - (11,11) ~ (20,14)
DE 5 - (11,15) ~ (20,17)
DE 6 - (11,18) ~ (20,20)
DE 7 - (1,11) ~ (5,20)
DE 8 - (6,11) ~ (10,20)

Thedecompflag anddeLabelList arguments can be used much like in the single LR domain case tooverwrite
the default grid decomposition (per patch) and to change theoverall DE labeling sequence, respectively.

29.2.6 Arbitrary DistGrids with user-supplied sequence indices

The DistGrid class supports the communication methods of higher classes, like Array and Field, by associating a
uniquesequence indexwith each DistGrid index tuple. This sequence index can be used to address every Array or
Field element. By default, the DistGrid does not actually generate and store the sequence index of each element.
Instead a default sequence through the elements is implemented in the DistGrid code. This default sequence is used
internally when needed.
The DistGrid class provides twoESMF_DistGridCreate() calls that allow the user to specify arbitrary sequence
indices, overriding the use of the default sequence index scheme. The user sequence indices are passed to the DistGrid
in form of 1d Fortran arrays, one array on each PET. The local size of this array on each PET determines the number
of DistGrid elements on the PET. The supplied sequence indices must be unique across all PETs.

allocate(arbSeqIndexList(10)) ! each PET will have 10 elem ents

do i=1, 10
arbSeqIndexList(i) = (i-1) * petCount + localPet ! initialize unique seq. indices

enddo

A default DELayout will be created automatically duringESMF_DistGridCreate() , associating 1 DE per PET.

distgrid = ESMF_DistGridCreate(arbSeqIndexList=arbSeq IndexList, rc=rc)

500

The user provided sequence index array can be deallocated once it has been used.

deallocate(arbSeqIndexList)

Thedistgrid object can be used just like any other DistGrid object. The "arbitrary" nature ofdistgrid will only
become visible during Array or Field communication methods, where source and destination objects map elements
according to the sequence indices provided by the associated DistGrid objects.

call ESMF_DistGridDestroy(distgrid, rc=rc)

The secondESMF_DistGridCreate() call, that accepts thearbSeqIndexList argument, allows the user to
specify additional, regular DistGrid dimensions. These additional DistGrid dimensions are not decomposed across
DEs, but instead are simply "added" or "multiplied" to the 1Darbitrary dimension.
The samearbSeqIndexList array as before is used to define the user supplied sequence indices.

allocate(arbSeqIndexList(10)) ! each PET will have 10 elem ents

do i=1, 10
arbSeqIndexList(i) = (i-1) * petCount + localPet ! initialize unique seq. indices

enddo

The additional DistGrid dimensions are specified in the usual manner usingminIndex andmaxIndex arguments.
ThedimCount of the resulting DistGrid is the size of theminIndex andmaxIndex arguments plus 1 for the arbi-
trary dimension. ThearbDim argument is used to indicate which or the resulting DistGriddimensions is associated
with the arbitrary sequence indices provided by the user.

distgrid = ESMF_DistGridCreate(arbSeqIndexList=arbSeq IndexList, &
arbDim=1, minIndex=(/1,1/), maxIndex=(/5,7/), rc=rc)

deallocate(arbSeqIndexList)

call ESMF_DistGridDestroy(distgrid, rc=rc)

29.3 Restrictions and Future Work

• Multi-patch DistGrids from deBlockList are not yet supported.

• The fastAxis feature has not been implemented yet.

29.4 Design and Implementation Notes

This section will be updated as the implementation of the DistGrid class nears completion.

29.5 Class API

29.5.1 ESMF_DistGridCreate - Create DistGrid object from DistGrid

INTERFACE:

501

! Private name; call using ESMF_DistGridCreate()
function ESMF_DistGridCreateDGP(distgrid, firstExtra, lastExtra, indexflag, &

connectionList, rc)

ARGUMENTS:

type(ESMF_DistGrid), intent(in) :: distgrid
integer, target, intent(in) :: firstExtra(:,:)
integer, target, intent(in) :: lastExtra(:,:)
type(ESMF_IndexFlag), intent(in), optional :: indexflag
integer, target, intent(in), optional :: connectionList(:,:)
integer, intent(out),optional :: rc

RETURN VALUE:

type(ESMF_DistGrid) :: ESMF_DistGridCreateDGP

DESCRIPTION:

Create a new DistGrid from an existing DistGrid, keeping thedecomposition unchanged. ThefirstExtra and
lastExtra arguments allow extra elements to be added at the first/last edge DE in each dimension. The method
also allows theindexflag to be set. Further, if theconnectionList argument is passed in it will be used to set
connections in the newly created DistGrid, otherwise the connections of the incoming DistGrid will be used. If neither
firstExtra , lastExtra , indexflag , nor connectionList arguments are specified, the method reduces
to a deep copy of the incoming DistGrid object.
The arguments are:

distgrid Incoming DistGrid object.

firstExtra Extra elements on the edge of the first DEs along each dimension.

lastExtra Extra elements on the edge of the last DEs along each dimension.

[indexflag] Indicates whether the indices provided by theminIndex andmaxIndex arguments are to be inter-
preted to form a flat pseudo global index space (ESMF_INDEX_GLOBAL) or are to be taken as patch local
(ESMF_INDEX_DELOCAL), which is the default.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

29.5.2 ESMF_DistGridCreate - Create DistGrid object with regular decomposition

INTERFACE:

! Private name; call using ESMF_DistGridCreate()
function ESMF_DistGridCreateRD(minIndex, maxIndex, reg Decomp, &

decompflag, regDecompFirstExtra, regDecompLastExtra, d eLabelList, &
indexflag, connectionList, delayout, vm, rc)

ARGUMENTS:

integer, intent(in) :: minIndex(:)
integer, intent(in) :: maxIndex(:)
integer, target, intent(in), optional :: regDecomp(:)
type(ESMF_DecompFlag), target,intent(in), optional :: d ecompflag(:)
integer, target, intent(in), optional :: regDecompFirstE xtra(:)
integer, target, intent(in), optional :: regDecompLastEx tra(:)

502

integer, target, intent(in), optional :: deLabelList(:)
type(ESMF_IndexFlag), intent(in), optional :: indexflag
integer, target, intent(in), optional :: connectionList(:,:)
type(ESMF_DELayout), intent(in), optional :: delayout
type(ESMF_VM), intent(in), optional :: vm
integer, intent(out),optional :: rc

RETURN VALUE:

type(ESMF_DistGrid) :: ESMF_DistGridCreateRD

DESCRIPTION:

Create anESMF_DistGrid from a single logically rectangular (LR) patch with regulardecomposition. A regular
decomposition is of the same rank as the patch and decomposeseach dimension into a fixed number of DEs. A regular
decomposition of a single patch is expressed by a singleregDecomp list of DE counts in each dimension.
The arguments are:

minIndex Global coordinate tuple of the lower corner of the patch.

maxIndex Global coordinate tuple of the upper corner of the patch.

[regDecomp] List of DE counts for each dimension. The default decomposition will be deCount ×1× ... × 1. The
value ofdeCount for a default DELayout equalspetCount , i.e. the default decomposition will be into as
many DEs as there are PETs and the distribution will be 1 DE perPET.

[decompflag] List of decomposition flags indicating how each dimension ofthe patch is to be divided between the
DEs. The default setting isESMF_DECOMP_HOMOGENin all dimensions. See section 9.2.7 for a list of valid
decomposition flag options.

[regDecompFirstExtra] Extra elements on the first DEs along each dimension in a regular decomposition. The
default is a zero vector.

[regDecompLastExtra] Extra elements on the last DEs along each dimension in a regular decomposition. The default
is a zero vector.

[deLabelList] List assigning DE labels to the default sequence of DEs. The default sequence is given by the column
major order of theregDecomp argument.

[indexflag] Indicates whether the indices provided by theminIndex andmaxIndex arguments are to be inter-
preted to form a flat pseudo global index space (ESMF_INDEX_GLOBAL) or are to be taken as patch local
(ESMF_INDEX_DELOCAL), which is the default.

[connectionList] List of connections between patches in index space. The second dimension ofconnectionList
steps through the connection interface elements, defined bythe first index. The first index must be of size2 x
dimCount + 2 , wheredimCount is the rank of the decomposed index space. EachconnectionList
element specifies the connection interface in the format

(/patchIndex_A, patchIndex_B, positionVector, orientat ionVector/) where:

• patchIndex_A andpatchIndex_B are the patch index of the two connected patches respectively,

• positionVector is the vector that points from patch A’s minIndex to patch B’sminIndex.

• orientationVector associates each dimension of patch A with a dimension in patch B’s index space.
Negative index values may be used to indicate a reversal in index orientation.

[delayout] OptionalESMF_DELayout object to be used. By default a new DELayout object will be created with the
correct number of DEs. If a DELayout object is specified its number of DEs must match the number indicated
by regDecomp .

503

[vm] Optional ESMF_VMobject of the current context. Providing the VM of the current context will lower the
method’s overhead.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

29.5.3 ESMF_DistGridCreate - Create DistGrid object with DE blocks

INTERFACE:

! Private name; call using ESMF_DistGridCreate()
function ESMF_DistGridCreateDB(minIndex, maxIndex, deB lockList, &

deLabelList, indexflag, connectionList, delayout, vm, rc)

ARGUMENTS:

integer, intent(in) :: minIndex(:)
integer, intent(in) :: maxIndex(:)
integer, intent(in) :: deBlockList(:,:,:)
integer, intent(in), optional :: deLabelList(:)
type(ESMF_IndexFlag), intent(in), optional :: indexflag
integer, intent(in), optional :: connectionList(:,:)
type(ESMF_DELayout), intent(in), optional :: delayout
type(ESMF_VM), intent(in), optional :: vm
integer, intent(out),optional :: rc

RETURN VALUE:

type(ESMF_DistGrid) :: ESMF_DistGridCreateDB

DESCRIPTION:

Create anESMF_DistGrid from a single logically rectangular (LR) patch with decomposition specified bydeBlockList .
The arguments are:

minIndex Global coordinate tuple of the lower corner of the patch.

maxIndex Global coordinate tuple of the upper corner of the patch.

deBlockList List of DE-local LR blocks. The third index ofdeBlockList steps through the deBlock elements,
which are defined by the first two indices. The first index must be of sizedimCount and the second index
must be of size 2. Each 2D element ofdeBlockList defined by the first two indices hold the following
information.

+---------------------------------------> 2nd index
| 1 2
| 1 minIndex(1) maxIndex(1)
| 2 minIndex(2) maxIndex(2)
| . minIndex(.) maxIndex(.)
| .
v

1st index

It is required that there be no overlap between the LR segments defined by deBlockList.

504

[deLabelList] List assigning DE labels to the default sequence of DEs. The default sequence is given by the column
major order of theregDecomp argument.

[indexflag] Indicates whether the indices provided by theminIndex andmaxIndex arguments are to be inter-
preted to form a flat pseudo global index space (ESMF_INDEX_GLOBAL) or are to be taken as patch local
(ESMF_INDEX_DELOCAL), which is the default.

[connectionList] List of connections between patches in index space. The second dimension ofconnectionList
steps through the connection interface elements, defined bythe first index. The first index must be of size2 x
dimCount + 2 , wheredimCount is the rank of the decomposed index space. EachconnectionList
element specifies the connection interface in the format

(/patchIndex_A, patchIndex_B, positionVector, orientat ionVector/) where:

• patchIndex_A andpatchIndex_B are the patch index of the two connected patches respectively,

• positionVector is the vector that points from patch A’s minIndex to patch B’sminIndex.

• orientationVector associates each dimension of patch A with a dimension in patch B’s index space.
Negative index values may be used to indicate a reversal in index orientation.

[delayout] OptionalESMF_DELayout object to be used. By default a new DELayout object will be created with the
correct number of DEs. If a DELayout object is specified its number of DEs must match the number indicated
by regDecomp .

[vm] Optional ESMF_VMobject of the current context. Providing the VM of the current context will lower the
method’s overhead.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

29.5.4 ESMF_DistGridCreate - Create DistGrid object from patchwork with regular decomposition

INTERFACE:

! Private name; call using ESMF_DistGridCreate()
function ESMF_DistGridCreateRDP(minIndex, maxIndex, re gDecomp,&

decompflag, regDecompFirstExtra, regDecompLastExtra, d eLabelList, &
indexflag, connectionList, delayout, vm, rc)

ARGUMENTS:

integer, intent(in) :: minIndex(:,:)
integer, intent(in) :: maxIndex(:,:)
integer, intent(in), optional :: regDecomp(:,:)
type(ESMF_DecompFlag),target, intent(in), optional :: d ecompflag(:,:)
integer, target, intent(in), optional :: regDecompFirstE xtra(:,:)
integer, target, intent(in), optional :: regDecompLastEx tra(:,:)
integer, intent(in), optional :: deLabelList(:)
type(ESMF_IndexFlag), intent(in), optional :: indexflag
integer, intent(in), optional :: connectionList(:,:)
type(ESMF_DELayout), intent(in), optional :: delayout
type(ESMF_VM), intent(in), optional :: vm
integer, intent(out),optional :: rc

RETURN VALUE:

type(ESMF_DistGrid) :: ESMF_DistGridCreateRDP

505

DESCRIPTION:

Create anESMF_DistGrid from a patchwork of logically rectangular (LR) patches withregular decomposition. A
regular decomposition is of the same rank as the patch and decomposes each dimension into a fixed number of DEs.
A regular decomposition of a patchwork of patches is expressed by a list of DE count vectors, one vector for each
patch. Each vector contained in theregDecomp argument ascribes DE counts for each dimension. It is erroneous to
provide more patches than there are DEs.
The arguments are:

minIndex The first index provides the global coordinate tuple of the lower corner of a patch. The second index
indicates the patch number.

maxIndex The first index provides the global coordinate tuple of the upper corner of a patch. The second index
indicates the patch number.

[regDecomp] List of DE counts for each dimension. The second index indicates the patch number. The default
decomposition will bedeCount ×1×...×1. The value ofdeCount for a default DELayout equalspetCount ,
i.e. the default decomposition will be into as many DEs as there are PETs and the distribution will be 1 DE per
PET.

[decompflag] List of decomposition flags indicating how each dimension ofeach patch is to be divided between the
DEs. The default setting isESMF_DECOMP_HOMOGENin all dimensions for all patches. See section 9.2.7 for
a list of valid decomposition flag options. The second index indicates the patch number.

[regDecompFirstExtra] Extra elements on the first DEs along each dimension in a regular decomposition. The
default is a zero vector. The second index indicates the patch number.

[regDecompLastExtra] Extra elements on the last DEs along each dimension in a regular decomposition. The default
is a zero vector. The second index indicates the patch number.

[deLabelList] List assigning DE labels to the default sequence of DEs. The default sequence is given by the column
major order of theregDecomp elements in the sequence as they appear following the patch index.

[indexflag] Indicates whether the indices provided by theminIndex andmaxIndex arguments are to be inter-
preted to form a flat pseudo global index space (ESMF_INDEX_GLOBAL) or are to be taken as patch local
(ESMF_INDEX_DELOCAL), which is the default.

[connectionList] List of connections between patches in index space. The second dimension ofconnectionList
steps through the connection interface elements, defined bythe first index. The first index must be of size2 x
dimCount + 2 , wheredimCount is the rank of the decomposed index space. EachconnectionList
element specifies the connection interface in the format

(/patchIndex_A, patchIndex_B, positionVector, orientat ionVector/) where:

• patchIndex_A andpatchIndex_B are the patch index of the two connected patches respectively,

• positionVector is the vector that points from patch A’s minIndex to patch B’sminIndex.

• orientationVector associates each dimension of patch A with a dimension in patch B’s index space.
Negative index values may be used to indicate a reversal in index orientation.

[delayout] OptionalESMF_DELayout object to be used. By default a new DELayout object will be created with the
correct number of DEs. If a DELayout object is specified its number of DEs must match the number indicated
by regDecomp .

[vm] Optional ESMF_VMobject of the current context. Providing the VM of the current context will lower the
method’s overhead.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

506

29.5.5 ESMF_DistGridCreate - Create 1D DistGrid object from user’s arbitray index list

INTERFACE:

! Private name; call using ESMF_DistGridCreate()
function ESMF_DistGridCreateDBAI1D(arbSeqIndexList, r c)

ARGUMENTS:

integer, intent(in) :: arbSeqIndexList(:)
integer, intent(out),optional :: rc

RETURN VALUE:

type(ESMF_DistGrid) :: ESMF_DistGridCreateDBAI1D

DESCRIPTION:

Create anESMF_DistGrid of dimCount 1 from a PET-local list of sequence indices. The PET-local size of
thearbSeqIndexList argument determines the number of local elements in the created DistGrid. The sequence
indices must be unique across all PETs. A default DELayout with 1 DE per PET across all PETs of the current VM is
automatically created.
The arguments are:

arbSeqIndexList List of arbitrary sequence indices that reside on the local PET.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

29.5.6 ESMF_DistGridCreate - Create (1+n)D DistGrid object from user’s arbitray index list and minIn-
dex/maxIndex

INTERFACE:

! Private name; call using ESMF_DistGridCreate()
function ESMF_DistGridCreateDBAI(arbSeqIndexList, arb Dim, &

minIndex, maxIndex, rc)

ARGUMENTS:

integer, intent(in) :: arbSeqIndexList(:)
integer, intent(in) :: arbDim
integer, intent(in) :: minIndex(:)
integer, intent(in) :: maxIndex(:)
integer, intent(out),optional :: rc

RETURN VALUE:

type(ESMF_DistGrid) :: ESMF_DistGridCreateDBAI

DESCRIPTION:

Create anESMF_DistGrid of dimCount 1 + n, wheren = size(minIndex) = size(maxIndex) .
The resulting DistGrid will have a 1D distribution determined by the PET-localarbSeqIndexList . The PET-local
size of thearbSeqIndexList argument determines the number of local elements along the arbitrarily distributed

507

dimension in the created DistGrid. The sequence indices must be unique across all PETs. The associated, automati-
cally created DELayout will have 1 DE per PET across all PETs of the current VM.
In addition to the arbitrarily distributed dimension, regular DistGrid dimensions can be specified inminIndex and
maxIndex . Then dimensional subspace spanned by the regular dimensions is "multiplied" with the arbitrary di-
mension on each DE, to form a1 + n dimensional total index space described by the DistGrid object. ThearbDim
argument allows to specify which dimension in the resultingDistGrid corresponds to the arbitrarily distributed one.
The arguments are:

arbSeqIndexList List of arbitrary sequence indices that reside on the local PET.

arbDim Dimension of the arbitrary distribution.

minIndex Global coordinate tuple of the lower corner of the tile. The arbitrary dimension isnot included in this tile

maxIndex Global coordinate tuple of the upper corner of the tile. The arbitrary dimension isnot included in this tile

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

29.5.7 ESMF_DistGridDestroy - Destroy DistGrid object

INTERFACE:

subroutine ESMF_DistGridDestroy(distgrid, rc)

ARGUMENTS:

type(ESMF_DistGrid), intent(inout) :: distgrid
integer, intent(out), optional :: rc

DESCRIPTION:

Destroy anESMF_DistGrid object.
The arguments are:

distgrid ESMF_DistGrid object to be destroyed.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

29.5.8 ESMF_DistGridGet - Get information about DistGrid object

INTERFACE:

! Private name; call using ESMF_DistGridGet()
subroutine ESMF_DistGridGetDefault(distgrid, delayout , dimCount, patchCount, &

minIndexPDimPPatch, maxIndexPDimPPatch, elementCountP Patch, &
minIndexPDimPDe, maxIndexPDimPDe, elementCountPDe, pat chListPDe, &
indexCountPDimPDe, collocationPDim, regDecompFlag, rc)

ARGUMENTS:

508

type(ESMF_DistGrid), intent(in) :: distgrid
type(ESMF_DELayout), intent(out), optional :: delayout
integer, intent(out), optional :: dimCount
integer, intent(out), optional :: patchCount
integer, target, intent(out), optional :: minIndexPDimPP atch(:,:)
integer, target, intent(out), optional :: maxIndexPDimPP atch(:,:)
integer, target, intent(out), optional :: elementCountPP atch(:)
integer, target, intent(out), optional :: minIndexPDimPD e(:,:)
integer, target, intent(out), optional :: maxIndexPDimPD e(:,:)
integer, target, intent(out), optional :: elementCountPD e(:)
integer, target, intent(out), optional :: patchListPDe(:)
integer, target, intent(out), optional :: indexCountPDim PDe(:,:)
integer, target, intent(out), optional :: collocationPDi m(:)
logical, intent(out), optional :: regDecompFlag
integer, intent(out), optional :: rc

DESCRIPTION:

Get internal DistGrid information.
The arguments are:

distgrid QueriedESMF_DistGrid object.

[delayout] ESMF_DELayout object associated withdistgrid .

[dimCount] Number of dimensions (rank) ofdistgrid .

[patchCount] Number of patches indistgrid .

[minIndexPDimPPatch] Lower index space corner perdim , perpatch , with size(minIndexPDimPPatch)
== (/dimCount, patchCount/) .

[maxIndexPDimPPatch] Upper index space corner perdim , perpatch , with size(minIndexPDimPPatch)
== (/dimCount, patchCount/) .

[elementCountPPatch] Number of elements in exclusive region per patch, withsize(elementCountPPatch)
== (/patchCount/)

[minIndexPDimPDe] Lower index space corner perdim , perDe, with size(minIndexPDimPDe) == (/dimCount,
deCount/) .

[maxIndexPDimPDe] Upper index space corner perdim , perde , with size(minIndexPDimPDe) == (/dimCount,
deCount/) .

[elementCountPDe] Number of elements in exclusive region per DE, withsize(elementCountPDe) == (/deCount/)

[patchListPDe] List of patch id numbers, one for each DE, withsize(patchListPDe) == (/deCount/)

[indexCountPDimPDe] Array of extents perdim , perde , with size(indexCountPDimPDe) == (/dimCount,
deCount/) .

[collocationPDim] List of collocation id numbers, one for each dim, withsize(collocationPDim) == (/dimCount/)

[regDecompFlag] Flag equal toESMF_TRUEfor regular decompositions and equal toESMF_FALSEotherwise.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

509

29.5.9 ESMF_DistGridGet - Get DE local information about DistGrid

INTERFACE:

! Private name; call using ESMF_DistGridGet()
subroutine ESMF_DistGridGetPLocalDe(distgrid, localDe , collocation, &

arbSeqIndexFlag, seqIndexList, elementCount, rc)

ARGUMENTS:

type(ESMF_DistGrid), intent(in) :: distgrid
integer, intent(in) :: localDe
integer, intent(in), optional :: collocation
logical, intent(out), optional :: arbSeqIndexFlag
integer, target, intent(out), optional :: seqIndexList(:)
integer, intent(out), optional :: elementCount
integer, intent(out), optional :: rc

DESCRIPTION:

Get internal DistGrid information.
The arguments are:

distgrid QueriedESMF_DistGrid object.

localDe Local DE for which information is requested.[0,..,localDeCount-1]

[collocation] Collocation for which information is requested. Default tofirst collocation incollocationPDim
list.

[arbSeqIndexFlag] Indicates whether collocation is associated with arbitrary sequence indices.

[seqIndexList] List of DistGrid patch-local sequence indices forlocalDe , with size(seqIndexList) ==
(/elementCountPDe(localDe)/) .

[elementCount] Number of elements in the localDe, i.e. identical to elementCountPDe(localDe).

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

29.5.10 ESMF_DistGridGet - Get DE local information for dimension about DistGrid

INTERFACE:

! Private name; call using ESMF_DistGridGet()
subroutine ESMF_DistGridGetPLocalDePDim(distgrid, loc alDe, dim, indexList, rc)

ARGUMENTS:

type(ESMF_DistGrid), intent(in) :: distgrid
integer, intent(in) :: localDe
integer, intent(in) :: dim
integer, target, intent(out) :: indexList(:)
integer, intent(out), optional :: rc

510

DESCRIPTION:

Get internal DistGrid information.
The arguments are:

distgrid QueriedESMF_DistGrid object.

localDe Local DE for which information is requested.[0,..,localDeCount-1]

dim Dimension for which information is requested.[1,..,dimCount]

indexList Upon return this holds the list of DistGrid patch-local indices forlocalDe along dimensiondim . The
supplied variable must be at least of sizeindexCountPDimPDe(dim, de(localDe)) .

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

29.5.11 ESMF_DistGridPrint - Print DistGrid internals

INTERFACE:

subroutine ESMF_DistGridPrint(distgrid, rc)

ARGUMENTS:

type(ESMF_DistGrid), intent(in) :: distgrid
integer, intent(out), optional :: rc

DESCRIPTION:

Prints internal information about the specifiedESMF_DistGrid object tostdout .

Note: ManyESMF_<class>Print methods are implemented in C++. On some platforms/compilers there is a
potential issue with interleaving Fortran and C++ output tostdout such that it doesn’t appear in the expected order.
If this occurs, theESMF_IOUnitFlush() method may be used on unit 6 to get coherent output.

The arguments are:

distgrid SpecifiedESMF_DistGrid object.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

29.5.12 ESMF_DistGridMatch - Check if two DistGrid objectsmatch

INTERFACE:

function ESMF_DistGridMatch(distgrid1, distgrid2, rc)

RETURN VALUE:

logical :: ESMF_DistGridMatch

ARGUMENTS:

511

type(ESMF_DistGrid), intent(in) :: distgrid1
type(ESMF_DistGrid), intent(in) :: distgrid2
integer, intent(out), optional :: rc

DESCRIPTION:

Check ifdistgrid1 anddistgrid2 match. Returns.TRUE. if DistGrid objects match,.FALSE. otherwise.
The arguments are:

distgrid1 ESMF_DistGrid object.

distgrid2 ESMF_DistGrid object.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

29.5.13 ESMF_DistGridValidate - Validate DistGrid internals

INTERFACE:

subroutine ESMF_DistGridValidate(distgrid, rc)

ARGUMENTS:

type(ESMF_DistGrid), intent(in) :: distgrid
integer, intent(out), optional :: rc

DESCRIPTION:

Validates that thedistgrid is internally consistent. The method returns an error code if problems are found.
The arguments are:

distgrid SpecifiedESMF_DistGrid object.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

29.5.14 ESMF_DistGridConnection - Construct a DistGrid connection element

INTERFACE:

subroutine ESMF_DistGridConnection(connection, patchI ndexA, patchIndexB, &
positionVector, orientationVector, rc)

ARGUMENTS:

integer, target, intent(out) :: connection(:)
integer, intent(in) :: patchIndexA
integer, intent(in) :: patchIndexB
integer, intent(in) :: positionVector(:)
integer, intent(in), optional :: orientationVector(:)
integer, intent(out), optional :: rc

512

DESCRIPTION:

This call helps to construct a DistGrid connection, which isa simple vector of integers, out of its components.
The arguments are:

connection Element to be constructed. The providedconnection must be dimensioned to hold exactly the number
of integers that result from the input information.

patchIndexA Index of one of the two patches that are to be connected.

patchIndexB Index of one of the two patches that are to be connected.

positionVector Position of patch B’s minIndex with respect to patch A’s minIndex.

[orientationVector] Associates each dimension of patch A with a dimension in patch B’s index space. Negative index
values may be used to indicate a reversal in index orientation. It is erroneous to associate multiple dimensions of
patch A with the same index in patch B. By defaultorientationVector = (/1,2,3,.../) , i.e. same
orientation as patch A.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

513

30 IO Capability

30.1 Description

The ESMF IO provides an unified interface for input and outputof high level ESMF objects such as Fields. In the
current release, the ESMF IO capability is integrated with third-party software such as Parallel IO (PIO) to read and
write Fortran array data in MPI_IO binary or NetCDF format, and Xerces Library to read and write Attribute data in
XML format. Other file IO functionalities, such as writing oferror and log messages, input of configuration parameters
from an ASCII file, and lower-level IO utilites are covered indifferent sections of this document. See the LogErr Class
43.1, the Config Class 42.1, and the Fortran I/O Utilities, 46.1 respectively.

30.2 Attribute I/O

Metadata IO is handled via the ESMF Attribute class. The third party software Xerces C++ Library is used by ESMF
to provide the ability to read and write Attribute data in XMLfile format. To enable this capability, the environment
variable ESMF_XERCES must be set. Details can be found in theESMF User Guide, "Building and Installing the
ESMF", "Third Party Libraries".
In the current release, the following methods support Attribute XML I/O using Xerces:

ESMF_AttributeRead() , section 34.9.21.

ESMF_AttributeWrite() , section 34.9.26.

30.3 Data I/O

ESMF provides interfaces for high performance, parallel I/O using ESMF data objects such as Arrays and Fields. Cur-
rently ESMF supports I/O of binary and NetCDF files. The current ESMF implementation relies on the Parallel I/O (PIO)
library developed as a collaboration between NCAR and DOE laboratories. PIO is built as part of the ESMF build
when the environment variable ESMF_PIO is set to "internal"; by default it is not set. When PIO is built with ESMF,
the ESMF methods internally call the PIO interfaces. When PIO is not built with ESMF, the ESMF methods are
non-operable (no-op) stubs that simply return with a returncode of ESMF_RC_LIB_NOT_PRESENT. Details about
the environment variables can be found in ESMF User Guide, "Building and Installing the ESMF", "Third Party
Libraries".
In the current release, the following methods support parallel data I/O using PIO:

ESMF_FieldBundleRead() , section 19.6.14.

ESMF_FieldBundleWrite() , section 19.6.19.

ESMF_FieldRead() , section 20.6.31.

ESMF_FieldWrite() , section 20.6.41.

ESMF_ArrayBundleRead() , section 21.5.8.

ESMF_ArrayBundleWrite() , section 21.5.17.

ESMF_ArrayRead() , section 22.5.21.

ESMF_ArrayWrite() , section 22.5.34.

30.4 Data formats

Two formats are supported, namely, NetCDF and binary (through MPI_IO). The environment variables that are enabled
when ESMF is built determine the format. The environment variables ESMF_NETCDF or/and ESMF_PNETCDF
should be set to "standard" to enable NetCDF IO format. If neither ESMF_NETCDF nor ESMF_PNETCDF are set,
and MPI_IO is enabled in MPI, the format will be binary. Details about the environment variables can be found in
ESMF User Guide, "Building and Installing the ESMF", "ThirdParty Libraries".

514

http://code.google.com/p/parallelio/
http://xerces.apache.org/xerces-c/
http://code.google.com/p/parallelio/

NetCDF Network Common Data Form (NetCDF) is an interface for array-oriented data access. The NetCDF library
provides an implementation of the interface. It also definesa machine-independent format for representing
scientific data. Together, the interface, library, and format support the creation, access, and sharing of scientific
data. The NetCDF software was developed at the Unidata Program Center in Boulder, Colorado. See [15].
In geoscience, NetCDF can be naturally used for represenation of fields defined on logically rectangular grids.
NetCDF use in geosciences is specified by CF conventions mentioned above [14].

To the extent that data on unstructured grids (or even observations) can be represented as one-dimensional arrays,
NetCDF can also be used to store these data. However, it does not provide a high-level abstraction for this type
of data.

IEEE Binary Streams A natural way for a machine to represent data is to use a nativebinary data representation.
There are two choices of ordering of bytes (so-calledBig EndianandLittle Endian), and a lot of ambiguity
in representing floating point data. The latter, however, isspecified, if IEEE Floating Point Standard 754 is
satisfied. ([6], [11]). [4].

30.5 Restrictions and Future Work

Currently a small fraction of the anticipated data formats is implemented by ESMF. The data IO uses NetCDF and
MPI_IO binary formats, and ESMF Attribute IO uses XML format. Different libraries are employed for these different
formats. In future development, a more centralized IO technique will likely be defined to provide efficient utilities with
a set of standard APIs that will allow manipulation of multiple standard formats. Also, the ability to automatically
detect file formats at runtime will be developed.

30.6 Design and Implementation Notes

For data IO, the ESMF IO capability relies on the PIO, NetCDF,PNetCDF and MPI_IO libraries. For Attribute IO,
the ESMF IO capability uses the Xerces library to perform reading and writing of XML files. PIO is included with the
ESMF distribution; the other libraries must be installed onthe machine of interest.

31 IOSpec Class

31.1 Description

The IOSpec class has been deprecated and will be removed in a future release. It is included here only as a reference
for theESMF_IOSpec type, which is still used to define iospec arguments (non-functional) elsewhere in the ESMF
API.

31.2 Class API

31.2.1 ESMF_IOSpecGet - Get values in an IOSpec

INTERFACE:

subroutine ESMF_IOSpecGet(iospec, filename, iofileform at, &
iorwtype, asyncIO, rc)

PARAMETERS:

type (ESMF_IOSpec), intent(in) :: iospec
character(len= *), intent(out), optional :: filename
type (ESMF_IOFileFormat), intent(out), optional :: iofil eformat
type (ESMF_IORWType), intent(out), optional :: iorwtype
logical, intent(out), optional :: asyncIO
integer, intent(out), optional :: rc

515

http://code.google.com/p/parallelio
http://www.unidata.ucar.edu/software/netcdf
http://trac.mcs.anl.gov/projects/parallel-netcdf
http://xerces.apache.org/xerces-c

DESCRIPTION:

The IOSpec class has been deprecated and will be removed in a future release. It is included here only as a reference
for theESMF_IOSpec type, which is still used to define iospec arguments (non-functional) elsewhere in the ESMF
API.

31.2.2 ESMF_IOSpecSet - Set values in an IOSpec

INTERFACE:

subroutine ESMF_IOSpecSet(iospec, filename, iofileform at, &
iorwtype, asyncIO, rc)

PARAMETERS:

type (ESMF_IOSpec), intent(inout) :: iospec
character(len= *), intent(in), optional :: filename
type (ESMF_IOFileFormat), intent(in), optional :: iofile format
type (ESMF_IORWType), intent(in), optional :: iorwtype
logical, intent(in), optional :: asyncIO
integer, intent(out), optional :: rc

DESCRIPTION:

The IOSpec class has been deprecated and will be removed in a future release. It is included here only as a reference
for theESMF_IOSpec type, which is still used to define iospec arguments (non-functional) elsewhere in the ESMF
API.

516

32 Overview of Distributed Data Methods

FieldBundles, Fields, and Arrays all have versions of the following data communication methods. In these objects, data
is communicated between DEs. Depending on the underlying communication mechanism, this may translate within
the framework to a data copy, an MPI call, or something else. The ESMF goal of providing performance portability
means the framework will in the future attempt to select the fastest communication strategy on each hardware platform
transparently to the user code. (The current implementation uses MPI for communication.)
Communication patterns, meaning exactly which bytes need to be copied or sent from one PET to another to perform
the requested operation, can be precomputed during an initialization phase and then later executed repeatedly. There
is a common object handle, anESMF_RouteHandle , which identifies these stored communication patterns. Only
the ESMF_RouteHandle and the source and destination data pointers must be supplied at runtime to minimize
execution overhead.

32.1 Higher Level Functions

The following three methods are intended to map closely to needs of applications programs. They represent higher
level communications and are described in more detail in thefollowing sections. They are:

• Halo Update ghost-cell or halo regions at the boundaries of a local data decomposition.

• Regrid Transform data from one Grid to another, performing any necessary data interpolation.

• Redist Copy data associated with a single Grid from one decomposition to another. No data interpolation is
necessary.

32.2 Lower Level Functions

The following methods correspond closely to the lower levelMPI communications primitives. They are:

• Gather Reassembling data which is decomposed over a set of DEs into asingle block of data on one DE.

• AllGather Reassembling data which is decomposed over a set of DEs into multiple copies of a single block of
data, one copy per original DE.

• ScatterSpreading an undecomposed block of data on one DE over a set ofDEs, decomposing that single block
into smaller subsets of data, one data decomposition per DE.

• AlltoAll Spreading an undecomposed block of data from multiple DEs onto each of the other DEs in the set,
resulting in a set of multiple decomposed data blocks per DE,one from each of the original source DEs.

• BroadcastSpreading an undecomposed block of data from one DE onto all other DEs, where the resulting data
is still undecomposed and simply copied to all other DEs.

• ReductionComputing a single data value, e.g. the data maximum, minimum, sum, etc from a group of decom-
posed data blocks across a set of DEs, where the result is delivered to a single DE.

• AllReduceComputing a single data value, e.g. the data maximum, minimum, sum, etc from a group of decom-
posed data blocks across a set of DEs, where the result is delivered to all DEs in the set.

32.3 Common Options

ESMF will select an appropriate default for the internal communication strategy for executing the communications.
However, additional control is available to the user by specifying the following route options. (For more details on
exactly what changes with the various options, see Section 32.4.)

517

32.4 Design and Implementation Notes

1. There is an internalESMC_Routeclass which supports the distributed communication methods. There are 4 ad-
ditional internal-only classes which supportESMC_Route: ESMC_AxisIndex , ESMC_XPacket, ESMC_CommTable,
andESMC_RTable; and a publicESMF_RouteHandle class which is what the user sets and gets. The im-
plementation is in C++, with interfaces in Fortran 90.

The general communication strategy is that each DE computesits own communication information indepen-
dently, in parallel, and adds entries to a per-PET route table which contains all needed sends and receives (or
gets and puts) stored in terms relative to itself. (Implementation note: this code will need to be made thread-safe
if multiple threads are trying to add information to the sameroute table.)

AxisIndex is a small helper class which contains an index minimum and maximum for each dimension and is
used to describe an n-dimensional hypercube of informationin index space. These are associated with logically
rectangular grids and local data arrays. There are usually multiple instances of them, for example the local
data chunk, and the overall global index-space grid this data is a subset of. Within each of the local or global
categories, there are also multiple instances to describe the allocated space, the total area, the computational
area, and the exclusive area. See Figure?? for the definitions of each of these regions. (Implementation note:
the allocated space is only partially implemented internally and has no external user API yet.)

An Exchange Packet (XPacket) describes groups of memory addresses which constitute an n-dimensional hy-
percube of data. Each XPacket has an offset from a base address, a contiguous run length, a stride (or number of
items to skip) per dimension, and a repeat count per dimension. See Figure 20 for a diagram of how the XPacket
describes memory. The actual unit size stored in an XPacket is an item count, so before using an XPacket to
address bytes of memory the item size must be known and the counts multiplied by the number of bytes per
item. This allows the same XPacket to describe different data types which have the same memory layout, for
example 4 byte integers and 8 byte reals/doubles. The XPacket methods include basic set/get, how to turn a list
of AxisIndex objects into an XPacket, compute a local XPacket from one in global (undecomposed grid) space,
and a method to compute the intersection of 2 XPackets and produce a 3rd XPacket describing that region.

The Communication Table (CommTable) class encapsulates which other PETs this PET needs to talk to, and in
what order. There are create and destroy methods, methods toset that a PET has data either to send or receive,
and query routines that return an answer to the question ’which PET should I exchange data with next’.

The Route Table (RTable) class contains a list of XPackets tobe sent and received from other PETs. It has
create/destroy methods, methods to add XPackets to the listfor each PET, and methods to retrieve the XPackets
from any list.

The top level class is a Route. A Route object contains a send RTable, a recv RTable, a CommTable, and a
pointer to a Virtual Machine. The VM must include all PETs which are participating in this communication.
The Route methods include create/destroy, setting a send orrecv XPacket for a particular PET, and some higher
level functions specific to each type of communication, for example RoutePrecomputeHalo or RoutePrecom-
puteRedist. These latter functions are where the XPackets are actually computed and added to the Route table.
Each DE computes its own set of intersections, either sourceor destination, and fills its own corresponding PET
table. The Route methods also include a RouteRun method which executes the code which actually traverses
the table and sends the information between PETs.

A RouteHandle class is a small helper class which is returnedthrough the public API to the user when a Route
is created, and passed back in through the API to select whichprecomputed Route is to be executed. A Route-
Handle contains a handle type and a pointer to a Route object.In addition, for use only by the Regrid code,
there is an additional Route pointer and a TransformValues pointer. (TransformValues is an internal class only
used by the Regridding code.) If the RouteHandle describes the Route for a FieldBundle, then the RouteHandle
can contain a list of Routes, one for each Field in the FieldBundle, and for Regrid use, a list of additional Routes
instead of a single Route. There is also a flag to indicate whether a single Route is applicable to all Fields in a
FieldBundle or whether there are multiple Routes. The RouteHandle methods are fairly basic; mostly accessor
methods for getting and setting values.

518

XPacket in 2D describing a
region of a data array

Linearized bytes of
physical memory
corresponding to

the logically
rectangular region

of data

Offset N

Contig Len

Stride

Base Addr

Rep Count

Figure 20: How an Exchange Packet (XPacket) describes the memory layout for a rectangular hypercube of data.

519

2. While intended for any distributed data communication method, the current implementation only builds a Route
object for the halo, redist, and regrid methods. Scatter, Gather, AllGather, and AlltoAll should have the op-
tion of building a Route for operations which are executed repeatedly. This should only require writing a
Precompute method for each one; the existing RouteRun can beinvoked for these operations. (This is a lack-of-
implementation-time issue, not a design or architecture issue.)

3. The original design included automatic detection of different Routes and internal caching, so the user API did
not have to include a RouteHandle object to identify which Route was being invoked. However, users requested
that the framework not cache and that explicit RouteHandle arguments be created and required to invoke the
distributed data methods. Nothing prevents this code from being revived from the CVS repository and reinstated
in the system, should automatic caching be desired by futureusers.

4. The current distributed methods have 2 related but distinct interfaces which differ in what information they
require and whether they use RouteHandles:

Precompute/Run/Release This is the most frequently used interface set. It contains 3 distinct phases: precomputing which bytes
must be moved, actually executing the communications operation, and releasing the stored information.
This is intended for any communication pattern which will beexecuted more than once.

All-in-One For a communication which will only be executed once, or in any situation in which the user does not want
to save a RouteHandle, there are interfaces which do not haveRouteHandles as part of the argument list.
Internally the code computes a Route, executes it, and releases the resources before returning.

5. The current CommTable code executes one very specific communication strategy based on input from a user
who did extensive timing measurements on several differenthardware platforms. Rather than broadcasting all
data at once asychronously, it selects combinations of pairs of processors and has them execute a SendRecv
operation, which does both a data send and a data receive in a single call. At each step in the execution, different
pairs of processors exchange data until all pair combinations have been selected.

The table itself must be a power of 2 in size; the number of PETsis rounded up to the next power of 2 and then
all entries for PETs larger than the actual number are markedas no-ops.

There are many alternative execution strategies, including a completely asynchronous execution, in numeric PET
order, without computing processor pairs. Also single-direction communications are possible (only the Send
XPackets are processed, or only the Receive XPackets) in either a synchronous or asynchronous mode. This
would not require any changes to the XPacket or RTable classes, but would require writing a set of alternative
RouteRun methods.

6. The current RouteRun routine has many possible performance options for how to make the tradeoff between
time spent packing disjoint memory blocks into a single buffer to minimize the number of sends, verses simply
sending the contiguous blocks without the pack overhead. The tradeoffs are not expected to be the same on
all systems; hardware latency verses bandwith characteristics will differ, plus the underlying communication
software (MPI, shared memory, etc) will change the performance. Also the size of the data blocks to be sent, the
amount of contiguity, and limits on the number of outstanding communication buffers all affect what options
are best.

TheESMF_RouteOptions are listed in 32.3; the following description contains moreimplementation detail
about what each of the options controls inside the executionof a Route. Note that the options do not affect the
creation of a Route, nor any of the Precompute code, and can optionally be changed each time the Route is run.

Packing options:

By Buffer If multiple memory addresses are provided to RouteRun (from bundle-level communications, for example),
then this option packs data across all buffers/blocks as specified by the other packing flags before sending
or receiving. Note: unlike the other packing flags, this is handled in the code at a higher level by either
passing down multiple addresses into the route run routine or not. If multiple addresses are passed into the
run routine, they will be packed. The "no-packing" option atthis level would be identical to looping at the
outermost level in the RouteRun code and therefore there is no disadvantage to calling this routine once
per address (and the advantage is not adding yet another coding loop inside the already complex RouteRun
code). The higher level list-of-address code can be disabled by clearing this flag (which is on by default).

520

XPacket describing a region of a
data array

Bytes of physical memory

Offset Contig Len

Stride

Base Addr

Rep Count = 18

.

.

.

Figure 21: A common XPacket pattern which generally benefitsfrom packing; the overlap region between 2 DEs
during a halo update are often short in the contiguous dimension and have a high repeat count.

By PET All data from a single block intended for a remote PET ispacked into a single send buffer, and sent in a
single VM communications call. A buffer large enough to receive all data coming from that remote PET
is allocated, the data is received, and then the data is copied into the final location. See 25.

By XP All data described by a single XPacket (which is a n-dimensional hyperslab of memory) is packed into a
single buffer for sending, and a single buffer large enough to receive an XPacket is allocated for receiving
the data. See 24.

No Packing A VM communication call is made for each single contiguous strip of memory, regardless of how long or
short.

MPI Vector MPI implements a set of interfaces for sending andreceiving which allows certain strided memory patterns
to be sent in a single call. The actual implementation is up tothe MPI library itself. But no user-level data
copy is needed in this case. (Not implemented yet.)

Note that in all packing options, if the XPacket describes a chunk of memory which is completely contigu-
ous, then the code does not allocate a packing or unpacking buffer but supplies the actual data address to the
communications call so the data is read or written in place.

521

2 XPackets describing two
separate region of a data array

Bytes of physical memory

Offset 1
Contig Len 1

Stride 1

Base Addr

Rep Count 1 = 3

Contig Len 2

Stride 2Rep Count 2 = 3

Offset 2

Figure 22: When there are multiple XPackets destined for thesame remote PET there are more options for how to
order the contiguous pieces into a packed buffer.

522

Figure 23: When the XPacket describes memory which is physically a single contiguous region, there is no need to
copy the data into another buffer; it can be communicated inplace. There is a flag in the XPacket which marks how
many of the dimensions are contiguous.

XPacket in 2D describing a
contiguous region of a data array

Linearized bytes of
physical memory
corresponding to

the logically
rectangular region

of data

Offset N

Contig Len

Stride ignored

Base Addr

Rep Count == 1

The following options refer to the internal strategy for executing the route and not to whether the user-level API
call returns before the route has finished executing. The current system only implements user-synchronous calls;
asynchronous calls are on the to-be-written list.

Sync Each pair of processors exchanges data with the VM equivalent of an MPI_SendRecv() call, which does
not return until both the send and receive have completed.

Async Each processor executes both an asynchronous send andasychronous receive to the other processor and
does not wait for completion before moving on to the next communication in the CommTable. Then in a
separate loop through the RTables, each call is waited for inturn and when all outstanding communication
calls have completed, then the API call returns to the user.

523

1

Data array

Offset Contig Len

Stride

Base Addr

Rep Count = 18 2

3

4

5

6

7

8

9

.

.

.

1

Packed buffer for
communications

Base Addr
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Unpacking

Packing

Figure 24: Often the overhead of making multiple communication calls outweighs the cost of copying non-contiguous
data into a contiguous buffer, sending it in a single operation, and then copying it to the final memory locations on the
receiving side.

524

1

2 XPackets destined for
the same PET

Offset 1
Contig Len 1

Stride 1

Base Addr

Rep Count 1 = 3

2

3

4 Contig Len 2

Stride 2Rep Count 2 = 3

5

6

Offset 2

1

Base Addr

2

3

4

5

6
Unpacking

Packing

Figure 25: Once there is more than a single XPacket to pack, there are many more interleave options. For example,
packing in the order: 1, 4, 2, 5, 3, 6 would also be possible here. However the code becomes more complicated when
the XPackets have different repeat counts, and has no real performance advantage over the straightforward packing of
each XPacket in sequence. Note that this packing is the same whether it refers to multiple XPackets from the same
memory buffer or from multiple buffers.

525

(Note that in the Async case it makes much more sense to iterate throught the Route table in PET order instead
of the complication of computing communication pairs and iterating in a non-sequential order. The code is as it
is now for reasons of implementation speed and not for any other design reason. This would require a slightly
simpler, but separate, version of the RouteRun() subroutine.)

7. FieldBundle-level communication calls have additionalpacking options under certain circumstances. FieldBun-
dles are groups of Fields which share the same Grid, but they are not required to share the same data types,
data ranks, nor relative data locations. FieldBundles in which these things are the same in all Fields are marked
inside the bundle code as beingcongruent. At communication store time FieldBundles which have congruent
data in all the Fields have the option of packing all Field data together into fewer communication calls which
generally is expected to give better performance. Fields where the data is not of the same type or perhaps not
the same number of items (e.g. different rank, vertex-centered data vs. cell centered data) can in theory also
be packed but in fact the code becomes more complicated, and in the case of differing data types may cause
system errors because of accessing data on non-standard byte offsets or putting mixing integer data with floating
data and causing NaN (not a number) exceptions. In this case,the conservative implementation strategy is to
construct a separate Route object for each Field, all enclosed in the same RouteHandle. Inside the FieldBundle
communication code the execution for both types of FieldBundles is identical for the caller, but inside the con-
gruent FieldBundle code calls theESMF_RouteRun() code once and all communication for all Fields in the
FieldBundle is done when it returns. The non-congruent FieldBundles execute a separateESMF_RouteRun()
call for each Field and return to the user when all Field data have been sent/received.

There are comments in the code for an intermediate level of optimization in which the FieldBundle code de-
termines the smallest number of unique types of Fields in theFieldBundle, and all same types share the same
Route object, but this has not been implemented at this time.Once the existing code has been in use for a while,
whether this is useful or needed may become more clear.

8. The precompute code for all operations must have enough information to compute which parts of the data arrays
are expected to be sent to remote PETs and also what remote data is expected to be received by this PET.

These computations depend heavily on what type of distributed method is being executed. The regridding
methods are described in detail separately in the Regrid Design and Implementation Notes section. The halo
and redistribution operations are described here.

Halo The total array area, which includes any halo regions, are intersected with the computational area of other
DEs. The overlap regions are converted from index space intomemory space and stored as XPackets in
the RTables. This code must be aware of: whether the grid was defined as periodic in any or all of the
dimensions since that affects which halo regions overlap atthe grid edges; if the data is only decomposed
into a single block in any dimension (which means it halos with itself); and if the halo region is large
enough that a halo operation may require intersection with the N+1 neighbor in any dimension.

Redistribute Each DE computes the overlap between its own computational region and all DEs in the remote Grid, again
only working in computational area. The overlap regions areconverted from index space into memory
space and stored as XPackets in the RTables. After executiona redistribution, a halo operation may be
required to populate any halo regions with consistent data.

(Note: the Redistribution code has been reimplemented to intersect the DEs in index space and then convert
the overlap region to an XPacket representation. Halo stillconverts the regions from AxisIndex to XPackets
and then intersects the XPackets, but this code needs to be changed to intersect in AxisIndex space and once
the overlap is computed then convert to XPackets. Intersecting AxisIndex objects is very much simpler, both to
understand and to execute, and more easily extensible to multiple dimensions than intersecting XPackets.)

32.5 Object Model

The following is a simplified UML diagram showing the structure of the public RouteHandle class. See Appendix A,
A Brief Introduction to UML, for a translation table that lists the symbols in the diagram and their meaning.

526

TimeRouteHandle

0..n

TransformValuesRoute

1..n

1

527

Part V

Infrastructure: Utilities

528

33 Overview of Infrastructure Utility Classes

The ESMF utilities are a set of tools for quickly assembling modeling applications.
The ESMF Attribute class enables models to be self-describing via metadata, which are instances of Attribute name-
value pairs.
The Time Management Library provides utilities for time andtime interval representation and calculation, and higher-
level utilities that control model time stepping, via clocks, as well as alarming.
The ESMF Config class provides configuration management based on NASA DAO’s Inpak package, a collection of
methods for accessing files containing input parameters stored in an ASCII format.
The ESMF LogErr class consists of a variety of methods for writing error, warning, and informational messages to log
files. A default Log is created during ESMF initialization. Other Logs can be created later in the code by the user.
The DELayout class provides a layer of abstraction on top of the Virtual Machine (VM) layer. DELayout does this
by introducing DEs (Decomposition Elements) as logical resource units. The DELayout object keeps track of the
relationship between its DEs and the resources of the associated VM object. A DELayout can be shaped by the user
at creation time to best match the computational problem or other design criteria.
The ESMF VM (Virtual Machine) class is a generic representation of hardware and system software resources. There
is exactly one VM object per ESMF Component, providing the execution environment for the Component code. The
VM class handles all resource management tasks for the Component class and provides a description of the underlying
configuration of the compute resources used by a Component. In addition to resource description and management,
the VM class offers the lowest level of ESMF communication methods.
The ESMF Fortran I/O utilities provide portable methods to access capabilities which are often implemented in differ-
ent ways amongst different environments. Currently, two utility methods are implemented: one to find an unopened
unit number, and one to flush an I/O buffer.

529

34 Attribute Class

34.1 Description

The ESMF Attribute Class was created with the long-term goalof enabling models to be self-describing. Note that
Attributes are individual name-value pairs, while Metadata is a term used to describe instances of Attributes that
describe a particular object. While most of the discussion to follow is about specific Attributes, the overall goal is to
create a Metadata system.

34.1.1 The ESMF approach to Attributes

ESMF’s Approach to Attributes can be summarized as follows:

• Implement community standards where they exist

• Associate Attributes with the ESMF object they describe. Currently, the following ESMF objects can have
Attributes:

– Array

– ArrayBundle

– CplComp

– GridComp

– DistGrid

– Field

– FieldBundle

– Grid

– State

• Establish pre-defined Attribute packages (see Section 34.2) to make Attribute creation easier for the user.

• Allow for user-defined Custom Attribute packages (see Section 34.2.7).

• Enable the nesting of Attribute packages (see Section 34.3)including Custom packages.

• Enable complex Attribute heirarchies (see Section 34.1.2.

• Export Attributes in more than one format (see Section 34.4).

• Ensure that all Attributes are consistent across the entirevirtual machine of the object to which they are attached.

34.1.2 Attribute hierarchies

Of the ESMF objects with Attributes, only some can link theirAttributes together in an Attribute hierarchy. These
objects are:

• CplComp

• GridComp

• State

• Field

• FieldBundle

• ArrayBundle

530

The most common use for this capability is for linking the Attributes of a Field to the FieldBundle which holds it,
which is then linked to the State that is used to transport allof the data for a Component. All of these links, with the
exception of the link between the Component and the State, are automatically handled by ESMF. Additionally, the
State will automatically set theVariableIntentAttribute that is part of the ESMF supplied standard Attribute package
for Field when that Field is added to the State.VariableIntent will be set to eitherExport or Import .
Attribute hierarchies are linked in a "shallow" manner, meaning that the Attributes belonging to an external object
are not copied, they are merely referenced by a pointer. Thisis important to ensure that the Attribute hierarchy has a
one-to-one correspondence with the object hierarchy.

34.2 Attribute Packages

At this time, all ESMF objects which are enabled to contain Attributes can also contain Attribute packages. Every
Attribute package is specified by aconventionand apurpose, hereafter calledspecifiers, such as "CF" (see below) and
"General". These specifiers are used to validate ESMF Attribute packages against existing metadata conventions. The
user can choose to use an ESMF pre-defined Attribute package,specify their own Attribute package, or add customized
Attributes to any of the ESMF pre-defined Attribute packages. Currently, the creation and setting of Attribute packages
is quite involved, but future development with IO will allowfor a more automated approach to populating Attribute
packages from a file. This is already possible viaESMF_AttributeRead() for the ESMF/ESG/CF Attribute
packages supplied by ESMF, as well as for custom individual Attributes not in a package.
The standard Attribute packages supplied by ESMF exist for the following ESMF objects:

• CplComp

• GridComp

• State

• Field

• Array

• Grid

The packages described in this section are grouped by the ESMF object they apply to. The creation of custom attributes
and custom attribute packages is also possible and is discussed in Section X. In some cases it is possible to nest custom
packages on top of ESMF packages. Attribute package nestingis described separately in the following section.
Some Attributes come with a controlled vocabulary. A controlled vocabulary is a list of options that can be selected
as the value of the attribute. The controlled vocabularies listed in this documentation represent those chosen by the
community. They are not exhaustive and users may set these Attributes to a different value if they so choose. The
primary consequence of doing so is that the resulting outputmay not be recognized by any of the online tools being
developed with respect to this controlled vocabulary.

34.2.1 Component Attribute packages

There are many attributes that are used to describe components. There are currently 5 predefined component-level
Attribute packages:

1. Earth System Grid (ESG) Basic

2. Common Information Model (CIM) Main

3. Common Information Model (CIM) Platform

4. Common Information Model (CIM) Responsible Party

5. Common Information Model (CIM) Citation

1. Earth System Grid (ESG) Basic Attribute Package

531

• Convention: ESG or ESMF

• Purpose: General

• Output Options:

– Simple XML file. This requires the Xerces 3rd party library, see 34.7.7

• Description: This package contains several Attributes used to describe model components within the Earth
System Grid (ESG) ontology.

Name Definition

Agency An administrative unit of government.
Author The person who created the content of a book, article, or other source.
CodingLanguage The computer language in which a unit of software is written.
ComponentLongName The name of a model, model component, simulation, experiment, or dataset
ComponentShortName A version of the component name that contains acronyms.
Discipline A subject, theme, category, or general area of interest.

Institution An organization associated with a model component, simulation, or dataset.
ModelComponentFramework The software package or mechanism used to transfer and transform data between
PhysicalDomain A description of the geographic range being simulated.
Version A specific form or variation of an artifact, i.e. a unit of software or metadata.

2. Common Information Model (CIM) Main Attribute Package

• Convention: CIM 1.0

• Purpose: Model Component Simulation Description

• Output Options:

– CIM XML

• Description: The CIM is a formal model of the climate modeling process being developed by the European
Union’s METAFOR project (http://metaforclimate.eu/). “It includes descriptions of the experiments being un-
dertaken, the simulations being run in support of these experiments, the software models and tools being used to
implement the simulations and the data generated by the software.” The CIM divides up the climate modeling
process into 6 sections. The CIM also contains other standards. It is the primary metadata representation for the
fifth Climate Model Intercomparison Project (CMIP5). ESMF is currently implementing only a subset of the
CIM. The representation is expected to grow. The CIM Main Package contains several standalone properties
used to describe components. It also serves as the anchor to which other CIM packages are nested. Presently,
these additional CIM packages (described below) can only becreated if the CIM Main Package is created. In
the future, these packages will be decoupled, so that users may select subsections of the CIM to create and use.
This package nests three of the packages below within it; this is described in Section 34.3.

– Shared: Contains those elements that are used in many different packages.

– Quality: Contains elements used to express diverse qualitymetrics for CIM Metadata or for artifacts that
the CIM metadata describes.

– Grids: Provides a complete description of the horizontal and vertical discretization of modeling elements.
This may refer to grids that output data is mapped onto, software adheres to, as well as activity constraints.

– Activity: Specifies the experimental design including the experimental requirements and description of
how simulations conform to these requirements.

– Software: Specifies all the modeling software components used within the experiment process.

532

– Data: Describes the data output from the climate modeling process as well as for input data.

Name Definition

Description A multi-line description of the component.
LongName A version of the component name with all acronyms spelled out.
ModelType A short string describing the discipline of a model component.
PreviousVersion Name of the previous version of a model or model component.
PreviousVersionDescription A short note about the previous version of the model or model component.
ReleaseDate The date a model component was issued.
ShortName A version of the component name that contains acronyms.
SimulationDuration The length of time a simulation runs.
SimulationLongName The name of the simulation with any acronyms spelled out.
SimulationRationale The reason for performing an experiment.
SimulationShortName The name of the simulation.
SimulationStartDate The date in simulated time of the start of a model simulation.
URL A URL associated with a model component

3. CIM Platform Attribute Package

• Convention: CIM 1.0

• Purpose: Platform Description

• Output Options:

– CIM XML

• Description: This package describes the platform a particular simulation is run on. It must be created in con-
junction with the CIM Main Package (see above). This packageis nested within the CIM Main Package (above);
see the description in Section 34.3.

Name Definition
CompilerName The brand of the software that takes source code and turns it into an executable.

CompilerVersion The specific configuration value of the software used to take source code and
MachineCoresPerProcessor The number of sub-divided elements or mini-chips on a computer chip.
MachineDescription A short note about the machine.
MachineInterconnectType The technology used to associate each node in a supercomputer with every

MachineMaximumProcessors The highest number of computer chips on a computer system.
MachineName The name given to a computer by its system administrators. This is not the
MachineOperatingSystem The software that is responsible for the management and coordination of acti
MachineProcessorType The type of computer chip used in a particular computer platform.

MachineSystem The type of computer system (e.g. vector, parallel, cluster, etc.).
MachineVendor The brand name of a computer system.

4. CIM Responsible Party Attribute Package

533

• Convention: ISO 19115

• Purpose: Responsible Party Description

• Output Options:

– CIM XML

• Description: This package is used to describe contacts, authors, institutions, and funding agencies. This package
is nested within the CIM Main Package(above); see the description in Section 34.3.

• Usage: The Responsible Party package is unique in that the user should first select the type of Responsible
Party they wish to define. This is done via the ResponsiblePartyRole attribute.Then value is set using the name
attribute.

Name Definition
Abbreviation The abbreviation of an individual or organization associated with a model component
EmailAddress The email address that others can use to ask questions about amodel component.
Name The name of an author, contact, funder, centre, or principalinvestigator responsible
PhysicalAddress The address of the person designated to provide informationabout a model
ResponsiblePartyRole A flag to define the Responsible Party block.
URL A URL of an individual or organization.

4. CIM Citation Attribute Package

• Convention: ISO 19115

• Purpose: Citation Description

• Output Options:

– CIM XML

• Description: This package is used to describe references. Examples include a URL or a scientific reference.
This package is nested within the CIM Main Package (above); see the description in Section 34.3.

Name Definition

Date The date of the citation.
DOI The assigned Digital Object Identifier (DOI) of the citation
LongTitle The text of the citation or pointer (e.g. URL) that further describes a model
PresentationForm A description of the type of citation

ShortTitle An abbreviation for the citation. This could be the short scientific citation (e.g.
URL Website associated with the citation.

34.2.2 State Attribute packages

There is currently only 1 predefined State-level Attribute package:

1. ESMF Basic

1.ESMF Basic State Attribute Package

534

• Convention: ESMF

• Purpose: General

• Output Options

– Tab-delimited

– Simple XML

• Description: This package is used to define whether an ESMF State object is an Import State or Export State.

Name Definition
Intent An indication of whether a field is imported into or exported from a particular

outout.

34.2.3 Field Attribute packages

Several standards exist to describe fields. There are currently 4 predefined Field-level Attribute packages:

1. Climate Forecast (CF) Convention General

2. Climate Forecast (CF) Convention Extended

3. Common Information Model (CIM) Inputs

4. Earth System Grid General

1. Climate Forecast (CF) Convention General

• Convention: CF

• Purpose: General

• Output Options:

– Tab-delimited

– Simple XML

– CIM XML (when part of the CIM package)

• : Description: The climate and forecast (CF) convention contains metadata that is designed to promote the
processing and sharing of files created with the NetCDF API. The CF conventions are increasingly gaining ac-
ceptance and have been adopted by a number of projects and groups as a primary standard. The conventions
define metadata that provide a definitive description of whatthe data in each variable represents, and the spatial
and temporal properties of the data. This enables users of data from different sources to decide which quantities
are comparable, and facilitates building applications with powerful extraction, regridding, and display capabili-
ties. The ESMF CF Attribute package contains the three mandatory Attributes required to describe fields.

Name Definition

LongName An ad-hoc long descriptive name which may, for example, be used for labeling
ShortName The short_name is technically not part of the CF stanard but is commonly the

long_name
Units The value of the units attribute is a string that can be recognized by UNIDA

2. Climate Forecast (CF) Convention Extended

535

• Convention: CF

• Purpose: Extended

• Output Options:

– Tab-delimited

– Simple XML

– CIM XML (when part of the CIM package)

• The CF standard for fields contains an optional standard_name Attribute. Standard names are controlled vocab-
ularies and not every variable in the earth system sciences contains a standard name. Because of this, ESMF
implemented this optional Attribute in its own package. This package nests the CF General package (above)
within it; this is described in Section 34.3.

Name Definition

StandardName The approved CF standard name for a variable if it exists

3. Earth System Grid (ESG) Field

• Convention: ESG or ESMF

• Purpose : General

• Output Options:

– Tab-delimited

– Simple XML

• Description: ESG has the ability to list variables as eitherimport or export variables. This should not be confused
with the ESMF State Attribute Package, which has similiar attributes. This attribute is assigned to individual
variables. This package nests the CF Extended package (above) within it; this is described in Section 34.3.

Name Definition
Intent An indication of whether a variable is exported or imported.This refers to

4. Common Information Model (CIM) Inputs Package

• Convention: CIM 1.0

• Purpose: Inputs Description

• Output Options

– CIM XML

• Description: This package is used to describe a simulation and the input (initial and boundary) conditions used
in that simulation. It is also used to describe any ancillarydata sets that contain input condition variables.
This package should not be used to describe the variables in an unconfigured model component. A pre-defined
Attribute package for that case will be implemented in a future release of ESMF. This package nests the CF
Extended Field package (above) within it; this is describedin Section 34.3.

536

Name Definition
CouplingPurpose The form of the input condition (e.g. initial condition or boundary condition).
CouplingSource The component the input condition is coming from.
CouplingTarget The component the input condition is going to.
Frequency The frequency (e.g. months, days) that a field from one component is input
SpatialRegriddingMethod Method used to interpolate a field from one grid (source grid)to another (tar

SpatialRegriddingDimension Dimension of the regridding method.
Technique The software package or mechanism used to transfer and transform data between
TimeTransformationType Temporal transformation performed on the input field beforeor after regridding

34.2.4 Array Attribute packages

At this time the Array packages are the same as the Field packages.

34.2.5 Grid Attribute packages

There are two grid attribute packages in ESMF.

1. GFDL Gridspec

2. ESMF Grid

1. Gridspec

• Convention: GridSpec

• Purpose: General

• Output Options

– Simple XML

– If combined with the ESMF Grid package, this package can be used to create a Grid object by reading in
an XML file with these attributes. This is currently limited to 2D regularly distributed rectinlinear grids.
See Section 25.3.23 for details.

• Description: This package contains the Attributes developed as part of GFDL’s Gridspec standard.

537

Name Definition
CongruentTiles Indicates whether or not all the tiles contained within a grid mosaic are of the
DimensionOrder The order in which latitude and longitude appear within the two dimensional
DiscretizationType Specifies the method by which a two-dimensional coordinate system is sampled

GeometryType Indicates the geometric figure used to approximate the shapeof the Earth, e.g.
GridType A text description of the grid that uses common terminology.

HorizontalResolution The number of points within the horizontal domain of a model or grid.
IsConformal Indicates if the grid tile is angle-preserving. If so, angles measured on the grid
IsRegular Indicates whether or not the horizontal coordinates of the grid can be defined

are defined by the cartesian product of the X/Lon and Y/Lat coordinate vectors.
also be physically rectangular in the case of projected coordinates).

IsUniform Indicates whether or not the horizontal coordinates of a grid have fixed of
directions then the grid is logically square, otherwise it is logically rectangular

NorthPoleLocation Defines the lat-long position of the ’north pole’ used by the grid tile in the
NumberOfCells The number of cells in an unstructured grid.
NumberOfGridTiles The number of tiles in a mosaic.
NX Specifies the length of the X, or longitude, dimension of the grid tile.
NY Specifies the length of the Y, or latitude, dimension of the grid tile.

2. EMSF Grid

• Convention: ESMF

• Purpose: General

• Output Options

– Simple XML

– If combined with the Gridspec Package, this package can be used to create a Grid object by reading in an
XML file with these attributes. This is currently limited to 2D regularly distributed rectinlinear grids. See
Section 25.3.23 for details.

• Description: This package contains two Attributes required by ESMF to generate grids from a file. They describe
the decomposition of a grid across ESMF DEs. This package nests the GridSpec General package (above) within
it; this is described in Section 34.3.

Name Definition

RegDecompX The number of DEs in X a particular grid is decomposed into.
RegDecompY The number of DEs in Y a particular grid is decomposed into.

34.2.6 Table of available Attributes

The following is an alphabetical list of all the attributes impletmented in ESMF, their definitions, and which packages
they are contained within. A list of attributes by package exists in the following section.

538

Name Definition
Agency An administrative unit of government.
CodingLanguage The computer language in which a unit of software is written.
CompilerName The brand of the software that takes source code and turns it into an executable.
CompilerVersion The specific configuration value of the software used to take source code and
CouplingPurpose The form of the input condition (e.g. initial condition or boundary condition).
CouplingSource The component the input condition is coming from.
CouplingTarget The component the input condition is going to.
Description A multi-line description of the component.
Date The date of the citation.
DimensionOrder The order in which latitude and longitude appear within the two dimensional
DiscretizationType Specifies the method by which a two-dimensional coordinate system is sampled
DOI The assigned Digital Object Identifier (DOI) of the citation
EmailAddress The email address that others can use to ask questions about amodel component.
Frequency The frequency (e.g. months, days) that a field from one component is input
FullName The name of a model, model component, simulation, experiment, or dataset
GeometryType Indicates the geometric figure used to approximate the shapeof the Earth, e.g.
GridType A text description of the grid that uses common terminology.
IsConformal Indicates if the grid tile is angle-preserving. If so, angles measured on the grid
IsRegular Indicates whether or not the horizontal coordinates of the grid can be defined

are defined by the cartesian product of the X/Lon and Y/Lat coordinate vectors.
also be physically rectangular in the case of projected coordinates).

Institution An organization associated with a model component, simulation, or dataset.
Intent An indication of whether a field or state is imported into or exported from

history outout.
IsUniform Indicates whether or not the horizontal coordinates of a grid have fixed of

directions then the grid is logically square, otherwise it is logically rectangular
LongName The name of an object with all acronyms spelled out. For fields, it is an ad-hoc

labeling plots
LongTitle The text of the citation or pointer (e.g. URL) that further describes a model
MachineCoresPerProcessor The number of sub-divided elements or mini-chips on a computer chip.
MachineDescription A short note about the machine.
MachineInterconnectType The technology used to associate each node in a supercomputer with every
MachineMaximumProcessors The highest number of computer chips on a computer system.
MachineName The name given to a computer by its system administrators. This is not the
MachineOperatingSystem The software that is responsible for the management and coordination of acti
MachineProcessor The type of computer chip used in a particular computer platform.
MachineSystem The type of computer system (e.g. vector, parallel, cluster, etc.).
MachineVendor The brand name of a computer system.
ModelComponentFramework The software package or mechanism used to transfer and transform data between
ModelType A short string describing the discipline of a model component.
NorthPoleLocation Defines the lat-long position of the ’north pole’ used by the grid tile in the
NumberOfCells The number of cells in an unstructured grid.
NumDims
NX Specifies the length of the X, or longitude, dimension of the grid tile.
NY Specifies the length of the Y, or latitude, dimension of the grid tile.
PhysicalAddress The address of the person designated to provide informationabout a model
PhysicalDomain A description of the geographic range being simulated.
PresentationForm A description of the type of citation.
PreviousVersion Name of the previous version of a model or model component.
PreviousVersionDescription A short note about the previous version of the model or model component.
ReleaseDate The year a model component was issued.
RegDecompX The number of DEs in X a particular grid is decomposed into.
RegDecompY The number of DEs in Y a particular grid is decomposed into.
ResponsiblePartyRole A flag to define the Responsible Party block.
ShortName The short_name is technically not part of the CF stanard but is commonly the

539

34.2.7 Custom Attribute packages

ESMF allows for the creation of custom attribute packages. This can be done to augment one of the pre-defined
packages (via package nesting 34.3) or to create a suite of attributes unique to the user. An example of how to create
a custom package is contained in Section XX (link to the proposed custom att pack example).

34.3 Attribute Packages Nesting

Nesting is a way of creating larger Attribute packages out ofsmaller ones and allows users to add the attributes they
want to an existing package. It is very useful when combininga custom package with a pre-defined package. One or
more child Attribute packages can be nested within a parent package, and this can be repeated multiple times, allowing
a full Attribute tree (hierarchical) structure to be created. Breaking Attributes up into smaller packages that are then
nested also allows for the construction of complex attribute trees where certain structures repeat themselves, allowing
for Attribute package reusability.
Several of the ESMF pre-defined packages, when added to an ESMF object, are created with nested packages:
CIM Main – Component package – is a nest with three child packages:

1. CIM Platform

2. CIM Responsible Party

3. CIM Citation

CF Extended – Field package – is a nest with one child package:

1. CF General

CIM Inputs – Field package – is a nest with one child package:

1. CF Extended (with a CF General package nested within it)

ESG General – Field package – is a nest with one child package:

1. CF Extended (with a CF General package nested within it)

ESMF General – Grid package – is a nest with one child package:

1. GridSpec General

An explanation of the Attribute packages specifiers is in order at this point. The purpose specifier is really just meant
as an additional means, beyond the use of "convention", to specify Attribute packages. One could imagine that the CF
convention would want to be able to have Attribute packages divided up in some fashion, which ESMF could then keep
track of with the purpose specifier. It was added with the intention of allowing Attributes, and packages, maximum
flexibility. Take the Field’s ESMF standard Attribute package for example. This package is made up of three nested
Attribute packages. The lowest one is made up of three Attributes with convention=CF and purpose=General. The
next level contains one Attribute with convention=CF but purpose=Extended. On top of this is the convention=ESG
package, also with purpose=General.

34.4 Export Formats

The ESMF_AttributeWrite() interface is used to write the contents of an Attribute package to a file. This
routine can be called on any ESMF object that is capable of holding Attribute packages. It can also write out all
Attributes in Attribute packages with the same specifiers throughout an entire ESMF object hierarchy.
There are three primary ways of exporting Attributes:

1. Tab-delimited ASCII

2. Simple XML

3. CIM XML

The flag that is used in theESMF_AttributeWrite() interface to determine which format for writing the Attribute
packages is called theESMF_AttWriteFlag . The resulting file will be placed in the execution directoryafter it is
written and closed.

540

34.4.1 Tab-delimited ASCII

WhenESMF_AttWriteFlag is set toESMF_ATTWRITE_TAB(the default), a tab-delimites ascii file containing
name-value pairs of attributes in the packages will be written. The file will be named for the name of the ESMF object
from whichESMF_AttributeWrite() is called. The suffix will be .stdout.

34.4.2 Simple XML

WhenESMF_AttWriteFlag is set toESMF_ATTWRITE_XML, an XML file containing name-value pairs of at-
tributes in the packages will be written. The file will be named for the name of the ESMF object from which
ESMF_AttributeWrite() is called. The suffix will be .xml.

34.4.3 CIM XML

When the ESMF object from whichESMF_AttributeWrite() is called is a Component, and the Attribute pack-
age convention="CIM 1.0", and the purpose="Model Component Simulation Description", andESMF_AttWriteFlag
is set toESMF_ATTWRITE_XML, an XML file conforming to the CIM standard will be written. The file will contain
Attributes from the entire Component tree and their contained Fields. The file will be named for the name of the ESMF
Component object from whichESMF_AttributeWrite() is called, and the suffix will be .xml.

34.5 Use and Examples

This section describes the use of the Attribute class. Thereare eight examples that follow, which outline the use of
Attributes at three increasing levels of difficulty. The first example covers basic Attribute manipulations on the gridded
Component. The second example covers the Attribute packagecapabilities, including Attribute package nesting and
Attribute hierarchy linking. The third example covers Attribute management in a distributed environment and the I/O
utilities. These examples will be best understood if followed in an ascending order from basic to advanced. The fourth
example shows how to use the CIM Attribute packages. The lastfour examples cover setting of Attribute packages
and custom Attributes from an XML file.

34.5.1 Basic Attribute usage

This example illustrates the most basic usage of the Attribute class. This demonstration of Attribute manipulation is
limited to the gridded Component, but the same principles apply to the coupler Component, State, Grid, FieldBun-
dle, Field, and Array. The functionality that is demonstrated includes setting and getting Attributes, working with
Attributes with different types and lists, removing Attributes, and getting default Attributes. Various other uses of
ESMF_AttributeGet() is covered in detail in the last section. The first thing we must do is declare variables and
initialize ESMF.

! Use ESMF framework module
use ESMF_Mod
implicit none

! Local variables
integer :: rc, finalrc, petCount, localPet, &

itemCount, count
type(ESMF_VM) :: vm
type(ESMF_GridComp) :: gridcomp
character(ESMF_MAXSTR) :: name

integer(ESMF_KIND_I4) :: inI4
integer(ESMF_KIND_I4), dimension(3) :: inI4l
integer(ESMF_KIND_I8) :: inI8
integer(ESMF_KIND_I8), dimension(3) :: inI8l
real(ESMF_KIND_I4) :: inR4
real(ESMF_KIND_I4), dimension(3) :: inR4l

541

real(ESMF_KIND_I8) :: inR8
real(ESMF_KIND_I8), dimension(3) :: inR8l
character(ESMF_MAXSTR) :: inChar
character(ESMF_MAXSTR), dimension(3) :: inCharl, &

defaultCharl, dfltoutCharl
character(ESMF_MAXSTR), dimension(8) :: outCharl
logical :: inLog
logical, dimension(3) :: inLogl, value

type(ESMF_TypeKind) :: tk

! initialize ESMF
finalrc = ESMF_SUCCESS
call ESMF_Initialize(vm=vm, defaultlogfilename="Attri buteEx.Log", &

defaultlogtype=ESMF_LOG_MULTI, rc=rc)

! get the vm
call ESMF_VMGet(vm, petCount=petCount, localPet=localP et, rc=rc)
if (rc/=ESMF_SUCCESS) goto 10

We will construct the gridded Component which will be responsible for all of the Attributes we will be manipulating.

if (petCount<4) then
gridcomp = ESMF_GridCompCreate(name="gridcomp", &

petList=(/0/), rc=rc)
else

gridcomp = ESMF_GridCompCreate(name="gridcomp", &
petList=(/0,1,2,3/), rc=rc)

endif

We can set Attributes using theESMF_AttributeSet() command. Attributes can be any of several different
types, all of which are demonstrated here.

inI4 = 4
inI4l = (/1,2,3/)
inI8 = 4
inI8l = (/1,2,3/)
inR4 = 4
inR4l = (/1,2,3/)
inR8 = 4
inR8l = (/1,2,3/)
inChar = "Character string 4"
inCharl = (/ "Character string 1", &

"Character string 2", &
"Character string 3" /)

inLog = .true.
inLogl = (/.true., .false., .true. /)

call ESMF_AttributeSet(gridcomp, name="ESMF_I4name", v alue=inI4, rc=rc)
call ESMF_AttributeSet(gridcomp, name="ESMF_I4namelis t", &

valueList=inI4l, rc=rc)
call ESMF_AttributeSet(gridcomp, name="ESMF_I8name", v alue=inI8, rc=rc)
call ESMF_AttributeSet(gridcomp, name="ESMF_I8namelis t", &

valueList=inI8l, rc=rc)

542

call ESMF_AttributeSet(gridcomp, name="ESMF_R4name", v alue=inR4, rc=rc)
call ESMF_AttributeSet(gridcomp, name="ESMF_R4namelis t", &

valueList=inR4l, rc=rc)
call ESMF_AttributeSet(gridcomp, name="ESMF_R8name", v alue=inR8, rc=rc)
call ESMF_AttributeSet(gridcomp, name="ESMF_R8namelis t", &

valueList=inR8l, rc=rc)
call ESMF_AttributeSet(gridcomp, name="Character_name ", &

value=inChar, rc=rc)
call ESMF_AttributeSet(gridcomp, name="Character_name list", &

valueList=inCharl, rc=rc)
call ESMF_AttributeSet(gridcomp, name="Logical_name", value=inLog, rc=rc)
call ESMF_AttributeSet(gridcomp, name="Logical_nameli st", &

valueList=inLogl, rc=rc)

We can retrieve Attributes by issuing theESMF_AttributeGet() command. This command can also be used with
an optional default value (or value list) so that if the Attribute is not found a value is returned without an error code.
Removal of Attributes is also possible, and is demonstratedhere as well. One of the Attributes previously created will
be retrieved, then removed, then retrieved again using a default return value. In order to use the default return value
capabilites, we must first set up a default parameter.

defaultCharl = (/ "Character string 4", &
"Character string 5", &
"Character string 6" /)

itemCount=3
call ESMF_AttributeGet(gridcomp, name="Character_name list", &

valueList=outCharl(1:5), itemCount=itemCount, rc=rc)

call ESMF_AttributeRemove(gridcomp, name="Character_n amelist", rc=rc)

call ESMF_AttributeGet(gridcomp, name="Character_name list", &
valueList=dfltoutCharl, defaultvalueList=defaultChar l,rc=rc)

There are more overloaded instances ofESMF_AttributeGet() which allow the retrieval of Attribute information
by name or index number, or a query for the count of the Attributes on a certain object. These capabilities are
demonstrated here by first retrieving the name of an Attribute using the index number, keep in mind that these index
numbers start from 1. Then the name that is retrieved is used to get other information about the Attribute, such as the
typekind, and the number of items in the value of the Attribute. This information is then used to actually retreive the
Attribute value. Then the count of the number of Attributes on the object will be retrieved.

call ESMF_AttributeGet(gridcomp, attributeIndex=11 , na me=name, rc=rc)

call ESMF_AttributeGet(gridcomp, name=name, typekind=t k, &
itemCount=itemCount, rc=rc)

if (tk==ESMF_TYPEKIND_Logical .AND. itemCount==3) then
call ESMF_AttributeGet(gridcomp, name=name, valueList= value, rc=rc)

endif

call ESMF_AttributeGet(gridcomp, count=count, rc=rc)

543

34.5.2 Attribute packages

This example is slightly more complex than the example presented in section 34.5.1 and illustrates the use of the
Attribute class to create Attribute hierarchies using Attribute packages. A gridded Component is used in conjunction
with two States, a FieldBundle, and various realistic Fields to create an Attribute hierarchy and copy it from one State
to another. Attributes packages are created on the Component and Fields, and the standard Attributes in each package
are used in the Attribute hierarchy. The Attribute package nesting capability is demonstrated by nesting the standard
ESMF supplied packages for the Fields inside a user specifiedAttribute package with a customized convention. The
first thing we must do is declare variables and initialize ESMF.

! Use ESMF framework module
use ESMF_Mod
implicit none

! Local variables
integer :: rc, finalrc, petCount, localPet
type(ESMF_VM) :: vm
type(ESMF_Field) :: DPEDT,DTDT,DUDT,DVDT,PHIS,QTR,CNV ,CONVCPT,&

CONVKE,CONVPHI
type(ESMF_FieldBundle) :: fbundle
type(ESMF_State) :: importState, exportState
type(ESMF_GridComp) :: gridcomp
character(ESMF_MAXSTR) :: name1,name2,name3,name4, &

value1,value2,value3, value4, &
convESMF,convCC,purpGen

character(ESMF_MAXSTR),dimension(2) :: attrList

! initialize ESMF
finalrc = ESMF_SUCCESS
call ESMF_Initialize(vm=vm, defaultlogfilename="Attri butePackageEx.Log", &

defaultlogtype=ESMF_LOG_MULTI, rc=rc)

! get the vm
call ESMF_VMGet(vm, petCount=petCount, localPet=localP et, rc=rc)
if (rc/=ESMF_SUCCESS) goto 10

We must construct the ESMF objects that will be responsible for the Attributes we will be manipulating. These objects
include the gridded Component, two States, a FieldBundle, and 10 Fields. In this trivial example we are constructing
empty Fields with no underlying Grid.

if (petCount<4) then
gridcomp = ESMF_GridCompCreate(name="gridded_componen t", &

petList=(/0/), rc=rc)
else

gridcomp = ESMF_GridCompCreate(name="gridded_componen t", &
petList=(/0,1,2,3/), rc=rc)

endif
importState = ESMF_StateCreate("importState", ESMF_STA TE_IMPORT, rc=rc)
exportState = ESMF_StateCreate("exportState", ESMF_STA TE_EXPORT, rc=rc)

DPEDT = ESMF_FieldCreateEmpty(name=’DPEDT’, rc=rc)
DTDT = ESMF_FieldCreateEmpty(name=’DTDT’, rc=rc)
DUDT = ESMF_FieldCreateEmpty(name=’DUDT’, rc=rc)
DVDT = ESMF_FieldCreateEmpty(name=’DVDT’, rc=rc)
PHIS = ESMF_FieldCreateEmpty(name=’PHIS’, rc=rc)

544

QTR = ESMF_FieldCreateEmpty(name=’QTR’, rc=rc)
CNV = ESMF_FieldCreateEmpty(name=’CNV’, rc=rc)
CONVCPT = ESMF_FieldCreateEmpty(name=’CONVCPT’, rc=rc)
CONVKE = ESMF_FieldCreateEmpty(name=’CONVKE’, rc=rc)
CONVPHI = ESMF_FieldCreateEmpty(name=’CONVPHI’, rc=rc)

fbundle = ESMF_FieldBundleCreate(name="fbundle", rc=rc)

Now we can add Attribute packages to all of the appropriate objects. We will use the ESMF supplied Attribute
packages for the Fields and the Component. On the Fields, we will first use ESMF_AttributeAdd() to create
standard Attribute packages, then we will nest customized Attribute packages around the ESMF standard Attribute
packages. In this simple example the purpose for the Attribute packages will be specified as "General" in all cases.

convESMF = ’ESMF’
convCC = ’CustomConvention’
purpGen = ’General’

attrList(1) = ’Coordinates’
attrList(2) = ’Mask’

! DPEDT
call ESMF_AttributeAdd(DPEDT, convention=convESMF, pur pose=purpGen, rc=rc)
call ESMF_AttributeAdd(DPEDT, convention=convCC, purpo se=purpGen, &

attrList=attrList, nestConvention=convESMF, nestPurpo se=purpGen, rc=rc)

! DTDT
call ESMF_AttributeAdd(DTDT, convention=convESMF, purp ose=purpGen, rc=rc)
call ESMF_AttributeAdd(DTDT, convention=convCC, purpos e=purpGen, &

attrList=attrList, nestConvention=convESMF, nestPurpo se=purpGen, rc=rc)

! DUDT
call ESMF_AttributeAdd(DUDT, convention=convESMF, purp ose=purpGen, rc=rc)
call ESMF_AttributeAdd(DUDT, convention=convCC, purpos e=purpGen, &

attrList=attrList, nestConvention=convESMF, nestPurpo se=purpGen, rc=rc)

! DVDT
call ESMF_AttributeAdd(DVDT, convention=convESMF, purp ose=purpGen, rc=rc)
call ESMF_AttributeAdd(DVDT, convention=convCC, purpos e=purpGen, &

attrList=attrList, nestConvention=convESMF, nestPurpo se=purpGen, rc=rc)

! PHIS
call ESMF_AttributeAdd(PHIS, convention=convESMF, purp ose=purpGen, rc=rc)
call ESMF_AttributeAdd(PHIS, convention=convCC, purpos e=purpGen, &

attrList=attrList, nestConvention=convESMF, nestPurpo se=purpGen, rc=rc)

! QTR
call ESMF_AttributeAdd(QTR, convention=convESMF, purpo se=purpGen, rc=rc)
call ESMF_AttributeAdd(QTR, convention=convCC, purpose =purpGen, &

attrList=attrList, nestConvention=convESMF, nestPurpo se=purpGen, rc=rc)

! CNV
call ESMF_AttributeAdd(CNV, convention=convESMF, purpo se=purpGen, rc=rc)
call ESMF_AttributeAdd(CNV, convention=convCC, purpose =purpGen, &

attrList=attrList, nestConvention=convESMF, nestPurpo se=purpGen, rc=rc)

545

! CONVCPT
call ESMF_AttributeAdd(CONVCPT, convention=convESMF, p urpose=purpGen, rc=rc)
call ESMF_AttributeAdd(CONVCPT, convention=convCC, pur pose=purpGen, &

attrList=attrList, nestConvention=convESMF, nestPurpo se=purpGen, rc=rc)

! CONVKE
call ESMF_AttributeAdd(CONVKE, convention=convESMF, pu rpose=purpGen, rc=rc)
call ESMF_AttributeAdd(CONVKE, convention=convCC, purp ose=purpGen, &

attrList=attrList, nestConvention=convESMF, nestPurpo se=purpGen, rc=rc)

! CONVPHI
call ESMF_AttributeAdd(CONVPHI, convention=convESMF, p urpose=purpGen, rc=rc)
call ESMF_AttributeAdd(CONVPHI, convention=convCC, pur pose=purpGen, &

attrList=attrList, nestConvention=convESMF, nestPurpo se=purpGen, rc=rc)

call ESMF_AttributeAdd(gridcomp, convention=convESMF, &
purpose=purpGen, rc=rc)

The standard Attribute package currently supplied by ESMF for Field contains 6 Attributes, 2 of which are set auto-
matically. The remaining 4 Attributes in the standard FieldAttribute package must be set manually by the user. We
must also set the Attributes of our own custom Attribute package, which is built around the ESMF standard Attribute
package.

name1 = ’ShortName’
name2 = ’StandardName’
name3 = ’LongName’
name4 = ’Units’

! DPEDT
value1 = ’DPEDT’
value2 = ’tendency_of_air_pressure’
value3 = ’Edge pressure tendency’
value4 = ’Pa s-1’
! Custom Attributes
call ESMF_AttributeSet(DPEDT, name=’Coordinates’, valu e=’latlon’, &

convention=convCC, purpose=purpGen, rc=rc)
call ESMF_AttributeSet(DPEDT, name=’Mask’, value=’yes’ , &

convention=convCC, purpose=purpGen, rc=rc)
! ESMF Attributes
call ESMF_AttributeSet(DPEDT, name1, value1, convention =convESMF, &

purpose=purpGen, rc=rc)
call ESMF_AttributeSet(DPEDT, name2, value2, convention =convESMF, &

purpose=purpGen, rc=rc)
call ESMF_AttributeSet(DPEDT, name3, value3, convention =convESMF, &

purpose=purpGen, rc=rc)
call ESMF_AttributeSet(DPEDT, name4, value4, convention =convESMF, &

purpose=purpGen, rc=rc)

! DTDT
value1 = ’DTDT’
value2 = ’tendency_of_air_temperature’
value3 = ’Delta-p weighted temperature tendency’
value4 = ’Pa K s-1’
! Custom Attributes
call ESMF_AttributeSet(DTDT, name=’Coordinates’, value =’latlon’, &

546

convention=convCC, purpose=purpGen, rc=rc)
call ESMF_AttributeSet(DTDT, name=’Mask’, value=’yes’, &

convention=convCC, purpose=purpGen, rc=rc)
! ESMF Attributes
call ESMF_AttributeSet(DTDT, name1, value1, convention= convESMF, &

purpose=purpGen, rc=rc)
call ESMF_AttributeSet(DTDT, name2, value2, convention= convESMF, &

purpose=purpGen, rc=rc)
call ESMF_AttributeSet(DTDT, name3, value3, convention= convESMF, &

purpose=purpGen, rc=rc)
call ESMF_AttributeSet(DTDT, name4, value4, convention= convESMF, &

purpose=purpGen, rc=rc)

! DUDT
value1 = ’DUDT’
value2 = ’tendency_of_eastward_wind’
value3 = ’Eastward wind tendency’
value4 = ’m s-2’
! Custom Attributes
call ESMF_AttributeSet(DUDT, name=’Coordinates’, value =’latlon’, &

convention=convCC, purpose=purpGen, rc=rc)
call ESMF_AttributeSet(DUDT, name=’Mask’, value=’yes’, &

convention=convCC, purpose=purpGen, rc=rc)
! ESMF Attributes
call ESMF_AttributeSet(DUDT, name1, value1, convention= convESMF, &

purpose=purpGen, rc=rc)
call ESMF_AttributeSet(DUDT, name2, value2, convention= convESMF, &

purpose=purpGen, rc=rc)
call ESMF_AttributeSet(DUDT, name3, value3, convention= convESMF, &

purpose=purpGen, rc=rc)
call ESMF_AttributeSet(DUDT, name4, value4, convention= convESMF, &

purpose=purpGen, rc=rc)

! DVDT
value1 = ’DVDT’
value2 = ’tendency_of_northward_wind’
value3 = ’Northward wind tendency’
value4 = ’m s-2’
! Custom Attributes
call ESMF_AttributeSet(DVDT, name=’Coordinates’, value =’latlon’, &

convention=convCC, purpose=purpGen, rc=rc)
call ESMF_AttributeSet(DVDT, name=’Mask’, value=’yes’, &

convention=convCC, purpose=purpGen, rc=rc)
! ESMF Attributes
call ESMF_AttributeSet(DVDT, name1, value1, convention= convESMF, &

purpose=purpGen, rc=rc)
call ESMF_AttributeSet(DVDT, name2, value2, convention= convESMF, &

purpose=purpGen, rc=rc)
call ESMF_AttributeSet(DVDT, name3, value3, convention= convESMF, &

purpose=purpGen, rc=rc)
call ESMF_AttributeSet(DVDT, name4, value4, convention= convESMF, &

purpose=purpGen, rc=rc)

! PHIS
value1 = ’PHIS’

547

value2 = ’surface_geopotential’
value3 = ’Surface geopotential height’
value4 = ’m2 s-2’
! Custom Attributes
call ESMF_AttributeSet(PHIS, name=’Coordinates’, value =’latlon’, &

convention=convCC, purpose=purpGen, rc=rc)
call ESMF_AttributeSet(PHIS, name=’Mask’, value=’yes’, &

convention=convCC, purpose=purpGen, rc=rc)
! ESMF Attributes
call ESMF_AttributeSet(PHIS, name1, value1, convention= convESMF, &

purpose=purpGen, rc=rc)
call ESMF_AttributeSet(PHIS, name2, value2, convention= convESMF, &

purpose=purpGen, rc=rc)
call ESMF_AttributeSet(PHIS, name3, value3, convention= convESMF, &

purpose=purpGen, rc=rc)
call ESMF_AttributeSet(PHIS, name4, value4, convention= convESMF, &

purpose=purpGen, rc=rc)

! QTR
value1 = ’QTR’
value2 = ’’
value3 = ’Advected quantities’
value4 = ’unknown’
! Custom Attributes
call ESMF_AttributeSet(QTR, name=’Coordinates’, value= ’latlon’, &

convention=convCC, purpose=purpGen, rc=rc)
call ESMF_AttributeSet(QTR, name=’Mask’, value=’yes’, &

convention=convCC, purpose=purpGen, rc=rc)
! ESMF Attributes
call ESMF_AttributeSet(QTR, name1, value1, convention=c onvESMF, &

purpose=purpGen, rc=rc)
call ESMF_AttributeSet(QTR, name2, value2, convention=c onvESMF, &

purpose=purpGen, rc=rc)
call ESMF_AttributeSet(QTR, name3, value3, convention=c onvESMF, &

purpose=purpGen, rc=rc)
call ESMF_AttributeSet(QTR, name4, value4, convention=c onvESMF, &

purpose=purpGen, rc=rc)

! CNV
value1 = ’CNV’
value2 = ’atmosphere_kinetic_energy_content’
value3 = ’Generation of atmosphere kinetic energy content’
value4 = ’W m-2’
! Custom Attributes
call ESMF_AttributeSet(CNV, name=’Coordinates’, value= ’latlon’, &

convention=convCC, purpose=purpGen, rc=rc)
call ESMF_AttributeSet(CNV, name=’Mask’, value=’yes’, &

convention=convCC, purpose=purpGen, rc=rc)
! ESMF Attributes
call ESMF_AttributeSet(CNV, name1, value1, convention=c onvESMF, &

purpose=purpGen, rc=rc)
call ESMF_AttributeSet(CNV, name2, value2, convention=c onvESMF, &

purpose=purpGen, rc=rc)
call ESMF_AttributeSet(CNV, name3, value3, convention=c onvESMF, &

purpose=purpGen, rc=rc)

548

call ESMF_AttributeSet(CNV, name4, value4, convention=c onvESMF, &
purpose=purpGen, rc=rc)

! CONVCPT
value1 = ’CONVCPT’
value2 = ’’
value3 = ’Vertically integrated enthalpy convergence’
value4 = ’W m-2’
! Custom Attributes
call ESMF_AttributeSet(CONVCPT, name=’Coordinates’, va lue=’latlon’, &

convention=convCC, purpose=purpGen, rc=rc)
call ESMF_AttributeSet(CONVCPT, name=’Mask’, value=’ye s’, &

convention=convCC, purpose=purpGen, rc=rc)
! ESMF Attributes
call ESMF_AttributeSet(CONVCPT, name1, value1, conventi on=convESMF, &

purpose=purpGen, rc=rc)
call ESMF_AttributeSet(CONVCPT, name2, value2, conventi on=convESMF, &

purpose=purpGen, rc=rc)
call ESMF_AttributeSet(CONVCPT, name3, value3, conventi on=convESMF, &

purpose=purpGen, rc=rc)
call ESMF_AttributeSet(CONVCPT, name4, value4, conventi on=convESMF, &

purpose=purpGen, rc=rc)

! CONVKE
value1 = ’CONVKE’
value2 = ’’
value3 = ’Vertically integrated kinetic energy convergenc e’
value4 = ’W m-2’
! Custom Attributes
call ESMF_AttributeSet(CONVKE, name=’Coordinates’, val ue=’latlon’, &

convention=convCC, purpose=purpGen, rc=rc)
call ESMF_AttributeSet(CONVKE, name=’Mask’, value=’yes ’, &

convention=convCC, purpose=purpGen, rc=rc)
! ESMF Attributes
call ESMF_AttributeSet(CONVKE, name1, value1, conventio n=convESMF, &

purpose=purpGen, rc=rc)
call ESMF_AttributeSet(CONVKE, name2, value2, conventio n=convESMF, &

purpose=purpGen, rc=rc)
call ESMF_AttributeSet(CONVKE, name3, value3, conventio n=convESMF, &

purpose=purpGen, rc=rc)
call ESMF_AttributeSet(CONVKE, name4, value4, conventio n=convESMF, &

purpose=purpGen, rc=rc)

! CONVPHI
value1 = ’CONVPHI’
value2 = ’’
value3 = ’Vertically integrated geopotential convergence ’
value4 = ’W m-2’
! Custom Attributes
call ESMF_AttributeSet(CONVPHI, name=’Coordinates’, va lue=’latlon’, &

convention=convCC, purpose=purpGen, rc=rc)
call ESMF_AttributeSet(CONVPHI, name=’Mask’, value=’ye s’, &

convention=convCC, purpose=purpGen, rc=rc)
! ESMF Attributes
call ESMF_AttributeSet(CONVPHI, name1, value1, conventi on=convESMF, &

549

purpose=purpGen, rc=rc)
call ESMF_AttributeSet(CONVPHI, name2, value2, conventi on=convESMF, &

purpose=purpGen, rc=rc)
call ESMF_AttributeSet(CONVPHI, name3, value3, conventi on=convESMF, &

purpose=purpGen, rc=rc)
call ESMF_AttributeSet(CONVPHI, name4, value4, conventi on=convESMF, &

purpose=purpGen, rc=rc)

The standard Attribute package currently supplied by ESMF for Component contains 10 Attributes. These Attributes
conform to both the ESG and CF conventions, and must be set manually.

call ESMF_AttributeSet(gridcomp, ’Agency’, ’NASA’, &
convention=convESMF, purpose=purpGen, rc=rc)

call ESMF_AttributeSet(gridcomp, ’Author’, ’Max Suarez’ , &
convention=convESMF, purpose=purpGen, rc=rc)

call ESMF_AttributeSet(gridcomp, ’CodingLanguage’, &
’Fortran 90’, convention=convESMF, purpose=purpGen, rc= rc)

call ESMF_AttributeSet(gridcomp, ’Discipline’, &
’Atmosphere’, convention=convESMF, purpose=purpGen, rc =rc)

call ESMF_AttributeSet(gridcomp, ’ComponentLongName’, &
’Goddard Earth Observing System Version 5 Finite Volume Dyn amical Core’, &

convention=convESMF, purpose=purpGen, rc=rc)
call ESMF_AttributeSet(gridcomp, ’ModelComponentFrame work’, &

’ESMF’, convention=convESMF, purpose=purpGen, rc=rc)
call ESMF_AttributeSet(gridcomp, ’ComponentShortName’ , &

’GEOS-5 FV dynamical core’, &
convention=convESMF, purpose=purpGen, rc=rc)

call ESMF_AttributeSet(gridcomp, ’PhysicalDomain’, &
’Earth system’, convention=convESMF, purpose=purpGen, r c=rc)

call ESMF_AttributeSet(gridcomp, ’Version’, &
’GEOSagcm-EROS-beta7p12’, convention=convESMF, purpos e=purpGen, rc=rc)

Adding the Fields to the FieldBundle will automatically “link" the Attribute hierarchies. The same type of link will be
generated when adding a FieldBundle to a State.

call ESMF_FieldBundleAdd(fbundle, DPEDT, rc=rc)
call ESMF_FieldBundleAdd(fbundle, DTDT, rc=rc)
call ESMF_FieldBundleAdd(fbundle, DUDT, rc=rc)
call ESMF_FieldBundleAdd(fbundle, DVDT, rc=rc)
call ESMF_FieldBundleAdd(fbundle, PHIS, rc=rc)
call ESMF_FieldBundleAdd(fbundle, QTR, rc=rc)
call ESMF_FieldBundleAdd(fbundle, CNV, rc=rc)
call ESMF_FieldBundleAdd(fbundle, CONVCPT, rc=rc)
call ESMF_FieldBundleAdd(fbundle, CONVKE, rc=rc)
call ESMF_FieldBundleAdd(fbundle, CONVPHI, rc=rc)

call ESMF_StateAdd(exportState, fieldbundle=fbundle, r c=rc)

The link between a State and the Component of interest must beset manually.

call ESMF_AttributeLink(gridcomp, exportState, rc=rc)

550

There are currently two different formats available for writing the contents of the Attribute packages in an Attribute
hierarchy. There is an XML formatted write, which generatesan .xml file in the execution directory with the con-
tents of the write. There is also a tab-delimited write whichwrites to standard out, a file generated in the exe-
cution directory with the extension .stdout. Either of theESMF_AttributeWrite() formats can be called on
any of the objects which are capable of manipulating Attributes, but only from objects in an Attribute hierarchy
which contain ESMF standard Attribute packages can it be confirmed that any relevant information be written. The
ESMF_AttributeWrite() capability is only functional for single-item Attributes at this point, it will be more
robust in future releases. A flag is used to specify which format to write, the default is tab-delimited.

call ESMF_AttributeWrite(gridcomp,convESMF,purpGen, &
attwriteflag=ESMF_ATTWRITE_XML,rc=rc)

call ESMF_AttributeWrite(gridcomp,convESMF,purpGen,r c=rc)

34.5.3 CIM Attribute packages

This example illustrates the use of the Metafor CIM Attribute packages, supplied by ESMF, to create an Attribute
hierarchy on an ESMF object tree. A coupler Component and four gridded Components are used together with four
States, two FieldBundles, and eight realistic Fields to create an ESMF object tree. CIM Attributes packages are
created on the Components and Fields, and then the individual Attributes within the packages are populated with
values. Finally, all the Attributes are written to a CIM-formatted XML file.

! Use ESMF framework module
use ESMF_Mod
implicit none

! Local variables
integer :: rc, finalrc, petCount, localPet
type(ESMF_VM) :: vm
type(ESMF_Field) :: DMS_emi, UM, OH, Orog, Ozone, SST, SO2, NOx
type(ESMF_FieldBundle) :: fbundle1, fbundle2
type(ESMF_State) :: exportState1, exportState2, exportS tate3
type(ESMF_State) :: exportState4
type(ESMF_CplComp) :: cplcomp
type(ESMF_GridComp) :: gridcomp1, gridcomp2, gridcomp3, gridcomp4
character(ESMF_MAXSTR) :: convCIM, purpComp, purpField, purpPlatform
character(ESMF_MAXSTR) :: convISO, purpRP, purpCitation

! initialize ESMF
finalrc = ESMF_SUCCESS
call ESMF_Initialize(vm=vm, defaultlogfilename="Attri buteCIMEx.Log", &

defaultlogtype=ESMF_LOG_MULTI, rc=rc)

! get the vm
call ESMF_VMGet(vm, petCount=petCount, localPet=localP et, rc=rc)
if (rc/=ESMF_SUCCESS) goto 10

Create the ESMF objects that will hold the CIM Attributes. These objects include a coupler Component, four gridded
Components, four States (one State per gridded Component) two FieldBundles, and eight Fields. In this example we
are constructing empty Fields without an underlying Grid.

! Create Components
cplcomp = ESMF_CplCompCreate(name="coupler_component" , &

petList=(/0/), rc=rc)

551

gridcomp1 = ESMF_GridCompCreate(name="gridded_compone nt1", &
petList=(/0/), rc=rc)

gridcomp2 = ESMF_GridCompCreate(name="gridded_compone nt2", &
petList=(/0/), rc=rc)

gridcomp3 = ESMF_GridCompCreate(name="gridded_compone nt3", &
petList=(/0/), rc=rc)

gridcomp4 = ESMF_GridCompCreate(name="gridded_compone nt4", &
petList=(/0/), rc=rc)

! Create States
exportState1 = ESMF_StateCreate("exportState1", ESMF_S TATE_EXPORT, rc=rc)
exportState2 = ESMF_StateCreate("exportState2", ESMF_S TATE_EXPORT, rc=rc)
exportState3 = ESMF_StateCreate("exportState3", ESMF_S TATE_EXPORT, rc=rc)
exportState4 = ESMF_StateCreate("exportState4", ESMF_S TATE_EXPORT, rc=rc)

! Create Field Bundles
fbundle1 = ESMF_FieldBundleCreate(name="fbundle1", rc= rc)
fbundle2 = ESMF_FieldBundleCreate(name="fbundle2", rc= rc)

! Create Fields
DMS_emi = ESMF_FieldCreateEmpty(name=’DMS_emi’, rc=rc)
UM = ESMF_FieldCreateEmpty(name=’UM’, rc=rc)
OH = ESMF_FieldCreateEmpty(name=’OH’, rc=rc)
Orog = ESMF_FieldCreateEmpty(name=’Orog’, rc=rc)
Ozone = ESMF_FieldCreateEmpty(name=’Ozone’, rc=rc)
SST = ESMF_FieldCreateEmpty(name=’SST’, rc=rc)
SO2 = ESMF_FieldCreateEmpty(name=’SO2’, rc=rc)
NOx = ESMF_FieldCreateEmpty(name=’NOx’, rc=rc)

Now add CIM Attribute packages to all of the Components and Fields.

convCIM = ’CIM 1.0’
purpComp = ’Model Component Simulation Description’
purpField = ’Inputs Description’
purpPlatform = ’Platform Description’
convISO = ’ISO 19115’
purpRP = ’Responsible Party Description’
purpCitation = ’Citation Description’

! Add CIM Attribute package to Components
! convention = ’CIM 1.0’
! purpose = ’Model Component Simulation Description’
call ESMF_AttributeAdd(cplcomp, convention=convCIM, &

purpose=purpComp, rc=rc)
call ESMF_AttributeAdd(gridcomp1, convention=convCIM, &

purpose=purpComp, rc=rc)
call ESMF_AttributeAdd(gridcomp2, convention=convCIM, &

purpose=purpComp, rc=rc)
call ESMF_AttributeAdd(gridcomp3, convention=convCIM, &

purpose=purpComp, rc=rc)
call ESMF_AttributeAdd(gridcomp4, convention=convCIM, &

purpose=purpComp, rc=rc)

! Add CIM Attribute package to Fields
! convention = ’CIM 1.0’

552

! purpose = ’Inputs Description’
call ESMF_AttributeAdd(DMS_emi, convention=convCIM, pu rpose=purpField, &

rc=rc)
call ESMF_AttributeAdd(UM, convention=convCIM, purpose =purpField,rc=rc)
call ESMF_AttributeAdd(OH, convention=convCIM, purpose =purpField, rc=rc)
call ESMF_AttributeAdd(Orog, convention=convCIM, purpo se=purpField, rc=rc)
call ESMF_AttributeAdd(Ozone, convention=convCIM, purp ose=purpField, rc=rc)
call ESMF_AttributeAdd(SST, convention=convCIM, purpos e=purpField, rc=rc)
call ESMF_AttributeAdd(SO2, convention=convCIM, purpos e=purpField, rc=rc)
call ESMF_AttributeAdd(NOx, convention=convCIM, purpos e=purpField, rc=rc)

The standard Attribute package currently supplied by ESMF for a CIM Component contains several Attributes,
grouped into sub-packages. These Attributes conform to theCIM convention as defined by Metafor and their val-
ues are set individually.

!
! Top-level model component attributes, set on coupler
!
call ESMF_AttributeSet(cplcomp, ’ShortName’, ’HiGEM’, &

convention=convCIM, purpose=purpComp, rc=rc)
call ESMF_AttributeSet(cplcomp, ’LongName’, &

’UK High Resolution Global Environment Model’, &
convention=convCIM, purpose=purpComp, rc=rc)

call ESMF_AttributeSet(cplcomp, ’Description’, &
’HiGEM brings together expertise from NERC, the UK academic ’ // &
’community and the Met Office in a concerted UK effort to ’ // &
’develop coupled climate models with increased horizontal ’ // &
’resolutions. Increasing the horizontal resolution of cou pled ’ // &
’climate models will allow us to capture climate processes a nd ’ // &
’weather systems in much greater detail.’, &
convention=convCIM, purpose=purpComp, rc=rc)

call ESMF_AttributeSet(cplcomp, ’ReleaseDate’, &
’2009-01-01T00:00:00Z’, &

convention=convCIM, purpose=purpComp, rc=rc)
call ESMF_AttributeSet(cplcomp, ’ModelType’, &

’AerosolEmissionAndConc’, convention=convCIM, purpose =purpComp, rc=rc)
call ESMF_AttributeSet(cplcomp, ’URL’, &

’www.nerc.ac.uk’, convention=convCIM, purpose=purpCom p, rc=rc)

! Simulation run attributes
call ESMF_AttributeSet(cplcomp, ’SimulationShortName’ , &

’ESMF_ESM1’, &
convention=convCIM, purpose=purpComp, rc=rc)

call ESMF_AttributeSet(cplcomp, ’SimulationLongName’, &
’Earth System Modeling Framework Earth System Model 1.0’, &
convention=convCIM, purpose=purpComp, rc=rc)

call ESMF_AttributeSet(cplcomp, ’SimulationRationale’ , &
’ESMF ESM1 simulation run in repsect to CMIP5 core experimen t 1.1 (Decadal)’, &

convention=convCIM, purpose=purpComp, rc=rc)
call ESMF_AttributeSet(cplcomp, ’SimulationStartDate’ , &

’1960-01-01T00:00:00Z’, &
convention=convCIM, purpose=purpComp, rc=rc)

call ESMF_AttributeSet(cplcomp, ’SimulationDuration’, &
’P10Y’, &

convention=convCIM, purpose=purpComp, rc=rc)

553

! Document genealogy
call ESMF_AttributeSet(cplcomp, ’PreviousVersion’, &

’HadGEM1 Atmosphere’, &
convention=convCIM, purpose=purpComp, rc=rc)

call ESMF_AttributeSet(cplcomp, ’PreviousVersionDescr iption’, &
’Horizontal resolution increased to 1.25 x 0.83 degrees;&# 13; ’ // &
’Timestep reduced from 30 minutes to 20 minutes; ’ // &
’Magnitude of polar filtering in the advection scheme reduc ed; ’ // &
’Vertical velocity threshold at which targeted moisture di ffusion ’ // &
’is triggered was increased from 0.1m/s to 0.4m/s; ’ // &
’Snow-free sea-ice albedo reduced from 0.61 to 0.57; ’ // &
’Total ocean current included in the calculation of surface ’ // &
’fluxes of heat, moisture, and momentum.’, &
convention=convCIM, purpose=purpComp, rc=rc)

! Platform description attributes
call ESMF_AttributeSet(cplcomp, ’CompilerName’, &

’Pathscale’, &
convention=convCIM, purpose=purpPlatform, rc=rc)

call ESMF_AttributeSet(cplcomp, ’CompilerVersion’, &
’3.0’, &

convention=convCIM, purpose=purpPlatform, rc=rc)
call ESMF_AttributeSet(cplcomp, ’MachineName’, &

’HECToR’, &
convention=convCIM, purpose=purpPlatform, rc=rc)

call ESMF_AttributeSet(cplcomp, ’MachineDescription’, &
’HECToR (Phase 2a) is currently an integrated system known ’ // &
’as Rainier, which includes a scalar MPP XT4 system, a vector ’ // &
’system known as BlackWidow, and storage systems.’, &
convention=convCIM, purpose=purpPlatform, rc=rc)

call ESMF_AttributeSet(cplcomp, ’MachineSystem’, &
’Parallel’, &

convention=convCIM, purpose=purpPlatform, rc=rc)
call ESMF_AttributeSet(cplcomp, ’MachineOperatingSyst em’, &

’Unicos’, &
convention=convCIM, purpose=purpPlatform, rc=rc)

call ESMF_AttributeSet(cplcomp, ’MachineVendor’, &
’Cray Inc’, &

convention=convCIM, purpose=purpPlatform, rc=rc)
call ESMF_AttributeSet(cplcomp, ’MachineInterconnectT ype’, &

’Cray Interconnect’, &
convention=convCIM, purpose=purpPlatform, rc=rc)

call ESMF_AttributeSet(cplcomp, ’MachineMaximumProces sors’, &
’22656’, &

convention=convCIM, purpose=purpPlatform, rc=rc)
call ESMF_AttributeSet(cplcomp, ’MachineCoresPerProce ssor’, &

’4’, &
convention=convCIM, purpose=purpPlatform, rc=rc)

call ESMF_AttributeSet(cplcomp, ’MachineProcessorType ’, &
’AMD X86_64’, &

convention=convCIM, purpose=purpPlatform, rc=rc)

! Responsible party attributes (for Principal Investigato r)
call ESMF_AttributeSet(cplcomp, ’Name’, &

554

’Gerard Devine’, &
convention=convISO, purpose=purpRP, rc=rc)

call ESMF_AttributeSet(cplcomp, ’PhysicalAddress’, &
’Department of Meteorology University of Reading Earley Ga te, Reading Devine’, &

convention=convISO, purpose=purpRP, rc=rc)
call ESMF_AttributeSet(cplcomp, ’EmailAddress’, &

’g.m.devine@reading.ac.uk’, &
convention=convISO, purpose=purpRP, rc=rc)

call ESMF_AttributeSet(cplcomp, ’ResponsiblePartyRole ’, &
’PI’, &

convention=convISO, purpose=purpRP, rc=rc)
call ESMF_AttributeSet(cplcomp, ’URL’, &

’www.epcc.ed.ac.uk’, &
convention=convISO, purpose=purpRP, rc=rc)

! Citation attributes
call ESMF_AttributeSet(cplcomp, ’ShortTitle’, &

’Shaffrey_2009’, &
convention=convISO, purpose=purpCitation, rc=rc)

call ESMF_AttributeSet(cplcomp, ’LongTitle’, &
’Shaffrey, L.C.; Norton, W.A.; Vidale, P.L.; Demory, M.E.; ’ // &
’Donners, J.; Cole, J.W.; Wilson, S.S.; Slingo, J.M.; ’ // &
’Steenman-Clark, L.; Stevens, I.; Stevens, D.P.; Roberts, M.J.; ’ // &
’Clayton, A.; Johns, T.C.; Martin, G.M.; Harle, J.D.; New, A .L.; ’ // &
’Jrrar, A.; Connolley, W.M.; King, J.C.; Woodage, J.; Sling o, A.; ’ // &
’Clark, D.B.; Davies, T.M.; Iwi, A.M.. 2009 UK-HiGEM: ’ // &
’The New U.K. High Resolution Global Environment Model - Mod el ’ // &
’description and basic evaluation. Journal of Climate, 22 (8). ’ // &
’1861-1896.’, &

convention=convISO, purpose=purpCitation, rc=rc)
call ESMF_AttributeSet(cplcomp, ’Date’, &

’2009-03-05’, &
convention=convISO, purpose=purpCitation, rc=rc)

call ESMF_AttributeSet(cplcomp, ’PresentationForm’, &
’Online Refereed’, &

convention=convISO, purpose=purpCitation, rc=rc)
call ESMF_AttributeSet(cplcomp, ’DOI’, &

’doi:10.1175/2008JCLI2508.1’, &
convention=convISO, purpose=purpCitation, rc=rc)

call ESMF_AttributeSet(cplcomp, ’URL’, &
’http://www.ecmwf.int/’, &

convention=convISO, purpose=purpCitation, rc=rc)

!
! Child component attributes, set on gridcomp1, child of cpl comp
!
call ESMF_AttributeSet(gridcomp1, ’ShortName’, ’HiGEM_ Atmos’, &

convention=convCIM, purpose=purpComp, rc=rc)
call ESMF_AttributeSet(gridcomp1, ’LongName’, &

’Atmosphere component of the HiGEM model’, &
convention=convCIM, purpose=purpComp, rc=rc)

call ESMF_AttributeSet(gridcomp1, ’ReleaseDate’, &
’2009-12-31T23:59:59Z’, &

convention=convCIM, purpose=purpComp, rc=rc)
call ESMF_AttributeSet(gridcomp1, ’ModelType’, &

555

’CloudSimulator’, convention=convCIM, purpose=purpCom p, rc=rc)

! Responsible party attributes (for Author)
call ESMF_AttributeSet(gridcomp1, ’Name’, &

’John Doe’, &
convention=convISO, purpose=purpRP, rc=rc)

call ESMF_AttributeSet(gridcomp1, ’PhysicalAddress’, &
’Department of Meteorology University of ABC’, &

convention=convISO, purpose=purpRP, rc=rc)
call ESMF_AttributeSet(gridcomp1, ’EmailAddress’, &

’john.doe@uabc.edu’, &
convention=convISO, purpose=purpRP, rc=rc)

call ESMF_AttributeSet(gridcomp1, ’ResponsiblePartyRo le’, &
’Author’, &

convention=convISO, purpose=purpRP, rc=rc)

!
! Child component attributes, set on gridcomp3, child of gri dcomp1
!
call ESMF_AttributeSet(gridcomp3, ’ShortName’, &

’HiGEM AtmosDynCore’, &
convention=convCIM, purpose=purpComp, rc=rc)

call ESMF_AttributeSet(gridcomp3, ’LongName’, &
’Dynamical core of HiGEM_Atmos’, &

convention=convCIM, purpose=purpComp, rc=rc)
call ESMF_AttributeSet(gridcomp3, ’ReleaseDate’, &

’2009-10-31T23:59:59Z’, &
convention=convCIM, purpose=purpComp, rc=rc)

call ESMF_AttributeSet(gridcomp3, ’ModelType’, &
’AtmosDynamicalCore’, convention=convCIM, purpose=pur pComp, rc=rc)

! Responsible party attributes (for Contact)
call ESMF_AttributeSet(gridcomp3, ’Name’, &

’Jane Doe’, &
convention=convISO, purpose=purpRP, rc=rc)

call ESMF_AttributeSet(gridcomp3, ’PhysicalAddress’, &
’Department of Meteorology University of DEF’, &

convention=convISO, purpose=purpRP, rc=rc)
call ESMF_AttributeSet(gridcomp3, ’EmailAddress’, &

’jane.doe@udef.edu’, &
convention=convISO, purpose=purpRP, rc=rc)

call ESMF_AttributeSet(gridcomp3, ’ResponsiblePartyRo le’, &
’Contact’, &

convention=convISO, purpose=purpRP, rc=rc)

!
! Child component attributes, set on gridcomp2, child of cpl comp
!
call ESMF_AttributeSet(gridcomp2, ’ShortName’, ’HiGEM_ AtmosChem’, &

convention=convCIM, purpose=purpComp, rc=rc)
call ESMF_AttributeSet(gridcomp2, ’LongName’, &

’Atmospheric chemistry component of HiGEM’, &
convention=convCIM, purpose=purpComp, rc=rc)

call ESMF_AttributeSet(gridcomp2, ’ReleaseDate’, &
’2009-05-31T23:59:59Z’, &

556

convention=convCIM, purpose=purpComp, rc=rc)
call ESMF_AttributeSet(gridcomp2, ’ModelType’, &

’AtmosphericChemistry’, convention=convCIM, purpose=p urpComp, rc=rc)

! Responsible party attributes (for Center)
call ESMF_AttributeSet(gridcomp2, ’Name’, &

’GHI’, &
convention=convISO, purpose=purpRP, rc=rc)

call ESMF_AttributeSet(gridcomp2, ’PhysicalAddress’, &
’Department of Meteorology University of GHI’, &

convention=convISO, purpose=purpRP, rc=rc)
call ESMF_AttributeSet(gridcomp2, ’EmailAddress’, &

’info@ughi.edu’, &
convention=convISO, purpose=purpRP, rc=rc)

call ESMF_AttributeSet(gridcomp2, ’ResponsiblePartyRo le’, &
’Center’, &

convention=convISO, purpose=purpRP, rc=rc)

!
! Child component attributes, set on gridcomp4, child of gri dcomp2
!
call ESMF_AttributeSet(gridcomp4, ’ShortName’, &

’POP2’, &
convention=convCIM, purpose=purpComp, rc=rc)

call ESMF_AttributeSet(gridcomp4, ’LongName’, &
’Parallel Ocean Program’, &

convention=convCIM, purpose=purpComp, rc=rc)
call ESMF_AttributeSet(gridcomp4, ’ReleaseDate’, &

’2010-06-10T00:00:00Z’, &
convention=convCIM, purpose=purpComp, rc=rc)

call ESMF_AttributeSet(gridcomp4, ’ModelType’, &
’Ocean’, convention=convCIM, purpose=purpComp, rc=rc)

! Responsible party attributes (for Funder)
call ESMF_AttributeSet(gridcomp4, ’Name’, &

’Sally Doe’, &
convention=convISO, purpose=purpRP, rc=rc)

call ESMF_AttributeSet(gridcomp4, ’PhysicalAddress’, &
’Department of Oceanography University of DEF’, &

convention=convISO, purpose=purpRP, rc=rc)
call ESMF_AttributeSet(gridcomp4, ’EmailAddress’, &

’sally.doe@udef.edu’, &
convention=convISO, purpose=purpRP, rc=rc)

call ESMF_AttributeSet(gridcomp4, ’ResponsiblePartyRo le’, &
’Funder’, &

convention=convISO, purpose=purpRP, rc=rc)

The standard Attribute package currently supplied by ESMF for CIM Fields contains a standard CF-Extended package
nested within it.

! DMS_emi CF-Extended Attributes
call ESMF_AttributeSet(DMS_emi, ’ShortName’, ’DMS_emi’ , &

convention=convCIM, purpose=purpField, rc=rc)
call ESMF_AttributeSet(DMS_emi, ’StandardName’, ’DMS_e missions’, &

557

convention=convCIM, purpose=purpField, rc=rc)
call ESMF_AttributeSet(DMS_emi, ’LongName’, ’DMS emissi ons’, &

convention=convCIM, purpose=purpField, rc=rc)
call ESMF_AttributeSet(DMS_emi, ’Units’, ’unknown’, &

convention=convCIM, purpose=purpField, rc=rc)
! DMS_emi CIM Attributes
call ESMF_AttributeSet(DMS_emi, ’CouplingPurpose’, &

’boundaryCondition’, &
convention=convCIM, purpose=purpField, rc=rc)

call ESMF_AttributeSet(DMS_emi, ’CouplingSource’, &
’DMS_emi’, &

convention=convCIM, purpose=purpField, rc=rc)
call ESMF_AttributeSet(DMS_emi, ’CouplingTarget’, &

’HiGEM_AtmosChem’, &
convention=convCIM, purpose=purpField, rc=rc)

call ESMF_AttributeSet(DMS_emi, ’SpatialRegriddingMet hod’, &
’Conservative-First-Order’, &

convention=convCIM, purpose=purpField, rc=rc)
call ESMF_AttributeSet(DMS_emi, ’SpatialRegriddingDim ension’, &

’1D’, &
convention=convCIM, purpose=purpField, rc=rc)

call ESMF_AttributeSet(DMS_emi, ’Frequency’, ’15 minute s’, &
convention=convCIM, purpose=purpField, rc=rc)

call ESMF_AttributeSet(DMS_emi, ’TimeTransformationTy pe’, &
’TimeAverage’, &

convention=convCIM, purpose=purpField, rc=rc)

! UM CF-Extended Attributes
call ESMF_AttributeSet(UM, ’ShortName’, ’UM_Initial_19 60’, &

convention=convCIM, purpose=purpField, rc=rc)
! UM CIM Attributes
call ESMF_AttributeSet(UM, ’CouplingPurpose’, &

’initialCondition’, &
convention=convCIM, purpose=purpField, rc=rc)

call ESMF_AttributeSet(UM, ’CouplingSource’, &
’Ocean Biogeo Chemistry’, &

convention=convCIM, purpose=purpField, rc=rc)
call ESMF_AttributeSet(UM, ’CouplingTarget’, &

’HiGEM_AtmosChem’, &
convention=convCIM, purpose=purpField, rc=rc)

call ESMF_AttributeSet(UM, ’TimeTransformationType’, ’ Exact’, &
convention=convCIM, purpose=purpField, rc=rc)

! OH CF-Extended Attributes
call ESMF_AttributeSet(OH, ’ShortName’, ’OH_Conc_1900’ , &

convention=convCIM, purpose=purpField, rc=rc)
call ESMF_AttributeSet(OH, ’StandardName’, &

’OH_Concentrations’, &
convention=convCIM, purpose=purpField, rc=rc)

call ESMF_AttributeSet(OH, ’LongName’, &
’seasonal_oxidant_conc’, &

convention=convCIM, purpose=purpField, rc=rc)
call ESMF_AttributeSet(OH, ’Units’, ’unknown’, &

convention=convCIM, purpose=purpField, rc=rc)
! OH CIM Attributes

558

call ESMF_AttributeSet(OH, ’CouplingPurpose’, ’boundar yCondition’, &
convention=convCIM, purpose=purpField, rc=rc)

call ESMF_AttributeSet(OH, ’CouplingSource’, &
’Land_Emissions’, &

convention=convCIM, purpose=purpField, rc=rc)
call ESMF_AttributeSet(OH, ’CouplingTarget’, &

’HiGEM_AtmosChem’, &
convention=convCIM, purpose=purpField, rc=rc)

call ESMF_AttributeSet(OH, ’SpatialRegriddingMethod’, &
’Conservative-First-Order’, &

convention=convCIM, purpose=purpField, rc=rc)
call ESMF_AttributeSet(OH, ’SpatialRegriddingDimensio n’, &

’2D’, &
convention=convCIM, purpose=purpField, rc=rc)

call ESMF_AttributeSet(OH, ’Frequency’, ’15 minutes’, &
convention=convCIM, purpose=purpField, rc=rc)

call ESMF_AttributeSet(OH, ’TimeTransformationType’, &
’TimeInterpolation’, &

convention=convCIM, purpose=purpField, rc=rc)

! Orog CF-Extended Attributes
call ESMF_AttributeSet(Orog, ’ShortName’, ’UM_Orog_n32 0’, &

convention=convCIM, purpose=purpField, rc=rc)
call ESMF_AttributeSet(Orog, ’StandardName’, ’Height’, &

convention=convCIM, purpose=purpField, rc=rc)
call ESMF_AttributeSet(Orog, ’LongName’, ’Orography’, &

convention=convCIM, purpose=purpField, rc=rc)
call ESMF_AttributeSet(Orog, ’Units’, ’unknown’, &

convention=convCIM, purpose=purpField, rc=rc)
! Orog CIM Attributes
call ESMF_AttributeSet(Orog, ’CouplingPurpose’, ’initi alCondition’, &

convention=convCIM, purpose=purpField, rc=rc)
call ESMF_AttributeSet(Orog, ’CouplingSource’, &

’Land_Emissions’, &
convention=convCIM, purpose=purpField, rc=rc)

call ESMF_AttributeSet(Orog, ’CouplingTarget’, &
’HiGEM_Atmos’, &

convention=convCIM, purpose=purpField, rc=rc)
call ESMF_AttributeSet(Orog, ’TimeTransformationType’ , ’Exact’, &

convention=convCIM, purpose=purpField, rc=rc)

! Ozone CF-Extended Attributes
call ESMF_AttributeSet(Ozone, ’ShortName’, ’Global_O3_ mon’, &

convention=convCIM, purpose=purpField, rc=rc)
call ESMF_AttributeSet(Ozone, ’StandardName’, ’Ozone’, &

convention=convCIM, purpose=purpField, rc=rc)
call ESMF_AttributeSet(Ozone, ’LongName’, ’Ozone’, &

convention=convCIM, purpose=purpField, rc=rc)
call ESMF_AttributeSet(Ozone, ’Units’, ’unknown’, &

convention=convCIM, purpose=purpField, rc=rc)
! Ozone CIM Attributes
call ESMF_AttributeSet(Ozone, ’CouplingPurpose’, ’boun daryCondition’, &

convention=convCIM, purpose=purpField, rc=rc)
call ESMF_AttributeSet(Ozone, ’CouplingSource’, &

’Global_O3_mon’, &

559

convention=convCIM, purpose=purpField, rc=rc)
call ESMF_AttributeSet(Ozone, ’CouplingTarget’, &

’HiGEM_Atmos’, &
convention=convCIM, purpose=purpField, rc=rc)

call ESMF_AttributeSet(Ozone, ’SpatialRegriddingMetho d’, &
’Conservative-First-Order’, &

convention=convCIM, purpose=purpField, rc=rc)
call ESMF_AttributeSet(Ozone, ’SpatialRegriddingDimen sion’, &

’3D’, &
convention=convCIM, purpose=purpField, rc=rc)

call ESMF_AttributeSet(Ozone, ’Frequency’, ’15 minutes’ , &
convention=convCIM, purpose=purpField, rc=rc)

call ESMF_AttributeSet(Ozone, ’TimeTransformationType ’, &
’TimeInterpolation’, &

convention=convCIM, purpose=purpField, rc=rc)

! SST CF-Extended Attributes
call ESMF_AttributeSet(SST, ’ShortName’, ’SST’, &

convention=convCIM, purpose=purpField, rc=rc)
! SST CIM Attributes
call ESMF_AttributeSet(SST, ’CouplingPurpose’, ’initia lCondition’, &

convention=convCIM, purpose=purpField, rc=rc)
call ESMF_AttributeSet(SST, ’CouplingSource’, &

’seasonal_oxidant_conc’, &
convention=convCIM, purpose=purpField, rc=rc)

call ESMF_AttributeSet(SST, ’CouplingTarget’, &
’HiGEM_Atmos’, &

convention=convCIM, purpose=purpField, rc=rc)
call ESMF_AttributeSet(SST, ’SpatialRegriddingMethod’ , &

’Conservative-First-Order’, &
convention=convCIM, purpose=purpField, rc=rc)

call ESMF_AttributeSet(SST, ’SpatialRegriddingDimensi on’, &
’2D’, &

convention=convCIM, purpose=purpField, rc=rc)
call ESMF_AttributeSet(SST, ’Frequency’, ’15 minutes’, &

convention=convCIM, purpose=purpField, rc=rc)
call ESMF_AttributeSet(SST, ’TimeTransformationType’, &

’TimeAverage’, &
convention=convCIM, purpose=purpField, rc=rc)

! SO2 CF-Extended Attributes
call ESMF_AttributeSet(SO2, ’ShortName’, ’SO2’, &

convention=convCIM, purpose=purpField, rc=rc)
! SO2 CIM Attributes
call ESMF_AttributeSet(SO2, ’CouplingPurpose’, ’bounda ryCondition’, &

convention=convCIM, purpose=purpField, rc=rc)
call ESMF_AttributeSet(SO2, ’CouplingSource’, &

’POP2 Ocean’, &
convention=convCIM, purpose=purpField, rc=rc)

call ESMF_AttributeSet(SO2, ’CouplingTarget’, &
’HiGEM_Atmos’, &

convention=convCIM, purpose=purpField, rc=rc)
call ESMF_AttributeSet(SO2, ’SpatialRegriddingMethod’ , &

’Cubic’, &
convention=convCIM, purpose=purpField, rc=rc)

560

call ESMF_AttributeSet(SO2, ’SpatialRegriddingDimensi on’, &
’3D’, &

convention=convCIM, purpose=purpField, rc=rc)
call ESMF_AttributeSet(SO2, ’Frequency’, ’10 minutes’, &

convention=convCIM, purpose=purpField, rc=rc)
call ESMF_AttributeSet(SO2, ’TimeTransformationType’, &

’Exact’, &
convention=convCIM, purpose=purpField, rc=rc)

! NOx CF-Extended Attributes
call ESMF_AttributeSet(NOx, ’ShortName’, ’NOx’, &

convention=convCIM, purpose=purpField, rc=rc)
! NOx CIM Attributes
call ESMF_AttributeSet(NOx, ’CouplingPurpose’, ’initia lCondition’, &

convention=convCIM, purpose=purpField, rc=rc)
call ESMF_AttributeSet(NOx, ’CouplingSource’, &

’POP2 Ocean’, &
convention=convCIM, purpose=purpField, rc=rc)

call ESMF_AttributeSet(NOx, ’CouplingTarget’, &
’HiGEM_Atmos’, &

convention=convCIM, purpose=purpField, rc=rc)
call ESMF_AttributeSet(NOx, ’SpatialRegriddingMethod’ , &

’Linear’, &
convention=convCIM, purpose=purpField, rc=rc)

call ESMF_AttributeSet(NOx, ’SpatialRegriddingDimensi on’, &
’1D’, &

convention=convCIM, purpose=purpField, rc=rc)
call ESMF_AttributeSet(NOx, ’Frequency’, ’5 minutes’, &

convention=convCIM, purpose=purpField, rc=rc)
call ESMF_AttributeSet(NOx, ’TimeTransformationType’, &

’TimeAccumulation’, &
convention=convCIM, purpose=purpField, rc=rc)

Adding the Fields to the FieldBundles will automatically link the Attribute hierarchies. The same type of link will be
generated when adding a FieldBundle to a State.

! Add two Fields to the first FieldBundle,
! which in turn is added to the first State
call ESMF_FieldBundleAdd(fbundle1, DMS_emi, rc=rc)
call ESMF_FieldBundleAdd(fbundle1, UM, rc=rc)
call ESMF_StateAdd(exportState1, fieldbundle=fbundle1 , rc=rc)

! Add two Fields to the second FieldBundle,
! which in turn is added to the second State
call ESMF_FieldBundleAdd(fbundle2, OH, rc=rc)
call ESMF_FieldBundleAdd(fbundle2, Orog, rc=rc)
call ESMF_StateAdd(exportState2, fieldbundle=fbundle2 , rc=rc)

! Add two Fields directly to the third State,
! without a FieldBundle
call ESMF_StateAdd(exportState3, field=Ozone, rc=rc)
call ESMF_StateAdd(exportState3, field=SST, rc=rc)

! Add the remaining two Fields directly to the fourth State,
! without a FieldBundle

561

call ESMF_StateAdd(exportState4, field=SO2, rc=rc)
call ESMF_StateAdd(exportState4, field=NOx, rc=rc)

The Attribute link between a State and the Component, and between Components, must be set manually.

! Link States to the gridded Components
call ESMF_AttributeLink(gridcomp1, exportState1, rc=rc)
call ESMF_AttributeLink(gridcomp2, exportState2, rc=rc)
call ESMF_AttributeLink(gridcomp3, exportState3, rc=rc)
call ESMF_AttributeLink(gridcomp4, exportState4, rc=rc)

! Gridded Component 1 and gridded Component 2 are children of the coupler
call ESMF_AttributeLink(cplcomp, gridcomp1, rc=rc)
call ESMF_AttributeLink(cplcomp, gridcomp2, rc=rc)
! Gridded Component 3 is a child of gridded Component 1 (grand child of
! the coupler), and Gridded Component 4 is a child of gridded
! Component 2 (grandchild of the coupler)
call ESMF_AttributeLink(gridcomp1, gridcomp3, rc=rc)
call ESMF_AttributeLink(gridcomp2, gridcomp4, rc=rc)

Write the entire CIM Attribute hierarchy, beginning at the coupler Component (the top), to an XML file format-
ted to conform to CIM specifications. The CIM output tree structure differs from the internal Attribute hierarchy
in that it has all the attributes of the fields within its top-level <modelComponent> record. The filename used,
coupler_component.xml, is derived from the name of the coupler Component, given as an input argument in the
ESMF_CplCompCreate() call above. The file is written to the examples execution directory.

call ESMF_AttributeWrite(cplcomp, convCIM, purpComp, &
attwriteflag=ESMF_ATTWRITE_XML,rc=rc)

34.5.4 Read an XML file-based ESG Attribute package for a Gridded Component

This example shows how to read an ESG Attribute Package for a Gridded Component from an XML file. The XML
file contains Attribute values filled-in by the user. The standard ESG Component Attribute Package is supplied with
ESMF and is defined in an XSD file, which is used to validate the XML file. See

ESMF_DIR/src/Superstructure/Component/etc/esmf_gridcomp.xml (Attribute Package values) and

ESMF_DIR/src/Superstructure/Component/etc/esmf_comp.xsd (Attribute Package definition).

! ESMF Framework module
use ESMF_Mod
implicit none

! local variables
type(ESMF_GridComp) :: gridcomp
character(ESMF_MAXSTR) :: attrvalue
type(ESMF_VM) :: vm
integer :: rc, petCount, localPet

! initialize ESMF
call ESMF_Initialize(vm=vm, defaultlogfilename="AttRe adGridCompEx.Log", &

defaultlogtype=ESMF_LOG_MULTI, rc=rc)

562

! get the vm
call ESMF_VMGet(vm, petCount=petCount, localPet=localP et, rc=rc)

if (petCount<4) then
gridcomp = ESMF_GridCompCreate(name="gridcomp", &

petList=(/0/), rc=rc)
else

gridcomp = ESMF_GridCompCreate(name="gridcomp", &
petList=(/0,1,2,3/), rc=rc)

endif

! Read an XML file to populate the ESG Attribute package of a Gr idComp.
! The file is validated against an internal, ESMF-supplied X SD file
! defining the standard ESG Component Attribute package (se e file
! pathnames above).
call ESMF_AttributeRead(comp=gridcomp, fileName="esmf _gridcomp.xml", rc=rc)

! Get ESG "ComponentShortName" Attribute from a GridComp
call ESMF_AttributeGet(gridcomp, name=’ComponentShort Name’, &

value=attrValue, &
convention=’ESG’, purpose=’General’, rc=rc)

! Get ESG "ComponentLongName" Attribute from a GridComp
call ESMF_AttributeGet(gridcomp, name=’ComponentLongN ame’, &

value=attrValue, &
convention=’ESG’, purpose=’General’, rc=rc)

! Get ESG "Agency" Attribute from a GridComp
call ESMF_AttributeGet(gridcomp, name=’Agency’, value= attrValue, &

convention=’ESG’, purpose=’General’, rc=rc)

! Get ESG "Institution" Attribute from a GridComp
call ESMF_AttributeGet(gridcomp, name=’Institution’, v alue=attrValue, &

convention=’ESG’, purpose=’General’, rc=rc)

! Get ESG "Version" Attribute from a GridComp
call ESMF_AttributeGet(gridcomp, name=’Version’, value =attrValue, &

convention=’ESG’, purpose=’General’, rc=rc)

! Get ESG "Author" Attribute from a GridComp
call ESMF_AttributeGet(gridcomp, name=’Author’, value= attrValue, &

convention=’ESG’, purpose=’General’, rc=rc)

! Get ESG "Discipline" Attribute from a GridComp
call ESMF_AttributeGet(gridcomp, name=’Discipline’, va lue=attrValue, &

convention=’ESG’, purpose=’General’, rc=rc)

563

! Get ESG "PhysicalDomain" Attribute from a GridComp
call ESMF_AttributeGet(gridcomp, name=’PhysicalDomain ’, value=attrValue, &

convention=’ESG’, purpose=’General’, rc=rc)

! Get ESG "CodingLanguage" Attribute from a GridComp Test
call ESMF_AttributeGet(gridcomp, name=’CodingLanguage ’, value=attrValue, &

convention=’ESG’, purpose=’General’, rc=rc)

! Get ESG "ModelComponentFramework" Attribute from a GridC omp
call ESMF_AttributeGet(gridcomp, name=’ModelComponent Framework’, &

value=attrValue, &
convention=’ESG’, purpose=’General’, rc=rc)

call ESMF_GridCompDestroy(gridcomp, rc=rc)

! finalize ESMF framework
call ESMF_Finalize(rc=rc)

34.5.5 Read an XML file-based CF Attribute package for a Field

This example shows how to read a CF Attribute Package for a Field from an XML file. The XML file contains Attribute
values filled-in by the user. The standard CF Attribute Package is supplied with ESMF and is defined in an XSD file,
which is used to validate the XML file. See

ESMF_DIR/src/Infrastructure/Field/etc/esmf_field.xml(Attribute Package values) and

ESMF_DIR/src/Infrastructure/Field/etc/esmf_field.xsd(Attribute Package definition).

! ESMF Framework module
use ESMF_Mod
implicit none

! local variables
type(ESMF_Field) :: field
character(ESMF_MAXSTR) :: attrvalue
type(ESMF_VM) :: vm
integer :: rc

! initialize ESMF
call ESMF_Initialize(vm=vm, defaultlogfilename="AttRe adFieldEx.Log", &

defaultlogtype=ESMF_LOG_MULTI, rc=rc)

! Create a field
field = ESMF_FieldCreateEmpty(name="field", rc=rc)

! Read an XML file to populate the CF Attribute package of a Fie ld.
! The file is validated against an internal, ESMF-supplied X SD file
! defining the standard CF Attribute package (see file pathn ames above).
call ESMF_AttributeRead(field=field, fileName="esmf_f ield.xml", rc=rc)

564

! Get CF "ShortName" Attribute from a Field
call ESMF_AttributeGet(field, name=’ShortName’, value= attrValue, &

convention=’CF’, purpose=’General’, rc=rc)

! Get CF "StandardName" Attribute from a Field
call ESMF_AttributeGet(field, name=’StandardName’, &

value=attrValue, &
convention=’CF’, purpose=’Extended’, rc=rc)

! Get CF "LongName" Attribute from a Field
call ESMF_AttributeGet(field, name=’LongName’, value=a ttrValue, &

convention=’CF’, purpose=’General’, rc=rc)

! Get CF "Units" Attribute from a Field
call ESMF_AttributeGet(field, name=’Units’, value=attr Value, &

convention=’CF’, purpose=’General’, rc=rc)

call ESMF_FieldDestroy(field, rc=rc)

! finalize ESMF framework
call ESMF_Finalize(rc=rc)

34.5.6 Read an XML file-based GridSpec Attribute package fora Grid

This example shows how to read a GridSpec Attribute Package from an XML file. The XML file contains Attribute
values filled-in by the user. The standard GridSpec Attribute Package is supplied with ESMF and is defined in an XSD
file, which is used to validate the XML file. See

ESMF_DIR/src/Infrastructure/Grid/etc/esmf_grid.xml (Attribute Package values) and

ESMF_DIR/src/Infrastructure/Grid/etc/esmf_grid.xsd (Attribute Package definition)

! ESMF Framework module
use ESMF_Mod
implicit none

! local variables
type(ESMF_Grid) :: grid
character(ESMF_MAXSTR) :: attrvalue
type(ESMF_VM) :: vm
integer :: rc

! initialize ESMF
call ESMF_Initialize(vm=vm, defaultlogfilename="AttRe adGridEx.Log", &

defaultlogtype=ESMF_LOG_MULTI, rc=rc)

! Create a grid
grid = ESMF_GridCreateEmpty(rc=rc)

565

! Read an XML file to populate the GridSpec Attribute package of a Grid.
! The file is validated against an internal, ESMF-supplied X SD file
! defining the standard GridSpec Attribute package (see fil e pathnames
! above).
call ESMF_AttributeRead(grid=grid, fileName="esmf_gri d.xml", rc=rc)

! Get GridSpec "GridType" Attribute from a Grid
call ESMF_AttributeGet(grid, name=’GridType’, value=at trValue, &

convention=’GridSpec’, purpose=’General’, rc=rc)

! Get GridSpec "CongruentTiles" Attribute from a Grid
call ESMF_AttributeGet(grid, name=’CongruentTiles’, va lue=attrValue, &

convention=’GridSpec’, purpose=’General’, rc=rc)

! Get GridSpec "NumberOfGridTiles" Attribute from a Grid
call ESMF_AttributeGet(grid, name=’NumberOfGridTiles’ , value=attrValue, &

convention=’GridSpec’, purpose=’General’, rc=rc)

! Get GridSpec "DimensionOrder" Attribute from a Grid
call ESMF_AttributeGet(grid, name=’DimensionOrder’, va lue=attrValue, &

convention=’GridSpec’, purpose=’General’, rc=rc)

! Get GridSpec "DiscretizationType" Attribute from a Grid
call ESMF_AttributeGet(grid, name=’DiscretizationType ’, &

value=attrValue, &
convention=’GridSpec’, purpose=’General’, rc=rc)

! Get GridSpec "GeometryType" Attribute from a Grid
call ESMF_AttributeGet(grid, name=’GeometryType’, valu e=attrValue, &

convention=’GridSpec’, purpose=’General’, rc=rc)

! Get GridSpec "IsConformal" Attribute from a Grid
call ESMF_AttributeGet(grid, name=’IsConformal’, value =attrValue, &

convention=’GridSpec’, purpose=’General’, rc=rc)

! Get GridSpec "IsRegular" Attribute from a Grid
call ESMF_AttributeGet(grid, name=’IsRegular’, value=a ttrValue, &

convention=’GridSpec’, purpose=’General’, rc=rc)

! Get GridSpec "IsUniform" Attribute from a Grid
call ESMF_AttributeGet(grid, name=’IsUniform’, value=a ttrValue, &

convention=’GridSpec’, purpose=’General’, rc=rc)

! Get GridSpec "NorthPoleLocation" Attribute from a Grid
call ESMF_AttributeGet(grid, name=’NorthPoleLocation’ , &

value=attrValue, &
convention=’GridSpec’, purpose=’General’, rc=rc)

566

! Get GridSpec "NumberOfCells" Attribute from a Grid
call ESMF_AttributeGet(grid, name=’NumberOfCells’, val ue=attrValue, &

convention=’GridSpec’, purpose=’General’, rc=rc)

! Get GridSpec "NX" Attribute from a Grid
call ESMF_AttributeGet(grid, name=’NX’, value=attrValu e, &

convention=’GridSpec’, purpose=’General’, rc=rc)

! Get GridSpec "NY" Attribute from a Grid
call ESMF_AttributeGet(grid, name=’NY’, value=attrValu e, &

convention=’GridSpec’, purpose=’General’, rc=rc)

! Get GridSpec "HorizontalResolution" Attribute from a Gri d
call ESMF_AttributeGet(grid, name=’HorizontalResoluti on’, value=attrValue, &

convention=’GridSpec’, purpose=’General’, rc=rc)

call ESMF_GridDestroy(grid, rc=rc)

! finalize ESMF framework
call ESMF_Finalize(rc=rc)

34.5.7 Read and validate an XML file-based set of user-definedAttributes for a Coupler Component

This example shows how to read and validate, from an XML and XSD file, respectively, a set of user-defined custom
Attributes for a Coupler Component. See

ESMF_DIR/src/Superstructure/Component/etc/custom_cplcomp.xml (Attribute values) and

ESMF_DIR/src/Superstructure/Component/etc/custom_cplcomp.xsd (Attribute definitions)

! ESMF Framework module
use ESMF_Mod
implicit none

! local variables
type(ESMF_CplComp) :: cplcomp
character(ESMF_MAXSTR) :: attrvalue
type(ESMF_VM) :: vm
integer :: rc, petCount, localPet

! initialize ESMF
call ESMF_Initialize(vm=vm, defaultlogfilename="AttRe adCustCplCompEx.Log", &

defaultlogtype=ESMF_LOG_MULTI, rc=rc)

! get the vm
call ESMF_VMGet(vm, petCount=petCount, localPet=localP et, rc=rc)

567

if (petCount<4) then
cplcomp = ESMF_CplCompCreate(name="cplcomp", &

petList=(/0/), rc=rc)
else

cplcomp = ESMF_CplCompCreate(name="cplcomp", &
petList=(/0,1,2,3/), rc=rc)

endif

! Read an XML file to decorate a Coupler Component with custom ,
! user-defined attributes, and validate them against a corr esponding
! XSD schema file (see file pathnames above).
call ESMF_AttributeRead(comp=cplcomp, fileName="custo m_cplcomp.xml", &

schemaFileName="custom_cplcomp.xsd", rc=rc)

! Get custom "MyAttribute1" from CplComp
call ESMF_AttributeGet(cplcomp, name=’MyAttribute1’, v alue=attrValue, rc=rc)

! Get custom "MyAttribute2" from CplComp
call ESMF_AttributeGet(cplcomp, name=’MyAttribute2’, v alue=attrValue, rc=rc)

! Get custom "MyAttribute3" from CplComp
call ESMF_AttributeGet(cplcomp, name=’MyAttribute3’, v alue=attrValue, rc=rc)

! Get custom "MyAttribute4" from CplComp
call ESMF_AttributeGet(cplcomp, name=’MyAttribute4’, v alue=attrValue, rc=rc)

! Get custom "MyAttribute5" from CplComp
call ESMF_AttributeGet(cplcomp, name=’MyAttribute5’, v alue=attrValue, rc=rc)

call ESMF_CplCompDestroy(cplcomp, rc=rc)

! finalize ESMF framework
call ESMF_Finalize(rc=rc)

34.5.8 ESMF_AttributeUpdate - Attributes in a distributed environment

This advanced example illustrates the proper methods of Attribute manipulation in a distributed environment to ensure
consistency of metadata across the VM. This example is much more complicated than the previous two because we will
be following the flow of control of a typical model run with twogridded Components and one coupling Component.
We will start out in the application driver, declaring Components, States, and the routines used to initialize, run and
finalize the user’s model Components. Then we will follow thecontrol flow into the actual Component level through
initialize, run, and finalize examining how Attributes are used to organize the metadata.
This example follows a simple user model with two gridded Components and one coupling Component. The initialize
routines are used to set up the application data and the run routines are used to manipulate the data. Accordingly, most
of the Attribute manipulation will take place in the initialize phase of each of the three Components. The two gridded
Components will be running on exclusive pieces of the VM and the coupler Component will encompass the entire VM
so that it can handle the Attribute communications.

568

The control flow of this example will start in the applicationdriver, after which it will complete three cycles through
the three Components. The first cycle will be through the initialize routines, from the first gridded Component to the
second gridded Component to the coupler Component. The second cycle will go through the run routines, from the
first gridded Component to the coupler Component to the second Gridded component. The third cycle will be through
the finalize routines in the same order as the first cycle.
The first thing we must do is declare variables and initializeESMF in the application driver.

integer :: rc, finalrc, petCount, localPet
type(ESMF_VM) :: vm
type(ESMF_State) :: c1exp, c2imp
type(ESMF_GridComp) :: gridcomp1
type(ESMF_GridComp) :: gridcomp2
type(ESMF_CplComp) :: cplcomp
character(ESMF_MAXSTR) :: convESMF,purpGen

finalrc = ESMF_SUCCESS
call ESMF_Initialize(vm=vm, defaultlogfilename="Attri buteUpdateEx.Log", &

defaultlogtype=ESMF_LOG_MULTI, rc=rc)

call ESMF_VMGet(vm, petCount=petCount, localPet=localP et, rc=rc)
if (rc/=ESMF_SUCCESS) print * , "ERROR!"

Still in the application driver, we must now construct some ESMF objects, such as the gridded Components, the
coupler Component, and the States. This is also where it is determined which subsets of the PETs of the VM the
Components will be using to run their initialize, run, and finalize routines.

gridcomp1 = ESMF_GridCompCreate(name="gridcomp1", &
petList=(/0,1/), rc=rc)

gridcomp2 = ESMF_GridCompCreate(name="gridcomp2", &
petList=(/2,3/), rc=rc)

cplcomp = ESMF_CplCompCreate(name="cplcomp", &
petList=(/0,1,2,3/), rc=rc)

c1exp = ESMF_StateCreate("Comp1 exportState", &
ESMF_STATE_EXPORT, rc=rc)

c2imp = ESMF_StateCreate("Comp2 importState", &
ESMF_STATE_IMPORT, rc=rc)

Before the individual components are initialized, run, andfinalized Attributes should be set at the Component level.
Here we are going to use the ESG Attribute package on the first gridded Component. The Attribute package is added,
and then each of the Attributes is set. The Attribute hierarchy of the Component is then linked to the Attribute hierarchy
of the export State in a manual fashion.

convESMF = ’ESMF’
purpGen = ’General’

call ESMF_AttributeAdd(gridcomp1, convention=convESMF , purpose=purpGen, rc=rc)
call ESMF_AttributeSet(gridcomp1, ’Agency’, ’NASA’, &

convention=convESMF, purpose=purpGen, rc=rc)
call ESMF_AttributeSet(gridcomp1, ’Author’, ’Max Suarez ’, &

convention=convESMF, purpose=purpGen, rc=rc)
call ESMF_AttributeSet(gridcomp1, ’CodingLanguage’, &

’Fortran 90’, convention=convESMF, purpose=purpGen, rc= rc)
call ESMF_AttributeSet(gridcomp1, ’Discipline’, &

’Atmosphere’, convention=convESMF, purpose=purpGen, rc =rc)
call ESMF_AttributeSet(gridcomp1, ’ComponentLongName’ , &

569

’Goddard Earth Observing System Version 5 Finite Volume Dyn amical Core’, &
convention=convESMF, purpose=purpGen, rc=rc)

call ESMF_AttributeSet(gridcomp1, ’ModelComponentFram ework’, &
’ESMF’, &
convention=convESMF, purpose=purpGen, rc=rc)

call ESMF_AttributeSet(gridcomp1, ’ComponentShortName ’, ’GEOS-5 FV dynamical core’, &
convention=convESMF, purpose=purpGen, rc=rc)

call ESMF_AttributeSet(gridcomp1, ’PhysicalDomain’, &
’Earth system’, convention=convESMF, purpose=purpGen, r c=rc)

call ESMF_AttributeSet(gridcomp1, ’Version’, &
’GEOSagcm-EROS-beta7p12’, convention=convESMF, purpos e=purpGen, rc=rc)

call ESMF_AttributeLink(gridcomp1, c1exp, rc=rc)

Now the individual Components will be run. First we will initialize the two gridded Components, then we will
initialize the coupler Component. During each of these Component initialize routines Attribute packages will be
added, and the Attributes set. The Attribute hierarchies will also be linked. As the gridded Components will be
running on exclusive portions of the VM, the Attributes willneed to be made available across the VM using an
ESMF_StateReconcile() call in the coupler Component. The majority of the work with Attributes will take
place in this portion of the model run, as metadata rarely needs to be changed during run time.
What follows are the calls from the driver code that run the initialize, run, and finalize routines for each of the Com-
ponents. After these calls we will step through the first cycle as explained in the introduction, through the intialize
routines of gridded Component 1 to gridded Component 2 to thecoupler Component.

call ESMF_GridCompInitialize(gridcomp1, exportState=c 1exp, rc=rc)
call ESMF_GridCompInitialize(gridcomp2, importState=c 2imp, rc=rc)
call ESMF_CplCompInitialize(cplcomp, importState=c1ex p, &

exportState=c2imp, rc=rc)

call ESMF_GridCompRun(gridcomp1, exportState=c1exp, rc =rc)
call ESMF_CplCompRun(cplcomp, importState=c1exp, &

exportState=c2imp, rc=rc)
call ESMF_GridCompRun(gridcomp2, importState=c2imp, rc =rc)

call ESMF_GridCompFinalize(gridcomp1, exportState=c1e xp, rc=rc)
call ESMF_GridCompFinalize(gridcomp2, importState=c2i mp, rc=rc)
call ESMF_CplCompFinalize(cplcomp, importState=c1exp, &

exportState=c2imp, rc=rc)

In the first gridded Component initialize routine we need to create some Attribute packages and set all of the Attributes.
These Attributes will be attached to realistic Fields, containing a Grid, which are contained in a FieldBundle. The first
thing to do is declare variables and make the Grid.

type(ESMF_VM) :: vm
integer :: petCount, status, myPet
character(ESMF_MAXSTR) :: name1,name2,name3,name4,val ue1,value2, &

value3,value4,convESMF,purpGen,convCC
type(ESMF_ArraySpec) :: arrayspec
type(ESMF_Grid) :: grid
type(ESMF_Field) :: DPEDT,DTDT,DUDT,DVDT,PHIS,QTR,CNV ,CONVCPT, &

CONVKE,CONVPHI
type(ESMF_FieldBundle) :: fieldbundle
character(ESMF_MAXSTR),dimension(2) :: attrList

570

rc = ESMF_SUCCESS

call ESMF_GridCompGet(comp, vm=vm, rc=status)
if (status .ne. ESMF_SUCCESS) return
call ESMF_VMGet(vm, petCount=petCount, localPet=myPet, rc=status)
if (status .ne. ESMF_SUCCESS) return

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEK IND_R8, rank=2, rc=rc)
if (rc/=ESMF_SUCCESS) return
grid = ESMF_GridCreateShapeTile(minIndex=(/1,1/), maxI ndex=(/100,150/), &

regDecomp=(/1,petCount/), &
gridEdgeLWidth=(/0,0/), gridEdgeUWidth=(/0,0/), &
indexflag=ESMF_INDEX_GLOBAL, rc=rc)

if (rc/=ESMF_SUCCESS) return

At this point the Fields will need to have Attribute packagesattached to them, and the Attributes will be set with
appropriate values.

convCC = ’CustomConvention’
convESMF = ’ESMF’
purpGen = ’General’
name1 = ’ShortName’
name2 = ’StandardName’
name3 = ’LongName’
name4 = ’Units’

value1 = ’DPEDT’
value2 = ’tendency_of_air_pressure’
value3 = ’Edge pressure tendency’
value4 = ’Pa s-1’

DPEDT = ESMF_FieldCreate(grid, arrayspec=arrayspec, &
staggerloc=ESMF_STAGGERLOC_CENTER, rc=status)

call ESMF_AttributeAdd(DPEDT, convention=convESMF, pur pose=purpGen, &
rc=status)

call ESMF_AttributeSet(DPEDT, name1, value1, convention =convESMF, &
purpose=purpGen, rc=status)

call ESMF_AttributeSet(DPEDT, name2, value2, convention =convESMF, &
purpose=purpGen, rc=status)

call ESMF_AttributeSet(DPEDT, name3, value3, convention =convESMF, &
purpose=purpGen, rc=status)

call ESMF_AttributeSet(DPEDT, name4, value4, convention =convESMF, &
purpose=purpGen, rc=status)

if (status .ne. ESMF_SUCCESS) return

value1 = ’DTDT’
value2 = ’tendency_of_air_temperature’
value3 = ’Delta-p weighted temperature tendency’
value4 = ’Pa K s-1’

DTDT = ESMF_FieldCreate(grid, arrayspec=arrayspec, &
staggerloc=ESMF_STAGGERLOC_CENTER, rc=status)

call ESMF_AttributeAdd(DTDT, convention=convESMF, purp ose=purpGen, &
rc=status)

call ESMF_AttributeSet(DTDT, name1, value1, convention= convESMF, &

571

purpose=purpGen, rc=status)
call ESMF_AttributeSet(DTDT, name2, value2, convention= convESMF, &

purpose=purpGen, rc=status)
call ESMF_AttributeSet(DTDT, name3, value3, convention= convESMF, &

purpose=purpGen, rc=status)
call ESMF_AttributeSet(DTDT, name4, value4, convention= convESMF, &

purpose=purpGen, rc=status)
if (status .ne. ESMF_SUCCESS) return

value1 = ’DUDT’
value2 = ’tendency_of_eastward_wind’
value3 = ’Eastward wind tendency’
value4 = ’m s-2’

DUDT = ESMF_FieldCreate(grid, arrayspec=arrayspec, &
staggerloc=ESMF_STAGGERLOC_CENTER, rc=status)

call ESMF_AttributeAdd(DUDT, convention=convESMF, purp ose=purpGen, &
rc=status)

call ESMF_AttributeSet(DUDT, name1, value1, convention= convESMF, &
purpose=purpGen, rc=status)

call ESMF_AttributeSet(DUDT, name2, value2, convention= convESMF, &
purpose=purpGen, rc=status)

call ESMF_AttributeSet(DUDT, name3, value3, convention= convESMF, &
purpose=purpGen, rc=status)

call ESMF_AttributeSet(DUDT, name4, value4, convention= convESMF, &
purpose=purpGen, rc=status)

if (status .ne. ESMF_SUCCESS) return

value1 = ’DVDT’
value2 = ’tendency_of_northward_wind’
value3 = ’Northward wind tendency’
value4 = ’m s-2’

DVDT = ESMF_FieldCreate(grid, arrayspec=arrayspec, &
staggerloc=ESMF_STAGGERLOC_CENTER, rc=status)

call ESMF_AttributeAdd(DVDT, convention=convESMF, purp ose=purpGen, &
rc=status)

call ESMF_AttributeSet(DVDT, name1, value1, convention= convESMF, &
purpose=purpGen, rc=status)

call ESMF_AttributeSet(DVDT, name2, value2, convention= convESMF, &
purpose=purpGen, rc=status)

call ESMF_AttributeSet(DVDT, name3, value3, convention= convESMF, &
purpose=purpGen, rc=status)

call ESMF_AttributeSet(DVDT, name4, value4, convention= convESMF, &
purpose=purpGen, rc=status)

if (status .ne. ESMF_SUCCESS) return

value1 = ’PHIS’
value2 = ’surface_geopotential’
value3 = ’Surface geopotential height’
value4 = ’m2 s-2’

PHIS = ESMF_FieldCreate(grid, arrayspec=arrayspec, &
staggerloc=ESMF_STAGGERLOC_CENTER, rc=status)

call ESMF_AttributeAdd(PHIS, convention=convESMF, purp ose=purpGen, &

572

rc=status)
call ESMF_AttributeSet(PHIS, name1, value1, convention= convESMF, &

purpose=purpGen, rc=status)
call ESMF_AttributeSet(PHIS, name2, value2, convention= convESMF, &

purpose=purpGen, rc=status)
call ESMF_AttributeSet(PHIS, name3, value3, convention= convESMF, &

purpose=purpGen, rc=status)
call ESMF_AttributeSet(PHIS, name4, value4, convention= convESMF, &

purpose=purpGen, rc=status)
if (status .ne. ESMF_SUCCESS) return

value1 = ’QTR’
value2 = ’’
value3 = ’Advected quantities’
value4 = ’unknown’

QTR = ESMF_FieldCreate(grid, arrayspec=arrayspec, &
staggerloc=ESMF_STAGGERLOC_CENTER, rc=status)

call ESMF_AttributeAdd(QTR, convention=convESMF, purpo se=purpGen, &
rc=status)

call ESMF_AttributeSet(QTR, name1, value1, convention=c onvESMF, &
purpose=purpGen, rc=status)

call ESMF_AttributeSet(QTR, name2, value2, convention=c onvESMF, &
purpose=purpGen, rc=status)

call ESMF_AttributeSet(QTR, name3, value3, convention=c onvESMF, &
purpose=purpGen, rc=status)

call ESMF_AttributeSet(QTR, name4, value4, convention=c onvESMF, &
purpose=purpGen, rc=status)

if (status .ne. ESMF_SUCCESS) return

value1 = ’CNV’
value2 = ’atmosphere_kinetic_energy_content’
value3 = ’Generation of atmosphere kinetic energy content’
value4 = ’W m-2’

CNV = ESMF_FieldCreate(grid, arrayspec=arrayspec, &
staggerloc=ESMF_STAGGERLOC_CENTER, rc=status)

call ESMF_AttributeAdd(CNV, convention=convESMF, purpo se=purpGen, &
rc=status)

call ESMF_AttributeSet(CNV, name1, value1, convention=c onvESMF, &
purpose=purpGen, rc=status)

call ESMF_AttributeSet(CNV, name2, value2, convention=c onvESMF, &
purpose=purpGen, rc=status)

call ESMF_AttributeSet(CNV, name3, value3, convention=c onvESMF, &
purpose=purpGen, rc=status)

call ESMF_AttributeSet(CNV, name4, value4, convention=c onvESMF, &
purpose=purpGen, rc=status)

if (status .ne. ESMF_SUCCESS) return

value1 = ’CONVCPT’
value2 = ’’
value3 = ’Vertically integrated enthalpy convergence’
value4 = ’W m-2’

CONVCPT = ESMF_FieldCreate(grid, arrayspec=arrayspec, &

573

staggerloc=ESMF_STAGGERLOC_CENTER, rc=status)
call ESMF_AttributeAdd(CONVCPT, convention=convESMF, p urpose=purpGen, &

rc=status)
call ESMF_AttributeSet(CONVCPT, name1, value1, conventi on=convESMF, &

purpose=purpGen, rc=status)
call ESMF_AttributeSet(CONVCPT, name2, value2, conventi on=convESMF, &

purpose=purpGen, rc=status)
call ESMF_AttributeSet(CONVCPT, name3, value3, conventi on=convESMF, &

purpose=purpGen, rc=status)
call ESMF_AttributeSet(CONVCPT, name4, value4, conventi on=convESMF, &

purpose=purpGen, rc=status)
if (status .ne. ESMF_SUCCESS) return

value1 = ’CONVKE’
value2 = ’’
value3 = ’Vertically integrated kinetic energy convergenc e’
value4 = ’W m-2’

CONVKE = ESMF_FieldCreate(grid, arrayspec=arrayspec, &
staggerloc=ESMF_STAGGERLOC_CENTER, rc=status)

call ESMF_AttributeAdd(CONVKE, convention=convESMF, pu rpose=purpGen, &
rc=status)

call ESMF_AttributeSet(CONVKE, name1, value1, conventio n=convESMF, &
purpose=purpGen, rc=status)

call ESMF_AttributeSet(CONVKE, name2, value2, conventio n=convESMF, &
purpose=purpGen, rc=status)

call ESMF_AttributeSet(CONVKE, name3, value3, conventio n=convESMF, &
purpose=purpGen, rc=status)

call ESMF_AttributeSet(CONVKE, name4, value4, conventio n=convESMF, &
purpose=purpGen, rc=status)

if (status .ne. ESMF_SUCCESS) return

value1 = ’CONVPHI’
value2 = ’’
value3 = ’Vertically integrated geopotential convergence ’
value4 = ’W m-2’

CONVPHI = ESMF_FieldCreate(grid, arrayspec=arrayspec, &
staggerloc=ESMF_STAGGERLOC_CENTER, rc=status)

call ESMF_AttributeAdd(CONVPHI, convention=convESMF, p urpose=purpGen, &
rc=status)

call ESMF_AttributeSet(CONVPHI, name1, value1, conventi on=convESMF, &
purpose=purpGen, rc=status)

call ESMF_AttributeSet(CONVPHI, name2, value2, conventi on=convESMF, &
purpose=purpGen, rc=status)

call ESMF_AttributeSet(CONVPHI, name3, value3, conventi on=convESMF, &
purpose=purpGen, rc=status)

call ESMF_AttributeSet(CONVPHI, name4, value4, conventi on=convESMF, &
purpose=purpGen, rc=status)

if (status .ne. ESMF_SUCCESS) return

! Create the Grid Attribute Package
call ESMF_AttributeAdd(grid,convention=convESMF, purp ose=purpGen, rc=status)
call ESMF_AttributeSet(grid,’GridType’,’Cubed sphere’ ,convention=convESMF, purpose=purpGen,
call ESMF_AttributeSet(grid,’CongruentTiles’,.true., convention=convESMF, purpose=purpGen,

574

call ESMF_AttributeSet(grid,’NumberOfGridTiles’,’1’, convention=convESMF, purpose=purpGen,
call ESMF_AttributeSet(grid,’DimensionOrder’,’YX’,co nvention=convESMF, purpose=purpGen,
call ESMF_AttributeSet(grid,’DiscretizationType’,’Lo gically Rectangular’,convention=convESMF,
call ESMF_AttributeSet(grid,’GeometryType’,’Sphere’, convention=convESMF, purpose=purpGen,
call ESMF_AttributeSet(grid,’IsConformal’,.false.,co nvention=convESMF, purpose=purpGen,
call ESMF_AttributeSet(grid,’IsRegular’,.false.,conv ention=convESMF, purpose=purpGen, rc=status)
call ESMF_AttributeSet(grid,’IsUniform’,.false.,conv ention=convESMF, purpose=purpGen, rc=status)
call ESMF_AttributeSet(grid,’NorthPoleLocation’,’lon g: 0.0 lat: 90.0’,convention=convESMF,
call ESMF_AttributeSet(grid,’NumberOfCells’,’53457’, convention=convESMF, purpose=purpGen,
call ESMF_AttributeSet(grid,’NX’,’96’,convention=con vESMF, purpose=purpGen, rc=status)
call ESMF_AttributeSet(grid,’NY’,’96’,convention=con vESMF, purpose=purpGen, rc=status)
call ESMF_AttributeSet(grid,’HorizontalResolution’,’ C48’,convention=convESMF, purpose=purpGen,
if (status .ne. ESMF_SUCCESS) return

Now the Fields will be added to the FieldBundle, at which point the Attribute hierarchies of the Fields will also be
attached to the Attribute hierarchy of the FieldBundle. After that, the FieldBundle will be attached to the export State,
again at which time the Attribute hierarchy of the FieldBundle will be attached to the Attribute hierarchy of the export
State.

fieldbundle = ESMF_FieldBundleCreate(name="fieldbundl e", rc=status)
call ESMF_FieldBundleSetGrid(fieldbundle, grid=grid, r c=status)
if (status .ne. ESMF_SUCCESS) return

call ESMF_FieldBundleAdd(fieldbundle, DPEDT, rc=status)
call ESMF_FieldBundleAdd(fieldbundle, DTDT, rc=status)
call ESMF_FieldBundleAdd(fieldbundle, DUDT, rc=status)
call ESMF_FieldBundleAdd(fieldbundle, DVDT, rc=status)
call ESMF_FieldBundleAdd(fieldbundle, PHIS, rc=status)
call ESMF_FieldBundleAdd(fieldbundle, QTR, rc=status)
call ESMF_FieldBundleAdd(fieldbundle, CNV, rc=status)
call ESMF_FieldBundleAdd(fieldbundle, CONVCPT, rc=stat us)
call ESMF_FieldBundleAdd(fieldbundle, CONVKE, rc=statu s)
call ESMF_FieldBundleAdd(fieldbundle, CONVPHI, rc=stat us)
if (status .ne. ESMF_SUCCESS) return

call ESMF_StateAdd(exportState, fieldbundle=fieldbund le, rc=status)
if (status .ne. ESMF_SUCCESS) return

At this point, the driver of the model run will transfer control to the initialize phase of the second gridded Component.
In the second gridded Component initialize routine we don’thave anything to do. The data that was created in the
initialize routine of the first gridded Component will be passed to this Component through the coupler Component.
The data will not be used in this Component until the run phaseof the model. So now the application driver transfers
control to the initialize phase of the coupler Component.
In the coupler Component initialize routine all that is required is to ensure consistent data across the VM. The data
created in the first gridded Component on one set of the PETs inthe VM is intended to be read and manipulated by
the second gridded Component which runs on an exclusive set of the PETs of the VM for this application. We need to
first make that data consistent across the entire VM with theESMF_StateReconcile() call. This State level call
handles both the data – Fields and FieldBundles, and the metadata – Attribute and Attribute packages. There is a flag
in this call to allow the user to specify whether they want themetadata to be reconciled or not.

type(ESMF_VM) :: vm

rc = ESMF_SUCCESS

575

call ESMF_CplCompGet(comp, vm=vm, rc=rc)
if (rc/=ESMF_SUCCESS) return
call ESMF_StateReconcile(importState, vm, attreconflag =ESMF_ATTRECONCILE_ON, rc=rc)
if (rc/=ESMF_SUCCESS) return
call ESMF_StateReconcile(exportState, vm, attreconflag =ESMF_ATTRECONCILE_ON, rc=rc)
if (rc/=ESMF_SUCCESS) return

At this point, the driver of the model run will transfer control to the run phase of the first gridded Component.
In the run phase of the first gridded Component is typically where the data contained in the Fields is manipulated.
For this simple example we will do no actual data manipulation because all we are interested in at this point is the
metadata. What we will do is add a nested Attribute package inside the currently existing Attribute package on each
Field. We will also change the value of one of the Attributes in the original Attribute package, and remove another of
the Attributes from the original Attribute package on each of the Fields. The first thing is to declare variables and get
the Component, VM, State, and FieldBundle.

type(ESMF_VM) :: vm
integer :: petCount, status, myPet, k
character(ESMF_MAXSTR) :: name2,value2,convESMF,purpG en,purp2,name3
character(ESMF_MAXSTR),dimension(2) :: attrList
type(ESMF_Field) :: field
type(ESMF_FieldBundle) :: fieldbundle
type(ESMF_Grid) :: grid

rc = ESMF_SUCCESS

convESMF = ’ESMF’
purpGen = ’General’
name2 = ’StandardName’
value2 = ’default_standard_name’
name3 = ’LongName’

purp2 = ’Extended’
attrList(1) = ’Coordinates’
attrList(2) = ’Mask’

call ESMF_GridCompGet(comp, vm=vm, rc=status)
if (status .ne. ESMF_SUCCESS) return
call ESMF_VMGet(vm, petCount=petCount, localPet=myPet, rc=status)
if (status .ne. ESMF_SUCCESS) return

call ESMF_StateGet(exportState, "fieldbundle", fieldbu ndle, rc=rc)
if (rc/=ESMF_SUCCESS) return
call ESMF_FieldBundleGet(fieldbundle, grid=grid, rc=rc)
if (rc/=ESMF_SUCCESS) return

At this point we will extract each of the Fields in the FieldBundle in turn and change the value of one Attribute in
the original Attribute package, add a nested Attribute package, and delete one other of the Attributes in the original
Attribute package. These three changes represent, respectively, a value change and two structural changes to the
Attribute hierarchy during run time, which must be reconciled across the VM before the second gridded Component
can be allowed to further manipulate the Attribute hierarchy.

do k = 1, 10
call ESMF_FieldBundleGet(fieldbundle, fieldIndex=k, fi eld=field, rc=rc)

576

if (rc/=ESMF_SUCCESS) return
call ESMF_AttributeSet(field, name2, value2, convention =convESMF, &

purpose=purpGen, rc=status)
if (rc/=ESMF_SUCCESS) return
call ESMF_AttributeAdd(field, convention=convESMF, pur pose=purp2, &

attrList=attrList, nestConvention=convESMF, nestPurpo se=purpGen, rc=rc)
call ESMF_AttributeSet(field, name=’Coordinates’, valu e=’Latlon’, &

convention=convESMF, purpose=purp2, rc=rc)
call ESMF_AttributeSet(field, name=’Mask’, value=’Yes’ , &

convention=convESMF, purpose=purp2, rc=rc)
if (rc/=ESMF_SUCCESS) return
call ESMF_AttributeRemove(field, name=name3, conventio n=convESMF, &

purpose=purpGen, rc=status)
if (rc/=ESMF_SUCCESS) return

enddo

At this point, the driver of the model run will transfer control to the run phase of the coupler Component.
In the run phase of the coupler Component we must now ensure that the entire VM again has a consistent view of the
Attribute hierarchy. This is different from the communication done in the initialize phase of the model run because the
only structural change that has occurred is in the Attributehierarchy. Therefore anESMF_AttributeUpdate()
call can be used at this point to reconcile these changes. It should be noted that theESMF_AttributeUpdate()
call will reconcile value changes to the Attribute hierarchy as well as structural changes.
The first thing to do is to retrieve the Component, VM, and States. ThenESMF_AttributeUpdate() will be
called on the import State to accomplish a VM wide communication. Afterwards, the Attribute hierarchy can be
transfered, in a local sense, from the import State to the export State using anESMF_AttributeCopy() call.

type(ESMF_VM) :: vm
integer :: myPet

integer, dimension(2) :: rootList

rc = ESMF_SUCCESS

call ESMF_CplCompGet(comp, vm=vm, rc=rc)
if (rc/=ESMF_SUCCESS) return
call ESMF_VMGet(vm, localPet=myPet, rc=rc)
if (rc/=ESMF_SUCCESS) return

call ESMF_StateGet(importState, rc=rc)
if (rc/=ESMF_SUCCESS) return
call ESMF_StateGet(exportState, rc=rc)
if (rc/=ESMF_SUCCESS) return

rootList = (/0,1/)
call ESMF_AttributeUpdate(importState, vm, rootList=ro otList, rc=rc)
if (rc/=ESMF_SUCCESS) return

call ESMF_AttributeCopy(importState, exportState, &
ESMF_ATTCOPY_HYBRID, ESMF_ATTTREE_ON, rc=rc)

if (rc/=ESMF_SUCCESS) return

At this point the entire VM has a consistent view of the Attribute hierarchy that was recently modified duringrun
time in the first gridded component and the driver of the model run will transfer control to the run phase of the second
gridded Component.

577

In the run phase of the second gridded Component is normally where a user model would again manipulate the data
it was given. In this simple example we are only dealing with the metadata, which has already been ensured for
consistency across the VM, including the exclusive piece ofwhich is being used in this Component. Therefore we are
free to use the metadata as we wish, considering only that anychanges we make to it during run time will have to first
be reconciled before other parts of the VM can use them. However, this is not our concern at this point because we
will now explore the capabilities ofESMF_AttributeWrite() .
First we will get the Component and VM. Then we will write out the Attribute hierarchy to an .xml file, after which
we will write out the Attribute hierarchy to a more reader friendly tab-delimited format. Both of these write calls will
output their respective data into files in the execution directory, in either a .xml or .stdout file.

type(ESMF_VM) :: vm
integer :: petCount, status, myPet
character(ESMF_MAXSTR) :: convESMF,purpGen

rc = ESMF_SUCCESS

call ESMF_GridCompGet(comp, vm=vm, rc=status)
if (status .ne. ESMF_SUCCESS) return
call ESMF_VMGet(vm, petCount=petCount, localPet=myPet, rc=status)
if (status .ne. ESMF_SUCCESS) return

convESMF = ’ESMF’
purpGen = ’General’

if (myPet .eq. 2) then
call ESMF_AttributeWrite(importState,convESMF,purpGe n, &

attwriteflag=ESMF_ATTWRITE_XML, rc=rc)
call ESMF_AttributeWrite(importState,convESMF,purpGe n,rc=rc)
if (rc .ne. ESMF_SUCCESS) return

endif

At this point the driver of the model run would normally transfer control to the finalize phase of the first gridded
Component. However, there is not much of interest as far as metadata is concerned in this portion of the model run.
So with that we will conclude this example.

34.6 Restrictions and Future Work

34.6.1 Attributes

• Case insensitive Attribute names, conventions, purposes,and values will be enabled in a future release.

34.6.2 Attribute packages

• A future capability may be to automatically create default object Attribute packages upon ESMF object creation.

• The implemention of Grids is still in flux within the CIM. Thiswill effect the final appearance of the Gridspec
package in both ESMF and ESG. It is anticipated that an additional CIM Grid Attribute Package will be created.

• A CIM Scientific Property Attribute Package will be added. For CMIP5, hundreds of Scientific Properties have
been identified. All of these will be added to ESMF.

• The Attribute packages CIM Responsible Party, CIM Citation, and CIM Platform can only be created automat-
ically within a CIM Main component Attribute package. In a future release, it will be possible to create these
within other CIM Attribute packages as required, or as separate, standalone packages.

578

34.6.3 Attribute hierarchies

• The option of "deep" copies of an Attribute hierarchy will beadded.

34.6.4 Attribute import and export

• The CIM XML output in this release validates against CIM development v1.5, svn revision 2210, which was
current as of this ESMF release’s freeze date, 9/19/2010. CIM v1.5 development is continuing, with an official
v1.5 release expected within weeks after this ESMF release.ESMF, in a future release, will conform to the
officially released CIM v1.5 or later.

• The CIM XML output format, as described above, is ingestableinto ESG also as of this ESMF release’s freeze
date, 9/19/2010. However, ESG, like CIM, is in flux with active development. When ESG officially releases,
future releases of ESMF will be compatible with it.

• Only the CIM XML format is ingestable by ESG, not ESMF XML nor tab-delimited.

• CIM Attribute packages can only be output (to CIM XML); they may be inputtable (via XML) in a future
release.

• The ESMF grid Attribute package XML output file only containsthe nested GridSpec Attributes; Attributes
RegDecompX and RegDecompY will be added in a future release.

34.7 Design and Implementation Notes

This section covers Attribute memory deallocation, the useof ESMF_AttributeGet() , Attribute package nesting
capabilities, issues with Attributes in a distributed environment, and reading/writing of Attributes via XML files. Issues
and procedures dealing with Attribute memory deallocation, usingESMF_AttributeGet() to retrieve Attribute
lists, and nested Attribute package capabilities are discussed to help avoid misuse. The limitations with Attributes in a
distributed environment are also discussed, with an outline of the future work to be done in this area.

34.7.1 Attribute memory deallocation

The Attribute class presents a somewhat different paradigmwith respect to memory deallocation than other ESMF
objects. TheESMF_AttributeRemove() call can be issued to remove any Attribute from an ESMF objector an
Attribute package on an ESMF object. This call is also enabled to remove entire Attribute packages with one call,
which would remove any nested Attribute packages as well. The user isnot required to remove all Attributes that
are used in a model run. The entire Attribute hierarchy will be removed automatically by ESMF, provided the ESMF
objects which contain them are properly destroyed.
The decision to remove either an Attribute or an Attribute package is made by callingESMF_AttributeRemove()
with the correct optional arguments. If an Attribute which is not associated with any Attribute package should be
removed, then the call must be issued without a convention orpurpose argument. If an Attribute in an Attribute
package is to be removed, then the call should be issued with all three of name, convention, and purpose. Finally, if
an entire Attribute package is to be removed the call should be issued with a convention and purpose, but no Attribute
name.

34.7.2 UsingESMF_AttributeGet() to retrieve Attribute lists

The behavior of theESMF_AttributeGet() routine, when retrieving an Attribute containing a value list, follows
a slightly different convention than other similar ESMF routines. This routine requires the input of a Fortran array as a
place to store the retrieved values of the Attribute list. Ifthe array that is given is longer that the list of Attribute values,
the first part of the array will be filled, leaving the extra space untouched. If, however, the array passed in is shorter
than the number of Attribute values, the routine will exit with a return code which is not equal toESMF_SUCCESS.
It is suggested that if it is required by the user to use a Fortran array that is longer than the number of Attribute values
returned, only the indices of the array which the user desires to be filled with retrieved Attribute values should be
passed into the routine.

579

Similar behavior is exhibited with thedefaultvalueList argument in theESMF_AttributeGet() rou-
tine. The difference here is that if thevalueList is shorter than thedefaultvalueList only the appropri-
ate values will be filed in, and the routine will exit without error. Likewise, if thevalueList is longer than the
defaultvalueList then the entirevalueList will be populated with the beginning section of thedefaultvalueList
that is given.

34.7.3 Using Attribute package nesting capabilites

There is a recommended practice to organnizing metadata conventions when using nested Attribute packages. The
most general Attribute packages should always be added first, followed by the more specific ones. For instance, when
adding Attribute packages to a Field, it is recommended thatthe CF convention be added first, followed by the ESG
convention, followed by any additional customized Attribute packages.
At this time there are several ESMF supplied Attribute packages, with a convention of ESMF and a purpose of General.
These Attribute packages are generated by callingESMF_AttributeAdd() with the appropriate convention and
purpose. The ESMF standard Attribute packages can be customized by nesting a custom Attribute package around
them; they can also be modified in other ways but this is not suggested practice at this time.
Another consideration when using nested Attribute packages is to remember that when a nested Attribute package is
removed every nested Attribute package below the point of removal will also be removed (like pruning a tree branch).
Thus, by removing the ESG Attribute package on a Field, the CFAttribute package contained within it will also be
removed.

34.7.4 Attributes in a distributed environment

This section discusses the methods of building a consistentview of the metadata across the VM of a model run. To bet-
ter explain the ESMF capabilities for ensuring the integrity of Attributes in a distributed environment, a small working
vocabulary of ESMF Attributes will be presented. Three types of changes to an Attribute hierarchy need to be specified,
these are: 1.link changesare structural links created when two separate Attribute hierarchies are linked, 2.structural
changesare changes which occur when Attributes or Attribute packages are added or removed within a single level
of an Attribute hierarchy, and 3.value changesoccur when the value portion of any single Attribute is modified.
These definitions will help to describe howESMF_StateReconcile() andESMF_AttributeUpdate() can
be effectively used to ensure a consistent view of the metadata throughout a model run.
TheESMF_StateReconcile() call is used to create a consistent view of ESMF objects over the entire VM in the
initialization phase of a model run. All Attributes that areattached to an ESMF object contained in the State, i.e. an ob-
ject that is being reconciled, can also be reconciled. This is done by setting a flag in theESMF_StateReconcile()
call, see the State documentation for details. This means that, at the conclusion ofESMF_StateReconcile() there
is a one-to-one correspondence between Attribute hierarchies and the ESMF objects they represent. This is the only
place where link changes in an Attribute hierarchy can be resolved.
TheESMF_AttributeUpdate() call can be used any time during the run phase of a model to insure that either
structural or value changes made to an Attribute hierarchy on a subset of the VM are consistently represented across the
remainder of the VM. At this time, link changes cannot be resolved byESMF_AttributeUpdate() as this would
represent a departure from the one-to-one correspondence between the Attribute hierarchy and the ESMF objects it
represents.
This call is similar toESMF_StateReconcile() in that it must be called from a location that has a view of the
entire VM across which to update the Attribute hierarchy, such as a coupler Component. The main difference is
that ESMF_AttributeUpdate() operates only on the underlying Attribute hierarchy of the given ESMF ob-
ject. The Attribute hierarchy may be updated as many times asnecessary, this call is much more efficient than
ESMF_StateReconcile() for this reason.
The specification of a list of PETs that are to be used as the basis for the update is a key feature of this interface. This
allows a many-to-many communication, as well as the direct specification of which PETs are to be updated and which
are to be used as the "real" values. One caveat with this routine is that upon completion the destination PETs will have
all of the missing Attributes from the source PETs, but this is not true the other way around. This basically boils down
to the fact that the end product of callingESMF_AttributeUpdate() is not the union of the Attributes on both
source and destination PETs. This can be achieved, however,by callingESMF_AttributeUpdate() twice, once
from source to destination, and then again from destinationto source.

580

34.7.5 Writing Attribute packages to file

The ESMF_AttributeWrite() interface is in limited form at the present time, as it can only be used reliably
on the ESMF standard Attribute packages. Chances are that itwill perform as expected for most Attribute packages,
but for now it is only guaranteed for the ESMF standard Attribute packages. This routine is also not yet enabled to
handle multi-valued Attributes. One thing to remember whenusing this interface is that if you are writing an Attribute
package that contains nested Attribute packages then all Attribute nested below the top level Attribute package will be
written.

34.7.6 Copying Attribute hierarchies

The ability to copy an Attribute hierarchy is limited at thistime. TheESMF_AttributeCopy() routine can be
used tolocally copy an Attribute hierarchy between States. It is importantto note that this is a local copy, and no
inter-PET communication is carried out. Another thing to note is that when this functionality is based on a reference
copy any further changes made to some portions of the original Attribute hierarchy will also affect the new Attribute
hierarchy.
There are two flags in theESMF_AttributeCopy() routine which specify which type of copy is desired. At
this point there are only two different varieties of Attribute hierarchy copies available. One of the requires the
ESMF_AttCopyFlag to be set toESMF_ATTCOPY_VALUEand theESMF_AttTreeFlag to be set toESMF_ATTTREE_OFF.
This does a copy of only the first level of an Attribute hierarchy, by value.
The second available copy can be applied by setting theESMF_AttCopyFlag to ESMF_ATTCOPY_HYBRIDand
theESMF_AttTreeFlag to ESMF_ATTTREE_ON. This copy is more of a hybrid approach of reference and value
copies. In this case the Attributes whichbelongto the object being copied are actually copied in full (by value), while
the Attributes which are linked to the object being copied are referenced by a pointer (by reference). This means that
after copying an Attribute hierarchy from ESMF object A to ESMF object B with this approach, the changes made to
the lower portion of either A or B’s Attribute hierarchy willbe reflected onbothobject A and object B.

34.7.7 Reading and writing Attributes from XML files

The Xerces C++ library, v3.1.0 or better, is used to read and write XML files. More specifically, the SAX2 API is cur-
rently used, although future releases may also use the DOM API. The Xerces C++ website is http://xerces.apache.org/xerces-
c/. For more details, see the "ESMF Users Guide", "Building and Installing the ESMF, Third Party Libraries, Xerces".
Also please see the section on Attribute I/O, 30.2.

34.8 Object Model

Each Attribute contains a name-value pair in which the valuecan be any of several numeric, character, and logical
types. The available ESMF Attribute value types include:

• ESMF_TYPEKIND_I4

• ESMF_TYPEKIND_I4 list

• ESMF_TYPEKIND_I8

• ESMF_TYPEKIND_I8 list

• ESMF_TYPEKIND_R4

• ESMF_TYPEKIND_R4list

• ESMF_TYPEKIND_R8

• ESMF_TYPEKIND_R8list

• ESMF_TYPEKIND_Logical

• ESMF_TYPEKIND_Logical list

581

• EMSF_TYPEKIND_Character

• EMSF_TYPEKIND_Character list

The other members of the Attribute class can be seen in Figure26 below, which shows a UML representation of the
ESMF Attribute class.
In addition to a name, all Attributes within an Attribute package are identified by a convention, purpose, and the ESMF
object type they are associated with. These are additional strings that are initialized as empty until specified.
Also, all Attributes contain three vectors of pointers to other Attributes, which are empty until specified otherwise.
These vectors of Attribute pointers hold the Attributes, Attribute packages, and Attribute links. This feature is what
allows the Attribute class to self assemble complex structures for representing and organizing the metadata of an ESMF
object hierarchy.
For a more detailed view of how Attribute packages and hierarchies are formed, see Figures 27 and 28, respectively.

Figure 26: The structure of the Attribute class

582

Figure 27: The internal object organization for the representation of Attribute packages

583

Figure 28: The internal object organization for the representation of Attribute hierarchies

584

34.9 Class API

34.9.1 ESMF_AttributeAdd - Add an ESMF standard Attribute p ackage

INTERFACE:

! Private name; call using ESMF_AttributeAdd()
subroutine ESMF_AttAddPackStd(<object>, convention, pu rpose, rc)

ARGUMENTS:

<object>, see below for supported values
character (len = *), intent(in) :: convention
character (len = *), intent(in) :: purpose
integer, intent(out), optional :: rc

DESCRIPTION:

Add an ESMF standard Attribute package. See Section 34.2 fora description of Attribute packages and their conven-
tions, purposes, and object types.
Supported values for <object> are:

type(ESMF_Array), intent(inout) :: array

type(ESMF_CplComp), intent(inout) :: comp

type(ESMF_GridComp), intent(inout) :: comp

type(ESMF_Field), intent(inout) :: field

type(ESMF_Grid), intent(inout) :: grid

type(ESMF_State), intent(inout) :: state

The arguments are:

<object> An ESMFobject

convention The convention of the new Attribute package

purpose The purpose of the new Attribute package

[rc] Return code; equalsESMF_SUCCESSif there are no errors

34.9.2 ESMF_AttributeAdd - Add a custom Attribute package or modify an existing Attribute package

INTERFACE:

! Private name; call using ESMF_AttributeAdd()
subroutine ESMF_AttAddPackCst(<object>, convention, pu rpose, &
attrList, count, rc)

ARGUMENTS:

585

<object>, see below for supported values
character (len = *), intent(in) :: convention
character (len = *), intent(in) :: purpose
character (len= *), dimension(:), intent(in) :: attrList
integer, intent(in), optional :: count
integer, intent(out), optional :: rc

DESCRIPTION:

Add a custom Attribute package to <object>. See Section 34.2for a description of Attribute packages and their
conventions, purposes, and object types.
Supported values for <object> are:

type(ESMF_Array), intent(inout) :: array

type(ESMF_ArrayBundle), intent(inout) :: arraybundle

type(ESMF_CplComp), intent(inout) :: comp

type(ESMF_GridComp), intent(inout) :: comp

type(ESMF_DistGrid), intent(inout) :: distgrid

type(ESMF_Field), intent(inout) :: field

type(ESMF_FieldBundle), intent(inout) :: fieldbundle

type(ESMF_Grid), intent(inout) :: grid

type(ESMF_State), intent(inout) :: state

The arguments are:

<object> An ESMFobject

convention The convention of the Attribute package

purpose The purpose of the Attribute package

attrList The list of Attribute names to specify the custom Attribute package

[count] The number of Attributes to add to the custom Attribute package

[rc] Return code; equalsESMF_SUCCESSif there are no errors

34.9.3 ESMF_AttributeAdd - Add a custom Attribute package with nested Attribute Packages or modify an
existing Attribute package

INTERFACE:

! Private name; call using ESMF_AttributeAdd()
subroutine ESMF_AttAddPackCstN(<object>, convention, p urpose, &
attrList, count, nestConvention, nestPurpose, nestCount , rc)

ARGUMENTS:

586

<object>, see below for supported values
character (len = *), intent(in) :: convention
character (len = *), intent(in) :: purpose
character (len= *), dimension(:), intent(in), optional :: attrList
integer, intent(in), optional :: count
character (len = *), dimension(:), intent(in) :: nestConvention
character (len = *), dimension(:), intent(in) :: nestPurpose
integer, intent(in), optional :: nestCount
integer, intent(out), optional :: rc

DESCRIPTION:

Add a custom Attribute package, with one or more nested Attribute packages, to <object>. Allows for building full
multiple-child Attribute hierarchies (multi-child trees). See Section 34.2 for a description of Attribute packages and
their conventions, purposes, and object types.
Supported values for <object> are:

type(ESMF_Array), intent(inout) :: array

type(ESMF_ArrayBundle), intent(inout) :: arraybundle

type(ESMF_CplComp), intent(inout) :: comp

type(ESMF_GridComp), intent(inout) :: comp

type(ESMF_DistGrid), intent(inout) :: distgrid

type(ESMF_Field), intent(inout) :: field

type(ESMF_FieldBundle), intent(inout) :: fieldbundle

type(ESMF_Grid), intent(inout) :: grid

type(ESMF_State), intent(inout) :: state

The arguments are:

<object> An ESMFobject

convention The convention of the Attribute package

purpose The purpose of the Attribute package

[attrList] The list of Attribute names to specify the custom Attribute package

[count] The number of Attributes to add to the custom Attribute package

nestConvention The convention(s) of the Attribute package(s) around whichto nest the new Attribute package

nestPurposeThe purpose(s) of the Attribute package(s) around which to nest the new Attribute package

[nestCount] The number of nested Attribute packages to add to the custom Attribute package

[rc] Return code; equalsESMF_SUCCESSif there are no errors

587

34.9.4 ESMF_AttributeAdd - Add a custom Attribute package with a single nested Atrribute package, or
modify an existing Attribute package

INTERFACE:

! Private name; call using ESMF_AttributeAdd()
subroutine ESMF_AttAddPackCstN1(<object>, convention, purpose, &
attrList, count, nestConvention, nestPurpose, rc)

ARGUMENTS:

<object>, see below for supported values
character (len = *), intent(in) :: convention
character (len = *), intent(in) :: purpose
character (len= *), dimension(:), intent(in), optional :: attrList
integer, intent(in), optional :: count
character (len = *), intent(in) :: nestConvention
character (len = *), intent(in) :: nestPurpose
integer, intent(out), optional :: rc

DESCRIPTION:

Add a custom Attribute package, with a single nested Attribute package, to <object>. Allows for building single-
child Attribute hierarchies (single-child trees). See Section 34.2 for a description of Attribute packages and their
conventions, purposes, and object types.
Supported values for <object> are:

type(ESMF_Array), intent(inout) :: array

type(ESMF_ArrayBundle), intent(inout) :: arraybundle

type(ESMF_CplComp), intent(inout) :: comp

type(ESMF_GridComp), intent(inout) :: comp

type(ESMF_DistGrid), intent(inout) :: distgrid

type(ESMF_Field), intent(inout) :: field

type(ESMF_FieldBundle), intent(inout) :: fieldbundle

type(ESMF_Grid), intent(inout) :: grid

type(ESMF_State), intent(inout) :: state

The arguments are:

<object> An ESMFobject

convention The convention of the Attribute package

purpose The purpose of the Attribute package

[attrList] The list of Attribute names to specify the custom Attribute package

[count] The number of Attributes to add to the custom Attribute package

nestConvention The convention of the Attribute package around which to nestthe new Attribute package

nestPurposeThe purpose of the Attribute package around which to nest thenew Attribute package

[rc] Return code; equalsESMF_SUCCESSif there are no errors

588

34.9.5 ESMF_AttributeCopy - Copy an Attribute hierarchy

INTERFACE:

! Private name; call using ESMF_AttributeCopy()
subroutine ESMF_AttributeCopy(<object1>, <object2>, at tcopyflag, atttreeflag, rc)

ARGUMENTS:

<object1>, see below for supported values
<object2>, see below for supported values
type(ESMF_AttCopyFlag), intent(in) :: attcopyflag
type(ESMF_AttTreeFlag), intent(in) :: atttreeflag
integer, intent(out), optional :: rc

DESCRIPTION:

Copy an Attribute hierarchy from <object1> to <object2>. Supported values for <object1> are:

type(ESMF_CplComp), intent(inout) :: comp1

type(ESMF_GridComp), intent(inout) :: comp1

type(ESMF_State), intent(inout) :: state

Supported values for <object2> are:

type(ESMF_CplComp), intent(inout) :: comp2

type(ESMF_GridComp), intent(inout) :: comp2

type(ESMF_State), intent(inout) :: state

NOTE: Copies between different ESMF objects are not possible at this time.
The arguments are:

<object1> An ESMFobject

<object2> An ESMFobject

attcopyflag A flag to determine if the copy is to be by reference, value, or both

atttreeflag A flag to determine if the copy is supposed to descend the Attribute hierarchy

[rc] Return code; equalsESMF_SUCCESSif there are no errors

NOTE: Not all combinations of copy flags are enabled at this time. See the reference manual for an overview of the
options available forESMF_AttributeCopy() . The options forattcopyflag include:

1. ESMF_ATTCOPY_HYBRID will copy the top base level Attributes by value, and all others by reference

2. ESMF_ATTCOPY_REFERENCE will copy all Attributes by reference

3. ESMF_ATTCOPY_VALUE will copy all Attributes by value

The options foratttreeflag include:

1. ESMF_ATTTREE_OFF will only descend the first base level ofthe Attribute hierarchy

2. ESMF_ATTTREE_ON will descend the entire Attribute hierarchy

589

34.9.6 ESMF_AttributeGet - Get an Attribute

INTERFACE:

subroutine ESMF_AttributeGet(<object>, name, <value arg ument>, &
<defaultvalue argument>, convention, purpose, &
attPackInstanceName, rc)

ARGUMENTS:

<object>, see below for supported values
character (len = *), intent(in) :: name
<value argument>, see below for supported values
<defaultvalue argument>, see below for supported values
character (len = *), intent(in), optional :: convention
character (len = *), intent(in), optional :: purpose
character (len = *), intent(in), optional :: attPackInstanceName
integer, intent(out), optional :: rc

DESCRIPTION:

Return an Attributevalue from the <object>, or from an Attribute package on the <object>, specified byconvention
andpurpose , and optionallyattPackInstanceName . A defaultvalue argument may be given if a return
code is not desired when the Attribute is not found. See Section 34.2 for a description of Attribute packages and their
conventions, purposes, and object types.
Supported values for <object> are:

type(ESMF_Array), intent(inout) :: array

type(ESMF_ArrayBundle), intent(inout) :: arraybundle

type(ESMF_CplComp), intent(inout) :: comp

type(ESMF_GridComp), intent(inout) :: comp

type(ESMF_DistGrid), intent(inout) :: distgrid

type(ESMF_Field), intent(inout) :: field

type(ESMF_FieldBundle), intent(inout) :: fieldbundle

type(ESMF_Grid), intent(inout) :: grid

type(ESMF_State), intent(inout) :: state

Supported values for <value argument> are:

integer(ESMF_KIND_I4), intent(out) :: value

integer(ESMF_KIND_I8), intent(out) :: value

real (ESMF_KIND_R4), intent(out) :: value

real (ESMF_KIND_R8), intent(out) :: value

logical, intent(out) :: value

character (len = *), intent(out), value

Supported values for <defaultvalue argument> are:

integer(ESMF_KIND_I4), intent(out), optional :: defaultvalue

590

integer(ESMF_KIND_I8), intent(out), optional :: defaultvalue

real (ESMF_KIND_R4), intent(out), optional :: defaultvalue

real (ESMF_KIND_R8), intent(out), optional :: defaultvalue

logical, intent(out), optional :: defaultvalue

character (len = *), intent(out), optional :: defaultvalue

The arguments are:

<object> An ESMFobject

name The name of the Attribute to retrieve

<value argument> The value of the named Attribute

[<defaultvalue argument>] The default value of the named Attribute

[convention] The convention of the Attribute package

[purpose] The purpose of the Attribute package

[attPackInstanceName] The name of an Attribute package instance, specifying whichone of multiple Attribute
package instances of the same convention and purpose, within a nest. (Not implemented yet)

[rc] Return code; equalsESMF_SUCCESSif there are no errors

34.9.7 ESMF_AttributeGet - Get an Attribute

INTERFACE:

subroutine ESMF_AttributeGet(<object>, name, <valueLis t argument>, &
<defaultvalueList argument>, convention, purpose, &
attPackInstanceName, itemCount, rc)

ARGUMENTS:

<object>, see below for supported values
character (len = *), intent(in) :: name
<valueList argument>, see below for supported values
<defaultvalueList argument>, see below for supported valu es
character (len = *), intent(in), optional :: convention
character (len = *), intent(in), optional :: purpose
character (len = *), intent(in), optional :: attPackInstanceName
integer, intent(inout), optional :: itemCount
integer, intent(out), optional :: rc

DESCRIPTION:

Return an AttributevalueList from the <object>, or from an Attribute package on the <object>, specified by
convention andpurpose , and optionallyattPackInstanceName . A defaultvalueList list argument
may be given if a return code is not desired when the Attributeis not found. See Section 34.2 for a description of
Attribute packages and their conventions, purposes, and object types.
Supported values for <object> are:

type(ESMF_Array), intent(inout) :: array

591

type(ESMF_ArrayBundle), intent(inout) :: arraybundle

type(ESMF_CplComp), intent(inout) :: comp

type(ESMF_GridComp), intent(inout) :: comp

type(ESMF_DistGrid), intent(inout) :: distgrid

type(ESMF_Field), intent(inout) :: field

type(ESMF_FieldBundle), intent(inout) :: fieldbundle

type(ESMF_Grid), intent(inout) :: grid

type(ESMF_State), intent(inout) :: state

Supported values for <value argument> are:

integer(ESMF_KIND_I4), dimension(:), intent(out) :: valueList

integer(ESMF_KIND_I8), dimension(:), intent(out) :: valueList

real (ESMF_KIND_R4), dimension(:), intent(out) :: valueList

real (ESMF_KIND_R8), dimension(:), intent(out) :: valueList

logical, dimension(:), intent(out) :: valueList

character (len = *), dimension(count), intent(out) :: valueList

Supported values for <defaultvalue argument> are:

integer(ESMF_KIND_I4), dimension(:), intent(out), optional :: defaultvalueList

integer(ESMF_KIND_I8), dimension(:), intent(out), optional :: defaultvalueList

real (ESMF_KIND_R4), dimension(:), intent(out), optional :: defaultvalueList

real (ESMF_KIND_R8), dimension(:), intent(out), optional :: defaultvalueList

logical, dimension(:), intent(out), optional :: defaultvalueList

character (len = *), dimension(:), intent(out), optional :: defaultvalueList

The arguments are:

<object> An ESMFobject

name The name of the Attribute to retrieve

<valueList argument> The valueList of the named Attribute

[<defaultvalueList argument>] The default value list of the named Attribute

[convention] The convention of the Attribute package

[purpose] The purpose of the Attribute package

[attPackInstanceName] The name of an Attribute package instance, specifying whichone of multiple Attribute
package instances of the same convention and purpose, within a nest. (Not implemented yet)

[itemCount] The number of items in a multi-valued Attribute. If the itemCount is passed in, only itemCount items of
the desired Attribute will be returned, as long as there is enough space and there are itemCount items to return.
Regardless of whether itemCount is passed in, it will be returned as the number of items that wasactually
returned.

[rc] Return code; equalsESMF_SUCCESSif there are no errors

592

34.9.8 ESMF_AttributeGet - Get the Attribute count

INTERFACE:

! Private name; call using ESMF_AttributeGet()
subroutine ESMF_AttributeGetCount(<object>, count, att countflag, rc)

ARGUMENTS:

<object>, see below for supported values
integer, intent(out) :: count
type(ESMF_AttCountFlag), intent(in), optional :: attcou ntflag
integer, intent(out), optional :: rc

DESCRIPTION:

Return the Attribute count for <object>. Supported values for <object> are:

type(ESMF_Array), intent(inout) :: array

type(ESMF_ArrayBundle), intent(inout) :: arraybundle

type(ESMF_CplComp), intent(inout) :: comp

type(ESMF_GridComp), intent(inout) :: comp

type(ESMF_DistGrid), intent(inout) :: distgrid

type(ESMF_Field), intent(inout) :: field

type(ESMF_FieldBundle), intent(inout) :: fieldbundle

type(ESMF_Grid), intent(inout) :: grid

type(ESMF_State), intent(inout) :: state

The arguments are:

<object> An ESMFobject

count The Attribute count for <object>

[attcountflag] The flag to specify which attribute count to return, the default is ESMF_ATTGETCOUNT_ATTRIBUTE
(see below)

[rc] Return code; equalsESMF_SUCCESSif there are no errors

NOTE: The options forattcountflag include:

1. ESMF_ATTGETCOUNT_ATTRIBUTE will get the number of single Attributes

2. ESMF_ATTGETCOUNT_ATTPACK will get the number of Attribute packages

3. ESMF_ATTGETCOUNT_ATTLINK will get the number of Attribute links

4. ESMF_ATTGETCOUNT_TOTAL will get the total number of Attributes

593

34.9.9 ESMF_AttributeGet - Get Attribute info by name

INTERFACE:

! Private name; call using ESMF_AttributeGet()
subroutine ESMF_AttributeGetInfoByNam(<object>, name, typekind, &
itemCount, rc)

ARGUMENTS:

<object>, see below for supported values
character (len = *), intent(in) :: name
type(ESMF_TypeKind), intent(out), optional :: typekind
integer, intent(out), optional :: itemCount
integer, intent(out), optional :: rc

DESCRIPTION:

Return information associated with the named Attribute, including typekind anditemCount . Supported values
for <object> are:

type(ESMF_Array), intent(inout) :: array

type(ESMF_ArrayBundle), intent(inout) :: arraybundle

type(ESMF_CplComp), intent(inout) :: comp

type(ESMF_GridComp), intent(inout) :: comp

type(ESMF_DistGrid), intent(inout) :: distgrid

type(ESMF_Field), intent(inout) :: field

type(ESMF_FieldBundle), intent(inout) :: fieldbundle

type(ESMF_Grid), intent(inout) :: grid

type(ESMF_State), intent(inout) :: state

The arguments are:

<object> An ESMFobject

name The name of the Attribute to query

[typekind] The typekind of the Attribute

[itemCount] The number of items in this Attribute

[rc] Return code; equalsESMF_SUCCESSif there are no errors

34.9.10 ESMF_AttributeGet - Get Attribute info by index number

INTERFACE:

! Private name; call using ESMF_AttributeGet()
subroutine ESMF_AttributeGetInfoByNum(<object>, attri buteIndex, name, &
typekind, itemcount, rc)

594

ARGUMENTS:

<object>, see below for supported values
integer, intent(in) :: attributeIndex
character (len = *), intent(out) :: name
type(ESMF_TypeKind), intent(out), optional :: typekind
integer, intent(out), optional :: itemCount
integer, intent(out), optional :: rc

DESCRIPTION:

Returns information associated with the indexed Attribute, includingname, typekind anditemCount . Keep in
mind that these indexes start from 1, as expected in a FortranAPI. Supported values for <object> are:

type(ESMF_Array), intent(inout) :: array

type(ESMF_ArrayBundle), intent(inout) :: arraybundle

type(ESMF_CplComp), intent(inout) :: comp

type(ESMF_GridComp), intent(inout) :: comp

type(ESMF_DistGrid), intent(inout) :: distgrid

type(ESMF_Field), intent(inout) :: field

type(ESMF_FieldBundle), intent(inout) :: fieldbundle

type(ESMF_Grid), intent(inout) :: grid

type(ESMF_State), intent(inout) :: state

The arguments are:

<object> An ESMFobject

attributeIndex The index number of the Attribute to query

name The name of the Attribute

[typekind] The typekind of the Attribute

[itemCount] The number of items in this Attribute

[rc] Return code; equalsESMF_SUCCESSif there are no errors

34.9.11 ESMF_AttributeLink - Link a Component Attribute hi erarchy to that of a Component or State

INTERFACE:

! Private name; call using ESMF_AttributeLink()
subroutine ESMF_CompAttLink(<object1>, <object2>, rc)

ARGUMENTS:

<object1>, see below for supported values
<object2>, see below for supported values
integer, intent(out), optional :: rc

595

DESCRIPTION:

Attach aCplComp or GridComp Attribute hierarchy to the hierarchy of aCplComp, GridComp , or State .
Supported values for the <object1> are:

type(ESMF_CplComp), intent(inout) :: comp1

type(ESMF_GridComp), intent(inout) :: comp1

Supported values for the <object2> are:

type(ESMF_CplComp), intent(inout) :: comp2

type(ESMF_GridComp), intent(inout) :: comp2

type(ESMF_State), intent(inout) :: state

The arguments are:

<object1> The “parent” object in the Attribute hierarchy link

<object2> The “child” object in the Attribute hierarchy link

[rc] Return code; equalsESMF_SUCCESSif there are no errors

34.9.12 ESMF_AttributeLink - Link a State Attribute hierar chy with the

hierarchy of a an Array, ArrayBundle, Field, FieldBundle, or State

INTERFACE:

! Private name; call using ESMF_AttributeLink()
subroutine ESMF_StateAttLink(state, <object>, rc)

ARGUMENTS:

type(ESMF_State), intent(inout) :: state
<object>, see below for supported values
integer, intent(out), optional :: rc

DESCRIPTION:

Attach aState Attribute hierarchy to the hierarchy of aFieldbundle , Field , or anotherState . Supported
values for the <object> are:

type(ESMF_Array), intent(inout) :: array

type(ESMF_ArrayBundle), intent(inout) :: arraybundle

type(ESMF_Field), intent(inout) :: field

type(ESMF_FieldBundle), intent(inout) :: fieldbundle

type(ESMF_State), intent(inout) :: state

The arguments are:

state An ESMF_State object

<object> The object with which to link hierarchies

[rc] Return code; equalsESMF_SUCCESSif there are no errors

596

34.9.13 ESMF_AttributeLink - Link a FieldBundle and Field A ttribute hierarchy

INTERFACE:

! Private name; call using ESMF_AttributeLink()
subroutine ESMF_FieldBundleAttLink(fieldbundle, field , rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(inout) :: fieldbundle
type(ESMF_Field), intent(inout) :: field
integer, intent(out), optional :: rc

DESCRIPTION:

Attach aFieldBundle Attribute hierarchy to the hierarchy of aField .
The arguments are:

fieldbundle An ESMF_FieldBundle object

field An ESMF_Field object

[rc] Return code; equalsESMF_SUCCESSif there are no errors

34.9.14 ESMF_AttributeLink - Link a Field and Grid Attribut e hierarchy

INTERFACE:

! Private name; call using ESMF_AttributeLink()
subroutine ESMF_FieldAttLink(field, grid, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: field
type(ESMF_Grid), intent(inout) :: grid
integer, intent(out), optional :: rc

DESCRIPTION:

Attach aField Attribute hierarchy to the hierarchy of aGrid .
The arguments are:

field An ESMF_Field object

grid An ESMF_Grid object

[rc] Return code; equalsESMF_SUCCESSif there are no errors

34.9.15 ESMF_AttributeLink - Link an ArrayBundle and Array Attribute hierarchy

INTERFACE:

! Private name; call using ESMF_AttributeLink()
subroutine ESMF_ArrayBundleAttLink(arraybundle, array , rc)

597

ARGUMENTS:

type(ESMF_ArrayBundle), intent(inout) :: arraybundle
type(ESMF_Array), intent(inout) :: array
integer, intent(out), optional :: rc

DESCRIPTION:

Attach anArrayBundle Attribute hierarchy to the hierarchy of anArray .
The arguments are:

arraybundle An ESMF_ArrayBundle object

array An ESMF_Array object

[rc] Return code; equalsESMF_SUCCESSif there are no errors

34.9.16 ESMF_AttributeLinkRemove - Unlink a Component Attribute hierarchy from that of a Component
or State

INTERFACE:

! Private name; call using ESMF_AttributeLinkRemove()
subroutine ESMF_CompAttLinkRemove(<object1>, <object2 >, rc)

ARGUMENTS:

<object1>, see below for supported values
<object2>, see below for supported values
integer, intent(out), optional :: rc

DESCRIPTION:

Unattach aCplComp or GridComp Attribute hierarchy from the hierarchy of aCplComp, GridComp , or State .
Supported values for the <object1> are:

type(ESMF_CplComp), intent(inout) :: comp1

type(ESMF_GridComp), intent(inout) :: comp1

Supported values for the <object2> are:

type(ESMF_CplComp), intent(inout) :: comp2

type(ESMF_GridComp), intent(inout) :: comp2

type(ESMF_State), intent(inout) :: state

The arguments are:

<object1> The “parent” object in the Attribute hierarchy link

<object2> The “child” object in the Attribute hierarchy link

[rc] Return code; equalsESMF_SUCCESSif there are no errors

598

34.9.17 ESMF_AttributeLinkRemove - Unlink a State Attribute hierarchy with

the hierarchy of an Array, ArrayBundle, Field, FieldBundle, or State

INTERFACE:

! Private name; call using ESMF_AttributeLinkRemove()
subroutine ESMF_StateAttLinkRemove(state, <object>, rc)

ARGUMENTS:

type(ESMF_State), intent(inout) :: state
<object>, see below for supported values
integer, intent(out), optional :: rc

DESCRIPTION:

Unattach aState Attribute hierarchy from the hierarchy of aFieldbundle , Field , or anotherState . Supported
values for the <object> are:

type(ESMF_Array), intent(inout) :: array

type(ESMF_ArrayBundle), intent(inout) :: arraybundle

type(ESMF_Field), intent(inout) :: field

type(ESMF_FieldBundle), intent(inout) :: fieldbundle

type(ESMF_State), intent(inout) :: state

The arguments are:

state An ESMF_State object

<object> The object with which to unlink hierarchies

[rc] Return code; equalsESMF_SUCCESSif there are no errors

34.9.18 ESMF_AttributeLinkRemove - Unlink a FieldBundle and Field Attribute hierarchy

INTERFACE:

! Private name; call using ESMF_AttributeLinkRemove()
subroutine ESMF_FieldBundleAttLinkRemove(fieldbundle , field, rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(inout) :: fieldbundle
type(ESMF_Field), intent(inout) :: field
integer, intent(out), optional :: rc

DESCRIPTION:

Unattach aFieldBundle Attribute hierarchy from the hierarchy of aField .
The arguments are:

fieldbundle An ESMF_FieldBundle object

field An ESMF_Field object

[rc] Return code; equalsESMF_SUCCESSif there are no errors

599

34.9.19 ESMF_AttributeLinkRemove - Unlink a Field and Grid Attribute hierarchy

INTERFACE:

! Private name; call using ESMF_AttributeLinkRemove()
subroutine ESMF_FieldAttLinkRemove(field, grid, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: field
type(ESMF_Grid), intent(inout) :: grid
integer, intent(out), optional :: rc

DESCRIPTION:

Unattach aField Attribute hierarchy from the hierarchy of aGrid .
The arguments are:

field An ESMF_Field object

grid An ESMF_Grid object

[rc] Return code; equalsESMF_SUCCESSif there are no errors

34.9.20 ESMF_AttributeLinkRemove - Unlink an ArrayBundle and Array Attribute hierarchy

INTERFACE:

! Private name; call using ESMF_AttributeLinkRemove()
subroutine ESMF_ArrayBundleAttLinkRemove(arraybundle , array, rc)

ARGUMENTS:

type(ESMF_ArrayBundle), intent(inout) :: arraybundle
type(ESMF_Array), intent(inout) :: array
integer, intent(out), optional :: rc

DESCRIPTION:

Unattach anArrayBundle Attribute hierarchy from the hierarchy of anArray .
The arguments are:

arraybundle An ESMF_ArrayBundle object

array An ESMF_Array object

[rc] Return code; equalsESMF_SUCCESSif there are no errors

34.9.21 ESMF_AttributeRead - Read Attributes from an XML fil e

INTERFACE:

subroutine ESMF_AttributeRead(<object>, fileName, sche maFileName, &
convention, purpose, rc)

600

ARGUMENTS:

<object>, see below for supported values
character (len= *), intent(in), optional :: fileName
character (len= *), intent(in), optional :: schemaFileName
character (len = *), intent(in), optional :: convention
character (len = *), intent(in), optional :: purpose
integer, intent(out), optional :: rc

DESCRIPTION:

Read Attributes for <object> from fileName, whose format is XML. schemaFileName format is XSD. If present, the
schemaFileName is used to validate the contents of fileName.schemaFileName must be specified for a fileName
containing custom, user-defined Attributes. schemaFileName need not be specified for convention and purposes spec-
ifying a standard, ESMF-supplied Attribute package. If present, the convention and purpose specify an Attribute
package which is used to filter the reading to just those attributes belonging to the Attribute package. See Section 34.2
for a description of Attribute packages and their conventions, purposes, and object types.
Requires the third party Xerces C++ XML Parser library to be installed, v3.1.0 or better. For more details, see the
"ESMF Users Guide", "Building and Installing the ESMF, Third Party Libraries, Xerces" and the website "http://xerces.apache.org/xerces-
c". Also please see the section on Attribute I/O, 30.2.
Supported values for <object> are:

type(ESMF_Array), intent(inout) :: array ! not yet implemented

type(ESMF_ArrayBundle), intent(inout) :: arrayBundle ! not yet implemented

type(ESMF_CplComp), intent(inout) :: cplComp

type(ESMF_GridComp), intent(inout) :: gridComp

type(ESMF_Field), intent(inout) :: field

type(ESMF_FieldBundle), intent(inout) :: fieldBundle ! not yet implemented

type(ESMF_Grid), intent(inout) :: grid

type(ESMF_DistGrid), intent(inout) :: distGrid ! not yet implemented

The arguments are:

<object> TheESMFobject onto which the read Attributes will be placed

[fileName] The name of the XML file to read

[schemaFileName]The name of the XSD file to validate the contents of fileName

[convention] The convention of the Attribute package to read

[purpose] The purpose of the Attribute package to read

[rc] Return code; equalsESMF_SUCCESSif there are no errors

34.9.22 ESMF_AttributeRemove - Remove an Attribute or Attribute package

INTERFACE:

subroutine ESMF_AttributeRemove(<object>, name, conven tion, purpose, &
attPackInstanceName, rc)

601

ARGUMENTS:

<object>, see below for supported values
character (len = *), intent(in), optional :: name
character (len = *), intent(in), optional :: convention
character (len = *), intent(in), optional :: purpose
character (len = *), intent(in), optional :: attPackInstanceName
integer, intent(out), optional :: rc

DESCRIPTION:

Remove an Attribute, or Attribute package on <object>. See Section 34.2 for a description of Attribute packages and
their conventions, purposes, and object types.
Supported values for <object> are:

type(ESMF_Array), intent(inout) :: array

type(ESMF_ArrayBundle), intent(inout) :: arraybundle

type(ESMF_CplComp), intent(inout) :: comp

type(ESMF_GridComp), intent(inout) :: comp

type(ESMF_DistGrid), intent(inout) :: distgrid

type(ESMF_Field), intent(inout) :: field

type(ESMF_FieldBundle), intent(inout) :: fieldbundle

type(ESMF_Grid), intent(inout) :: grid

type(ESMF_State), intent(inout) :: state

The arguments are:

<object> An ESMFobject

[name] The name of the Attribute to remove

[convention] The convention of the Attribute package

[purpose] The purpose of the Attribute package

[attPackInstanceName] The name of an Attribute package instance, specifying whichone of multiple Attribute
package instances of the same convention and purpose, within a nest. (Not implemented yet)

[rc] Return code; equalsESMF_SUCCESSif there are no errors

NOTE: An entire Attribute package can be removed by specifyingconvention andpurpose only, withoutname.
By specifyingconvention , purpose , andname an Attribute will be removed from the corresponding Attribute
package, if it exists. An Attribute can be removed directly from <object> by specifyingname, withoutconvention
andpurpose .

34.9.23 ESMF_AttributeSet - Set an Attribute

INTERFACE:

subroutine ESMF_AttributeSet(<object>, name, <value arg ument>, &
convention, purpose, attPackInstanceName, rc)

602

ARGUMENTS:

<object>, see below for supported values
character (len = *), intent(in) :: name
<value argument>, see below for supported values
character (len = *), intent(in), optional :: convention
character (len = *), intent(in), optional :: purpose
character (len = *), intent(in), optional :: attPackInstanceName
integer, intent(out), optional :: rc

DESCRIPTION:

Attach an Attribute to <object>, or set an Attribute in an Attribute package. The Attribute has aname andvalue ,
and, if in an Attribute package, aconvention andpurpose , and optionally anattPackInstanceName . See
Section 34.2 for a description of Attribute packages and their conventions, purposes, and object types.
Supported values for <object> are:

type(ESMF_Array), intent(inout) :: array

type(ESMF_ArrayBundle), intent(inout) :: arraybundle

type(ESMF_CplComp), intent(inout) :: comp

type(ESMF_GridComp), intent(inout) :: comp

type(ESMF_DistGrid), intent(inout) :: distgrid

type(ESMF_Field), intent(inout) :: field

type(ESMF_FieldBundle), intent(inout) :: fieldbundle

type(ESMF_Grid), intent(inout) :: grid

type(ESMF_State), intent(inout) :: state

Supported values for the <value argument> are:

integer(ESMF_KIND_I4), intent(in) :: value

integer(ESMF_KIND_I8), intent(in) :: value

real (ESMF_KIND_R4), intent(in) :: value

real (ESMF_KIND_R8), intent(in) :: value

logical, intent(in) :: value

character (len = *), intent(in), :: value

The arguments are:

<object> An ESMFobject

name The name of the Attribute to set

<value argument> The value of the Attribute to set

[convention] The convention of the Attribute package

[purpose] The purpose of the Attribute package

[attPackInstanceName] The name of an Attribute package instance, specifying whichone of multiple Attribute
package instances of the same convention and purpose, within a nest. (Not implemented yet)

[rc] Return code; equalsESMF_SUCCESSif there are no errors

603

34.9.24 ESMF_AttributeSet - Set an Attribute

INTERFACE:

subroutine ESMF_AttributeSet(<object>, name, <valueLis t argument>, &
convention, purpose, attPackInstanceName, &
itemCount, rc)

ARGUMENTS:

<object>, see below for supported values
character (len = *), intent(in) :: name
<valueList argument>, see below for supported values
character (len = *), intent(in), optional :: convention
character (len = *), intent(in), optional :: purpose
character (len = *), intent(in), optional :: attPackInstanceName
integer, intent(in), optional :: itemCount
integer, intent(out), optional :: rc

DESCRIPTION:

Attach an Attribute to <object>, or set an Attribute in an Attribute package. The Attribute has aname and a
valueList , with an itemCount , and, if in an Attribute package, aconvention andpurpose , and option-
ally anattPackInstanceName . See Section 34.2 for a description of Attribute packages and their conventions,
purposes, and object types.
Supported values for <object> are:

type(ESMF_Array), intent(inout) :: array

type(ESMF_ArrayBundle), intent(inout) :: arraybundle

type(ESMF_CplComp), intent(inout) :: comp

type(ESMF_GridComp), intent(inout) :: comp

type(ESMF_DistGrid), intent(inout) :: distgrid

type(ESMF_Field), intent(inout) :: field

type(ESMF_FieldBundle), intent(inout) :: fieldbundle

type(ESMF_Grid), intent(inout) :: grid

type(ESMF_State), intent(inout) :: state

Supported values for the <value argument> are:

integer(ESMF_KIND_I4), dimension(:), intent(in) :: valueList

integer(ESMF_KIND_I8), dimension(:), intent(in) :: valueList

real (ESMF_KIND_R4), dimension(:), intent(in) :: valueList

real (ESMF_KIND_R8), dimension(:), intent(in) :: valueList

logical, dimension(:), intent(in) :: valueList

character (len = *), dimension(:), intent(in), :: valueList

The arguments are:

<object> An ESMFobject

604

name The name of the Attribute to set

<valueList argument> The valueList of the Attribute to set

[convention] The convention of the Attribute package

[purpose] The purpose of the Attribute package

[attPackInstanceName] The name of an Attribute package instance, specifying whichone of multiple Attribute
package instances of the same convention and purpose, within a nest. (Not implemented yet)

[itemCount] The number of items in a multi-valued Attribute

[rc] Return code; equalsESMF_SUCCESSif there are no errors

34.9.25 ESMF_AttributeUpdate - Update an Attribute hierarchy

INTERFACE:

subroutine ESMF_AttributeUpdate(<object>, vm, rootList , rc)

ARGUMENTS:

<object>, see below for supported values
type(ESMF_VM), intent(in) :: vm
integer, dimension(:), intent(in) :: rootList
integer, intent(out), optional :: rc

DESCRIPTION:

Update an Attribute hierarchy during runtime. Supported values for <object> are:

type(ESMF_Array), intent(inout) :: array

type(ESMF_ArrayBundle), intent(inout) :: arraybundle

type(ESMF_CplComp), intent(inout) :: comp

type(ESMF_GridComp), intent(inout) :: comp

type(ESMF_Field), intent(inout) :: field

type(ESMF_FieldBundle), intent(inout) :: fieldbundle

type(ESMF_State), intent(inout) :: state

The arguments are:

<object> An ESMFobject

vm The virtural machine over which this Attribute hierarchy should be updated

rootList The list of “root” PETs that are to be used to update

[rc] Return code; equalsESMF_SUCCESSif there are no errors

605

34.9.26 ESMF_AttributeWrite - Write an Attribute package

INTERFACE:

subroutine ESMF_AttributeWrite(<object>, convention, p urpose, attwriteflag, rc)

ARGUMENTS:

<object>, see below for supported values
character (len = *), intent(in), optional :: convention
character (len = *), intent(in), optional :: purpose
type(ESMF_AttWriteFlag), intent(in), optional :: attwri teflag
integer, intent(out), optional :: rc

DESCRIPTION:

Write the Attribute package for <object>. The Attribute package defines the convention, purpose, and object type of
the associated Attributes. Either tab-delimited or xml format is acheived by usingattwriteflag . Currently, only
ESMF/ESG/CF Field Attribute packages can be written in tab-delimited format. See Section 34.2 for a description of
Attribute packages and their conventions, purposes, and object types.
For xml output, requires the third party Xerces C++ XML Parser library to be installed, v3.1.0 or better. For more
details, see the "ESMF Users Guide", "Building and Installing the ESMF, Third Party Libraries, Xerces" and the
website "http: Also please see the section on Attribute I/O,30.2.
Note: For an object type ofESMF_GridComp, convention=’WaterML’, purpose=’TimeSeries’, and attwriteflag=ESMF_ATTWRITE_XML,
an XML file conforming to a hydrologic standard called WaterML will be written. See the following for more infor-
mation:

"http://his.cuahsi.org/wofws.html"

"http://www.earthsystemcurator.org/projects/waterml.shtml"

An ESMF Use Test Case is available which showcases an exampleof how to write a WaterML file; please see

"http://esmf.cvs.sourceforge.net/viewvc/esmf/use_test_cases/ESMF_WaterML"

"http://esmf.cvs.sourceforge.net/viewvc/esmf/use_test_cases/README"

Supported values for <object> are:

type(ESMF_Array), intent(inout) :: array

type(ESMF_ArrayBundle), intent(inout) :: arraybundle

type(ESMF_CplComp), intent(inout) :: comp

type(ESMF_GridComp), intent(inout) :: comp

type(ESMF_Field), intent(inout) :: field

type(ESMF_FieldBundle), intent(inout) :: fieldbundle

type(ESMF_Grid), intent(inout) :: grid

type(ESMF_State), intent(inout) :: state

The arguments are:

<object> An ESMFobject

[convention] The convention of the Attribute package

606

[purpose] The purpose of the Attribute package

[attwriteflag] The flag to specify which format is desired for the write, the default is tab-delimited

[rc] Return code; equalsESMF_SUCCESSif there are no errors

NOTE: The options forattwriteflag include:

1. ESMF_ATTWRITE_XML will write in xml format

2. ESMF_ATTWRITE_TAB will write in tab-delimited format

35 Attachable Methods

35.1 Description

ESMF data types, such as Fields, FieldBundles, Arrays and ArrayBundles, are used to exchange data between Com-
ponents through States. In the simplest scenario the producer Component or Coupler can compute the full data set
required by the consumer Component. However, memory constraints or otherwise the nature of the algorithm, may
require that the final calculation be performed right beforethe data is consumed.
ESMF provides the concept of Attachable Methods that allowsa producer component to associate user defined meth-
ods with the data objects it provides. The final calculation,while defined by the producer Component, is deferred until
the consumer Component requires its execution.
The current implementation of Attachable Methods is limited to the ESMF State class. States are a general container
class for Fields, FieldBundles, Arrays and ArrayBundles. States provide the most general interface to Attachable
Methods.

35.2 Use and Examples

The following examples demonstrate how a producer Component attaches a user defined method to a State, and how
it implements the method. The attached method is then executed by the consumer Component.

35.2.1 Producer Component attaches user defined method

The producer Component attaches a user defined method toexportState during the Component’s initialize method.
The user defined method is attached with labelfinalCalculation by which it will become accessible to the con-
sumer Component.

subroutine init(gcomp, importState, exportState, clock, rc)
! arguments
type(ESMF_GridComp):: gcomp
type(ESMF_State):: importState, exportState
type(ESMF_Clock):: clock
integer, intent(out):: rc

call ESMF_MethodAdd(exportState, label="finalCalculat ion", &
userRoutine=finalCalc, rc=rc)

rc = 0
end subroutine !------------------------------------- -------------------------

35.2.2 Producer Component implements user defined method

The producer Component implements the attached, user defined methodfinalCalc . Strict interface rules apply for
the user defined method.

607

subroutine finalCalc(state, rc)
! arguments
type(ESMF_State):: state
integer, intent(out):: rc

! access data objects in state and perform calculation

print * , "dummy output from attached method "

rc = 0
end subroutine !------------------------------------- -------------------------

35.2.3 Consumer Component executes user defined method

The consumer Component executes the user defined method on the importState .

subroutine init(gcomp, importState, exportState, clock, rc)
! arguments
type(ESMF_GridComp):: gcomp
type(ESMF_State):: importState, exportState
type(ESMF_Clock):: clock
integer, intent(out):: rc

integer:: userRc

call ESMF_MethodExecute(importState, label="finalCalc ulation", &
userRc=userRc, rc=rc)

rc = 0
end subroutine !------------------------------------- -------------------------

35.3 Restrictions and Future Work

1. Only States.The current implementation of Attachable Methods is limited to the ESMF State class. States are
a general container class for Fields, FieldBundles, Arraysand ArrayBundles. States provide the most general
interface to Attachable Methods. Dependent on future requirements, the Attachable Methods concept may be
extended to other ESMF data classes as the need arises.

2. Not reconciled. Attachable Methods are PET-local settings on a State. Currently Attachable Methods are
ignored duringESMF_StateReconcile() .

3. No copy nor move.Currently Attachable Methods cannot be copied or moved between States.

35.4 Class API

35.4.1 ESMF_MethodAdd - Attach user method

INTERFACE:

! Private name; call using ESMF_MethodAdd()
subroutine ESMF_MethodAdd(state, label, userRoutine, rc)

ARGUMENTS:

608

type(ESMF_State) :: state
character(len= *), intent(in) :: label
interface

subroutine userRoutine(state, rc)
use ESMF_StateMod
implicit none
type(ESMF_State) :: state ! must not be optional
integer, intent(out) :: rc ! must not be optional

end subroutine
end interface
integer, intent(out), optional :: rc

DESCRIPTION:

AttachuserRoutine .
The arguments are:

state TheESMF_State to print.

label Label of method.

userRoutine The user-supplied subroutine to be associated with thelabel .

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

35.4.2 ESMF_MethodAdd - Attach user method, located in shared object

INTERFACE:

! Private name; call using ESMF_MethodAdd()
subroutine ESMF_MethodAddShObj(state, label, userRouti ne, sharedObj, rc)

ARGUMENTS:

type(ESMF_State) :: state
character(len= *), intent(in) :: label
character(len= *), intent(in) :: userRoutine
character(len= *), intent(in), optional :: sharedObj
integer, intent(out), optional :: rc

DESCRIPTION:

AttachuserRoutine .
The arguments are:

state TheESMF_State to print.

label Label of method.

userRoutine Name of user-supplied subroutine to be associated with thelabel .

[sharedObj] Name of shared object that containsuserRoutine . If the sharedObj argument is not provided the
executable itself will be searched foruserRoutine .

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

609

35.4.3 ESMF_MethodExecute - Execute user method

INTERFACE:

subroutine ESMF_MethodExecute(state, label, userRc, rc)

ARGUMENTS:

type(ESMF_State) :: state
character(len= *), intent(in) :: label
integer, intent(out), optional :: userRc
integer, intent(out), optional :: rc

DESCRIPTION:

Execute attached method.
The arguments are:

state TheESMF_State to print.

label Label of method.

[userRc] Return code set by attached method before returning.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

35.4.4 ESMF_MethodRemove - Remove user method

INTERFACE:

subroutine ESMF_MethodRemove(state, label, rc)

ARGUMENTS:

type(ESMF_State) :: state
character(len= *), intent(in) :: label
integer, intent(out), optional :: rc

DESCRIPTION:

Remove attached method.
The arguments are:

state TheESMF_State to print.

label Label of method.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

36 Time Manager Utility

The ESMF Time Manager utility includes software for time anddate representation and calculations, model time
advancement, and the identification of unique and periodic events. Since multi-component geophysical applications
often require synchronization across the time management schemes of the individual components, the Time Manager’s
standard calendars and consistent time representation promote component interoperability.

610

Key Features
Drift-free timekeeping through an integer-based internaltime representation. Both integers and reals can be
specified at the interface.
The ability to represent time as a rational fraction, to support exact timekeeping in applications that involve
grid refinement.
Support for many calendar types, including user-customized calendars.
Support for both concurrent and sequential modes of component execution.
Support for varying and negative time steps.

36.1 Time Manager Classes

There are five ESMF classes that represent time concepts:

• Calendar A Calendar can be used to keep track of the date as an ESMF Gridded Component advances in time.
Standard calendars (such as Gregorian and 360-day) and user-specified calendars are supported. Calendars can
be queried for quantities such as seconds per day, days per month, and days per year.

• Time A Time represents a time instant in a particular calendar, such as November 28, 1964, at 7:31pm EST in
the Gregorian calendar. The Time class can be used to represent the start and stop time of a time integration.

• TimeInterval TimeIntervals represent a period of time, such as 300 milliseconds. Time steps can be represented
using TimeIntervals.

• Clock Clocks collect the parameters and methods used for model time advancement into a convenient package.
A Clock can be queried for quantities such as start time, stoptime, current time, and time step. Clock methods
include incrementing the current time, and determining if it is time to stop.

• Alarm Alarms identify unique or periodic events by “ringing” - returning a true value - at specified times. For
example, an Alarm might be set to ring on the day of the year when leaves start falling from the trees in a climate
model.

August 2003

S M T W T F S

1 2

3 4 5 6 7 8 9

10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28 29 30

31

The ESMF Time Manager utility includes software to manage model calendars, advance
model time, and perform time and date calculations. The software classes that handle
these functions are Times, TimeIntervals, Clocks, Alarms, and Calendars.

611

In the remainder of this section, we briefly summarize the functionality that the Time Manager classes provide. De-
tailed descriptions and usage examples precede the API listing for each class.

36.2 Calendar

An ESMF Calendar can be queried for seconds per day, days per month and days per year. The flexible definition of
Calendars allows them to be defined for planetary bodies other than Earth. The set of supported calendars includes:

Gregorian The standard Gregorian calendar.

no-leap The Gregorian calendar with no leap years.

Julian The standard Julian date calendar.

Julian Day The standard Julian days calendar.

Modified Julian Day The Modified Julian days calendar.

360-day A 30-day-per-month, 12-month-per-year calendar.

no calendar Tracks only elapsed model time in hours, minutes, seconds.

See Section 37.1 for more details on supported standard calendars, and how to create a customized ESMF Calendar.

36.3 Time Instants and TimeIntervals

TimeIntervals and Time instants (simply called Times) are the computational building blocks of the Time Manager
utility. TimeIntervals support operations such as add, subtract, compare size, reset value, copy value, and subdivide
by a scalar. Times, which are moments in time associated withspecific Calendars, can be incremented or decremented
by TimeIntervals, compared to determine which of two Times is later, differenced to obtain the TimeInterval between
two Times, copied, reset, and manipulated in other useful ways. Times support a host of different queries, both for
values of individual Time components such as year, month, day, and second, and for derived values such as day of
year, middle of current month and Julian day. It is also possible to retrieve the value of the hardware realtime clock in
the form of a Time. See Sections 38.1 and 39.1, respectively,for use and examples of Times and TimeIntervals.
Since climate modeling, numerical weather prediction and other Earth and space applications have widely varying time
scales and require different sorts of calendars, Times and TimeIntervals must support a wide range of time specifiers,
spanning nanoseconds to years. The interfaces to these timeclasses are defined so that the user can specify a time
using a combination of units selected from the list shown in Table 36.4.

36.4 Clocks and Alarms

Although it is possible to repeatedly step a Time forward by aTimeInterval using arithmetic on these basic types, it is
useful to identify a higher-level concept to represent thisfunction. We refer to this capability as a Clock, and include
in its required features the ability to store the start and stop times of a model run, to check when time advancement
should cease, and to query the value of quantities such as thecurrent time and the time at the previous time step. The
Time Manager includes a class with methods that return a truevalue when a periodic or unique event has taken place;
we refer to these as Alarms. Applications may contain temporary or multiple Clocks and Alarms. Sections 40.1 and
41.1 describe the use of Clocks and Alarms in detail.

612

Table 2: Specifiers for Times and TimeIntervals
Unit Meaning

<yy|yy_i8> Year.
mm Month of the year.
dd Day of the month.
<d|d_i8|d_r8> Julian or Modified Julian day.
<h|h_r8> Hour.
<m|m_r8> Minute.
<s|s_i8|s_r8> Second.
<ms|ms_r8> Millisecond.
<us|us_r8> Microsecond.
<ns|ns_r8> Nanosecond.
O Time zone offset in integer number of hours and minutes.
<sN|sN_i8> Numerator for times of the form s+ sN

sD
, where s is seconds and

s, sN, and sD are integers. This format provides a mechanism
for supporting exact behavior.

<sD|sD_i8 Denominator for times of the form s+ sN

sD
, where s is seconds

and s, sN, and sD are integers.

36.5 Design and Implementation Notes

1. Base TimeIntervals and Times on the same integer representation. It is useful to allow both TimeIntervals
and Times to inherit from a single class, BaseTime. In C++, this can be implemented by using inheritance.
In Fortran, it can be implemented by having the derived typesTimeIntervals and Times contain a derived type
BaseTime. In both cases, the BaseTime class can be made private and invisible to the user.

The result of this strategy is that Time Intervals and Times gain a consistent core representation of time as well
a set of basic methods.

The BaseTime class can be designed with a minimum number of elements to represent any required time. The
design is based on the idea used in the real-time POSIX 1003.1b-1993 standard. That is, to represent time simply
as a pair of integers: one for seconds (whole) and one for nanoseconds (fractional). These can then be converted
at the interface level to any desired format.

For ESMF, this idea can be modified and extended, in order to handle the requirements for a large time range
(> 200,000 years) and to exactly represent any rational fraction, not just nanoseconds. To handle the large time
range, a 64-bit or greater integer is used for whole seconds.Any rational fractional second is expressed using
two additional integers: a numerator and a denominator. Both the whole seconds and fractional numerator are
signed to handle negative time intervals and instants. For arithmetic consistency both must carry the same sign
(both positve or both negative), except, of course, for zerovalues. The fractional seconds element (numerator)
is bounded with respect to whole seconds. If the absolute value of the numerator becomes greater than or equal
to the denominator, whole seconds are incremented or decremented accordingly and the numerator is reset to
the remainder. Conversions are performed upon demand by interface methods within the TimeInterval and Time
classes. This is done because different applications require different representations of time intervals and time
instances. Floating point values as well as integers can be specified for the various time units in the interfaces,
see Table 36.4. Floating point values are represented internally as integer-based rational fractions.

The BaseTime class defines increment and decrement methods for basic TimeInterval calculations between
Time instants. It is done here rather than in the Calendar class because it can be done with simple second-based
arithmetic that is calendar independent.

Comparison methods can also be defined in the BaseTime class.These perform equality/inequality, less than,
and greater than comparisons between any two TimeIntervalsor Times. These methods capture the common

613

comparison logic between TimeIntervals and Times and henceare defined here for sharing.

2. The Time class depends on a calendar.The Time class contains an internal Calendar class. Upon demand by
a user, the results of an increment or decrement operation are converted to user units, which may be calendar-
dependent, via methods obtained from their internal Calendar.

614

36.6 Object Model

The following is a simplified UML diagram showing the structure of the Time Manager utility. See Appendix A,A
Brief Introduction to UML, for a translation table that lists the symbols in the diagram and their meaning.

Alarm

ClockTimeInterval TimeTime

TimeBaseTime

TimeCalendar

0..n
0..n

2 2

0..n

0..n

1

0..n 0..n

5 1

0..n

615

37 Calendar Class

37.1 Description

The Calendar class represents the standard calendars used in geophysical modeling: Gregorian, Julian, Julian Day,
Modified Julian Day, no-leap, 360-day, and no-calendar. It also supports a user-customized calendar. Brief descriptions
are provided for each calendar below. For more information on standard calendars, see [18] and [12].

37.2 Calendar Options

37.2.1 ESMF_CalendarType

DESCRIPTION:
Supported calendar types.
Valid values are:

ESMF_CAL_360DAY Valid range: machine limits
In the 360-day calendar, there are 12 months, each of which has 30 days. Like the no-leap calendar, this is a
simple approximation to the Gregorian calendar sometimes used by modelers.

ESMF_CAL_CUSTOM Valid range: machine limits
The user can set calendar parameters in the generic calendar.

ESMF_CAL_GREGORIAN Valid range: 3/1/4801 BC to 10/29/292,277,019,914
The Gregorian calendar is the calendar currently in use throughout Western countries. Named after Pope Gre-
gory XIII, it is a minor correction to the older Julian calendar. In the Gregorian calendar every fourth year is a
leap year in which February has 29 and not 28 days; however, years divisible by 100 are not leap years unless
they are also divisible by 400. As in the Julian calendar, days begin at midnight.

ESMF_CAL_JULIAN Valid range: 3/1/4713 BC to 4/24/292,271,018,333
The Julian calendar was introduced by Julius Caesar in 46 B.C., and reached its final form in 4 A.D. The Julian
calendar differs from the Gregorian only in the determination of leap years, lacking the correction for years
divisible by 100 and 400 in the Gregorian calendar. In the Julian calendar, any year is a leap year if divisible by
4. Days are considered to begin at midnight.

ESMF_CAL_JULIANDAY Valid range: +/- 1x1014

Julian days simply enumerate the days and fraction of a day which have elapsed since the start of the Julian
era, defined as beginning at noon on Monday, 1st January of year 4713 B.C. in the Julian calendar. Julian days,
unlike the dates in the Julian and Gregorian calendars, begin at noon.

ESMF_CAL_MODJULIANDAY Valid range: +/- 1x1014

The Modified Julian Day (MJD) was introduced by space scientists in the late 1950’s. It is defined as an offset
from the Julian Day (JD):

MJD = JD - 2400000.5

The half day is subtracted so that the day starts at midnight.

ESMF_CAL_NOCALENDAR Valid range: machine limits
The no-calendar option simply tracks the elapsed model timein seconds.

ESMF_CAL_NOLEAP Valid range: machine limits
The no-leap calendar is the Gregorian calendar with no leap years - February is always assumed to have 28 days.
Modelers sometimes use this calendar as a simple, close approximation to the Gregorian calendar.

616

37.3 Use and Examples

In most multi-component Earth system applications, the timekeeping in each component must refer to the same stan-
dard calendar in order for the components to properly synchronize. It therefore makes sense to create as few ESMF
Calendars as possible, preferably one per application. A typical strategy would be to create a single Calendar at the
start of an application, and use that Calendar in all subsequent calls that accept a Calendar, such asESMF_TimeSet .
The following example shows how to set up an ESMF Calendar.

! !PROGRAM: ESMF_CalendarEx - Calendar creation examples
!
! !DESCRIPTION:
!
! This program shows examples of how to create different cale ndar types
!-- ---------------------------

! ESMF Framework module
use ESMF_Mod
implicit none

! instantiate calendars
type(ESMF_Calendar) :: gregorianCalendar
type(ESMF_Calendar) :: julianDayCalendar

! local variables for Get methods
integer(ESMF_KIND_I8) :: dl
type(ESMF_Time) :: time

! return code
integer:: rc

! initialize ESMF framework
call ESMF_Initialize(defaultlogfilename="CalendarEx. Log", &

defaultlogtype=ESMF_LOG_MULTI, rc=rc)

37.3.1 Calendar creation

This example shows how to create twoESMF_Calendars .

! create a Gregorian calendar
gregorianCalendar = ESMF_CalendarCreate("Gregorian", &

ESMF_CAL_GREGORIAN, rc)

! create a Julian Day calendar
julianDayCalendar = ESMF_CalendarCreate("JulianDay", &

ESMF_CAL_JULIANDAY, rc)

37.3.2 Calendar comparison

This example shows how to compare anESMF_Calendar with a known calendar type.

! compare calendar type against a known type
if (gregorianCalendar == ESMF_CAL_GREGORIAN) then

print * , "gregorianCalendar is of type ESMF_CAL_GREGORIAN."

617

else
print * , "gregorianCalendar is not of type ESMF_CAL_GREGORIAN."

end if

37.3.3 Time conversion between Calendars

This example shows how to convert a time from oneESMF_Calendar to another.

call ESMF_TimeSet(time, yy=2004, mm=4, dd=17, &
calendar=gregorianCalendar, rc=rc)

! switch time’s calendar to perform conversion
call ESMF_TimeSet(time, calendar=julianDayCalendar, rc =rc)

call ESMF_TimeGet(time, d_i8=dl, rc=rc)
print * , "Gregorian date 2004/4/17 is ", dl, &

" days in the Julian Day calendar."

37.3.4 Calendar destruction

This example shows how to destroy twoESMF_Calendars .

call ESMF_CalendarDestroy(julianDayCalendar, rc)

call ESMF_CalendarDestroy(gregorianCalendar, rc)

! finalize ESMF framework
call ESMF_Finalize(rc=rc)

end program ESMF_CalendarEx

37.4 Restrictions and Future Work

1. Months per year set to 12.Due to the requirement of only Earth modeling, the number of months per year
is hard-coded at 12. However, for easy modification, this is implemented via a Fortran parameter and a C
preprocessor #define.

37.5 Class API

37.5.1 ESMF_CalendarOperator(==) - Test if Calendar 1 is equal to Calendar 2

INTERFACE:

interface operator(==)
if (calendar1 == calendar2) then ... endif

OR
result = (calendar1 == calendar2)

618

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_Calendar), intent(in) :: calendar1
type(ESMF_Calendar), intent(in) :: calendar2

DESCRIPTION:

Overloads the (==) operator for theESMF_Calendar class. Compare two calendar objects for equality; return true
if equal, false otherwise. Comparison is based on the calendar type.
The arguments are:

calendar1 The firstESMF_Calendar in comparison.

calendar2 The secondESMF_Calendar in comparison.

37.5.2 ESMF_CalendarOperator(==) - Test if Calendar Type 1is equal to Calendar Type 2

INTERFACE:

interface operator(==)
if (calendartype1 == calendartype2) then ... endif

OR
result = (calendartype1 == calendartype2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_CalendarType), intent(in) :: calendartype1
type(ESMF_CalendarType), intent(in) :: calendartype2

DESCRIPTION:

Overloads the (==) operator for theESMF_Calendar class. Compare two calendar types for equality; return trueif
equal, false otherwise.
The arguments are:

calendartype1 The firstESMF_CalendarType in comparison.

calendartype2 The secondESMF_CalendarType in comparison.

37.5.3 ESMF_CalendarOperator(==) - Test if Calendar is equal to Calendar Type

INTERFACE:

interface operator(==)
if (calendar == calendartype) then ... endif

OR
result = (calendar == calendartype)

619

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_Calendar), intent(in) :: calendar
type(ESMF_CalendarType), intent(in) :: calendartype

DESCRIPTION:

Overloads the (==) operator for theESMF_Calendar class. Compare a calendar object’s type with a given calendar
type for equality; return true if equal, false otherwise.
The arguments are:

calendar TheESMF_Calendar in comparison.

calendartype TheESMF_CalendarType in comparison.

37.5.4 ESMF_CalendarOperator(==) - Test if Calendar Type is equal to Calendar

INTERFACE:

interface operator(==)
if (calendartype == calendar) then ... endif

OR
result = (calendartype == calendar)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_CalendarType), intent(in) :: calendartype
type(ESMF_Calendar), intent(in) :: calendar

DESCRIPTION:

Overloads the (==) operator for theESMF_Calendar class. Compare a calendar type with a given calendar object’s
type for equality; return true if equal, false otherwise.
The arguments are:

calendartype TheESMF_CalendarType in comparison.

calendar TheESMF_Calendar in comparison.

37.5.5 ESMF_CalendarOperator(/=) - Test if Calendar 1 is not equal to Calendar 2

INTERFACE:

interface operator(/=)
if (calendar1 /= calendar2) then ... endif

OR
result = (calendar1 /= calendar2)

620

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_Calendar), intent(in) :: calendar1
type(ESMF_Calendar), intent(in) :: calendar2

DESCRIPTION:

Overloads the (/=) operator for theESMF_Calendar class. Compare two calendar objects for inequality; returntrue
if not equal, false otherwise. Comparison is based on the calendar type.
The arguments are:

calendar1 The firstESMF_Calendar in comparison.

calendar2 The secondESMF_Calendar in comparison.

37.5.6 ESMF_CalendarOperator(/=) - Test if Calendar Type 1is not equal to Calendar Type 2

INTERFACE:

interface operator(/=)
if (calendartype1 /= calendartype2) then ... endif

OR
result = (calendartype1 /= calendartype2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_CalendarType), intent(in) :: calendartype1
type(ESMF_CalendarType), intent(in) :: calendartype2

DESCRIPTION:

Overloads the (/=) operator for theESMF_Calendar class. Compare two calendar types for inequality; return true
if not equal, false otherwise.
The arguments are:

calendartype1 The firstESMF_CalendarType in comparison.

calendartype2 The secondESMF_CalendarType in comparison.

37.5.7 ESMF_CalendarOperator(/=) - Test if Calendar is notequal to Calendar Type

INTERFACE:

interface operator(/=)
if (calendar /= calendartype) then ... endif

OR
result = (calendar /= calendartype)

621

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_Calendar), intent(in) :: calendar
type(ESMF_CalendarType), intent(in) :: calendartype

DESCRIPTION:

Overloads the (/=) operator for theESMF_Calendar class. Compare a calendar object’s type with a given calendar
type for inequality; return true if equal, false otherwise.
The arguments are:

calendar TheESMF_Calendar in comparison.

calendartype TheESMF_CalendarType in comparison.

37.5.8 ESMF_CalendarOperator(/=) - Test if Calendar Type is not equal to Calendar

INTERFACE:

interface operator(/=)
if (calendartype /= calendar) then ... endif

OR
result = (calendartype /= calendar)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_CalendarType), intent(in) :: calendartype
type(ESMF_Calendar), intent(in) :: calendar

DESCRIPTION:

Overloads the (/=) operator for theESMF_Calendar class. Compare a calendar type with a given calendar object’s
type for inequality; return true if equal, false otherwise.
The arguments are:

calendartype TheESMF_CalendarType in comparison.

calendar TheESMF_Calendar in comparison.

37.5.9 ESMF_CalendarCreate - Create a new ESMF Calendar of built-in type

INTERFACE:

! Private name; call using ESMF_CalendarCreate()
function ESMF_CalendarCreateBuiltIn(name, calendartyp e, rc)

622

RETURN VALUE:

type(ESMF_Calendar) :: ESMF_CalendarCreateBuiltIn

ARGUMENTS:

character (len= *), intent(in), optional :: name
type(ESMF_CalendarType), intent(in) :: calendartype
integer, intent(out), optional :: rc

DESCRIPTION:

Creates and sets acalendar to the given built-inESMF_CalendarType .
This is a private method; invoke via the public overloaded entry pointESMF_CalendarCreate() .
The arguments are:

[name] The name for the newly created calendar. If not specified, a default unique name will be generated: "Calen-
darNNN" where NNN is a unique sequence number from 001 to 999.

calendartype The built-inESMF_CalendarType . Valid values are:ESMF_CAL_360DAY,ESMF_CAL_GREGORIAN,
ESMF_CAL_JULIAN,ESMF_CAL_JULIANDAY,ESMF_CAL_MODJULIANDAY,ESMF_CAL_NOCALENDAR,
andESMF_CAL_NOLEAP. See Section 37.2 for a description of each calendar type.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

37.5.10 ESMF_CalendarCreate - Create a copy of an ESMF Calendar

INTERFACE:

! Private name; call using ESMF_CalendarCreate()
function ESMF_CalendarCreateCopy(calendar, rc)

RETURN VALUE:

type(ESMF_Calendar) :: ESMF_CalendarCreateCopy

ARGUMENTS:

type(ESMF_Calendar), intent(in) :: calendar
integer, intent(out), optional :: rc

DESCRIPTION:

Creates a copy of a givenESMF_Calendar .
This is a private method; invoke via the public overloaded entry pointESMF_CalendarCreate() .
The arguments are:

calendar TheESMF_Calendar to copy.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

623

37.5.11 ESMF_CalendarCreate - Create a new custom ESMF Calendar

INTERFACE:

! Private name; call using ESMF_CalendarCreate()
function ESMF_CalendarCreateCustom(name, daysPerMonth , secondsPerDay, &

daysPerYear, daysPerYearDn, &
daysPerYearDd, rc)

RETURN VALUE:

type(ESMF_Calendar) :: ESMF_CalendarCreateCustom

ARGUMENTS:

character (len= *), intent(in), optional :: name
integer, dimension(:), intent(in), optional :: daysPerMo nth
integer(ESMF_KIND_I4), intent(in), optional :: secondsP erDay
integer(ESMF_KIND_I4), intent(in), optional :: daysPerY ear ! not implemented
integer(ESMF_KIND_I4), intent(in), optional :: daysPerY earDn ! not implemented
integer(ESMF_KIND_I4), intent(in), optional :: daysPerY earDd ! not implemented
integer, intent(out), optional :: rc

DESCRIPTION:

Creates a customESMF_Calendar and sets its properties.
This is a private method; invoke via the public overloaded entry pointESMF_CalendarCreate() .
The arguments are:

[name] The name for the newly created calendar. If not specified, a default unique name will be generated: "Calen-
darNNN" where NNN is a unique sequence number from 001 to 999.

[daysPerMonth] Integer array of days per month, for each month of the year. The number of months per year is
variable and taken from the size of the array. If unspecified,months per year = 0, with the days array undefined.

[secondsPerDay]Integer number of seconds per day. Defaults to 86400 if not specified.

[daysPerYear] Integer number of days per year. Use with daysPerYearDn and daysPerYearDd (see below) to specify
a days-per-year calendar for any planetary body. Default = 0. (Not implemented yet).

[daysPerYearDn] Integer numerator portion of fractional number of days per year (daysPerYearDn/daysPerYearDd).
Use with daysPerYear (see above) and daysPerYearDd (see below) to specify a days-per-year calendar for any
planetary body. Default = 0. (Not implemented yet).

[daysPerYearDd] Integer denominator portion of fractional number of days per year (daysPerYearDn/daysPerYearDd).
Use with daysPerYear and daysPerYearDn (see above) to specify a days-per-year calendar for any planetary
body. Default = 1. (Not implemented yet).

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

37.5.12 ESMF_CalendarDestroy - Free resources associatedwith a Calendar

INTERFACE:

subroutine ESMF_CalendarDestroy(calendar, rc)

624

ARGUMENTS:

type(ESMF_Calendar) :: calendar
integer, intent(out), optional :: rc

DESCRIPTION:

Releases all resources associated with thisESMF_Calendar .
The arguments are:

calendar Destroy contents of thisESMF_Calendar .

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

37.5.13 ESMF_CalendarGet - Get Calendar properties

INTERFACE:

subroutine ESMF_CalendarGet(calendar, name, calendarty pe, &
daysPerMonth, monthsPerYear, &
secondsPerDay, secondsPerYear, &
daysPerYear, &
daysPerYearDn, daysPerYearDd, rc)

ARGUMENTS:

type(ESMF_Calendar), intent(inout) :: calendar
character (len= *), intent(out), optional :: name
type(ESMF_CalendarType), intent(out), optional :: calen dartype
integer, dimension(:), intent(out), optional :: daysPerM onth
integer, intent(out), optional :: monthsPerYear
integer(ESMF_KIND_I4), intent(out), optional :: seconds PerDay
integer(ESMF_KIND_I4), intent(out), optional :: seconds PerYear
integer(ESMF_KIND_I4), intent(out), optional :: daysPer Year ! not implemented
integer(ESMF_KIND_I4), intent(out), optional :: daysPer YearDn ! not implemented
integer(ESMF_KIND_I4), intent(out), optional :: daysPer YearDd ! not implemented
integer, intent(out), optional :: rc

DESCRIPTION:

Gets one or more of anESMF_Calendar ’s properties.
The arguments are:

calendar The object instance to query.

[name] The name of this calendar.

[calendartype] TheCalendarType ESMF_CAL_GREGORIAN, ESMF_CAL_JULIAN, etc.

[daysPerMonth] Integer array of days per month, for each month of the year.

[monthsPerYear] Integer number of months per year; the size of the daysPerMonth array.

[secondsPerDay]Integer number of seconds per day.

[secondsPerYear] Integer number of seconds per year.

625

[daysPerYear] Integer number of days per year. For calendars with intercalations, daysPerYear is the number of days
for years without an intercalation. For other calendars, itis the number of days in every year. (Not implemented
yet).

[daysPerYearDn] Integer fractional number of days per year (numerator). Forcalendars with intercalations, daysPerYearDn/daysPerYearDd
is the average fractional number of days per year (e.g. 25/100 for Julian 4-year intercalation). For other calen-
dars, it is zero. (Not implemented yet).

[daysPerYearDd] Integer fractional number of days per year (denominator). See daysPerYearDn above. (Not imple-
mented yet).

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

37.5.14 ESMF_CalendarIsLeapYear - Determine if given yearis a leap year

INTERFACE:

! Private name; call using ESMF_CalendarIsLeapYear()
function ESMF_CalendarIsLeapYearI4(calendar, yy, rc)

RETURN VALUE:

logical :: ESMF_CalendarIsLeapYearI4

ARGUMENTS:

type(ESMF_Calendar), intent(inout) :: calendar
integer(ESMF_KIND_I4), intent(in) :: yy
integer, intent(out), optional :: rc

DESCRIPTION:

Returns true if the given year is a leap year within the given calendar, and false otherwise. See alsoESMF_TimeIsLeapYear() .
This is a private method; invoke via the public overloaded entry pointESMF_CalendarIsLeapYear() .
The arguments are:

calendar ESMF_Calendar to determine leap year within.

yy Year to check for leap year.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

37.5.15 ESMF_CalendarIsLeapYear - Determine if given yearis a leap year

INTERFACE:

! Private name; call using ESMF_CalendarIsLeapYear()
function ESMF_CalendarIsLeapYearI8(calendar, yy_i8, rc)

RETURN VALUE:

626

logical :: ESMF_CalendarIsLeapYearI8

ARGUMENTS:

type(ESMF_Calendar), intent(inout) :: calendar
integer(ESMF_KIND_I8), intent(in) :: yy_i8
integer, intent(out), optional :: rc

DESCRIPTION:

Returns true if the given year is a leap year within the given calendar, and false otherwise. See alsoESMF_TimeIsLeapYear() .
This is a private method; invoke via the public overloaded entry pointESMF_CalendarIsLeapYear() .
The arguments are:

calendar ESMF_Calendar to determine leap year within.

yy_i8 Year to check for leap year.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

37.5.16 ESMF_CalendarPrint - Print the contents of a Calendar

INTERFACE:

subroutine ESMF_CalendarPrint(calendar, options, rc)

ARGUMENTS:

type(ESMF_Calendar), intent(inout) :: calendar
character (len= *), intent(in), optional :: options
integer, intent(out), optional :: rc

DESCRIPTION:

Prints out anESMF_Calendar ’s properties tostdio , in support of testing and debugging. The options control the
type of information and level of detail.

Note: ManyESMF_<class>Print methods are implemented in C++. On some platforms/compilers there is a
potential issue with interleaving Fortran and C++ output tostdout such that it doesn’t appear in the expected order.
If this occurs, theESMF_IOUnitFlush() method may be used on unit 6 to get coherent output.

The arguments are:

calendar ESMF_Calendar to be printed out.

[options] Print options. If none specified, prints all calendar property values.
"calendartype" - print the calendar’s type (e.g. ESMF_CAL_GREGORIAN).
"daysPerMonth" - print the array of number of days for each month.
"daysPerYear" - print the number of days per year (integer and fractional parts).
"monthsPerYear" - print the number of months per year.
"name" - print the calendar’s name.
"secondsPerDay" - print the number of seconds in a day.
"secondsPerYear" - print the number of seconds in a year.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

627

37.5.17 ESMF_CalendarSet - Set a Calendar to a built-in type

INTERFACE:

! Private name; call using ESMF_CalendarSet()
subroutine ESMF_CalendarSetBuiltIn(calendar, name, cal endartype, rc)

ARGUMENTS:

type(ESMF_Calendar), intent(inout) :: calendar
character (len= *), intent(in), optional :: name
type(ESMF_CalendarType), intent(in) :: calendartype
integer, intent(out), optional :: rc

DESCRIPTION:

Setscalendar to the given built-inESMF_CalendarType .
This is a private method; invoke via the public overloaded entry pointESMF_CalendarSet() .
The arguments are:

calendar The object instance to initialize.

[name] The new name for this calendar.

calendartype The built-inCalendarType . Valid values are:ESMF_CAL_360DAY, ESMF_CAL_GREGORIAN,
ESMF_CAL_JULIAN,ESMF_CAL_JULIANDAY,ESMF_CAL_MODJULIANDAY,ESMF_CAL_NOCALENDAR,
andESMF_CAL_NOLEAP. See Section 37.2 for a description of each calendar type.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

37.5.18 ESMF_CalendarSet - Set properties of a custom Calendar

INTERFACE:

! Private name; call using ESMF_CalendarSet()
subroutine ESMF_CalendarSetCustom(calendar, name, days PerMonth, &

secondsPerDay, &
daysPerYear, daysPerYearDn, &
daysPerYearDd, rc)

ARGUMENTS:

type(ESMF_Calendar), intent(inout) :: calendar
character (len= *), intent(in), optional :: name
integer, dimension(:), intent(in), optional :: daysPerMo nth
integer(ESMF_KIND_I4), intent(in), optional :: secondsP erDay
integer(ESMF_KIND_I4), intent(in), optional :: daysPerY ear ! not implemented
integer(ESMF_KIND_I4), intent(in), optional :: daysPerY earDn ! not implemented
integer(ESMF_KIND_I4), intent(in), optional :: daysPerY earDd ! not implemented
integer, intent(out), optional :: rc

628

DESCRIPTION:

Sets properties in a customESMF_Calendar .
This is a private method; invoke via the public overloaded entry pointESMF_CalendarSet() .
The arguments are:

calendar The object instance to initialize.

[name] The new name for this calendar.

[daysPerMonth] Integer array of days per month, for each month of the year. The number of months per year is
variable and taken from the size of the array. If unspecified,months per year = 0, with the days array undefined.

[secondsPerDay]Integer number of seconds per day. Defaults to 86400 if not specified.

[daysPerYear] Integer number of days per year. Use with daysPerYearDn and daysPerYearDd (see below) to specify
a days-per-year calendar for any planetary body. Default = 0. (Not implemented yet).

[daysPerYearDn] Integer numerator portion of fractional number of days per year (daysPerYearDn/daysPerYearDd).
Use with daysPerYear (see above) and daysPerYearDd (see below) to specify a days-per-year calendar for any
planetary body. Default = 0. (Not implemented yet).

[daysPerYearDd] Integer denominator portion of fractional number of days per year (daysPerYearDn/daysPerYearDd).
Use with daysPerYear and daysPerYearDn (see above) to specify a days-per-year calendar for any planetary
body. Default = 1. (Not implemented yet).

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

37.5.19 ESMF_CalendarSetDefault - Set the default Calendar type

INTERFACE:

! Private name; call using ESMF_CalendarSetDefault()
subroutine ESMF_CalendarSetDefaultType(calendartype, rc)

ARGUMENTS:

type(ESMF_CalendarType), intent(in) :: calendartype
integer, intent(out), optional :: rc

DESCRIPTION:

Sets the defaultcalendar to the given type. Subsequent Time Manager operations requiring a calendar where one
isn’t specified will use the internal calendar of this type.
This is a private method; invoke via the public overloaded entry pointESMF_CalendarSetDefault() .
The arguments are:

calendartype The calendar type to be the default.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

629

37.5.20 ESMF_CalendarSetDefault - Set the default Calendar

INTERFACE:

! Private name; call using ESMF_CalendarSetDefault()
subroutine ESMF_CalendarSetDefaultCal(calendar, rc)

ARGUMENTS:

type(ESMF_Calendar), intent(inout) :: calendar
integer, intent(out), optional :: rc

DESCRIPTION:

Sets the defaultcalendar to the one given. Subsequent Time Manager operations requiring a calendar where one
isn’t specified will use this calendar.
This is a private method; invoke via the public overloaded entry pointESMF_CalendarSetDefault() .
The arguments are:

calendar The object instance to be the default.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

37.5.21 ESMF_CalendarValidate - Validate a Calendar’s properties

INTERFACE:

subroutine ESMF_CalendarValidate(calendar, options, rc)

ARGUMENTS:

type(ESMF_Calendar), intent(inout) :: calendar
character (len= *), intent(in), optional :: options
integer, intent(out), optional :: rc

DESCRIPTION:

Checks whether acalendar is valid. Must be one of the defined calendar types. daysPerMonth, daysPerYear,
secondsPerDay must all be greater than or equal to zero.
The arguments are:

calendar ESMF_Calendar to be validated.

[options] Validation options are not yet supported.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

630

38 Time Class

38.1 Description

A Time represents a specific point in time. In order to accommodate the range of time scales in Earth system applica-
tions, Times in the ESMF an be specified in many different ways, from years to nanoseconds. The Time interface is
designed so that you select one or more options from a list of time units in order to specify a Time. The options for
specifying a Time are shown in Table 36.4.
There are Time methods defined for setting and getting a Time,incrementing and decrementing a Time by a TimeIn-
terval, taking the difference between two Times, and comparing Times. Special quantities such as the middle of the
month and the day of the year associated with a particular Time can be retrieved. There is a method for returning the
Time value as a string in the ISO 8601 format YYYY-MM-DDThh:mm:ss [9].
A Time that is specified in hours, minutes, seconds, or subsecond intervals does not need to be associated with a stan-
dard calendar; a Time whose specification includes time units of a day and greater must be. The ESMF representation
of a calendar, the Calendar class, is described in Section 37.1. TheESMF_TimeSet method is used to initialize a
Time as well as associate it with a Calendar. If a Time method is invoked in which a Calendar is necessary and one
has not been set, the ESMF method will return an error condition.
In the ESMF the TimeInterval class is used to represent time periods. This class is frequently used in combination
with the Time class. The Clock class, for example, advances model time by incrementing a Time with a TimeInterval.

38.2 Use and Examples

Times are most frequently used to represent start, stop, andcurrent model times. The following examples show how
to create, initialize, and manipulateTime .

! !PROGRAM: ESMF_TimeEx - Time initialization and manipula tion examples
!
! !DESCRIPTION:
!
! This program shows examples of Time initialization and man ipulation
!-- ---------------------------

! ESMF Framework module
use ESMF_Mod
implicit none

! instantiate two times
type(ESMF_Time) :: time1, time2

! instantiate a time interval
type(ESMF_TimeInterval) :: timeinterval1

! local variables for Get methods
integer :: YY, MM, DD, H, M, S

! return code
integer:: rc

! initialize ESMF framework
call ESMF_Initialize(defaultCalendar=ESMF_CAL_GREGOR IAN, defaultlogfilename="TimeEx.Log",

defaultlogtype=ESMF_LOG_MULTI, rc=rc)

38.2.1 Time initialization

This example shows how to initialize anESMF_Time.

631

! initialize time1 to 2/28/2000 2:24:45
call ESMF_TimeSet(time1, yy=2000, mm=2, dd=28, h=2, m=24, s=45, rc=rc)

print * , "Time1 = "
call ESMF_TimePrint(time1, "string", rc)

38.2.2 Time increment

This example shows how to increment anESMF_Timeby anESMF_TimeInterval .

! initialize a time interval to 2 days, 8 hours, 36 minutes, 15 seconds
call ESMF_TimeIntervalSet(timeinterval1, d=2, h=8, m=36 , s=15, rc=rc)

print * , "Timeinterval1 = "
call ESMF_TimeIntervalPrint(timeinterval1, "string", r c)

! increment time1 with timeinterval1
time2 = time1 + timeinterval1

call ESMF_TimeGet(time2, yy=YY, mm=MM, dd=DD, h=H, m=M, s= S, rc=rc)
print * , "time2 = time1 + timeinterval1 = ", YY, "/", MM, "/", DD, " ", &

H, ":", M, ":", S

38.2.3 Time comparison

This example shows how to compare twoESMF_Times.

if (time2 > time1) then
print * , "time2 is larger than time1"

else
print * , "time1 is smaller than or equal to time2"

endif

! finalize ESMF framework
call ESMF_Finalize(rc=rc)

end program ESMF_TimeEx

38.3 Restrictions and Future Work

1. Limits on size and resolution of Time. The limits on the size and resolution of the time representation are
based on the 64-bit integer types used. For seconds, a signed64-bit integer will have a range of +/-263-1, or
+/- 9,223,372,036,854,775,807. This corresponds to a maximum size of +/- (263-1)/(86400 * 365.25) or +/-
292,271,023,045 years.

For fractional seconds, a signed 64-bit integer will handlea resolution of +/-231-1, or +/- 9,223,372,036,854,775,807
parts of a second.

632

38.4 Class API

38.4.1 ESMF_TimeOperator(+) - Increment a Time by a TimeInterval

INTERFACE:

interface operator(+)
time2 = time1 + timeinterval

RETURN VALUE:

type(ESMF_Time) :: time2

ARGUMENTS:

type(ESMF_Time), intent(in) :: time1
type(ESMF_TimeInterval), intent(in) :: timeinterval

DESCRIPTION:

Overloads the (+) operator for theESMF_Timeclass to incrementtime1 with timeinterval and return the result
as anESMF_Time.
The arguments are:

time1 TheESMF_Timeto increment.

timeinterval TheESMF_TimeInterval to add to the givenESMF_Time.

38.4.2 ESMF_TimeOperator(-) - Decrement a Time by a TimeInterval

INTERFACE:

interface operator(-)
time2 = time1 - timeinterval

RETURN VALUE:

type(ESMF_Time) :: time2

ARGUMENTS:

type(ESMF_Time), intent(in) :: time1
type(ESMF_TimeInterval), intent(in) :: timeinterval

DESCRIPTION:

Overloads the (-) operator for theESMF_Time class to decrementtime1 with timeinterval , and return the
result as anESMF_Time.
The arguments are:

time1 TheESMF_Timeto decrement.

timeinterval TheESMF_TimeInterval to subtract from the givenESMF_Time.

633

38.4.3 ESMF_TimeOperator(-) - Return the difference between two Times

INTERFACE:

interface operator(-)
time3 = time1 - time2

RETURN VALUE:

type(ESMF_Time) :: time3

ARGUMENTS:

type(ESMF_Time), intent(in) :: time1
type(ESMF_Time), intent(in) :: time2

DESCRIPTION:

Overloads the (-) operator for theESMF_Time class to return the difference betweentime1 and time2 as an
ESMF_TimeInterval . It is assumed thattime1 is later thantime2 ; if not, the resultingESMF_TimeInterval
will have a negative value.
The arguments are:

time1 The firstESMF_Time in comparison.

time2 The secondESMF_Time in comparison.

38.4.4 ESMF_TimeOperator(==) - Test if Time 1 is equal to Time 2

INTERFACE:

interface operator(==)
if (time1 == time2) then ... endif

OR
result = (time1 == time2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_Time), intent(in) :: time1
type(ESMF_Time), intent(in) :: time2

DESCRIPTION:

Overloads the (==) operator for theESMF_Time class to return true iftime1 and time2 are equal, and false
otherwise.
The arguments are:

time1 First ESMF_Time in comparison.

time2 SecondESMF_Time in comparison.

634

38.4.5 ESMF_TimeOperator(/=) - Test if Time 1 is not equal toTime 2

INTERFACE:

interface operator(/=)
if (time1 /= time2) then ... endif

OR
result = (time1 /= time2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_Time), intent(in) :: time1
type(ESMF_Time), intent(in) :: time2

DESCRIPTION:

Overloads the (/=) operator for theESMF_Time class to return true iftime1 andtime2 are not equal, and false
otherwise.
The arguments are:

time1 First ESMF_Time in comparison.

time2 SecondESMF_Time in comparison.

38.4.6 ESMF_TimeOperator(<) - Test if Time 1 is less than Time 2

INTERFACE:

interface operator(<)
if (time1 < time2) then ... endif

OR
result = (time1 < time2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_Time), intent(in) :: time1
type(ESMF_Time), intent(in) :: time2

DESCRIPTION:

Overloads the (<) operator for theESMF_Timeclass to return true iftime1 is less thantime2 , and false otherwise.
The arguments are:

time1 First ESMF_Time in comparison.

time2 SecondESMF_Time in comparison.

635

38.4.7 ESMF_TimeOperator(<=) - Test if Time 1 is less than orequal to Time 2

INTERFACE:

interface operator(<=)
if (time1 <= time2) then ... endif

OR
result = (time1 <= time2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_Time), intent(in) :: time1
type(ESMF_Time), intent(in) :: time2

DESCRIPTION:

Overloads the (<=) operator for theESMF_Timeclass to return true iftime1 is less than or equal totime2 , and
false otherwise.
The arguments are:

time1 First ESMF_Time in comparison.

time2 SecondESMF_Time in comparison.

38.4.8 ESMF_TimeOperator(>) - Test if Time 1 is greater thanTime 2

INTERFACE:

interface operator(>)
if (time1 > time2) then ... endif

OR
result = (time1 > time2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_Time), intent(in) :: time1
type(ESMF_Time), intent(in) :: time2

DESCRIPTION:

Overloads the (>) operator for theESMF_Timeclass to return true iftime1 is greater thantime2 , and false other-
wise.
The arguments are:

time1 First ESMF_Time in comparison.

time2 SecondESMF_Time in comparison.

636

38.4.9 ESMF_TimeOperator(>=) - Test if Time 1 is greater than or equal to Time 2

INTERFACE:

interface operator(>=)
if (time1 >= time2) then ... endif

OR
result = (time1 >= time2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_Time), intent(in) :: time1
type(ESMF_Time), intent(in) :: time2

DESCRIPTION:

Overloads the (>=) operator for theESMF_Timeclass to return true iftime1 is greater than or equal totime2 , and
false otherwise.
The arguments are:

time1 First ESMF_Time in comparison.

time2 SecondESMF_Time in comparison.

38.4.10 ESMF_TimeGet - Get a Time value

INTERFACE:

subroutine ESMF_TimeGet(time, yy, yy_i8, &
mm, dd, &
d, d_i8, &
h, m, &
s, s_i8, &
ms, us, ns, &
d_r8, h_r8, m_r8, s_r8, &
ms_r8, us_r8, ns_r8, &
sN, sN_i8, sD, sD_i8, &
calendar, calendarType, timeZone, &
timeString, timeStringISOFrac, &
dayOfWeek, midMonth, &
dayOfYear, dayOfYear_r8, &
dayOfYear_intvl, rc)

ARGUMENTS:

type(ESMF_Time), intent(inout) :: time
integer(ESMF_KIND_I4), intent(out), optional :: yy
integer(ESMF_KIND_I8), intent(out), optional :: yy_i8
integer, intent(out), optional :: mm
integer, intent(out), optional :: dd
integer(ESMF_KIND_I4), intent(out), optional :: d
integer(ESMF_KIND_I8), intent(out), optional :: d_i8

637

integer(ESMF_KIND_I4), intent(out), optional :: h
integer(ESMF_KIND_I4), intent(out), optional :: m
integer(ESMF_KIND_I4), intent(out), optional :: s
integer(ESMF_KIND_I8), intent(out), optional :: s_i8
integer(ESMF_KIND_I4), intent(out), optional :: ms
integer(ESMF_KIND_I4), intent(out), optional :: us
integer(ESMF_KIND_I4), intent(out), optional :: ns
real(ESMF_KIND_R8), intent(out), optional :: d_r8
real(ESMF_KIND_R8), intent(out), optional :: h_r8
real(ESMF_KIND_R8), intent(out), optional :: m_r8
real(ESMF_KIND_R8), intent(out), optional :: s_r8
real(ESMF_KIND_R8), intent(out), optional :: ms_r8
real(ESMF_KIND_R8), intent(out), optional :: us_r8
real(ESMF_KIND_R8), intent(out), optional :: ns_r8
integer(ESMF_KIND_I4), intent(out), optional :: sN
integer(ESMF_KIND_I8), intent(out), optional :: sN_i8
integer(ESMF_KIND_I4), intent(out), optional :: sD
integer(ESMF_KIND_I8), intent(out), optional :: sD_i8
type(ESMF_Calendar), intent(out), optional :: calendar
type(ESMF_CalendarType), intent(out), optional :: calen darType
integer, intent(out), optional :: timeZone ! not implement ed
character (len= *), intent(out), optional :: timeString
character (len= *), intent(out), optional :: timeStringISOFrac
integer, intent(out), optional :: dayOfWeek
type(ESMF_Time), intent(out), optional :: midMonth
integer(ESMF_KIND_I4), intent(out), optional :: dayOfYe ar
real(ESMF_KIND_R8), intent(out), optional :: dayOfYear_ r8
type(ESMF_TimeInterval), intent(out), optional :: dayOf Year_intvl
integer, intent(out), optional :: rc

DESCRIPTION:

Gets the value oftime in units specified by the user via Fortran optional arguments. SeeESMF_TimeSet() above
for a description of time units and calendars.
The ESMF Time Manager represents and manipulates time internally with integers to maintain precision. Hence,
user-specified floating point values are converted internally from integers. For example, if a time value is 5 and 3/8
seconds (s=5, sN=3, sD=8), and you want to get it as floating point seconds, you would get 5.375 (s_r8=5.375).
Units are bound (normalized) by the next larger unit specified. For example, if a time is defined to be 2:00 am on
February 2, 2004, thenESMF_TimeGet(dd=day, h=hours, s=seconds) would returnday = 2 , hours
= 2, seconds = 0 , whereasESMF_TimeGet(dd = day, s=seconds) would returnday = 2 , seconds
= 7200 . Note thathours andseconds are bound by a day. If bound by a month,ESMF_TimeGet(mm=month,
h=hours, s=seconds) would returnmonth = 2 , hours = 26 , seconds = 0 , andESMF_TimeGet(mm
= month, s=seconds) would returnmonth = 2 , seconds = 93600 (26 * 3600). Similarly, if bound to
a year,ESMF_TimeGet(yy=year, h=hours, s=seconds) would returnyear = 2004 , hours = 770
(32*24 + 2),seconds = 0 , andESMF_TimeGet(yy = year, s=seconds) would returnyear = 2004 ,
seconds = 2772000 (770 * 3600).
FortimeString , timeStringISOFrac ,dayOfWeek , midMonth , dayOfYear , dayOfYear_r8 , anddayOfYear_intvl
described below, valid calendars are Gregorian, Julian, NoLeap, 360 Day and Custom calendars. Not valid for Julian
Day, Modified Julian Day, or No Calendar.

For timeString andtimeStringISOFrac , YYYY format returns at least 4 digits; years <= 999 are padded on
the left with zeroes and years >= 10000 return the number of digits required.
For timeString, convertESMF_Time’s value into partial ISO 8601 format YYYY-MM-DDThh:mm:ss[:n/d]. See [9]
and [2]. See also methodESMF_TimePrint() .

638

For timeStringISOFrac, convertESMF_Time’s value into full ISO 8601 format YYYY-MM-DDThh:mm:ss[.f]. See
[9] and [2]. See also methodESMF_TimePrint() .
For dayOfWeek, gets the day of the week the givenESMF_Time instant falls on. ISO 8601 standard: Monday = 1
through Sunday = 7. See [9] and [2].
For midMonth, gets the middle time instant of the month that the givenESMF_Time instant falls on.
For dayOfYear, gets the day of the year that the givenESMF_Time instant falls on. See range discusion in argument
list below. Return as an integer value.
For dayOfYear_r8, gets the day of the year the givenESMF_Time instant falls on. See range discusion in argument
list below. Return as floating point value; fractional part represents the time of day.
For dayOfYear_intvl, gets the day of the year the givenESMF_Timeinstant falls on. Return as anESMF_TimeInterval .
The arguments are:

time The object instance to query.

[yy] Integer year (>= 32-bit).

[yy_i8] Integer year (large, >= 64-bit).

[mm] Integer month.

[dd] Integer day of the month.

[d] Integer Julian, or Modified Julian, days (>= 32-bit).

[d_i8] Integer Julian, or Modified Julian, days (large, >= 64-bit).

[h] Integer hours.

[m] Integer minutes.

[s] Integer seconds (>= 32-bit).

[s_i8] Integer seconds (large, >= 64-bit).

[ms] Integer milliseconds.

[us] Integer microseconds.

[ns] Integer nanoseconds.

[d_r8] Double precision days.

[h_r8] Double precision hours.

[m_r8] Double precision minutes.

[s_r8] Double precision seconds.

[ms_r8] Double precision milliseconds.

[us_r8] Double precision microseconds.

[ns_r8] Double precision nanoseconds.

[sN] Integer numerator of fractional seconds (sN/sD).

[sN_i8] Integer numerator of fractional seconds (sN_i8/sD_i8) (large, >= 64-bit).

[sD] Integer denominator of fractional seconds (sN/sD).

[sD_i8] Integer denominator of fractional seconds (sN_i8/sD_i8) (large, >= 64-bit).

[calendar] AssociatedCalendar .

639

[calendarType] AssociatedCalendarType .

[timeZone] Associated timezone (hours offset from UCT, e.g. EST = -5). (Not implemented yet).

[timeString] Convert time value to format string YYYY-MM-DDThh:mm:ss[:n/d], where n/d is numerator/denominator
of any fractional seconds and all other units are in ISO 8601 format. See [9] and [2]. See also method
ESMF_TimePrint() .

[timeStringISOFrac] Convert time value to strict ISO 8601 format string YYYY-MM-DDThh:mm:ss[.f], where f is
decimal form of any fractional seconds. See [9] and [2]. See also methodESMF_TimePrint() .

[dayOfWeek] The time instant’s day of the week [1-7].

[MidMonth] The given time instant’s middle-of-the-month time instant.

[dayOfYear] TheESMF_Time instant’s integer day of the year. [1-366] for Gregorian andJulian calendars, [1-365]
for No-Leap calendar. [1-360] for 360-Day calendar. User-defined range for Custom calendar.

[dayOfYear_r8] The ESMF_Time instant’s floating point day of the year. [1.x-366.x] for Gregorian and Julian
calendars, [1.x-365.x] for No-Leap calendar. [1.x-360.x]for 360-Day calendar. User-defined range for Custom
calendar.

[dayOfYear_intvl] TheESMF_Time instant’s day of the year as anESMF_TimeInterval .

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

38.4.11 ESMF_TimeIsLeapYear - Determine if a Time is in a leap year

INTERFACE:

function ESMF_TimeIsLeapYear(time, rc)

RETURN VALUE:

logical :: ESMF_TimeIsLeapYear

ARGUMENTS:

type(ESMF_Time), intent(inout) :: time
integer, intent(out), optional :: rc

DESCRIPTION:

Returns true if given time is in a leap year, and false otherwise. See alsoESMF_CalendarIsLeapYear() .
The arguments are:

time TheESMF_Timeto check for leap year.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

640

38.4.12 ESMF_TimeIsSameCalendar - Compare Calendars of two Times

INTERFACE:

function ESMF_TimeIsSameCalendar(time1, time2, rc)

RETURN VALUE:

logical :: ESMF_TimeIsSameCalendar

ARGUMENTS:

type(ESMF_Time), intent(inout) :: time1
type(ESMF_Time), intent(inout) :: time2
integer, intent(out), optional :: rc

DESCRIPTION:

Returns true if the Calendars in these Times are the same, false otherwise.
The arguments are:

time1 The firstESMF_Time in comparison.

time2 The secondESMF_Time in comparison.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

38.4.13 ESMF_TimePrint - Print the contents of a Time

INTERFACE:

subroutine ESMF_TimePrint(time, options, rc)

ARGUMENTS:

type(ESMF_Time), intent(inout) :: time
character (len= *), intent(in), optional :: options
integer, intent(out), optional :: rc

DESCRIPTION:

Prints out the contents of anESMF_Time to stdout , in support of testing and debugging. The options control the
type of information and level of detail. For options "string" and "string isofrac", YYYY format returns at least 4 digits;
years <= 999 are padded on the left with zeroes and years >= 10000 return the number of digits required.

Note: ManyESMF_<class>Print methods are implemented in C++. On some platforms/compilers there is a
potential issue with interleaving Fortran and C++ output tostdout such that it doesn’t appear in the expected order.
If this occurs, theESMF_IOUnitFlush() method may be used on unit 6 to get coherent output.

The arguments are:

time TheESMF_Timeto be printed out.

641

[options] Print options. If none specified, prints all Time property values.
"string" - printstime ’s value in ISO 8601 format for all units through seconds. Forany non-zero fractional
seconds, prints in integer rational fraction form n/d. Format is YYYY-MM-DDThh:mm:ss[:n/d], where [:n/d]
is the integer numerator and denominator of the fractional seconds value, if present. See [9] and [2]. See also
methodESMF_TimeGet(..., timeString= , ...)
"string isofrac" - printstime ’s value in strict ISO 8601 format for all units, including any fractional sec-
onds part. Format is YYYY-MM-DDThh:mm:ss[.f] where [.f] represents fractional seconds in decimal form, if
present. See [9] and [2]. See also methodESMF_TimeGet(..., timeStringISOFrac= , ...)

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

38.4.14 ESMF_TimeSet - Initialize or set a Time

INTERFACE:

subroutine ESMF_TimeSet(time, yy, yy_i8, &
mm, dd, &
d, d_i8, &
h, m, &
s, s_i8, &
ms, us, ns, &
d_r8, h_r8, m_r8, s_r8, &
ms_r8, us_r8, ns_r8, &
sN, sN_i8, sD, sD_i8, &
calendar, calendarType, &
timeZone, rc)

ARGUMENTS:

type(ESMF_Time), intent(inout) :: time
integer(ESMF_KIND_I4), intent(in), optional :: yy
integer(ESMF_KIND_I8), intent(in), optional :: yy_i8
integer, intent(in), optional :: mm
integer, intent(in), optional :: dd
integer(ESMF_KIND_I4), intent(in), optional :: d
integer(ESMF_KIND_I8), intent(in), optional :: d_i8
integer(ESMF_KIND_I4), intent(in), optional :: h
integer(ESMF_KIND_I4), intent(in), optional :: m
integer(ESMF_KIND_I4), intent(in), optional :: s
integer(ESMF_KIND_I8), intent(in), optional :: s_i8
integer(ESMF_KIND_I4), intent(in), optional :: ms
integer(ESMF_KIND_I4), intent(in), optional :: us
integer(ESMF_KIND_I4), intent(in), optional :: ns
real(ESMF_KIND_R8), intent(in), optional :: d_r8
real(ESMF_KIND_R8), intent(in), optional :: h_r8
real(ESMF_KIND_R8), intent(in), optional :: m_r8
real(ESMF_KIND_R8), intent(in), optional :: s_r8
real(ESMF_KIND_R8), intent(in), optional :: ms_r8
real(ESMF_KIND_R8), intent(in), optional :: us_r8
real(ESMF_KIND_R8), intent(in), optional :: ns_r8
integer(ESMF_KIND_I4), intent(in), optional :: sN
integer(ESMF_KIND_I8), intent(in), optional :: sN_i8

642

integer(ESMF_KIND_I4), intent(in), optional :: sD
integer(ESMF_KIND_I8), intent(in), optional :: sD_i8
type(ESMF_Calendar), intent(in), optional :: calendar
type(ESMF_CalendarType), intent(in), optional :: calend arType
integer, intent(in), optional :: timeZone ! not implemente d
integer, intent(out), optional :: rc

DESCRIPTION:

Initializes anESMF_Timewith a set of user-specified units via Fortran optional arguments.
The range of valid values for mm and dd depend on the calendar used. For Gregorian, Julian, and No-Leap calendars,
mm is [1-12] and dd is [1-28,29,30, or 31], depending on the value of mm and whether yy or yy_i8 is a leap year.
For the 360-day calendar, mm is [1-12] and dd is [1-30]. For the Julian-day, Modified Julian-day, and No-calendar,
yy, yy_i8, mm, and dd are invalid inputs, since these calendars do not define them. When valid, the yy and yy_i8
arguments should be fully specified, e.g. 2003 instead of 03.yy and yy_i8 ranges are only limited by machine word
size, except for the Gregorian and Julian calendars, where the lowest (proleptic) date limits are 3/1/-4800 and 3/1/-
4712, respectively. This is a limitation of the Gregorian date-to-Julian day and Julian date-to-Julian day conversion
algorithms used to convert Gregorian and Julian dates to theinternal representation of seconds. See [5] for a description
of the Gregorian date-to-Julian day algorithm and [8] for a description of the Julian date-to-Julian day algorithm. The
Custom calendar will have user-defined values for yy, yy_i8,mm, and dd.
The Julian day specifier, d or d_i8, can only be used with the Julian-day and Modified Julian Day calendars, and has
a valid range depending on the word size. For a signed 32-bit d, the range for Julian-day is [+/- 24855]. For a signed
64-bit d or d_i8, the valid range for Julian-day is [+/- 106,751,991,167,300]. The Julian day number system adheres
to the conventional standard where the reference day of d=0 corresponds to 11/24/-4713 in the proleptic Gregorian
calendar and 1/1/-4712 in the proleptic Julian calendar. See [13] and [1].
The Modified Julian Day, introduced by space scientists in the late 1950’s, is defined as Julian-day - 2400000.5.
See [20].
Note that d and d_i8 are not valid for the No-Calendar. To remain consistent with non-Earth calendars added to ESMF
in the future, ESMF requires a calendar to be planet-specific. Hence the No-Calendar does not know what a day is; it
cannot assume an Earth day of 86400 seconds.
Hours, minutes, seconds, and sub-seconds can be used with any calendar, since they are standardized units that are the
same for any planet.
Time manager represents and manipulates time internally with integers to maintain precision. Hence, user-specified
floating point values are converted internally to integers.Sub-second values are represented internally with an integer
numerator and denominator fraction (sN/sD). The smallest required resolution is nanoseconds (denominator), per
Time Manager requirement TMG3.1. For example, pi can be represented as s=3, sN=141592654, sD=1000000000.
However, via sN_i8 and sD_i8, larger values can be used. If specifying a constant floating point value, be sure to
provide at least 16 digits to take full advantage of double precision, for example s_r8=2.718281828459045d0 for ’e’
seconds.
The arguments are:

time The object instance to initialize.

[yy] Integer year (>= 32-bit). Default = 0

[yy_i8] Integer year (large, >= 64-bit). Default = 0

[mm] Integer month. Default = 1

[dd] Integer day of the month. Default = 1

[d] Integer Julian, or Modified Julian, days (>= 32-bit). Default = 0

[d_i8] Integer Julian, or Modified Julian days (large, >= 64-bit). Default = 0

[h] Integer hours. Default = 0

[m] Integer minutes. Default = 0

643

[s] Integer seconds (>= 32-bit). Default = 0

[s_i8] Integer seconds (large, >= 64-bit). Default = 0

[ms] Integer milliseconds. Default = 0

[us] Integer microseconds. Default = 0

[ns] Integer nanoseconds. Default = 0

[d_r8] Double precision days. Default = 0.0.

[h_r8] Double precision hours. Default = 0.0.

[m_r8] Double precision minutes. Default = 0.0.

[s_r8] Double precision seconds. Default = 0.0.

[ms_r8] Double precision milliseconds. Default = 0.0.

[us_r8] Double precision microseconds. Default = 0.0.

[ns_r8] Double precision nanoseconds. Default = 0.0.

[sN] Integer numerator of fractional seconds (sN/sD). Default =0

[sN_i8] Integer numerator of fractional seconds (sN_i8/sD_i8) (large, >= 64-bit). Default = 0

[sD] Integer denominator of fractional seconds (sN/sD). Default = 1

[sD_i8] Integer denominator of fractional seconds (sN_i8/sD_i8) (large, >= 64-bit). Default = 1

calendar AssociatedCalendar . Defaults to calendarESMF_CAL_NOCALENDARor default specified inESMF_Initialize()
or ESMF_CalendarSetDefault() . Alternate to, and mutually exclusive with, calendarType below. Pri-
marily for specifying a custom calendar type.

[calendarType] Alternate to, and mutually exclusive with, calendar above.More convenient way of specifying a
built-in calendar type.

[timeZone] Associated timezone (hours offset from UTC, e.g. EST = -5). Default = 0 (UTC). (Not implemented yet).

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

38.4.15 ESMF_TimeSyncToRealTime - Get system real time (wall clock time)

INTERFACE:

subroutine ESMF_TimeSyncToRealTime(time, rc)

ARGUMENTS:

type(ESMF_Time), intent(inout) :: time
integer, intent(out), optional :: rc

DESCRIPTION:

Gets the system real time (wall clock time), and returns it asanESMF_Time. Accurate to the nearest second.
The arguments are:

time The object instance to receive the real time.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

644

38.4.16 ESMF_TimeValidate - Validate a Time

INTERFACE:

subroutine ESMF_TimeValidate(time, options, rc)

ARGUMENTS:

type(ESMF_Time), intent(inout) :: time
character (len= *), intent(in), optional :: options
integer, intent(out), optional :: rc

DESCRIPTION:

Checks whether anESMF_Time is valid. Must be a valid date/time on a valid calendar. The options control the type
of validation.
The arguments are:

time ESMF_Time instant to be validated.

[options] Validation options. If none specified, validates alltime property values.
"calendar" - validate only thetime ’s calendar.
"timezone" - validate only thetime ’s timezone.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

645

39 TimeInterval Class

39.1 Description

A TimeInterval represents a period between time instants. It can be either positive or negative. Like the Time interface,
the TimeInterval interface is designed so that you can choose one or more options from a list of time units in order to
specify a TimeInterval. See Section 36.3, Table 36.4 for theavailable options.
There are TimeInterval methods defined for setting and getting a TimeInterval, for incrementing and decrementing a
TimeInterval by another TimeInterval, and for multiplyingand dividing TimeIntervals by integers, reals, fractions and
other TimeIntervals. Methods are also defined to take the absolute value and negative absolute value of a TimeInterval,
and for comparing the length of two TimeIntervals.
The class used to represent time instants in ESMF is Time, andthis class is frequently used in operations along with
TimeIntervals. For example, the difference between two Times is a TimeInterval.
When a TimeInterval is used in calculations that involve an absolute reference time, such as incrementing a Time with a
TimeInterval, calendar dependencies may be introduced. The length of the time period that the TimeInterval represents
will depend on the reference Time and the standard calendar that is associated with it. The calendar dependency
becomes apparent when, for example, adding a TimeInterval of 1 day to the Time of February 28, 1996, at 4:00pm
EST. In a 360 day calendar, the resulting date would be February 29, 1996, at 4:00pm EST. In a no-leap calendar, the
result would be March 1, 1996, at 4:00pm EST.
TimeIntervals are used by other parts of the ESMF timekeeping system, such as Clocks (Section 40.1) and Alarms
(Section 41.1).

39.2 Use and Examples

A typical use for a TimeInterval in a geophysical model is representation of the time step by which the model is
advanced. Some models change the size of their time step as the model run progresses; this could be done by incre-
menting or decrementing the original time step by another TimeInterval, or by dividing or multiplying the time step
by an integer value. An example of advancing model time usinga TimeInterval representation of a time step is shown
in Section 40.1.
The following brief example shows how to create, initializeand manipulateTimeInterval .

! !PROGRAM: ESMF_TimeIntervalEx - Time Interval initializ ation and manipulation examples
!
! !DESCRIPTION:
!
! This program shows examples of Time Interval initializati on and manipulation
!-- ---------------------------

! ESMF Framework module
use ESMF_Mod
implicit none

! instantiate some time intervals
type(ESMF_TimeInterval) :: timeinterval1, timeinterval 2, timeinterval3

! local variables
integer :: d, h, m, s

! return code
integer:: rc

! initialize ESMF framework
call ESMF_Initialize(defaultCalendar=ESMF_CAL_GREGOR IAN, &

defaultlogfilename="TimeIntervalEx.Log", &
defaultlogtype=ESMF_LOG_MULTI, rc=rc)

646

39.2.1 TimeInterval initialization

This example shows how to initialize twoESMF_TimeIntervals .

! initialize time interval1 to 1 day
call ESMF_TimeIntervalSet(timeinterval1, d=1, rc=rc)

call ESMF_TimeIntervalPrint(timeinterval1, "string", r c)

! initialize time interval2 to 4 days, 1 hour, 30 minutes, 10 s econds
call ESMF_TimeIntervalSet(timeinterval2, d=4, h=1, m=30 , s=10, rc=rc)

call ESMF_TimeIntervalPrint(timeinterval2, "string", r c)

39.2.2 TimeInterval conversion

This example shows how to convertESMF_TimeIntervals into different units.

call ESMF_TimeIntervalGet(timeinterval1, s=s, rc=rc)
print * , "Time Interval1 = ", s, " seconds."

call ESMF_TimeIntervalGet(timeinterval2, h=h, m=m, s=s, rc=rc)
print * , "Time Interval2 = ", h, " hours, ", m, " minutes, ", &

s, " seconds."

39.2.3 TimeInterval difference

This example shows how to calculate the difference between two ESMF_TimeIntervals .

! difference between two time intervals
timeinterval3 = timeinterval2 - timeinterval1

call ESMF_TimeIntervalGet(timeinterval3, d=d, h=h, m=m, s=s, rc=rc)
print * , "Difference between TimeInterval2 and TimeInterval1 = ", &

d, " days, ", h, " hours, ", m, " minutes, ", s, " seconds."

39.2.4 TimeInterval multiplication

This example shows how to multiply anESMF_TimeInterval .

! multiply time interval by an integer
timeinterval3 = timeinterval2 * 3
call ESMF_TimeIntervalGet(timeinterval3, d=d, h=h, m=m, s=s, rc=rc)
print * , "TimeInterval2 multiplied by 3 = ", d, " days, ", h, &

" hours, ", m, " minutes, ", s, " seconds."

647

39.2.5 TimeInterval comparison

This example shows how to compare twoESMF_TimeIntervals .

! comparison
if (timeinterval1 < timeinterval2) then

print * , "TimeInterval1 is smaller than TimeInterval2"
else

print * , "TimeInterval1 is larger than or equal to TimeInterval2"
end if

! finalize ESMF framework
call ESMF_Finalize(rc=rc)

end program ESMF_TimeIntervalEx

39.3 Restrictions and Future Work

1. Limits on time span. The limits on the time span that can be represented are based on the 64-bit integer types
used. For seconds, a signed 64-bit integer will have a range of +/- 263-1, or +/- 9,223,372,036,854,775,807. This
corresponds to a range of +/- (263-1)/(86400 * 365.25) or +/- 292,271,023,045 years.

For fractional seconds, a signed 64-bit integer will handlea resolution of +/-231-1, or +/- 9,223,372,036,854,775,807
parts of a second.

39.4 Class API

39.4.1 ESMF_TimeIntervalOperator(+) - Add two TimeIntervals

INTERFACE:

interface operator(+)
sum = timeinterval1 + timeinterval2

RETURN VALUE:

type(ESMF_TimeInterval) :: sum

ARGUMENTS:

type(ESMF_TimeInterval), intent(in) :: timeinterval1
type(ESMF_TimeInterval), intent(in) :: timeinterval2

DESCRIPTION:

Overloads the (+) operator for theESMF_TimeInterval class to addtimeinterval1 to timeinterval2
and return the sum as anESMF_TimeInterval .
The arguments are:

timeinterval1 The augend.

timeinterval2 The addend.

648

39.4.2 ESMF_TimeIntervalOperator(-) - Subtract one TimeInterval from another

INTERFACE:

interface operator(-)
difference = timeinterval1 - timeinterval2

RETURN VALUE:

type(ESMF_TimeInterval) :: difference

ARGUMENTS:

type(ESMF_TimeInterval), intent(in) :: timeinterval1
type(ESMF_TimeInterval), intent(in) :: timeinterval2

DESCRIPTION:

Overloads the (-) operator for theESMF_TimeInterval class to subtracttimeinterval2 from timeinterval1
and return the difference as anESMF_TimeInterval .
The arguments are:

timeinterval1 The minuend.

timeinterval2 The subtrahend.

39.4.3 ESMF_TimeIntervalOperator(-) - Perform unary negation on a TimeInterval

INTERFACE:

interface operator(-)
timeinterval = -timeinterval

RETURN VALUE:

type(ESMF_TimeInterval) :: -timeInterval

ARGUMENTS:

type(ESMF_TimeInterval), intent(in) :: timeinterval

DESCRIPTION:

Overloads the (-) operator for theESMF_TimeInterval class to perform unary negation ontimeinterval and
return the result.
The arguments are:

timeinterval The time interval to be negated.

39.4.4 ESMF_TimeIntervalOperator(/) - Divide two TimeIntervals, return double precision quotient

INTERFACE:

interface operator(/)
quotient = timeinterval1 / timeinterval2

649

RETURN VALUE:

real(ESMF_KIND_R8) :: quotient

ARGUMENTS:

type(ESMF_TimeInterval), intent(in) :: timeinterval1
type(ESMF_TimeInterval), intent(in) :: timeinterval2

DESCRIPTION:

Overloads the (/) operator for theESMF_TimeInterval class to returntimeinterval1 divided bytimeinterval2
as a double precision quotient.
The arguments are:

timeinterval1 The dividend.

timeinterval2 The divisor.

39.4.5 ESMF_TimeIntervalOperator(/) - Divide a TimeInterval by an integer, return TimeInterval quotient

INTERFACE:

interface operator(/)
quotient = timeinterval / divisor

RETURN VALUE:

type(ESMF_TimeInterval) :: quotient

ARGUMENTS:

type(ESMF_TimeInterval), intent(in) :: timeinterval
integer(ESMF_KIND_I4), intent(in) :: divisor

DESCRIPTION:

Overloads the (/) operator for theESMF_TimeInterval class to divide atimeinterval by an integerdivisor ,
and return the quotient as anESMF_TimeInterval .
The arguments are:

timeinterval The dividend.

divisor Integer divisor.

39.4.6 ESMF_TimeIntervalFunction(MOD) - Divide two TimeIntervals, return TimeInterval remainder

INTERFACE:

interface MOD
remainder = MOD(timeinterval1, timeinterval2)

RETURN VALUE:

type(ESMF_TimeInterval) :: remainder

650

ARGUMENTS:

type(ESMF_TimeInterval), intent(in) :: timeinterval1
type(ESMF_TimeInterval), intent(in) :: timeinterval2

DESCRIPTION:

Overloads the pre-defined MOD() function for theESMF_TimeInterval class to return the remainder oftimeinterval1
divided bytimeinterval2 as anESMF_TimeInterval .
The arguments are:

timeinterval1 The dividend.

timeinterval2 The divisor.

39.4.7 ESMF_TimeIntervalOperator(x) - Multiply a TimeInt erval by an integer

INTERFACE:

interface operator(*)
product = timeinterval * multiplier

RETURN VALUE:

type(ESMF_TimeInterval) :: product

ARGUMENTS:

type(ESMF_TimeInterval), intent(in) :: timeinterval
integer(ESMF_KIND_I4), intent(in) :: multiplier

DESCRIPTION:

Overloads the (*) operator for theESMF_TimeInterval class to multiply atimeinterval by an integer
multiplier , and return the product as anESMF_TimeInterval .
Commutative complement to overloaded operator (*) below.
The arguments are:

timeinterval The multiplicand.

mutliplier The integer multiplier.

39.4.8 ESMF_TimeIntervalOperator(x) - Multiply a TimeInt erval by an integer

INTERFACE:

interface operator(*)
product = multiplier * timeinterval

RETURN VALUE:

type(ESMF_TimeInterval) :: product

ARGUMENTS:

651

integer(ESMF_KIND_I4), intent(in) :: multiplier
type(ESMF_TimeInterval), intent(in) :: timeinterval

DESCRIPTION:

Overloads the (*) operator for theESMF_TimeInterval class to multiply atimeinterval by an integer
multiplier , and return the product as anESMF_TimeInterval .
Commutative complement to overloaded operator (*) above.
The arguments are:

mutliplier The integer multiplier.

timeinterval The multiplicand.

39.4.9 ESMF_TimeIntervalOperator(==) - Test if TimeInterval 1 is equal to TimeInterval 2

INTERFACE:

interface operator(==)
if (timeinterval1 == timeinterval2) then ... endif

OR
result = (timeinterval1 == timeinterval2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_TimeInterval), intent(in) :: timeinterval1
type(ESMF_TimeInterval), intent(in) :: timeinterval2

DESCRIPTION:

Overloads the (==) operator for theESMF_TimeInterval class to return true iftimeinterval1 andtimeinterval2
are equal, and false otherwise.
The arguments are:

timeinterval1 First ESMF_TimeInterval in comparison.

timeinterval2 SecondESMF_TimeInterval in comparison.

39.4.10 ESMF_TimeIntervalOperator(/=) - Test if TimeInterval 1 is not equal to TimeInterval 2

INTERFACE:

interface operator(/=)
if (timeinterval1 /= timeinterval2) then ... endif

OR
result = (timeinterval1 /= timeinterval2)

RETURN VALUE:

logical :: result

652

ARGUMENTS:

type(ESMF_TimeInterval), intent(in) :: timeinterval1
type(ESMF_TimeInterval), intent(in) :: timeinterval2

DESCRIPTION:

Overloads the (/=) operator for theESMF_TimeInterval class to return true iftimeinterval1 andtimeinterval2
are not equal, and false otherwise.
The arguments are:

timeinterval1 First ESMF_TimeInterval in comparison.

timeinterval2 SecondESMF_TimeInterval in comparison.

39.4.11 ESMF_TimeIntervalOperator(<) - Test if TimeInterval 1 is less than TimeInterval 2

INTERFACE:

interface operator(<)
if (timeinterval1 < timeinterval2) then ... endif

OR
result = (timeinterval1 < timeinterval2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_TimeInterval), intent(in) :: timeinterval1
type(ESMF_TimeInterval), intent(in) :: timeinterval2

DESCRIPTION:

Overloads the (<) operator for theESMF_TimeInterval class to return true iftimeinterval1 is less than
timeinterval2 , and false otherwise.
The arguments are:

timeinterval1 First ESMF_TimeInterval in comparison.

timeinterval2 SecondESMF_TimeInterval in comparison.

39.4.12 ESMF_TimeIntervalOperator(<=) - Test if TimeInterval 1 is less than or equal to TimeInterval 2

INTERFACE:

interface operator(<=)
if (timeinterval1 <= timeinterval2) then ... endif

OR
result = (timeinterval1 <= timeinterval2)

RETURN VALUE:

logical :: result

653

ARGUMENTS:

type(ESMF_TimeInterval), intent(in) :: timeinterval1
type(ESMF_TimeInterval), intent(in) :: timeinterval2

DESCRIPTION:

Overloads the (<=) operator for theESMF_TimeInterval class to return true iftimeinterval1 is less than or
equal totimeinterval2 , and false otherwise.
The arguments are:

timeinterval1 First ESMF_TimeInterval in comparison.

timeinterval2 SecondESMF_TimeInterval in comparison.

39.4.13 ESMF_TimeIntervalOperator(>) - Test if TimeInterval 1 is greater than TimeInterval 2

INTERFACE:

interface operator(>)
if (timeinterval1 > timeinterval2) then ... endif

OR
result = (timeinterval1 > timeinterval2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_TimeInterval), intent(in) :: timeinterval1
type(ESMF_TimeInterval), intent(in) :: timeinterval2

DESCRIPTION:

Overloads the (<) operator for theESMF_TimeInterval class to return true iftimeinterval1 is greater than
timeinterval2 , and false otherwise.
The arguments are:

timeinterval1 First ESMF_TimeInterval in comparison.

timeinterval2 SecondESMF_TimeInterval in comparison.

39.4.14 ESMF_TimeIntervalOperator(>=) - Test if TimeInterval 1 is greater than or equal to TimeInterval 2

INTERFACE:

interface operator(>=)
if (timeinterval1 >= timeinterval2) then ... endif

OR
result = (timeinterval1 >= timeinterval2)

RETURN VALUE:

logical :: result

654

ARGUMENTS:

type(ESMF_TimeInterval), intent(in) :: timeinterval1
type(ESMF_TimeInterval), intent(in) :: timeinterval2

DESCRIPTION:

Overloads the (<=) operator for theESMF_TimeInterval class to return true iftimeinterval1 is greater than
or equal totimeinterval2 , and false otherwise.
The arguments are:

timeinterval1 First ESMF_TimeInterval in comparison.

timeinterval2 SecondESMF_TimeInterval in comparison.

39.4.15 ESMF_TimeIntervalAbsValue - Get the absolute value of a TimeInterval

INTERFACE:

function ESMF_TimeIntervalAbsValue(timeinterval)

RETURN VALUE:

type(ESMF_TimeInterval) :: ESMF_TimeIntervalAbsValue

ARGUMENTS:

type(ESMF_TimeInterval), intent(in) :: timeinterval

DESCRIPTION:

Returns the absolute value oftimeinterval .
The argument is:

timeinterval The object instance to take the absolute value of. Absolute value is returned as the value of the function.

39.4.16 ESMF_TimeIntervalGet - Get a TimeInterval value

INTERFACE:

! Private name; call using ESMF_TimeIntervalGet()
subroutine ESMF_TimeIntervalGetDur(timeinterval, &

yy, yy_i8, &
mm, mm_i8, &
d, d_i8, &
h, m, &
s, s_i8, &
ms, us, ns, &
d_r8, h_r8, m_r8, s_r8, &
ms_r8, us_r8, ns_r8, &
sN, sN_i8, sD, sD_i8, &
startTime, calendar, calendarType, &
timeString, timeStringISOFrac, rc)

655

ARGUMENTS:

type(ESMF_TimeInterval), intent(inout) :: timeinterval
integer(ESMF_KIND_I4), intent(out), optional :: yy
integer(ESMF_KIND_I8), intent(out), optional :: yy_i8
integer(ESMF_KIND_I4), intent(out), optional :: mm
integer(ESMF_KIND_I8), intent(out), optional :: mm_i8
integer(ESMF_KIND_I4), intent(out), optional :: d
integer(ESMF_KIND_I8), intent(out), optional :: d_i8
integer(ESMF_KIND_I4), intent(out), optional :: h
integer(ESMF_KIND_I4), intent(out), optional :: m
integer(ESMF_KIND_I4), intent(out), optional :: s
integer(ESMF_KIND_I8), intent(out), optional :: s_i8
integer(ESMF_KIND_I4), intent(out), optional :: ms
integer(ESMF_KIND_I4), intent(out), optional :: us
integer(ESMF_KIND_I4), intent(out), optional :: ns
real(ESMF_KIND_R8), intent(out), optional :: d_r8
real(ESMF_KIND_R8), intent(out), optional :: h_r8
real(ESMF_KIND_R8), intent(out), optional :: m_r8
real(ESMF_KIND_R8), intent(out), optional :: s_r8
real(ESMF_KIND_R8), intent(out), optional :: ms_r8
real(ESMF_KIND_R8), intent(out), optional :: us_r8
real(ESMF_KIND_R8), intent(out), optional :: ns_r8
integer(ESMF_KIND_I4), intent(out), optional :: sN
integer(ESMF_KIND_I8), intent(out), optional :: sN_i8
integer(ESMF_KIND_I4), intent(out), optional :: sD
integer(ESMF_KIND_I8), intent(out), optional :: sD_i8
type(ESMF_Time), intent(out), optional :: startTime
type(ESMF_Calendar), intent(out), optional :: calendar
type(ESMF_CalendarType), intent(out), optional :: calen darType
character (len= *), intent(out), optional :: timeString
character (len= *), intent(out), optional :: timeStringISOFrac
integer, intent(out), optional :: rc

DESCRIPTION:

Gets the value oftimeinterval in units specified by the user via Fortran optional arguments.
The ESMF Time Manager represents and manipulates time internally with integers to maintain precision. Hence,
user-specified floating point values are converted internally from integers.
Units are bound (normalized) to the next larger unit specified. For example, if a time interval is defined to be one
day, thenESMF_TimeIntervalGet(d = days, s = seconds) would returndays = 1 , seconds =
0, whereasESMF_TimeIntervalGet(s = seconds) would returnseconds = 86400 .
See../include/ESMC_BaseTime.h and ../include/ESMC_TimeInterval.h for complete descrip-
tion.
For timeString, convertsESMF_TimeInterval ’s value into partial ISO 8601 format PyYmMdDThHmMs[:n/d]S.
See [9] and [2]. See also methodESMF_TimeIntervalPrint() .
For timeStringISOFrac, convertsESMF_TimeInterval ’s value into full ISO 8601 format PyYmMdDThHmMs[.f]S.
See [9] and [2]. See also methodESMF_TimeIntervalPrint() .
The arguments are:

timeinterval The object instance to query.

[yy] Integer years (>= 32-bit).

[yy_i8] Integer years (large, >= 64-bit).

[mm] Integer months (>= 32-bit).

656

[mm_i8] Integer months (large, >= 64-bit).

[d] Integer Julian, or Modified Julian, days (>= 32-bit).

[d_i8] Integer Julian, or Modified Julian, days (large, >= 64-bit).

[h] Integer hours.

[m] Integer minutes.

[s] Integer seconds (>= 32-bit).

[s_i8] Integer seconds (large, >= 64-bit).

[ms] Integer milliseconds.

[us] Integer microseconds.

[ns] Integer nanoseconds.

[d_r8] Double precision days.

[h_r8] Double precision hours.

[m_r8] Double precision minutes.

[s_r8] Double precision seconds.

[ms_r8] Double precision milliseconds.

[us_r8] Double precision microseconds.

[ns_r8] Double precision nanoseconds.

[sN] Integer numerator of fractional seconds (sN/sD).

[sN_i8] Integer numerator of fractional seconds (sN_i8/sD_i8) (large, >= 64-bit).

[sD] Integer denominator of fractional seconds (sN/sD).

[sD_i8] Integer denominator of fractional seconds (sN_i8/sD_i8) (large, >= 64-bit).

[startTime] Starting time, if set, of an absolute calendar interval (yy,mm, and/or d).

[calendar] AssociatedCalendar , if any.

[calendarType] AssociatedCalendarType , if any.

[timeString] Convert time interval value to format string PyYmMdDThHmMs[:n/d]S, where n/d is numerator/denominator
of any fractional seconds and all other units are in ISO 8601 format. See [9] and [2]. See also method
ESMF_TimeIntervalPrint() .

[timeStringISOFrac] Convert time interval value to strict ISO 8601 format stringPyYmMdDThHmMs[.f], where f is
decimal form of any fractional seconds. See [9] and [2]. See also methodESMF_TimeIntervalPrint() .

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

657

39.4.17 ESMF_TimeIntervalGet - Get a TimeInterval value

INTERFACE:

! Private name; call using ESMF_TimeIntervalGet()
subroutine ESMF_TimeIntervalGetDurStart(timeinterval , &

yy, yy_i8, &
mm, mm_i8, &
d, d_i8, &
h, m, &
s, s_i8, &
ms, us, ns, &
d_r8, h_r8, m_r8, s_r8, &
ms_r8, us_r8, ns_r8, &
sN, sN_i8, sD, sD_i8, &
startTime, &
calendar, calendarType, &
startTimeIn, &
timeString, timeStringISOFrac, rc)

ARGUMENTS:

type(ESMF_TimeInterval), intent(inout) :: timeinterval
integer(ESMF_KIND_I4), intent(out), optional :: yy
integer(ESMF_KIND_I8), intent(out), optional :: yy_i8
integer(ESMF_KIND_I4), intent(out), optional :: mm
integer(ESMF_KIND_I8), intent(out), optional :: mm_i8
integer(ESMF_KIND_I4), intent(out), optional :: d
integer(ESMF_KIND_I8), intent(out), optional :: d_i8
integer(ESMF_KIND_I4), intent(out), optional :: h
integer(ESMF_KIND_I4), intent(out), optional :: m
integer(ESMF_KIND_I4), intent(out), optional :: s
integer(ESMF_KIND_I8), intent(out), optional :: s_i8
integer(ESMF_KIND_I4), intent(out), optional :: ms
integer(ESMF_KIND_I4), intent(out), optional :: us
integer(ESMF_KIND_I4), intent(out), optional :: ns
real(ESMF_KIND_R8), intent(out), optional :: d_r8
real(ESMF_KIND_R8), intent(out), optional :: h_r8
real(ESMF_KIND_R8), intent(out), optional :: m_r8
real(ESMF_KIND_R8), intent(out), optional :: s_r8
real(ESMF_KIND_R8), intent(out), optional :: ms_r8
real(ESMF_KIND_R8), intent(out), optional :: us_r8
real(ESMF_KIND_R8), intent(out), optional :: ns_r8
integer(ESMF_KIND_I4), intent(out), optional :: sN
integer(ESMF_KIND_I8), intent(out), optional :: sN_i8
integer(ESMF_KIND_I4), intent(out), optional :: sD
integer(ESMF_KIND_I8), intent(out), optional :: sD_i8
type(ESMF_Time), intent(out), optional :: startTime
type(ESMF_Calendar), intent(out), optional :: calendar
type(ESMF_CalendarType), intent(out), optional :: calen darType
type(ESMF_Time), intent(inout) :: startTimeIn ! Input
character (len= *), intent(out), optional :: timeString
character (len= *), intent(out), optional :: timeStringISOFrac
integer, intent(out), optional :: rc

658

DESCRIPTION:

Gets the value oftimeinterval in units specified by the user via Fortran optional arguments.
The ESMF Time Manager represents and manipulates time internally with integers to maintain precision. Hence,
user-specified floating point values are converted internally from integers.
Units are bound (normalized) to the next larger unit specified. For example, if a time interval is defined to be one
day, thenESMF_TimeIntervalGet(d = days, s = seconds) would returndays = 1 , seconds =
0, whereasESMF_TimeIntervalGet(s = seconds) would returnseconds = 86400 .
See../include/ESMC_BaseTime.h and ../include/ESMC_TimeInterval.h for complete descrip-
tion.
For timeString, convertsESMF_TimeInterval ’s value into partial ISO 8601 format PyYmMdDThHmMs[:n/d]S.
See [9] and [2]. See also methodESMF_TimeIntervalPrint() .
For timeStringISOFrac, convertsESMF_TimeInterval ’s value into full ISO 8601 format PyYmMdDThHmMs[.f]S.
See [9] and [2]. See also methodESMF_TimeIntervalPrint() .
The arguments are:

timeinterval The object instance to query.

[yy] Integer years (>= 32-bit).

[yy_i8] Integer years (large, >= 64-bit).

[mm] Integer months (>= 32-bit).

[mm_i8] Integer months (large, >= 64-bit).

[d] Integer Julian, or Modified Julian, days (>= 32-bit).

[d_i8] Integer Julian, or Modified Julian, days (large, >= 64-bit).

[h] Integer hours.

[m] Integer minutes.

[s] Integer seconds (>= 32-bit).

[s_i8] Integer seconds (large, >= 64-bit).

[ms] Integer milliseconds.

[us] Integer microseconds.

[ns] Integer nanoseconds.

[d_r8] Double precision days.

[h_r8] Double precision hours.

[m_r8] Double precision minutes.

[s_r8] Double precision seconds.

[ms_r8] Double precision milliseconds.

[us_r8] Double precision microseconds.

[ns_r8] Double precision nanoseconds.

[sN] Integer numerator of fractional seconds (sN/sD).

[sN_i8] Integer numerator of fractional seconds (sN_i8/sD_i8) (large, >= 64-bit).

[sD] Integer denominator of fractional seconds (sN/sD).

659

[sD_i8] Integer denominator of fractional seconds (sN_i8/sD_i8) (large, >= 64-bit).

[startTime] Starting time, if set, of an absolute calendar interval (yy,mm, and/or d).

[calendar] AssociatedCalendar , if any.

[calendarType] AssociatedCalendarType , if any.

startTimeIn INPUT argument: pins a calendar interval to a specific point in time to allow conversion between relative
units (yy, mm, d) and absolute units (d, h, m, s). Overrides any startTime and/or endTime previously set.
Mutually exclusive with endTimeIn and calendarIn.

[timeString] Convert time interval value to format string PyYmMdDThHmMs[:n/d]S, where n/d is numerator/denominator
of any fractional seconds and all other units are in ISO 8601 format. See [9] and [2]. See also method
ESMF_TimeIntervalPrint() .

[timeStringISOFrac] Convert time interval value to strict ISO 8601 format stringPyYmMdDThHmMs[.f], where f is
decimal form of any fractional seconds. See [9] and [2]. See also methodESMF_TimeIntervalPrint() .

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

39.4.18 ESMF_TimeIntervalGet - Get a TimeInterval value

INTERFACE:

! Private name; call using ESMF_TimeIntervalGet()
subroutine ESMF_TimeIntervalGetDurCal(timeinterval, &

yy, yy_i8, &
mm, mm_i8, &
d, d_i8, &
h, m, &
s, s_i8, &
ms, us, ns, &
d_r8, h_r8, m_r8, s_r8, &
ms_r8, us_r8, ns_r8, &
sN, sN_i8, sD, sD_i8, &
startTime, &
calendar, calendarType, &
calendarIn, &
timeString, timeStringISOFrac, rc)

ARGUMENTS:

type(ESMF_TimeInterval), intent(inout) :: timeinterval
integer(ESMF_KIND_I4), intent(out), optional :: yy
integer(ESMF_KIND_I8), intent(out), optional :: yy_i8
integer(ESMF_KIND_I4), intent(out), optional :: mm
integer(ESMF_KIND_I8), intent(out), optional :: mm_i8
integer(ESMF_KIND_I4), intent(out), optional :: d
integer(ESMF_KIND_I8), intent(out), optional :: d_i8
integer(ESMF_KIND_I4), intent(out), optional :: h
integer(ESMF_KIND_I4), intent(out), optional :: m
integer(ESMF_KIND_I4), intent(out), optional :: s
integer(ESMF_KIND_I8), intent(out), optional :: s_i8
integer(ESMF_KIND_I4), intent(out), optional :: ms

660

integer(ESMF_KIND_I4), intent(out), optional :: us
integer(ESMF_KIND_I4), intent(out), optional :: ns
real(ESMF_KIND_R8), intent(out), optional :: d_r8
real(ESMF_KIND_R8), intent(out), optional :: h_r8
real(ESMF_KIND_R8), intent(out), optional :: m_r8
real(ESMF_KIND_R8), intent(out), optional :: s_r8
real(ESMF_KIND_R8), intent(out), optional :: ms_r8
real(ESMF_KIND_R8), intent(out), optional :: us_r8
real(ESMF_KIND_R8), intent(out), optional :: ns_r8
integer(ESMF_KIND_I4), intent(out), optional :: sN
integer(ESMF_KIND_I8), intent(out), optional :: sN_i8
integer(ESMF_KIND_I4), intent(out), optional :: sD
integer(ESMF_KIND_I8), intent(out), optional :: sD_i8
type(ESMF_Time), intent(inout), optional :: startTime
type(ESMF_Calendar), intent(out), optional :: calendar
type(ESMF_CalendarType), intent(out), optional :: calen darType
type(ESMF_Calendar), intent(in) :: calendarIn ! Input
character (len= *), intent(out), optional :: timeString
character (len= *), intent(out), optional :: timeStringISOFrac
integer, intent(out), optional :: rc

DESCRIPTION:

Gets the value oftimeinterval in units specified by the user via Fortran optional arguments.
The ESMF Time Manager represents and manipulates time internally with integers to maintain precision. Hence,
user-specified floating point values are converted internally from integers.
Units are bound (normalized) to the next larger unit specified. For example, if a time interval is defined to be one
day, thenESMF_TimeIntervalGet(d = days, s = seconds) would returndays = 1 , seconds =
0, whereasESMF_TimeIntervalGet(s = seconds) would returnseconds = 86400 .
See../include/ESMC_BaseTime.h and ../include/ESMC_TimeInterval.h for complete descrip-
tion.
For timeString, convertsESMF_TimeInterval ’s value into partial ISO 8601 format PyYmMdDThHmMs[:n/d]S.
See [9] and [2]. See also methodESMF_TimeIntervalPrint() .
For timeStringISOFrac, convertsESMF_TimeInterval ’s value into full ISO 8601 format PyYmMdDThHmMs[.f]S.
See [9] and [2]. See also methodESMF_TimeIntervalPrint() .
The arguments are:

timeinterval The object instance to query.

[yy] Integer years (>= 32-bit).

[yy_i8] Integer years (large, >= 64-bit).

[mm] Integer months (>= 32-bit).

[mm_i8] Integer months (large, >= 64-bit).

[d] Integer Julian, or Modified Julian, days (>= 32-bit).

[d_i8] Integer Julian, or Modified Julian, days (large, >= 64-bit).

[h] Integer hours.

[m] Integer minutes.

[s] Integer seconds (>= 32-bit).

[s_i8] Integer seconds (large, >= 64-bit).

661

[ms] Integer milliseconds.

[us] Integer microseconds.

[ns] Integer nanoseconds.

[d_r8] Double precision days.

[h_r8] Double precision hours.

[m_r8] Double precision minutes.

[s_r8] Double precision seconds.

[ms_r8] Double precision milliseconds.

[us_r8] Double precision microseconds.

[ns_r8] Double precision nanoseconds.

[sN] Integer numerator of fractional seconds (sN/sD).

[sN_i8] Integer numerator of fractional seconds (sN_i8/sD_i8) (large, >= 64-bit).

[sD] Integer denominator of fractional seconds (sN/sD).

[sD_i8] Integer denominator of fractional seconds (sN_i8/sD_i8) (large, >= 64-bit).

[startTime] Starting time, if set, of an absolute calendar interval (yy,mm, and/or d).

[calendar] AssociatedCalendar , if any.

[calendarType] AssociatedCalendarType , if any.

[calendarIn] INPUT argument: pins a calendar interval to a specific calendar to allow conversion between relative
units (yy, mm, d) and absolute units (d, h, m, s). Mutually exclusive with startTimeIn and endTimeIn since they
contain a calendar. Alternate to, and mutually exclusive with, calendarTypeIn below. Primarily for specifying a
custom calendar type.

[timeString] Convert time interval value to format string PyYmMdDThHmMs[:n/d]S, where n/d is numerator/denominator
of any fractional seconds and all other units are in ISO 8601 format. See [9] and [2]. See also method
ESMF_TimeIntervalPrint() .

[timeStringISOFrac] Convert time interval value to strict ISO 8601 format stringPyYmMdDThHmMs[.f], where f is
decimal form of any fractional seconds. See [9] and [2]. See also methodESMF_TimeIntervalPrint() .

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

39.4.19 ESMF_TimeIntervalGet - Get a TimeInterval value

INTERFACE:

! Private name; call using ESMF_TimeIntervalGet()
subroutine ESMF_TimeIntervalGetDurCalTyp(timeinterva l, &

yy, yy_i8, &
mm, mm_i8, &
d, d_i8, &
h, m, &
s, s_i8, &

662

ms, us, ns, &
d_r8, h_r8, m_r8, s_r8, &
ms_r8, us_r8, ns_r8, &
sN, sN_i8, sD, sD_i8, &
startTime, &
calendar, calendarType, &
calendarTypeIn, &
timeString, &
timeStringISOFrac, rc)

ARGUMENTS:

type(ESMF_TimeInterval), intent(inout) :: timeinterval
integer(ESMF_KIND_I4), intent(out), optional :: yy
integer(ESMF_KIND_I8), intent(out), optional :: yy_i8
integer(ESMF_KIND_I4), intent(out), optional :: mm
integer(ESMF_KIND_I8), intent(out), optional :: mm_i8
integer(ESMF_KIND_I4), intent(out), optional :: d
integer(ESMF_KIND_I8), intent(out), optional :: d_i8
integer(ESMF_KIND_I4), intent(out), optional :: h
integer(ESMF_KIND_I4), intent(out), optional :: m
integer(ESMF_KIND_I4), intent(out), optional :: s
integer(ESMF_KIND_I8), intent(out), optional :: s_i8
integer(ESMF_KIND_I4), intent(out), optional :: ms
integer(ESMF_KIND_I4), intent(out), optional :: us
integer(ESMF_KIND_I4), intent(out), optional :: ns
real(ESMF_KIND_R8), intent(out), optional :: d_r8
real(ESMF_KIND_R8), intent(out), optional :: h_r8
real(ESMF_KIND_R8), intent(out), optional :: m_r8
real(ESMF_KIND_R8), intent(out), optional :: s_r8
real(ESMF_KIND_R8), intent(out), optional :: ms_r8
real(ESMF_KIND_R8), intent(out), optional :: us_r8
real(ESMF_KIND_R8), intent(out), optional :: ns_r8
integer(ESMF_KIND_I4), intent(out), optional :: sN
integer(ESMF_KIND_I8), intent(out), optional :: sN_i8
integer(ESMF_KIND_I4), intent(out), optional :: sD
integer(ESMF_KIND_I8), intent(out), optional :: sD_i8
type(ESMF_Time), intent(out), optional :: startTime
type(ESMF_Calendar), intent(out), optional :: calendar
type(ESMF_CalendarType), intent(out), optional :: calen darType
type(ESMF_CalendarType), intent(in) :: calendarTypeIn ! Input
character (len= *), intent(out), optional :: timeString
character (len= *), intent(out), optional :: timeStringISOFrac
integer, intent(out), optional :: rc

DESCRIPTION:

Gets the value oftimeinterval in units specified by the user via Fortran optional arguments.
The ESMF Time Manager represents and manipulates time internally with integers to maintain precision. Hence,
user-specified floating point values are converted internally from integers.
Units are bound (normalized) to the next larger unit specified. For example, if a time interval is defined to be one
day, thenESMF_TimeIntervalGet(d = days, s = seconds) would returndays = 1 , seconds =
0, whereasESMF_TimeIntervalGet(s = seconds) would returnseconds = 86400 .
See../include/ESMC_BaseTime.h and ../include/ESMC_TimeInterval.h for complete descrip-
tion.

663

For timeString, convertsESMF_TimeInterval ’s value into partial ISO 8601 format PyYmMdDThHmMs[:n/d]S.
See [9] and [2]. See also methodESMF_TimeIntervalPrint() .
For timeStringISOFrac, convertsESMF_TimeInterval ’s value into full ISO 8601 format PyYmMdDThHmMs[.f]S.
See [9] and [2]. See also methodESMF_TimeIntervalPrint() .
The arguments are:

timeinterval The object instance to query.

[yy] Integer years (>= 32-bit).

[yy_i8] Integer years (large, >= 64-bit).

[mm] Integer months (>= 32-bit).

[mm_i8] Integer months (large, >= 64-bit).

[d] Integer Julian, or Modified Julian, days (>= 32-bit).

[d_i8] Integer Julian, or Modified Julian, days (large, >= 64-bit).

[h] Integer hours.

[m] Integer minutes.

[s] Integer seconds (>= 32-bit).

[s_i8] Integer seconds (large, >= 64-bit).

[ms] Integer milliseconds.

[us] Integer microseconds.

[ns] Integer nanoseconds.

[d_r8] Double precision days.

[h_r8] Double precision hours.

[m_r8] Double precision minutes.

[s_r8] Double precision seconds.

[ms_r8] Double precision milliseconds.

[us_r8] Double precision microseconds.

[ns_r8] Double precision nanoseconds.

[sN] Integer numerator of fractional seconds (sN/sD).

[sN_i8] Integer numerator of fractional seconds (sN_i8/sD_i8) (large, >= 64-bit).

[sD] Integer denominator of fractional seconds (sN/sD).

[sD_i8] Integer denominator of fractional seconds (sN_i8/sD_i8) (large, >= 64-bit).

[startTime] Starting time, if set, of an absolute calendar interval (yy,mm, and/or d).

[calendar] AssociatedCalendar , if any.

[calendarType] AssociatedCalendarType , if any.

[calendarTypeIn] INPUT argument: Alternate to, and mutually exclusive with,calendarIn above. More convenient
way of specifying a built-in calendar type.

664

[timeString] Convert time interval value to format string PyYmMdDThHmMs[:n/d]S, where n/d is numerator/denominator
of any fractional seconds and all other units are in ISO 8601 format. See [9] and [2]. See also method
ESMF_TimeIntervalPrint() .

[timeStringISOFrac] Convert time interval value to strict ISO 8601 format stringPyYmMdDThHmMs[.f], where f is
decimal form of any fractional seconds. See [9] and [2]. See also methodESMF_TimeIntervalPrint() .

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

39.4.20 ESMF_TimeIntervalNegAbsValue - Get the negative absolute value of a TimeInterval

INTERFACE:

function ESMF_TimeIntervalNegAbsValue(timeinterval)

RETURN VALUE:

type(ESMF_TimeInterval) :: ESMF_TimeIntervalNegAbsVal ue

ARGUMENTS:

type(ESMF_TimeInterval), intent(inout) :: timeinterval

DESCRIPTION:

Returns the negative absolute value oftimeinterval .
The argument is:

timeinterval The object instance to take the negative absolute value of. Negative absolute value is returned as the
value of the function.

39.4.21 ESMF_TimeIntervalPrint - Print the contents of a TimeInterval

INTERFACE:

subroutine ESMF_TimeIntervalPrint(timeinterval, optio ns, rc)

ARGUMENTS:

type(ESMF_TimeInterval), intent(inout) :: timeinterval
character (len= *), intent(in), optional :: options
integer, intent(out), optional :: rc

DESCRIPTION:

Prints out the contents of anESMF_TimeInterval to stdout , in support of testing and debugging. The options
control the type of information and level of detail.

Note: ManyESMF_<class>Print methods are implemented in C++. On some platforms/compilers there is a
potential issue with interleaving Fortran and C++ output tostdout such that it doesn’t appear in the expected order.
If this occurs, theESMF_IOUnitFlush() method may be used on unit 6 to get coherent output.

The arguments are:

665

timeinterval Time interval to be printed out.

[options] Print options. If none specified, prints alltimeinterval property values.
"string" - printstimeinterval ’s value in ISO 8601 format for all units through seconds. Forany non-zero
fractional seconds, prints in integer rational fraction form n/d. Format is PyYmMdDThHmMs[:n/d]S, where
[:n/d] is the integer numerator and denominator of the fractional seconds value, if present. See [9] and [2]. See
also methodESMF_TimeIntervalGet(..., timeString= , ...)
"string isofrac" - printstimeinterval ’s value in strict ISO 8601 format for all units, including any fractional
seconds part. Format is PyYmMdDThHmMs[.f]S, where [.f] represents fractional seconds in decimal form, if
present. See [9] and [2]. See also methodESMF_TimeIntervalGet(..., timeStringISOFrac=
, ...)

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

39.4.22 ESMF_TimeIntervalSet - Initialize or set a TimeInterval

INTERFACE:

! Private name; call using ESMF_TimeIntervalSet()
subroutine ESMF_TimeIntervalSetDur(timeinterval, &

yy, yy_i8, &
mm, mm_i8, &
d, d_i8, &
h, m, &
s, s_i8, &
ms, us, ns, &
d_r8, h_r8, m_r8, s_r8, &
ms_r8, us_r8, ns_r8, &
sN, sN_i8, sD, sD_i8, rc)

ARGUMENTS:

type(ESMF_TimeInterval), intent(inout) :: timeinterval
integer(ESMF_KIND_I4), intent(in), optional :: yy
integer(ESMF_KIND_I8), intent(in), optional :: yy_i8
integer(ESMF_KIND_I4), intent(in), optional :: mm
integer(ESMF_KIND_I8), intent(in), optional :: mm_i8
integer(ESMF_KIND_I4), intent(in), optional :: d
integer(ESMF_KIND_I8), intent(in), optional :: d_i8
integer(ESMF_KIND_I4), intent(in), optional :: h
integer(ESMF_KIND_I4), intent(in), optional :: m
integer(ESMF_KIND_I4), intent(in), optional :: s
integer(ESMF_KIND_I8), intent(in), optional :: s_i8
integer(ESMF_KIND_I4), intent(in), optional :: ms
integer(ESMF_KIND_I4), intent(in), optional :: us
integer(ESMF_KIND_I4), intent(in), optional :: ns
real(ESMF_KIND_R8), intent(in), optional :: d_r8
real(ESMF_KIND_R8), intent(in), optional :: h_r8
real(ESMF_KIND_R8), intent(in), optional :: m_r8
real(ESMF_KIND_R8), intent(in), optional :: s_r8
real(ESMF_KIND_R8), intent(in), optional :: ms_r8
real(ESMF_KIND_R8), intent(in), optional :: us_r8
real(ESMF_KIND_R8), intent(in), optional :: ns_r8

666

integer(ESMF_KIND_I4), intent(in), optional :: sN
integer(ESMF_KIND_I8), intent(in), optional :: sN_i8
integer(ESMF_KIND_I4), intent(in), optional :: sD
integer(ESMF_KIND_I8), intent(in), optional :: sD_i8
integer, intent(out), optional :: rc

DESCRIPTION:

Sets the value of theESMF_TimeInterval in units specified by the user via Fortran optional arguments.
The ESMF Time Manager represents and manipulates time internally with integers to maintain precision. Hence,
user-specified floating point values are converted internally to integers.
Ranges are limited only by machine word size. Numeric defaults are 0, except for sD, which is 1.
The arguments are:

timeinterval The object instance to initialize.

[yy] Integer years (>= 32-bit). Default = 0

[yy_i8] Integer years (large, >= 64-bit). Default = 0

[mm] Integer months (>= 32-bit). Default = 0

[mm_i8] Integer months (large, >= 64-bit). Default = 0

[d] Integer Julian, or Modified Julian, days (>= 32-bit). Default = 0

[d_i8] Integer Julian, or Modified Julian, days (large, >= 64-bit).Default = 0

[h] Integer hours. Default = 0

[m] Integer minutes. Default = 0

[s] Integer seconds (>= 32-bit). Default = 0

[s_i8] Integer seconds (large, >= 64-bit). Default = 0

[ms] Integer milliseconds. Default = 0

[us] Integer microseconds. Default = 0

[ns] Integer nanoseconds. Default = 0

[d_r8] Double precision days. Default = 0.0.

[h_r8] Double precision hours. Default = 0.0.

[m_r8] Double precision minutes. Default = 0.0.

[s_r8] Double precision seconds. Default = 0.0.

[ms_r8] Double precision milliseconds. Default = 0.0.

[us_r8] Double precision microseconds. Default = 0.0.

[ns_r8] Double precision nanoseconds. Default = 0.0.

[sN] Integer numerator of fractional seconds (sN/sD). Default =0

[sN_i8] Integer numerator of fractional seconds (sN_i8/sD_i8) (large, >= 64-bit). Default = 0

[sD] Integer denominator of fractional seconds (sN/sD). Default = 1

[sD_i8] Integer denominator of fractional seconds (sN_i8/sD_i8) (large, >= 64-bit). Default = 1

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

667

39.4.23 ESMF_TimeIntervalSet - Initialize or set a TimeInterval

INTERFACE:

! Private name; call using ESMF_TimeIntervalSet()
subroutine ESMF_TimeIntervalSetDurStart(timeinterval , &

yy, yy_i8, &
mm, mm_i8, &
d, d_i8, &
h, m, &
s, s_i8, &
ms, us, ns, &
d_r8, h_r8, m_r8, s_r8, &
ms_r8, us_r8, ns_r8, &
sN, sN_i8, sD, sD_i8, &
startTime, rc)

ARGUMENTS:

type(ESMF_TimeInterval), intent(inout) :: timeinterval
integer(ESMF_KIND_I4), intent(in), optional :: yy
integer(ESMF_KIND_I8), intent(in), optional :: yy_i8
integer(ESMF_KIND_I4), intent(in), optional :: mm
integer(ESMF_KIND_I8), intent(in), optional :: mm_i8
integer(ESMF_KIND_I4), intent(in), optional :: d
integer(ESMF_KIND_I8), intent(in), optional :: d_i8
integer(ESMF_KIND_I4), intent(in), optional :: h
integer(ESMF_KIND_I4), intent(in), optional :: m
integer(ESMF_KIND_I4), intent(in), optional :: s
integer(ESMF_KIND_I8), intent(in), optional :: s_i8
integer(ESMF_KIND_I4), intent(in), optional :: ms
integer(ESMF_KIND_I4), intent(in), optional :: us
integer(ESMF_KIND_I4), intent(in), optional :: ns
real(ESMF_KIND_R8), intent(in), optional :: d_r8
real(ESMF_KIND_R8), intent(in), optional :: h_r8
real(ESMF_KIND_R8), intent(in), optional :: m_r8
real(ESMF_KIND_R8), intent(in), optional :: s_r8
real(ESMF_KIND_R8), intent(in), optional :: ms_r8
real(ESMF_KIND_R8), intent(in), optional :: us_r8
real(ESMF_KIND_R8), intent(in), optional :: ns_r8
integer(ESMF_KIND_I4), intent(in), optional :: sN
integer(ESMF_KIND_I8), intent(in), optional :: sN_i8
integer(ESMF_KIND_I4), intent(in), optional :: sD
integer(ESMF_KIND_I8), intent(in), optional :: sD_i8
type(ESMF_Time), intent(in) :: startTime
integer, intent(out), optional :: rc

DESCRIPTION:

Sets the value of theESMF_TimeInterval in units specified by the user via Fortran optional arguments.
The ESMF Time Manager represents and manipulates time internally with integers to maintain precision. Hence,
user-specified floating point values are converted internally to integers.
Ranges are limited only by machine word size. Numeric defaults are 0, except for sD, which is 1.
The arguments are:

668

timeinterval The object instance to initialize.

[yy] Integer years (>= 32-bit). Default = 0

[yy_i8] Integer years (large, >= 64-bit). Default = 0

[mm] Integer months (>= 32-bit). Default = 0

[mm_i8] Integer months (large, >= 64-bit). Default = 0

[d] Integer Julian, or Modified Julian, days (>= 32-bit). Default = 0

[d_i8] Integer Julian, or Modified Julian, days (large, >= 64-bit).Default = 0

[h] Integer hours. Default = 0

[m] Integer minutes. Default = 0

[s] Integer seconds (>= 32-bit). Default = 0

[s_i8] Integer seconds (large, >= 64-bit). Default = 0

[ms] Integer milliseconds. Default = 0

[us] Integer microseconds. Default = 0

[ns] Integer nanoseconds. Default = 0

[d_r8] Double precision days. Default = 0.0.

[h_r8] Double precision hours. Default = 0.0.

[m_r8] Double precision minutes. Default = 0.0.

[s_r8] Double precision seconds. Default = 0.0.

[ms_r8] Double precision milliseconds. Default = 0.0.

[us_r8] Double precision microseconds. Default = 0.0.

[ns_r8] Double precision nanoseconds. Default = 0.0.

[sN] Integer numerator of fractional seconds (sN/sD). Default =0

[sN_i8] Integer numerator of fractional seconds (sN_i8/sD_i8) (large, >= 64-bit). Default = 0

[sD] Integer denominator of fractional seconds (sN/sD). Default = 1

[sD_i8] Integer denominator of fractional seconds (sN_i8/sD_i8).(large, >= 64-bit). Default = 1

startTime Starting time of an absolute calendar interval (yy, mm, and/or d); pins a calendar interval to a specific point
in time. If not set, and calendar also not set, calendar interval "floats" across all calendars and times.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

669

39.4.24 ESMF_TimeIntervalSet - Initialize or set a TimeInterval

INTERFACE:

! Private name; call using ESMF_TimeIntervalSet()
subroutine ESMF_TimeIntervalSetDurCal(timeinterval, &

yy, yy_i8, &
mm, mm_i8, &
d, d_i8, &
h, m, &
s, s_i8, &
ms, us, ns, &
d_r8, h_r8, m_r8, s_r8, &
ms_r8, us_r8, ns_r8, &
sN, sN_i8, sD, sD_i8, calendar, rc)

ARGUMENTS:

type(ESMF_TimeInterval), intent(inout) :: timeinterval
integer(ESMF_KIND_I4), intent(in), optional :: yy
integer(ESMF_KIND_I8), intent(in), optional :: yy_i8
integer(ESMF_KIND_I4), intent(in), optional :: mm
integer(ESMF_KIND_I8), intent(in), optional :: mm_i8
integer(ESMF_KIND_I4), intent(in), optional :: d
integer(ESMF_KIND_I8), intent(in), optional :: d_i8
integer(ESMF_KIND_I4), intent(in), optional :: h
integer(ESMF_KIND_I4), intent(in), optional :: m
integer(ESMF_KIND_I4), intent(in), optional :: s
integer(ESMF_KIND_I8), intent(in), optional :: s_i8
integer(ESMF_KIND_I4), intent(in), optional :: ms
integer(ESMF_KIND_I4), intent(in), optional :: us
integer(ESMF_KIND_I4), intent(in), optional :: ns
real(ESMF_KIND_R8), intent(in), optional :: d_r8
real(ESMF_KIND_R8), intent(in), optional :: h_r8
real(ESMF_KIND_R8), intent(in), optional :: m_r8
real(ESMF_KIND_R8), intent(in), optional :: s_r8
real(ESMF_KIND_R8), intent(in), optional :: ms_r8
real(ESMF_KIND_R8), intent(in), optional :: us_r8
real(ESMF_KIND_R8), intent(in), optional :: ns_r8
integer(ESMF_KIND_I4), intent(in), optional :: sN
integer(ESMF_KIND_I8), intent(in), optional :: sN_i8
integer(ESMF_KIND_I4), intent(in), optional :: sD
integer(ESMF_KIND_I8), intent(in), optional :: sD_i8
type(ESMF_Calendar), intent(in) :: calendar
integer, intent(out), optional :: rc

DESCRIPTION:

Sets the value of theESMF_TimeInterval in units specified by the user via Fortran optional arguments.
The ESMF Time Manager represents and manipulates time internally with integers to maintain precision. Hence,
user-specified floating point values are converted internally to integers.
Ranges are limited only by machine word size. Numeric defaults are 0, except for sD, which is 1.
The arguments are:

timeinterval The object instance to initialize.

670

[yy] Integer years (>= 32-bit). Default = 0

[yy_i8] Integer years (large, >= 64-bit). Default = 0

[mm] Integer months (>= 32-bit). Default = 0

[mm_i8] Integer months (large, >= 64-bit). Default = 0

[d] Integer Julian, or Modified Julian, days (>= 32-bit). Default = 0

[d_i8] Integer Julian, or Modified Julian, days (large, >= 64-bit).Default = 0

[h] Integer hours. Default = 0

[m] Integer minutes. Default = 0

[s] Integer seconds (>= 32-bit). Default = 0

[s_i8] Integer seconds (large, >= 64-bit). Default = 0

[ms] Integer milliseconds. Default = 0

[us] Integer microseconds. Default = 0

[ns] Integer nanoseconds. Default = 0

[d_r8] Double precision days. Default = 0.0.

[h_r8] Double precision hours. Default = 0.0.

[m_r8] Double precision minutes. Default = 0.0.

[s_r8] Double precision seconds. Default = 0.0.

[ms_r8] Double precision milliseconds. Default = 0.0.

[us_r8] Double precision microseconds. Default = 0.0.

[ns_r8] Double precision nanoseconds. Default = 0.0.

[sN] Integer numerator of fractional seconds (sN/sD). Default =0

[sN_i8] Integer numerator of fractional seconds (sN_i8/sD_i8). (large, >= 64-bit). Default = 0

[sD] Integer denominator of fractional seconds (sN/sD). Default = 1

[sD_i8] Integer denominator of fractional seconds (sN_i8/sD_i8).(large, >= 64-bit). Default = 1

[calendar] Calendar used to give better definition to calendar interval (yy, mm, and/or d) for arithmetic, compari-
son, and conversion operations. Allows calendar interval to "float" across all times on a specific calendar. De-
fault = NULL; if startTime also not specified, calendar interval "floats" across all calendars and times. Mutually
exclusive with startTime since it contains a calendar. Alternate to, and mutually exclusive with, calendarType
below. Primarily for specifying a custom calendar type.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

671

39.4.25 ESMF_TimeIntervalSet - Initialize or set a TimeInterval

INTERFACE:

! Private name; call using ESMF_TimeIntervalSet()
subroutine ESMF_TimeIntervalSetDurCalTyp(timeinterva l, &

yy, yy_i8, &
mm, mm_i8, &
d, d_i8, &
h, m, &
s, s_i8, &
ms, us, ns, &
d_r8, h_r8, m_r8, s_r8, &
ms_r8, us_r8, ns_r8, &
sN, sN_i8, sD, sD_i8, &
calendarType, rc)

ARGUMENTS:

type(ESMF_TimeInterval), intent(inout) :: timeinterval
integer(ESMF_KIND_I4), intent(in), optional :: yy
integer(ESMF_KIND_I8), intent(in), optional :: yy_i8
integer(ESMF_KIND_I4), intent(in), optional :: mm
integer(ESMF_KIND_I8), intent(in), optional :: mm_i8
integer(ESMF_KIND_I4), intent(in), optional :: d
integer(ESMF_KIND_I8), intent(in), optional :: d_i8
integer(ESMF_KIND_I4), intent(in), optional :: h
integer(ESMF_KIND_I4), intent(in), optional :: m
integer(ESMF_KIND_I4), intent(in), optional :: s
integer(ESMF_KIND_I8), intent(in), optional :: s_i8
integer(ESMF_KIND_I4), intent(in), optional :: ms
integer(ESMF_KIND_I4), intent(in), optional :: us
integer(ESMF_KIND_I4), intent(in), optional :: ns
real(ESMF_KIND_R8), intent(in), optional :: d_r8
real(ESMF_KIND_R8), intent(in), optional :: h_r8
real(ESMF_KIND_R8), intent(in), optional :: m_r8
real(ESMF_KIND_R8), intent(in), optional :: s_r8
real(ESMF_KIND_R8), intent(in), optional :: ms_r8
real(ESMF_KIND_R8), intent(in), optional :: us_r8
real(ESMF_KIND_R8), intent(in), optional :: ns_r8
integer(ESMF_KIND_I4), intent(in), optional :: sN
integer(ESMF_KIND_I8), intent(in), optional :: sN_i8
integer(ESMF_KIND_I4), intent(in), optional :: sD
integer(ESMF_KIND_I8), intent(in), optional :: sD_i8
type(ESMF_CalendarType), intent(in) :: calendarType
integer, intent(out), optional :: rc

DESCRIPTION:

Sets the value of theESMF_TimeInterval in units specified by the user via Fortran optional arguments.
The ESMF Time Manager represents and manipulates time internally with integers to maintain precision. Hence,
user-specified floating point values are converted internally to integers.
Ranges are limited only by machine word size. Numeric defaults are 0, except for sD, which is 1.
The arguments are:

672

timeinterval The object instance to initialize.

[yy] Integer years (>= 32-bit). Default = 0

[yy_i8] Integer years (large, >= 64-bit). Default = 0

[mm] Integer months (>= 32-bit). Default = 0

[mm_i8] Integer months (large, >= 64-bit). Default = 0

[d] Integer Julian, or Modified Julian, days (>= 32-bit). Default = 0

[d_i8] Integer Julian, or Modified Julian, days (large, >= 64-bit).Default = 0

[h] Integer hours. Default = 0

[m] Integer minutes. Default = 0

[s] Integer seconds (>= 32-bit). Default = 0

[s_i8] Integer seconds (large, >= 64-bit). Default = 0

[ms] Integer milliseconds. Default = 0

[us] Integer microseconds. Default = 0

[ns] Integer nanoseconds. Default = 0

[d_r8] Double precision days. Default = 0.0.

[h_r8] Double precision hours. Default = 0.0.

[m_r8] Double precision minutes. Default = 0.0.

[s_r8] Double precision seconds. Default = 0.0.

[ms_r8] Double precision milliseconds. Default = 0.0.

[us_r8] Double precision microseconds. Default = 0.0.

[ns_r8] Double precision nanoseconds. Default = 0.0.

[sN] Integer numerator of fractional seconds (sN/sD). Default =0

[sN_i8] Integer numerator of fractional seconds (sN_i8/sD_i8) (large, >= 64-bit). Default = 0

[sD] Integer denominator of fractional seconds (sN/sD). Default = 1

[sD_i8] Integer denominator of fractional seconds (sN_i8/sD_i8) (large, >= 64-bit). Default = 1

[calendarType] Alternate to, and mutually exclusive with, calendar above.More convenient way of specifying a
built-in calendar type.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

673

39.4.26 ESMF_TimeIntervalValidate - Validate a TimeInterval

INTERFACE:

subroutine ESMF_TimeIntervalValidate(timeinterval, op tions, rc)

ARGUMENTS:

type(ESMF_TimeInterval), intent(inout) :: timeinterval
character (len= *), intent(in), optional :: options
integer, intent(out), optional :: rc

DESCRIPTION:

Checks whether atimeinterval is valid. If fractional value, denominator must be non-zero. The options control
the type of validation.
The arguments are:

timeinterval ESMF_TimeInterval to be validated.

[options] Validation options are not yet supported.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

674

40 Clock Class

40.1 Description

The Clock class advances model time and tracks its associated date on a specified Calendar. It stores start time, stop
time, current time, previous time, and a time step. It can also store a reference time, typically the time instant at
which a simulation originally began. For a restart run, the reference time can be different than the start time, when the
application execution resumes.
A user can call theESMF_ClockSet method and reset the time step as desired.
A Clock also stores a list of Alarms, which can be set to flag events that occur at a specified time instant or at a
specified time interval. See Section 41.1 for details on how to use Alarms.
There are methods for setting and getting the Times and Alarms associated with a Clock. Methods are defined for
advancing the Clock’s current time, checking if the stop time has been reached, reversing direction, and synchronizing
with a real clock.

40.2 Clock Options

40.2.1 ESMF_Direction

DESCRIPTION:
Specifies the time-stepping direction of a clock. Use with "direction" argument to methodsESMF_ClockSet()
andESMF_ClockGet() . Cannot be used with methodESMF_ClockCreate() , since it only initializes a clock
in the default forward mode; a clock must be advanced (timestepped) at least once before reversing direction via
ESMF_ClockSet() . This also holds true for negative timestep clocks which areinitialized (created) with stopTime
< startTime, since "forward" means timestepping from startTime towards stopTime (seeESMF_MODE_FORWARD
below).
"Forward" and "reverse" directions are distinct from postive and negative timesteps. "Forward" means timestepping in
the direction established atESMF_ClockCreate() , from startTime towards stopTime, regardless of the timestep
sign. "Reverse" means timestepping in the opposite direction, back towards the clock’s startTime, regardless of the
timestep sign.
Clocks and alarms run in reverse in such a way that the state ofa clock and its alarms after each time step is precisely
replicated as it was in forward time-stepping mode. All methods which query clock and alarm state will return the
same result for a given timeStep, regardless of the direction of arrival.
Valid values are:

ESMF_MODE_FORWARD Upon callingESMF_ClockAdvance() , the clock will timestep from its startTime
toward its stopTime. This is the default direction. A user can use eitherESMF_ClockIsStopTime() or
ESMF_ClockIsDone() methods to determine when stopTime is reached. This forwardbehavior also holds
for negative timestep clocks which are initialized (created) with stopTime < startTime.

ESMF_MODE_REVERSE Upon callingESMF_ClockAdvance() , the clock will timestep backwards toward
its startTime. Use methodESMF_ClockIsDone() to determine when startTime is reached. This reverse
behavior also holds for negative timestep clocks which are initialized (created) with stopTime < startTime.

40.3 Use and Examples

The following is a typical sequence for using a Clock in a geophysical model.
At initialize:

• Set a Calendar.

• Set start time, stop time and time step as Times and Time Intervals.

• Create and Initialize a Clock using the start time, stop timeand time step.

• Define Times and Time Intervals associated with special events, and use these to set Alarms.

At run:

675

• Advance the Clock, checking for ringing alarms as needed.

• Check if it is time to stop.

At finalize:

• Since Clocks and Alarms are deep classes, they need to be explicitly destroyed at finalization. Times and
TimeIntervals are lightweight classes, so they don’t need explicit destruction.

The following code example illustrates Clock usage.

! !PROGRAM: ESMF_ClockEx - Clock initialization and time-s tepping
!
! !DESCRIPTION:
!
! This program shows an example of how to create, initialize, advance, and
! examine a basic clock
!-- ---------------------------

! ESMF Framework module
use ESMF_Mod
implicit none

! instantiate a clock
type(ESMF_Clock) :: clock

! instantiate time_step, start and stop times
type(ESMF_TimeInterval) :: timeStep
type(ESMF_Time) :: startTime
type(ESMF_Time) :: stopTime

! local variables for Get methods
type(ESMF_Time) :: currTime
integer(ESMF_KIND_I8) :: advanceCount
integer :: YY, MM, DD, H, M, S

! return code
integer :: rc

! initialize ESMF framework
call ESMF_Initialize(defaultCalendar=ESMF_CAL_GREGOR IAN, &

defaultlogfilename="ClockEx.Log", &
defaultlogtype=ESMF_LOG_MULTI, rc=rc)

40.3.1 Clock creation

This example shows how to create and initialize anESMF_Clock .

! initialize time interval to 2 days, 4 hours (6 timesteps in 1 3 days)
call ESMF_TimeIntervalSet(timeStep, d=2, h=4, rc=rc)

! initialize start time to 4/1/2003 2:24:00 (1/10 of a day)
call ESMF_TimeSet(startTime, yy=2003, mm=4, dd=1, h=2, m= 24, rc=rc)

676

! initialize stop time to 4/14/2003 2:24:00 (1/10 of a day)
call ESMF_TimeSet(stopTime, yy=2003, mm=4, dd=14, h=2, m= 24, rc=rc)

! initialize the clock with the above values
clock = ESMF_ClockCreate("Clock 1", timeStep, startTime, stopTime, rc=rc)

40.3.2 Clock advance

This example shows how to time-step anESMF_Clock .

! time step clock from start time to stop time
do while (.not.ESMF_ClockIsStopTime(clock, rc))

call ESMF_ClockPrint(clock, "currTime string", rc)

call ESMF_ClockAdvance(clock, rc=rc)

end do

40.3.3 Clock examination

This example shows how to examine anESMF_Clock .

! get the clock’s final current time
call ESMF_ClockGet(clock, currTime=currTime, rc=rc)

call ESMF_TimeGet(currTime, yy=YY, mm=MM, dd=DD, h=H, m=M , s=S, rc=rc)
print * , "The clock’s final current time is ", YY, "/", MM, "/", DD, &

" ", H, ":", M, ":", S

! get the number of times the clock was advanced
call ESMF_ClockGet(clock, advanceCount=advanceCount, r c=rc)
print * , "The clock was advanced ", advanceCount, " times."

40.3.4 Clock reversal

This example shows how to time-step anESMF_Clock in reverse mode.

call ESMF_ClockSet(clock, direction=ESMF_MODE_REVERSE , rc=rc)

! time step clock in reverse from stop time back to start time;
! note use of ESMF_ClockIsDone() rather than ESMF_ClockIsS topTime()
do while (.not.ESMF_ClockIsDone(clock, rc))

call ESMF_ClockPrint(clock, "currTime string", rc)

call ESMF_ClockAdvance(clock, rc=rc)

end do

677

40.3.5 Clock destruction

This example shows how to destroy anESMF_Clock .

! destroy clock
call ESMF_ClockDestroy(clock, rc)

! finalize ESMF framework
call ESMF_Finalize(rc=rc)

end program ESMF_ClockEx

40.4 Restrictions and Future Work

1. Alarm list allocation factor The alarm list within a clock is dynamically allocated automatically, 200 alarm
references at a time. This constant is defined in both Fortranand C++ with a #define for ease of modification.

2. Clock variable timesteps in reverseIn order for a clock with variable timesteps to be run inESMF_MODE_REVERSE,
the user must supply those timesteps toESMF_ClockAdvance() . Essentially, the user must save the timesteps
while in forward mode. In a future release, the Time Manager will assume this responsibility by saving the clock
state (including the timeStep) at every timestep while in forward mode.

40.5 Class API

40.5.1 ESMF_ClockOperator(==) - Test if Clock 1 is equal to Clock 2

INTERFACE:

interface operator(==)
if (clock1 == clock2) then ... endif

OR
result = (clock1 == clock2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_Clock), intent(in) :: clock1
type(ESMF_Clock), intent(in) :: clock2

DESCRIPTION:

Overloads the (==) operator for theESMF_Clock class. Compare two clocks for equality; return true if equal, false
otherwise. Comparison is based on IDs, which are distinct for newly created clocks and identical for clocks created as
copies.
The arguments are:

clock1 The firstESMF_Clock in comparison.

clock2 The secondESMF_Clock in comparison.

678

40.5.2 ESMF_ClockOperator(/=) - Test if Clock 1 is not equalto Clock 2

INTERFACE:

interface operator(/=)
if (clock1 /= clock2) then ... endif

OR
result = (clock1 /= clock2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_Clock), intent(in) :: clock1
type(ESMF_Clock), intent(in) :: clock2

DESCRIPTION:

Overloads the (/=) operator for theESMF_Clock class. Compare two clocks for inequality; return true if notequal,
false otherwise. Comparison is based on IDs, which are distinct for newly created clocks and identical for clocks
created as copies.
The arguments are:

clock1 The firstESMF_Clock in comparison.

clock2 The secondESMF_Clock in comparison.

40.5.3 ESMF_ClockAdvance - Advance a Clock’s current time by one time step

INTERFACE:

subroutine ESMF_ClockAdvance(clock, timeStep, ringingA larmList, &
ringingAlarmCount, rc)

ARGUMENTS:

type(ESMF_Clock), intent(inout) :: clock
type(ESMF_TimeInterval), intent(inout), optional :: tim eStep
type(ESMF_Alarm), dimension(:), intent(out), optional : : ringingAlarmList
integer, intent(out), optional :: ringingAlarmCount
integer, intent(out), optional :: rc

DESCRIPTION:

Advances theclock ’s current time by one time step: either theclock ’s, or the passed-intimeStep (see below).
When theclock is in ESMF_MODE_FORWARD(default), this method adds thetimeStep to theclock ’s current
time. InESMF_MODE_REVERSE, timeStep is subtracted from the current time. In either case,timeStep can be
positive or negative. See the "direction" argument in method ESMF_ClockSet() . ESMF_ClockAdvance() op-
tionally returns a list and number of ringingESMF_Alarms. See also methodESMF_ClockGetRingingAlarms() .
The arguments are:

clock The object instance to advance.

679

[timeStep] Time step is performed with given timeStep, instead of theESMF_Clock ’s. Does not replace the
ESMF_Clock ’s timeStep; useESMF_ClockSet(clock, timeStep, ...) for this purpose. Supports
applications with variable time steps. timeStep can be positive or negative.

[ringingAlarmList] Returns the array of alarms that are ringing after the time step.

[ringingAlarmCount] The number of alarms ringing after the time step.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

40.5.4 ESMF_ClockCreate - Create a new ESMF Clock

INTERFACE:

! Private name; call using ESMF_ClockCreate()
function ESMF_ClockCreateNew(name, timeStep, startTime , stopTime, &

runDuration, runTimeStepCount, refTime, rc)

RETURN VALUE:

type(ESMF_Clock) :: ESMF_ClockCreateNew

ARGUMENTS:

character (len= *), intent(in), optional :: name
type(ESMF_TimeInterval), intent(in) :: timeStep
type(ESMF_Time), intent(in) :: startTime
type(ESMF_Time), intent(in), optional :: stopTime
type(ESMF_TimeInterval), intent(in), optional :: runDur ation
integer, intent(in), optional :: runTimeStepCount
type(ESMF_Time), intent(in), optional :: refTime
integer, intent(out), optional :: rc

DESCRIPTION:

Creates and sets the initial values in a newESMF_Clock .
This is a private method; invoke via the public overloaded entry pointESMF_ClockCreate() .
The arguments are:

[name] The name for the newly created clock. If not specified, a default unique name will be generated: "ClockNNN"
where NNN is a unique sequence number from 001 to 999.

timeStep TheESMF_Clock ’s time step interval, which can be positive or negative.

startTime TheESMF_Clock ’s starting time. Can be less than or or greater than stopTime, depending on a positive
or negative timeStep, respectively, and whether a stopTimeis specified; see below.

[stopTime] The ESMF_Clock ’s stopping time. Can be greater than or less than the startTime, depending on
a positive or negative timeStep, respectively. If neither stopTime, runDuration, nor runTimeStepCount is
specified, clock runs "forever"; user must use other means toknow when to stop (e.g. ESMF_Alarm or
ESMF_ClockGet(clock, currTime)). Mutually exclusive with runDuration and runTimeStepCount.

[runDuration] Alternative way to specifyESMF_Clock ’s stopping time; stopTime = startTime + runDuration. Can
be positive or negative, consistent with the timeStep’s sign. Mutually exclusive with stopTime and runTimeStep-
Count.

680

[runTimeStepCount] Alternative way to specifyESMF_Clock ’s stopping time; stopTime = startTime + (run-
TimeStepCount * timeStep). stopTime can be before startTime if timeStep is negative. Mutually exclusive
with stopTime and runDuration.

[refTime] The ESMF_Clock ’s reference time. Provides reference point for simulationtime (see currSimTime in
ESMF_ClockGet() below).

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

40.5.5 ESMF_ClockCreate - Create a copy of an existing ESMF Clock

INTERFACE:

! Private name; call using ESMF_ClockCreate()
function ESMF_ClockCreateCopy(clock, rc)

RETURN VALUE:

type(ESMF_Clock) :: ESMF_ClockCreateCopy

ARGUMENTS:

type(ESMF_Clock), intent(in) :: clock
integer, intent(out), optional :: rc

DESCRIPTION:

Creates a copy of a givenESMF_Clock .
This is a private method; invoke via the public overloaded entry pointESMF_ClockCreate() .
The arguments are:

clock TheESMF_Clock to copy.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

40.5.6 ESMF_ClockDestroy - Free all resources associated with a Clock

INTERFACE:

subroutine ESMF_ClockDestroy(clock, rc)

ARGUMENTS:

type(ESMF_Clock) :: clock
integer, intent(out), optional :: rc

DESCRIPTION:

Releases all resources associated with thisESMF_Clock .
The arguments are:

clock Destroy contents of thisESMF_Clock .

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

681

40.5.7 ESMF_ClockGet - Get a Clock’s properties

INTERFACE:

subroutine ESMF_ClockGet(clock, name, timeStep, startTi me, stopTime, &
runDuration, runTimeStepCount, refTime, &
currTime, prevTime, currSimTime, prevSimTime, &
calendar, calendarType, timeZone, advanceCount, &
alarmCount, direction, rc)

ARGUMENTS:

type(ESMF_Clock), intent(in) :: clock
character (len= *), intent(out), optional :: name
type(ESMF_TimeInterval), intent(out), optional :: timeS tep
type(ESMF_Time), intent(out), optional :: startTime
type(ESMF_Time), intent(out), optional :: stopTime
type(ESMF_TimeInterval), intent(out), optional :: runDu ration
real(ESMF_KIND_R8), intent(out), optional :: runTimeSte pCount
type(ESMF_Time), intent(out), optional :: refTime
type(ESMF_Time), intent(out), optional :: currTime
type(ESMF_Time), intent(out), optional :: prevTime
type(ESMF_TimeInterval), intent(out), optional :: currS imTime
type(ESMF_TimeInterval), intent(out), optional :: prevS imTime
type(ESMF_Calendar), intent(out), optional :: calendar
type(ESMF_CalendarType), intent(out), optional :: calen darType
integer, intent(out), optional :: timeZone
integer(ESMF_KIND_I8), intent(out), optional :: advance Count
integer, intent(out), optional :: alarmCount
type(ESMF_Direction), intent(out), optional :: directio n
integer, intent(out), optional :: rc

DESCRIPTION:

Gets one or more of the properties of anESMF_Clock .
The arguments are:

clock The object instance to query.

[name] The name of this clock.

[timeStep] TheESMF_Clock ’s time step interval.

[startTime] TheESMF_Clock ’s starting time.

[stopTime] TheESMF_Clock ’s stopping time.

[runDuration] Alternative way to getESMF_Clock ’s stopping time; runDuration = stopTime - startTime.

[runTimeStepCount] Alternative way to getESMF_Clock ’s stopping time; runTimeStepCount = (stopTime - start-
Time) / timeStep.

[refTime] TheESMF_Clock ’s reference time.

[currTime] TheESMF_Clock ’s current time.

[prevTime] TheESMF_Clock ’s previous time. Equals currTime at the previous time step.

682

[currSimTime] The current simulation time (currTime - refTime).

[prevSimTime] The previous simulation time. Equals currSimTime at the previous time step.

[calendar] TheCalendar on which all theClock ’s times are defined.

[calendarType] TheCalendarType on which all theClock ’s times are defined.

[timeZone] The timezone within which all theClock ’s times are defined.

[advanceCount] The number of times theESMF_Clock has been advanced. Increments inESMF_MODE_FORWARD
and decrements inESMF_MODE_REVERSE; see "direction" argument below and inESMF_ClockSet() .

[alarmCount] The number ofESMF_Alarms in theESMF_Clock ’s ESMF_Alarm list.

[direction] TheESMF_Clock ’s time stepping direction. See alsoESMF_ClockIsReverse() , an alternative for
convenient use in "if" and "do while" constructs.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

40.5.8 ESMF_ClockGetAlarm - Get an Alarm in a Clock’s Alarm list

INTERFACE:

subroutine ESMF_ClockGetAlarm(clock, name, alarm, rc)

ARGUMENTS:

type(ESMF_Clock), intent(inout) :: clock
character (len= *), intent(in) :: name
type(ESMF_Alarm), intent(out) :: alarm
integer, intent(out), optional :: rc

DESCRIPTION:

Gets thealarm whose name is the value of name in theclock ’s ESMF_Alarm list.
The arguments are:

clock The object instance to get theESMF_Alarm from.

name The name of the desiredESMF_Alarm.

alarm The desired alarm.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

40.5.9 ESMF_ClockGetAlarmList - Get a list of Alarms from a Clock

INTERFACE:

subroutine ESMF_ClockGetAlarmList(clock, alarmListTyp e, &
alarmList, alarmCount, timeStep, rc)

683

ARGUMENTS:

type(ESMF_Clock), intent(in) :: clock
type(ESMF_AlarmListType), intent(in) :: alarmListType
type(ESMF_Alarm), dimension(:), intent(out) :: alarmLis t
integer, intent(out) :: alarmCount
type(ESMF_TimeInterval), intent(in), optional :: timeSt ep
integer, intent(out), optional :: rc

DESCRIPTION:

Gets theclock ’s list of alarms.
The arguments are:

clock The object instance from which to get anESMF_Alarm list.

alarmListType The type of list to get:ESMF_ALARMLIST_ALL: Returns theESMF_Clock ’s entire list of alarms.

ESMF_ALARMLIST_NEXTRINGING: Return only those alarms that will ring upon the nextclock time
step. Can optionally specify argument timeStep (see below)to use instead of theclock ’s. See also method
ESMF_AlarmWillRingNext() for checking a single alarm.

ESMF_ALARMLIST_PREVRINGING: Return only those alarms that were ringing on the previousESMF_Clock
time step. See also methodESMF_AlarmWasPrevRinging() for checking a single alarm.

ESMF_ALARMLIST_RINGING: Returns only thoseclock alarms that are currently ringing. See also method
ESMF_ClockAdvance() for getting the list of ringing alarms subsequent to a time step. See also method
ESMF_AlarmIsRinging() for checking a single alarm.

alarmList The array of returned alarms.

alarmCount The number ofESMF_Alarms in the returned list.

[timeStep] Optional time step to be used instead of theclock ’s. Only used withESMF_ALARMLIST_NEXTRINGING
alarmListType (see above); ignored if specified with otheralarmListTypes .

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

40.5.10 ESMF_ClockGetNextTime - Calculate a Clock’s next time

INTERFACE:

subroutine ESMF_ClockGetNextTime(clock, nextTime, time Step, rc)

ARGUMENTS:

type(ESMF_Clock), intent(in) :: clock
type(ESMF_Time), intent(out) :: nextTime
type(ESMF_TimeInterval), intent(inout), optional :: tim eStep
integer, intent(out), optional :: rc

DESCRIPTION:

Calculates what the next time of theclock will be, based on theclock ’s current time step or an optionally passed-in
timeStep .
The arguments are:

684

clock The object instance for which to get the next time.

nextTime The resultingESMF_Clock ’s next time.

[timeStep] The time step interval to use instead of the clock’s.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

40.5.11 ESMF_ClockIsDone - Based on its direction, test if the Clock has reached or exceeded its stop time or
start time

INTERFACE:

function ESMF_ClockIsDone(clock, rc)

RETURN VALUE:

logical :: ESMF_ClockIsDone

ARGUMENTS:

type(ESMF_Clock), intent(in) :: clock
integer, intent(out), optional :: rc

DESCRIPTION:

Returns true if currentTime is greater than or equal to stopTime in ESMF_MODE_FORWARD, or if currentTime is less
than or equal to startTime inESMF_MODE_REVERSE. It returns false otherwise.
The arguments are:

clock The object instance to check.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

40.5.12 ESMF_ClockIsReverse - Test if the Clock is in reverse mode

INTERFACE:

function ESMF_ClockIsReverse(clock, rc)

RETURN VALUE:

logical :: ESMF_ClockIsReverse

ARGUMENTS:

type(ESMF_Clock), intent(in) :: clock
integer, intent(out), optional :: rc

685

DESCRIPTION:

Returns true if clock is inESMF_MODE_REVERSE, and false if inESMF_MODE_FORWARD. Allows convenient use
in "if" and "do while" constructs. Alternative toESMF_ClockGet(...direction=...) .
The arguments are:

clock The object instance to check.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

40.5.13 ESMF_ClockIsStopTime - Test if the Clock has reached or exceeded its stop time

INTERFACE:

function ESMF_ClockIsStopTime(clock, rc)

RETURN VALUE:

logical :: ESMF_ClockIsStopTime

ARGUMENTS:

type(ESMF_Clock), intent(in) :: clock
integer, intent(out), optional :: rc

DESCRIPTION:

Returns true if theclock has reached or exceeded its stop time, and false otherwise.
The arguments are:

clock The object instance to check.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

40.5.14 ESMF_ClockIsStopTimeEnabled - Test if the Clock’sstop time is enabled

INTERFACE:

function ESMF_ClockIsStopTimeEnabled(clock, rc)

RETURN VALUE:

logical :: ESMF_ClockIsStopTimeEnabled

ARGUMENTS:

type(ESMF_Clock), intent(in) :: clock
integer, intent(out), optional :: rc

DESCRIPTION:

Returns true if theclock ’s stop time is set and enabled, and false otherwise.
The arguments are:

clock The object instance to check.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

686

40.5.15 ESMF_ClockPrint - Print the contents of a Clock

INTERFACE:

subroutine ESMF_ClockPrint(clock, options, rc)

ARGUMENTS:

type(ESMF_Clock), intent(in) :: clock
character (len= *), intent(in), optional :: options
integer, intent(out), optional :: rc

DESCRIPTION:

Prints out anESMF_Clock ’s properties tostdout , in support of testing and debugging. The options control the
type of information and level of detail.

Note: ManyESMF_<class>Print methods are implemented in C++. On some platforms/compilers there is a
potential issue with interleaving Fortran and C++ output tostdout such that it doesn’t appear in the expected order.
If this occurs, theESMF_IOUnitFlush() method may be used on unit 6 to get coherent output.

The arguments are:

clock ESMF_Clock to be printed out.

[options] Print options. If none specified, prints allclock property values.
"advanceCount" - print the number of times the clock has beenadvanced.
"alarmCount" - print the number of alarms in the clock’s list.
"alarmList" - print the clock’s alarm list.
"currTime" - print the current clock time.
"direction" - print the clock’s timestep direction.
"name" - print the clock’s name.
"prevTime" - print the previous clock time.
"refTime" - print the clock’s reference time.
"startTime" - print the clock’s start time.
"stopTime" - print the clock’s stop time.
"timeStep" - print the clock’s time step.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

40.5.16 ESMF_ClockSet - Set one or more properties of a Clock

INTERFACE:

subroutine ESMF_ClockSet(clock, name, timeStep, startTi me, stopTime, &
runDuration, runTimeStepCount, refTime, &
currTime, advanceCount, direction, rc)

ARGUMENTS:

687

type(ESMF_Clock), intent(inout) :: clock
character (len= *), intent(in), optional :: name
type(ESMF_TimeInterval), intent(inout), optional :: tim eStep
type(ESMF_Time), intent(inout), optional :: startTime
type(ESMF_Time), intent(inout), optional :: stopTime
type(ESMF_TimeInterval), intent(inout), optional :: run Duration
integer, intent(in), optional :: runTimeStepCount
type(ESMF_Time), intent(inout), optional :: refTime
type(ESMF_Time), intent(inout), optional :: currTime
integer(ESMF_KIND_I8), intent(in), optional :: advanceC ount
type(ESMF_Direction), intent(in), optional :: direction
integer, intent(out), optional :: rc

DESCRIPTION:

Sets/resets one or more of the properties of anESMF_Clock that was previously initialized viaESMF_ClockCreate() .
The arguments are:

clock The object instance to set.

[name] The new name for this clock.

[timeStep] TheESMF_Clock ’s time step interval, which can be positive or negative. This is used to change a clock’s
timestep property for those applications that need variable timesteps. SeeESMF_ClockAdvance() below
for specifying variable timesteps that are NOT saved as the clock’s internal time step property. See "direction"
argument below for behavior with
t ESMF_MODE_REVERSE direction.

[startTime] TheESMF_Clock ’s starting time. Can be less than or or greater than stopTime, depending on a positive
or negative timeStep, respectively, and whether a stopTimeis specified; see below.

[stopTime] The ESMF_Clock ’s stopping time. Can be greater than or less than the startTime, depending on
a positive or negative timeStep, respectively. If neither stopTime, runDuration, nor runTimeStepCount is
specified, clock runs "forever"; user must use other means toknow when to stop (e.g. ESMF_Alarm or
ESMF_ClockGet(clock, currTime)). Mutually exclusive with runDuration and runTimeStepCount.

[runDuration] Alternative way to specifyESMF_Clock ’s stopping time; stopTime = startTime + runDuration. Can
be positive or negative, consistent with the timeStep’s sign. Mutually exclusive with stopTime and runTimeStep-
Count.

[runTimeStepCount] Alternative way to specifyESMF_Clock ’s stopping time; stopTime = startTime + (run-
TimeStepCount * timeStep). stopTime can be before startTime if timeStep is negative. Mutually exclusive
with stopTime and runDuration.

[refTime] TheESMF_Clock ’s reference time. See description inESMF_ClockCreate() above.

[currTime] The current time.

[advanceCount] The number of times the clock has been timestepped.

[direction] Sets the clock’s time-stepping direction. If called withESMF_MODE_REVERSE, sets the clock in "re-
verse" mode, causing it to timestep back towards its startTime. If called withESMF_MODE_FORWARD, sets the
clock in normal, "forward" mode, causing it to timestep in the direction of its startTime to stopTime. This holds
true for negative timestep clocks as well, which are initialized (created) with stopTime < startTime. The default
mode isESMF_MODE_FORWARD, established atESMF_ClockCreate() . timeStep can also be specified as
an argument at the same time, which allows for a change in magnitude and/or sign of the clock’s timeStep. If
not specified withESMF_MODE_REVERSE, the clock’s current timeStep is effectively negated. If timeStep is
specified, its sign is used as specified; it is not negated internally. E.g., if the specified timeStep is negative and
the clock is placed inESMF_MODE_REVERSE, subsequent calls toESMF_ClockAdvance() will cause the
clock’s current time to be decremented by the new timeStep’smagnitude.

688

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

40.5.17 ESMF_ClockStopTimeDisable - Disable a Clock’s stop time

INTERFACE:

subroutine ESMF_ClockStopTimeDisable(clock, rc)

ARGUMENTS:

type(ESMF_Clock), intent(inout) :: clock
integer, intent(out), optional :: rc

DESCRIPTION:

Disables aESMF_Clock ’s stop time;ESMF_ClockIsStopTime() will always return false, allowing a clock to
run past its stopTime.
The arguments are:

clock The object instance whose stop time to disable.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

40.5.18 ESMF_ClockStopTimeEnable - Enable an Clock’s stoptime

INTERFACE:

subroutine ESMF_ClockStopTimeEnable(clock, stopTime, r c)

ARGUMENTS:

type(ESMF_Clock), intent(inout) :: clock
type(ESMF_Time), intent(in), optional :: stopTime
integer, intent(out), optional :: rc

DESCRIPTION:

Enables aESMF_Clock ’s stop time, allowingESMF_ClockIsStopTime() to respect the stopTime.
The arguments are:

clock The object instance whose stop time to enable.

[stopTime] The stop time to set or reset.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

689

40.5.19 ESMF_ClockSyncToRealTime - Set Clock’s current time to wall clock time

INTERFACE:

subroutine ESMF_ClockSyncToRealTime(clock, rc)

ARGUMENTS:

type(ESMF_Clock), intent(inout) :: clock
integer, intent(out), optional :: rc

DESCRIPTION:

Sets aclock ’s current time to the wall clock time. It is accurate to the nearest second.
The arguments are:

clock The object instance to be synchronized with wall clock time.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

40.5.20 ESMF_ClockValidate - Validate a Clock’s properties

INTERFACE:

subroutine ESMF_ClockValidate(clock, options, rc)

ARGUMENTS:

type(ESMF_Clock), intent(inout) :: clock
character (len= *), intent(in), optional :: options
integer, intent(out), optional :: rc

DESCRIPTION:

Checks whether aclock is valid. Must have a valid startTime and timeStep. Ifclock has a stopTime, its currTime
must be within startTime to stopTime, inclusive; also startTime’s and stopTime’s calendars must be the same.
The arguments are:

clock ESMF_Clock to be validated.

[options] Validation options are not yet supported.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

690

41 Alarm Class

41.1 Description

The Alarm class identifies events that occur at specific Timesor specific TimeIntervals by returning a true value at
those times or subsequent times, and a false value otherwise.

41.2 Alarm Options

41.2.1 ESMF_AlarmListType

DESCRIPTION:
Specifies the characteristics of Alarms that populate a retrieved Alarm list.
Valid values are:

ESMF_ALARMLIST_ALL All alarms.

ESMF_ALARMLIST_NEXTRINGING Alarms that will ring before or at the next timestep.

ESMF_ALARMLIST_PREVRINGING Alarms that rang at or since the last timestep.

ESMF_ALARMLIST_RINGING Only ringing alarms.

41.3 Use and Examples

Alarms are used in conjunction with Clocks (see Section 40.1). Multiple Alarms can be associated with a Clock.
During theESMF_ClockAdvance() method, a Clock iterates over its internal Alarms to determine if any are
ringing. Alarms ring when a specified Alarm time is reached orexceeded, taking into account whether the time step
is positive or negative. InESMF_MODE_REVERSE(see Section 40.1), alarms ring in reverse, i.e., they beginringing
when they originally ended, and end ringing when they originally began. On completion of the time advance call, the
Clock optionally returns a list of ringing alarms.
Each ringing Alarm can then be processed using Alarm methodsfor identifying, turning off, disabling or resetting the
Alarm.
Alarm methods are defined for obtaining the ringing state, turning the ringer on/off, enabling/disabling the Alarm, and
getting/setting associated times.
The following example shows how to set and process Alarms.

! !PROGRAM: ESMF_AlarmEx - Alarm examples
!
! !DESCRIPTION:
!
! This program shows an example of how to create, initialize, and process
! alarms associated with a clock.
!-- ---------------------------

! ESMF Framework module
use ESMF_Mod
implicit none

! instantiate time_step, start, stop, and alarm times
type(ESMF_TimeInterval) :: timeStep, alarmInterval
type(ESMF_Time) :: alarmTime, startTime, stopTime

! instantiate a clock
type(ESMF_Clock) :: clock

! instantiate Alarm lists

691

integer, parameter :: NUMALARMS = 2
type(ESMF_Alarm) :: alarm(NUMALARMS)

! local variables for Get methods
integer :: ringingAlarmCount ! at any time step (0 to NUMALAR MS)

! name, loop counter, result code
character (len=ESMF_MAXSTR) :: name
integer :: i, rc

! initialize ESMF framework
call ESMF_Initialize(defaultCalendar=ESMF_CAL_GREGOR IAN, defaultlogfilename="AlarmEx.Log",

defaultlogtype=ESMF_LOG_MULTI, rc=rc)

41.3.1 Clock initialization

This example shows how to create and initialize anESMF_Clock .

! initialize time interval to 1 day
call ESMF_TimeIntervalSet(timeStep, d=1, rc=rc)

! initialize start time to 9/1/2003
call ESMF_TimeSet(startTime, yy=2003, mm=9, dd=1, rc=rc)

! initialize stop time to 9/30/2003
call ESMF_TimeSet(stopTime, yy=2003, mm=9, dd=30, rc=rc)

! create & initialize the clock with the above values
clock = ESMF_ClockCreate("The Clock", timeStep, startTim e, stopTime, &

rc=rc)

41.3.2 Alarm initialization

This example shows how to create and initialize twoESMF_Alarms and associate them with the clock.

! Initialize first alarm to be a one-shot on 9/15/2003 and ass ociate
! it with the clock
call ESMF_TimeSet(alarmTime, yy=2003, mm=9, dd=15, rc=rc)

alarm(1) = ESMF_AlarmCreate("Example alarm 1", clock, &
ringTime=alarmTime, rc=rc)

! Initialize second alarm to ring on a 1 week interval startin g 9/1/2003
! and associate it with the clock
call ESMF_TimeSet(alarmTime, yy=2003, mm=9, dd=1, rc=rc)

call ESMF_TimeIntervalSet(alarmInterval, d=7, rc=rc)

692

! Alarm gets default name "Alarm002"
alarm(2) = ESMF_AlarmCreate(clock=clock, ringTime=alar mTime, &

ringInterval=alarmInterval, rc=rc)

41.3.3 Clock advance and Alarm processing

This example shows how to advance anESMF_Clock and process any resulting ringing alarms.

! time step clock from start time to stop time
do while (.not.ESMF_ClockIsStopTime(clock, rc))

! perform time step and get the number of any ringing alarms
call ESMF_ClockAdvance(clock, ringingAlarmCount=ringi ngAlarmCount, &

rc=rc)

call ESMF_ClockPrint(clock, "currTime string", rc)

! check if alarms are ringing
if (ringingAlarmCount > 0) then

print * , "number of ringing alarms = ", ringingAlarmCount

do i = 1, NUMALARMS
if (ESMF_AlarmIsRinging(alarm(i), rc)) then

call ESMF_AlarmGet(alarm(i), name=name, rc=rc)
print * , trim(name), " is ringing!"

! after processing alarm, turn it off
call ESMF_AlarmRingerOff(alarm(i), rc)

end if ! this alarm is ringing
end do ! each ringing alarm

endif ! ringing alarms
end do ! timestep clock

41.3.4 Alarm and Clock destruction

This example shows how to destroyESMF_Alarms andESMF_Clocks .

call ESMF_AlarmDestroy(alarm(1), rc=rc)

call ESMF_AlarmDestroy(alarm(2), rc=rc)

call ESMF_ClockDestroy(clock, rc=rc)

! finalize ESMF framework
call ESMF_Finalize(rc=rc)

end program ESMF_AlarmEx

693

41.4 Restrictions and Future Work

1. Alarm list allocation factor The alarm list within a clock is dynamically allocated automatically, 200 alarm
references at a time. This constant is defined in both Fortranand C++ with a #define for ease of modification.

2. Sticky alarm end times in reverseFor sticky alarms, there is an implicit limitation that in order to properly re-
verse timestep through a ring end time, that time must have already been traversed in the forward direction. This
is due to the fact that the Time Manager cannot predict when user code will callESMF_AlarmRingerOff() .
An error message will be logged when this limitation is not satisfied.

3. Sticky alarm ring interval in reverse For repeating sticky alarms, it is currently assumed that the ringInterval is
constant, so that only the time of the last call toESMF_AlarmRingerOff() is saved. InESMF_MODE_REVERSE,
this information is used to turn sticky alarms back on. In a future release, ringIntervals will be allowed to be
variable, by saving alarm state at every timestep.

41.5 Design and Implementation Notes

The Alarm class is designed as a deep, dynamically allocatable class, based on a pointer type. This allows for both
indirect and direct manipulation of alarms. Indirect alarmmanipulation is where ESMF_Alarm API methods, such
as ESMF_AlarmRingerOff(), are invoked on alarm references(pointers) returned from ESMF_Clock queries such as
"return ringing alarms." Since the method is performed on analarm reference, the actual alarm held by the clock is
affected, not just a user’s local copy. Direct alarm manipulation is the more common case where alarm API methods
are invoked on the original alarm objects created by the user.
For consistency, the ESMF_Clock class is also designed as a deep, dynamically allocatable class.
An additional benefit from this approach is that Clocks and Alarms can be created and used from anywhere in a user’s
code without regard to the scope in which they were created. In constrast, statically created Alarms and Clocks would
disappear if created within a user’s routine that returns, whereas dynamically allocated Alarms and Clocks will persist
until explicitly destroyed by the user.

41.6 Class API

41.6.1 ESMF_AlarmOperator(==) - Test if Alarm 1 is equal to Alarm 2

INTERFACE:

interface operator(==)
if (alarm1 == alarm2) then ... endif

OR
result = (alarm1 == alarm2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_Alarm), intent(in) :: alarm1
type(ESMF_Alarm), intent(in) :: alarm2

DESCRIPTION:

Overloads the (==) operator for theESMF_Alarm class. Compare two alarms for equality; return true if equal, false
otherwise. Comparison is based on IDs, which are distinct for newly created alarms and identical for alarms created
as copies.
The arguments are:

alarm1 The firstESMF_Alarm in comparison.

alarm2 The secondESMF_Alarm in comparison.

694

41.6.2 ESMF_AlarmOperator(/=) - Test if Alarm 1 is not equalto Alarm 2

INTERFACE:

interface operator(/=)
if (alarm1 /= alarm2) then ... endif

OR
result = (alarm1 /= alarm2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_Alarm), intent(in) :: alarm1
type(ESMF_Alarm), intent(in) :: alarm2

DESCRIPTION:

Overloads the (/=) operator for theESMF_Alarm class. Compare two alarms for inequality; return true if notequal,
false otherwise. Comparison is based on IDs, which are distinct for newly created alarms and identical for alarms
created as copies.
The arguments are:

alarm1 The firstESMF_Alarm in comparison.

alarm2 The secondESMF_Alarm in comparison.

41.6.3 ESMF_AlarmCreate - Create a new ESMF Alarm

INTERFACE:

! Private name; call using ESMF_AlarmCreate()
function ESMF_AlarmCreateNew(name, clock, ringTime, rin gInterval, &

stopTime, ringDuration, &
ringTimeStepCount, &
refTime, enabled, sticky, rc)

RETURN VALUE:

type(ESMF_Alarm) :: ESMF_AlarmCreateNew

ARGUMENTS:

character (len= *), intent(in), optional :: name
type(ESMF_Clock), intent(in) :: clock
type(ESMF_Time), intent(in), optional :: ringTime
type(ESMF_TimeInterval), intent(in), optional :: ringIn terval
type(ESMF_Time), intent(in), optional :: stopTime
type(ESMF_TimeInterval), intent(in), optional :: ringDu ration
integer, intent(in), optional :: ringTimeStepCount
type(ESMF_Time), intent(in), optional :: refTime
logical, intent(in), optional :: enabled
logical, intent(in), optional :: sticky
integer, intent(out), optional :: rc

695

DESCRIPTION:

Creates and sets the initial values in a newESMF_Alarm.
In ESMF_MODE_REVERSE(see Section 40.1), alarms ring in reverse, i.e., they beginringing when they originally
ended, and end ringing when they originally began.
This is a private method; invoke via the public overloaded entry pointESMF_AlarmCreate() .
The arguments are:

[name] The name for the newly created alarm. If not specified, a default unique name will be generated: "AlarmNNN"
where NNN is a unique sequence number from 001 to 999.

clock The clock with which to associate this newly created alarm.

[ringTime] The ring time for a one-shot alarm or the first ring time for a repeating (interval) alarm. Must specify at
least one of ringTime or ringInterval.

[ringInterval] The ring interval for repeating (interval) alarms. IfringTime is not also specified (first ring time), it
will be calculated as theclock ’s current time plusringInterval . Must specify at least one of ringTime or
ringInterval.

[stopTime] The stop time for repeating (interval) alarms. If not specified, an interval alarm will repeat forever.

[ringDuration] The absolute ring duration. If not sticky (see argument below), alarms rings for ringDuration, then
turns itself off. Default is zero (unused). Mutually exclusive with ringTimeStepCount (below); used only
if set to a non-zero duration and ringTimeStepCount is 1 (seebelow). See alsoESMF_AlarmSticky() ,
ESMF_AlarmNotSticky() .

[ringTimeStepCount] The relative ring duration. If not sticky (see argument below), alarms rings for ringTimeStep-
Count, then turns itself off. Default is 1: a non-sticky alarm will ring for one clock time step. Mutually
exclusive with ringDuration (above); used if ringTimeStepCount > 1. If ringTimeStepCount is 1 (default) and
ringDuration is non-zero, ringDuration is used (see above), otherwise ringTimeStepCount is used. See also
ESMF_AlarmSticky() , ESMF_AlarmNotSticky() .

[refTime] The reference (i.e. base) time for an interval alarm.

[enabled] Sets the enabled state; default is on (true). If disabled, analarm will not function at all. See also
ESMF_AlarmEnable() , ESMF_AlarmDisable() .

[sticky] Sets the sticky state; default is on (true). If sticky, once an alarm is ringing, it will remain ringing until turned
off manually via a user call toESMF_AlarmRingerOff() . If not sticky, an alarm will turn itself off after a
certain ring duration specified by either ringDuration or ringTimeStepCount (see above). There is an implicit
limitation that in order to properly reverse timestep through a ring end time inESMF_MODE_REVERSE, that
time must have already been traversed in the forward direction. This is due to the fact that the Time Manager
cannot predict when user code will callESMF_AlarmRingerOff() . An error message will be logged when
this limitation is not satisfied. See alsoESMF_AlarmSticky() , ESMF_AlarmNotSticky() .

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

41.6.4 ESMF_AlarmCreate - Create a copy of an existing ESMF Alarm

INTERFACE:

! Private name; call using ESMF_AlarmCreate()
function ESMF_AlarmCreateCopy(alarm, rc)

RETURN VALUE:

696

type(ESMF_Alarm) :: ESMF_AlarmCreateCopy

ARGUMENTS:

type(ESMF_Alarm), intent(inout) :: alarm
integer, intent(out), optional :: rc

DESCRIPTION:

Creates a copy of a givenESMF_Alarm.
This is a private method; invoke via the public overloaded entry pointESMF_AlarmCreate() .
The arguments are:

alarm TheESMF_Alarm to copy.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

41.6.5 ESMF_AlarmDestroy - Free all resources associated with an Alarm

INTERFACE:

subroutine ESMF_AlarmDestroy(alarm, rc)

ARGUMENTS:

type(ESMF_Alarm) :: alarm
integer, intent(out), optional :: rc

DESCRIPTION:

Releases all resources associated with thisESMF_Alarm.
The arguments are:

alarm Destroy contents of thisESMF_Alarm.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

41.6.6 ESMF_AlarmDisable - Disable an Alarm

INTERFACE:

subroutine ESMF_AlarmDisable(alarm, rc)

ARGUMENTS:

type(ESMF_Alarm), intent(inout) :: alarm
integer, intent(out), optional :: rc

DESCRIPTION:

Disables anESMF_Alarm.
The arguments are:

697

alarm The object instance to disable.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

41.6.7 ESMF_AlarmEnable - Enable an Alarm

INTERFACE:

subroutine ESMF_AlarmEnable(alarm, rc)

ARGUMENTS:

type(ESMF_Alarm), intent(inout) :: alarm
integer, intent(out), optional :: rc

DESCRIPTION:

Enables anESMF_Alarm to function.
The arguments are:

alarm The object instance to enable.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

41.6.8 ESMF_AlarmGet - Get Alarm properties

INTERFACE:

subroutine ESMF_AlarmGet(alarm, name, clock, ringTime, p revRingTime, &
ringInterval, stopTime, ringDuration, &
ringTimeStepCount, timeStepRingingCount, &
ringBegin, ringEnd, refTime, ringing, &
ringingOnPrevTimeStep, enabled, sticky, rc)

ARGUMENTS:

type(ESMF_Alarm), intent(inout) :: alarm
character (len= *), intent(out), optional :: name
type(ESMF_Clock), intent(out), optional :: clock
type(ESMF_Time), intent(out), optional :: ringTime
type(ESMF_Time), intent(out), optional :: prevRingTime
type(ESMF_TimeInterval), intent(out), optional :: ringI nterval
type(ESMF_Time), intent(out), optional :: stopTime
type(ESMF_TimeInterval), intent(out), optional :: ringD uration
integer, intent(out), optional :: ringTimeStepCount
integer, intent(out), optional :: timeStepRingingCount
type(ESMF_Time), intent(out), optional :: ringBegin
type(ESMF_Time), intent(out), optional :: ringEnd
type(ESMF_Time), intent(out), optional :: refTime
logical, intent(out), optional :: ringing

698

logical, intent(out), optional :: ringingOnPrevTimeStep
logical, intent(out), optional :: enabled
logical, intent(out), optional :: sticky
integer, intent(out), optional :: rc

DESCRIPTION:

Gets one or more of anESMF_Alarm’s properties.
The arguments are:

alarm The object instance to query.

[name] The name of this alarm.

[clock] The associated clock.

[ringTime] The ring time for a one-shot alarm or the next repeating alarm.

[prevRingTime] The previous ring time.

[ringInterval] The ring interval for repeating (interval) alarms.

[stopTime] The stop time for repeating (interval) alarms.

[ringDuration] The ring duration. Mutually exclusive with ringTimeStepCount (see below).

[ringTimeStepCount] The number of time steps comprising the ring duration. Mutually exclusive with ringDuration
(see above).

[timeStepRingingCount] The number of time steps for which the alarm has been ringing thus far. Used internally
for tracking ringTimeStepCount ring durations (see above). Mutually exclusive with ringBegin (see below).
Increments inESMF_MODE_FORWARDand decrements inESMF_MODE_REVERSE; see Section 40.1.

[ringBegin] The time when the alarm began ringing. Used internally for tracking ringDuration (see above). Mutually
exclusive with timeStepRingingCount (see above).

[ringEnd] The time when the alarm ended ringing. Used internally for re-ringing alarm inESMF_MODE_REVERSE.

[refTime] The reference (i.e. base) time for an interval alarm.

[ringing] The current ringing state. See alsoESMF_AlarmRingerOn() , ESMF_AlarmRingerOff() .

[ringingOnPrevTimeStep] The ringing state upon the previous time step. Same asESMF_AlarmWasPrevRinging() .

[enabled] The enabled state. See alsoESMF_AlarmEnable() , ESMF_AlarmDisable() .

[sticky] The sticky state. See alsoESMF_AlarmSticky() , ESMF_AlarmNotSticky() .

41.6.9 ESMF_AlarmIsEnabled - Check if Alarm is enabled

INTERFACE:

function ESMF_AlarmIsEnabled(alarm, rc)

RETURN VALUE:

logical :: ESMF_AlarmIsEnabled

699

ARGUMENTS:

type(ESMF_Alarm), intent(inout) :: alarm
integer, intent(out), optional :: rc

DESCRIPTION:

Check ifESMF_Alarm is enabled.
The arguments are:

alarm The object instance to check for enabled state.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

41.6.10 ESMF_AlarmIsRinging - Check if Alarm is ringing

INTERFACE:

function ESMF_AlarmIsRinging(alarm, rc)

RETURN VALUE:

logical :: ESMF_AlarmIsRinging

ARGUMENTS:

type(ESMF_Alarm), intent(inout) :: alarm
integer, intent(out), optional :: rc

DESCRIPTION:

Check ifESMF_Alarm is ringing.
See also methodESMF_ClockGetAlarmList(clock, ESMF_ALARMLIST_RINGING , ...) to get a list
of all ringing alarms belonging to anESMF_Clock .
The arguments are:

alarm The alarm to check for ringing state.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

41.6.11 ESMF_AlarmIsSticky - Check if Alarm is sticky

INTERFACE:

function ESMF_AlarmIsSticky(alarm, rc)

RETURN VALUE:

logical :: ESMF_AlarmIsSticky

ARGUMENTS:

700

type(ESMF_Alarm), intent(inout) :: alarm
integer, intent(out), optional :: rc

DESCRIPTION:

Check ifalarm is sticky.
The arguments are:

alarm The object instance to check for sticky state.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

41.6.12 ESMF_AlarmNotSticky - Unset an Alarm’s sticky flag

INTERFACE:

subroutine ESMF_AlarmNotSticky(alarm, ringDuration, &
ringTimeStepCount, rc)

ARGUMENTS:

type(ESMF_Alarm), intent(inout) :: alarm
type(ESMF_TimeInterval), intent(in), optional :: ringDu ration
integer, intent(in), optional :: ringTimeStepCount
integer, intent(out), optional :: rc

DESCRIPTION:

Unset anESMF_Alarm’s sticky flag; once alarm is ringing, it turns itself off after ringDuration.
The arguments are:

alarm The object instance to unset sticky.

[ringDuration] If not sticky, alarms rings for ringDuration, then turns itself off. Mutually exclusive with ring-
TimeStepCount (see below and full description in methodESMF_AlarmCreate() orESMF_AlarmSet()).

[ringTimeStepCount] If not sticky, alarms rings for ringTimeStepCount, then turns itself off. Mutually exclusive
with ringDuration (see above and full description in methodESMF_AlarmCreate() orESMF_AlarmSet()).

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

41.6.13 ESMF_AlarmPrint - Print out an Alarm’s properties

INTERFACE:

subroutine ESMF_AlarmPrint(alarm, options, rc)

ARGUMENTS:

701

type(ESMF_Alarm), intent(inout) :: alarm
character (len= *), intent(in), optional :: options
integer, intent(out), optional :: rc

DESCRIPTION:

Prints out anESMF_Alarm’s properties tostdout , in support of testing and debugging. The options control the
type of information and level of detail.

Note: ManyESMF_<class>Print methods are implemented in C++. On some platforms/compilers there is a
potential issue with interleaving Fortran and C++ output tostdout such that it doesn’t appear in the expected order.
If this occurs, theESMF_IOUnitFlush() method may be used on unit 6 to get coherent output.

The arguments are:

alarm ESMF_Alarm to be printed out.

[options] Print options. If none specified, prints allalarm property values.
"clock" - print the associated clock’s name.
"enabled" - print the alarm’s ability to ring.
"name" - print the alarm’s name.
"prevRingTime" - print the alarm’s previous ring time.
"ringBegin" - print time when the alarm actually begins to ring.
"ringDuration" - print how long this alarm is to remain ringing.
"ringEnd" - print time when the alarm actually ends ringing.
"ringing" - print the alarm’s current ringing state.
"ringingOnPrevTimeStep" - print whether the alarm was ringing immediately after the previous clock time step.
"ringInterval" - print the alarm’s periodic ring interval.
"ringTime" - print the alarm’s next time to ring.
"ringTimeStepCount" - print how long this alarm is to remainringing, in terms of a number of clock time steps.
"refTime" - print the alarm’s interval reference (base) time.
"sticky" - print whether the alarm must be turned off manually.
"stopTime" - print when alarm intervals end.
"timeStepRingingCount" - print the number of time steps thealarm has been ringing thus far.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

41.6.14 ESMF_AlarmRingerOff - Turn off an Alarm

INTERFACE:

subroutine ESMF_AlarmRingerOff(alarm, rc)

ARGUMENTS:

type(ESMF_Alarm), intent(inout) :: alarm
integer, intent(out), optional :: rc

DESCRIPTION:

Turn off anESMF_Alarm; unsets ringing state. For a sticky alarm, this method must be called to turn off its ringing
state. This is true for eitherESMF_MODE_FORWARD(default) orESMF_MODE_REVERSE. See Section 40.1.
The arguments are:

702

alarm The object instance to turn off.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

41.6.15 ESMF_AlarmRingerOn - Turn on an Alarm

INTERFACE:

subroutine ESMF_AlarmRingerOn(alarm, rc)

ARGUMENTS:

type(ESMF_Alarm), intent(inout) :: alarm
integer, intent(out), optional :: rc

DESCRIPTION:

Turn on anESMF_Alarm; sets ringing state.
The arguments are:

alarm The object instance to turn on.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

41.6.16 ESMF_AlarmSet - Set Alarm properties

INTERFACE:

subroutine ESMF_AlarmSet(alarm, name, clock, ringTime, r ingInterval, &
stopTime, ringDuration, ringTimeStepCount, &
refTime, ringing, enabled, sticky, rc)

ARGUMENTS:

type(ESMF_Alarm), intent(inout) :: alarm
character (len= *), intent(in), optional :: name
type(ESMF_Clock), intent(in), optional :: clock
type(ESMF_Time), intent(in), optional :: ringTime
type(ESMF_TimeInterval), intent(in), optional :: ringIn terval
type(ESMF_Time), intent(in), optional :: stopTime
type(ESMF_TimeInterval), intent(in), optional :: ringDu ration
integer, intent(in), optional :: ringTimeStepCount
type(ESMF_Time), intent(in), optional :: refTime
logical, intent(in), optional :: ringing
logical, intent(in), optional :: enabled
logical, intent(in), optional :: sticky
integer, intent(out), optional :: rc

703

DESCRIPTION:

Sets/resets one or more of the properties of anESMF_Alarm that was previously initialized viaESMF_AlarmCreate() .
The arguments are:

alarm The object instance to set.

[name] The new name for this alarm.

[clock] Re-associates this alarm with a different clock.

[ringTime] The next ring time for a one-shot alarm or a repeating (interval) alarm.

[ringInterval] The ring interval for repeating (interval) alarms.

[stopTime] The stop time for repeating (interval) alarms.

[ringDuration] The absolute ring duration. If not sticky (see argument below), alarms rings for ringDuration, then
turns itself off. Default is zero (unused). Mutually exclusive with ringTimeStepCount (below); used only
if set to a non-zero duration and ringTimeStepCount is 1 (seebelow). See alsoESMF_AlarmSticky() ,
ESMF_AlarmNotSticky() .

[ringTimeStepCount] The relative ring duration. If not sticky (see argument below), alarms rings for ringTimeStep-
Count, then turns itself off. Default is 1: a non-sticky alarm will ring for one clock time step. Mutually
exclusive with ringDuration (above); used if ringTimeStepCount > 1. If ringTimeStepCount is 1 (default) and
ringDuration is non-zero, ringDuration is used (see above), otherwise ringTimeStepCount is used. See also
ESMF_AlarmSticky() , ESMF_AlarmNotSticky() .

[refTime] The reference (i.e. base) time for an interval alarm.

[ringing] Sets the ringing state. See alsoESMF_AlarmRingerOn() , ESMF_AlarmRingerOff() .

[enabled] Sets the enabled state. If disabled, an alarm will not function at all. See alsoESMF_AlarmEnable() ,
ESMF_AlarmDisable() .

[sticky] Sets the sticky state. If sticky, once an alarm is ringing, itwill remain ringing until turned off manually via a
user call toESMF_AlarmRingerOff() . If not sticky, an alarm will turn itself off after a certain ring duration
specified by either ringDuration or ringTimeStepCount (seeabove). There is an implicit limitation that in order
to properly reverse timestep through a ring end time inESMF_MODE_REVERSE, that time must have already
been traversed in the forward direction. This is due to the fact that the Time Manager cannot predict when
user code will callESMF_AlarmRingerOff() . An error message will be logged when this limitation is not
satisfied. See alsoESMF_AlarmSticky() , ESMF_AlarmNotSticky() .

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

41.6.17 ESMF_AlarmSticky - Set an Alarm’s sticky flag

INTERFACE:

subroutine ESMF_AlarmSticky(alarm, rc)

ARGUMENTS:

type(ESMF_Alarm), intent(inout) :: alarm
integer, intent(out), optional :: rc

704

DESCRIPTION:

Set anESMF_Alarm’s sticky flag; once alarm is ringing, it remains ringing until ESMF_AlarmRingerOff()
is called. There is an implicit limitation that in order to properly reverse timestep through a ring end time in
ESMF_MODE_REVERSE, that time must have already been traversed in the forward direction. This is due to the
fact that the Time Manager cannot predict when user code willcall ESMF_AlarmRingerOff() . An error message
will be logged when this limitation is not satisfied.
The arguments are:

alarm The object instance to be set sticky.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

41.6.18 ESMF_AlarmValidate - Validate an Alarm’s properties

INTERFACE:

subroutine ESMF_AlarmValidate(alarm, options, rc)

ARGUMENTS:

type(ESMF_Alarm), intent(inout) :: alarm
character (len= *), intent(in), optional :: options
integer, intent(out), optional :: rc

DESCRIPTION:

Performs a validation check on anESMF_Alarm’s properties. Must have a valid ringTime, set either directly or
indirectly via ringInterval. SeeESMF_AlarmCreate() .
The arguments are:

alarm ESMF_Alarm to be validated.

[options] Validation options are not yet supported.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

41.6.19 ESMF_AlarmWasPrevRinging - Check if Alarm was ringing on the previous Clock timestep

INTERFACE:

function ESMF_AlarmWasPrevRinging(alarm, rc)

RETURN VALUE:

logical :: ESMF_AlarmWasPrevRinging

ARGUMENTS:

type(ESMF_Alarm), intent(inout) :: alarm
integer, intent(out), optional :: rc

705

DESCRIPTION:

Check ifESMF_Alarm was ringing on the previous clock timestep.
See also methodESMF_ClockGetAlarmList(clock, ESMF_ALARMLIST_PREVRIN GING, ...) get a
list of all alarms belonging to aESMF_Clock that were ringing on the previous time step.
The arguments are:

alarm The object instance to check for previous ringing state.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

41.6.20 ESMF_AlarmWillRingNext - Check if Alarm will ring u pon the next Clock timestep

INTERFACE:

function ESMF_AlarmWillRingNext(alarm, timeStep, rc)

RETURN VALUE:

logical :: ESMF_AlarmWillRingNext

ARGUMENTS:

type(ESMF_Alarm), intent(inout) :: alarm
type(ESMF_TimeInterval), intent(in), optional :: timeSt ep
integer, intent(out), optional :: rc

DESCRIPTION:

Check ifESMF_Alarm will ring on the next clock timestep, either the current clock timestep or a passed-in timestep.
See also methodESMF_ClockGetAlarmList(clock, ESMF_ALARMLIST_NEXTRIN GING, ...) to get
a list of all alarms belonging to aESMF_Clock that will ring on the next time step.
The arguments are:

alarm The alarm to check for next ringing state.

[timeStep] Optional timestep to use instead of the clock’s.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

42 Config Class

42.1 Description

ESMF Configuration Management is based on NASA DAO’s Inpak 90package, a Fortran 90 collection of rou-
tines/functions for accessingResource Filesin ASCII format.The package is optimized for minimizing formatted
I/O, performing all of its string operations in memory usingFortran intrinsic functions.

42.1.1 Package history

The ESMF Configuration Management Package was evolved by Leonid Zaslavsky and Arlindo da Silva from Ipack90
package created by Arlindo da Silva at NASA DAO.
Back in the 70’s Eli Isaacson wrote IOPACK in Fortran 66. In June of 1987 Arlindo da Silva wrote Inpak77 using For-
tran 77 string functions; Inpak 77 is a vastly simplified IOPACK, but has its own goodies not found in IOPACK. Inpak
90 removes some obsolete functionality in Inpak77, and parses the whole resource file in memory for performance.

706

42.1.2 Resource files

A Resource File (RF)is a text file consisting of list oflabel-valuepairs. There is a limit of 250 characters per line and
the Resource File can contain a maximum of 200 records. Eachlabelshould be followed by some data, thevalue. An
example Resource File follows. It is the file used in the example below.

This is an example Resource File.
It contains a list of <label,value> pairs.
The colon after the label is required.

The values after the label can be an list.
Multiple types are authorized.

my_file_names: jan87.dat jan88.dat jan89.dat # all string s
constants: 3.1415 25 # float and integer
my_favorite_colors: green blue 022

Or, the data can be a list of single value pairs.
It is simplier to retrieve data in this format:

radius_of_the_earth: 6.37E6
parameter_1: 89
parameter_2: 78.2
input_file_name: dummy_input.netcdf

Or, the data can be located in a table using the following
syntax:

my_table_name::
1000 3000 263.0

925 3000 263.0
850 3000 263.0
700 3000 269.0
500 3000 287.0
400 3000 295.8
300 3000 295.8

::

Note that the colon after the label is required and that the double colon is required to declare tabular data.
Resource files are intended for random access (except between ::’s in a table definition). This means that order in which
a particularlabel-valuepair is retreived is not dependent upon the original order ofthe pairs. The only exception to
this, however, is when the samelabelappears multiple times within the Resource File.

42.2 Use and Examples

This example/test code performs simple Config/Resource File routines. It does not include attaching a Config to a
component. The important thing to remember there is that youcan have one Config per component.
There are two methodologies for accessing data in a ResourceFile. This example will demonstrate both.
Note the API section contains a complete description of arguments in the methods/functions demonstrated in this
example.

707

42.2.1 Variable declarations

The following are the variable declarations used as arguments in the following code fragments. They represent the
locals names for the variables listed in the Resource File (RF). Note they do not need to be the same.

character(ESMF_MAXSTR) :: fname ! config file name
character * 20 :: fn1, fn2, fn3, input_file ! strings to be read in
integer :: rc ! error return code (0 is OK)
integer :: i_n ! the first constant in the RF
real :: param_1 ! the second constant in the RF
real :: radius ! radius of the earth
real :: table(7,3) ! an array to hold the table in the RF

type(ESMF_Config) :: cf ! the Config itself

42.2.2 Creation of a Config

While there are two methodologies for accessing the data within a Resource File, there is only one way to create the
initial Config and load its ASCII text into memory. This is thefirst step in the process.
Note that subsequent calls toESMF_ConfigLoadFile will OVERWRITE the current Config NOT append to it.
There is no means of appending to a Config.

cf = ESMF_ConfigCreate(rc) ! Create the empty Config

fname = "myResourceFile.rc" ! Name the Resource File
call ESMF_ConfigLoadFile(cf, fname, rc=rc) ! Load the Reso urce File into the

! empty Config

42.2.3 How to retrieve a label with a single value

The first method for retrieving information from the Resource File takes advantage of the <label,value> relationship
within the file and access the data in a dictionary-like manner. This is the simplest methodology, but it does imply the
use of only one value per label in the Resource File.
Remember, that the order in which a particular label/value pair is retrieved is not dependent upon the order which they
exist within the Resource File.

call ESMF_ConfigGetAttribute(cf, radius, label=’radius _of_the_earth:’, &
default=1.0, rc=rc)

Note that the colon must be included in the label string when using this methodology. It is also important to provide a
default value in case the label does not exist in the file
This methodology works for all types. The following is an example of retrieving a string:

call ESMF_ConfigGetAttribute(cf, input_file, label=’in put_file_name:’, &
default="./default.nc", rc=rc)

The same code fragment can be used to demonstrate what happens when the label is not present. Note that "file_name"
does not exist in the Resource File. The result of its abscense is the default value provided in the call.

call ESMF_ConfigGetAttribute(cf, input_file, label=’fi le_name:’, &
default="./default.nc", rc=rc)

708

42.2.4 How to retrieve a label with multiple values

When there are multiple, mixed-typed values associated with a label, the values can be retrieved in two steps: 1)
Use ESMF_ConfigFindLabel() to find the label in the Config class; 2) use ESMF_ConfigGetAttribute() without the
optional ’label’ argument to retrieve the values one at a time, reading from left to right in the record.
A second reminder that the order in which a particular label/value pair is retrieved is not dependent upon the order
which they exist within the Resource File. The label used in this method allows the user to skip to any point in the file.

call ESMF_ConfigFindLabel(cf, ’constants:’, rc=rc) ! Ste p a) Find the
! label

Two constants, radius and i_n, can now be retrieved without having to specify their label or use an array. They are also
different types.

call ESMF_ConfigGetAttribute(cf, param_1, rc=rc) ! Step b) read in the first
! constant in the sequence

call ESMF_ConfigGetAttribute(cf, i_n, rc=rc) ! Step c) rea d in the second
! constant in the sequence

This methodology also works with strings.

call ESMF_ConfigFindLabel(cf, ’my_file_names:’, rc=rc) !Step a) find the label

call ESMF_ConfigGetAttribute(cf, fn1, rc=rc) !Step b) ret rieve the first filename
call ESMF_ConfigGetAttribute(cf, fn2, rc=rc) !Step c) ret rieve the second filename
call ESMF_ConfigGetAttribute(cf, fn3, rc=rc) !Step d) ret rieve the third filename

42.2.5 How to retrieve a table

To access tabular data, the user must use the multi-value method.

call ESMF_ConfigFindLabel(cf, ’my_table_name::’, rc=rc) ! Step a) Set the label location
! to the beginning of the
! table

Subsequently,call ESMF_ConfigNextLine() is used to move the location to the next row of the table. The
example table in the Resource File contains 7 rows and 3 columns (7,3).

do i = 1, 7
call ESMF_ConfigNextLine(cf, rc=rc) ! Step b) Increment th e rows
do j = 1, 3 ! Step c) Fill in the table

call ESMF_ConfigGetAttribute(cf, table(i,j), rc=rc)
enddo

enddo

42.2.6 Destruction of a Config

The work with the configuration filecf is finalized by call toESMF_ConfigDestroy() :

call ESMF_ConfigDestroy(cf, rc) ! Destroy the Config

709

42.3 Class API

42.3.1 ESMF_ConfigCreate - Instantiate a Config object

INTERFACE:

type(ESMF_Config) function ESMF_ConfigCreate(rc)

ARGUMENTS:

integer,intent(out), optional :: rc

DESCRIPTION:

Instantiates anESMF_Config object for use in subsequent calls.
The arguments are:

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

42.3.2 ESMF_ConfigDestroy - Destroy a Config object

INTERFACE:

subroutine ESMF_ConfigDestroy(config, rc)

ARGUMENTS:

type(ESMF_Config) :: config
integer,intent(out), optional :: rc

DESCRIPTION:

Destroys theconfig object.
The arguments are:

config Already createdESMF_Config object.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

42.3.3 ESMF_ConfigFindLabel - Find a label

INTERFACE:

subroutine ESMF_ConfigFindLabel(config, label, rc)

ARGUMENTS:

type(ESMF_Config), intent(inout) :: config
character(len= *), intent(in) :: label
integer, intent(out), optional :: rc

710

DESCRIPTION:

Finds thelabel (key) string in theconfig object.
Since the search is done by looking for a string, possibly multi-worded, in the wholeConfig object, it is important
to use special conventions to distinguishlabels from other words. This is done in the Resource File by using the
DAO convention to finish line labels with a (:) and table labels with a double colon (::).
The arguments are:

config Already createdESMF_Config object.

label Identifying label.

[rc] Return code; equalsESMF_SUCCESSif there are no errors. Equals -1 if buffer could not be loaded, -2 if label
not found, and -3 if invalid operation with index.

42.3.4 ESMF_ConfigGetAttribute - Get a value

INTERFACE:

subroutine ESMF_ConfigGetAttribute(config, <value>, &
label, default, rc)

ARGUMENTS:

type(ESMF_Config), intent(inout) :: config
<value argument>, see below for supported values
character(len= *), intent(in), optional :: label
character(len= *), intent(in), optional :: default
integer, intent(out), optional :: rc

DESCRIPTION:

Gets a value from theconfig object. When the value is a sequence of characters it will be terminated by the first
white space.
Supported values for <value argument> are:

character(len=*), intent(out) :: value

real(ESMF_KIND_R4), intent(out) :: value

real(ESMF_KIND_R8), intent(out) :: value

integer(ESMF_KIND_I4), intent(out) :: value

integer(ESMF_KIND_I8), intent(out) :: value

logical, intent(out) :: value

The arguments are:

config Already createdESMF_Config object.

<value argument> Returned value.

[label] Identifing label.

[default] Default value iflabel is not found inconfig object.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

711

42.3.5 ESMF_ConfigGetAttribute - Get a list of values

INTERFACE:

subroutine ESMF_ConfigGetAttribute(config, <value list argument>, &
count, label, default, rc)

ARGUMENTS:

type(ESMF_Config), intent(inout) :: config
<value list argument>, see below for values
integer, intent(in) :: count
character(len= *), intent(in), optional :: label
character(len= *), intent(in), optional :: default
integer, intent(out), optional :: rc

DESCRIPTION:

Gets a list of values from theconfig object.
Supported values for <value list argument> are:

real(ESMF_KIND_R4), intent(inout) :: valueList(:)

real(ESMF_KIND_R8), intent(inout) :: valueList(:)

integer(ESMF_KIND_I4), intent(inout) :: valueList(:)

integer(ESMF_KIND_I8), intent(inout) :: valueList(:)

logical, intent(inout) :: valueList(:)

The arguments are:

config Already createdESMF_Config object.

<value list argument> Returned value.

count Number of returned values expected.

[label] Identifing label.

[default] Default value iflabel is not found inconfig object.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

42.3.6 ESMF_ConfigGetChar - Get a character

INTERFACE:

subroutine ESMF_ConfigGetChar(config, value, label, def ault, rc)

ARGUMENTS:

type(ESMF_Config), intent(inout) :: config
character, intent(out) :: value
character(len= *), intent(in), optional :: label
character, intent(in), optional :: default
integer, intent(out), optional :: rc

712

DESCRIPTION:

Gets a charactervalue from theconfig object.
The arguments are:

config Already createdESMF_Config object.

value Returned value.

[label] Identifying label.

[default] Default value if label is not found in configuration object.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

42.3.7 ESMF_ConfigGetDim - Get table sizes

INTERFACE:

subroutine ESMF_ConfigGetDim(config, lineCount, column Count, label, rc)

implicit none

type(ESMF_Config), intent(inout) :: config ! ESMF Configu ration
integer, intent(out) :: lineCount
integer, intent(out) :: columnCount

character(len= *), intent(in), optional :: label ! label (if present)
! otherwise, current
! line

integer, intent(out), optional :: rc ! Error code

DESCRIPTION:

Returns the number of lines in the table inlineCount and the maximum number of words in a table line in
columnCount .
The arguments are:

config Already createdESMF_Config object.

lineCount Returned number of lines in the table.

columnCount Returned maximum number of words in a table line.

[label] Identifying label.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

42.3.8 ESMF_ConfigGetLen - Get the length of the line in words

INTERFACE:

integer function ESMF_ConfigGetLen(config, label, rc)

713

ARGUMENTS:

type(ESMF_Config), intent(inout) :: config
character(len= *), intent(in), optional :: label
integer, intent(out), optional :: rc

DESCRIPTION:

Gets the length of the line in words by counting words disregarding types. Returns the word count as an integer.
The arguments are:

config Already createdESMF_Config object.

[label] Identifying label. If not specified, use the current line.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

42.3.9 ESMF_ConfigLoadFile - Load resource file into memory

INTERFACE:

subroutine ESMF_ConfigLoadFile(config, filename, delay out, unique, rc)

ARGUMENTS:

type(ESMF_Config), intent(inout) :: config
character(len= *), intent(in) :: filename
type(ESMF_DELayout), intent(in), optional :: delayout
logical, intent(in), optional :: unique
integer, intent(out), optional :: rc

DESCRIPTION:

Resource file withfilename is loaded into memory.
The arguments are:

config Already createdESMF_Config object.

filename Configuration file name.

[delayout] ESMF_DELayout associated with thisconfig object.

[unique] If specified as true, uniqueness of labels are checked and error code set if duplicates found.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

42.3.10 ESMF_ConfigNextLine - Find next line

INTERFACE:

subroutine ESMF_ConfigNextLine(config, tableEnd, rc)

ARGUMENTS:

714

type(ESMF_Config), intent(inout) :: config
logical, intent(out), optional :: tableEnd
integer, intent(out), optional:: rc

DESCRIPTION:

Selects the next line (for tables).
The arguments are:

config Already createdESMF_Config object.

[tableEnd] If specifed asTRUE, end of table mark (::) is checked.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

42.3.11 ESMF_ConfigSetAttribute - Set a value

INTERFACE:

subroutine ESMF_ConfigSetAttribute(config, <value argu ment>, &
label, rc)

ARGUMENTS:

type(ESMF_Config), intent(inout) :: config
<value argument>, see below for supported values
character(len= *), intent(in), optional :: label
integer, intent(out), optional :: rc

DESCRIPTION:

Sets a value in theconfig object.
Supported values for <value argument> are:

integer(ESMF_KIND_I4), intent(in) :: value

The arguments are:

config Already createdESMF_Config object.

<value argument> Value to set.

[label] Identifying attribute label.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

42.3.12 ESMF_ConfigValidate - Validate a Config object

INTERFACE:

subroutine ESMF_ConfigValidate(config, options, rc)

ARGUMENTS:

715

type(ESMF_Config), intent(inout) :: config
character (len= *), intent(in), optional :: options
integer, intent(out), optional :: rc

DESCRIPTION:

Checks whether aconfig object is valid.
The arguments are:

config ESMF_Config object to be validated.

[options] If none specified: simply check that the buffer is not full andthe pointers are within range. "unusedAt-
tributes" - Report to the default logfile all attributes not retrieved via a call toESMF_ConfigGetAttribute()
or ESMF_ConfigGetChar() . The attribute name (label) will be logged viaESMF_LogErr with the
WARNING log message type. For an array-valued attribute, retrieving at least one value viaESMF_ConfigGetAttribute()
or ESMF_ConfigGetChar() constitutes being "used."

[rc] Return code; equalsESMF_SUCCESSif there are no errors. EqualsESMF_RC_ATTR_UNUSEDif any unused
attributes are found with option "unusedAttributes" above.

43 LogErr Class

43.1 Description

The Log class consists of a variety of methods for writing error, warning, and informational messages to files. A
default Log is created at ESMF initialization. Other Logs can be created later in the code by the user. Most LogErr
methods take a Log as an optional argument and apply to the default Log when another Log is not specified. A set of
standard return codes and associated messages are providedfor error handling.
LogErr provides capabilities to store message entries in a buffer, which is flushed to a file, either when the buffer
is full, or when the user calls anESMF_LogFlush() method. Currently, the default is for the Log to flush after
every ten entries. This can easily be changed by using theESMF_LogSet() method and setting themaxElements
property to another value. TheESMF_LogFlush() method is automatically called when the program exits by any
means (program completion, halt on error, or when the Log is closed).
The user has the capability to halt the program on an error or on a warning by using theESMF_LogSet() method
with thehalt property. When thehalt property is set toESMF_LOG_HALTWARNING, the program will stop on
any and all warning or errors. When thehalt property is set toESMF_LOG_HALTERROR, the program will only halt
only on errors. Lastly, the user can choose to never halt by setting thehalt property toESMF_LOG_HALTNEVER;
this is the default.
LogErr will automatically put the PET number into the Log. Also, the user can either specifyESMF_LOG_SINGLE
which writes all the entries to a single Log orESMF_LOG_MULTIwhich writes entries to multiple Logs according
to the PET number. To distinguish Logs from each other when using ESMF_LOG_MULTI, the PET number (in the
formatPETx.) will be prepended to the file name where x is the PET number.
Opening multiple log files and writing log messages from all the processors may affect the application performance
while running on a large number of processors. For that reason, ESMF_LOG_NONEis provided to switch off the
LogErr capability. All the LogErr methods have no effect in theESMF_LOG_NONEmode.
Other options that are planned for LogErr are to adjust the verbosity of output, and to optionally write tostdout
instead of file(s).

43.2 LogErr Options

43.2.1 ESMF_HaltType

DESCRIPTION:
Specifies when to halt — e.g., never, when a warning is issued,or when an error message is encountered.
Valid values are:

ESMF_LOG_HALTNEVER Never halt. (Default.)

716

ESMF_LOG_HALTWARNING Halt when either a warning or an error message is issued.

ESMF_LOG_HALTERROR Halt only when an error message is issued.

43.2.2 ESMF_MsgType

DESCRIPTION:
Specifies what message level — e.g., informational, warning, error — will be written to log files. This may be used
both when writing the message withESMF_LogWrite() , and when setting the msgAllow option withESMF_LogSet() .
Valid values are:

ESMF_LOG_INFO Write or allow informational messages.

ESMF_LOG_WARNING Write or allow warning messages.

ESMF_LOG_ERROR Write or allow error messages.

43.2.3 ESMF_LogType

DESCRIPTION:
Specifies a single log file, multiple log files (one per PET), orno log files.
Valid values are:

ESMF_LOG_SINGLE Use a single log file, combining messages from all of the PETs.Not supported on some
platforms.

ESMF_LOG_MULTI Use multiple log files — one per PET. (Default.)

ESMF_LOG_NONE Do not issue messages to a log file.

43.3 Use and Examples

By defaultESMF_Initialize() opens a default Log inESMF_LOG_MULTImode. ESMF handles the initializa-
tion and finalization of the default Log so the user can immediately start using it. If additional Log objects are desired,
they must be explicitly created or opened usingESMF_LogOpen() .
ESMF_LogOpen() requires a Log object and filename argument. Additionally, the user can specify single or multi
Logs by setting thelogtype property toESMF_LOG_SINGLEor ESMF_LOG_MULTI. This is useful as the PET
numbers are automatically added to the Log entries. A singleLog will put all entries, regardless of PET number, into a
single log while a multi Log will create multiple Logs with the PET number prepended to the filename and all entries
will be written to their corresponding Log by their PET number.
By default, the Log file is not truncated at the start of a new run; it just gets appended each time. Future functionality
may include an option to either truncate or append to the Log file.
In all cases where a Log is opened, a Fortran unit number is assigned to a specific Log. A Log is assigned an unused
unit number using the algorithm described in theESMF_IOUnitGet() method.
The user can then set or get options on how the Log should be used with theESMF_LogSet() andESMF_LogGet()
methods. These are partially implemented at this time.
Depending on how the options are set,ESMF_LogWrite() either writes user messages directly to a Log file or
writes to a buffer that can be flushed when full or by using theESMF_LogFlush() method. The default is to flush
after every ten entries becausemaxElements is initialized to ten (which means the buffer reaches its full state after
every ten writes and then flushes).
A message filtering option may be set withESMF_LogSet() so that only selected message types are actually written
to the log. One key use of this feature is to allow placing informational log write requests into the code for debugging
or tracing. Then, when the informational entries are not needed, the messages at that level may be turned off — leaving
only warning and error messages in the logs.
For everyESMF_LogWrite() , a time and date stamp is prepended to the Log entry. The time is given in microsec-
ond precision. The user can call other methods to write to theLog. In every case, all methods eventually make a call
implicitly to ESMF_LogWrite() even though the user may never explicitly call it.

717

When callingESMF_LogWrite() , the user can supply an optional line, file and method. These arguments can be
passed in explicitly or with the help of cpp macros. In the latter case, a define for anESMF_FILENAMEmust be
placed at the beginning of a file and a define forESMF_METHODmust be placed at the beginning of each method. The
user can then use theESMF_CONTEXTcpp macro in place of line, file and method to insert the parameters into the
method. The user does not have to specify line number as it is avalue supplied by cpp.
An example of Log output is given below running withlogtype property set toESMF_LOG_MULTI(default) using
the default Log:
(Log file PET0.ESMF_LogFile)

20041105 163418.472210 INFO PET0 Running with ESMF Version 2.2.1

(Log file PET1.ESMF_LogFile)

20041105 163419.186153 ERROR PET1 ESMF_Field.F90 812
ESMF_FieldGet No Grid or Bad Grid attached to Field

The first entry shows date and time stamp. The time is given in microsecond precision. The next item shown is the
type of message (INFO in this case). Next, the PET number is added. Lastly, the content is written.
The second entry shows something slightly different. In this case, we have an ERROR. The method name (ESMF_Field.F90)
is automatically provided from the cpp macros as well as the line number (812). Then the content of the message is
written.
When done writing messages, the default Log is closed by calling ESMF_LogFinalize() or ESMF_LogClose()
for user created Logs. Both methods will release the assigned unit number.

! !PROGRAM: ESMF_LogErrEx - Log Error examples
!
! !DESCRIPTION:
!
! This program shows examples of Log Error writing
!-- ---------------------------

! Macros for cpp usage
! File define
#define ESMF_FILENAME "ESMF_LogErrEx.F90"
! Method define
#define ESMF_METHOD "program ESMF_LogErrEx"
#include "ESMF_LogMacros.inc"

! ESMF Framework module
use ESMF_Mod
implicit none

! return variables
integer :: rc1, rc2, rc3, rcToTest, allocRcToTest
type(ESMF_LOG) :: alog ! a log object that is not the default l og
type(ESMF_LogType) :: defaultLogtype
type(ESMF_Time) :: time
integer, pointer :: intptr(:)

43.3.1 Default Log

This example shows how to use the default Log. This example does not use cpp macros but does use multi Logs. A
separate Log will be created for each PET.

! Initialize ESMF to initialize the default Log
call ESMF_Initialize(rc=rc1, defaultlogtype=ESMF_LOG_ MULTI)

718

! LogWrite
call ESMF_LogWrite("Log Write 2", ESMF_LOG_INFO, rc=rc2)

! LogMsgSetError
call ESMF_LogMsgSetError(ESMF_FAILURE, "Convergence fa ilure", &

rcToReturn=rc2)
! LogMsgFoundError
call ESMF_TimeSet(time, calendarType=ESMF_CAL_NOCALEN DAR)
call ESMF_TimeSyncToRealTime(time, rcToTest)
if (ESMF_LogMsgFoundError(rcToTest, "getting wall clock time", &

rcToReturn=rc2)) then
! Error getting time. The previous call will have printed the error
! already into the log file. Add any additional error handlin g here.
! (This call is expected to provoke an error from the Time Mana ger.)

endif

! LogMsgFoundAllocError
allocate(intptr(10), stat=allocRcToTest)
if (ESMF_LogMsgFoundAllocError(allocRcToTest, "intege r array", &

rcToReturn=rc2)) then
! Error during allocation. The previous call will have logge d already
! an error message into the log.

endif
deallocate(intptr)

43.3.2 User created Log

This example shows how to use a user created Log. This exampleuses cpp macros.

! Open a Log named "Testlog.txt" associated with alog.
call ESMF_LogOpen(alog, "TestLog.txt", rc=rc1)

! LogWrite; ESMF_CONTEXT expands into __LINE__,ESMF_FILE NAME,ESMF_METHOD
call ESMF_LogWrite("Log Write 2", ESMF_LOG_INFO, ESMF_CO NTEXT, &

log=alog, rc=rc2)

! LogMsgSetError; ESMF_CONTEXT expands into
! __LINE__,ESMF_FILENAME,ESMF_METHOD
call ESMF_LogMsgSetError(ESMF_FAILURE, "Interpolation Failure", &

ESMF_CONTEXT, rcToReturn=rc2, log=alog)

43.3.3 Get and Set

This example shows how to use Get and Set routines, on both thedefault Log and the user created Log from the
previous examples.

! This is an example showing a query of the default Log. Please note that
! no Log is passed in the argument list, so the default Log will be used.
call ESMF_LogGet(logtype=defaultLogtype, rc=rc3)

719

! This is an example setting a property of a Log that is not the d efault.
! It was opened in a previous example, and the handle for it mus t be
! passed in the argument list.
call ESMF_LogSet(log=alog, halt=ESMF_LOG_HALTERROR, rc =rc2)

! Close the user log.
call ESMF_LogClose(alog, rc3)

! Finalize ESMF to close the default log
call ESMF_Finalize(rc=rc1)

43.4 Restrictions and Future Work

1. Line, file and method are only available when using the C preprocessorMessage writing methods are
expanded using the ESMF macro ESMF_CONTEXT that adds the predefined symbolic constants __LINE__
and __FILE__ (or the ESMF constant ESMF_FILENAME if defined)and the ESMF constant ESMF_METHOD
to the argument list. Using these constants, we can associate a file name, line number and method name with
the message. If the CPP preprocessor is not used, this expansion will not be done and hence the ESMF macro
ESMF_CONTEXT can not be used, leaving the file name, line number and method out of the Log text.

2. Get and set methods are partially implemented.Currently, theESMF_LogGet() andESMF_LogSet()
methods are partially implemented.

3. Log only appends entries.All writing to the Log is appended rather than overwriting the Log. Future enhance-
ments include the option to either append to an existing Log or overwrite the existing Log.

4. Avoiding conflicts with the default Log. The private methodsESMF_LogInitialize() andESMF_LogFinalize()
are called duringESMF_Initialize() andESMF_Finalize() respectively, so they do not need to be
called if the default Log is used. If a new Log is required,ESMF_LogOpen() is used with a new Log object
passed in so that there are no conflicts with the default Log.

5. ESMF_LOG_SINGLE does not work properly. When theESMF_LogType is set toESMF_LOG_SINGLE,
different system may behave differently. The log messages from some processors may be lost or overwritten by
other processors. Users are advised not to use this mode. TheMPI-based I/O will be implemented to fix the
problem in the future release.

43.5 Design and Implementation Notes

1. The Log class was implemented in Fortran and uses the Fortran I/O libraries when the class methods are called
from Fortran. The C/C++ Log methods use the Fortran I/O library by calling utility functions that are written
in Fortran. These utility functions call the standard Fortran write, open and close functions. At initialization
an ESMF_LOGis created. TheESMF_LOGstores information for a specific Log file. When working with
more than one Log file, multipleESMF_LOG’s are required (oneESMF_LOGfor each Log file). For each Log,
a handle is returned through theESMF_LogInitialize method for the default log orESMF_LogOpen
for a user created log. The user can specify single or multi logs by setting thelogtype property in the
ESMF_LogInitialize or ESMF_Openmethod toESMF_LOG_SINGLEor ESMF_LOG_MULTI. Simi-
larly, the user can set thedefaultlogtype property for the default Log with theESMF_Initialize
method call. Thelogtype is useful as the PET numbers are automatically added to the log entries. A single
log will put all entries, regardless of PET number, into a single log while a multi log will create multiple logs
with the PET number prepended to the filename and all entries will be written to their corresponding log by their
PET number.

The properties for a Log are set with theESMF_LogSet() method and retrieved with theESMF_LogGet()
method.

720

Additionally, buffering is enabled. Buffering allowsESMFto manage output data streams in a desired way.
Writing to the buffer is transparent to the user because all the Log entries are handled automatically by the
ESMF_LogWrite() method. All the user has to do is specify the buffer size (the default is ten) by setting
themaxElements property. Every time theESMF_LogWrite() method is called, a LogEntry element is
populated with theESMF_LogWrite() information. When the buffer is full (i.e., when all the LogEntry
elements are populated), the buffer will be flushed and all the contents will be written to file. If buffering
is not needed, that ismaxElements=1 or flushImmediately=ESMF_TRUE , theESMF_LogWrite()
method will immediately write to the Log file(s).

43.6 Object Model

The following is a simplified UML diagram showing the structure of the Log class. See Appendix A,A Brief Intro-
duction to UML, for a translation table that lists the symbols in the diagram and their meaning.

1

Log

TimeLogArray

1..n

1

0..n

LogEntry

43.7 Class API

43.7.1 ESMF_LogClose - Close Log file(s)

INTERFACE:

subroutine ESMF_LogClose(log, rc)

ARGUMENTS:

type(ESMF_Log) :: log
integer, intent(out),optional :: rc

DESCRIPTION:

This routine closes the file(s) associated with thelog .
The arguments are:

log An ESMF_Logobject.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

721

43.7.2 ESMF_LogFlush - Flush the Log file(s)

INTERFACE:

subroutine ESMF_LogFlush(log,rc)

ARGUMENTS:

type(ESMF_Log), target, optional :: log
integer, intent(out),optional :: rc

DESCRIPTION:

This subroutine flushes theESMF_Logbuffer to its associated file.
The arguments are:

[log] An optionalESMF_Logobject that can be used instead of the default Log.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

43.7.3 ESMF_LogFoundAllocError - Check Fortran status for allocation error

INTERFACE:

function ESMF_LogFoundAllocError(statusToCheck, line, file, &
method, rcToReturn,log)

RETURN VALUE:

logical ::ESMF_LogFoundAllocError

ARGUMENTS:

integer, intent(in) :: statusToCheck
integer, intent(in), optional :: line
character(len= *), intent(in), optional :: file
character(len= *), intent(in), optional :: method
integer, intent(out),optional :: rcToReturn
type(ESMF_Log),intent(inout),optional :: log

DESCRIPTION:

This function returns a logical true when a Fortran status code returned from a memory allocation indicates an alloca-
tion error. An ESMF predefined memory allocation error message will be added to theESMF_Logalong withline ,
file andmethod . Additionally, thestatusToCheck will be converted to arcToReturn .
The arguments are:

statusToCheck Fortran allocation status to check.

[line] Integer source line number. Expected to be set by using the preprocessor macro__LINE__ macro.

[file] User-provided source file name.

[method] User-provided method string.

[rcToReturn] If specified, set thercToReturn value toESMF_RC_MEMwhich is the error code for a memory
allocation eror.

[log] An optionalESMF_Logobject that can be used instead of the default Log.

722

43.7.4 ESMF_LogFoundDeallocError - Check Fortran status for deallocation error

INTERFACE:

function ESMF_LogFoundDeallocError(statusToCheck, lin e, file, &
method, rcToReturn,log)

RETURN VALUE:

logical ::ESMF_LogFoundDeallocError

ARGUMENTS:

integer, intent(in) :: statusToCheck
integer, intent(in), optional :: line
character(len= *), intent(in), optional :: file
character(len= *), intent(in), optional :: method
integer, intent(out),optional :: rcToReturn
type(ESMF_Log),intent(inout),optional :: log

DESCRIPTION:

This function returns a logical true when a Fortran status code returned from a memory deallocation indicates an
allocation error. An ESMF predefined memory deallocation error message will be added to theESMF_Logalong with
line , file andmethod . Additionally, thestatusToCheck will be converted to arcToReturn .
The arguments are:

statusToCheck Fortran deallocation status to check.

[line] Integer source line number. Expected to be set by using the preprocessor macro__LINE__ macro.

[file] User-provided source file name.

[method] User-provided method string.

[rcToReturn] If specified, set thercToReturn value toESMF_RC_MEMwhich is the error code for a memory
allocation eror.

[log] An optionalESMF_Logobject that can be used instead of the default Log.

43.7.5 ESMF_LogFoundError - Check ESMF return code for error

INTERFACE:

function ESMF_LogFoundError(rcToCheck, line, file, meth od,&
rcToReturn, log)

RETURN VALUE:

logical ::ESMF_LogFoundError

ARGUMENTS:

integer, intent(in) :: rcToCheck
integer, intent(in), optional :: line
character(len= *), intent(in), optional :: file
character(len= *), intent(in), optional :: method
integer, intent(out), optional :: rcToReturn
type(ESMF_Log),intent(inout), target, optional :: log

723

DESCRIPTION:

This function returns a logical true for ESMF return codes that indicate an error. A predefined error message will added
to theESMF_Logalong withline , file andmethod . Additionally, rcToReturn will be set torcToCheck .
The arguments are:

rcToCheck Return code to check.

[line] Integer source line number. Expected to be set by using the preprocessor macro__LINE__ macro.

[file] User-provided source file name.

[method] User-provided method string.

[rcToReturn] If specified, copy thercToCheck value torc . This is not the return code for this function; it allows
the calling code to do an assignment of the error code at the same time it is testing the value.

[log] An optionalESMF_Logobject that can be used instead of the default Log.

43.7.6 ESMF_LogMsgFoundAllocError - Check Fortran statusfor allocation

error and write message

INTERFACE:

function ESMF_LogMsgFoundAllocError(statusToCheck,ms g,line,file, &
method,rcToReturn,log)

RETURN VALUE:

logical ::ESMF_LogMsgFoundAllocError

ARGUMENTS:

integer, intent(in) :: statusToCheck
character(len= *), intent(in) :: msg
integer, intent(in), optional :: line
character(len= *), intent(in), optional :: file
character(len= *), intent(in), optional :: method
integer, intent(out),optional :: rcToReturn
type(ESMF_Log), intent(inout), optional :: log

DESCRIPTION:

This function returns a logical true when a Fortran status code returned from a memory allocation indicates an alloca-
tion error. An ESMF predefined memory allocation error message will be added to theESMF_Logalong with a user
addedmsg, line , file andmethod . Additionally, statusToCheck will be converted torcToReturn .
The arguments are:

statusToCheck Fortran allocation status to check.

msg User-provided message string.

[line] Integer source line number. Expected to be set by using the preprocessor macro__LINE__ macro.

[file] User-provided source file name.

[method] User-provided method string.

724

[rcToReturn] If specified, set thercToReturn value toESMF_RC_MEMwhich is the error code for a memory
allocation eror.

[log] An optionalESMF_Logobject that can be used instead of the default Log.

43.7.7 ESMF_LogMsgFoundDeallocError - Check Fortran status for deallocation

error and write message

INTERFACE:

function ESMF_LogMsgFoundDeallocError(statusToCheck, msg,line,file, &
method,rcToReturn,log)

RETURN VALUE:

logical ::ESMF_LogMsgFoundDeallocError

ARGUMENTS:

integer, intent(in) :: statusToCheck
character(len= *), intent(in) :: msg
integer, intent(in), optional :: line
character(len= *), intent(in), optional :: file
character(len= *), intent(in), optional :: method
integer, intent(out),optional :: rcToReturn
type(ESMF_Log), intent(inout), optional :: log

DESCRIPTION:

This function returns a logical true when a Fortran status code returned from a memory deallocation indicates an
deallocation error. An ESMF predefined memory deallocationerror message will be added to theESMF_Logalong
with a user addedmsg, line , file andmethod . Additionally, statusToCheck will be converted torcToReturn .
The arguments are:

statusToCheck Fortran deallocation status to check.

msg User-provided message string.

[line] Integer source line number. Expected to be set by using the preprocessor macro__LINE__ macro.

[file] User-provided source file name.

[method] User-provided method string.

[rcToReturn] If specified, set thercToReturn value toESMF_RC_MEMwhich is the error code for a memory
allocation eror.

[log] An optionalESMF_Logobject that can be used instead of the default Log.

725

43.7.8 ESMF_LogMsgFoundError - Check ESMF return code for error and write message

INTERFACE:

function ESMF_LogMsgFoundError(rcToCheck, msg, line, fi le, method, &
rcToReturn, log)

RETURN VALUE:

logical :: ESMF_LogMsgFoundError

ARGUMENTS:

integer, intent(in) :: rcToCheck
character(len= *), intent(in) :: msg
integer, intent(in), optional :: line
character(len= *), intent(in), optional :: file
character(len= *), intent(in), optional :: method
integer, intent(out),optional :: rcToReturn
type(ESMF_Log), intent(inout), target, optional :: log

DESCRIPTION:

This function returns a logical true for ESMF return codes that indicate an error. A predefined error message will
added to theESMF_Logalong with a user addedmsg, line , file andmethod . Additionally, rcToReturn is
set torcToCheck .
The arguments are:

rcToCheck Return code to check.

msg User-provided message string.

[line] Integer source line number. Expected to be set by using the preprocessor macro__LINE__ macro.

[file] User-provided source file name.

[method] User-provided method string.

[rcToReturn] If specified, copy thercToCheck value torc . This is not the return code for this function; it allows
the calling code to do an assignment of the error code at the same time it is testing the value.

[log] An optionalESMF_Logobject that can be used instead of the default Log.

43.7.9 ESMF_LogMsgSetError - Set ESMF return code for errorand write msg

INTERFACE:

subroutine ESMF_LogMsgSetError(rcValue, msg, line, file , method, &
rcToReturn, log)

ARGUMENTS:

726

integer, intent(in) :: rcValue
character(len= *), intent(in) :: msg
integer, intent(in), optional :: line
character(len= *), intent(in), optional :: file
character(len= *), intent(in), optional :: method
integer, intent(out),optional :: rcToReturn
type(ESMF_Log), intent(inout), target, optional :: log

DESCRIPTION:

This subroutine sets thercToReturn value torcValue if rcToReturn is present and writes this error code to
theESMF_Logif an error is generated. A predefined error message will added to theESMF_Logalong with a user
addedmsg, line , file andmethod .
The arguments are:

rcValue rc value for set

msg User-provided message string.

[line] Integer source line number. Expected to be set by using the preprocessor macro__LINE__ macro.

[file] User-provided source file name.

[method] User-provided method string.

[rcToReturn] If specified, copy thercValue value torcToreturn . This is not the return code for this function;
it allows the calling code to do an assignment of the error code at the same time it is testing the value.

[log] An optionalESMF_Logobject that can be used instead of the default Log.

43.7.10 ESMF_LogOpen - Open Log file(s)

INTERFACE:

subroutine ESMF_LogOpen(log, filename, logtype, rc)

ARGUMENTS:

type(ESMF_Log) :: log
character(len= *) :: filename
type(ESMF_LogType), intent(in),optional :: logtype
integer, intent(out),optional :: rc

DESCRIPTION:

This routine opens a file withfilename and associates it with theESMF_Log. This is only used when the user does
not want to use the default Log.
The arguments are:

log An ESMF_Logobject.

filename Name of file. Maximum length 58 characters to allow for the PETnumber to be added and keep the total
file name length under 64 characters.

[logtype] Set the logtype. See section 43.2.3 for a list of valid options. If not specified, defaults toESMF_LOG_MULTI.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

727

43.7.11 ESMF_LogSet - Set Log parameters

INTERFACE:

subroutine ESMF_LogSet(log,verbose,flush,rootOnly,ha lt, &
stream,maxElements, msgAllow, errorMask,rc)

ARGUMENTS:

type(ESMF_Log), target,optional :: log
logical, intent(in),optional :: verbose
logical, intent(in),optional :: flush
logical, intent(in),optional :: rootOnly
type(ESMF_HaltType), intent(in), optional :: halt
integer, intent(in),optional :: stream
integer, intent(in),optional :: maxElements
type(ESMF_MsgType), intent(in), optional :: msgAllow(:)
integer, intent(in),optional :: errorMask(:)
integer, intent(out),optional :: rc

DESCRIPTION:

This subroutine sets the properties for the Log object.
The arguments are:

[log] An optionalESMF_Logobject that can be used instead of the default Log.

[verbose] Verbose flag.

[rootOnly] Root only flag.

[halt] Halt definition, with the following valid values:

ESMF_LOG_HALTWARNING;

ESMF_LOG_HALTERROR;

ESMF_LOG_HALTNEVER.

[stream] The type of stream, with the following valid values and meanings:

0 free;

1 preordered.

[maxElements] Maximum number of elements in the Log.

[msgAllow] An array of message types that will be logged. Log write requests not matching the list will be ignored.
By default all messages will be logged. See section 43.2.2 for a list of valid message types. In addition, the
following named constant may be used:

ESMF_LOG_ALL - Log all message types ;

If an empty array is provided, no messages will be logged.

[errorMask] List of error codes that willnotbe logged as errors.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

728

43.7.12 ESMF_LogWrite - Write to Log file(s)

INTERFACE:

recursive subroutine ESMF_LogWrite(msg,MsgType,line,f ile,method,log,rc)

ARGUMENTS:

character(len= *), intent(in) :: msg
type(ESMF_MsgType), intent(in) :: msgtype
integer, intent(in), optional :: line
character(len= *), intent(in), optional :: file
character(len= *), intent(in), optional :: method
type(ESMF_Log),target,optional :: log
integer, intent(out),optional :: rc

DESCRIPTION:

This subroutine writes to the file associated with anESMF_Log. A message is passed in along with themsgtype ,
line , file andmethod . If the write to theESMF_Logis successful, the function will return a logicaltrue . This
function is the base function used by all the otherESMF_Logwriting methods.
The arguments are:

msg User-provided message string.

msgtype The type of message. See Section 43.2.2 for possible values.

[line] Integer source line number. Expected to be set by using the preprocessor macro__LINE__ macro.

[file] User-provided source file name.

[method] User-provided method string.

[log] An optionalESMF_Logobject that can be used instead of the default Log.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

44 DELayout Class

44.1 Description

The DELayout class provides an additional layer of abstraction on top of the Virtual Machine (VM) layer. DELayout
does this by introducing DEs (Decomposition Elements) as logical resource units. The DELayout object keeps track
of the relationship between its DEs and the resources of the associated VM object.
The relationship between DEs and VM resources (PETs (Persistent Execution Threads) and VASs (Virtual Address
Spaces)) contained in a DELayout object is defined during itscreation and cannot be changed thereafter. There are,
however, a number of hint and specification arguments that can be used to shape the DELayout during its creation.
Contrary to the number of PETs and VASs contained in a VM object, which are fixed by the available resources, the
number of DEs contained in a DELayout can be chosen freely to best match the computational problem or other design
criteria. Creating a DELayout with less DEs than there are PETs in the associated VM object can be used to share
resources between decomposed objects within an ESMF component. Creating a DELayout with more DEs than there
are PETs in the associated VM object can be used to evenly partition the computation over the available resources.
The simplest case, however, is where the DELayout contains the same number of DEs as there are PETs in the associ-
ated VM context. In this case the DELayout may be used to re-label the hardware and operating system resources held
by the VM. For instance, it is possible to order the resourcesso that specific DEs have best available communication
paths. The DELayout will map the DEs to the PETs of the VM according to the resource details provided by the VM
instance.

729

Furthermore, general DE to PET mapping can be used to offer computational resources with finer granularity than
the VM does. The DELayout can be queried for computational and communication capacities of DEs and DE pairs,
respectively. This information can be used to best utilize the DE resources when partitioning the computational
problem. In combination with other ESMF classes, general DEto PET mapping can be used to realize cache blocking,
communication hiding and dynamic load balancing.
Finally, the DELayout layer offers primitives that allow a work queue style dynamic load balancing between DEs.

44.2 DELayout Options

44.2.1 ESMF_DePinFlag

DESCRIPTION:
Specifies which VM resource DEs are pinned to - i.e. PETs or VASs.
Valid values are:

ESMF_DE_PIN_PET Pin DEs against PETs. This means that even if a group of PETs inthe VM are sharing a
common virtual address space (VAS), DEs cannot be shared between PETs, but must be serviced by the specific
PET they are pinned to.

ESMF_DE_PIN_VAS Pin DEs against VASs. DEs may be serviced by any PET that is executing within the virtual
address space (VAS) the DE is pinned to.

44.3 Use and Examples

The following examples demonstrate how to create, use and destroy DELayout objects.

44.3.1 Default DELayout

Without specifying any of the optional parameters the createdESMF_DELayout defaults into having as many DEs
as there are PETs in the associated VM object. Consequently the resulting DELayout describes a simple 1-to-1 DE to
PET mapping.

delayout = ESMF_DELayoutCreate(rc=rc)

The default DE to PET mapping is simply:

DE 0 -> PET 0
DE 1 -> PET 1
...

DELayout objects that are not used any longer should be destroyed.

call ESMF_DELayoutDestroy(delayout, rc=rc)

The optionalvm argument can be provided to DELayoutCreate() to lower the method’s overhead by the amount it
takes to determine the current VM.

delayout = ESMF_DELayoutCreate(vm=vm, rc=rc)

By default all PETs of the associated VM will be considered. However, if the optional argumentpetList is present
DEs will only be mapped against the PETs contained in the list. When the following example is executed on four
PETs it creates a DELayout with four DEs by default that are mapped to the provided PETs in their given order. It is
erroneous to specify PETs that are not part of the VM context on which the DELayout is defined.

730

delayout = ESMF_DELayoutCreate(petList=(/(i,i=petCoun t-1,1,-1)/), rc=rc)

Once the end of the petList has been reached the DE to PET mapping continues from the beginning of the list. For a 4
PET VM the above created DELayout will end up with the following DE to PET mapping:

DE 0 -> PET 3
DE 1 -> PET 2
DE 2 -> PET 1
DE 2 -> PET 3

44.3.2 DELayout with specified number of DEs

The deCount argument can be used to specify the number of DEs. In this example a DELayout is created that
contains four times as many DEs as there are PETs in the VM.

delayout = ESMF_DELayoutCreate(deCount=4 * petCount, rc=rc)

Cyclic DE to PET mapping is the default. For 4 PETs this means:

DE 0, 4, 8, 12 -> PET 0
DE 1, 5, 9, 13 -> PET 1
DE 2, 6, 10, 14 -> PET 2
DE 3, 7, 11, 15 -> PET 3

The default DE to PET mapping can be overridden by providing thedeGrouping argument. This argument provides
a positive integer group number for each DE in the DELayout. All of the DEs of a group will be mapped against the
same PET. The actual group index is arbitrary (but must be positive) and its value is of no consequence.

delayout = ESMF_DELayoutCreate(deCount=4 * petCount, &
deGrouping=(/(i/4,i=0,4 * petCount-1)/), rc=rc)

This will achieve blocked DE to PET mapping. For 4 PETs this means:

DE 0, 1, 2, 3 -> PET 0
DE 4, 5, 6, 7 -> PET 1
DE 8, 9, 10, 11 -> PET 2
DE 12, 13, 14, 15 -> PET 3

44.3.3 DELayout with computational and communication weights

The quality of the partitioning expressed by the DE to PET mapping depends on the amount and quality of information
provided during DELayout creation. In the following example thecompWeights argument is used to specify relative
computational weights for all DEs and communication weights for DE pairs are provided by thecommWeights
argument. The example assumes four DEs.

allocate(compWeights(4))
allocate(commWeights(4, 4))
! setup compWeights and commWeights according to computati onal problem
delayout = ESMF_DELayoutCreate(deCount=4, compWeights= compWeights, &

commWeights=commWeights, rc=rc)
deallocate(compWeights, commWeights)

The resulting DE to PET mapping depends on the specifics of theVM object and the provided compWeights and
commWeights arrays.

731

44.3.4 DELayout from petMap

Full control over the DE to PET mapping is provided via thepetMap argument. This example maps the DEs to PETs
in reverse order. In the 4-PET case this will result in the following mapping:

DE 0 -> PET 3
DE 1 -> PET 2
DE 2 -> PET 1
DE 3 -> PET 0

delayout = ESMF_DELayoutCreate(petMap=(/(i,i=petCount -1,0,-1)/), rc=rc)

44.3.5 DELayout from petMap with multiple DEs per PET

ThepetMap argument gives full control over DE to PET mapping. The following example run on 4 or more PETs
maps DEs to PETs according to the following table:

DE 0 -> PET 3
DE 1 -> PET 3
DE 2 -> PET 1
DE 3 -> PET 0
DE 4 -> PET 2
DE 5 -> PET 1
DE 6 -> PET 3
DE 7 -> PET 1

delayout = ESMF_DELayoutCreate(petMap=(/3, 3, 1, 0, 2, 1, 3 , 1/), rc=rc)

44.3.6 Working with a DELayout - simple 1-to-1 DE to PET mapping

The simplest case is a DELayout with as many DEs as PETs where each DE is against a separate PET. This of course
implies that the number of DEs equals the number of PETs. Thisspecial 1-to-1 DE to PET mapping is very common
and many codes assume this mapping. The following example code shows how a DELayout can be queried about its
mapping.

delayout = ESMF_DELayoutCreate(rc=rc)

call ESMF_DELayoutGet(delayout, oneToOneFlag=oneToOne Flag, rc=rc)
if (rc /= ESMF_SUCCESS) finalrc=rc
if (.not. oneToOneFlag) then

! handle the unexpected case of general DE to PET mapping
endif
allocate(localDeList(1))
call ESMF_DELayoutGet(delayout, localDeList=localDeLi st, rc=rc)
if (rc /= ESMF_SUCCESS) finalrc=rc
myDe = localDeList(1)
deallocate(localDeList)

44.3.7 Working with a DELayout - general DE to PET mapping

In general a DELayout may describe a DE to PET mapping that is not 1-to-1. The following example shows how code
can be written in a general form that will work on all PETs for DELayouts with general or 1-to-1 DE to PET mapping.

732

delayout = ESMF_DELayoutCreate(deCount=petCount+2, rc= rc)

call ESMF_DELayoutGet(delayout, localDeCount=localDeC ount, rc=rc)
if (rc /= ESMF_SUCCESS) finalrc=rc
allocate(localDeList(localDeCount))
call ESMF_DELayoutGet(delayout, localDeList=localDeLi st, rc=rc)
if (rc /= ESMF_SUCCESS) finalrc=rc
do i=1, localDeCount

workDe = localDeList(i)
! print * , "I am PET", localPET, " and I am working on DE ", workDe

enddo
deallocate(localDeList)

44.3.8 Work queue dynamic load balancing

The DELayout API includes two calls that can be used to easilyimplement work queue dynamic load balancing. The
work load is broken up into DEs (more than there are PETs) and processed by the PETs. Load balancing is only
possible for ESMF multi-threaded VMs and requires that DEs are pinned to VASs instead of the PETs (default). The
following example will run for any VM and DELayout, however,load balancing will only occur under the mentioned
conditions.

delayout = ESMF_DELayoutCreate(deCount=petCount+2, deP inFlag=ESMF_DE_PIN_VAS,&
rc=rc)

call ESMF_DELayoutGet(delayout, vasLocalDeCount=local DeCount, rc=rc)
if (rc /= ESMF_SUCCESS) finalrc=rc
allocate(localDeList(localDeCount))
call ESMF_DELayoutGet(delayout, vasLocalDeList=localD eList, rc=rc)
if (rc /= ESMF_SUCCESS) finalrc=rc
do i=1, localDeCount

workDe = localDeList(i)
print * , "I am PET", localPET, " and I am offering service for DE ", wor kDe
reply = ESMF_DELayoutServiceOffer(delayout, de=workDe, rc=rc)
if (rc /= ESMF_SUCCESS) finalrc=rc
if (reply == ESMF_DELAYOUT_SERVICE_ACCEPT) then

! process work associated with workDe
print * , "I am PET", localPET, ", service offer for DE ", workDe, &

" was accepted."
call ESMF_DELayoutServiceComplete(delayout, de=workDe , rc=rc)
if (rc /= ESMF_SUCCESS) finalrc=rc

endif
enddo
deallocate(localDeList)

44.4 Restrictions and Future Work

44.5 Design and Implementation Notes

The DELayout class is a light weight object. It stores the DE to PET and VAS mapping for all DEs within all
PET instances and a list of local DEs for each PET instance. The DELayout does not store the computational and
communication weights optionally provided as arguments tothe create method. These hints are only used during
create while they are available in user owned arrays.

733

44.6 Class API

44.6.1 ESMF_DELayoutCreate - Create DELayout object

INTERFACE:

! Private name; call using ESMF_DELayoutCreate()
function ESMF_DELayoutCreateDefault(deCount, deGroupi ng, dePinFlag, petList, &

vm, rc)

ARGUMENTS:

integer, intent(in), optional :: deCount
integer, target, intent(in), optional :: deGrouping(:)
type(ESMF_DePinFlag), intent(in), optional :: dePinFlag
integer, target, intent(in), optional :: petList(:)
type(ESMF_VM), intent(in), optional :: vm
integer, intent(out),optional :: rc

RETURN VALUE:

type(ESMF_DELayout) :: ESMF_DELayoutCreateDefault

DESCRIPTION:

Create anESMF_DELayout object on the basis of optionally provided restrictions. Bydefault a DELayout with
deCount equal to petCount will be created, each DE mapped to asingle PET. However, the number of DEs as well
grouping of DEs and PETs can be specified via the optional arguments.
The arguments are:

[deCount] Number of DEs to be provided by the created DELayout. By default the number of DEs equals the
number of PETs in the associated VM context. Specifying adeCount smaller than the number of PETs will
result in unassociated PETs. This may be used to share VM resources between DELayouts within the same
ESMF component. Specifying adeCount greater than the number of PETs will result in multiple DE to PET
mapping.

[deGrouping] This optional argument must be of size deCount. Its content assigns a DE group index to each DE of
the DELayout. A group index of -1 indicates that the associated DE isn’t member of any particular group. The
significance of DE groups is that all the DEs belonging to a certain group will be mapped against thesamePET.
This does not, however, mean that DEs belonging to differentDE groups must be mapped to different PETs.

[dePinFlag] This flag specifies which type of resource DEs are pinned to. The default is to pin DEs to PETs. Alter-
natively it is also possible to pin DEs to VASs. See section 44.2.1 for a list of valid pinning options.

[petList] List specifying PETs to be used by this DELayout. This can be used to control the PET overlap between
DELayouts within the same ESMF component. It is erroneous tospecify PETs that are not within the provided
VM context. The default is to include all the PETs of the VM.

[vm] Optional ESMF_VMobject of the current context. Providing the VM of the current context will lower the
method’s overhead.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

734

44.6.2 ESMF_DELayoutCreate - Create DELayout from petMap

INTERFACE:

! Private name; call using ESMF_DELayoutCreate()
function ESMF_DELayoutCreateFromPetMap(petMap, dePinF lag, vm, rc)

ARGUMENTS:

integer, intent(in) :: petMap(:)
type(ESMF_DePinFlag), intent(in), optional :: dePinFlag
type(ESMF_VM), intent(in), optional :: vm
integer, intent(out),optional :: rc

RETURN VALUE:

type(ESMF_DELayout) :: ESMF_DELayoutCreateFromPetMap

DESCRIPTION:

Create anESMF_DELayout with exactly specified DE to PET mapping.
This ESMF method must be called in unison by all PETs of the VM.Calling this method from a PET not part of the
VM or not calling it from a PET that is part of the VM will resultin undefined behavior. ESMF does not guard against
violation of the unison requirement. The call is not collective, there is no communication between PETs.
The arguments are:

petMap List specifying the DE-to-PET mapping. The list elements correspond to DE 0, 1, 2, ... and map against
the specified PET of the VM context. The size of thepetMap argument determines the number of DEs in the
created DELayout. It is erroneous to specify a PET identifierthat lies outside the VM context.

[dePinFlag] This flag specifies which type of resource DEs are pinned to. The default is to pin DEs to PETs. Alter-
natively it is also possible to pin DEs to VASs. See section 44.2.1 for a list of valid pinning options.

[vm] OptionalESMF_VMobject. The VM of the current context is the typical and default value.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

44.6.3 ESMF_DELayoutCreate - Create DELayout with weight hints

INTERFACE:

! Private name; call using ESMF_DELayoutCreate()
function ESMF_DELayoutCreateHintWeights(deCount, comp Weights, commWeights, &

deGrouping, dePinFlag, petList, vm, rc)

ARGUMENTS:

integer, intent(in), optional :: deCount
integer, intent(in) :: compWeights(:)
integer, intent(in) :: commWeights(:,:)
integer, target, intent(in), optional :: deGrouping(:)
type(ESMF_DePinFlag), intent(in), optional :: dePinFlag
integer, target, intent(in), optional :: petList(:)
type(ESMF_VM), intent(in), optional :: vm
integer, intent(out),optional :: rc

735

RETURN VALUE:

type(ESMF_DELayout) :: ESMF_DELayoutCreateHintWeights

DESCRIPTION:

Create anESMF_DELayout on the basis of computational and communication weights. Inaddition this call provides
control over the number of DEs, DE domains, DE pinning and thePETs to map against.
The arguments are:

[deCount] Number of DEs to be provided by the created DELayout. By default the number of DEs equals the
number of PETs in the associated VM context. Specifying adeCount smaller than the number of PETs will
result in unassociated PETs. This may be used to share VM resources between DELayouts within the same
ESMF component. Specifying adeCount greater than the number of PETs will result in multiple DE to PET
mapping.

compWeights This argument provides the computational weight hint. ThecompWeights list must contain at least
deCount elements and specifies a relative measure of the computational weight for each DE in form of an
integer number. The weights are a relative measure and only meaningful when compared to weights of the same
DELayout. (UNIMPLEMENTED!)

commWeights This argument provides the communication weight hint.commWeights is a 2D array and must
contain at leastdeCount elements in each dimension. The element indices correspondto the DEs of the
DELayout and each element specifies a relative communication weight for a DE pair. ThecommWeight
matrix must be symmetric and diagonal elements are ignored.The weights are a relative measure and only
meaningful when compared to weights of the same DELayout. (UNIMPLEMENTED!)

[dePinFlag] This flag specifies which type of resource DEs are pinned to. The default is to pin DEs to PETs. Alter-
natively it is also possible to pin DEs to VASs. See section 44.2.1 for a list of valid pinning options.

[petList] List specifying PETs to be used by this DELayout. This can be used to control the PET overlap between
DELayouts within the same ESMF component. It is erroneous tospecify PETs that are not within the provided
VM context. The default is to include all the PETs of the VM.

[vm] Optional ESMF_VMobject of the current context. Providing the VM of the current context will lower the
method’s overhead.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

44.6.4 ESMF_DELayoutDestroy - Destroy DELayout object

INTERFACE:

subroutine ESMF_DELayoutDestroy(delayout, rc)

ARGUMENTS:

type(ESMF_DELayout), intent(inout) :: delayout
integer, intent(out), optional :: rc

DESCRIPTION:

Destroy anESMF_DELayout object.
The arguments are:

delayout ESMF_DELayout object to be destroyed.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

736

44.6.5 ESMF_DELayoutGet - Get DELayout internals

INTERFACE:

subroutine ESMF_DELayoutGet(delayout, vm, deCount, petM ap, vasMap, &
compCapacity, commCapacity, oneToOneFlag, dePinFlag, &
localDeCount, localDeList, vasLocalDeCount, vasLocalDe List, rc)

ARGUMENTS:

type(ESMF_DELayout), intent(in) :: delayout
type(ESMF_VM), intent(out), optional :: vm
integer, intent(out), optional :: deCount
integer, target, intent(out), optional :: petMap(:)
integer, target, intent(out), optional :: vasMap(:)
integer, target, intent(out), optional :: compCapacity(:)
integer, target, intent(out), optional :: commCapacity(: ,:)
logical, intent(out), optional :: oneToOneFlag
type(ESMF_DePinFlag), intent(out), optional :: dePinFla g
integer, intent(out), optional :: localDeCount
integer, target, intent(out), optional :: localDeList(:)
integer, intent(out), optional :: vasLocalDeCount
integer, target, intent(out), optional :: vasLocalDeList (:)
integer, intent(out), optional :: rc

DESCRIPTION:

Access to DELayout information.
The arguments are:

delayout QueriedESMF_DELayout object.

[vm] Upon return this holds theESMF_VMobject on which the delayout is defined.

[deCount] Upon return this holds the total number of DEs.

[petMap] Upon return this holds the list of PETs against which the DEs are mapped. ThepetMap argument must at
least be of sizedeCount .

[vasMap] Upon return this holds the list of VASs against which the DEs are mapped. ThevasMap argument must
at least be of sizedeCount .

[compCapacity] Upon return this holds a relative measure of the computational capacity for each DE. ThecompCapacity
argument must at least be of sizedeCount .

[commCapacity] Upon return this holds a relative measure of the communication capacity for each pair of DEs. The
commCapacity argument is a 2D array where each dimension must at least be ofsizedeCount .

[oneToOneFlag] Upon return this holds.TRUE. if the specifiedESMF_DELayout describes a 1-to-1 mapping
between DEs and PETs,.FALSE. otherwise.

[dePinFlag] Upon return this flag will indicate the type of DE pinning. Seesection 44.2.1 for a list of valid pinning
options.

[localDeCount] Upon return this holds the number of DEs associated with the local PET.

[localDeList] Upon return this holds the list of DEs associated with the local PET. The provided argument must at
least be of sizelocalDeCount .

737

[vasLocalDeCount] Upon return this holds the number of DEs associated with the local VAS.

[vasLocalDeList] Upon return this holds the list of DEs associated with the local VAS. The provided argument must
at least be of sizevasLocalDeCount .

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

44.6.6 ESMF_DELayoutPrint - Print DELayout internals

INTERFACE:

subroutine ESMF_DELayoutPrint(delayout, options, rc)

ARGUMENTS:

type(ESMF_DELayout), intent(in) :: delayout
character(len= *), intent(in), optional :: options
integer, intent(out), optional :: rc

DESCRIPTION:

Prints internal information about the specifiedESMF_DELayout object tostdout .

Note: ManyESMF_<class>Print methods are implemented in C++. On some platforms/compilers there is a
potential issue with interleaving Fortran and C++ output tostdout such that it doesn’t appear in the expected order.
If this occurs, theESMF_IOUnitFlush() method may be used on unit 6 to get coherent output.

The arguments are:

delayout SpecifiedESMF_DELayout object.

[options] Print options are not yet supported.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

44.6.7 ESMF_DELayoutServiceComplete - Close service window

INTERFACE:

recursive subroutine ESMF_DELayoutServiceComplete(del ayout, de, rc)

ARGUMENTS:

type(ESMF_DELayout), intent(in) :: delayout
integer, intent(in) :: de
integer, intent(out), optional :: rc

DESCRIPTION:

The PET who’s service offer was accepted forde must useESMF_DELayoutServiceComplete to close the
service window.
The arguments are:

738

delayout SpecifiedESMF_DELayout object.

de DE for which to close service window.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

44.6.8 ESMF_DELayoutServiceOffer - Offer service for a DE in DELayout

INTERFACE:

recursive function ESMF_DELayoutServiceOffer(delayout , de, rc)

ARGUMENTS:

type(ESMF_DELayout), intent(in) :: delayout
integer, intent(in) :: de
integer, intent(out), optional :: rc

RETURN VALUE:

type(ESMF_DELayoutServiceReply) :: ESMF_DELayoutServi ceOffer

DESCRIPTION:

Offer service for a DE in theESMF_DELayout object. This call together withESMF_DELayoutServiceComplete()
provides the synchronization primitives between the PETs of an ESMF multi-threaded VM necessary for dynamic load
balancing via a work queue approach. The calling PET will either receiveESMF_DELAYOUT_SERVICE_ACCEPT
if the service offer has been accepted by DELayout orESMF_DELAYOUT_SERVICE_DENYif the service offer was
denied. The service offer paradigm is different from a simple mutex approach in that DELayout keeps track of the
number of service offers issued for each DE by each PET and accepts only one PET’s offer for each offer increment.
This requires that all PETs useESMF_DELayoutServiceOffer() in unison.
The arguments are:

delayout SpecifiedESMF_DELayout object.

de DE for which service is offered by the calling PET.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

44.6.9 ESMF_DELayoutValidate - Validate DELayout internals

INTERFACE:

subroutine ESMF_DELayoutValidate(delayout, rc)

ARGUMENTS:

type(ESMF_DELayout), intent(in) :: delayout
integer, intent(out), optional :: rc

DESCRIPTION:

Validates that thedelayout is internally consistent. The method returns an error code if problems are found.
The arguments are:

delayout SpecifiedESMF_DELayout object.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

739

45 VM Class

45.1 Description

The ESMF VM (Virtual Machine) class is a generic representation of hardware and system software resources. There
is exactly one VM object per ESMF Component, providing the execution environment for the Component code. The
VM class handles all resource management tasks for the Component class and provides a description of the underlying
configuration of the compute resources used by a Component.
In addition to resource description and management, the VM class offers the lowest level of ESMF communication
methods. The VM communication calls are very similar to MPI.Data references in VM communication calls must
be provided as raw, language specific, one-dimensional, contiguous data arrays. The similarity between VM and
MPI communication calls is striking and there are many equivalent point-to-point and collective communication calls.
However, unlike MPI, the VM communication calls support communication between threaded PETs in a completely
transparent fashion.
Many ESMF applications do not interact with the VM class directly very much. The resource management aspect
is wrapped completely transparent into the ESMF Component concept. Often the only reason that user code queries
a Component object for the associated VM object is to inquireabout resource information, such as thelocalPet
or thepetCount . Further, for most applications the use of higher level communication APIs, such as provided by
Array and Field, are much more convenient than using the low level VM communication calls.
The basic elements of a VM are called PETs, which stands for Persistent Execution Threads. These are equivalent to
OS threads with a lifetime of at least that of the associated component. All VM functionality is expressed in terms of
PETs. In the simplest, and most common case, a PET is equivalent to an MPI process. However, ESMF also supports
multi-threading, where multiple PETs run as Pthreads inside the same virtual address space (VAS).
The resource management functions of the VM class become visible when a component, or the driver code, creates
sub-components. Section 14.4.5 discusses this aspect fromthe Superstructure perspective and provides links to the
relevant Component examples in the documentation.
There are two parts to resource management, the parent and the child. When the parent component creates a child com-
ponent, the parent VM object provides the resources on whichthe child is created withESMF_GridCompCreate()
or ESMF_CplCompCreate() . The optionalpetList argument to these calls limits the resources that the parent
gives to a specific child. The child component, on the other hand, may specify - during its optionalESMF_<Grid/Cpl>CompSetVM()
method - how it wants to arrange the inherited resources in its own VM. After this, all standard ESMF methods of
the Component, includingESMF_<Grid/Cpl>CompSetServices() , will execute in the child VM. Notice that
the ESMF_<Grid/Cpl>CompSetVM() routine, although part of the child Component, must executebeforethe
child VM has been started up. It runs in the parent VM context.The child VM is created and started up just before
the user-written set services routine, specified as an argument toESMF_<Grid/Cpl>CompSetServices() , is
entered.

45.2 Use and Examples

The concept of the ESMF Virtual Machine (VM) is so fundamental to the framework that every ESMF application uses
it. However, for many user applications the VM class is transparently hidden behind the ESMF Component concept
and higher data classes (e.g. Array, Field). The interaction between user code and VM is often only indirect. The
following examples provide an overview of where the VM classcan come into play in user code.

45.2.1 Global VM

This complete example program demonstrates the simplest ESMF application, consisting of only a main program
without any Components. The global VM, which is automatically created during theESMF_Initialize() call, is
obtained using two different methods. First the global VM will be returned byESMF_Initialize() if the optional
vmargument is specified. The example uses the VM object obtained this way to call the VM print method. Second, the
global VM can be obtained anywhere in the user application using theESMF_VMGetGlobal() call. The identical
VM is returned and several VM query methods are called to inquire about the associated resources.

program ESMF_VMDefaultBasicsEx

use ESMF_Mod

740

implicit none

! local variables
integer:: rc
type(ESMF_VM):: vm
integer:: localPet, petCount, peCount, ssiId, vas

call ESMF_Initialize(vm=vm, defaultlogfilename="VMDef aultBasicsEx.Log", &
defaultlogtype=ESMF_LOG_MULTI, rc=rc)

! Providing the optional vm argument to ESMF_Initialize() i s one way of
! obtaining the global VM.

call ESMF_VMPrint(vm, rc=rc)

call ESMF_VMGetGlobal(vm=vm, rc=rc)
! Calling ESMF_VMGetGlobal() anywhere in the user applicat ion is the other
! way to obtain the global VM object.

call ESMF_VMGet(vm, localPet=localPet, petCount=petCou nt, peCount=peCount, &
rc=rc)

! The VM object contains information about the associated re sources. If the
! user code requires this information it must query the VM obj ect.

print * , "This PET is localPet: ", localPet
print * , "of a total of ",petCount," PETs in this VM."
print * , "There are ", peCount," PEs referenced by this VM"

call ESMF_VMGetPETLocalInfo(vm, localPet, peCount=peCo unt, ssiId=ssiId, &
vas=vas, rc=rc)

print * , "This PET is executing in virtual address space (VAS) ", vas
print * , "located on single system image (SSI) ", ssiId
print * , "and is associated with ", peCount, " PEs."

call ESMF_Finalize(rc=rc)

end program

45.2.2 Getting the MPI Communicator from an VM object

Sometimes user code requires access to the MPI communicator, e.g. to support legacy code that contains explict MPI
communication calls. The correct way of wrapping such code into ESMF is to obtain the MPI intra-communicator out
of the VM object. In order not to interfere with ESMF communications it is advisable to duplicate the communicator
before using it in user-level MPI calls. In this example the duplicated communicator is used for a user controlled
MPI_Barrier() .

integer:: mpic

741

integer:: mpic2

call ESMF_VMGet(vm, mpiCommunicator=mpic, rc=rc)
! The returned MPI communicator spans the same MPI processes that the VM
! is defined on.

call MPI_Comm_dup(mpic, mpic2, ierr)
! Duplicate the MPI communicator not to interfere with ESMF c ommunications.
! The duplicate MPI communicator can be used in any MPI call in the user
! code. Here the MPI_Barrier() routine is called.
call MPI_Barrier(mpic2, ierr)

45.2.3 Nesting ESMF inside a user MPI application

It is possible to nest an ESMF application inside a user application that explicitly callsMPI_Init() andMPI_Finalize() .
TheESMF_Initialize() call automatically checks whether MPI has already been initialized, and if so does not
callMPI_Init() internally. On the finalize side,ESMF_Finalize() can be instructed tonotcallMPI_Finalize() ,
making it the responsibility of the outer code to finalize MPI.

call MPI_Init(ierr)
! User code initializes MPI.

call ESMF_Initialize(defaultlogfilename="VMUserMpiEx .Log", &
defaultlogtype=ESMF_LOG_MULTI, rc=rc)

! ESMF_Initialize() does not call MPI_Init() if it finds MPI initialized.

call ESMF_Finalize(terminationflag=ESMF_KEEPMPI, rc=r c)
! Calling with terminationflag=ESMF_KEEPMPI instructs ES MF_Finalize() to keep
! MPI active.

call MPI_Finalize(ierr)
! It is the responsibility of the outer user code to finalize M PI.

45.2.4 Nesting ESMF inside a user MPI application on a subsetof MPI ranks

The previous example demonstrated that it is possible to nest an ESMF application, i.e.ESMF_Initialize() ...ESMF_Finalize()
insideMPI_Init() ...MPI_Finalize() . It is not necessary that all MPI ranks enter the ESMF application. The
following example shows how the user code can pass an MPI communicator toESMF_Initialize() , and enter
the ESMF application on a subset of MPI ranks.

call MPI_Init(ierr)
! User code initializes MPI.

call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
! User code determines the local rank.

742

! User code prepares MPI communicator "esmfComm" that only c ontains
! rank 0 and 1.

if (rank < 2) then
call ESMF_Initialize(mpiCommunicator=esmfComm, defaul tlogfilename="VMUserMpiCommEx.Log",

defaultlogtype=ESMF_LOG_MULTI, rc=rc)
! Only call ESMF_Initialize() on rank 0 and 1, passing the pre pared MPI
! communicator that spans these ranks.

call ESMF_Finalize(terminationflag=ESMF_KEEPMPI, rc=r c)
! Finalize ESMF without finalizing MPI. The user applicatio n will call
! MPI_Finalize() on all ranks.

endif

call MPI_Finalize(ierr)
! User code finalizes MPI.

45.2.5 Send/Recv

The VM layer provides MPI-like point-to-point communication. UseESMF_VMSend() andESMF_VMRecv() to
pass data between two PETs. The following code sends data from PET ’src’ and receives it on PET ’dst’. Both PETs
must be part of the same VM. The sendData and recvData arguments must be 1-dimensional arrays.

if (localPet==src) &
call ESMF_VMSend(vm, sendData=localData, count=count, d st=dst, rc=rc)

if (localPet==dst) &
call ESMF_VMRecv(vm, recvData=localData, count=count, s rc=src, rc=rc)

45.2.6 Scatter and Gather

The VM layer provides MPI-like collective communication.ESMF_VMScatter() scatters data located onroot
PET across all the PETs of the VM.ESMF_VMGather() provides the opposite operation, gathering data from all
the PETs of the VM ontoroot PET.

call ESMF_VMScatter(vm, sendData=array1, recvData=arra y2, count=nsize, &
root=scatterRoot, rc=rc)

! Both sendData and recvData must be 1-d arrays.

call ESMF_VMGather(vm, sendData=array2, recvData=array 1, count=nsize, &
root=gatherRoot, rc=rc)

! Both sendData and recvData must be 1-d arrays.

743

45.2.7 AllReduce and AllFullReduce

UseESMF_VMAllReduce() to reduce data distributed across the PETs of a VM into a result vector, returned on all
the PETs. Further, useESMF_VMAllFullReduce() to reduce the data into a single scalar returned on all PETs.

call ESMF_VMAllReduce(vm, sendData=array1, recvData=ar ray2, count=nsize, &
reduceflag=ESMF_SUM, rc=rc)

! Both sendData and recvData must be 1-d arrays. Reduce distr ibuted sendData
! element by element into recvData and return in on all PETs.

call ESMF_VMAllFullReduce(vm, sendData=array1, recvDat a=result, count=nsize, &
reduceflag=ESMF_SUM, rc=rc)

! sendData must be 1-d array. Fully reduce the distributed se ndData into a
! single scalar and return it in recvData on all PETs.

45.2.8 VM and Components

The following example shows the role that the VM plays in connection with ESMF Components. A single Component
is created in the main program. Through the optionalpetList argument the driver code specifies that only resources
associated with PET 0 are given to thegcomp object.
When the Component code is invoked through the standard ESMFComponent methods Initialize, Run, or Finalize
the Component’s VM is automatically entered. Inside of the user-written Component code the Component VM can
be obtained by querying the Component object. The VM object will indicate that only a single PET is executing the
Component code.

module ESMF_VMComponentEx_gcomp_mod

recursive subroutine mygcomp_init(gcomp, istate, estate , clock, rc)
type(ESMF_GridComp) :: gcomp
type(ESMF_State) :: istate, estate
type(ESMF_Clock) :: clock
integer, intent(out) :: rc

! local variables
type(ESMF_VM):: vm

! get this Component’s vm
call ESMF_GridCompGet(gcomp, vm=vm)

! the VM object contains information about the execution env ironment of
! the Component

call ESMF_VMPrint(vm, rc)

rc = 0
end subroutine !------------------------------------- -------------------------

recursive subroutine mygcomp_run(gcomp, istate, estate, clock, rc)
type(ESMF_GridComp) :: gcomp
type(ESMF_State) :: istate, estate
type(ESMF_Clock) :: clock
integer, intent(out) :: rc

744

! local variables
type(ESMF_VM):: vm

! get this Component’s vm
call ESMF_GridCompGet(gcomp, vm=vm)

! the VM object contains information about the execution env ironment of
! the Component

call ESMF_VMPrint(vm, rc)

rc = 0
end subroutine !------------------------------------- -------------------------

recursive subroutine mygcomp_final(gcomp, istate, estat e, clock, rc)
type(ESMF_GridComp) :: gcomp
type(ESMF_State) :: istate, estate
type(ESMF_Clock) :: clock
integer, intent(out) :: rc

! local variables
type(ESMF_VM):: vm

! get this Component’s vm
call ESMF_GridCompGet(gcomp, vm=vm)

! the VM object contains information about the execution env ironment of
! the Component

call ESMF_VMPrint(vm, rc)

rc = 0
end subroutine !------------------------------------- -------------------------

end module

program ESMF_VMComponentEx
use ESMF_Mod
use ESMF_VMComponentEx_gcomp_mod
implicit none

! local variables

gcomp = ESMF_GridCompCreate(petList=(/0/), rc=rc)

call ESMF_GridCompSetServices(gcomp, mygcomp_register , rc)

call ESMF_GridCompInitialize(gcomp, rc=rc)

call ESMF_GridCompRun(gcomp, rc=rc)

745

call ESMF_GridCompFinalize(gcomp, rc=rc)

call ESMF_GridCompDestroy(gcomp, rc=rc)

call ESMF_Finalize(rc=rc)

end program

45.3 Restrictions and Future Work

1. Non-blocking Reduce() operations not implemented. None of the reduce communication calls have an
implementation for the non-blocking feature. This affects:

• ESMF_VMAllFullReduce() ,

• ESMF_VMAllReduce() ,

• ESMF_VMReduce().

2. Limitations when using mpiuni mode. In mpiuni mode non-blocking communications are limited to one
outstanding message per source-destination PET pair. Furthermore, inmpiuni mode the message length must
be smaller than the internal ESMF buffer size.

3. Alternative communication paths not accessible.All user accessible VM communication calls are currently
implemented using MPI-1.2. VM’s implementation of alternative communication techniques, such as shared
memory between threaded PETs and POSIX IPC between PETs located on the same single system image, are
currently inaccessible to the user. (One exception to this is thempiuni case for which the VM automatically
utilizes a shared memory path.)

4. Data arrays in VM comm calls are assumed shape with rank=1. Currently all dummy arrays in VM comm
calls are defined asassumed shapearrays of rank=1. The motivation for this choice is that the use of assumed
shape dummy arrays guards against the Fortran copy in/out problem. However it may not be as flexible as
desired from the user perspective. Alternatively all dummyarrays could be defined asassumed sizearrays, as it
is done in most MPI implementations, allowing arrays of various rank to be passed into the comm methods.

45.4 Design and Implementation Notes

The VM class provides an additional layer of abstraction on top of the POSIX machine model, making it suitable for
HPC applications. There are four key aspects the VM class deals with.

1. Encapsulation of hardware and operating system details within the concept of Persistent Execution Threads
(PETs).

2. Resource management in terms of PETs with a guard against over-subscription.

3. Topological description of the underlying configurationof the compute resources in terms of PETs.

4. Transparent communication API for point-to-point and collective PET-based primitives, hiding the many differ-
ent communication channels and offering best possible performance.

746

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

DE

#1

#2

#3

#5

#6

#7 #8

#9

#10
#11

#12#13

MPI−1, MPI−2, armci

SHMEM, InterCon−lib

ESMF_Field / ESMF_Array ESMF_VM

Core

CPU

SSI

OpenMP or
Pthreads

User TETs

PEPET ~ OS−Instance

ESMF_DELayout

0

1

2

3
4
5
6
7
8
9
10
11
12

0− p0(0)t0

1− p1(1)t0

2− p2(2)t0

3− p4(3)t0

4− p4(3)t1

5− p4(3)t2

6− p7(4)t0

− ESMF_DistGrid
− ESMF_Grid

− ESMF_LocalArray
− ESMF_Array

ESMF_Field

Decomposition

#4

MPI−
1,

MPI−
2,

ar
mci

SHMEM, O
S−I

PC

Pthr
ea

ds

connection weights

P
E

T
s

in
st

an
tia

te
us

er
 c

od
e

Definition of terms used in the diagram

• PE: A processing element (PE) is an alias for the smallest physical processing unit available on a particular
hardware platform. In the language of today’s microprocessor architecture technology a PE is identical to a
core, however, if future microprocessor designs change thesmallest physical processing unit the mapping of
the PE to actual hardware will change accordingly. Thus the PE layer separates the hardware specific part of
the VM from the hardware-independent part. Each PE is labeled with an id number which identifies it uniquely
within all of the VM instances of an ESMF application.

• Core: A Core is the smallest physical processing unit which typically comprises a register set, an integer arith-
metic unit, a floating-point unit and various control units.Each Core is labeled with an id number which
identifies it uniquely within all of the VM instances of an ESMF application.

• CPU: The central processing unit (CPU) houses single or multiple cores, providing them with the interface to
system memory, interconnects and IO. Typically the CPU provides some level of caching for the instruction and
data streams in and out of the Cores. Cores in a multi-core CPUtypically share some caches. Each CPU is
labeled with an id number which identifies it uniquely withinall of the VM instances of an ESMF application.

• SSI: A single system image (SSI) spans all the CPUs controlled by a single running instance of the operating
system. SMP and NUMA are typical multi-CPU SSI architectures. Each SSI is labeled with an id number which
identifies it uniquely within all of the VM instances of an ESMF application.

• TOE: A thread of execution (TOE) executes an instruction sequence. TOE’s come in two flavors: PET and TET.

• PET: A persistent execution thread (PET) executes an instruction sequence on an associated set of data. The PET
has a lifetime at least as long as the associated data set. In ESMF the PET is the central concept of abstraction

747

provided by the VM class. The PETs of an VM object are labeled from 0 to N-1 where N is the total number of
PETs in the VM object.

• TET: A transient execution thread (TET) executes an instruction sequence on an associated set of data. A TET’s
lifetime might be shorter than that of the associated data set.

• OS-Instance: The OS-Instance of a TOE describes how a particular TOE is instantiated on the OS level. Using
POSIX terminology a TOE will run as a single thread within a single- or multi-threaded process.

• Pthreads: Communication via the POSIX Thread interface.

• MPI-1, MPI-2: Communication via MPI standards 1 and 2.

• armci: Communication via the aggregate remote memory copy interface.

• SHMEM: Communication via the SHMEM interface.

• OS-IPC: Communication via the operating system’s inter process communication interface. Either POSIX IPC
or System V IPC.

• InterCon-lib: Communication via the interconnect’s library native interface. An example is the Elan library for
Quadrics.

The POSIX machine abstraction, while a very powerful concept, needs augmentation when applied to HPC applica-
tions. Key elements of the POSIX abstraction are processes,which provide virtually unlimited resources (memory,
I/O, sockets, ...) to possibly multiple threads of execution. Similarly POSIX threads create the illusion that there is
virtually unlimited processing power available to each POSIX process. While the POSIX abstraction is very suitable
for many multi-user/multi-tasking applications that needto share limited physical resources, it does not directly fitthe
HPC workload where over-subscription of resources is one ofthe most expensive modes of operation.
ESMF’s virtual machine abstraction is based on the POSIX machine model but holds additional information about the
available physical processing units in terms of ProcessingElements (PEs). A PE is the smallest physical processing
unit and encapsulates the hardware details (Cores, CPUs andSSIs).
There is exactly one physical machine layout for each application, and all VM instances have access to this infor-
mation. The PE is the smallest processing unit which, in today’s microprocessor technology, corresponds to a single
Core. Cores are arranged in CPUs which in turn are arranged inSSIs. The setup of the physical machine layout is part
of the ESMF initialization process.
On top of the PE concept the key abstraction provided by the VMis the PET. All user code is executed by PETs
while OS and hardware details are hidden. The VM class contains a number of methods which allow the user to
prescribe how the PETs of a desired virtual machine should beinstantiated on the OS level and how they should map
onto the hardware. This prescription is kept in a private virtual machine plan object which is created at the same time
the associated component is being created. Each time component code is entered through one of the component’s
registered top–level methods (Initialize/Run/Finalize), the virtual machine plan along with a pointer to the respective
user function is used to instantiate the user code on the PETsof the associated VM in form of single- or multi-threaded
POSIX processes.
The process of starting, entering, exiting and shutting down a VM is very transparent, all spawning and joining of
threads is handled by VM methods "behind the scenes". Furthermore, fundamental synchronization and communica-
tion primitives are provided on the PET level through a uniform API, hiding details related to the actual instantiation
of the participating PETs.
Within a VM object each PE of the physical machine maps to 0 or 1PETs. Allowing unassigned PEs provides a
means to prevent over-subscription between multiple concurrently running virtual machines. Similarly a maximum of
one PET per PE prevents over-subscription within a single VMinstance. However, over-subscription is possible by
subscribing PETs from different virtual machines to the same PE. This type of over-subscription can be desirable for
PETs associated with IO work loads expected to be used infrequently and to block often on IO requests.
On the OS level each PET of a VM object is represented by a POSIXthread (Pthread) either belonging to a single– or
multi–threaded process and maps to at least 1 PE of the physical machine, ensuring its execution. Mapping a single
PET to multiple PEs provides resources for user–level multi–threading, in which case the user code inquires how many
PEs are associated with its PET and if there are multiple PEs available the user code can spawn an equal number of
threads (e.g. OpenMP) without risking over-subscription.Typically these user spawned threads are short-lived and

748

used for fine-grained parallelization in form of TETs. All PEs mapped against a single PET must be part of a unique
SSI in order to allow user–level multi–threading!
In addition to discovering the physical machine the ESMF initialization process sets up the default global virtual
machine. This VM object, which is the ultimate parent of all VMs created during the course of execution, contains as
many PETs as there are PEs in the physical machine. All of its PETs are instantiated in form of single-threaded MPI
processes and a 1:1 mapping of PETs to PEs is used for the default global VM.
The VM design and implementation is based on the POSIX process and thread model as well as the MPI-1.2 standard.
As a consequence of the latter standard the number of processes is static during the course of execution and is deter-
mined at start-up. The VM implementation further requires that the user starts up the ESMF application with as many
MPI processes as there are PEs in the available physical machine using the platform dependent mechanism to ensure
proper process placement.
All MPI processes participating in a VM are grouped togetherby means of an MPI_Group object and their context
is defined via an MPI_Comm object (MPI intra-communicator).The PET local process id within each virtual ma-
chine is equal to the MPI_Comm_rank in the local MPI_Comm context whereas the PET process id is equal to the
MPI_Comm_rank in MPI_COMM_WORLD. The PET process id is usedwithin the VM methods to determine the
virtual memory space a PET is operating in.
In order to provide a migration path for legacy MPI-applications the VM offers accessor functions to its MPI_Comm
object. Once obtained this object may be used in explicit user-code MPI calls within the same context.

45.5 Class API

45.5.1 ESMF_VMAllFullReduce - Fully reduce data across VM,result on all PETs

INTERFACE:

! Private name; call using ESMF_VMAllFullReduce()
subroutine ESMF_VMAllFullReduce<type><kind>(vm, sendD ata, recvData, count, &

reduceflag, blockingflag, commhandle, rc)

ARGUMENTS:

type(ESMF_VM), intent(in) :: vm
<type>(ESMF_KIND_<kind>), target, intent(in) :: sendDat a(:)
<type>(ESMF_KIND_<kind>), intent(out) :: recvData
integer, intent(in) :: count
type(ESMF_ReduceFlag), intent(in) :: reduceflag
type(ESMF_BlockingFlag), intent(in), optional :: blocki ngflag
type(ESMF_CommHandle), intent(out), optional :: commhan dle
integer, intent(out), optional :: rc

DESCRIPTION:

CollectiveESMF_VMcommunication call that reduces a contiguous data array of <type><kind> across theESMF_VM
object into a single value of the same <type><kind>. The result is returned on all PETs. Different reduction operations
can be specified.

This method is overloaded for:ESMF_TYPEKIND_I4, ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8.

TODO: The current version of this method does not provide an implementation of thenon-blockingfeature. When
calling this method withblockingflag = ESMF_NONBLOCKING error codeESMF_RC_NOT_IMPLwill be re-
turned and an error will be logged.

The arguments are:

vm ESMF_VMobject.

sendData Contiguous data array holding data to be send. All PETs must specify a valid source array.

749

recvData Single data variable to be received. All PETs must specify a valid result variable.

count Number of elements in sendData. Must be the same on all PETs.

reduceflag Reduction operation. See section 9.2.12 for a list of valid reduce operations.

[blockingflag] Flag indicating whether this call behaves blocking or non-blocking:

ESMF_BLOCKING(default) Block until local operation has completed.

ESMF_NONBLOCKINGReturn immediately without blocking.

[commhandle] If present, a communication handle will be returned in case of a non-blocking request (see argument
blockingflag). Thecommhandle can be used inESMF_VMCommWait()to block the calling PET until
the communication call has finished PET-locally. If nocommhandle was supplied to a non-blocking call the
VM methodESMF_VMCommQueueWait()may be used to block on all currently queued communication
calls of the VM context.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

45.5.2 ESMF_VMAllGather - Gather data across VM, result on all PETs

INTERFACE:

! Private name; call using ESMF_VMAllGather()
subroutine ESMF_VMAllGather<type><kind>(vm, sendData, recvData, count, &

blockingflag, commhandle, rc)

ARGUMENTS:

type(ESMF_VM), intent(in) :: vm
<type>(ESMF_KIND_<kind>), target, intent(in) :: sendDat a(:)
<type>(ESMF_KIND_<kind>), target, intent(out) :: recvDa ta(:)
integer, intent(in) :: count
type(ESMF_BlockingFlag), intent(in), optional :: blocki ngflag
type(ESMF_CommHandle), intent(out), optional :: commhan dle
integer, intent(out), optional :: rc

DESCRIPTION:

CollectiveESMF_VMcommunication call that gathers contiguous data from all PETs of anESMF_VMobject into an
array on all PETs.

This method is overloaded for:ESMF_TYPEKIND_I4,ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8,ESMF_TYPEKIND_LOGICAL

The arguments are:

vm ESMF_VMobject.

sendData Contiguous data array holding data to be send. All PETs must specify a valid source array.

recvData Contiguous data array for data to be received. All PETs must specify a validrecvData argument.

count Number of elements to be gathered from each PET. Must be the same on all PETs.

[blockingflag] Flag indicating whether this call behaves blocking or non-blocking:

ESMF_BLOCKING(default) Block until local operation has completed.

750

ESMF_NONBLOCKINGReturn immediately without blocking.

[commhandle] If present, a communication handle will be returned in case of a non-blocking request (see argument
blockingflag). Thecommhandle can be used inESMF_VMCommWait()to block the calling PET until
the communication call has finished PET-locally. If nocommhandle was supplied to a non-blocking call the
VM methodESMF_VMCommQueueWait()may be used to block on all currently queued communication
calls of the VM context.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

45.5.3 ESMF_VMAllGatherV - GatherV data across VM, result on all PETs

INTERFACE:

! Private name; call using ESMF_VMAllGatherV()
subroutine ESMF_VMAllGatherV<type><kind>(vm, sendData , sendCount, recvData, &

recvCounts, recvOffsets, blockingflag, commhandle, rc)

ARGUMENTS:

type(ESMF_VM), intent(in) :: vm
<type>(ESMF_KIND_<kind>), target, intent(in) :: sendDat a(:)
integer, intent(in) :: sendCount
<type>(ESMF_KIND_<kind>), target, intent(out) :: recvDa ta(:)
integer, intent(in) :: recvCounts(:)
integer, intent(in) :: recvOffsets(:)
type(ESMF_BlockingFlag), intent(in), optional :: blocki ngflag
type(ESMF_CommHandle), intent(out), optional :: commhan dle
integer, intent(out), optional :: rc

DESCRIPTION:

CollectiveESMF_VMcommunication call that gathers contiguous data from all PETs of anESMF_VMobject into an
array on all PETs.

This method is overloaded for:ESMF_TYPEKIND_I4, ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8.

TODO: The current version of this method does not provide an implementation of thenon-blockingfeature. When
calling this method withblockingflag = ESMF_NONBLOCKING error codeESMF_RC_NOT_IMPLwill be re-
turned and an error will be logged.

The arguments are:

vm ESMF_VMobject.

sendData Contiguous data array holding data to be send. All PETs must specify a valid source array.

sendCount Number ofsendData elements to send from local PET to all other PETs.

recvData Single data variable to be received. All PETs must specify a valid result variable.

recvCounts Number ofrecvData elements to be received from corresponding source PET.

recvOffsets Offsets in units of elements inrecvData marking the start of element sequence to be received from
source PET.

[blockingflag] Flag indicating whether this call behaves blocking or non-blocking:

751

ESMF_BLOCKING(default) Block until local operation has completed.

ESMF_NONBLOCKINGReturn immediately without blocking.

[commhandle] If present, a communication handle will be returned in case of a non-blocking request (see argument
blockingflag). Thecommhandle can be used inESMF_VMCommWait()to block the calling PET until
the communication call has finished PET-locally. If nocommhandle was supplied to a non-blocking call the
VM methodESMF_VMCommQueueWait()may be used to block on all currently queued communication
calls of the VM context.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

45.5.4 ESMF_VMAllReduce - Reduce data across VM, result on all PETs

INTERFACE:

! Private name; call using ESMF_VMAllReduce()
subroutine ESMF_VMAllReduce<type><kind>(vm, sendData, recvData, count, &

reduceflag, blockingflag, commhandle, rc)

ARGUMENTS:

type(ESMF_VM), intent(in) :: vm
<type>(ESMF_KIND_<kind>), target, intent(in) :: sendDat a(:)
<type>(ESMF_KIND_<kind>), target, intent(out) :: recvDa ta(:)
integer, intent(in) :: count
type(ESMF_ReduceFlag), intent(in) :: reduceflag
type(ESMF_BlockingFlag), intent(in), optional :: blocki ngflag
type(ESMF_CommHandle), intent(out), optional :: commhan dle
integer, intent(out), optional :: rc

DESCRIPTION:

CollectiveESMF_VMcommunication call that reduces a contiguous data array across theESMF_VMobject into a con-
tiguous data array of the same <type><kind>. The result array is returned on all PETs. Different reduction operations
can be specified.

This method is overloaded for:ESMF_TYPEKIND_I4, ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8.

TODO: The current version of this method does not provide an implementation of thenon-blockingfeature. When
calling this method withblockingflag = ESMF_NONBLOCKING error codeESMF_RC_NOT_IMPLwill be re-
turned and an error will be logged.

The arguments are:

vm ESMF_VMobject.

sendData Contiguous data array holding data to be send. All PETs must specify a valid source array.

recvData Single data variable to be received. All PETs must specify a valid result variable.

count Number of elements in sendData and recvData. Must be the sameon all PETs.

reduceflag Reduction operation. See section 9.2.12 for a list of valid reduce operations.

[blockingflag] Flag indicating whether this call behaves blocking or non-blocking:

752

ESMF_BLOCKING(default) Block until local operation has completed.

ESMF_NONBLOCKINGReturn immediately without blocking.

[commhandle] If present, a communication handle will be returned in case of a non-blocking request (see argument
blockingflag). Thecommhandle can be used inESMF_VMCommWait()to block the calling PET until
the communication call has finished PET-locally. If nocommhandle was supplied to a non-blocking call the
VM methodESMF_VMCommQueueWait()may be used to block on all currently queued communication
calls of the VM context.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

45.5.5 ESMF_VMAllToAllV - AllToAllV communications acros s VM

INTERFACE:

! Private name; call using ESMF_VMAllToAllV()
subroutine ESMF_VMAllToAllV<type><kind>(vm, sendData, sendCounts, sendOffsets, &

recvData, recvCounts, recvOffsets, blockingflag, commha ndle, rc)

ARGUMENTS:

type(ESMF_VM), intent(in) :: vm
<type>(ESMF_KIND_<kind>), target, intent(in) :: sendDat a(:)
integer, intent(in) :: sendCounts(:)
integer, intent(in) :: sendOffsets(:)
<type>(ESMF_KIND_<kind>), target, intent(out) :: recvDa ta(:)
integer, intent(in) :: recvCounts(:)
integer, intent(in) :: recvOffsets(:)
type(ESMF_BlockingFlag), intent(in), optional :: blocki ngflag
type(ESMF_CommHandle), intent(out), optional :: commhan dle
integer, intent(out), optional :: rc

DESCRIPTION:

CollectiveESMF_VMcommunication call that performs a total exchange operation, sending pieces of the contiguous
data buffersemdData to all other PETs while receiving data into the contiguous data bufferrecvData from all
other PETs.

This method is overloaded for:ESMF_TYPEKIND_I4, ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8.

TODO: The current version of this method does not provide an implementation of thenon-blockingfeature. When
calling this method withblockingflag = ESMF_NONBLOCKING error codeESMF_RC_NOT_IMPLwill be re-
turned and an error will be logged.

The arguments are:

vm ESMF_VMobject.

sendData Contiguous data array holding data to be send. All PETs must specify a valid source array.

sendCounts Number ofsendData elements to send from local PET to destination PET.

sendOffsetsOffsets in units of elements insendData marking to start of element sequence to be send from local
PET to destination PET.

recvData Single data variable to be received. All PETs must specify a valid result variable.

753

recvCounts Number ofrecvData elements to be received by local PET from source PET.

recvOffsets Offsets in units of elements inrecvData marking to start of element sequence to be received by local
PET from source PET.

[blockingflag] Flag indicating whether this call behaves blocking or non-blocking:

ESMF_BLOCKING(default) Block until local operation has completed.

ESMF_NONBLOCKINGReturn immediately without blocking.

[commhandle] If present, a communication handle will be returned in case of a non-blocking request (see argument
blockingflag). Thecommhandle can be used inESMF_VMCommWait()to block the calling PET until
the communication call has finished PET-locally. If nocommhandle was supplied to a non-blocking call the
VM methodESMF_VMCommQueueWait()may be used to block on all currently queued communication
calls of the VM context.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

45.5.6 ESMF_VMBarrier - VM wide barrier

INTERFACE:

subroutine ESMF_VMBarrier(vm, rc)

ARGUMENTS:

type(ESMF_VM), intent(in) :: vm
integer, intent(out), optional :: rc

DESCRIPTION:

CollectiveESMF_VMcommunication call that blocks calling PET until all PETs ofthe VM context have issued the call.

The arguments are:

vm ESMF_VMobject.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

45.5.7 ESMF_VMBroadcast - Broadcast data across VM

INTERFACE:

! Private name; call using ESMF_VMBroadcast()
subroutine ESMF_VMBroadcast<type><kind>(vm, bcstData, count, root, &

blockingflag, commhandle, rc)

ARGUMENTS:

type(ESMF_VM), intent(in) :: vm
<type>(ESMF_KIND_<kind>), target, intent(inout) :: bcst Data(:)
integer, intent(in) :: count
integer, intent(in) :: root
type(ESMF_BlockingFlag), intent(in), optional :: blocki ngflag
type(ESMF_CommHandle), intent(out), optional :: commhan dle
integer, intent(out), optional :: rc

754

DESCRIPTION:

CollectiveESMF_VMcommunication call that broadcasts a contiguous data arrayfrom PETroot to all other PETs
of theESMF_VMobject.

This method is overloaded for:ESMF_TYPEKIND_I4,ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8,ESMF_TYPEKIND_LOGICAL
ESMF_TYPEKIND_CHARACTER.

The arguments are:

vm ESMF_VMobject.

bcstData Contiguous data array. Onroot PETbcstData holds data that is to be broadcasted to all other PETs.
On all other PETsbcstData is used to receive the broadcasted data.

count Number of elements in sendData and recvData. Must be the sameon all PETs.

root Id of theroot PET within theESMF_VMobject.

[blockingflag] Flag indicating whether this call behaves blocking or non-blocking:

ESMF_BLOCKING(default) Block until local operation has completed.
ESMF_NONBLOCKINGReturn immediately without blocking.

[commhandle] If present, a communication handle will be returned in case of a non-blocking request (see argument
blockingflag). Thecommhandle can be used inESMF_VMCommWait()to block the calling PET until
the communication call has finished PET-locally. If nocommhandle was supplied to a non-blocking call the
VM methodESMF_VMCommQueueWait()may be used to block on all currently queued communication
calls of the VM context.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

45.5.8 ESMF_VMGather - Gather data from across VM

INTERFACE:

! Private name; call using ESMF_VMGather()
subroutine ESMF_VMGather<type><kind>(vm, sendData, rec vData, count, root, &

blockingflag, commhandle, rc)

ARGUMENTS:

type(ESMF_VM), intent(in) :: vm
<type>(ESMF_KIND_<kind>), target, intent(in) :: sendDat a(:)
<type>(ESMF_KIND_<kind>), target, intent(out) :: recvDa ta(:)
integer, intent(in) :: count
integer, intent(in) :: root
type(ESMF_BlockingFlag), intent(in), optional :: blocki ngflag
type(ESMF_CommHandle), intent(out), optional :: commhan dle
integer, intent(out), optional :: rc

DESCRIPTION:

CollectiveESMF_VMcommunication call that gathers contiguous data from all PETs of anESMF_VMobject (includ-
ing root) into an array on theroot PET.

This method is overloaded for:ESMF_TYPEKIND_I4,ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8,ESMF_TYPEKIND_LOGICAL

The arguments are:

755

vm ESMF_VMobject.

sendData Contiguous data array holding data to be send. All PETs must specify a valid source array.

recvData Contiguous data array for data to be received. Only therecvData array specified by theroot PET will
be used by this method.

count Number of elements to be send from each PET toroot . Must be the same on all PETs.

root Id of theroot PET within theESMF_VMobject.

[blockingflag] Flag indicating whether this call behaves blocking or non-blocking:

ESMF_BLOCKING(default) Block until local operation has completed.

ESMF_NONBLOCKINGReturn immediately without blocking.

[commhandle] If present, a communication handle will be returned in case of a non-blocking request (see argument
blockingflag). Thecommhandle can be used inESMF_VMCommWait()to block the calling PET until
the communication call has finished PET-locally. If nocommhandle was supplied to a non-blocking call the
VM methodESMF_VMCommQueueWait()may be used to block on all currently queued communication
calls of the VM context.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

45.5.9 ESMF_VMGatherV - GatherV data from across VM

INTERFACE:

! Private name; call using ESMF_VMGatherV()
subroutine ESMF_VMGatherV<type><kind>(vm, sendData, se ndCount, recvData, &

recvCounts, recvOffsets, root, rc)

ARGUMENTS:

type(ESMF_VM), intent(in) :: vm
<type>(ESMF_KIND_<kind>), target, intent(in) :: sendDat a(:)
integer, intent(in) :: sendCount
<type>(ESMF_KIND_<kind>), target, intent(out) :: recvDa ta(:)
integer, intent(in) :: recvCounts(:)
integer, intent(in) :: recvOffsets(:)
integer, intent(in) :: root
integer, intent(out), optional :: rc

DESCRIPTION:

CollectiveESMF_VMcommunication call that gathers contiguous data from all PETs of anESMF_VMobject into an
array on root PET.

This method is overloaded for:ESMF_TYPEKIND_I4, ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8.

TODO: The current version of this method does not provide an implementation of thenon-blockingfeature. When
calling this method withblockingflag = ESMF_NONBLOCKING error codeESMF_RC_NOT_IMPLwill be re-
turned and an error will be logged.

The arguments are:

vm ESMF_VMobject.

756

sendData Contiguous data array holding data to be send. All PETs must specify a valid source array.

sendCount Number ofsendData elements to send from local PET to all other PETs.

recvData Single data variable to be received. All PETs must specify a valid result variable.

recvCounts Number ofrecvData elements to be received from corresponding source PET.

recvOffsets Offsets in units of elements inrecvData marking the start of element sequence to be received from
source PET.

root Id of theroot PET within theESMF_VMobject.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

45.5.10 ESMF_VMGet - Get VM internals

INTERFACE:

subroutine ESMF_VMGet(vm, localPet, petCount, peCount, m piCommunicator, &
pthreadsEnabledFlag, openMPEnabledFlag, rc)

ARGUMENTS:

type(ESMF_VM), intent(in) :: vm
integer, intent(out), optional :: localPet
integer, intent(out), optional :: petCount
integer, intent(out), optional :: peCount
integer, intent(out), optional :: mpiCommunicator
logical, intent(out), optional :: pthreadsEnabledFlag
logical, intent(out), optional :: openMPEnabledFlag
integer, intent(out), optional :: rc

DESCRIPTION:

Get internal information about the specifiedESMF_VMobject.

The arguments are:

vm QueriedESMF_VMobject.

[localPet] Upon return this holds the id of the PET that issued this call.

[petCount] Upon return this holds the number of PETs in the specifiedESMF_VMobject.

[peCount] Upon return this holds the number of PEs referenced by the specifiedESMF_VMobject.

[mpiCommunicator] Upon return this holds the MPI intra-communicator used by the specifiedESMF_VMobject.
This communicator may be used for user-level MPI communications. It is recommended that the user duplicates
the communicator viaMPI_Comm_Dup() in order to prevent any interference with ESMF communications.

[pthreadsEnabledFlag] .TRUE. ESMF has been compiled with Pthreads.

.FALSE. ESMF has not been compiled with Pthreads.

[openMPEnabledFlag] .TRUE. ESMF has been compiled with OpenMP.

.FALSE. ESMF has not been compiled with OpenMP.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

757

45.5.11 ESMF_VMGetGlobal - Get Global VM

INTERFACE:

subroutine ESMF_VMGetGlobal(vm, rc)

ARGUMENTS:

type(ESMF_VM), intent(out) :: vm
integer, intent(out), optional :: rc

DESCRIPTION:

Get the globalESMF_VMobject. This is the VM object that is created duringESMF_Initialize() and is the ulti-
mate parent of all VM objects in an ESMF application. It is identical to the VM object returned byESMF_Initialize(...,
vm=vm, ...) .
TheESMF_VMGetGlobal() call provides access to information about the global execution context via the global
VM. This call is necessary because ESMF does not created a global ESMF Component duringESMF_Initialize()
that could be queried for information about the global execution context of an ESMF application.
Usage ofESMF_VMGetGlobal() from within Component code is strongly discouraged. ESMF Components should
only access their own VM objects through Component methods.Global information, if required by the Component
user code, should be passed down to the Component from the driver through the Component calling interface.

The arguments are:

vm Upon return this holds theESMF_VMobject of the global execution context.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

45.5.12 ESMF_VMGetCurrent - Get Current VM

INTERFACE:

subroutine ESMF_VMGetCurrent(vm, rc)

ARGUMENTS:

type(ESMF_VM), intent(out) :: vm
integer, intent(out), optional :: rc

DESCRIPTION:

Get theESMF_VMobject of the current execution context. CallingESMF_VMGetCurrent() within an ESMF Com-
ponent, will return the same VM object asESMF_GridCompGet(..., vm=vm, ...) orESMF_CplCompGet(...,
vm=vm, ...) .
The main purpose of providingESMF_VMGetCurrent() is to simplify ESMF adoption in legacy code. Specifi-
cally, code that usesMPI_COMM_WORLDdeep within its calling tree can easily be modified to use the correct MPI
communicator of the current ESMF execution context. The advantage is that these modifications are very local, and
do not require wide reaching interface changes in the legacycode to pass down the ESMF component object, or the
MPI communicator.
The use ofESMF_VMGetCurrent() is strongly discouraged in newly written Component code. Instead, the ESMF
Component object should be used as the appropriate container of ESMF context information. This object should be
passed between the subroutines of a Component, and be queried for any Component specific information.
Outside of a Component context, i.e. within the driver context, the call toESMF_VMGetCurrent() is identical to
ESMF_VMGetGlobal() .

The arguments are:

758

vm Upon return this holds theESMF_VMobject of the current execution context.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

45.5.13 ESMF_VMGetPETLocalInfo - Get VM PET local internals

INTERFACE:

subroutine ESMF_VMGetPETLocalInfo(vm, pet, peCount, ssi Id, threadCount, &
threadId, vas, rc)

ARGUMENTS:

type(ESMF_VM), intent(in) :: vm
integer, intent(in) :: pet
integer, intent(out), optional :: peCount
integer, intent(out), optional :: ssiId
integer, intent(out), optional :: threadCount
integer, intent(out), optional :: threadId
integer, intent(out), optional :: vas
integer, intent(out), optional :: rc

DESCRIPTION:

Get internal information about a specific PET within anESMF_VMobject.

The arguments are:

vm QueriedESMF_VMobject.

pet Queried PET id within the specifiedESMF_VMobject.

[peCount] Upon return this holds the number of PEs associated with the specified PET in theESMF_VMobject.

[ssiId] Upon return this holds the id of the single-system image (SSI) the specified PET is running on.

[threadCount] Upon return this holds the number of PETs in the specified PET"s thread group.

[threadId] Upon return this holds the thread id of the specified PET within the PET"s thread group.

[vas] Virtual address space in which this PET operates.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

45.5.14 ESMF_VMPrint - Print VM internals

INTERFACE:

subroutine ESMF_VMPrint(vm, rc)

ARGUMENTS:

type(ESMF_VM), intent(in) :: vm
integer, intent(out), optional :: rc

759

DESCRIPTION:

Print internal information about the specifiedESMF_VMto stdout .

Note: ManyESMF_<class>Print methods are implemented in C++. On some platforms/compilers there is a
potential issue with interleaving Fortran and C++ output tostdout such that it doesn’t appear in the expected order.
If this occurs, theESMF_IOUnitFlush() method may be used on unit 6 to get coherent output.

The arguments are:

vm SpecifiedESMF_VMobject.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

45.5.15 ESMF_VMRecv - Receive data from src PET

INTERFACE:

! Private name; call using ESMF_VMRecv()
subroutine ESMF_VMRecv<type><kind>(vm, recvData, count , src, blockingflag, &

commhandle, rc)

ARGUMENTS:

type(ESMF_VM), intent(in) :: vm
integer(ESMF_KIND_I4), target, intent(out) :: recvData(:)
integer, intent(in) :: count
integer, intent(in) :: src
type(ESMF_BlockingFlag), intent(in), optional :: blocki ngflag
type(ESMF_CommHandle), intent(out), optional :: commhan dle
integer, intent(out), optional :: rc

DESCRIPTION:

Receive contiguous data fromsrc PET within the sameESMF_VMobject.

This method is overloaded for:ESMF_TYPEKIND_I4,ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8,ESMF_TYPEKIND_LOGICAL
ESMF_TYPEKIND_CHARACTER.

The arguments are:

vm ESMF_VMobject.

recvData Contiguous data array for data to be received.

count Number of elements to be received.

src Id of the source PET within theESMF_VMobject.

[blockingflag] Flag indicating whether this call behaves blocking or non-blocking:

ESMF_BLOCKING(default) Block until local operation has completed.
ESMF_NONBLOCKINGReturn immediately without blocking.

[commhandle] If present, a communication handle will be returned in case of a non-blocking request (see argument
blockingflag). Thecommhandle can be used inESMF_VMCommWait()to block the calling PET until
the communication call has finished PET-locally. If nocommhandle was supplied to a non-blocking call the
VM methodESMF_VMCommQueueWait()may be used to block on all currently queued communication
calls of the VM context.

760

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

45.5.16 ESMF_VMReduce - Reduce data from across VM

INTERFACE:

! Private name; call using ESMF_VMReduce()
subroutine ESMF_VMReduce<type><kind>(vm, sendData, rec vData, count, &

reduceflag, root, blockingflag, commhandle, rc)

ARGUMENTS:

type(ESMF_VM), intent(in) :: vm
<type>(ESMF_KIND_<kind>), target, intent(in) :: sendDat a(:)
<type>(ESMF_KIND_<kind>), target, intent(out) :: recvDa ta(:)
integer, intent(in) :: count
type(ESMF_ReduceFlag), intent(in) :: reduceflag
integer, intent(in) :: root
type(ESMF_BlockingFlag), intent(in), optional :: blocki ngflag
type(ESMF_CommHandle), intent(out), optional :: commhan dle
integer, intent(out), optional :: rc

DESCRIPTION:

CollectiveESMF_VMcommunication call that reduces a contiguous data array across theESMF_VMobject into a con-
tiguous data array of the same <type><kind>. The result array is returned on root PET. Different reduction operations
can be specified.

This method is overloaded for:ESMF_TYPEKIND_I4, ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8.

TODO: The current version of this method does not provide an implementation of thenon-blockingfeature. When
calling this method withblockingflag = ESMF_NONBLOCKING error codeESMF_RC_NOT_IMPLwill be re-
turned and an error will be logged.

The arguments are:

vm ESMF_VMobject.

sendData Contiguous data array holding data to be send. All PETs must specify a valid source array.

recvData Single data variable to be received. All PETs must specify a valid result variable.

count Number of elements in sendData and recvData. Must be the sameon all PETs.

reduceflag Reduction operation. See section 9.2.12 for a list of valid reduce operations.

root Id of theroot PET within theESMF_VMobject.

[blockingflag] Flag indicating whether this call behaves blocking or non-blocking:

ESMF_BLOCKING(default) Block until local operation has completed.

ESMF_NONBLOCKINGReturn immediately without blocking.

[commhandle] If present, a communication handle will be returned in case of a non-blocking request (see argument
blockingflag). Thecommhandle can be used inESMF_VMCommWait()to block the calling PET until
the communication call has finished PET-locally. If nocommhandle was supplied to a non-blocking call the
VM methodESMF_VMCommQueueWait()may be used to block on all currently queued communication
calls of the VM context.

761

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

45.5.17 ESMF_VMScatter - Scatter data across VM

INTERFACE:

! Private name; call using ESMF_VMScatter()
subroutine ESMF_VMScatter<type><kind>(vm, sendData, re cvData, count, root, &

blockingflag, commhandle, rc)

ARGUMENTS:

type(ESMF_VM), intent(in) :: vm
<type>(ESMF_KIND_<kind>), target, intent(in) :: sendDat a(:)
<type>(ESMF_KIND_<kind>), target, intent(out) :: recvDa ta(:)
integer, intent(in) :: count
integer, intent(in) :: root
type(ESMF_BlockingFlag), intent(in), optional :: blocki ngflag
type(ESMF_CommHandle), intent(out), optional :: commhan dle
integer, intent(out), optional :: rc

DESCRIPTION:

CollectiveESMF_VMcommunication call that scatters contiguous data from theroot PET to all PETs across the
ESMF_VMobject (includingroot).

This method is overloaded for:ESMF_TYPEKIND_I4,ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8,ESMF_TYPEKIND_LOGICAL

The arguments are:

vm ESMF_VMobject.

sendData Contiguous data array holding data to be send. Only thesendData array specified by theroot PET will
be used by this method.

recvData Contiguous data array for data to be received. All PETs must specify a valid destination array.

count Number of elements to be send fromroot to each of the PETs. Must be the same on all PETs.

root Id of theroot PET within theESMF_VMobject.

[blockingflag] Flag indicating whether this call behaves blocking or non-blocking:

ESMF_BLOCKING(default) Block until local operation has completed.

ESMF_NONBLOCKINGReturn immediately without blocking.

[commhandle] If present, a communication handle will be returned in case of a non-blocking request (see argument
blockingflag). Thecommhandle can be used inESMF_VMCommWait()to block the calling PET until
the communication call has finished PET-locally. If nocommhandle was supplied to a non-blocking call the
VM methodESMF_VMCommQueueWait()may be used to block on all currently queued communication
calls of the VM context.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

762

45.5.18 ESMF_VMScatterV - ScatterV across VM

INTERFACE:

! Private name; call using ESMF_VMScatterV()
subroutine ESMF_VMScatterV<type><kind>(vm, sendData, s endCounts, sendOffsets, &

recvData, recvCount, root, rc)

ARGUMENTS:

type(ESMF_VM), intent(in) :: vm
<type>(ESMF_KIND_<kind>), target, intent(in) :: sendDat a(:)
integer, intent(in) :: sendCounts(:)
integer, intent(in) :: sendOffsets(:)
<type>(ESMF_KIND_<kind>), target, intent(out) :: recvDa ta(:)
integer, intent(in) :: recvCount
integer, intent(in) :: root
integer, intent(out), optional :: rc

DESCRIPTION:

CollectiveESMF_VMcommunication call that scatters contiguous data from theroot PET to all PETs across the
ESMF_VMobject (includingroot).

This method is overloaded for:ESMF_TYPEKIND_I4, ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8.

The arguments are:

vm ESMF_VMobject.

sendData Contiguous data array holding data to be send. Only thesendData array specified by theroot PET will
be used by this method.

sendCounts Number ofsendData elements to be send to corresponding receive PET.

sendOffsetsOffsets in units of elements insendData marking the start of element sequence to be send to receive
PET.

recvData Single data variable to be received. All PETs must specify a valid result variable.

recvCount Number ofrecvData elements to receive by local PET from root PET.

root Id of theroot PET within theESMF_VMobject.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

45.5.19 ESMF_VMSend - Send data to dst PET

INTERFACE:

! Private name; call using ESMF_VMSend()
subroutine ESMF_VMSend<type><kind>(vm, sendData, count , dst, blockingflag, &

commhandle, rc)

ARGUMENTS:

763

type(ESMF_VM), intent(in) :: vm
<type>(ESMF_KIND_<kind>), target, intent(in) :: sendDat a(:)
integer, intent(in) :: count
integer, intent(in) :: dst
type(ESMF_BlockingFlag), intent(in), optional :: blocki ngflag
type(ESMF_CommHandle), intent(out), optional :: commhan dle
integer, intent(out), optional :: rc

DESCRIPTION:

Send contiguous data todst PET within the sameESMF_VMobject.

The arguments are:

vm ESMF_VMobject.

sendData Contiguous data array holding data to be send.

count Number of elements to be send.

dst Id of the destination PET within theESMF_VMobject.

[blockingflag] Flag indicating whether this call behaves blocking or non-blocking:

ESMF_BLOCKING(default) Block until local operation has completed.

ESMF_NONBLOCKINGReturn immediately without blocking.

[commhandle] If present, a communication handle will be returned in case of a non-blocking request (see argument
blockingflag). Thecommhandle can be used inESMF_VMCommWait()to block the calling PET until
the communication call has finished PET-locally. If nocommhandle was supplied to a non-blocking call the
VM methodESMF_VMCommQueueWait()may be used to block on all currently queued communication
calls of the VM context.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

45.5.20 ESMF_VMSendRecv - Send and Recv data to and from PETs

INTERFACE:

! Private name; call using ESMF_VMSendRecv()
subroutine ESMF_VMSendRecv<type><kind>(vm, sendData, s endCount, dst, &

recvData, recvCount, src, blockingflag, commhandle, rc)

ARGUMENTS:

type(ESMF_VM), intent(in) :: vm
<type>(ESMF_KIND_<kind>), target, intent(in) :: sendDat a(:)
integer, intent(in) :: sendCount
integer, intent(in) :: dst
<type>(ESMF_KIND_<kind>), target, intent(out) :: recvDa ta(:)
integer, intent(in) :: recvCount
integer, intent(in) :: src
type(ESMF_BlockingFlag), intent(in), optional :: blocki ngflag
type(ESMF_CommHandle), intent(out), optional :: commhan dle
integer, intent(out), optional :: rc

764

DESCRIPTION:

Send contiguous data todst PET within the sameESMF_VMobject while receiving contiguous data fromsrc PET
within the sameESMF_VMobject. ThesendData andrecvData arrays must be disjoint!

This method is overloaded for:ESMF_TYPEKIND_I4,ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8,ESMF_TYPEKIND_LOGICAL
ESMF_TYPEKIND_CHARACTER.

The arguments are:

vm ESMF_VMobject.

sendData Contiguous data array holding data to be send.

sendCount Number of elements to be send.

dst Id of the destination PET within theESMF_VMobject.

recvData Contiguous data array for data to be received.

recvCount Number of elements to be received.

src Id of the source PET within theESMF_VMobject.

[blockingflag] Flag indicating whether this call behaves blocking or non-blocking:

ESMF_BLOCKING(default) Block until local operation has completed.

ESMF_NONBLOCKINGReturn immediately without blocking.

[commhandle] If present, a communication handle will be returned in case of a non-blocking request (see argument
blockingflag). Thecommhandle can be used inESMF_VMCommWait()to block the calling PET until
the communication call has finished PET-locally. If nocommhandle was supplied to a non-blocking call the
VM methodESMF_VMCommQueueWait()may be used to block on all currently queued communication
calls of the VM context.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

45.5.21 ESMF_VMValidate - Validate VM internals

INTERFACE:

subroutine ESMF_VMValidate(vm, rc)

ARGUMENTS:

type(ESMF_VM), intent(in) :: vm
integer, intent(out), optional :: rc

DESCRIPTION:

Validates that thevm is internally consistent. The method returns an error code if problems are found.
The arguments are:

vm SpecifiedESMF_VMobject.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

765

45.5.22 ESMF_VMCommWait - Wait for non-blocking VM communication to complete

INTERFACE:

subroutine ESMF_VMCommWait(vm, commhandle, rc)

ARGUMENTS:

type(ESMF_VM), intent(in) :: vm
type(ESMF_CommHandle), intent(in) :: commhandle
integer, intent(out), optional :: rc

DESCRIPTION:

Wait for non-blocking VM communication specified by thecommhandle to complete.

The arguments are:

vm ESMF_VMobject.

commhandle Handle specifying a previously issued non-blocking communication request.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

45.5.23 ESMF_VMCommQueueWait - Wait for all non-blocking VM comms to complete

INTERFACE:

subroutine ESMF_VMCommQueueWait(vm, rc)

ARGUMENTS:

type(ESMF_VM), intent(in) :: vm
integer, intent(out), optional :: rc

DESCRIPTION:

Wait for all pending non-blocking VM communication within the specifiedVM context to complete.

The arguments are:

vm ESMF_VMobject.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

45.5.24 ESMF_VMWtime - Get floating-point number of seconds

INTERFACE:

subroutine ESMF_VMWtime(time, rc)

ARGUMENTS:

766

real(ESMF_KIND_R8), intent(out) :: time
integer, intent(out), optional :: rc

DESCRIPTION:

Get floating-point number of seconds of elapsed wall-clock time since some time in the past.

The arguments are:

time Time in seconds.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

45.5.25 ESMF_VMWtimeDelay - Delay execution

INTERFACE:

subroutine ESMF_VMWtimeDelay(delay, rc)

ARGUMENTS:

real(ESMF_KIND_R8), intent(in) :: delay
integer, intent(out), optional :: rc

DESCRIPTION:

Delay execution for amount of seconds.

The arguments are:

delay Delay time in seconds.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

45.5.26 ESMF_VMWtimePrec - Timer precision as floating-point number of seconds

INTERFACE:

subroutine ESMF_VMWtimePrec(prec, rc)

ARGUMENTS:

real(ESMF_KIND_R8), intent(out) :: prec
integer, intent(out), optional :: rc

DESCRIPTION:

Get a run-time estimate of the timer precision as floating-point number of seconds. This is a relatively expensive call
since the timer precision is measured several times before the maximum is returned as the estimate. The returned value
is PET-specific and may differ across the VM context.

The arguments are:

prec Timer precision in seconds.

[rc] Return code; equalsESMF_SUCCESSif there are no errors.

767

46 Fortran I/O Utilities

46.1 Description

The ESMF Fortran I/O utilities provide portable methods to access capabilities which are often implemented in differ-
ent ways amongst different environments. Currently, two utility methods are implemented:ESMF_IOUnitGet() , to
find an unopened unit number within the range of unit numbers that ESMF is allowed to use, andESMF_IOUnitFlush()
to flush the I/O buffer associated with a specific Fortran unit.

46.2 Use and Examples

46.2.1 Fortran unit number management

The ESMF_IOUnitGet() method is provided so that applications using ESMF can remain free of unit number
conflicts — both when combined with other third party code, orwith ESMF itself. This call is typically used just prior
to anOPENstatement:

call ESMF_IOUnitGet (unit=grid_unit, rc=rc)
open (unit=grid_unit, file=’grid_data.dat’, status=’ol d’, action=’read’)

By default, unit numbers between 50 and 99 are scanned to find an unopened unit number.
Internally, ESMF also usesESMF_IOUnitGet() when it needs to open Fortran unit numbers for file I/O. By using
the same API for both user and ESMF code, unit number collisions can be avoided.
When integrating ESMF into an application where there are conflicts with other uses of the same unit number range,
such as when hard-coded unit number values are used, an alternative unit number range can be specified. The
ESMF_Initialize() optional argumentsIOUnitLower andIOUnitUpper may be set as needed. Note that
IOUnitUpper must be set to a value higher thanIOUnitLower , and that both must be non-negative. Otherwise
ESMF_Initialize will return a return code ofESMF_FAILURE. ESMF itself does not typically need more than
about five units for internal use.

call ESMF_Initialize (..., IOUnitLower=120, IOUnitUpper =140)

All current Fortran environments have preconnected unit numbers, such as units 5 and 6 for standard input and output,
in the single digit range. So it is recommended that the unit number range is chosen to begin at unit 10 or higher to
avoid these preconnected units.

46.2.2 Flushing output

Fortran run-time libraries generally use buffering techniques to improve I/O performance. However output buffering
can be problematic when output is needed, but is “trapped” inthe buffer because it is not full. This is a common
occurance when debugging a program, and insertingWRITEstatements to track down the bad area of code. If the
program crashes before the output buffer has been flushed, the desired debugging output may never be seen — giving
a misleading indication of where the problem occurred. It would be desirable to ensure that the output buffer is flushed
at predictable points in the program in order to get the needed results. Likewise, in parallel code, predictable flushing
of output buffers is a common requirement, often in conjunction with ESMF_VMBarrier() calls.
TheESMF_IOUnitFlush() API is provided to flush a unit as desired. Here is an example ofcode which prints
debug values, and serializes the output to a terminal in PET order:

type(ESMF_VM) :: vm

integer :: tty_unit
integer :: me, npets

call ESMF_Initialize (vm=vm, rc=rc)
call ESMF_VMGet (vm, localPet=me, petCount=npes)

call ESMF_IOUnitGet (unit=tty_unit)

768

open (unit=tty_unit, file=’/dev/tty’, status=’old’, act ion=’write’)
...
call ESMF_VMBarrier (vm=vm)
do, i=0, npets-1

if (i == me) then
write (tty_unit, *) ’PET: ’, i, ’, values are: ’, a, b, c
call ESMF_IOUnitFlush (unit=tty_unit)

end if
call ESMF_VMBarrier (vm=vm)

end do

46.3 Design and Implementation Notes

46.3.1 Fortran unit number management

When ESMF needs to open a Fortran I/O unit, it callsESMF_IOUnitGet() to find an unopened unit number. As de-
livered, the range of unit numbers that are searched are betweenESMF_LOG_FORTRAN_UNIT_NUMBER(normally
set to 50), andESMF_LOG_UPPER(normally set to 99.) Unopened unit numbers are found by using the Fortran
INQUIRE statement.
When integrating ESMF into an application where there are conflicts with other uses of the same unit number
range, an alternative range can be specified in theESMF_Initialize() call by setting theIOUnitLower and
IOUnitUpper arguments as needed.ESMF_IOUnitGet() will then search the alternate range of unit numbers.
Note thatIOUnitUpper must be set to a value higher thanIOUnitLower , and that both must be non-negative.
OtherwiseESMF_Initialize will return a return code ofESMF_FAILURE.
Fortran unit numbers are not standardized in the Fortran 90 Standard. The standard only requires that they be non-
negative integers. But other than that, it is up to the compiler writers and application developers to provide and use
units which work with the particular implementation. For example, units 5 and 6 are a defacto standard for “standard
input” and “standard output” — even though this is not specified in the actual Fortran standard. The Fortran standard
also does not specifiy which unit numbers can be used, nor doesit specify how many can be open simultaneously.
Since all current compilers have preconnected unit numbers, and these are typically found on units lower than 10, it is
recommended that applications use unit numbers 10 and higher.

46.3.2 Flushing output

When ESMF needs to flush a Fortran unit, theESMF_IOUnitFlush() API is used to centralize the file flushing
capability, because Fortran has not historically had a standard mechanism for flushing output buffers. Most compilers
run-time libraries support various library extensions to provide this functionality — though, being non-standard, the
spelling and number of arguments vary between implementations. Fortran 2003 also provides for aFLUSHstatement
which is built into the language. When possible,ESMF_IOUnitFlush() uses the F2003FLUSHstatement. With
older compilers, the appropriate library call is made.

46.4 Utility API

46.4.1 ESMF_IOUnitFlush - flush output on a unit number

INTERFACE:

subroutine ESMF_IOUnitFlush (unit, rc)

PARAMETERS:

integer, intent(in) :: unit
integer, intent(out), optional :: rc

769

DESCRIPTION:

Call the system-dependent routine to force output on a specific Fortran unit number.
The arguments are:

[unit] A Fortran I/O unit number.

[rc] Return code; Returns eitherESMF_SUCCESSor ESMF_FAILURE

46.4.2 ESMF_IOUnitGet - Scan for a free I/O unit number

INTERFACE:

subroutine ESMF_IOUnitGet (unit, rc)

ARGUMENTS:

integer, intent(out) :: unit
integer, intent(out), optional :: rc

DESCRIPTION:

Scan for, and return, a free Fortran I/O unit number.
The arguments are:

[unit] A Fortran I/O unit number.

[rc] Return code; Returns eitherESMF_SUCCESSor ESMF_FAILURE.

By default, the range of unit numbers returned is between 50 and 99 (parametersESMF_LOG_FORTRAN_UNIT_NUMBER
andESMF_LOG_UPPERrespectively.) When integrating ESMF into an application where these values conflict with
other usages, the range of values may be moved by setting the optional IOUnitLower andIOUnitUpper argu-
ments in the initialESMF_Initialize() call with values in a safe, alternate, range.
The Fortran unit number which is returned is not reserved in any way. Successive calls without interveningOPENor
CLOSEstatements (or other means of connecting to units), might not return a unique unit number. It is recommended
that anOPENstatement immediately follow the call toESMF_IOUnitGet() to activate the unit.

770

Part VI

References

References

[1] A Julian Day and Civil Date Calculator. http://www.numerical-recipes.com/julian.html.

[2] Some notes on the ISO8601 date and time specification standard. http://en.wikipedia.org/wiki/ISO_8601
http://www.iso.ch/iso/en/prods-services/popstds/datesandtime.html.

[3] Khoei S.A. Gharehbaghi A, R. The superconvergent patch recovery technique and data transfer operators in 3d
plasticity problems.Finite Elements in Analysis and Design, 43(8), 2007.

[4] Extensible Markup Language (XML). The World Wide Web Consortium (W3C). http://www.w3.org/XML/.

[5] Fliegel, H.F. and Van Flandern, T.C. A Machine Algorithmfor Processing Calendar Dates.Communications of
the ACM, 11(10):657, 1968.

[6] David Goldberg. What every computer scientist should know about floating-point arithmetic.ACM Computing
Surveys, 23(1), 1991.

[7] K.C. Hung H. Gu, Z. Zong. A modified superconvergent patchrecovery method and its application to large
deformation problems.Finite Elements in Analysis and Design, 40(5-6), 2004.

[8] Hatcher, D.A. Simple Formulae for Julian Day Numbers andCalendar Dates.Q.JlR. astr. Soc., 25(1):53–55,
1984.

[9] International Organization for Standardization. Standard 8601:2004, Data elements and
interchange formats – Information interchange – Representation of dates and times.
http://www.iso.ch/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=40874&COMMID=&scopelist=.

[10] Jones, P.W. SCRIP: A Spherical Coordinate Remapping and Interpolation Package.
http://www.acl.lanl.gov/climate/software/SCRIP/. LosAlamos National Laboratory Software Release
LACC 98-45.

[11] William Kahan. Documents relating to IEEE standard 754 for binary floating-point arithmetic. University of
California, Berkeley. http://HTTP.CS.Berkeley.EDU/ wkahan/ieee754status/.

[12] Meyer, Peter. A good discussion of Gregorian and JulianCalendars.
http://www.hermetic.ch/cal_stud/cal_art.html.

[13] Meyer, Peter. A good discussion of Julian Day Numbers. http://www.hermetic.ch/cal_stud/jdn.htm.

[14] NetCDF Climate and Forecast (CF) Metadata Conventions, Version 1.0-beta3, August 2001.
http://www.cgd.ucar.edu/cms/eaton/netcdf/CF-current.htm.

[15] NetCDF User’s Guide for C, Version 3. Unidata Program Center, Boulder, Colorado, June 1997.
http://www.unidata.ucar.edu/packages/netcdf/guidec/.

[16] D. Ramshaw. Conservative rezoning algorithm for generalized two-dimensional meshes.Journal of Computa-
tional Physics, 59, 1985.

[17] Rumbaugh, J., I. Jacobson, and G. Booch.The Unified Modeling Language Reference Manual. Addison-Wesley,
1999.

[18] Seidelman, P.K.Explanatory Supplement to the Astronomical Almanac. University Science Books, 1992.

771

[19] Isaac Held Michael Winton Jeff Durachta Sergey Malyshev V. Balaji, Jeff Anderson and Ronald J. Stouffer. The
exchange grid: a mechanism for data exchange between earth system components on independent grids.Parallel
Computational Fluid Dynamics: Theory and Applications, Proceedings of the 2005 International Conference on
Parallel Computational Fluid Dynamics, 2006.

[20] Winkler, Gernot M.R. A good discussion of the Modified Julian Day Calendar.
http://tycho.usno.navy.mil/mjd.html.

772

Part VII

Appendices

47 Appendix A: A Brief Introduction to UML

The schematic below shows the Unified Modeling Language (UML) notation for the class diagrams presented in this
Reference Manual. For more on UML, see references such asThe Unified Modeling Language Reference Manual,
Rumbaugh et al, [17].

ClassB

ClassA
Public class. This is a class whose methods can be called by the user. In Fortran

a public class is usually associated with a derived type and a corresponding
module that contains class methods and flags.

Private class. This type of class does not have methods that should be called by

the user. Like a public class it is usually associated with a derived type and a
corresponding module.

A line indicates some sort of association among classes.

A hollow diamond at one end of a line drawn between classes represents an

association called aggregation. Aggregation is a part-whole relationship that can

be read as “the class at the end of the line without the diamond is part of the class
at the end of the line with the diamond.” The class that is the “part” can be

created and destroyed separately, and it is usually implemented as a reference
contained with the structure of the class that is the “whole.”

A filled diamond at one end of a line drawn between classes represents an
association called composition. Composition is a part-whole relationship that is

similar to aggregation, but stronger. It implies that that class that is the “part” is
created and destroyed by the class that is the “whole.” It is often implemented as

a structure within part of the contiguous memory of a larger structure.

Multiplicity indicators at association line ends show how many classes on the one

end are associated with how many classes on the other end.

Field

0..1

0..n

This simple diagram shows that a public class called Field is associated with

another public class, called Grid. The aggregation relationship indicated by the
unfilled diamond means that a Field contains a Grid, but that a Grid can be

created and destroyed outside of a Field. The diagram multiplicities show that a
Field can be associated with no Grid or with one Grid, but that a single Grid can

be associated with any number of Fields.

1 1..n

Grid

Comp

GridComp

The triangle indicates an inheritance relationship. Inheritance means that a child

class shares a set of characteristics (such as the same attributes or methods) with a
parent class. The child can specialize and extend the behavior of the parent. This

diagram shows a GridComp class that inherits from a more general Comp class.

773

48 Appendix B: ESMF Error Return Codes

The tables below show the possible error return codes for Fortran and C++ methods.

=== ==
Success/Failure Return codes for both Fortran and C++
=== ==

ESMF_SUCCESS 0
ESMF_FAILURE -1

=====================================
Fortran Symmetric Return Codes 1-500
=====================================

ESMF_RC_OBJ_BAD 1
ESMF_RC_OBJ_INIT 2
ESMF_RC_OBJ_CREATE 3
ESMF_RC_OBJ_COR 4
ESMF_RC_OBJ_WRONG 5
ESMF_RC_ARG_BAD 6
ESMF_RC_ARG_RANK 7
ESMF_RC_ARG_SIZE 8
ESMF_RC_ARG_VALUE 9
ESMF_RC_ARG_DUP 10
ESMF_RC_ARG_SAMETYPE 11
ESMF_RC_ARG_SAMECOMM 12
ESMF_RC_ARG_INCOMP 13
ESMF_RC_ARG_CORRUPT 14
ESMF_RC_ARG_WRONG 15
ESMF_RC_ARG_OUTOFRANGE 16
ESMF_RC_ARG_OPT 17
ESMF_RC_NOT_IMPL 18
ESMF_RC_FILE_OPEN 19
ESMF_RC_FILE_CREATE 20
ESMF_RC_FILE_READ 21
ESMF_RC_FILE_WRITE 22
ESMF_RC_FILE_UNEXPECTED 23
ESMF_RC_FILE_CLOSE 24
ESMF_RC_FILE_ACTIVE 25
ESMF_RC_PTR_NULL 26
ESMF_RC_PTR_BAD 27
ESMF_RC_PTR_NOTALLOC 28
ESMF_RC_PTR_ISALLOC 29
ESMF_RC_MEM 30
ESMF_RC_MEM_ALLOCATE 31
ESMF_RC_MEM_DEALLOCATE 32
ESMF_RC_MEMC 33
ESMF_RC_DUP_NAME 34
ESMF_RC_LONG_NAME 35
ESMF_RC_LONG_STR 36
ESMF_RC_COPY_FAIL 37
ESMF_RC_DIV_ZERO 38
ESMF_RC_CANNOT_GET 39
ESMF_RC_CANNOT_SET 40
ESMF_RC_NOT_FOUND 41

774

ESMF_RC_NOT_VALID 42
ESMF_RC_INTNRL_LIST 43
ESMF_RC_INTNRL_INCONS 44
ESMF_RC_INTNRL_BAD 45
ESMF_RC_SYS 46
ESMF_RC_BUSY 47
ESMF_RC_LIB 48
ESMF_RC_LIB_NOT_PRESENT 49
ESMF_RC_ATTR_UNUSED 50
ESMF_RC_OBJ_NOT_CREATED 51
ESMF_RC_OBJ_DELETED 52
ESMF_RC_NOT_SET 53
ESMF_RC_VAL_WRONG 54
ESMF_RC_VAL_ERRBOUND 55
ESMF_RC_VAL_OUTOFRANGE 56
ESMF_RC_ATTR_NOTSET 57
ESMF_RC_ATTR_WRONGTYPE 58
ESMF_RC_ATTR_ITEMSOFF 59
ESMF_RC_ATTR_LINK 60
ESMF_RC_BUFFER_SHORT 61

62-499 reserved for future Fortran symmetric return code de finitions

=====================================
C++ Symmetric Return Codes 501-999
=====================================

ESMC_RC_OBJ_BAD 501
ESMC_RC_OBJ_INIT 502
ESMC_RC_OBJ_CREATE 503
ESMC_RC_OBJ_COR 504
ESMC_RC_OBJ_WRONG 505
ESMC_RC_ARG_BAD 506
ESMC_RC_ARG_RANK 507
ESMC_RC_ARG_SIZE 508
ESMC_RC_ARG_VALUE 509
ESMC_RC_ARG_DUP 510
ESMC_RC_ARG_SAMETYPE 511
ESMC_RC_ARG_SAMECOMM 512
ESMC_RC_ARG_INCOMP 513
ESMC_RC_ARG_CORRUPT 514
ESMC_RC_ARG_WRONG 515
ESMC_RC_ARG_OUTOFRANGE 516
ESMC_RC_ARG_OPT 517
ESMC_RC_NOT_IMPL 518
ESMC_RC_FILE_OPEN 519
ESMC_RC_FILE_CREATE 520
ESMC_RC_FILE_READ 521
ESMC_RC_FILE_WRITE 522
ESMC_RC_FILE_UNEXPECTED 523
ESMC_RC_FILE_CLOSE 524
ESMC_RC_FILE_ACTIVE 525
ESMC_RC_PTR_NULL 526
ESMC_RC_PTR_BAD 527
ESMC_RC_PTR_NOTALLOC 528

775

ESMC_RC_PTR_ISALLOC 529
ESMC_RC_MEM 530
ESMC_RC_MEM_ALLOCATE 531
ESMC_RC_MEM_DEALLOCATE 532
ESMC_RC_MEMC 533
ESMC_RC_DUP_NAME 534
ESMC_RC_LONG_NAME 535
ESMC_RC_LONG_STR 536
ESMC_RC_COPY_FAIL 537
ESMC_RC_DIV_ZERO 538
ESMC_RC_CANNOT_GET 539
ESMC_RC_CANNOT_SET 540
ESMC_RC_NOT_FOUND 541
ESMC_RC_NOT_VALID 542
ESMC_RC_INTNRL_LIST 543
ESMC_RC_INTNRL_INCONS 544
ESMC_RC_INTNRL_BAD 545
ESMC_RC_SYS 546
ESMC_RC_BUSY 547
ESMC_RC_LIB 548
ESMC_RC_LIB_NOT_PRESENT 549
ESMC_RC_ATTR_UNUSED 550
ESMC_RC_OBJ_NOT_CREATED 551
ESMC_RC_OBJ_DELETED 552
ESMC_RC_NOT_SET 553
ESMC_RC_VAL_WRONG 554
ESMC_RC_VAL_ERRBOUND 555
ESMC_RC_VAL_OUTOFRANGE 556
ESMC_RC_ATTR_NOTSET 557
ESMC_RC_ATTR_WRONGTYPE 558
ESMC_RC_ATTR_ITEMSOFF 559
ESMC_RC_ATTR_LINK 560
ESMC_RC_BUFFER_SHORT 561

562-999 reserved for future C++ symmetric return code defin itions

=====================================
C++ Non-symmetric Return Codes 1000
=====================================

ESMC_RC_OPTARG_BAD 1000

776

	I ESMF Overview
	What is the Earth System Modeling Framework?
	The ESMF Reference Manual for Fortran
	How to Contact User Support and Find Additional Information
	How to Submit Comments, Bug Reports, and Feature Requests
	Conventions
	Typeface and Diagram Conventions
	Method Name and Argument Conventions

	The ESMF Application Programming Interface
	Standard Methods and Interface Rules
	Deep and Shallow Classes
	Special Methods
	The ESMF Data Hierarchy
	ESMF Spatial Classes
	ESMF Maps
	ESMF Specification Classes
	ESMF Utility Classes

	Overall Rules and Behavior
	Local and Global Views and Associated Conventions
	Allocation Rules
	Equality and Copying Objects
	Attributes

	Integrating ESMF into Applications
	Using the ESMF Superstructure

	Global Options, Flags and Parameters
	Options
	ESMF_Method

	Flags
	ESMF_AllocFlag
	ESMF_BlockingFlag
	ESMF_CommFlag
	ESMF_ContextFlag
	ESMF_CopyFlag
	ESMF_DefaultFlag
	ESMF_DecompFlag
	ESMF_IOFmtFlag
	ESMF_IndexFlag
	ESMF_NeededFlag
	ESMF_ReadyFlag
	ESMF_ReduceFlag
	ESMF_HaloStartRegionFlag
	ESMF_RegionFlag
	ESMF_ReqForRestartFlag
	ESMF_Status
	ESMF_ValidFlag

	Parameters
	ESMF_TypeKind
	Fortran Kinds
	ESMF Version
	ESMF_GeomType

	Overall Design and Implementation Notes

	II Applications
	ESMF_Info
	Description

	ESMF_RegridWeightGen
	Description
	Usage

	III Superstructure
	Overview of Superstructure
	Superstructure Classes
	Hierarchical Creation of Components
	Sequential and Concurrent Execution of Components
	Intra-Component Communication
	Data Distribution and Scoping in Components
	Performance
	Object Model

	Application Driver and Required ESMF Methods
	Description
	Application Driver and Required ESMF Methods Options
	ESMF_TerminationFlag

	Use and Examples
	Required ESMF Methods
	ESMF_Initialize
	ESMF_Finalize
	User-code SetServices method
	User-code Initialize, Run, and Finalize methods
	User-code SetVM method

	GridComp Class
	Description
	GridComp Options
	ESMF_GridCompType

	Use and Examples
	Implement a user-code SetServices routine
	Implement a user-code Initialize routine
	Implement a user-code Run routine
	Implement a user-code Finalize routine
	Implement a user-code SetVM routine
	Set and Get the Internal State

	Restrictions and Future Work
	Class API
	ESMF_GridCompCreate
	ESMF_GridCompDestroy
	ESMF_GridCompFinalize
	ESMF_GridCompGet
	ESMF_GridCompGetInternalState
	ESMF_GridCompInitialize
	ESMF_GridCompIsPetLocal
	ESMF_GridCompPrint
	ESMF_GridCompReadRestart
	ESMF_GridCompRun
	ESMF_GridCompSet
	ESMF_GridCompSetEntryPoint
	ESMF_GridCompSetInternalState
	ESMF_GridCompSetServices
	ESMF_GridCompSetServices
	ESMF_GridCompSetVM
	ESMF_GridCompSetVM
	ESMF_GridCompSetVMMaxPEs
	ESMF_GridCompSetVMMaxThreads
	ESMF_GridCompSetVMMinThreads
	ESMF_GridCompValidate
	ESMF_GridCompWait
	ESMF_GridCompWriteRestart

	CplComp Class
	Description
	Use and Examples
	Implement a user-code SetServices routine
	Implement a user-code Initialize routine
	Implement a user-code Run routine
	Implement a user-code Finalize routine
	Implement a user-code SetVM routine

	Restrictions and Future Work
	Class API
	ESMF_CplCompCreate
	ESMF_CplCompDestroy
	ESMF_CplCompFinalize
	ESMF_CplCompGet
	ESMF_CplCompGetInternalState
	ESMF_CplCompInitialize
	ESMF_CplCompIsPetLocal
	ESMF_CplCompPrint
	ESMF_CplCompReadRestart
	ESMF_CplCompRun
	ESMF_CplCompSet
	ESMF_CplCompSetEntryPoint
	ESMF_CplCompSetInternalState
	ESMF_CplCompSetServices
	ESMF_CplCompSetServices
	ESMF_CplCompSetVM
	ESMF_CplCompSetVM
	ESMF_CplCompSetVMMaxPEs
	ESMF_CplCompSetVMMaxThreads
	ESMF_CplCompSetVMMinThreads
	ESMF_CplCompValidate
	ESMF_CplCompWait
	ESMF_CplCompWriteRestart

	State Class
	Description
	State Options
	ESMF_StateItemType
	ESMF_StateType

	Use and Examples
	State create and destroy
	Add items to a State
	Add placeholders to a State
	Mark an item NEEDED
	Create a NEEDED item
	ESMF_StateReconcile() usage
	Read Arrays from a netCDF file and add to a State
	Print Array data from a State
	Write Array data within a State to a netCDF file

	Restrictions and Future Work
	Design and Implementation Notes
	Object Model
	Class API
	ESMF_StateAdd
	ESMF_StateAdd
	ESMF_StateCreate
	ESMF_StateDestroy
	ESMF_StateGet
	ESMF_StateGet
	ESMF_StateGet
	ESMF_StateGetNeeded
	ESMF_StateIsNeeded
	ESMF_StatePrint
	ESMF_StateRead
	ESMF_StateWrite
	ESMF_StateReconcile
	ESMF_StateSetNeeded
	ESMF_StateValidate

	IV Infrastructure: Fields and Grids
	Overview of Infrastructure Data Handling
	Infrastructure Data Classes
	Design and Implementation Notes

	FieldBundle Class
	Description
	FieldBundle Options
	ESMF_PackFlag

	Use and Examples
	Create a FieldBundle
	Access FieldBundle data
	Destroy a FieldBundle
	Redistribute data from a source FieldBundle to a destination FieldBundle
	Perform sparse matrix multiplication from a source FieldBundle to a destination FieldBundle
	Perform FieldBundle halo update

	Restrictions and Future Work
	Design and Implementation Notes
	Class API: Basic FieldBundle Methods
	ESMF_FieldBundleAdd
	ESMF_FieldBundleAdd
	ESMF_FieldBundleCreate
	ESMF_FieldBundleCreate
	ESMF_FieldBundleCreate
	ESMF_FieldBundleCreate
	ESMF_FieldBundleCreate
	ESMF_FieldBundleDestroy
	ESMF_FieldBundleGet
	ESMF_FieldBundleGet
	ESMF_FieldBundleGet
	ESMF_FieldBundleGet
	ESMF_FieldBundlePrint
	ESMF_FieldBundleRead
	ESMF_FieldBundleSet
	ESMF_FieldBundleSet
	ESMF_FieldBundleSet
	ESMF_FieldBundleValidate
	ESMF_FieldBundleWrite

	Class API: FieldBundle Communications
	ESMF_FieldBundleHalo
	ESMF_FieldBundleHaloRelease
	ESMF_FieldBundleHaloStore
	ESMF_FieldBundleRedist
	ESMF_FieldBundleRedistRelease
	ESMF_FieldBundleRedistStore
	ESMF_FieldBundleRedistStore
	ESMF_FieldBundleRegrid
	ESMF_FieldBundleRegridRelease
	ESMF_FieldBundleRegridStore
	ESMF_FieldBundleSMM
	ESMF_FieldBundleSMMRelease
	ESMF_FieldBundleSMMStore
	ESMF_FieldBundleSMMStore

	Field Class
	Description
	Field Options
	ESMF_RegridMethod
	ESMF_RegridPole

	Use and Examples
	Field create and destroy
	Get Fortran data pointer, bounds, and counts information from a Field
	Get Grid, Array, and other information from a Field
	Create a Field with a Grid, typekind, and rank
	Create a Field with a Grid and Arrayspec
	Create a Field with a Grid and Array
	Create an empty Field and finish it with FieldSetCommit
	Create a 7D Field with a 5D Grid and 2D ungridded bounds from a Fortran data array
	Create a 2D Field with a 2D Grid and a Fortran data array
	Create a 2D Field with a 2D Grid and a Fortran data pointer
	Create a 3D Field with a 2D Grid and a 3D Fortran data array
	Create a 3D Field with a 2D Grid and a 3D Fortran data array with the gridToFieldMap argument
	Create a 3D Field with a 2D Grid and a 3D Fortran data array with halos
	Create a Field from a LocStream, typekind, and rank
	Create a Field from a LocStream and arrayspec
	Create a Field from a Mesh, typekind, and rank
	Create a Field from a Mesh and arrayspec
	Create a Field from a Mesh and an Array
	Create a Field from a Mesh and an ArraySpec with optional features
	Create a Field with replicated dimensions
	Create a Field on an arbitrarily distributed Grid
	Create a Field on an arbitrarily distributed Grid with replicated dimensions and ungridded bounds
	Field regridding
	Precompute a regridding operation between two Fields
	Apply a regridding operation between a pair of Fields
	Release the stored information for a regridding operation
	Precompute a regridding operation using masks
	Regrid troubleshooting guide
	Field Regrid Example: Mesh to Mesh
	Gather Field data onto root PET
	Scatter Field data from root PET onto its set of joint PETs
	Redistribute data from source Field to destination Field
	Field redistribution as a form of scattering on arbitrarily distributed structures
	Sparse matrix multiplication from source Field to destination Field
	Field Halo solving a domain decomposed heat transfer problem

	Restrictions and Future Work
	Design and Implementation Notes
	Class API
	ESMF_FieldCreateEmpty
	ESMF_FieldDestroy
	ESMF_FieldCreate
	ESMF_FieldCreate
	ESMF_FieldCreate
	ESMF_FieldCreate
	ESMF_FieldCreate
	ESMF_FieldCreate
	ESMF_FieldCreate
	ESMF_FieldCreate
	ESMF_FieldCreate
	ESMF_FieldCreate
	ESMF_FieldCreate
	ESMF_FieldCreate
	ESMF_FieldCreate
	ESMF_FieldCreate
	ESMF_FieldCreate
	ESMF_FieldCreate
	ESMF_FieldCreate
	ESMF_FieldCreate
	ESMF_FieldCreate
	ESMF_FieldCreate
	ESMF_FieldGet
	ESMF_FieldGet
	ESMF_FieldGetBounds
	ESMF_FieldGet
	ESMF_FieldGet
	ESMF_FieldGet
	ESMF_FieldGet
	ESMF_FieldPrint
	ESMF_FieldRead
	ESMF_FieldSetCommit
	ESMF_FieldSetCommit
	ESMF_FieldSetCommit
	ESMF_FieldSetCommit
	ESMF_FieldSetCommit
	ESMF_FieldSetCommit
	ESMF_FieldSetCommit
	ESMF_FieldSetCommit
	ESMF_FieldValidate
	ESMF_FieldWrite

	Class API: Field Communications
	ESMF_FieldGather
	ESMF_FieldHalo
	ESMF_FieldHaloRelease
	ESMF_FieldHaloStore
	ESMF_FieldRedist
	ESMF_FieldRedistRelease
	ESMF_FieldRedistStore
	ESMF_FieldRedistStore
	ESMF_FieldRegrid
	ESMF_FieldRegridRelease
	ESMF_FieldRegridStore
	ESMF_FieldRegridStore
	ESMF_FieldScatter
	ESMF_FieldSMM
	ESMF_FieldSMMRelease
	ESMF_FieldSMMStore
	ESMF_FieldSMMStore

	ArrayBundle Class
	Description
	Use and Examples
	Create an ArrayBundle from a list of Arrays
	Access Arrays inside the ArrayBundle
	Destroy an ArrayBundle and its constituents
	Halo communication

	Restrictions and Future Work
	Design and Implementation Notes
	Class API
	ESMF_ArrayBundleCreate
	ESMF_ArrayBundleDestroy
	ESMF_ArrayBundleGet
	ESMF_ArrayBundleHalo
	ESMF_ArrayBundleHaloRelease
	ESMF_ArrayBundleHaloStore
	ESMF_ArrayBundlePrint
	ESMF_ArrayBundleRead
	ESMF_ArrayBundleRedist
	ESMF_ArrayBundleRedistRelease
	ESMF_ArrayBundleRedistStore
	ESMF_ArrayBundleRedistStore
	ESMF_ArrayBundleSMM
	ESMF_ArrayBundleSMMRelease
	ESMF_ArrayBundleSMMStore
	ESMF_ArrayBundleSMMStore
	ESMF_ArrayBundleWrite

	Array Class
	Description
	Use and Examples
	Array from native Fortran array with 1 DE per PET
	Array from native Fortran array with extra elements for halo or padding
	Array from ESMF_LocalArray
	Create Array with automatic memory allocation
	Native language memory access
	Regions and default bounds
	Array bounds
	Computational region and extra elements for halo or padding
	Create 1D and 3D Arrays
	Working with Arrays of different rank
	Array and DistGrid rank – 2D+1 Arrays
	Arrays with replicated dimensions
	Communication – Scatter and Gather
	Communication – Halo
	Communication – Halo for arbitrary distribution
	Communication – Redist
	Communication – SparseMatMul
	Communication – Scatter and Gather, revisited
	Non-blocking Communications

	Restrictions and Future Work
	Design and Implementation Notes
	Class API
	ESMF_ArrayCreate
	ESMF_ArrayCreate
	ESMF_ArrayCreate
	ESMF_ArrayCreate
	ESMF_ArrayCreate
	ESMF_ArrayCreate
	ESMF_ArrayCreate
	ESMF_ArrayCreate
	ESMF_ArrayCreate
	ESMF_ArrayCreate
	ESMF_ArrayDestroy
	ESMF_ArrayGather
	ESMF_ArrayGet
	ESMF_ArrayGet
	ESMF_ArrayGet
	ESMF_ArrayGet
	ESMF_ArrayHalo
	ESMF_ArrayHaloRelease
	ESMF_ArrayHaloStore
	ESMF_ArrayPrint
	ESMF_ArrayRead
	ESMF_ArrayRedist
	ESMF_ArrayRedistRelease
	ESMF_ArrayRedistStore
	ESMF_ArrayRedistStore
	ESMF_ArrayScatter
	ESMF_ArraySet
	ESMF_ArraySet
	ESMF_ArraySMM
	ESMF_ArraySMMRelease
	ESMF_ArraySMMStore
	ESMF_ArraySMMStore
	ESMF_ArrayValidate
	ESMF_ArrayWrite

	LocalArray Class
	Description
	Restrictions and Future Work
	Class API
	ESMF_LocalArrayCreate
	ESMF_LocalArrayCreate
	ESMF_LocalArrayCreate
	ESMF_LocalArrayCreate
	ESMF_LocalArrayDestroy
	ESMF_LocalArrayGet
	ESMF_LocalArrayGet

	ArraySpec Class
	Description
	Use and Examples
	Set ArraySpec values
	Get ArraySpec values

	Restrictions and Future Work
	Design and Implementation Notes
	Class API
	ESMF_ArraySpecGet
	ESMF_ArraySpecSet
	ESMF_ArraySpecValidate
	ESMF_ArraySpecPrint

	Grid Class
	Description
	Grid Representation in ESMF
	Supported Grids
	Grid Topologies and Periodicity
	Grid Distribution
	Grid Coordinates
	Coordinate Specification and Generation
	Staggering
	Options for Building Grids

	Grid Options
	ESMF_GridConn
	ESMF_GridStatus
	ESMF_GridItem
	ESMF_StaggerLoc

	Use and Examples
	Create single-tile Grid shortcut method
	Create a 2D regularly distributed rectilinear Grid with uniformly spaced coordinates
	Create a 2D irregularly distributed rectilinear Grid with uniformly spaced coordinates
	Create a 2D irregularly distributed Grid with curvilinear coordinates
	Create an irregularly distributed rectilinear Grid with a non-distributed vertical dimension
	Create an arbitrarily distributed rectilinear Grid with a non-distributed vertical dimension
	Create a curvilinear Grid using the coordinates defined in a SCRIP file
	Create an empty Grid in a parent Component for completion in a child Component
	Grid stagger locations
	Associate coordinates with stagger locations
	Specify the relationship of coordinate Arrays to index space dimensions
	Access coordinates
	Associate items with stagger locations
	Access items
	Grid regions and bounds
	Get Grid coordinate bounds
	Get Grid stagger location bounds
	Get Grid stagger location information
	Create an Array at a stagger location
	Create more complex Grids using DistGrid
	Specify custom stagger locations
	Specify custom stagger padding
	Create a 2D regularly distributed rectilinear Grid from file

	Restrictions and Future Work
	Design and Implementation Notes
	Grid Topology

	Class API: General Grid Methods
	ESMF_GridAddCoord
	ESMF_GridAddItem
	ESMF_GridCreate
	ESMF_GridCreate
	ESMF_GridCreate
	ESMF_GridCreate
	ESMF_GridCreate
	ESMF_GridCreateEmpty
	ESMF_GridCreateShapeTile
	ESMF_GridCreateShapeTile
	ESMF_GridCreateShapeTile
	ESMF_GridDestroy
	ESMF_GridGet
	ESMF_GridGet
	ESMF_GridGet
	ESMF_GridGet
	ESMF_GridGetCoord
	ESMF_GridGetCoord
	ESMF_GridGetCoord
	ESMF_GridGetCoord
	ESMF_GridGetCoord
	ESMF_GridGetItem
	ESMF_GridGetItem
	ESMF_GridGetItem
	ESMF_GridGetStatus
	ESMF_GridMatch
	ESMF_GridSetCoord
	ESMF_GridSetCommitShapeTile
	ESMF_GridSetCommitShapeTile
	ESMF_GridSetCommitShapeTile
	ESMF_GridSetItem
	ESMF_GridValidate

	Class API: StaggerLoc Methods
	ESMF_StaggerLocSet
	ESMF_StaggerLocSet
	ESMF_StaggerLocString
	ESMF_StaggerLocPrint

	LocStream Class
	Description
	Use and Examples
	Create a LocStream with user allocated memory
	Create a LocStream with internally allocated memory
	Create a LocStream from a background Grid

	Class API
	ESMF_LocStreamAddKey
	ESMF_LocStreamAddKey
	ESMF_LocStreamAddKey
	ESMF_LocStreamCreate
	ESMF_LocStreamCreate
	ESMF_LocStreamCreate
	ESMF_LocStreamCreate
	ESMF_LocStreamCreate
	ESMF_LocStreamCreate
	ESMF_LocStreamDestroy
	ESMF_LocStreamGet
	ESMF_LocStreamGetKey
	ESMF_LocStreamGetKey
	ESMF_LocStreamGetKey
	ESMF_LocStreamGetKey
	ESMF_LocStreamGet
	ESMF_LocStreamPrint
	ESMF_LocStreamValidate

	Mesh Class
	Description
	Mesh representation in ESMF
	Supported Meshes

	Mesh Options
	ESMF_MeshElemType
	ESMF_FileFormatType

	Use and Examples
	Mesh creation
	Create a small single PET Mesh in one step
	Create a small single PET Mesh in three steps
	Create a small Mesh on 4 PETs in one step
	Create a Mesh from a SCRIP Grid file or an ESMF unstructured Grid file
	Remove Mesh memory

	Class API
	ESMF_MeshAddElements
	ESMF_MeshAddNodes
	ESMF_MeshCreate
	ESMF_MeshCreate
	ESMF_MeshCreate
	ESMF_MeshDestroy
	ESMF_MeshFreeMemory
	ESMF_MeshGet

	XGrid Class
	Description
	Use and Examples
	Create an XGrid from user input data then use it for regridding
	Query the XGrid for its internal information
	Destroying the XGrid and other resources

	Restrictions and Future Work
	Restrictions and Future Work

	Design and Implementation Notes
	Class API
	ESMF_XGridCreate
	ESMF_XGridDestroy
	ESMF_XGridGet
	ESMF_XGridGet
	ESMF_XGridGet

	DistGrid Class
	Description
	Use and Examples
	Single patch DistGrid with regular decomposition
	DistGrid and DELayout
	Single patch DistGrid with decomposition by DE blocks
	Single patch DistGrid with periodic boundaries
	2D patchwork DistGrid with regular decomposition
	Arbitrary DistGrids with user-supplied sequence indices

	Restrictions and Future Work
	Design and Implementation Notes
	Class API
	ESMF_DistGridCreate
	ESMF_DistGridCreate
	ESMF_DistGridCreate
	ESMF_DistGridCreate
	ESMF_DistGridCreate
	ESMF_DistGridCreate
	ESMF_DistGridDestroy
	ESMF_DistGridGet
	ESMF_DistGridGet
	ESMF_DistGridGet
	ESMF_DistGridPrint
	ESMF_DistGridMatch
	ESMF_DistGridValidate
	ESMF_DistGridConnection

	IO Capability
	Description
	Attribute I/O
	Data I/O
	Data formats
	Restrictions and Future Work
	Design and Implementation Notes

	IOSpec Class
	Description
	Class API
	ESMF_IOSpecGet
	ESMF_IOSpecSet

	Overview of Distributed Data Methods
	Higher Level Functions
	Lower Level Functions
	Common Options
	Design and Implementation Notes
	Object Model

	V Infrastructure: Utilities
	Overview of Infrastructure Utility Classes
	Attribute Class
	Description
	The ESMF approach to Attributes
	Attribute hierarchies

	Attribute Packages
	Component Attribute packages
	State Attribute packages
	Field Attribute packages
	Array Attribute packages
	Grid Attribute packages
	Table of available Attributes
	Custom Attribute packages

	Attribute Packages Nesting
	Export Formats
	Tab-delimited ASCII
	Simple XML
	CIM XML

	Use and Examples
	Basic Attribute usage
	Attribute packages
	CIM Attribute packages
	Read an XML file-based ESG Attribute package for a Gridded Component
	Read an XML file-based CF Attribute package for a Field
	Read an XML file-based GridSpec Attribute package for a Grid
	Read and validate an XML file-based set of user-defined Attributes for a Coupler Component
	ESMF_AttributeUpdate - Attributes in a distributed environment

	Restrictions and Future Work
	Attributes
	Attribute packages
	Attribute hierarchies
	Attribute import and export

	Design and Implementation Notes
	Attribute memory deallocation
	Using ESMF_AttributeGet() to retrieve Attribute lists
	Using Attribute package nesting capabilites
	Attributes in a distributed environment
	Writing Attribute packages to file
	Copying Attribute hierarchies
	Reading and writing Attributes from XML files

	Object Model
	Class API
	ESMF_AttributeAdd
	ESMF_AttributeAdd
	ESMF_AttributeAdd
	ESMF_AttributeAdd
	ESMF_AttributeCopy
	ESMF_AttributeGet
	ESMF_AttributeGet
	ESMF_AttributeGet
	ESMF_AttributeGet
	ESMF_AttributeGet
	ESMF_AttributeLink
	ESMF_AttributeLink
	ESMF_AttributeLink
	ESMF_AttributeLink
	ESMF_AttributeLink
	ESMF_AttributeLinkRemove
	ESMF_AttributeLinkRemove
	ESMF_AttributeLinkRemove
	ESMF_AttributeLinkRemove
	ESMF_AttributeLinkRemove
	ESMF_AttributeRead
	ESMF_AttributeRemove
	ESMF_AttributeSet
	ESMF_AttributeSet
	ESMF_AttributeUpdate
	ESMF_AttributeWrite

	Attachable Methods
	Description
	Use and Examples
	Producer Component attaches user defined method
	Producer Component implements user defined method
	Consumer Component executes user defined method

	Restrictions and Future Work
	Class API
	ESMF_MethodAdd
	ESMF_MethodAdd
	ESMF_MethodExecute
	ESMF_MethodRemove

	Time Manager Utility
	Time Manager Classes
	Calendar
	Time Instants and TimeIntervals
	Clocks and Alarms
	Design and Implementation Notes
	Object Model

	Calendar Class
	Description
	Calendar Options
	ESMF_CalendarType

	Use and Examples
	Calendar creation
	Calendar comparison
	Time conversion between Calendars
	Calendar destruction

	Restrictions and Future Work
	Class API
	ESMF_CalendarOperator(==)
	ESMF_CalendarOperator(==)
	ESMF_CalendarOperator(==)
	ESMF_CalendarOperator(==)
	ESMF_CalendarOperator(/=)
	ESMF_CalendarOperator(/=)
	ESMF_CalendarOperator(/=)
	ESMF_CalendarOperator(/=)
	ESMF_CalendarCreate
	ESMF_CalendarCreate
	ESMF_CalendarCreate
	ESMF_CalendarDestroy
	ESMF_CalendarGet
	ESMF_CalendarIsLeapYear
	ESMF_CalendarIsLeapYear
	ESMF_CalendarPrint
	ESMF_CalendarSet
	ESMF_CalendarSet
	ESMF_CalendarSetDefault
	ESMF_CalendarSetDefault
	ESMF_CalendarValidate

	Time Class
	Description
	Use and Examples
	Time initialization
	Time increment
	Time comparison

	Restrictions and Future Work
	Class API
	ESMF_TimeOperator(+)
	ESMF_TimeOperator(-)
	ESMF_TimeOperator(-)
	ESMF_TimeOperator(==)
	ESMF_TimeOperator(/=)
	ESMF_TimeOperator(<)
	ESMF_TimeOperator(<=)
	ESMF_TimeOperator(>)
	ESMF_TimeOperator(>=)
	ESMF_TimeGet
	ESMF_TimeIsLeapYear
	ESMF_TimeIsSameCalendar
	ESMF_TimePrint
	ESMF_TimeSet
	ESMF_TimeSyncToRealTime
	ESMF_TimeValidate

	TimeInterval Class
	Description
	Use and Examples
	TimeInterval initialization
	TimeInterval conversion
	TimeInterval difference
	TimeInterval multiplication
	TimeInterval comparison

	Restrictions and Future Work
	Class API
	ESMF_TimeIntervalOperator(+)
	ESMF_TimeIntervalOperator(-)
	ESMF_TimeIntervalOperator(-)
	ESMF_TimeIntervalOperator(/)
	ESMF_TimeIntervalOperator(/)
	ESMF_TimeIntervalFunction(MOD)
	ESMF_TimeIntervalOperator(x)
	ESMF_TimeIntervalOperator(x)
	ESMF_TimeIntervalOperator(==)
	ESMF_TimeIntervalOperator(/=)
	ESMF_TimeIntervalOperator(<)
	ESMF_TimeIntervalOperator(<=)
	ESMF_TimeIntervalOperator(>)
	ESMF_TimeIntervalOperator(>=)
	ESMF_TimeIntervalAbsValue
	ESMF_TimeIntervalGet
	ESMF_TimeIntervalGet
	ESMF_TimeIntervalGet
	ESMF_TimeIntervalGet
	ESMF_TimeIntervalNegAbsValue
	ESMF_TimeIntervalPrint
	ESMF_TimeIntervalSet
	ESMF_TimeIntervalSet
	ESMF_TimeIntervalSet
	ESMF_TimeIntervalSet
	ESMF_TimeIntervalValidate

	Clock Class
	Description
	Clock Options
	ESMF_Direction

	Use and Examples
	Clock creation
	Clock advance
	Clock examination
	Clock reversal
	Clock destruction

	Restrictions and Future Work
	Class API
	ESMF_ClockOperator(==)
	ESMF_ClockOperator(/=)
	ESMF_ClockAdvance
	ESMF_ClockCreate
	ESMF_ClockCreate
	ESMF_ClockDestroy
	ESMF_ClockGet
	ESMF_ClockGetAlarm
	ESMF_ClockGetAlarmList
	ESMF_ClockGetNextTime
	ESMF_ClockIsDone
	ESMF_ClockIsReverse
	ESMF_ClockIsStopTime
	ESMF_ClockIsStopTimeEnabled
	ESMF_ClockPrint
	ESMF_ClockSet
	ESMF_ClockStopTimeDisable
	ESMF_ClockStopTimeEnable
	ESMF_ClockSyncToRealTime
	ESMF_ClockValidate

	Alarm Class
	Description
	Alarm Options
	ESMF_AlarmListType

	Use and Examples
	Clock initialization
	Alarm initialization
	Clock advance and Alarm processing
	Alarm and Clock destruction

	Restrictions and Future Work
	Design and Implementation Notes
	Class API
	ESMF_AlarmOperator(==)
	ESMF_AlarmOperator(/=)
	ESMF_AlarmCreate
	ESMF_AlarmCreate
	ESMF_AlarmDestroy
	ESMF_AlarmDisable
	ESMF_AlarmEnable
	ESMF_AlarmGet
	ESMF_AlarmIsEnabled
	ESMF_AlarmIsRinging
	ESMF_AlarmIsSticky
	ESMF_AlarmNotSticky
	ESMF_AlarmPrint
	ESMF_AlarmRingerOff
	ESMF_AlarmRingerOn
	ESMF_AlarmSet
	ESMF_AlarmSticky
	ESMF_AlarmValidate
	ESMF_AlarmWasPrevRinging
	ESMF_AlarmWillRingNext

	Config Class
	Description
	Package history
	Resource files

	Use and Examples
	Variable declarations
	Creation of a Config
	How to retrieve a label with a single value
	How to retrieve a label with multiple values
	How to retrieve a table
	Destruction of a Config

	Class API
	ESMF_ConfigCreate
	ESMF_ConfigDestroy
	ESMF_ConfigFindLabel
	ESMF_ConfigGetAttribute
	ESMF_ConfigGetAttribute
	ESMF_ConfigGetChar
	ESMF_ConfigGetDim
	ESMF_ConfigGetLen
	ESMF_ConfigLoadFile
	ESMF_ConfigNextLine
	ESMF_ConfigSetAttribute
	ESMF_ConfigValidate

	LogErr Class
	Description
	LogErr Options
	ESMF_HaltType
	ESMF_MsgType
	ESMF_LogType

	Use and Examples
	Default Log
	User created Log
	Get and Set

	Restrictions and Future Work
	Design and Implementation Notes
	Object Model
	Class API
	ESMF_LogClose
	ESMF_LogFlush
	ESMF_LogFoundAllocError
	ESMF_LogFoundDeallocError
	ESMF_LogFoundError
	ESMF_LogMsgFoundAllocError
	ESMF_LogMsgFoundDeallocError
	ESMF_LogMsgFoundError
	ESMF_LogMsgSetError
	ESMF_LogOpen
	ESMF_LogSet
	ESMF_LogWrite

	DELayout Class
	Description
	DELayout Options
	ESMF_DePinFlag

	Use and Examples
	Default DELayout
	DELayout with specified number of DEs
	DELayout with computational and communication weights
	DELayout from petMap
	DELayout from petMap with multiple DEs per PET
	Working with a DELayout - simple 1-to-1 DE to PET mapping
	Working with a DELayout - general DE to PET mapping
	Work queue dynamic load balancing

	Restrictions and Future Work
	Design and Implementation Notes
	Class API
	ESMF_DELayoutCreate
	ESMF_DELayoutCreate
	ESMF_DELayoutCreate
	ESMF_DELayoutDestroy
	ESMF_DELayoutGet
	ESMF_DELayoutPrint
	ESMF_DELayoutServiceComplete
	ESMF_DELayoutServiceOffer
	ESMF_DELayoutValidate

	VM Class
	Description
	Use and Examples
	Global VM
	Getting the MPI Communicator from an VM object
	Nesting ESMF inside a user MPI application
	Nesting ESMF inside a user MPI application on a subset of MPI ranks
	Send/Recv
	Scatter and Gather
	AllReduce and AllFullReduce
	VM and Components

	Restrictions and Future Work
	Design and Implementation Notes
	Class API
	ESMF_VMAllFullReduce
	ESMF_VMAllGather
	ESMF_VMAllGatherV
	ESMF_VMAllReduce
	ESMF_VMAllToAllV
	ESMF_VMBarrier
	ESMF_VMBroadcast
	ESMF_VMGather
	ESMF_VMGatherV
	ESMF_VMGet
	ESMF_VMGetGlobal
	ESMF_VMGetCurrent
	ESMF_VMGetPETLocalInfo
	ESMF_VMPrint
	ESMF_VMRecv
	ESMF_VMReduce
	ESMF_VMScatter
	ESMF_VMScatterV
	ESMF_VMSend
	ESMF_VMSendRecv
	ESMF_VMValidate
	ESMF_VMCommWait
	ESMF_VMCommQueueWait
	ESMF_VMWtime
	ESMF_VMWtimeDelay
	ESMF_VMWtimePrec

	Fortran I/O Utilities
	Description
	Use and Examples
	Fortran unit number management
	Flushing output

	Design and Implementation Notes
	Fortran unit number management
	Flushing output

	Utility API
	ESMF_IOUnitFlush
	ESMF_IOUnitGet

	VI References
	VII Appendices
	Appendix A: A Brief Introduction to UML
	Appendix B: ESMF Error Return Codes

