Earth System Modeling Framework

ESMF User Guide

Version 5.1

ESMF Joint Specification Team: V. Balaji, Byron Boville, SamCheung, Nancy Collins, Tony
Craig, Carlos Cruz, Arlindo da Silva, Cecelia DeLuca, Rosda de Fainchtein, Brian Eaton,
Bob Hallberg, Tom Henderson, Chris Hill, Mark Iredell, Radcdb, Phil Jones, Erik Kluzek,
Brian Kauffman, Jay Larson, Peggy Li, Fei Liu, John MichaakSylvia Murphy, David Neckels,
Ryan O Kuinghttons, Bob Oehmke, Chuck Panaccione, Jim §osWill Sawyer, Earl Schwab,
Shepard Smithline, Walter Spector, Don Stark, Max Suapen&r Swift, Gerhard Theurich,
Atanas Trayanov, Silverio Vasquez, Jon Wolfe, Weiyu Yaikg, Xbung, Leonid Zaslavsky

February 28, 2011

http://www.earthsystemmodeling.org

Acknowledgements

The ESMF software is based on the contributions of a broadwmamity. Below are the software packages that
are included in ESMF or strongly influenced our design. Wid to express our gratitude to the developers of these
codes for access to their software as well as their ideaséridea

The Spherical Coordinate Remapping and Interpolation &gekSCRIP) from Los Alamos, which informed
the design of our regridding functionality

The Model Coupling Toolkit (MCT) from Argonne National Latadory, on which we based our sparse matrix
multiply approach to general regridding

The Inpack configuration attributes package from NASA Geddwhich was adapted for use in ESMF by
members of NASA Global Modeling and Assimilation group

The Flexible Modeling System (FMS) package from GFDL andGeeldard Earth Modeling System (GEMS)
from NASA Goddard, both of which provided inspiration foetbverall ESMF architecture

The Common Component Architecture (CCA) effort within thegartment of Energy, from which we drew
many ideas about how to design components

The Vector Signal Image Processing Library (VSIPL) andiedgcessors, which informed many aspects of our
design, and the radar system software design group at lnihaioratory

The Portable, Extensible Toolkit for Scientific Computat{®ETSc) package from Argonne National Labora-
tories, on which we based our initial makefile system

The Community Climate System Model (CCSM) and Weather Rekeand Forecasting (WRF) modeling
groups at NCAR, who have provided valuable feedback on tegydend implementation of the framework

Contents

o1
o
o
—
|
s}
e
o
=
<
U) d
) =
c
. o
C
c
@
: a
©mwoy~~~N~Y

90 - Maiogram source file for demo (Sou

orfran: Module Interface CoupledFIOWApPP I[
56
57
13.1.3 Examole of Calendar and Clock CreationandUsage: - - -o .. 58
(13.1.4 Example of Grid Creatldn 58
ation: 60
M 3 In, and 60
j ictipn: 60
13.1.8 Example Of ESME FINAIZE: . . . o oot e et ettt 61
[13.2_Fortran: Module Interface CouoledFIowDemo F90 - el Gridded Component source (Source File: CoupledFlond
: 61
61
62
62

4 Fortran: Module Interface FlowArraysMod.F90 - Sodileefor Data for Flow Solve ource File: FlowArraysMod 96~

13.4.1 Example of Field Creation and Array USBgE: v v cvvvr v v v v i i o e e u 65
ortran: Module Interface CouplerMod.F90 - Source?favay Coupler Component (Source File: CouplerMod.F90) 66
MY 66
6 _Fortran: Module Interface InjectorMod - Fluid InjestiComponent (Source File: InjectorMod.H90) . 66

1 Whatis the Earth System Modeling Framework?

The Earth System Modeling Framework (ESMF) is a suite ofveafé tools for developing high-performance, multi-
component Earth science modeling applications. Such egifins may include a few or dozens of components
representing atmospheric, oceanic, terrestrial, or githgsical domains, and their constituent processes (dyasmi
chemical, biological, etc.). Often these components aveldped by different groups independently, and must be
“coupled” together using software that transfers and fanss data among the components in order to form functional
simulations.

ESMF supports the development of these complex applicatioa number of ways. It introduces a set of simple,
consistent componentinterfaces that apply to all typeswifonents, including couplers themselves. These intesfac
expose in an obvious way the inputs and outputs of each coempolh offers a variety of data structures for transferring
data between components, and libraries for regriddinge taivancement, and other common modeling functions.
Finally, it provides a growing set of tools for using metad#&t describe components and their input and output
fields. This capability is important because componentsaha self-describing can be integrated more easily into
automated workflows, model and dataset distribution antysisgortals, and other emerging “semantically enabled”
computational environments.

ESMF is not a single Earth system model into which all compésieust fit, and its distribution doesn’t contain
any scientific code. Rather it provides a way of structurioghponents so that they can be used in many differ-
ent user-written applications and contexts with minimaleonodification, and so they can be coupled together in
new configurations with relative ease. The idea is to creaeyncomponents across a broad community, and so to
encourage new collaborations and combinations.

ESMF offers the flexibility needed by this diverse user baseés tested nightly on more than two dozen plat-
form/compiler combinations; can be run on one processdraudands; supports shared and distributed memory pro-
gramming models and a hybrid model; can run components atiglhg (on all the same processors) or concurrently
(on mutually exclusive processors); and supports singéew@able or multiple executable modes.

ESMF'’s generality and breadth of function can make it daunfor the novice user. To help users navigate
the software, we try to apply consistent names and behawioughout and to provide many examples. The large-
scale structure of the software is straightforward. Thiies and data structures for building modeling compogent
are called the ESMinfrastructure The coupling interfaces and drivers are calledghperstructure User code sits
between these two layers, making calls to the infrastrediioraries underneath and being scheduled and synchobnize
by the superstructure above. The configuration resemblasdwsch, as shown in Figuié 1.

ESMF users may choose to extensively rewrite their codeski advantage of the ESMF infrastructure, or they
may decide to simply wrap their components in the ESMF suipmtsire in order to utilize framework coupling
services. Either way, we encourage users to contact ouosuggan if questions arise about how to best use the
software, or how to structure their application. ESMF is enthhan software; it's a group of people dedicated to
realizing the vision of a collaborative model developmearhmunity that spans insitutional and national bounds.

2 The ESMF User’s Guide

ThisESMF User’s Guidés mainly an installation and build guide for the new ESMFrus&d a build reference for the
experienced user. New users are strongly encouraged tolamavihe ESMF software and try running a quick start
programguick_start , thatillustrates both ESMF utilities and coupling sergice

TheUser’s Guideis organized as follows. The next two sectidds, 3[dnd 4, aoneser support and how to submit
comments on the ESMF system to our development team. Se@itimrough 0 contain Quick Startguide that
explains how to install the ESMF software and run the sedfstefollowed by more detail on ESMF structure and
operation, such as a description of the directory struauocehow to build and run the ESMF examples and quick start
programs. Sectidn11 is an architectural overview thatriless the framework’s basic goals and features. SeCiibn 14
details the steps required to adapt a component for use \@MME Finally, to help you become familiar with ESMF
terminology, the last section in thédser’s Guideis a glossary.

mailto:esmf_support@list.woc.noaa.gov

Figure 1: Schematic of the ESMF “sandwich” architecturethiis design the framework consists of two parts, an
upper levebuperstructure layer and a lower-levehfrastructure layer. User code is sandwiched between these two
layers.

ESMF Superstructure
AppDriver
Component Classes: GridComp, CplComp, State

User Code

ESMF Infrastructure
Data Classes: Bundle, Field, Grid, Array
Utility Classes: Clock, LogErr, DELayout, VM, Config

3 How to Contact User Support and Find Additional Informatio n

The ESMF team can provide assistance in using the framewogrlur applications. For user support, please contact
esmf_support@list.woc.noaa.gov.

More information on the ESMF project as a whole is availablthe ESMF website, http://www.earthsystemmodeling.org.
The website includes release notes and known bugs for eastovef the framework, supported platforms, project
history, values, and metrics, related projects, the ESMRagament structure, and much more. Those curious about
specific interfaces should refer to IBEEMF Reference Manual for Fortramvhich contains a detailed listing and de-
scription of the ESMF API (this version of the document cep@nds to the last public version of the framework). Also
available on the ESMF website is tB &MF Developer's Guidthat details our project procedures and conventions.

4 How to Submit Comments, Bug Reports, and Feature Requests

We welcome input on any aspect of the ESMF project. Sendigmesind comments to esmf_support@list.woc.noaa.gov.

mailto:esmf_support@list.woc.noaa.gov
http://www.earthsystemmodeling.org
http://www.earthsystemmodeling.org/esmf_releases/public/last/ESMF_refdoc/
http://www.earthsystemmodeling.org/documents/dev_guide/
mailto:esmf_support@list.woc.noaa.gov

5 Quick Start

This section gives a brief description of how to get the ESMffvgare, build it, and run the self-tests to verify the
installation was successful. There is also a short guidausorg the bundled ESMF applications. More detailed
information on each of these steps is provided in seclibif &nd7, respectively.

With a growing user community requiring access to ESMF, reromputing resources (such as ORNL for the
JaguarandKrakensupercomputers) have recently started providing systede @SMF installations. The availablity
of center-managed ESMF installations dramatically ineesathe ease of use of ESMF. Practically it means that if
you are working on a system (suchJagjual) that offers a standard ESMF installation, you do not hawdotenload,
build and validate your own ESMF installation from sourcesktead you can proceed directly to using ESMF as a
programming library or through access to the bundled aafitins as described in sectidds 6 &hd 7, respectively.

5.1 Downloading ESMF

5.1.1 From the ESMF web site

ESMF is distributed as a source code tar file. The tar file ferl#ttest public release, release notes, known bugs,
supported platforms, documentation, and other relateatrimhtion can be found on the ESMF website, under the
Downloadtab:

http://www.earthsystemmodeling.org -> Download

The source code for all other releases including the HEADefGVS trunk and the last stable version can be found
by following theView All Releasedink on the left hand navigation bar undeownload:

http://www.earthsystemmodeling.org -> Download -> View A Il Releases

5.1.2 From the SourceForge website

ESMF can also be downloaded from the SourceForge websitetfreFiles link on that website.
http://sourceforge.net/projects/esmf -> Files

Follow the directions on that web page to download a tar file.

5.2 Unpacking the download

The source code comes as a zipped tar file. First unzip the file:
gunzip esmf =*.tar.gz

Then untar the file:
tar -xf esmf *.tar

This will create a directory calleglsmf .

5.3 Directory Structure

The current list of directories includes the following:
¢ README
e build

e build_config

e makefile
e Scripts
e SIC

Thebuild_config directory contains subdirectories for different opemgsgstem and compiler combinations.
This is a useful area to examine if porting ESMF to a new ptatfo

5.4 Building ESMF
After downloading and unpacking the ESMF tar file, the buildgedure is:
1. Setthe required environment variables.
2. Typegmake info to view and verifty your settings
3. Typegmake to build the library.
4. Typegmake check to run self-tests to verify the build was successful.

See the following sections for more information on each ekthsteps.

5.4.1 Environment variables

The syntax for setting environment variables depends omtwhiell you are running. Examples of the two most
common ways to set an environment variable are:

ksh export ESMF_DIR=/home/joeuser/esmf
csh setenv ESMF_DIR /home/joeuser/esmf

The shell environment variables listed below are the onest fnequently used. There are others which address
needs on specific platforms or are needed under more unusuahstances; see Sectidn 8 for the full list.

ESMF_DIR The environment variablESMF_DIRmust be set to the full pathname of the top level ESMF dirgctor
before building the framework. This is the only environmeartiable which is required to be set on all platforms
under all conditions.

ESMF_BOPT This environment variable controls the build option. To makdebuggable version of the library set
ESMF_BOPTo g before building. The default ®(capital oh) which builds an optimized version of the lilycar
If ESMF_BOPTs O ESMF_OPTLEVELan also be set to a numeric value between 0 and 4 to selectificpe
optimization level.

ESMF_COMM On systems with a vendor-supplied MPI communications tiptae vendor library is chosen by
default for communications anSMF_COMMKEed not be set. For other systems (e.g. Linux or Darwin) a
multitude of MPI implementations is available aB&MF_COMMust be set to indicate which implementation
is used to build the ESMF library. SEEMF_COMatcording to your situation tanpich, mpich2, lam,
openmpi orintelmpi . ESMF_COMMay also be set toser indicating that the user will set all the required
flags using advanced ESMF environment variables.

Alternatively, ESMF comes with a single-processor MPI-&g® library which is the default for Linux and
Darwin systems. To force the use of this bypass libranESNF _COM&tual tompiuni .

ESMF_COMPILER The ESMF library build requires a working Fortran90 and C-empiler. On platforms that
don’t come with a single vendor supplied compiler suite .(d.opux or Darwin) ESMF_COMPILERust be
set to select which Fortran and C++ compilers are being usdulild the ESMF library. Notice that set-
ting the ESMF_COMPILERariable doesot affect how the compiler executables are located on the rsyste
ESMF_COMPILERtogether withESMF_COMMffect the name that is expected for the compiler executa-
bles. Furthermore, theESMF_COMPILERetting is used to select compiler and linker flags condistéth the
compilers indicated.

By default Fortran and C++ compiler executables are expédotbe located in a location contained in the user’s
PATHenvironmentvariable. This means that if you cannot lodagecbrrect compiler executable via thbich
command on the shell prompt the ESMF build system won't firgititer!

There are advanced ESMF environment variables that candzbtasselect specific compiler executables by
specifying the full path. This can be used to pick specific piben executables without having to modify the
PATHenvironment variable.

Use 'gmake info’ to see which compiler executables the ESMifdtsystem will be using according to your
environment variable settings.

To see possible values f&@SMF_COMPILERcd to $SESMF_DIR/build_config and list the directories
there. The first part of each directory name correspond®toukput of 'uname -s’ for this platform. The second
part contains possible values lBEMF_COMPILERN some cases multiple combinations of Fortran and C++
compilers are possible, e.g. therangel andintelgcc available for Linux. SettindeSMF_COMPILER
tointel indicates that both Intel Fortran and C++ compilers are usbéreasntelgcc indicates that the
Intel Fortran compiler is used in combination with GCC's Geempiler.

If you do not find a configuration that matches your situation will need to port ESMF.

ESMF_ABI If a system supports 32-bit and 64-bit (pointer wordsizejligation binary interfaces (ABIs), this vari-
able can be set to select which ABI to use. Valid values3®eor 64. By default the most common ABI
is chosen. On x86_64 achitectures three additional, mazeifép ABI settings are availablex86_64 32 ,
x86_64 small andx86 64 medium .

ESMF_SITE The SourceForgesmfcontrib repository contains makefiles which have already been mizeul
for certain machines. If one exists for your site and you wishse it, download the corresponding files into the
build_contrib directory and seESMF_SITEto your location (which corresponds to the last part of the
directory name). See the SourceForge bitp://sourceforge.net/projects/esmfcontrib for
more information.

ESMF_ETCDIR If a user wants to add Attribute package specification filestieir own customized Attribute
packages, this is where they should go. ESMF will look in thigctory for files that specify which Attributes
are in an Attribute package for certain ESMF objects, andtWieaappropriate initial values would be for those
Attributes. The format for these Attribute package speaifan files is to be defined in a future ESMF release.
This environment variable is largely for internal use as thdint.

ESMF_INSTALL_PREFIX This variable specifies the prefix of the installation pathduduring the installation
process accessible thought the install target. LibraFi@8,module files, header files and documentation all are
installed relative taSMF_INSTALL PREFIXby default. TheeSMF_INSTALL_PREFIXmay be provided
as absolute path or relative BEBMF_DIR

5.4.2 GNU make

The ESMF build system uses the GNU make program; it is noymalinedgmake but may also be simplynake or
gnumake on some platforms (we will usgmake in this document). ESMF does not use configure or autocoef; th
selection of various options is done by setting environmaritibles before building the framework.

5.4.3 gmake info

gmake info is a command that assists the user in verifying that the ESMiables have been set appropriatly. It
also tells the user the paths to various libraries e.g. M&ldhe set on the system. The user to review this information
to verify their settings. In the case of a build failure, timfrmation is invaluable and will be the first thing asked fo
by the ESMF support team. Below is arample outputfrom gmake info

Make version:

GNU Make 3.80

Copyright (C) 2002 Free Software Foundation, Inc.

This is free software; see the source for copying conditions .

There is NO warranty; not even for MERCHANTABILITY or FITNES S FOR A
PARTICULAR PURPOSE.

Fortran Compiler version:

Intel(R) Fortran Compiler for applications running on Inte I[(R) 64, Version 10.1 Build 2008102
Copyright (C) 1985-2008 Intel Corporation. All rights rese rved.
Version 10.1

C++ Compiler version:

Intel(R) C++ Compiler for applications running on Intel(R) 64, Version 10.1 Build 20081024
Copyright (C) 1985-2008 Intel Corporation. All rights rese rved.
Version 10.1

Preprocessor version:

gcc (GCC) 4.1.2 20070115 (SUSE Linux)

Copyright (C) 2006 Free Software Foundation, Inc.

This is free software; see the source for copying conditions . There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PART ICULAR PURPOSE.

ESMF_VERSION_STRING: 5.1.0

* User set ESMF environment variables *

ESMF_OS=Linux

ESMF_TESTMPMD=ON
ESMF_TESTHARNESS_ARRAY=RUN_ESMF_TestHarnessArrayUNI2
ESMF_DIR=/nobackuppl10/scvasque/daily_builds/intel/e smf
ESMF_TESTHARNESS_FIELD=RUN_ESMF_TestHarnessFieldUNI _1
ESMF_TESTWITHTHREADS=0OFF

ESMF_COMM=mpiuni

ESMF_INSTALL_PREFIX=/nobackupp10/scvasque/daily_bui Ids/intel/esmf/../install_dir

10

ESMF_TESTEXHAUSTIVE=ON
ESMF_BOPT=g
ESMF_SITE=default
ESMF_ABI=64
ESMF_COMPILER=intel

* ESMF environment variables *
ESMF_DIR: /nobackuppl0/scvasque/daily_builds/intel/e smf
ESMF_OS: Linux
ESMF_MACHINE: x86_64
ESMF_ABI: 64
ESMF_COMPILER: intel
ESMF_BOPT: g
ESMF_COMM: mpiuni
ESMF_SITE: default
ESMF_PTHREADS: ON
ESMF_OPENMP: ON
ESMF_ARRAY_LITE: FALSE

ESMF_NO_INTEGER_1_BYTE: FALSE
ESMF_NO_INTEGER_2_BYTE: FALSE

ESMF_FORTRANSYMBOLS: default

ESMF_DEFER_LIB_BUILD: ON

ESMF_TESTEXHAUSTIVE: ON

ESMF_TESTWITHTHREADS: OFF

ESMF_TESTMPMD: ON

ESMF_TESTSHAREDOBJ: OFF

ESMF_TESTFORCEOPENMP: OFF
ESMF_TESTHARNESS_ARRAY: RUN_ESMF_TestHarnessArrayUN| 2
ESMF_TESTHARNESS_FIELD: RUN_ESMF_TestHarnessFieldUNI _1

ESMF_MPIRUN: /nobackuppl0/scvasque/daily_builds/inte I/lesmf/src/Infrastructure/stubs
* ESMF environment variables pointing to 3rd party software *

* ESMF environment variables for final installation *

ESMF_INSTALL PREFIX: /nobackuppl0/scvasque/daily _bui Ids/intel/esmf/../install_dir
ESMF_INSTALL_HEADERDIR: include

ESMF_INSTALL_MODDIR: mod/modg/Linux.intel.64.mpiuni. default

ESMF_INSTALL_LIBDIR: lib/libg/Linux.intel.64.mpiuni. default

ESMF_INSTALL_BINDIR: bin/bing/Linux.intel.64.mpiuni. default

ESMF_INSTALL_DOCDIR: doc

* Compilers, Linkers, Flags, and Libraries *

Location of the preprocessor: /usr/bin/gcc

Location of the Fortran compiler: /nasalintel/fce/10.1.0 21/bin/ifort
Location of the Fortran linker: /nasalintel/fce/10.1.021 /bin/ifort
Location of the C++ compiler: /nasa/intel/cce/10.1.021/b inficpc

11

Location of the C++ linker: /nasalintel/cce/10.1.021/bin licpc

Fortran compiler flags:

ESMF_F90COMPILEOPTS: -g -fPIC -m64 -mcmodel=small -threa ds -openmp

ESMF_F90COMPILEPATHS: -l/nobackupp10/scvasque/daily builds/intel/esmf/mod/modg/Linux.intel.64.
ESMF_F90COMPILECPPFLAGS: -DESMF_TESTEXHAUSTIVE -DSx864_small=1 -DESMF_OS_Linux=1 -DESMF_MF
ESMF_F90COMPILEFREECPP:

ESMF_F90COMPILEFREENOCPP:

ESMF_F90COMPILEFIXCPP:

ESMF_F90COMPILEFIXNOCPP:

Fortran linker flags:
ESMF_F90LINKOPTS: -m64 -mcmodel=small -threads -openmp

ESMF_F90LINKPATHS: -L/nobackupp10/scvasque/daily bui Ids/intel/esmf/lib/libg/Linux.intel.64.mpi
ESMF_F90LINKRPATHS: -WI,-rpath,/nobackuppl0/scvasque /daily_builds/intel/esmf/lib/libg/Linux.in
ESMF_FOOLINKLIBS: -limf -lsvml -Im -lipgo -lguide -Istdc+ + -lirc -lgcc_s -lgcc -lirc -Ipthread
ESMF_F9OESMFLINKLIBS: -lesmf -limf -Isvml -Im -lipgo -Ilgu ide -Istdc++ -lirc -lgcc_s -Igcc

C++ compiler flags:

ESMF_CXXCOMPILEOPTS: -g -fPIC -m64 -mcmodel=small -pthre ad -openmp

ESMF_CXXCOMPILEPATHS: -l/nobackuppl0/scvasque/daily builds/intel/lesmf/src/include -l/nobackuppl0/scve
ESMF_CXXCOMPILECPPFLAGS: -DESMF_TESTEXHAUSTIVE -DSx& small=1 -DESMF_OS_Linux=1 -D__SDIR_

C++ linker flags:
ESMF_CXXLINKOPTS: -m64 -mcmodel=small -pthread -openmp

ESMF_CXXLINKPATHS: -L/nobackuppl0/scvasque/daily bui Ids/intel/esmf/lib/libg/Linux.intel.64.mpi
ESMF_CXXLINKRPATHS: -WI,-rpath,/nobackuppl0/scvasque /daily_builds/intel/esmf/lib/libg/Linux.in
ESMF_CXXLINKLIBS: -lifport -lifcoremt -limf -lsvml -Im -l ipgo -lguide -lirc -Ipthread -lgcc_s
ESMF_CXXESMFLINKLIBS: -lesmf -lifport -lifcoremt -limf - Isvml -Im -lipgo -lguide -lirc -Ipthread

Compiling on Thu Oct 21 02:15:56 PDT 2010 on r75i0n8
Machine characteristics: Linux r75i0n8 2.6.16.60-0.68.1 .20100916-nasa #1 SMP Fri Sep 17 17:49:(

5.4.4 Building makefile targets

The makefiles follow the GNU target standards where possible most frequently used targets for building are
listed below:

lib build the ESMF libraries only (default)
all build the libraries, unit and system tests and examples

doc build the documentation (requires specific latex macro&gges and additional utilities; see Secfidn 8 for more
details on the requirements).

info print out extensive system configuration information abwehi&t compilers, libraries, paths, flags, etc are being
used

clean remove all files built for this platform/compiler/wordsize

12

clobber remove all files built for all architectures

install install the ESMF library in a custom location

5.4.5 Testing makefile targets
To build and run the unit and system tests, type:
gmake check

A summary report of success and failures will be printed ¢th@end.
See section 10.1.1 on how to set up ESMF to be able to laundfutidied test and example applications.
Other test-related targets are:

all_tests build and run all available tests and examples

build_all_tests build tests and examples; do not execute

run_all_tests run tests and examples without rebuilding; print a summaétheresults
check_all_testsprint out the results summary without re-executing
dust_all_testsremove all test and example output files

clean_all_testsremove all test and example executables and output files

For all the targets listed above, the strialyj tests can be replaced with one of the strings listed below to
select a specific type of test:

unit_tests unit tests exercise a single part of the system
system_testssystem tests combine functions across the system

examples examples contain code illustrating a single type of functio

For examplegmake build_examples recompiles the example programs but does not execute tlgemake
dust_unit_tests removes all output files generated when executing the usti$,tbut leaves the executables.
gmake clean_system_tests removes all executables and files associated with the syetgm

For the unit tests only, there is an additional environmaniable which affects how the tests are built:

ESMF_TESTEXHAUSTIVE If this variable is set t@Nbefore compiling the unit tests, longer and more exhaustive
unit tests will be run. Note that this is a compile-time and nm-time option.

5.4.6 Building and using bundled ESMF applications

This section describes how the bundled ESMF applicationsezbuilt and used from inside the ESMF source tree.

Notice that this is sort of a quick and dirty way of accessimgESMF applications. It is supported as convenience to

those users interested in quickly gaining access to thelbdi&SMF applications, and do not mind the shortcomings

of this approach. Users interested in maximum portabilitysd instead follow the instructions provided in secfibn 7
To build the bundled ESMF applications type:

gmake build_apps

This will build the applications and place the executabledar theSESMF_DIR/apps directory inside the ESMF
source tree. The applications can be directly executed frithin the SESMF_DIR/apps directory following the
system specific rules for execution. The details will depemavhether ESMF was built with or without MPI depen-
dency. In the latter case the system specific rules for langgarallel applications must be followed. System specific
execution details on this level are outside of ESMF’s scope.

For most systems, the MPI version of the ESMF bundled apjics can be executed by a command equivalent
to:

13

mpirun -np X $(ESMF_DIR)/apps/..../application

whereX specifies the total number of PETs aaplplication is the name of the specific ESMF application
to be executed. The.. in the path indicates the precise subdirectory structudeuvapps which follows the
standard ESMF pattern also used for thests ~ and./examples subdirectories.

All bundled ESMF applications support the standarehelp’ command line option that prints out information
on its proper use. More detailed instructions of the indiaidapplications are available in the "Applications" secti
of theESMF Reference Manual

6 Compiling and Linking User Code against an ESMF Installaton

Building user applications against an ESMF installatioguiees that the compiler and linker be able to find the
appropriate ESMF header, module and library files. If thiscpdure has been documented by the installer of the
ESMF library on your system then follow the directions giv@therwise it is up to the user to determine and provide
the required compiler and linker flags. Every ESMF instadlaprovides a file namedsmf.mk that contains the
relevant information.

The location of theesmf.mk file should be documented by the party that installed ESMFersystem. We recom-
mend that a single ESMF specific environment variabB@MFMKFILE be provided by the system that points to the
esmf.mk file. See sectioh 8.8 for the related discussion aimed atehsop that installs ESMF on a system.

The information inesmf.mk is defined in form of variables. In fact, syntacticatlgmf.mk is a makefile fragment
and can be imported by an application specific makefile viarttlede command. All the variables iasmf.mk
start with the ESMF " prefix to prevent conflicts. The information @smf.mk is fully specified and is not affected
by any variables set in the user’s environment.

The information defined iesmf.mk includes Fortran compiler and linker, as well as C++ conmled linker. It
further includes the recommended Fortran and C++ specifippder and linker flags for building ESMF applications.
One way of using thesmf.mk is to glean the necessary information from it. This inforimatcan then be used
either directly on the command line when compiling a usetiagfion, or to hardwire the settings into the application
specific build system. However, the recommended ussoff.mk is to include this file in the application specific
makefile directly via thénclude command.

TheMakefile template below demonstrates how a user build system cannstraoted to leverage tresmf.mk

file. In practice, most user build systems will be more compldowever, this template does show that the added
complexity introduced by usingsmf.mk is minimal. Examples of how to use this build system in reialiaser
scenarios can be found in the external demos.

The advantages of usiregmf.mk , over hard coding suitable compiler and linker flags intouker build system
directly, are robustness and portability. Robustness aequence of the fact that everything definedsmf.mk
corresponds to the exact settings used during the ESMRiltmald (consistency) and during the ESMF test suite
build. Usingesmf.mk thus guarantees that the user application is build in theteseane manner as the ESMF test
suite applications that undergo strict regression testefgre every ESMF release. Portability means that a uskt bui
system, which useesmf.mk in the way the templat®akefile = demonstrates, will function as expected on any
system where ESMF was successfully installed and testéldioutithe need of modifying anything. Eveegmf.mk

is generated during a specific ESMF installation using thelE&sted settings for the host platform.

BHAHHHHH AR R BHAHHHHHHH R

14

http://www.earthsystemmodeling.org/users/code_examples/external_demos/external_demos.shtml

Makefile template for user ESMF application, leveragin g esmf.mk mechanism
HHEHHH T R HHHHEHHEH T

BHARHHHHHHHHHHHH AR R R AR A A AR AR R R BHAHHH A

Finding and including esmf.mk ###HHHHHHHHHHHH HHAHH R AR AR R
Note: This fully portable Makefile template depends on fin ding environment

variable "ESMFMKFILE" set to point to the appropriate "esm f.mk" file,

as is discussed in the User’'s Guide.

However, you can still use this Makefile template even if th e person

that installed ESMF on your system did not provide for a mech anism to

automatically set the environment variable "ESMFMKFILE" . In this case

either manually set "ESMFMKFILE" in your environment or ha rd code the

location of "esmf.mk" into the include statement below.

Notice that the latter approach has negative impact on port ability.

ifneq ($(origin ESMFMKFILE), environment)
$(error Environment variable ESMFMKFILE was not set.)
endif

include $(ESMFMKFILE)

HH B R R HH B
Compiler and linker rules using ESMF_ variables supplie d by esmf.mk ###H#HHHE

.SUFFIXES: .f90 .F90 .c .C

.fo0:

$(ESMF_F90COMPILER) -c $(ESMF_F90COMPILEOPTS) $(ESMF_F90COMPILEPATHS) \
$(ESMF_F90COMPILEFREENOCPP) $<

$(ESMF_F90LINKER) $(ESMF_F90LINKOPTS) $(ESMF_F90LINKP ATHS) \
$(ESMF_F9OLINKRPATHS) -0 $@ $*.0 $(ESMF_F90ESMFLINKLIBS)

.F9O0:

$(ESMF_F90COMPILER) -c $(ESMF_F90COMPILEOPTS) $(ESMF_FO0COMPILEPATHS) \
$(ESMF_F90COMPILEFREECPP) $(ESMF_F90COMPILECPPFLAGS}<

$(ESMF_F9O0LINKER) $(ESMF_F90LINKOPTS) $(ESMF_F90LINKP ATHS) \
$(ESMF_FI0LINKRPATHS) -0 $@ $*.0 $(ESMF_F90ESMFLINKLIBS)

.C.

$(ESMF_CXXCOMPILER) -¢ $(ESMF_CXXCOMPILEOPTS) \
$(ESMF_CXXCOMPILEPATHSLOCAL) $(ESMF_CXXCOMPILEPATHS)
$(ESMF_CXXCOMPILECPPFLAGS) $<

$(ESMF_CXXLINKER) $(ESMF_CXXLINKOPTS) $(ESMF_CXXLINKRATHS) \
$(ESMF_CXXLINKRPATHS) -0 $@ $.0 $(ESMF_CXXESMFLINKLIBS)

.C:

$(ESMF_CXXCOMPILER) -¢ $(ESMF_CXXCOMPILEOPTS) \
$(ESMF_CXXCOMPILEPATHSLOCAL) $(ESMF_CXXCOMPILEPATHS)
$(ESMF_CXXCOMPILECPPFLAGS) $<

$(ESMF_CXXLINKER) $(ESMF_CXXLINKOPTS) $(ESMF_CXXLINKRATHS) \

15

$(ESMF_CXXLINKRPATHS) -0 $@ $.0 $(ESMF_CXXESMFLINKLIBS)

B R B R B B T R B T B T R HHEAHHHH R R R R A
Sample targets for user ESMF applications ##H####HHHHHE FHIHHHHH R

all: esmf_UserApplication esmc_UserApplication
esmf_UserApplication:
esmc_UserApplication:

BHAHHHHH AR R BHAHHHHHHH AR

7 Using Bundled ESMF Applications

ESMF comes with a set of bundled applications in the form ahdard command line tools. These applications
include convenient access to general information aboutSMEinstallation, and regrid weight file generation. This
section provides assistance with respect to building anding the bundled applications.

There are two ways a user may choose to build and access tdedUESMF applications. Users that prefer not to
go through the full ESMF installation process have the apt@mbuild the bundled applications inside of the ESMF
source tree, very similar to how the unit tests, system tstisexamples are built. This option is outlined in section
[5.4.6 and should only be considered by users that want quioksa to the applications and are not interested in a
sharable installation or the development of portable t£dpd makefiles that use the applications. Users interésted
the latter should consider the more standard second optitined below.

The bundled ESMF applications are built automatically i@ pnocess of installing ESMF following the instructions
given in section 818. On systems that offer system-wide E$idfallations (e.g. via modules or similar mechanisms)
the user need not worry about the build and installationildet@nce installed, the applications are accessible tijitou
their precise location on the system. For this purpuse ed&MF installation provides a file namedmf.mk that
contains the variablESMF_APPSDIRwvhich specifies the precise application path.

Theesmf.mk mechanism used for application access is the same as thescrebed in sectiohl 6 for writing robust
and portable user makefiles for building and linking useriapfions against an ESMF installation. One feature of
theesmf.mk mechanism is that only one single piece of information mestiown about an ESMF installation to
use it, and that is the location of fitsmf.mk itself. The location of this file should be documented by theypthat
installed ESMF on the system. We recommend that a single E§MEific environment variable ESMFMKFILE be
provided by the system that points to #mf.mk file. See section 818 for the related discussion aimed ateisop
that installs ESMF on a system.

Once the exact location of the bundled ESMF application fileés been determined, either by inspecting the asso-
ciatedesmf.mk file, or by using theeSMF_APPSDIRnakefile variable directly in the user script or makefile, the
applications can be executed following the system speaifesrfor execution. The details will depend on whether
ESMF was built with or without MPI dependency. In the lattase the system specific rules for launching parallel
applications must be followed. System specific executidaildeon this level are outside of ESMF's scope. How-
ever, ESMF does offer specific application use examplesragpie external_demosiodule described online at the
External Demos webpage. For most systems, the MPI versitedE SMF bundled applications can be executed by
a command equivalent to:

16

http://www.earthsystemmodeling.org/users/code_examples/external_demos/external_demos.shtml

mpirun -np X $(ESMF_APPSDIR)/application

whereX specifies the total number of PETs aayblication is the name of the specific ESMF application to be
executed.
All bundled ESMF applications support the standatdhelp’ command line option that prints out information

on its proper use. More detailed instructions of the indiaidapplications are available in the "Applications" sewcti
of theESMF Reference Manual

17

8 Building and Installing the ESMF

This section goes into more detail about how to build andilh#te ESMF software.

8.1 ESMF Download Options

Major releases of the ESMF software can be downloaded bgviolg the instructions on the tHgownload link on
the ESMF website, http://www.earthsystemmodeling.org.

The ESMF is distributed as a full source code tree. You wilchéo compile the code into tHbesmf.a library.
On some platforms a shared libralipesmf.so , is also created. Follow the instructions in the followirgtons
to build the library and link it with your application.

8.2 System Requirements
The following compilers and utilities are required for catimg, linking and testing the ESMF software:

e Fortran90 (or later) compiler;

C++ compiler;

MPI implementation compatible with the above compilers @ae below);

e GNU’s|gcc compiler - for a standard cpp preprocessor impleatmsn;

o [GNU make;

e [Perl - for running test scripts.
Alternatively ESMF can be built using a single-processoidfpass library that comes with ESMF. It allows ESMF
applications to be linked and run in single-process mode.

In order to build html and pdf versions of the ESMF documeatgiATEX| thellatex2htmil conversion utility, and the
Unix/Linux dvipdf utility must be installed.

8.3 Third Party Libraries

Some portions of the ESMF library can offer enhanced caipasiwhen certain third party libraries are available.
This section describes these dependencies and the assomi®ironment settings that allow the user to control them.

8.3.1 LAPACK
ThelLAPACK library is optionally used in the Mesh class to qarte patch recovery regridding weights. This regrid-
ding method requires solving local least squares problantsuses the LAPACIOGELSYsolver.

A few targets are known to always have a vendor-provided LBRAibrary available. Where possible, these are
incorporated into the build environment by default.

The following environment variables enable, and specigérthme and location of the desired LAPACK library:

18

http://www.earthsystemmodeling.org
http://gcc.gnu.org
http://www.gnu.org/software/make/make.html
http://www.perl.com/download.csp
http://www.latex-project.org
http://www.latex2html.org
http://www.netlib.org/lapack

ESMF_LAPACK Possible valuenot set"OFF" ,"mkl" ,"netlib" ,"scsl" , <userstring>(default depends on
system).

not set ESMF will be compiled with LAPACK-dependent features ontepss where the library is located in a
vendor-defined location. On other systems, the default & OF

"OFF" (default on most system) Disables LAPACK-dependent caefygndless of system.

"mkl" Use the Intel MKL library. SetE SMF_LAPACK_LIBSo "-Imkl_lapack -ImklI" , unless itis
already defined in the user environment.
"netlib” (default for PGI) SetESMF_LAPACK_LIBSto "-llapack -lblas" , unless it is already

defined in the user environment.

"scsl" (default for IRIX64) SetESMF_LAPACK_LIBSo"-Iscs" ,unlessitis already defined in the user
environment.

<userstring> Enables LAPACK-dependent code, but does not set a defalHSbIF_LAPACK_LIBSESMF_LAPACK_LIBS
and if requiredESMF_LAPACK_LIBPATHmust be explicitly set in the user environment.

ESMF_LAPACK_LIBPATH Typical value:/usr/local/lib (no default).
Specifies the path where the LAPACK library is located.

ESMF_LAPACK_LIBS Typical value:"-llapack -Iblas" (default is system dependent).

Specifies the linker directive needed to link the LAPACK &by to the application. On some systems, the BLAS
library must also be included.

8.3.2 NetCDF

ESMF provides the ability to read Grid and Mesh data in Net@@mat. The following environment variables enable,
and specify the name and location of the desired NetCDFrijtaad associated header files:

ESMF_NETCDF Possible valuenot set(default),"split" , "standard" , <userstring>.

not set (default) NetCDF-dependent features will be disabled. HEBMF_NETCDF_INCLUDESMF_NETCDF_LIBPATH
andESMF_NETCDF_LIBSnvironment variables will be ignored.

"split* ESMF_NETCDF_LIBS will be set to"-Inetcdff -lnetcdf c++ -Inetcdf" . This op-
tion is useful for systems which have the Fortran and C biyslarchived in seperate library files; the C++
bindings are always in a separate library file. BE&MF_NETLIB_INCLUDEandESMF_NETCDF_LIBPATH
environment variables will also be used, if defined.

"standard" ESMF_NETCDF_LIBS will be set to"-Inetcdf _c++ -Inetcdf" . This option is use-
ful when the Fortran and C bindings are archived togethenénsame library file, alongside the always
separate C++ bindings library file. TEESMF_NETLIB_INCLUDEandESMF_NETCDF_LIBPATHN-
vironment variables will also be used, if defined.

<userstring> If set, ESMF_NETCDF_INCLUDEESMF_NETCDF_LIBPATHand ESMF_NETCDF_LIBS
environment variables will be used, if defined.

ESMF_NETCDF_INCLUDE Typical value:/usr/local/include (no default).
Specifies the path where the NetCDF header files are located.

ESMF_NETCDF_LIBPATH Typical value:/usr/local/lib (no default).
Specifies the path where the NetCDF library file is located.

19

http://www.unidata.ucar.edu/software/netcdf/

ESMF_NETCDF_LIBS Typical value:"-Inetcdf c++ -Inetcdf" (no default).
Specifies the linker directives needed to link the NetCDFalip to the application.

The default value depends on the settinde®MF_NETCDH-or the typical case wheEeSMF_NETCDIFs set
to"standard® ,ESMF_NETCDF_LIBSs set to"-Inetcdf c++ -Inetcdf" . WhenESMF_NETCDF
is set to"split" , ESMF_NETCDF_LIBSs set to"-Inetcdff -Inetcdf c++ -Inetcdf”

8.3.3 Parallel-NetCDF

ESMF provides the ability to write Mesh weights using P&laNetCDF-. The following environment variables enable
and specify the name and location of the desired ParalleaGRE library and associated header files:

ESMF_PNETCDF Possible valuenot set(default),"standard" , <userstring>.
When defined, enables the use of Parallel-NetCDF.

not set (default) PNETCDF-dependent features will be disablee HBMF_PNETCDF_INCLUQESMF_PNETCDF_LIBPA
andESMF_PNETCDF_LIB&nvironment variables will be ignored.

"standard" ESMF_PNETCDF_LIBS will be set to"-lpnetcdf" . The ESMF_PNETCDF_INCLUDE
andESMF_PNETCDF_LIBPATHnvironment variables will also be used, if defined.

<userstring> If set, ESMF_PNETCDF _INCLUDESMF _PNETCDF_LIBPATHindESMF_PNETCDF_LIBS
environment variables will be used.

ESMF_PNETCDF_INCLUDE Typical value:/ust/local/include (no default).
Specifies the path where the Parallel-NetCDF header fildeeabed.

ESMF_PNETCDF_LIBPATH Typical value:/usr/local/lib (no default).
Specifies the path where the Parallel-NetCDF library fil®cated.

ESMF_PNETCDF_LIBS Typical value:"-Ipnetcdf" (no default).
Specifies the linker directives needed to link the PardielCDF library to the application.

8.3.4 PIO

ESMF provides the ability to read and write data in both biremnd NetCDF formats through ParallellO (PIO), a
third-party 10 software library that is integrated in theN#Slibrary. The following environment variable enables PIO
functionalities inside of ESMF.

The PIO code depends on MPI 1/O support by the underlying Millémentation to provide the binary format.
Almost all current MPI implementations support MPI 1/O teetrequired degree. For NetCDF format support the
integrated PIO code dependsB8MF_PNETCDEed 8.313) and/@SMF_NETCDEed 8.3 R) being enabled.

ESMF_PIO Possible valuenot set(default),"internal”

not set (default) PIO-dependent features will be disabled.
"OFF" Disables PIO-dependent code.

“internal” PIO-dependent features will be enabled and will use the Bi@rly that is included and built
with ESMF.

20

http://trac.mcs.anl.gov/projects/parallel-netcdf
http://code.google.com/p/parallelio/

8.3.5 XERCES

ESMF provides the ability to read and write Attribute dataxiNIL file format via the. XERCES C+#+ library. The
following environment variables enable, and specify themeand location of the desired XERCES C++ library and
associated header files:

ESMF_XERCES Possible valuenot set(default),"standard” , <userstring>.

not set (default) XERCES-dependent features will be disabled. HBBIF_XERCES INCLUQESMF_XERCES_LIBPATH
andESMF_XERCES_LIBS®nvironment variables will be ignored.

"standard" ESMF_XERCES_ LIBS will be set to"-Ixerces-c" . TheESMF_XERCES_INCLUD&nd
ESMF_XERCES_LIBPATIdnvironment variables will also be used, if defined.

<userstring> If set, ESMF_XERCES_INCLUDESMF_XERCES_LIBPATHand ESMF_XERCES_LIBS
environment variables will be used, if defined.
ESMF_XERCES_INCLUDE Typical value:/usr/local/include (no default).
Specifies the path where the XERCES C++ header files are thcate

ESMF_XERCES_LIBPATH Typical value:/usr/local/lib (no default).
Specifies the path where the XERCES C++ library file is located

ESMF_XERCES_LIBS Typical value:"-Ixerces-c" (no default).
Specifies the linker directives needed to link the XERCES ({irary to the application.

The default value depends on the settinde&MF_XERCES-or the typical case wheEeSMF_XERCES set
to"standard" ,ESMF_XERCES LIBSs set to"-Ixerces-c"

8.4 ESMF Environment Variables

The following is a full alphabetical list of all environmewdriables which are used by the ESMF build system. In
many cases onlgSMF_DIRmust be set. On Linux and Darwin systeBSMF_COMPILERNdESMF_COMMust
also be set to select the appropriate Fortran and C++ corspiledl MPI implementation. The other variables have
default values which work for most systems.

ESMF_ABI Possible value32, 64,x86 64 32 ,x86 64 small ,x86 64 medium

If a system supports 32-bit and 64-bit (pointer wordsizgjligption binary interfaces (ABIs), this variable can
be set to select which ABI to use. Valid values 82or 64. By default the most common ABI is chosen. On
x86_64 achitectures three additional, more specific ABIrggt are availablex86_64 32 ,x86_64 small
andx86_64 medium .

ESMF_ARRAY_LITE Possible valueTRUE FALSE (default)

Not normally set by user. ESMF auto-generates subroutiag@tes for a wide variety of data arrays of different
ranks, shapes, and types. If no data of rank greater than #Demised, setting this variable to any value will
prevent ESMF from generating interfaces for 5D to 7D arrapsis will shrink the amount of autogenerated
code.

ESMF_BOPT Possible valueg, O(default)

This environment variable controls the build option. To maldebuggable version of the library E&MF_BOPT
to g before building. The default i® (capital oh) which builds an optimized version of the lilyrarlf
ESMF_BOPTs O, ESMF_OPTLEVELan also be set to a numeric value between 0 and 4 to selectificspe
optimization level.

21

http://xerces.apache.org/xerces-c/

ESMF_COMM Possible valuesystem-dependent

On systems with a vendor-supplied MPI communications tibthe vendor library is chosen by default for
communications anBSMF_COMiMeed not be set. For other systems (e.g. Linux or Darwin) &tondé of MPI
implementations is available altSMF_COMMust be set to indicate which implementation is used to build
the ESMF library. SeESMF_COM&atcording to your situation tanpich, mpich2, lam, openmpi or
intelmpi . ESMF_COMMay also be set taser indicating that the user will set all the required flags using
advanced ESMF environment variables.

Alternatively, ESMF comes with a single-processor MPI-ag® library which is the default for Linux and
Darwin systems. To force the use of this bypass libranESNF _COM&tual to "mpiuni".
ESMF_COMPILER Possible valuesystem-dependent

The ESMF library build requires a working Fortran90 and Cemgiler. On platforms that don’t come with
a single vendor supplied compiler suite (e.g. Linux or DaMESMF_COMPILERust be set to select which
Fortran and C++ compilers are being used to build the ESMB&Mb Notice that setting theSMF_COMPILER
variable doesot affect how the compiler executables are located on the mysteSMF_COMPILERto-
gether withESMF_COMMffect the name that is expected for the compiler execesabFurthermore, the
ESMF_COMPILERetting is used to select compiler and linker flags condistéh the compilers indicated.

By default Fortran and C++ compiler executables are expédotbe located in a location contained in the user’s
PATHenvironment variable. This means that if you cannot lodagesbrrect compiler executable via tlvbich
command on the shell prompt the ESMF build system won't firgititer!

There are advanced ESMF environment variables that candzbtasselect specific compiler executables by
specifying the full path. This can be used to pick specific pien executables without having to modify the
PATHenvironment variable.

Use 'gmake info’ to see which compiler executables the ESMifdtsystem will be using according to your
environment variable settings.

To see possible values f&@8SMF_COMPILERcd to SESMF_DIR/build_config and list the directories
there. The first part of each directory name correspondtoukput of 'uname -s’ for this platform. The second
part contains possible values lBEMF_COMPILERN some cases multiple combinations of Fortran and C++
compilers are possible, e.g. therdrigel andintelgcc available for Linux. SettinkeSMF_COMPILER
tointel indicates that both Intel Fortran and C++ compilers are usbéreasntelgcc indicates that the
Intel Fortran compiler is used in combination with GCC's Geempiler.

If you do not find a configuration that matches your situation will need to port ESMF.

ESMF_CXX Possible valueexecutable

This variable can be used to override the default C++ comaild linker front-end executables. The executable
may be specified with absolute path overriding the locatetenined by default from the user’'s PATH variable.

ESMF_CXXCOMPILEOPTS Possible valueflag
This variable can be used to prepend flags to default confizlgs.

ESMF_CXXCOMPILER Possible valueexecutable

This variable can be used to override the default C++ compibmt-end executables. The executable may be
specified with absolute path overriding the location deteeth by default from the user's PATH variable.

ESMF_CXXLINKDIRS Possible valueflag
This variable can be used to prepend directories to defaisti directories.

ESMF_CXXLINKLIBS Paossible valueflag
This variable can be used to prepend libraries to defawdelitibraries.

22

ESMF_CXXLINKOPTS Possible valueflag
This variable can be used to prepend flags to default linkgs fla

ESMF_CXXLINKER Possible valueexecutable

This variable can be used to override the default C++ linkentfend executables. The executable may be
specified with absolute path overriding the location deteeth by default from the user's PATH variable.

ESMF_CXXOPTFLAG Possible valueflag
This variable can be used to override the default C++ opttion flag.

ESMF_DEFER_LIB_BUILD Possible valueON (default),OFF

This variable can be used to override the deferring of thiellmfithe ESMF library. By default, the library is
built after all of the source files have been compiled. Thisesis up the build process. It also allows parallel
compilation of source code when the -j flag is used with gm8&letting this environment variable @FFforces
the library to be updated after each individual compilatibs disabling the ability to use parallel compilation.

ESMF_DIR Possible valueabsolute path

The environment variablESMF_DIRmust be set to the full pathname of the top level ESMF dirgdbefore
building the framework. This is the only environment vatéivhich is required to be set on all platforms under
all conditions.

ESMF_F90 Possible valueexecutable

This variable can be used to override the default FortrarB0piler and linker front-end executables. The
executable may be specified with absolute path overridiaddbation determined by default from the user’s
PATH variable.

ESMF_FO90COMPILEOPTS Possible valueflag
This variable can be used to prepend flags to default conffzilgs.

ESMF_FO90COMPILER Possible valueexecutable

This variable can be used to override the default Fortran@@piler front-end executables. The executable may
be specified with absolute path overriding the location meiteed by default from the user's PATH variable.

ESMF_F90IMOD Possible valueflag
This variable can be used to override the default flag usepdoify the F90 module directory.

ESMF_F90LINKDIRS Possible valueflag
This variable can be used to prepend directories to defalsi directories.

ESMF_F90LINKLIBS Possible valuetlag
This variable can be used to prepend libraries to defaldelifibraries.

ESMF_F90LINKOPTS Possible valueflag
This variable can be used to prepend flags to default linkgs fla

ESMF_F90LINKER Possible valueexecutable

This variable can be used to override the default Fortraim@i front-end executables. The executable may be
specified with absolute path overriding the location deteeth by default from the user's PATH variable.

ESMF_F900OPTFLAG Possible valueflag
This variable can be used to override the default Fortrap®iénization flag.

23

ESMF_INSTALL_BINDIR Possible valuerelative or absolute path

Location into which to install the ESMF apps during instadia. This location can be specified as absolute path
(starting with "/") or relative t&eSMF_INSTALL_PREFIX

ESMF_INSTALL_DOCDIR Possible valuerelative or absolute path

Location into which to install the documentation duringtadation. This location can be specified as absolute
path (starting with "/") or relative t& SMF_INSTALL_PREFIX

ESMF_INSTALL_HEADERDIR Possible valuetelative or absolute path

Location into which to install the header files during inkstédn. This location can be specified as absolute path
(starting with "/*) or relative t&ESMF_INSTALL_PREFIX

ESMF_INSTALL_LIBDIR Possible valuerelative or absolute path

Location into which to install the library files during inf&ion. This location can be specified as absolute path
(starting with "/") or relative t&eSMF_INSTALL_PREFIX

ESMF_INSTALL_MODDIR Possible valuerelative or absolute path

Location into which to install the F90 module files duringtadkation. This location can be specified as absolute
path (starting with "/") or relative t&e SMF_INSTALL_PREFIX

ESMF_INSTALL_PREFIX Possible valuerelative or absolute path

This variable specifies the prefix of the installation pataduduring the installation process accessible thought
the install target. Libraries, F90 module files, header fdesl documentation all are installed relative to
ESMF_INSTALL_PREFIX by default. TheESMF_INSTALL_PREFIX may be provided as absolute path
(starting with "/") or relative t&ESMF_DIR

ESMF_LAPACK Sed831
ESMF_LAPACK_LIBPATH Sed831
ESMF_LAPACK_LIBS Sed8.3N

ESMF_MACHINE Possible value: output @fname -m where available.
Not normally set by user. This variable indicates achitekctietails about the machine on which the ESMF
library is being built. The value of this variable will affewhich ABI settings are available and what they mean.
ESMF_MACHINE set automatically.

ESMF_MPIBATCHOPTIONS Possible valuesystem-dependent
Variable used to pass system-specific queue options to thk fgstem. Typically the queue, project and limits
are set. See sectibn 1011.1 for a discussion of this option.

ESMF_MPILAUNCHOPTIONS Possible valuesystem-dependent
Variable used to pass system-specific options to the MPklatecility. See section 10.1.1 for a discussion of
this option.

ESMF_MPIMPMDRUN Possible valueexecutable
This variable can be used to override the default utilityduselaunch parallel execution of ESMF test applica-
tions in MPMD mode. The executableisEMF_MPIMPMDR UMy be specified with path.

ESMF_MPIRUN Possible valueexecutable

This variable can be used to override the default utilitydutelaunch parallel ESMF test or example applica-
tions. The executable BSMF_MPIRUNnay be specified with path. See secfion 10.1.1 for a discusdithis
option.

24

ESMF_MPISCRIPTOPTIONS Possible valuesystem-dependent
Variable used to pass system-specific options to the first MP| script accessed by ESMF. See sedfion 1D.1.1
for a discussion of this option.

ESMF_NETCDF Sed83P

ESMF_NETCDF_INCLUDE Sed8.3P

ESMF_NETCDF_LIBPATH Sed8.3P

ESMF_NETCDF _LIBS Sed8.3P

ESMF_NO_INTEGER_1 BYTE Possible valueTRUE FALSE (default)
Not normally set by user. Setting this variableQbdlwill prevent ESMF from generating data array interfaces
for data types of 1-byte integers.

ESMF_NO_INTEGER_2_BYTE Possible valueTRUE FALSE (default)
Same aESMF_NO_INTEGER_1 BYThut for 2-byte integers.

ESMF_OPENMP Possible valueON OFF(default is system dependent)
Compiles and links the ESMF library with OpenMP compiler flag

ESMF_OPTLEVEL Possible valuenumerical value
SeeESMF_BOPTor details.

ESMF_OS Possible value: output @ihame -s except when cross-compiling or folNICOS/mpwhereESMF_OS
is Unicos .

Not normally set by user unless cross-compiling. This Vdeandicates the target system for which the ESMF
library is being built. Under normal circumstances, i.e.MESis being build on the target systelBSMF_0OS

is set automatically. However, when cross-compiling foifeetent target systereSMF_OSnust be set to the
respective target OS. For example, when compiling for treeyG¢1l on an interactive X1 nodeSMF_OSwill

be set automatically. However, when ESMF is being crosspileahfor the X1 on a Linux host the user must
setESMF_0OSo Unicos manually in order to indicate the intended target platform.

ESMF_PNETCDF Sed 8.3
ESMF_PNETCDF_INCLUDE Sed8.383
ESMF_PNETCDF_LIBPATH SedB8.38B
ESMF_PNETCDF_LIBS Sed 838

ESMF_PTHREADS Possible valueON(default on most platformspFF

This compile-time option controls ESMF’s dependency onrecfioning Pthreads library. The default option
is set toONwith the exception of IRIX64 and platforms that don't progi@threads. On IRIX64 the use of
Pthreads in ESMF is disabled by default because the Pthlibaaly conflicts with the use of OpenMP on this
platform.

The user can override the default settingg8MF_PTHREADGEN all platforms that provide Pthread support.
Setting theESMF_PTHREADS8nvironment variable t®FF will disable ESMF’s Pthreads feature set. On
platforms that don't support Pthreads, e.g. IBM BlueGer®/ICray XT3, the defaulOFF setting cannot be
overridden!

25

ESMF_SITE Possible valuesite string default

Build configure file site hame or the value default. If not shgn the value of default is assumed. When
including platform-specific files, this value is used as thigdtpart of the directory name (parts 1 and 2 are the
ESMF_OS value and ESMF_COMPILER value, respectively.)

The Sourceforgesmfcontrib repository contains makefiles which have already been ouséal for cer-
tain machines. If one exists for your site and you wish to @isdawnload the corresponding files into the
build_contrib directory and seESMF_SITEto your location (which corresponds to the last part of the
directory name). See the Sourceforge|site http://sourgefoet/projects/esmfcontrib for more information.

ESMF_TESTEXHAUSTIVE Possible valueON OFF(default)
Variable specifying how to compile the unit tests. If settte valueON then all unit tests will be compiled and
will be executed when the test is run. If unset or set to angrothlue, only a subset of the unit tests will be
included to verify basic functions. Note that this is a colepime selection, not a run-time option.
ESMF_TESTFORCEOPENMP Possible valueON OFF (default)
The ONsetting enforces usage of OpenMP compiler flags when bgilHBMF test applications. This allows
testing of user-level OpenMP usage even Vii®MF_OPENM$et toOFF
ESMF_TESTHARNESS_ ARRAY Possible valuetest harness make targ@tefault not set)

Variable specifying the test harness makefile target foathn@y class. If this variable is not specified, a default
test scenario will be run for the array class. See the ESMEnaoé Developer’s Guide for instructions for
selecting other test harness scenarios.

ESMF_TESTHARNESS_ FIELD Possible valuetest harness make targ@tefault not set)

Variable specifying the test harness makefile target fofigie class. If this variable is not specified, a default
test scenario will be run for the field class. See the ESMFv&wé Developer’'s Guide for instructions for
selecting other test harness scenarios.

ESMF_TESTMPMD Possible valueON OFF(default)
Variable specifying whether to run MPMD-style tests, i.esttapplications that start up as multiple separate
executables.

ESMF_TESTSHAREDOBJ Possible valueON OFF (default)
Variable specifying whether to run shared object tests.s Thquires that the compute environment supports
shared objects, and that the ESMF library is available imfof a shared library.

ESMF_TESTWITHTHREADS Possible valueON OFF(default)

If this environment variable is set @Nbeforethe ESMF system tests are build they will activate ESMF ttirea
ing in their code. Specifically each component will be exeduising ESMF single threading instead of the
default non-threaded mode. The difference between naattad and ESMF single threaded execution should
be completely transparent. Notice that the setting8MF_TESTWITHTHREADM®esnot alter ESMF's de-
pendency on Pthreads but tests ESMF threading featurasgding system tests. An ESMF library that was
compiled with disabled Pthread features (via E®@MF_PTHREAD#®ariable) will produce ESMF error mes-
sages during system test execution if the system tests wanpiled withESMF_TESTWITHTHREADR®t to

ON

ESMF_XERCES Sed8.35
ESMF_XERCES_INCLUDE Sed8.35
ESMF_XERCES_LIBPATH Sed8.3b

26

http://sourceforge.net/projects/esmfcontrib

ESMF_XERCES_LIBS Sed8.35

Environment variables must be set in the user’s shell or weaéiimg gmake. It is1otnecessary to edit ESMF makefiles
or other build system files to set these variables. Here ixample of setting an environment variable in the csh/tcsh
shell:

setenv ESMF_ABI 32
In bash/ksh shell environment variables are set this way:
export ESMF_ABI=32
Environment variables can also be set from the gmake comiirend

gmake ESMF_ABI=32

8.5 Supported Platforms

The following two tables list various combinations of emriment variable settings used by the ESMF build system.
A default value in the compiler column indicates the vendor comp#lempi value in the comm column indicates
the vendor MPI implementation.

The first table lists the exact combinations which are testgdlarly and are fully supported. The second table lists
all possible combinations which are included in the builstsyn.

Fully tested combinations (See€ http://www.earthsystemmodeling.org/downloatfptms/ for the most up-to-date
table of supported combinations.)

27

http://www.earthsystemmodeling.org/download/platforms/

Cray XT4
Cray XT4
Cray XT5
Cray XT5

IBM Bluegene
IBM SP

Mac Xeon (64)
Mac Xeon (64)

Mac Xeon (64)
PC Xeon (64)

PC Xeon (64)

PC Xeon (64)

PC Xeon (64) Cluster
PC Xeon (64) Cluster
PC Xeon (64) Cluster

PC Xeon (64) Cluster
PC Xeon (64) Cluster
PC Xeon (64) Cluster
PC Xeon (64) Cluster

PC Xeon (64) Cluster
PC Xeon (64) Cluster
SGI Altix (ia64)

SGI Altix ICE

SGI Altix XE Cluster
SGI Altix XE Cluster
SGI Altix XE Cluster
SGI Altix XE Cluster

ESMF_OS
Unicos
Unicos
Unicos
Unicos
Linux
AIX
Darwin
Darwin

Darwin
Linux

Linux

Linux

Linux
Linux
Linux

Linux
Linux
Linux
Linux

Linux
Linux
Linux
Linux
Cygwin
Cygwin
MinGW
MinGW

ESMF_COMPILER

intel

e]

intel

pgi

xIf
default

g95

gfortran

nag
g95

gfortran

nag

g95
gfortran
intel

intel

pyi
gfortran
intel

nag
pyi
intel
intel
g95
gfortran
intel
intelcl

ESMF_COMM
mpi 64
mpi 64
mpi 64
mpi 64
mpi 32
mpi 32,64
mpiuni 32
mpich2 64
mvapich2
mpiuni 64
mpich2 64
mvapich2
openmpi
mpich2 64
mvapich2
openmpi
mpiuni 64
mpich2
mvapich2
mvapich2 64
mvapich2 64
mpich2 64
mvapich2
mvapich2 64
mvapich2 64
mvapich2 64
intelmpi 64
openmpi
mvapich2
mpiuni 64
mvapich(vl) 64
mpi 64
mpi 64
mpiuni 32
mpiuni 32
msmpi 64
msmpi 64

ESMF_ABI

F90 compiler
ftn/ifort 11.1.046
ftn/pgf9010.3-0
ftn/ifort 11.1.046
ftn/pgf9010.3-0
mpxIf9011.1.0.3
mpxIf90_r12.1.0.8
0950.92(4.0.3)
gfortran4.4.2

nagfors.2(711)
0950.92(4.0.3)

gfortran4.4.0

nagfors.2(668)

0950.92(4.0.3)
gfortrana.4.2
ifort 11.1.059

ifort 11.1.072
pgf9010.6-0

gfortrana.s.0
ifort 10.1.017

nagfors.2(638)
pgf9010.1-0
ifort 11.0.083
ifort 10.1.021
0950.92(4.1.1)
gfortrana.3.4
ifort 11.1.067
ifort 11.1.067

C++ compiler
CClicpci1.1.046
CC/pgCcCio0.3-0
CClicpci1.1.046
CC/pgCcCu10.3-0
mpxIC9.0.0.3
mpCC_r10.1.0.6
g++4.2.1
g+t+4.4.2

g++4.2.1
g++4.4.0

g++4.4.0

g++4.4.0

g++4.1.2
g++4.4.2
icpC11.1.059

iCPC11.1.072
pgCC10.6-0
g++4.5.0

icpC10.1.017

g++4.1.2
pgCC10.1-0
icpC11.0.083
iCPC10.1.021
g++4.3.4
g++4.3.4

icl 11.1.067

cl 14.00.50727.762

All possible options Where multiple options exist, and the default is indepemndé ESMF_MACHINEhe default

value is inbold:

28

ESMF_OS
AIX
Cygwin
Cygwin
Darwin
Darwin
Darwin
Darwin
Darwin
Darwin
Darwin
Darwin
IRIX64
Linux
Linux
Linux

Linux

Linux

Linux

Linux
Linux
Linux
Linux

Linux

Linux
Linux
MinGW
MinGW
OSF1
SunOS
Unicos
Unicos
Unicos

ESMF_COMPILER

default
g95
gfortran
absoft
g95
gfortran
intel
intelgcc
nag

xIf
xlfgcc
default
absoft
absoftintel
g95

gfortran
intel
intelgcc

lahey
nag
nagintel
pathscale

pgi

pgigcc
xIf

intel
intelcl
default
default
default
intel
pyi

mpiuni,

mpiuni,

ESMF_COMM

mpi,user
mpiuni,mpich,mpich2,lam,openmpi,user
mpiuni,mpich,mpich2,lam,openmpi,user
mpiuni,mpich,mpich2,lam,openmpi,user
mpiuni,mpich,mpich2,lam,openmpi,user
mpiuni,mpich,mpich2,mvapich2,lam,openmpi,user
mpiuni,mpich,mpich2,lam,openmpi,user
mpiuni,mpich,mpich2,lam,openmpi,user
mpiuni,mpich,mpich2,lam,openmpi,user
mpiuni,mpich,mpich2,lam,openmpi,user
mpiuni,mpich,mpich2,lam,openmpi,user

mpi,user
mpiuni,mpich,mpich2,mvapich2,lam,openmpi,user
mpiuni,mpich,mpich2,lam,openmpi,user
mpiuni,mpich,mpich2,mvapich2,lam,openmpi,user

mpiuni,mpich,mpich2,mvapich2,lam,openmpi,user

mpiuni,mpi,mpich,mpich2,mvapich2,lam,openmpi,
user,intelmpi,scalimpi

mpiuni,mpi,mpich,mpich2,lam,openmpi,
user,intelmpi

mpiuni,mpich,mpich2,mvapich2,lam,openmpi,user
mpiuni,mpich,mpich2,mvapich2,lam,openmpi,user
mpiuni,mpich,mpich2,lam,openmpi,user
mpiuni,mpich,mpich2,lam,openmpi,user

mpiuni,mpich,mpich2,mvapich2,lam,openmpi,user
scalimpi
mpiuni,mpich,mpich2,lam,openmpi,user
mpiuni, mpi,user
mpiuni,msmpi,user
mpiuni,msmpi,user

mpiuni, mpi,user
mpiuni, mpi,user
mpiuni, mpi,user
mpiuni, mpi,user

mpiuni, mpi,user

ESMF_ABI
32, 64
32, 64
32, 64
32, 64
32, 64
32, 64
32, 64
32, 64
32, 64
32
32
32, 64
32, 64
32, 64
32, 64, ia64 6 4,
x86 64 32, x86 64 small,
x86_64 medium
32, 64, iab4_6 4,
x86_64_ 32, x86_64_small,
x86_64 medium
32, 64, ia64_6 4,
x86 64 32, x86 64 small,
x86_64 medium
32, 64, iab4_64,
x86_64 32, x86 64 small,
x86_64 medium
32
32
32
32, 64, x86_64_32,
x86 64 small, x86 64 med
32, 64, x86_64 _32,
x86_64 small, x86_64 med
32
32
32, 64
32, 64
64
32, 64
64
64
64

Building the library for multiple architectures or optioasthe same time is supported; building or running the tasts o
examples is restricted to one platform/architecture aha tiThe output from the test cases will be stored in a separate
directories so the results will be kept separate for difieegchitectures or options.

29

8.6 Building the ESMF Library

GNU make is required to build the library. On some systensilill be just the commanthake. On others it might
be installed agmake or evengnumake . In any event, use the —version option with the make commadeétermine
if it is GNU make.

Build the library with the command:
gmake

Makefiles throughout the framework are configured to alloersiso compile files only in the directory whegmake

is entered. Shared libraries are rebuilt only if necessi@raddition the entire ESMF framework may be built from
any directory by enteringmake all , assuming that all the environmental variables are seectiyras described in
Sectiori 8.4.

The makefiles are also configured to allow multiple make targgebe compiled in parallel, via the gmake -j flag. For
example, to use eight parallel processes to build the jbrese -j8:

gmake -j8 lib
The parallel compilation feature dependsE&8MF_DEFER_LIB_BUILD=ONthe default) so that the library build

will be deferred until all files have been compiled.

The -j option should only be used during the creation of thialiy. The test base and examples will not work correctly
with -j set larger than 1.

Users may also run examples or execute unit tests of spetdfises by changing directories to the desired class
examples ortests directories and enteringmake run_examples orgmake run_unit_tests , respec-
tively. For non-multiprocessor machines, uni-procesangdts are available @gnake run_examples_uni or
gmake run_unit_tests_uni

8.7 Building the ESMF Documentation

The ESMF source documentation consists oE&MF User's Guideand anESMF Reference Manual for Fortran

The tarballs on the ESMF website for ESMF versions 3.0.1 atef o not contain the ESMF documentation files.
The documentation is available on the ESMF website in htngdfrform and most users should not need to build it
from the source.

If a user does want to build the documentation, they will needbwnload theesmf module from the ESMF Source-
Forge repository (see section 5]1.1. Latex and latex2htnst fme installed.

To build documentation:
gmake doc ! Builds the manuals, including pdf and html.

The resulting documentation files will be located in the el directory SESMF_DIR/doc

8.8 Installing the ESMF

The ESMF build system offers the standamdtall target to install all necessary files created during thedbuil
process into user specified locations. The installatiorwguiare will also install the ESMF documentation if it has

30

been built successfully following the procedure outlinbd\we.

The installation location can be customized using&EBMF_environment variables:

e ESMF_INSTALL_ PREFIX- prefix for the other five variables.

ESMF_INSTALL HEADERDIR where to install header files.

ESMF_INSTALL_LIBDIR —where to install library files.

ESMF_INSTALL_MODDIR- where to install Fortran module files.

ESMF_INSTALL_BINDIR — where to install application files.

ESMF_INSTALL_DOCDIR- where to install documentation files.

Sectiorf 8.4 describes what each of these environment Wesidbes and how to set them.

Install ESMF with the command:
gmake install

Check the ESMF installation with the command:
gmake installcheck

Advice to installers.Complete the installation of ESMF by defining a single ESMEGfic environment variable,
namedESMFMKFILEThis variable shall point to thesmf.mk file that was generated during the installation process.
Systems that support multiple ESMF installations via managnt software (e.gnodules, softenv,).shall set/reset
variableESMFMKFILEas part of the configuration.

By default file esmf.mk is located next to the ESMF library file in directoBSMF_INSTALL_LIBDIR . Con-
sequently, unlesesmf.mk has been moved to a different location after the instalatthe correct setting for
ESMFMKFILEs $(ESMF_INSTALL_LIBDIR)/esmf.mk

Rationale. The only piece of information that is needed to use an ESMHEliasion is the exact location of the
associatecesmf.mk file. This file contains all of the relevant settings and flauast tallow a user to build their

application against the ESMF installation. (See sect®for details abouesmf.mk .) Standardizing the mechanism
by which the location oésmf.mk is made available to the user by the system will help usetsdrlésign of portable

application build systems.

9 Porting the ESMF

This section goes into more detail about the ESMF build systed how to port the ESMF software to new platforms.

9.1 The ESMF Build System

For most users the description of the build system in prevgrctions should be sufficient. Some users, however,
may wish to have a more detailed knowledge of the make sysither éor configuring different build options or for
porting to unsupported platforms.

31

9.1.1 General structure

The main components of the build system are:

e Build directories with makefile fragments
There are two directories containing makefile fragment filgsd by the ESMF build system.

Thebuild directory contains the generic makefile fragmentdidenmon.mk that is included by the top level
makefile in the source tree. Theommon.mk contains generic build system settings and build rules used
across all platforms. A user should have no reason toceditmon. mk.

The build_config directory contains subdirectories with makefile fragmebisld_rules.mk) for
each supported platform defining compilers, compiler flagsthe various other definitions that are necessary
to build on each platform. One of thmiild_rules.mk files will be included by théuild/common.mk

file depending on the values of the environment variables ESD5, ESMF_COMPILER and ESMF_SITE.
See below for more details on environment variables.

e Environment variables

Environment variables with the prefkSMF_are used to pass user specified information to the ESMF build
system. A full list of ESMF_environment variables is provided in section 8.4 of thisudoent.

Most environment variables are optional and the ESMF buyjifdesn will use default settings if it finds these

variable unset. One piece of information that must alwaygroeided by setting the respective environment
variable is the root of the ESMF directory. There are threée aesource codes the build system supports. All
need environment variables set to point to their top levet@® code directories.

ESMF Library
To build the ESMF library, ESMF_DIR needs to be set to the ¢l ESMF library source code directory.

Implementation Report

The build system needs ESMF_IMPL_DIR set to the top levelamaode directory of the Implementation
Report source tree to build the report and to build and rureXaenples.

EVA Applications

An EVA source code tree does not contain a copy of the ESMF myistem. Instead it uses a copy
found in an ESMF library source code tree. Building the EVAlagations requires that ESMF_EVA_DIR
and ESMF_DIR be set. ESMF_EVA_DIR has to be set to the topctdirg of the EVA source code.
ESMF_DIR has to be set to the top directory of an ESMF sourde tee.

o Makefiles

Every source tree containgaakefile in its top level directory. Thisnakefile includes thecommon.mk
file from thebuild directory which in turn includes the platform specifigild_rules.mk file from one

of the build_config subdirectories. The top levebtakefile contains makefile settings specific for the
source code that it is found in.

Each directory in the source tree contaimmakefile which includes the top levehakefile . These local
makefiles include definitions that allow the local files andutaents to be built.

9.1.2 Build configuration

A single makefile or makefile fragment from the build systememeconstitutes a complete set of build rules and
settings. Starting from the local makefile, successiveuelcommands are used to string together makefiles and
makefile fragments to create a complete system of build anessettings. Configuration of the build system is done

32

by including a configuration makefile fragment. A configusatfor a specific machine or compiler is referred to as a
site configuration.

The string of files included is fairly short. Makefiles beldwrettop level makefile include the top level makefile. The
top level makefile includebuild/common.mk and therbuild/common.mk includes a configuration file from
the build_config directory. The configuration files in tHauild_config directory contain the platform and
site specific build settings. The os, compiler and site tHiée @onfigures is determined by its name. The configuration
makefile fragments follow the naming convention

build_config/ESMF_OS.ESMF_COMPILER.ESMF_SITE/build_ rules.mk

whereESMF_OSESMF_COMPILERNd ESMF_SITE are environment variables either set by the user or given
default values by the build systerESMF_OSs the target operating system. If the build is performadhe target
systemESMF_OSwill typically have the value returned by the commamthme -s. ESMF_COMPILERs the
compiler nameESMF_SITE, if set, is generally the current machine name, the locatiothe organization (e.g. mit,
cola). If there are no site specific files for a particularfolah, thenESMF_COMPILERNdESMF_SITEwill be set
todefault . Examples:

! Default configuation for IBM AIX systems
build_config/AlX.default.default/build_rules.mk

! Linux configuation using lahey compilers.
build_config/Linux.lahey.default/build_rules.mk

9.1.3 Source code configuration

Some of the ESMF C++ and Fortran source files contain prepsocalirectives to configure the source code for
specific platforms. The directives are included in the sewade and are pre-processed before the source code is
compiled. The directives are used to determine among dtivegg, the size of variable types.

The ESMF build system provides preprocessor directivdsSMC_Conf.h andESMF_Conf.inc files that are
included in the source code. These files are located in

build_config/ESMF_OS.ESMF_COMPILER.ESMF_SITE/ESMC_C onf.h
build_config/ESMF_OS.ESMF_COMPILER.ESMF_SITE/ESMF_C onf.inc

whereESMF_OSESMF_COMPILERNAESMF_SITE are environment variables set by the user or given default
values be the build system. Based on the settings of these@ement variables the build system provides a path to
the correct files during source code compilation.

9.2 Porting the ESMF to New Platforms

The ESMF build system can be ported to other Unix platformadnling a new platform specific makefile fragment and

two associated configuration files. These filegild_rules.mk , ESMC_Conf.h, ESMF_Conf.inc) must be

placed into a new subdirectory of thaild_config directory, following theeSMF_OS.ESMF_COMPILER.ESMF_SITE
naming convention.

When porting to a new platform it is often helpful to startlwé copy of the configuration of an existing ESMF port.
You may, for example, want to start with a copy of théld_config/Linux.g95.default directory when
working on a new Linux configuration.

33

9.2.1 Customizing thebuild_rules.mk fragment

The purpose of thbuild_rules.mk makefile fragment is to customize the build procedure forezEig platform.
The customization is done via makefile variables. The mma@kefile at the top level of the ESMF directory
structure first includes threommon.mk makefile fragment. This common makefile fragment defineggzlaumber of
variables, setting them either to generally valid defaalties or to specific values the user has set in their enviraohme
usingESMF_style environment variables.

The platform specifibuild_rules.mk makefile fragment is included bgommon.mk after the variables have
beeninitialized, bubeforeany rules are defined tommon.mkusing these variables. This giviesgild_rules.mk
a chance to modify these variables as it may be necessargamacodate platform specific properties.

Fortunately only a very small subset of variables pre-ddfinecommon.mk typically need to be modified or over-
ridden inbuild_rules.mk with platform specific settings. However, there are sométbas thaimustbe set in
everybuild_rules.mk file. These are variables that are not pre-senmmon.mk.

ESMF_CXXDEFAULT Default C++ compiler to be used on this platform. This valéakill be used bycommon.mk
to set the associatdeSMF_CXXariables.

ESMF_CXXCOMPILER_VERSION Command that when executed will provide information abbatitersion of
the C++ compiler to stdout.

ESMF_F90DEFAULT Default Fortran compiler to be used on this platform. Thisakgle will be used bgommon.mk
to set the associatdeSMF_F90variables.

ESMF_FO90COMPILER_VERSION Command that when executed will provide information abbetyersion of
the F90 compiler to stdout.

ESMF_MPIRUNDEFAULT Default MPI job launch facility to be used on this platformhi3 variable will be used
by common.mk to set the associatdeSMF_MPIRUNariables.

The following is a complete alphabetical list of variableattare pre-set ioommon.mkbeforebuild_rules.mk is
included. Some of these variables corresporid3MF_environment variables while others have a more complicated
dependency on the environment variables set by the user.

ESMF_ABI

ESMF_APPSDIR

ESMF_AR

ESMF_ARCREATEFLAGS

ESMF_ARCREATEFLAGSDEFAULT

ESMF_ARDEFAULT

ESMF_AREXTRACTFLAGS

ESMF_AREXTRACTFLAGSDEFAULT

ESMF_ARRAY_LITE

ESMF_BOPT

ESMF_BUILD

34

ESMF_BUILD_DOCDIR
ESMF_COMM
ESMF_COMPILER
ESMF_CONFDIR

ESMF_CPP
ESMF_CPPDEFAULT
ESMF_CXXCOMPILECPPFLAGS
ESMF_CXXCOMPILEOPTS
ESMF_CXXCOMPILEPATHS
ESMF_CXXCOMPILEPATHSLOCAL
ESMF_CXXCOMPILER
ESMF_CXXCOMPILERDEFAULT
ESMF_CXXESMFLINKLIBS
ESMF_CXXLINKER
ESMF_CXXLINKERDEFAULT
ESMF_CXXLINKLIBS
ESMF_CXXLINKOPTS
ESMF_CXXLINKPATHS
ESMF_CXXLINKRPATHS
ESMF_CXXOPTFLAG
ESMF_CXXOPTFLAG_G
ESMF_CXXOPTFLAG_O
ESMF_CXXOPTFLAG_X
ESMF_DIR

ESMF_DOCDIR

ESMF_EXDIR
ESMF_F90COMPILECPPFLAGS
ESMF_F90COMPILEFIXCPP
ESMF_F90COMPILEFIXNOCPP
ESMF_F90COMPILEFREECPP
ESMF_F90COMPILEFREENOCPP

35

ESMF_F90COMPILEOPTS
ESMF_F90COMPILEPATHS
ESMF_F90COMPILEPATHSLOCAL
ESMF_F90COMPILER
ESMF_F90COMPILERDEFAULT
ESMF_F90ESMFLINKLIBS
ESMF_F90IMOD
ESMF_F90LINKER
ESMF_F90LINKERDEFAULT
ESMF_F9O0LINKLIBS
ESMF_F90LINKOPTS
ESMF_FO0LINKPATHS
ESMF_FO0LINKRPATHS
ESMF_FO90OMODDIR
ESMF_F900OPTFLAG
ESMF_F900PTFLAG_G
ESMF_F900OPTFLAG_O
ESMF_F900OPTFLAG_X
ESMF_GREPV

ESMF_INCDIR
ESMF_INSTALL_BINDIR
ESMF_INSTALL_BINDIR_ABSPATH
ESMF_INSTALL_DOCDIR
ESMF_INSTALL_DOCDIR_ABSPATH
ESMF_INSTALL_HEADERDIR
ESMF_INSTALL_HEADERDIR_ABSPATH
ESMF_INSTALL_LIBDIR
ESMF_INSTALL_LIBDIR_ABSPATH
ESMF_INSTALL_MODDIR
ESMF_INSTALL_MODDIR_ABSPATH
ESMF_INSTALL_PREFIX

36

ESMF_INSTALL_PREFIX_ABSPATH
ESMF_LDIR

ESMF_LIBDIR
ESMF_LOCOBJDIR
ESMF_MACHINE
ESMF_MODDIR
ESMF_MPIBATCHOPTIONS
ESMF_MPILAUNCHOPTIONS
ESMF_MPIMPMDRUN
ESMF_MPIMPMDRUNDEFAULT
ESMF_MPIRUN
ESMF_MPIRUNDEFAULT
ESMF_MPISCRIPTOPTIONS
ESMF_MV
ESMF_NO_INTEGER_1_BYTE
ESMF_NO_INTEGER_2_BYTE
ESMF_OS

ESMF_OPTLEVEL
ESMF_PTHREADS
ESMF_PTHREADSDEFAULT
ESMF_RANLIB
ESMF_RANLIBDEFAULT
ESMF_RM
ESMF_RPATHPREFIX
ESMF_SED
ESMF_SEDDEFAULT
ESMF_SITE

ESMF_SITEDIR
ESMF_SL_LIBLIBS
ESMF_SL_LIBLINKER
ESMF_SL_LIBOPTS

37

ESMF_SL_LIBS_TO_MAKE
ESMF_SL_SUFFIX
ESMF_STDIR
ESMF_TEMPLATES
ESMF_TESTDIR
ESMF_TESTEXHAUSTIVE
ESMF_TESTMPMD
ESMF_TESTWITHTHREADS
ESMF_UTCDIR
ESMF_UTCSCRIPTS
ESMF_WC

9.2.2 CustomizingESMC_Conf.h and ESMF_Conf.inc

The ESMC_Conf.h file is used to define several settings used during compilaifd&eSMF library code written in
C++.

FTN(func) Macro that will correctly expand "func"” to match the Fortsyrmbol convention.

ESMCI_FortranStrLenArg Typedef to match the data type of the 'hidden’ string lengtuanent that Fortran uses
when passing CHARACTER strings.

ESMF_PRESENT(arg) Macro for a boolean expression that returns TRUE if "arg" ipr@&sent” argument passed
from Fortran into C++.

ESMC_POINTER_SIZE Size of C pointer in bytes.
TheESMF_Conf.inc file is used tooptionallydefine two important macros:

ESMF_NO_INITIALIZERS If this macro is defined ESMF will assume that initializerside Fortran derived type
definitions are not supported.

ESMF_SEQUENCE_BUG If this macro is defined ESMF will not use tIBEQUENCEpecifier inside Fortran de-
rived types under certain circumstances.

9.3 Shared Object Libraries

On some platforms, a shared object library is created intimadio the standarch archive library. Shared object li-
braries are libraries that are loaded by the first prograrutbes them. All programs that start afterwards automégical
use the existing shared library. The library is kept in meyaw long as any active program is still using it.

Shared object libraries can be pre-linked to system libsaaind using them can simplify dealing with ESMF’s depen-
dency on Fortran90 and C++ runtime libraries.

38

9.4 Customized SITE Files

In an effort to provide platform specific information for ling ESMF and linking the libraries with your application,
a SourceForge sitesmfcontrib , has been created. To locate the platform makefiles for afgpiastitution, check
out thebuild_config_files using the appropriate CVSROOT. The URL for #&mfcontrib SourceForge
site is:

http://sourceforge.net/projects/esmfcontrib/

Additionally, you may check out all the platform makefilegraents for a particular institution from tiesmfcontrib
site. For example, to check out the available makefile frager platforms at the National Center for Atmospheric
Researchncar , change directories to

$ESMF_DIR/build_config
and use the following CVS command:
cvs -z3 -d:ext:$username@cvs.sourceforge.net:/cvsroot /lesmfcontrib checkout ncar
The following directories will be checked out:

AlX.default.bluesky
Linux.lahey.longs

To build using these makefiles you must set the environmeighlaESMF_SITEto bluesky , orlongs .

At the present time, we have files for the following instituns:

anl Argonne National Laboratory
cola - Center for Ocean-Land-Atmosphere Studies

gsfc - Goddard Space Flight Center
mit - Massachusetts Institute of Technology
ncar - National Center for Atmospheric Research

Users are encouraged to contribute pertinent informatidghéesmfcontrib ~ respository.

10 Validating an ESMF Build

This section goes into more detail about how to run the tedigh are included with the ESMF software, to validate
an ESMF build.

10.1 Running ESMF Self-Tests

Robustness and portability are primary goals of the ESMFeldgwment effort. To ensure that these goals are met,
the ESMF includes a comprehesive suite of tests. They aksting and validation of everything from individual

39

functions to complete system tests. These test suites adehysthe ESMF development team as part of their regular
development process. ESMF users can run the testing soitesrify that the framework software was built and
installed properly, and is running correctly on a particyplatform.

Test targets will compile the ESMF library if it has not aldgadeen built.

10.1.1 Setting up ESMF to run test suite applications

Unless the ESMF library was built in MPI-bypass mode (mpjwail applications compiled and linked against ESMF
automatically become MPI applications and must be exeageich. The ESMF test suite and example applications
are no different in this respect.

Details of how to execute MPI applications vary widely fropstem to system. ESMF uses an mpirun script mecha-
nism to abstract away most of these differences. All ESMFefilktargets that require the execution of applications
do this by launching the application via the executable isipeldn theESMF_MPIRUNariable. ESMF assumes that
an MPI applications can be launched acridggocesses by calling

$(ESMF_MPIRUN) -np N application

and that the output of the application arrives at the caliingll viastdout andstderr

On systems that allow direct launching of MPI application @i suitablempirun facility, ESMF can use it di-
rectly. This is the ESMF default for all those configuratidhat come with a suitablmpirun . In these cases the
ESMF_MPIRUNNvironment variable does not need to be set by the user.

There are systems, however, that allow direct launching Bf pplication but provide a launch mechanism that is
incompatible with ESMF’s assumptions. In these cases alsimpirun wrapper is required. The ESMBcripts
directory contains wrappers for several cases in this clags for interactive POE access on IBM machines and
aprun , as well asyod on Cray machines. The ESMF configurations will access theogpiate wrapper scripts by
default if necessary.

Finally, there are those systems that utilize batch sofiM@access the parallel execution environment. One option
is to execute the ESMF test targets from within a batch sessither interactively or from within a script. In this
case the batch software does not add any additional conypfexiESMF. The same issues discussed above, of how
to launch an MPI application, apply directly.

However, in some cases it is more convenient to execute thé&BBst target on the front-end machine, and have
ESMF access the batch software each time it needs to lauredication. In fact, on IBM systems this is often the
only working option, because the integrated POE systemexélcute each application on the exact same number of
processes specified during batch access, regardless of Aanywways parallel a specific application needs to be run.

Two modes of operation need to be considered for the ESMIlaatess. First, if interactive batch access is available,
it is straight forward to write ampirun script that fulfills the ESMF requirements outlined abovehe TESMF
Jscripts directory contains several scripts that access variowlpbiaunching facilities though interactive LSF.

Second, if interactive batch access is not available, a war®lex scripting approach is necessary. The basic require
ments in this case are that ESMF must be able to launch MPicagtiphs acrossl processes by calling

$(ESMF_MPIRUN) -np N application

that the output of the application will be available in a finmedapplication.stdout after the script finishes,
and that th&eSMF_MPIRUNcript blocks execution untépplication.stdout has become accessible.

40

The ESMF./scripts directory contains scripts of this flavor for a wide variefybatch systems. Most of these
scripts, when called through ESMF, will generate a custedhitemporary batch script for a specific executable "on
the fly" and submit this batch script to the queuing softwaree script then waits for completion of the submitted job,
after which it copies the output, received through a systeacific mechanism, into the prescribed file.

Regardless of whether the batch system access is interamtivot, it is often necessary to specify various system
specific options when calling the batch submission tool. ESitllizes theESMF_MPIBATCHOPTIONShvironment
variable to pass user supplied values to the batch system.

The environment variableSMF_MPISCRIPTOPTIONSs available to pass user specified options to the actual
script specified byESMF_MPIRUNHowever,ESMF_MPISCRIPTOPTIONSvill only be added automatically to
theESMF_MPIRUNall if the specifiedESMF_MPIRUNMan be found in the ESMHFscripts directory.

Finally, the value oESMF_MPILAUNCHOPTIONSpassed to the MPI launch facility by default, i. EEMF_MPIRUN
was not specified by the user. In case the user speEiS&4 MPIRUND be anything else but scripts out of the ESMF
Jscripts directory, it is the user’s responsibility to aB$MF_MPISCRIPTOPTION$ ESMF_MPIRUMNNd/or

to utilize ESMF_MPILAUNCHOPTIONAthin the specified script.

The possibilities covered by the generic scripts providethe ESMF./scripts directory, combined with the
ESMF_MPISCRIPTOPTIONESMF_MPIBATCHOPTIONSNdESMF_MPILAUNCHOPTIONSvironment vari-
ables, will satisfy the majority of common situations. Té@re, however, circumstances for which a customized,
user-provided mpirun script is necessary. One such situatises with the LoadLeveler batch software. LoadLeveler
typically requires a list of options specified in the actuatdh script. This is most easily handled by a script that
produces such a system and user specific script "on the flydthén situation is where certain modules or software
packages need to be made available inside the batch scgpin Ahis is most easily handled by a customized script
the user writes and provides to ESMF via B8MF_MPIRUNMNvironment variable. This will override any default
settings for the configuration and rely on the user providegsinstead.

Users that face the need to write a customized mpirun sangheir parallel execution environment are encouraged to

start with the closest match from the ESMscripts directory and customize it to their situation. The best way t

see how the existing scripts are used on the supportedptetie to go to the http://www.earthsystemmodeling.orgitload/platforms
web page and follow the link for the platform of interest. Ba&est report contains the outputgrhake info , which

lists the settings of thESMF_MPIxxx environment variables.

Furthermore, thesmfcontrib repository on SourceForge hostseripts module that contains scripts that
were customized to certain user environments. These saipt not generic enough to be included in the ESMF
distribution, but users faced with the need to customizeriptsio their environment may find the script collection
onesmfcontrib a valuable resource. Please refer to http://sourcefoegpnojects/esmfcontiib on how to access
esmfcontrib , and thescripts module in particular.

10.1.2 Running ESMF unit tests

The unit tests provided with the ESMF library evaluate tHfaing:

e correctness of individual functions
e behavior of individual modules or classes

e appropriate error handling
Unit tests can be run in either an exhaustive or a non-exivay(stanity check) mode. The exhaustive mode includes
the sanity check tests. Typically, sanity checks for eacMESapability include creating and destroying an object

and testing its basic function using a valid argument sethérexhaustive mode, a wide range of valid and non-valid
arguments are evaluated for correct behavior.

41

http://www.earthsystemmodeling.org/download/platforms/
http://sourceforge.net/projects/esmfcontrib

The following commands are used to build and run the unistesivided with the ESMF:

gmake [ESMF_TESTEXHAUSTIVE=<ON,OFF>] unit_tests
gmake [ESMF_TESTEXHAUSTIVE=<ON,OFF>] unit_tests uni

Thetests_uni target runs the tests on a single processor.t€bes target runs the test on multiple processors.

The non-exhaustive set of unit tests should all pass. Afahist in development, the exhaustive tests do not all pass.
Current problems with unit tests are being tracked and ctedeby the ESMF development team.

The results of running the unit tests can be found in the ¥atig location:
${ESMF_DIR}/test/test${ESMF_BOPT}/${ESMF_OS}.${ESMF _COMPILER}.${ESMF_ABI}.${ESMF_SITE}
For example, if your esmf source files have been placed in:

lusr/local/esmf

If your platform is a Linux uni-processor that has an ingt@llLahey Fortran compiler and ESMF_COMPILER has
been set to lahey, then the build system configuration filehil

build_config/Linux.lahey.default/build_rules.mk
If you want to run a debug version of non-exhaustive unistasien you use these commands from /usr/local/esmf:

setenv ESMF_DIR /usr/local/esmf
gmake ESMF_BOPT=g ESMF_SITE=lahey ESMF_TESTEXHAUSTIVE3FF tests_uni

If you are using ksh, then replace the setenv command with:
export ESMF_DIR=/usr/local/esmf

The results of the unit tests will be in:
lusr/local/esmf/test/testg/Linux.lahey.32.default/

At the end of unit test execution a script runs to analyze é¢isalts.

The script output indicates whether there are any unit &istrés. If any unit tests fail, please check if the failuaes
listed as known bugs in the ESMF release page http://wwthggtemmodeling.org/download/releases.shtmlfor your
platform and compiler. If the failures are not listed pleasatact ESMF Support at esmf_support@list.woc.noaa.gov
Please indicate which unit tests are failing, and attaclothput of the "gmake info" command to the email.

The script output indicates whether there are any unit gélsirés. The following is a sample from the script output:

The unit tests in the following files all pass:

42

http://www.earthsystemmodeling.org/download/releases.shtml
mailto:esmf_support@list.woc.noaa.gov

src/Infrastructure/Array/tests/ESMF_ArrayUTest.F90

src/Infrastructure/ArrayDataMap/tests/ESMF_ArrayDat aMapUTest.F90
src/Infrastructure/Base/tests/ESMF_BaseUTest.F90
src/Infrastructure/FieldBundle/tests/ESMF_FieldBund leUTest.F90
src/Infrastructure/FieldBundleDataMap/tests/ESMF_Fi eldBundleDataMapUTest.F90
src/Infrastructure/Config/tests/ESMF_ConfigUTest.F9 0
src/Infrastructure/DELayout/tests/ESMF_DELayoutUTes t.F90
src/Infrastructure/Field/tests/ESMF_FRoute4UTest.F9 0
src/Infrastructure/Field/tests/ESMF_FieldUTest.F90
src/Infrastructure/FieldComm/tests/ESMF_FieldGather UTest.F90
src/Infrastructure/FieldDataMap/tests/ESMF_FieldDat aMapUTest.F90
src/Infrastructure/Grid/tests/ESMF_GridUTest.F90
src/Infrastructure/IOSpec/tests/ESMF_IOSpecUTest.F9 0
src/Infrastructure/LocalArray/tests/ESMF_ArrayDataU Test.F90
src/Infrastructure/LocalArray/tests/ESMF_ArrayF90Pt rUTest.F90
src/Infrastructure/LocalArray/tests/ESMF_LocalArray UTest.F90
src/Infrastructure/LogErr/tests/ESMF_LogErrUTest.F9 0
src/Infrastructure/Regrid/testssESMF_Regrid1UTest.F 90
src/Infrastructure/Regrid/tests/ESMF_RegridUTest.F9 0
src/Infrastructure/TimeMgr/tests/ESMF_AlarmUTest.F9 0
src/Infrastructure/TimeMgr/tests/ESMF_CalRangeUTest .F90
src/Infrastructure/TimeMgr/tests/ESMF_ClockUTest.F9 0
src/Infrastructure/TimeMgr/tests/ESMF_TimelntervalU Test.F90

src/Infrastructure/TimeMgr/tests/ESMF_TimeUTest.F90
src/Infrastructure/VM/tests/ESMF_VMBarrierUTest.F90
src/Infrastructure/VM/tests/ESMF_VMBroadcastUTest.F 90
src/Infrastructure/VM/tests/lESMF_VMGatherUTest.F90
src/Infrastructure/VM/tests/ESMF_VMScatterUTest.F90

src/Infrastructure/VM/tests/ESMF_VMSendVMRecvUTest. F90
src/Infrastructure/VM/tests/[ESMF_VMUTest.F90
src/Superstructure/Component/tests/ESMF_CplCompCrea teUTest.F90
src/Superstructure/Component/tests/ESMF_GridCompCre ateUTest.FO0

src/Superstructure/State/tests/ESMF_StateUTest.F90

The following unit test files failed to build, failed to exec ute or crashed during execution:
src/Infrastructure/TimeMgr/tests/ESMF_CalendarUTest .F90
src/Infrastructure/VM/tests/ESMF_VMSendRecvUTest.F9 0

The following unit test files had failed unit tests:
src/Infrastructure/Field/tests/ESMF_FRoute8UTest.F9 0
src/Infrastructure/Grid/tests/ESMF_GridCreateUTest. F90
The following individual unit tests fail:

FAIL DELayout Get Test, ESMF_FRoute8UTest.F90, line 139
FAIL Grid Distribute Test, ESMF_GridCreateUTest.F90, lin e 198

43

The stdout files for the unit tests can be found at:
/home/bluedawn/svasquez/script_dirs/daily builds/es mf/test/testO/AlIX.default.64.default

Found 1224 exhaustive multi processor unit tests, 1220 pass and 4 fail.

The following is an example of the output generated when ttesi fails:

ESMF_FieldUTest.stdout: FAIL Unique default Field names T est, FLD1.5.1 & 1.7.1,
ESMF_FieldUTest.F90, line 204 Field names not unique

10.1.3 Running ESMF system tests
The system tests provided with the ESMF library evaluate:

¢ interface agreement between parts of the system

e behavior of the system as a whole

The current system test suite includes tests that perfoyoutareduction operations, redistribution-transposég ha
operations, component creation and intra-grid commuioicaSome of the system tests are no longer compatible with
the current API, but are included in the release for complkete. A complete description of each available system
test and its current compatibility status can be found aE8BIF website, http://www.earthsystemmodeling.org. The
testing and validation page is accessible fromDieeelopmentlink on the navigation bar.

The following commands are used to build and run the syststa:te

gmake [SYSTEM_TEST=xxx] system_tests
gmake [SYSTEM_TEST=xxx] system_tests uni

Thesystem_tests_uni target runs the tests on a single processor. Sifseem_tests target runs the test on
multiple processors.

If a particular SYSTEM_TEST is not specified, then all avaldasystem tests are built and run.

The results of the test can be found in the following location
${ESMF_DIR}/test/test${ESMF_BOPT}${ESMF_OS}.${ESMF _COMPILER}.${ESMF_ABI}.${ESMF_SITE}
For example, if your ESMF source files have been placed in lgoare directory:

~/lesmf
and your platform and compiler configuration is:

Alpha multi-processor using the native compiler

44

http://www.earthsystemmodeling.org

and you want to run an optimized version of system test Si@plpling, then you use these commands from the
directory/esmf .

setenv ESMF_PROJECT <project_name>
gmake ESMF_DIR='pwd' SYSTEM_TEST=ESMF_SimpleCoupling s ystem_tests

If you are using ksh then replace the setenv command with this
export ESMF_PROJECT=<project_name>

The results will be in:
~/esmf/test/testO/OSF1.default.64.default/ESMF_Simp leCouplingSTest.stdout

At the end of system test execution a script runs to analyzegfults.

The script output indicates whether there are any systerfateses. If any system tests fail, please check if thesfais

are listed as known bugs in the ESMF release page http://eavtinsystemmodeling.org/download/releases.shtml for
your platform and compiler. If the failures are not listedade contact ESMF Supportat esmf_support@list.woc.goaa.
Please indicate which system tests are failing, and attecbutput of the "gmake info" command to the email.

The script output indicates whether there are any systerfeikges. The following is a sample from the script output:

The following system tests passed:

src/system_tests/ESMF_CompCreate/ESMF_CompCreateSTe st.F90
src/system_tests/ESMF_FieldExcl/ESMF_FieldExclSTest .F90
src/system_tests/ESMF_FieldHalo/ESMF_FieldHaloSTest .F90
src/system_tests/ESMF_FieldHaloPer/ESMF_FieldHaloPe rSTest.FOO0
src/system_tests/ESMF_FieldRedist/ESMF_FieldRedistS Test.F90
src/system_tests/ESMF_FieldRegrid/ESMF_FieldRegridS Test.F90
src/system_tests/ESMF_FieldRegridMulti’ESMF_FieldRe gridMultiSTest.F90
src/system_tests/ESMF_FieldRegridOrder/ESMF_FieldRe gridOrderSTest.F90
src/system_tests/ESMF_FlowComp/ESMF_FlowCompSTest.F 20
src/system_tests/ESMF_FlowWithCoupling/ESMF_FlowWit hCouplingSTest.F90
src/system_tests/ESMF_SimpleCoupling/ESMF_SimpleCou plingSTest.F90
src/system_tests/ESMF_VectorStorage/ESMF_VectorStor ageSTest.F90

The following system tests failed, did not build, or did not e xecute:
src/system_tests/ESMF_FieldRegridConserv/ESMF_Field RegridConsrvSTest.F90

src/system_tests/ESMF_RowReduce/ESMF_RowReduceSTest .F90

45

http://www.earthsystemmodeling.org/download/releases.shtml
mailto:esmf_support@list.woc.noaa.gov

The stdout files for the system tests can be found at:
/home/bluedawn/svasquez/script_dirs/daily_builds/es mf/test/testO/AlIX.default.64.default

Found 14 system tests, 12 passed and 2 failed.

10.2 Running ESMF Examples
10.2.1 Example source code

Example source code for each class is found in the classia@radirectory. For example, source code for the Time
Manager class examples are found in this directory:

ESMF_DIR/src/Infrastructure/TimeMgr/examples/

While the example code is formatted to be included in the dwmitation, it also runs and compiles to ensure accuracy.
Examples generally contain simple usage of the basic mettfowdhe class.

10.2.2 Building and running examples

The GNU makefile targetexamples andexamples_uni build and run programs found in a class’'s examples
directory. After the examples are built, tegamples target runs the examples using multiple processors, while
examples_uni runs the examples on a single processor.

These targets first build the ESMF library.

Run from ESMF_DIR, this command will build and run all exaegbn multiple processors:
gmake examples

If the command is run in an example source code directory, tiny the example from that directory will be built and
run. The examples and output files are created in this dingcto

ESMF_DIR/examples/examples$ESMF_BOPT/$ESMF_OS.$ESMF _COMPILER.$ESMF_ABI.$ESMF_SITE/

The name of an output file will begin with the name of the examntpht created it followed by .stdout.
At the end of examples execution a script runs to analyzeghdts.

The script output indicates whether there are any examitleda. If any examples fail, please check if the failuress ar
listed as known bugs in the ESMF release page http://wwthggtemmodeling.org/download/releases.shtmlfor your
platform and compiler. If the failures are not listed pleasetact ESMF Support at esmf_support@list.woc.noaa.gov
Please indicate which examples are failing, and attachutjgub of the "gmake info" command to the email.

The following is a sample from the script output:

46

http://www.earthsystemmodeling.org/download/releases.shtml
mailto:esmf_support@list.woc.noaa.gov

The following examples passed:

src/Infrastructure/Array/examples/ESMF_ArrayCreateE
src/Infrastructure/Array/examples/ESMF_ArrayGetEx.F
src/Infrastructure/ArrayComm/examples/ESMF_ArrayCom
src/Infrastructure/ArrayDataMap/examples/ESMF_Array
src/Infrastructure/ArraySpec/examples/ESMF_ArraySpe
src/Infrastructure/FieldBundle/examples/ESMF_FieldB
src/Infrastructure/FieldBundleDataMap/examples/ESMF
src/Infrastructure/DELayout/examples/ESMF_DELayoutE
src/Infrastructure/Field/examples/ESMF_FieldCreateE
src/Infrastructure/Field/examples/ESMF_FieldFromUse
src/Infrastructure/Field/examples/ESMF_FieldGlobalE
src/Infrastructure/Field/examples/ESMF_FieldWriteEx
src/Infrastructure/FieldComm/examples/ESMF_FieldCom
src/Infrastructure/FieldDataMap/examples/ESMF_Field
src/Infrastructure/LogErr/examples/ESMF_LogErrEx.F9
src/Infrastructure/Regrid/examples/ESMF_RegridEx.F9
src/Infrastructure/Route/examples/ESMF_RouteEx.F90
src/Infrastructure/TimeMgr/examples/ESMF_AlarmEx.F9
src/Infrastructure/TimeMgr/examples/ESMF_CalendarEx
src/Infrastructure/TimeMgr/examples/ESMF_ClockEx.F9
src/Infrastructure/TimeMgr/examples/ESMF_TimeEx.F90
src/Infrastructure/VM/examples/ESMF_VMAIIFullReduce
src/Infrastructure/VM/examples/ESMF_VMComponentEx.F
src/Infrastructure/VM/examples/ESMF_VMDefaultBasics
src/Infrastructure/VM/examples/ESMF_VMGetMPICommuni
src/Infrastructure/VM/examples/ESMF_VMScatterVMGath
src/Infrastructure/VM/examples/ESMF_VMSendVMRecvEX.
src/Superstructure/Component/examples/ESMF_AppMainE
src/Superstructure/Component/examples/ESMF_CplEx.F9
src/Superstructure/Component/examples/ESMF_GCompEXx.
src/Superstructure/State/examples/ESMF_StateEx.F90
src/Superstructure/State/examples/ESMF_StateReconci

The following examples failed, did not build, or did not exec

src/Infrastructure/Grid/examples/ESMF_GridCreateEXx.
src/Infrastructure/TimeMgr/examples/ESMF_Timelnterv

The stdout files for the examples can be found at:
/home/bluedawn/svasquez/script_dirs/daily builds/es

Found 34 examples, 32 passed and 2 failed.

47

x.F90

90

mEXx.F90
DataMapEx.F90
cEx.F90
undleCreateEx.F90
_FieldBundleDataMapEx.F90
x.F90

x.F90

rEx.Fo0

x.F90

.F90

mEx.F90
DataMapEx.F90

0

0

0
.F90
0

Ex.F90

90

Ex.F90
catorEx.F90
erEx.F90
F90

x.F90

0

Fo0

leEx.F90

ute:

F90
alEx.F90

mf/examples/examplesO/AlX.default.64.defaul

48

11 Architectural Overview

The ESMF architecture is characterized by the layeringeyashown in Figuréll. User code components that
implement thescienceportions of an application, for example a sea ice or land made sandwiched between two
layers. The upper layer is denoted gwperstructure layer and the lower layer thafrastructure layer. The role of

the superstructure layer is to provide a shell which encasgmuser code and provides a context for interconnecting
input and output data streams between components. The &eepts of the superstructure are described in Section
[I1.2. These elements include classes that wrap user coslejremthat all components present consistent interfaces.
The infrastructure layer provides a foundation that dgwets of science components can use to speed construction
and to ensure consistent, guaranteed behavior. The elgwight infrastructure include constructs to support pelral
processing with data types tailored to Earth science agiabics, specialized libraries to support consistent time a
calendar management and performance, error handling aabse 1/0 tools. The infrastructure layer is described
in Section I1.B. A hierarchical combination of supersuitet user code components, and infrastructure are joined
together to form an ESMF application.

11.1 Key Concepts

The ESMF architecture and programming paradigm are basemul fiye key concepts: modularity, flexibility, hierar-
chical organization, communication within components| amniform communication API.

11.1.1 Modularity

The ESMF design is based upon modular Components. Thereatgpes of Components, one of which represents
models (Gridded Components) and one which representsesufoupler Components). Data are always passed
between Components using a data structure called a Staieh) wéin store Fields, FieldBundles of Fields, Arrays,
and other States. A Gridded Component stores no informatiaut the internals of the Gridded Components that
it interacts with; this information is passed in through grgument lists of the initialize, run, and finalize methods.
The information that is passed in through the argumentéistlze a State from another Gridded Component, or it can
be a function pointer that performs a computation or comigation on a State. These function pointers are called
Transforms, and they are available as AttachableMethagen by Coupler Components. They are called inside the
Gridded Component they are passed into. Although Trans@dd some complexity to the framework (and their
use is not required), they are what will enable ESMF to accodate virtually any model of communication between
Components.

Modularity means that an ESMF component stores nothing abouthe internals of other components. This
allows components to be used more easily in multiple context

11.1.2 Flexibility

The ESMF does not dictate how models should be coupled; plgiprovides tools for creating couplers. For ex-
ample, both a hub-and-spokes type coupling strategy amdigaistrategies are supported. The ESMF also allows
model communications to occur mid-timestep, if desiredjugatial, concurrent, and mixed modes of execution are
supported.

The ESMF does not impose restrictions on how data flows througan application. This accommodates scientific
innovation - if you want your atmospheric model to communicae with your sea ice model mid-timestep, ESMF
will not stop you.

49

11.1.3 Hierarchical organization

ESMF allows applications to be composed hierarchically.example, physics and dynamics modules can be defined
as separate Gridded Components, coupled together with pl€dtomponent, and all of these nested within a single

atmospheric Gridded Component. The atmospheric GriddeapBoent can be run standalone, or can be included in
a larger climate or data assimilation application. See ffeigufor an illustrative example.

The data structure that enables scalability in ESMF is thiveld type Gridded Component. Fortran alone does not
allow you to create generic components - you'd have to crdateved types for PhysComp, and DynComp, and
PhysDynCouplerComp, and AtmComp. In ESMF, these are alwéaygpe GridComp or CplComp, so they can
be called by the same drivers (whether that driver is a stanB8MF driver or another model), and use the same
methods without having to overload them with many specifidved types. It is the same idea when you want to
support different implementations of the same componietphultiple dynamics.

The ESMF defines a hierarchical, scalable architecture thais natural for organizing very complex applications,
and for allowing exchangeable Components.

11.1.4 Communication within Components

Communication in ESMF always occurs within a Componentaift accur internal to a Gridded Component, and have
nothing to do with interactions with other Components {sgtaside synchronization issues), or it can occur within a
Coupler Component or a transform generated by a Coupler Goemt. A result of the rule that all communication

happens within a Component is that Coupler Components nways be defined on the union of all the Components
that they couple together. Models can choose to use whatexenanism they want for intra-model communications.

The point is that although the ESMF defines some simple ruleof communication, the communication mecha-
nism that the framework uses is not hardwired into its architecture - the sends and receives or puts and gets are
enclosed within Gridded Components, Coupler Components ahTransforms. The intent is to accommodate
multiple models of communication and technical innovatios.

11.1.5 Uniform communication API

ESMF has a single API for shared and distributed memory timdike MPI1, accounts for NUMA achitectures and does
not treat all processes as being identical. It is possibiei$ers to set ESMF communications to a strictly message
passing mode and put in their own OpenMP commands.

The goal is to create a programming paradigm that is peformaie sensitive to the architecture beneath it with-
out being discouragingly complicated.

11.2 Superstructure

The ESMF superstructure layer in a unifying context withimieh user components are interconnected. Classes called
Gridded Components Coupler Components andStatesare used within the superstructure to achieve this flexybili

11.2.1 Import and export State classes

User code components under ESMF use special interfacetslbje€Component to Component data exchanges. These
objects are of type import State and export State. Theséadpgnes support a variety of methods that allow user code
components to do things like fill an export State object wisttacto be shared with other components or query an

50

Figure 2: A typical building block for an ESMF applicationreists of a parent Gridded Component, two or more
child Gridded Components, and a Coupler Component. Thenp&edded Component is called by an application
driver. AllESMF Components have initialize, run, and firalmethods. The diagram shows that when the application
driver calls initialize on a parent Gridded Component, thik @ascades down to all of its children, so that the result is
that the entire “tree” of Components is initialized. The eud finalize methods work the same way. In this example a
hurricane simulation is built from ocean and atmospherdd&d Components. The data exchange between the ocean
and atmosphere is handled by an ocean-atmosphere Couplgga@ent. Since the whole hurricane simulation is a
Gridded Component, it could be easily be treated as a chddccanpled to another Gridded Component, rather than
being driven directly by the application driver. A simildagram could be drawn for an atmospheric model containing
physics and dynamics components, as described in Séctidi811

AppDriver (“Main”)
Call Initialize Call Run Call Finalize
AN
Initialize] [Run] [Finalize]
Parent GridComp “Hurricane Model”
Call Initialize Call Run Call Finalize
AN

Initialize Run | Finalize |

Child GridComp “Atmospherg”

Initialize | Run r—FinaIize
Child GridComp “Ocean”

Initialize | Run f_FinaIize
Child CplComp “Atm-Ocean Coupler”

51

import State object to determine its contents. In keepinip Wie overall requirements for high-performance it is
permitted for import State and export State contents to eferances or pointers to Component data, so that costly
data copies of potentially large data structures can bedadoivhere possible. The content of an import State and an
export State can be made self-describing.

11.2.2 Interface standards

The import State and export State abstractions are designied flexible enough so that ESMF does not need to
mandate a single format for fields. For example, ESMF doepmescribe the units of quantities exported or imported.
However, ESMF does provide mechanisms to describe unitsianelayout, and grid coordinates. This allows the
ESMF software to support a range of different policies foygal fields. The interoperability experiments that we
are using to demonstrate ESMF make use of the emerging CEectors|[1] for describing physical fields. This is a
policy choice for that set of experiments. The ESMF softwesedf can support arbitrary conventions for labeling and
characterizing the contents of States.

11.2.3 Gridded Component class

The Gridded Component class describes a user componeriakestin one import State and produces one export

State. Examples of Gridded Components are major Earthraystedel components such as land surface models,

ocean models, atmospheric models and sea ice models. Cemtparsed for linear algebra manipulations in a state

estimation or data assimilation optimization procedueeaso created as Gridded Components. In general the fields
within an import State and export State of a Gridded Compbwéhuse the same discrete grid.

11.2.4 Coupler Component class

The other top-level Component class supported in the ESMfitacture is a Coupler Component. This class is used
for Components that take one or more import States as ingutap them through spatial and temporal interpolation
or extrapolation onto one or more output export States. lmaper Component it is often the case that the export
State(s) is on a different discrete grid to that of the im&tette(s). For example, in a coupled ocean-atmosphere
simulation a Coupler Component might be used to map a setae$wdace fields in an ocean model to appropriate
planetary boundary layer fields in an atmospheric model.

11.2.5 Flexible data and control flow

Import States, export States, Gridded Components and €oGpimponents can be arrayed flexibly within a super-
structure layer. Using these constructs, it is possible@tdigure a set of Components with multiple pairwise Coupler
Components, Figue 4. It is also possible to configure a sebonfurrently executing Gridded Components joined
through a single Coupler Component of the style shown inrfeigu

The set of superstructure abstractions allows flexible flataand control between components. However, compo-
nents will often use different discrete grids, and timepteg components may march forward with different time
intervals. In a parallel compute environment different poments may be distributed in a different manner on the
underlying compute resources. The ESMF infrastructurerlpyovides elements to manage this complexity.

52

Figure 3: ESMF supports configurations with a single cei@mlpler Component. In this case inputs from all Gridded
Components are transferred and regridded through theateotupler.

Atmosphere

>—>0)}

Ocean

Land DATA Coupler DATA

O >

>->

Sealce

Figure 4: ESMF also supports configurations with multiplénpto point Coupler Components. These take inputs
from one Gridded Component and transfer and regrid the defiardo passing it to another Gridded Component.
This schematic shows a flow of data between two Coupler Coemsrihat connect three Gridded Components: an
atmosphere model with a land model, and the same atmosplogied mith a data assimilation system.

Atmosphere
& ¢
AtmLandCoupler AtmAssimCoupler
~
5 Q
Land DataAssim

53

Figure 5: Schematic showing the coupling of componentsubadifferent discrete Grids and different time-stepping.
In this example, ComponeMCAR Atmosphermight use a spectral Grid based on spherical harmonics, Gomp
nentGFDL Oceanmight use a latitude-longitude Grid but with a patched degosition that does not include land
masses, and ComponedSIPP Landmight use a m osaic-based Grid for representing vegetatitchimess and a
catchment area based Grid for river routings. The ESMF étfugture layer contains tools to help develop software
for coupling between Components on different Grids, magbietween Components with different distributions in
a multi-processor compute environment and synchroniziegts between Components with different time-stepping
intervals and algorithms.

, — =

NCAR SIS
Atmosphere ===
e =
. .__.ﬁ ? ‘}&

‘Qg 3

% +
¥ GFDL %&%gﬁSIPP
* Ocean \[;%;«\i-@?nd

11.3 Infrastructure

Figure® illustrates three Gridded Components, each wiiffereint Grids, being coupled together. In order to achieve
this coupling several steps beyond defining import Statecapdrt State objects to act as data conduits are required.
Coupler Components are needed that can interpolate betiveelifferent Grids. The necessary transformations may
also involve mapping between different units and/or memayput conventions for the Fields that pass between
Components. In a parallel compute environment the Couptengidnents may also be required to map between
different domain decompositions. In order to advance iretaarrectly the separate Gridded Components must have
compatible notions of time. Approaches to parallelism witthe Gridded Components must also be compatible.
The Infrastructure layer contains a set of classes that address these issuessgiatin managing overall system
complexity.

11.3.1 FieldBundle, Field and Array classes

FieldBundle, Field and Array classes contain data togetfiterdescriptive physical and computational attributemf
mation. The physical attributes include information thesctibes the units of the data. The computational attrébute
include information on the layout in memory of the field datée Field class is primarily geared toward structured
data. A comparable class, called Location Stream, proddesf-describing container for unstructured observafion
data streams.

54

11.3.2 Grid class

The Grid class is an extensible class that holds discrete grid irddom. It has subtypes that allow it to serve as a
container for the full range of different physical gridstthaight arise in a coupled system. In the example in fi§lire 5
objects of type Grid would hold grid information for each bétspectral grid, the latitude-longitude grid, the mosaic
grid and the catchment grid.

The Grid class is also used to represent the decompositiardafa structure into subdomains, typically for parallel
processing purposes. The class is designed to support aatjieeé “ghosting” for tiled decompositions of finite
difference, finite volume and finite element codes.

11.3.3 Time and Calendar management

To support synchronization between Components, sevaraldnd calendar management classes are provided. These
capabilities are provided in the Time, Time Interval, Calan Clock, and Alarm classes. These classes allow Gridded
and Coupler Component processing to be latched to a commanotling Clock, and to schedule notification of
regular events, such as a coupling intervals, and unique®ve

11.3.4 Config resource file manager

The Config class is a utility for accessing configuration fiteg are in ASCII format. This utility enables configuration
files to be prepared using more flexible formatting than Rortramelists - for example, it permits the input of tables
of data.

11.3.5 DELayout and virtual machine

To provide a mechanism for ensuring performance portgblESMF defines DELayout and virtual machine (VM)
classes. These classes provide a set of high-level andptathdependent interfaces to performance critical palrall
processing communication routines. These routines camredtto specific platforms to ensure optimal parallel
performance on many platforms.

11.3.6 Logging and error handling

The LogErr class is designed to aid in managing the compleximulti-Component applications. It provides ESMF
with a unified mechanism for managing logs and error repgrtin

11.3.7 File input and output

The infrastructure layer will define a set @ classes for storing and retrieving Array, Field, and Gridimation to
and from persistent storage.

55

12 ESMF COUPLED_FLOW Demonstration Program

12.1 ESMF COUPLED_FLOW Description

The ESMF COUPLED_FLOa&plication uses the ESMF framework, including gridded aadpler components,
Superstructure and Infrastructure. The application isjectracer from one gridded component into another, which
then advects the flow. Communication is handled through pleocomponent. Review of this demonstration should
enable the user to understand the general structure of arFEEpplication.

The application is comprised of two ESMBridded Components and aCoupler Component . The first
Gridded Component , FlowSolver , solves the compressible time-dependent fluid flow equstidrne algo-
rithm applies an explicit finite difference technique to aggfered, Arakawa C igrid that is Cartesian and uniform.
State variables, including density, pressure, viscositytamperature, are located at cell-centers, while védéscire
located at the north and east cell faces. This componenitiglied with a steady-state, one-dimensional flow. The
secondsridded Component | Injector |, injects tracer fluid into the first component normal to the/fadong one

of the boundaries. The injected fluid can have arbitraryaiglptemperature, density and duration, effectivelyiagtt
some of the boundary conditions for the first component. HlbevSolver andInjector Components siton
different Cartesian igrids. Th€oupler Component redistributes boundary condition data from thgctor

to theFlowSolver

12.2 Program Organization
The demonstration program consists of a top level Applicabriver, a top level Gridded Component, and nested
within this Gridded Component are 3 subcomponents: a Co@umponent and 2 Gridded Components.

The following diagram shows this organization. Note tha&tr¢his no direct communication between the subcompo-
nents; all interactions are mediated by the top level Gdddemponent.

Each component communicates via initialize, run, and freadiubroutine calls. These go through the ESMF library
where they are checked for validity, default values are Begpand only those components involved in the computa-
tion are invoked.

13 ESMF COUPLED_FLOW Demonstration Code Details

13.1 Fortran: Module Interface CoupledFlowApp.F90 - Main program source file for demo
(Source File: CoupledFlowApp.F90)

ESMF Application Wrapper for Coupled Flow Demo. This file tains the main program, and creates a top level

ESMF Gridded Component to contain all other Components.

13.1.1 Namelist Input Parameters for CoupledFlowApp:

The following variables must be input to the CoupledFlow Agagion to run. They are located in a file called
"coupled_app_input.”
The variables are:

i_max Global number of cells in the first grid direction.
j_max Global number of cells in the second grid direction.

X_min Minimum grid coordinate in the first direction.

56

Figure 6: Structure of the demonstration program.

AppDriver (“Main”)
Call Initialize | Call Run | Call Finalize
<
Initialize Run Finalize
Parent GridComp
Call Initialize | Call Run | Call Finalize
<
Initialize Run Finalize
Child GridComp “Flow Solver’
Initialize Run r_FinaIize
— Child GridComp “Injector”
Initialize Run r_F_inaIize

Child CplComp “Coupler”

X_max Maximum grid coordinate in the first direction.
y_min Minimum grid coordinate in the second direction.
y_max Maximum grid coordinate in the second direction.
s_month Simulation start time month (integer).

s_day Simulation start time day (integer).

s_hour Simulation start time hour (integer).

s_min Simulation start time minute (integer).

e_month Simulation end time month (integer).

e_day Simulation end time day (integer).

e_hour Simulation end time hour (integer).

e_min Simulation end time minute (integer).

13.1.2 Example of Initializing the Framework:

The first call to ESMF must be the initialize method. As parinitialization the default Calendar can be specified,
some options for logging can be set, and the default global d&x be returned. Here we are setting the default
Calendar to be Gregorian, and getting back the global VM:

! Initialize ESMF, get the default Global VM, and set
! the default calendar to be Gregorian.

call ESMF_Initialize(vm=vm, defaultCalendar=ESMF_CAL _
if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl

57

GREGORIAN, rc=rc)
ag=ESMF_ABORT, rc=rc)

! Create the top level Gridded Component.
compGridded = ESMF_GridCompCreate(name="Coupled Flow De mao", rc=rc)
if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT, rc=rc)

13.1.3 Example of Calendar and Clock Creation and Usage:

The following piece of code provides an example of Clock ttoeeused in the Demo. Note that the Gregorian calendar
was set as the default in the ESMF _Initialize() call above sAown in this example, we first initialize a time interval
(timestep) to 2 seconds:

call ESMF_TimelntervalSet(timeStep, s=2, rc=rc)

if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT, rc=rc)
IAnd then we set the start time and stop time to input values fo r the month,
lday, and hour (assuming the year to be 2003):
call ESMF_TimeSet(startTime, yy=2003, mm=s_month, dd=s_ day, &

h=s_hour, m=s_min, s=0, rc=rc)
if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT, rc=rc)
call ESMF_TimeSet(stopTime, yy=2003, mm=e_month, dd=e_d ay, &

h=e_hour, m=e_min, s=0, rc=rc)
if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT, rc=rc)
IWith the time interval, start time, and stop time set above, the Clock can
lnow be created:
clock = ESMF_ClockCreate(timeStep=timeStep, startTime= startTime, &

stopTime=stopTime, rc=rc)

if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT, rc=rc)
ISubsequent calls to ESMF_ClockAdvance with this clock wi Il increment the

lcurrent time from the start time by the timestep.

13.1.4 Example of Grid Creation:

The following piece of code provides an example of Grid doratised in the Demo. The extents of the Grid were
previously read in from an input file, but the rest of the Gratgmeters are set here by default. The Grid spans the
Application’s PET list, while the type of the Grid is assuntede horizontal and Cartesian x-y with an Arakawa C
staggering. The Grid name is set to "source grid":

counts(1) = i_max
counts(2) = j_max
g_min(1) = x_min
g_min(2) = y_min
g_max(1l) = x_max
g_max(2) = y_max

grid = ESMF_GridCreateShapeTile(maxindex=counts, &
coordDep1=(/1/), &
coordDep2=(/2/), &
gridEdgeLWidth=(/0,0/), &
name="source grid", rc=rc)

if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT, rc=rc)
Iu

call ESMF_GridAddCoord(grid, staggerLoc=ESMF_STAGGERL OC_EDGE1, rc=rc)

if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT, rc=rc)
I'v

call ESMF_GridAddCoord(grid, staggerLoc=ESMF_STAGGERL OC_EDGE2, rc=rc)

if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT, rc=rc)

58

! sie, p, q, rho, flag

call ESMF_GridAddCoord(grid, staggerLoc=ESMF_STAGGERL

if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl

I Get pointer reference to internal coordinate array

I Compute center stagger coordinate values

call ESMF_GridGetCoord(grid, localDE=0, &
staggerLoc=ESMF_STAGGERLOC_CENTER, &
coordDim=1, fptr=CoordX, rc=rc)

if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl

call ESMF_GridGetCoord(grid, localDE=0, &
staggerLoc=ESMF_STAGGERLOC_CENTER, &
coordDim=2, fptr=CoordY, rc=rc)

if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl

dx = (x_max-x_min)/i_max
= (y_max-y_ m|n)/j max
coordX(l) = x_min + dx/2
coordY(l) =y min + dy/2
do i = 2, i_max
coordX(i) =
enddo
doj =2 j_
coordY(J)
enddo

coordX(i-1) + dx

ma
= coordY(J 1) + dy

I Get pointer reference to internal coordinate for U

I Compute east stagger (U) coordinate values

call ESMF_GridGetCoord(grid, localDE=0, &
staggerLoc=ESMF_STAGGERLOC_EDGE1, &
coordDim=1, fptr=CoordX, rc=rc)

if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl

call ESMF_GridGetCoord(grid, localDE=0, &
staggerLoc=ESMF_STAGGERLOC_EDGE1, &
coordDim=2, fptr=CoordY, rc=rc)

if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl

= (Xx_max-x_min)/i_max
dy = (y_max-y_min)/j_max
coordX(1) = x_min + dx
coordY(1) = y_min + dy/2
do i = 2, i_max

coordX(i) = coordX(i-1) + dx
enddo
doj =2 j_
coordY(J)
enddo

max
= coordY(j-1) + dy

I Get pointer reference to internal coordinate for V

! Compute north stagger (V) coordinate values

call ESMF_GridGetCoord(grid, localDE=0, &
staggerLoc=ESMF_STAGGERLOC_EDGE?2, &
coordDim=1, fptr=CoordX, rc=rc)

if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl

call ESMF_GridGetCoord(grid, localDE=0, &
staggerLoc=ESMF_STAGGERLOC_EDGE?2, &

59

OC_CENTER, rc=rc)
ag=ESMF_ABORT, rc=rc)

ag=ESMF_ABORT, rc=rc)

ag=ESMF_ABORT, rc=rc)

ag=ESMF_ABORT, rc=rc)

ag=ESMF_ABORT, rc=rc)

ag=ESMF_ABORT, rc=rc)

coordDim=2, fptr=CoordY, rc=rc)
if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT, rc=rc)

dx
dy
coordX(1) = x_min + dx/2
coordY(1) = y_min + dy
doi = 2, i_max
coordX(i) = coordX(i-1) + dx
enddo
doj =2 j
coordY (j)
enddo

(x_max-x_min)/i_max
(y_max-y_min)/j_max

_max
= coordY(j-1) + dy

IThe Grid can then be attached to the Gridded Component with a set call:
call ESMF_GridCompSet(compGridded, grid=grid, rc=rc)
if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT, rc=rc)

13.1.5 Example of State Creation:

Create and initialize a dummy State to use for both importeaubrt.

flowstate = ESMF_StateCreate("Coupled Flow State", rc=rc)
if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT, rc=rc)

13.1.6 Example of Initialize, Run, and Finalize:

Init, Run, and Finalize sections of the Coupled Flow Compdne

call ESMF_GridComplnitialize(compGridded, flowstate, f lowstate, &

clock, rc=rc, userRc=urc)
print *, "Coupled Flow Component Initialize finished, rc =", rc, ur c
if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT, rc=rc)
iflurc /= ESMF_SUCCESS) call ESMF_Finalize(terminationf lag=ESMF_ABORT, rc=urc)
call ESMF_GridCompRun(compGridded, flowstate, flowstat e, clock, rc=rc, userRc=urc)
print *, "Coupled Flow Component Run finished, rc =", rc, urc
if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT, rc=rc)
iflurc /= ESMF_SUCCESS) call ESMF_Finalize(terminationf lag=ESMF_ABORT, rc=urc)
call ESMF_GridCompFinalize(compGridded, flowstate, flo wstate, clock, rc=rc, userRc=urc)
print *, "Coupled Flow Component Finalize finished, rc =", rc, urc
if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT, rc=rc)
iflurc /= ESMF_SUCCESS) call ESMF_Finalize(terminationf lag=ESMF_ABORT, rc=urc)

13.1.7 Example of Object Destruction:

Near the end of the application, call object destroy methiodsean up the objects previously created:

call ESMF_StateDestroy(flowstate, rc=rc)
if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT, rc=rc)

call ESMF_GridDestroy(grid, rc=rc)

60

if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT, rc=rc)

call ESMF_ClockDestroy(clock, rc=rc)
if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT, rc=rc)

call ESMF_GridCompDestroy(compGridded, rc=rc)
if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT, rc=rc)

13.1.8 Example of ESMF Finalize:

ICall ESMF_Finalize at the end of an ESMF application:
call ESMF_Finalize(rc=rc)

13.2 Fortran: Module Interface CoupledFlowDemo.F90 - Top ¢ével Gridded Component
source (Source File: CoupledFlowDemo.F90)

ESMF Coupled Flow Demo - A Gridded Component which can beedatither directly from an Application Driver
or nested in a larger application. It contains 2 nested supcments and 1 Coupler Component which does two-way
coupling between the subcomponents.

13.2.1 Example of Set Services Usage:

The following code registers with ESMF the subroutines te&léed to Init, Run, and Finalize this component.

! Register the callback routines.

call ESMF_GridCompSetEntryPoint(comp, ESMF_SETINIT, us erRoutine=coupledflow_init, rc=rc)
if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT, rc=rc)

call ESMF_GridCompSetEntryPoint(comp, ESMF_SETRUN, use rRoutine=coupledflow_run, rc=rc)
if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT, rc=rc)

call ESMF_GridCompSetEntryPoint(comp, ESMF_SETFINAL, u serRoutine=coupledflow_final, rc=rc)
if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT, rc=rc)

13.2.2 Example of Component Creation:

The following code creates 2 Gridded Components on the sata ®ETs (persistent execution threads) as the top
level Component, but each of the Grids useds by these Compowél have a different connectivity. It also creates a
Coupler Component on the same PET set. Each gridded comipmaeea Grid attached internally.

cnamelN = "Injector model"
INcomp = ESMF_GridCompCreate(hame=cnamelN, rc=rc)
if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT, rc=rc)

cnameFS = "Flow Solver model"
FScomp = ESMF_GridCompCreate(hame=cnameFS, rc=rc)
if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT, rc=rc)

cplname = "Two-way coupler”

cpl = ESMF_CplCompCreate(name=cplname, rc=rc)
if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT, rc=rc)

61

Create the Injector Grid:

gridIN = ESMF_GridCreateShapeTile(minindex=minindex, m axIndex=maxIndex, &
regDecomp=(/ mid, by2 /), &
coordDepl=(/1/), &
coordDep2=(/2/), &
gridEdgeLWidth=(/0,0/), &
name="Injector grid", rc=rc)

Set the Injector Grid in the Injector Component:

call ESMF_GridCompSet(INcomp, grid=gridIN, rc=rc)
if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT, rc=rc)

Create the FlowSolver Grid:

gridFS = ESMF_GridCreateShapeTile(minlndex=minindex, m axIndex=maxIndex, &
regDecomp=(/ quart, by4 /), &
coordDepl=(/1/), &
coordDep2=(/2/), &
gridEdgeLWidth=(/0,0/), &
name="Flow Solver grid", rc=rc)

Set the FlowSolver Grid in the FlowSolver Component:

call ESMF_GridCompSet(FScomp, grid=gridFS, rc=rc)
if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT, rc=rc)

13.2.3 Example of State Creation:

The following code creates Import and Export States for tection subcomponent. All information being passed
between subcomponents will be described by these States.

INimp = ESMF_StateCreate(statename="Injection Input”’, s tatetype=ESMF_STATE_IMPORT, &
rc=rc)

if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT, rc=rc)

INexp = ESMF_StateCreate(statename="Injection Feedback ", statetype=ESMF_STATE_EXPORT, &
rc=rc)

if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT, rc=rc)

13.2.4 Example of Time Stepping Loop:

Advancing in time with ESMF clock, the coupled flow componealts the run methods of the gridded components
and coupler component sequentially:

I Make our own local copy of the clock
localclock = ESMF_ClockCreate(clock, rc=rc)

if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT, rc=rc)
print *, "Run Loop Start time"

call ESMF_ClockPrint(localclock, "currtime string”, rc= rc)

if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT, rc=rc)

62

do while (.not. ESMF_ClocklsStopTime(localclock, rc))

! Run FlowSolver Component

call ESMF_GridCompRun(FScomp, FSimp, FSexp, localclock, rc=rc, userRc=urc)

if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT, rc=rc)
iflurc /= ESMF_SUCCESS) call ESMF_Finalize(terminationf lag=ESMF_ABORT, rc=urc)
I Couple export state of FlowSolver to import of Injector

call ESMF_CplCompRun(cpl, FSexp, INimp, localclock, rc=r ¢, userRc=urc)

if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT, rc=rc)
iflurc /= ESMF_SUCCESS) call ESMF_Finalize(terminationf lag=ESMF_ABORT, rc=urc)
! Run Injector Component

call ESMF_GridCompRun(INcomp, INimp, INexp, localclock, rc=rc, userRc=urc)

if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT, rc=rc)
iflurc /= ESMF_SUCCESS) call ESMF_Finalize(terminationf lag=ESMF_ABORT, rc=urc)
I Couple export state of Injector to import of FlowSolver

call ESMF_CplCompRun(cpl, INexp, FSimp, localclock, rc=r ¢, userRc=urc)

if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT, rc=rc)
iflurc /= ESMF_SUCCESS) call ESMF_Finalize(terminationf lag=ESMF_ABORT, rc=urc)

! Advance the time
call ESMF_ClockAdvance(localclock, rc=rc)
if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT, rc=rc)

I This demo runs a lot of time steps and only outputs files

I every N iterations. This print statement, if commented in,

! generates a lot of output.

Icall ESMF_ClockPrint(localclock, "currtime string”, rc)

enddo

print *, "Run Loop End time"
call ESMF_ClockPrint(localclock, "currtime string”, rc= rc)
if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT, rc=rc)

13.2.5 Example of Clock Destruction:
At the end of run method, destroy the clock used to iteratauipn time:

call ESMF_ClockDestroy(localclock, rc)
if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT, rc=rc)

13.3 Fortran: Module Interface FlowSolverMod.F90 - Sourcefile for Flow Solver Compo-
nent (Source File: FlowSolverMod.F90)

This component does a finite difference solution of the PD&'ssemi-compressible fluid flow. It uses an explicit

solution method on a staggered mesh with velocities and mamelocated at cell faces and other physical quantities
at cell centers. The component assumes a logically reclantyuo-dimensional Cartesian mesh with constant cell
spacing. It also employs a donor-cell advection scheménaiigh the algorithm is general, the boundary conditions
are coded to assume constant inflow on the left, outflow onitie,rand free-slip insulated boundaries on the top

63

and bottom. This component will allow the user to construmtvfbbstacles with different energies, and it accepts
a second inflow from the bottom boundary that can be contiddiea second component. For material properties,
this component uses an ideal gas equation of state, and essomstant ratio of specific heats, thermal conductivity,
and specific heat capacity. There is no system of units asbliyéhe component — it is up to the user to ensure
dimensional consistency.

The following are the semi-compressible flow equations uséitis component.
9p 4 dpu 4 dpv _
ot =

8952 oy
S+ 2 4 2 — O
%+%+8§—y:—(p+q>(%+g—;)+§(g—;+g§g)
p=(y—1)pl

q = _QOpuin(dIQ + dyQ)l/Q (% + g_Z)

ifg < 0setq=0

density

time

x-component of velocity

y-component of velocity

pressure

artificial velocity

standard internal energy

ratio of specific heats

thermal conductivity

specific heat capacity

artificial viscosity coefficient, dimensionless
inflow velocity (representative velocity)

Where

SF2 NV @2 D

S
3

13.3.1 Namelist Input Parameters for Flowsolver:

The following variables must be input to the FlowSolver Cament to run. They are located in a file called "cou-
pled_flow_input."

The variables are:

uin Inflow velocity at left boundary.

rhoin Inflow density at left boundary.

siein Inflow specific internal energy at left boundary.

gamma Ratio of specific heats for the fluid (assumed constant).

akb Thermal conductivity over specific heat capacity (assunoedtant).

g0 Dimensionless linear artificial viscosity coefficient (sifttbbe between 0.1 and 0.2).
u0 Initial velocity in the first grid direction.

vO Initial velocity in the second grid direction.

sie0 Initial specific internal energy.

rho0 Initial density.

printout Number of cycles between graphical output files.

sieobs Specific internal energy of the obstacles.

64

nobsdescNumber of obstacle descriptors. Each descriptor definescklaif cells that will serve as an obstacle and
not allow fluid flow.

iobs_min Minimum global cell number in the first grid direction defigia block of cells to be an obstacle. Must be
[nobsdesc] number of these.

iobs_max Maximum global cell number in the first grid direction defigia block of cells to be an obstacle. Must be
[nobsdesc] number of these.

jobs_min Minimum global cell number in the second grid direction defina block of cells to be an obstacle. Must
be [nobsdesc] number of these.

jobs_max Maximum global cell number in the second grid direction defira block of cells to be an obstacle. Must
be [nobsdesc] number of these.

iflo_min Minimum global grid cell number for the second inflow along ttottom boundary.

iflo_max Maximum global grid cell number for the second inflow along bottom boundary.

13.3.2 Example of FieldHalo Usage:

The following piece of code provides an example of haloing dlata in a Field. Currently the Field halo routine
assumes the entire halo is updated completely; i.e. thecaserot specify halo width or side separately. Field halo
uses a Route object to transfer data from the exclusive doafane DE to the halo region of another.

call ESMF_FieldHalo(field_rhou, halohandle, rc=status)
if(status .NE. ESMF_SUCCESS) then
print *, "ERROR in FlowRhoVel: rhou halo"
if(present(rc)) rc = status
return
endif

13.4 Fortran: Module Interface FlowArraysMod.F90 - Sourcefile for Data for Flow Solver
(Source File: FlowArraysMod.F90)

Allocate and deallocate ESMF objects which handle datysainzluding ESMF_Fields, ESMF_Grids, and ESMF_Arrays.

13.4.1 Example of Field Creation and Array Usage:

The following piece of code provides an example of Field ttomeused in the demo. In this example we create a Field
from an ArraySpec, which designates the rank, type, and éiride data. First initialize the ArraySpec with rank 2
for a two-dimensional array and kind ESMF_KIND_R4:

call ESMF_ArraySpecSet(arrayspec, rank=2, typekind=ESM F_TYPEKIND_R4, rc=status)
if(status /= ESMF_SUCCESS) call ESMF_Finalize(terminati onflag=ESMF_ABORT, rc=status)

field_sie = ESMF_FieldCreate(grid, arrayspec, &
maxHaloLWidth=haloLWidth, maxHaloUWidth=haloUWidth, n ame="SIE", rc=status)
if(status /= ESMF_SUCCESS) call ESMF_Finalize(terminati onflag=ESMF_ABORT, rc=status)

call ESMF_FieldGet(field_sie, farrayPtr=sie, rc=status)
if(status /= ESMF_SUCCESS) call ESMF_Finalize(terminati onflag=ESMF_ABORT, rc=status)

65

13.5 Fortran: Module Interface CouplerMod.F90 - Source for2-way Coupler Component
(Source File: CouplerMod.F90)

The Coupler Component provides two-way coupling betweerrfector and FlowSolver Models. During initializa-
tion this Component is responsible for setting that datan&isded” from the export state of each model. In its run
routine it calls route to transfer the needed data directlinfone Component’s export state to the other Component’s
import state.

13.5.1 Example of Redist Usage:

The following piece of code provides an example of calling ttata redistribution routine between two Fields in
the Coupler Component. Unlike regrid, which translatesveen different Grids, redist translates between different
DELayouts on the same Grid. The first two lines get the Fieldmfthe States, each corresponding to a different
subcomponent. One is an Export State and the other is an ti&{zde.

call ESMF_StateGet(importState, datanames(i), srcfield , rc=rc)
if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT, rc=rc)
call ESMF_StateGet(exportState, datanames(i), dstfield , rc=rc)
if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT, rc=rc)
call ESMF_FieldRedist(srcfield, dstfield, routehandle, rc=rc)
if(rc /= ESMF_SUCCESS) call ESMF_Finalize(terminationfl ag=ESMF_ABORT, rc=rc)

13.6 Fortran: Module Interface InjectorMod - Fluid Injecti on Component (Source File:
InjectorMod.F90)

This is a user-supplied fluid injection component which riatés with a separate fluid flow model component by
altering the inflow boundary conditions during a user-sfgeciime interval. The energy, velocity, and density of the
inflow fluid during the injection time interval are user-sifiecl. The location of the inflow is determined by the fluid
flow model component through a set of boundary condition flalgish are supplied to this component in the import
state. The energy, velocity, and density fields of the catouh are updated by this component and returned to the
fluid flow solver for the next computational time step in th@et state.

13.6.1 Namelist Input Parameters for Injector:

The following variables must be input to the Injector Com@oito run. They are located in a file called "cou-
pled_inject_input."

The variables are:

on_month Injector start time month (integer).

on_day Injector start time day (integer).

on_hour Injector start time hour (integer).

on_min Injector start time minute (integer).

off_month Injector stop time month (integer).

off_day Injector stop time day (integer).

off_hour Injector stop time hour (integer).

off_min Injector stop time minute (integer).

in_energy Standard internal energy of the injector flow.

66

in_velocity Vertical velocity of the injector flow.

in_rho Density of the injector flow.

14 How to Adapt Applications for ESMF

In this section we describe how to bring existing applicagioto the framework.

14.1 Individual Components

e Decide what parts will become Gridded Components

A Gridded Component is a self-contained piece of code whiithb initialized, will be called once or many
times to run, and then will be finalized. It will be expectecither take in data from other components/models,
produce data, or both.

Generally a computational model like an ocean or atmosphede! will map either to a single component or
to a set of multiple nested components.

e Decide what data is produced

A component provides data to other components using an ESME &bject. A component should fill the State

object with a description of all possible values that it capat. Generally, a piece of code external to the
component (the AppDriver, or a parent component) will bgoesible for marking which of these items are

actually going to be needed. Then the component can choesth&r produce all possible data items (simpler
but less efficient) or only produce the data items marked agjbeeeded. The component should consult the
CF data naming conventicns when it is listing what data itmamuce.

e Decide what data is needed

A component gets data from other components using an ESME 8lgect. The application developer must
figure out how to get any required fields from other componientse application.

e Make the data blocks private

A component should communicate to other components ontutiir the framework. All global data items
should be private to Fortran modules, and ideally shouldsbkaied to a single derived type which is allocated
at run time.

¢ Divide the code up into start/middle/end phases

A component needs to provide 3 routines which handle ifgasibn, running, and finalization. (For codes
which have multiple phases of initialize, run, and finalizésipossible to have multiple initialize, run, and
finalize routines.)

The initialize routine needs to allocate space, initiatlata items, boundary conditions, and do whatever else is
necessary in order to prepare the componentto run.

For a sequential application in which all components arehensame set of processors, the run phase will be
called multiple times. Each time the model is expected te takany new data from other models, do its com-
putation, and produce data needed by other components. dugent model, in which different components
are run on different processors, may execute the same wegrnatively, it may have its run routine called only
once and may use different parts of the framework to arraatgeekchange with other models. This feature is
not yet implemented in ESMF.

The finalize routine needs to release space, write out sestltise open files, and generally close down the
computation gracefully.
e Make a "Set Services" subroutine

Components need to provide only a single externally vis#uigry point. It will be called at start time, and its
job is to register with the framework which routines sati$fg initialize, run, and finalize requirements. If it has
a single derived type that holds its private data, that cargistered too.

67

http://cf-pcmdi.llnl.gov/

e Create ESMF Fields and FieldBundles for holding data

An ESMF State object is fundamentally an annotated list bEpESMF items, most often expected to be
ESMF FieldBundles (groups of Fields on the same grid). Qtiiags which can be placed in a State object are
Fields, Arrays (raw data with no gridding/coordinate imf@tion) and other States (generally used by coupling
code). Any data which is going to be received from other comepds or sent to other components needs to be
represented as an ESMF object.

To create an ESMF Field the code must create an ESMF Arragiojeontain the data values, and usually an
ESMF Grid object to describe the computational grid wheeevlues are located. If this is an observational
data stream the locations of the data values will be held iB@¥F Location Stream object instead of a Grid.

e Be able to read an ESMF clock

During the execution of the run routine, information abantet is transferred between components through
ESMF Clocks. The component needs to be able to at least qu&igch for the current time using framework
methods.

e Decide how much of the lower level infrastructure to use

The ESMF framework provides a rich set of time managemerttioms, data management and query functions,
and other utility routines which help to insulate the usedsle from the differences in hardware architectures,
system software, and runtime environments. It is up to theg tesselect which parts of these functions they
choose to use.

14.2 Full Application

e Decide on which components to use
Select from the set of ESMF components available.

e Understand the data flow in order to customize a Coupler Cowpio

Examine what data is produced by each component and whaisda¢eded by each component. The role of
Coupler Components in the ESMF is to set up any necessarngdéyy and data conversions to match output
data from one component to input data in another.

e Write or adapt a Coupler Component

Decide on a strategy for how to do the coupling. There can lieghescoupler for the application or multiple
couplers. Single couplers follow a "hub and spoke" model.ltidle couplers can couple between subsets of
the components, and can be written to couple either onlyvemefe.g. output of component A into input of
component B), or two-way (both A to B and B to A).

The coupler must understand States, Fields, FieldBun@léds, and Arrays and ESMF execution/environment
objects such as DELayouts.

e Use or adapt a main program

The main program can be an unchanged copy of the file founddmppDriver directory. The only
customization needed is to set the name of the top level @dliddomponent, and to set the name of the
SetServices routine. The template file includes a calE&MF _Initialize() which ensures the frame-
work initialization code is run, and will provide the envinment for components to be created and run.

Although ESMF provides source code for the main prograrsibt considered part of the framework and can
be changed by the user as needed.

The final thing the main program must do is daBMF_Finalize() . This will close down the framework
and release any associated resources.

The main program is responsible for creating a top-levall@¥d Component, which in turn creates other Grid-
ded and Coupler Components. We encourage this hieraragsadn because it aids in extensibility - the top
level Gridded Component can be nested in another largeicatiph. The top-level component contains the
main time loop and is responsible for calling tBetServices entry point for each child component it cre-

ates.

68

15 Glossary

This glossary defines terms used in Earth system modelinggdorithe parallel computer architectures, grids and grid
decompositions, and humerical and computational methods.

360-day calendar A calendar in which every one of twelve months has thirty d8ee alsb Calendér, no-leap calehdar.

Accumulator A facility for collecting and averaging data values. Gelligraccumulators are associated with tempo-
ral averaging, although they might be associated with otleéghted averaging operations. ESMF does not yet
have accumulators.

Application Programming Interface (API) API refers to the set of routines and types in a software pgekaat are
available to its users. It doesn't include private or insdmoutines or types.

Alarm Like a real alarm clock, the ESMF Alarm class notifies the aden event that occurs at a particular time (or
set of times). In order to determine whether it is "ringingfi, ESMF Alarm is “read” by an explicit application
action. An Alarm is associated with a particUlar Clock.

Application A coherent computational entity run as a single executabkeb of communicating executables. It
typically consists of a set of interacting components. Seg@mponent.

Array An ESMF class that represents a multi-dimensional daty.achalike a native Fortran or C++ array, an ESMF
Array can store information about halo points. See [alsd halo

Background grid A background grid associates each point in an observatéatalstream (Location Stream) with a
location on a grid. A single grid cell may contain zero or moneation Stream points. See also Locafion Stleam,
[cell.

BUFR Binary Universal Form of Representation. This is a World &teblogical Organization data format. See
BUFR links.

FieldBundle The ESMF FieldBundle class represents a set of fields thasaeciated with the same physical grid
and are distributed in the same fashion across the samecphgsies. Fields within a FieldBundle may be
staggered differently and may have different (non-digteld) dimensions. See also Fidld, Packed FieldBundle,
Loose FieldBundle.

Calendar The Calendar is an ESMF class that stores a representatigpesficular calendar type, such as Gregorian.
See also specific calendar types such as 36D-ddy and rjo-leap.

Cell A physical location that is specified by both its extent (i&t) and nominal central location, and is associated
with a single integer index value or a set of integer indexeal(e.qg. (i) for 1-d, (i,j) for 2-d, (i,j,k) for 3d). See

alsdlindek.

CF Conventions Climate and Forecast Conventions. These are emerging ictions for expressing Earth science
metadata. See the CF home page.

Change Review Board (CRB) The Change Review Board is the ESMF management body thairegtst schedules
and priorities. Its Terms of Reference are in[the ESMF Ptdéan.

Clock Clock is an ESMF class that tracks the passage of time andtsagpe current time instant. An ESMF Clock
is stepped forward in increments of a time step, and can leiassd with one or more Alarms. See dlso Tlime,
[Ime Intervall Alarn.

Component The ESMF Component class represents large-scale congnahéntities associated with a particular
physical process or computational function, such as a laoatein Currently ESMF suppoits Gridded Compohent
and Coupler Componént classes. Components mpy be denjesemsupplied.

Computational domain For a given DE, the data points that have unique global irscie®l are updated by the DE.
See alsd exclusive domain, total domain, halo.

69

http://dss.ucar.edu/docs/formats/bufr/
http://www.cgd.ucar.edu/cms/eaton/cf-metadata/
http://www.earthsystemmodeling.org/management/

Computational resource Something that appears as a physical or virtual computeures. Example of computa-
tional resources are a CPU, a network connection, a commtimicAPI, a protocol, a particular network fabric
or a piece of computer memory.

Concurrent execution Concurrent execution of model components occurs when twoase components, whether
in the same or different executables, run simultaneouslg.a&s¢ Sequential execution.

Congruent If all Fields in a FieldBundle contain the same data typekyahape, and relative locations, the Field-
Bundle is said to be congruent.

Coupler Component An ESMF Component that includes all data and actions neexledable communication be-
tween two or more Gridded Components. See[alSo compgénadfésrComponeht.

Curvilinear grid A curvilinear grid is a logically rectangular grid in whictloardinates in physical space must be
specified by giving the explicit coordinates for each po@Curvilinear grids are often uniform or rectilinear grids
that have been warped, for example in order to place a poldanve points so it does not affect the computations
performed on an ocean model grid. See Rlso logically recdangrid,[Uniform gridi| Rectilinear grjd.

Data dependencyThe property of a computational operator that defines tha thatices required to perform the
computation at a point.

Data parallel The quality of an application that allows roughly the sameuation to be performed by all processors
at the same time on the same data set, which is partitioned@maltiple memory locations. Single compo-
nents that do not contain nested components are often datiteheSee alsp task parallel. SPMD, MPMD.

Data transpose Rearrangement of data arrays that share the fame globalifoma

Day of year The day number in the calendar year. January 1 is day 1 of e Bay of year expressed in a floating
point format is used to express the day number plus the timgagf For example, assuming a Gregorian
calendar:

date day of year
10 January 2000, 6Z 10.25
31 December 2000, 18Z 366.75

DE Short foif Decomposition Elemeént.

DELayout DELayout is the ESMF class that defines the topology of a s&kd and specifies how the DEs are
assigned to PETs in an ESMFE Virtual MacHine.

Decomposition Element (DE) A DE is the smallest unit of decomposition of a computatidaak. DEs are virtual
units, not necessarily having a 1-to-1 correspondencetBéhnsistent Execution Threads (PETSs) of a VM or the
physical Processing Elements (PEs) in the underlying phl/siachine. Consequently there are no restrictions
on the number of DEs that can be created. The applicatioemmitly chose the number of DEs to best match
the computational problem and the employed algorithm. A BYflut assigns a topology to Decomposition

Elements. See al§o DELayput.

Deep object In an environment in which the calling and implementatiamglaage of a library are different, deep ob-
jects are defined as those whose memory is allocated by tHerimeptation language. See dlso shallow object.

Distributed Grid DistGrid is the ESMF class that defines the decomposition®@fid’s global index space across a
DELayout. DistGrid objects are contained in an ESMF Grice 8isd_Gritif DELayolit.

Distribution The function that expresses the relationship between thieds in a Distributed Grid and the elements

in a DELayout. See algo Disiributed Qiid, DELayout.

Domain decomposition The act of grid distribution: creating a DistGrid, and asatieg grid points with the Dist-
Grid. The dimensionality of the domain decomposition is $aee as the dimensionality of the associated
DistGrid.

70

Exact The word exact is used to denote entities, such as time tsstéaal time intervals, for which truncation-free
arithmetic is required.

Exchange grid A grid whose vertices are formed by the intersection of théiaes of two overlying grids. Each cell
in the exchange grid overlies exactly one cell in each grithefexchange. See also gfid. tell.

Exchange PacketsExchange Packets are a private ESMF class that containma@ataptimal form for data transfers.

Exclusive domain For a given DE, the set of data points that are not replicatexhy other DE. See alga fofal donjain,
[computational domaji, halo.

Executable A program that is under independent control by the operaiyis¢em.

Export State The data and metadata that a component can make availalebectoeinge with other components. This
may be data at a physical boundary (e.g land-atmospherésiceg or in other cases, it might be the entire model

state. See aldo Sta ate.

Field The ESMF Field class represents a tangible or derived gyatgfined within a continuous region of space.
The Field class includes the physical grid associated wighquantity and a decomposition that specifies how
data associated with points in the physical grid are disteith in computer memory and/or how computational
work is divided among threads. A Field also includes a spetifin of gridpoint staggering and any metadata
necessary for a full description of its data. See _aIsolGrid.

Framework We use the term framework to refer to a structured colleatibsoftware building blocks that can be
used and customized to develop components, assemble tteeamiapplication, and run the application.

Generic component A generic component is one supplied by the framework. Theigs®t expected to customize
or otherwise modify it. ESMF does not currently contain aeyneric components. See afSo_USer compgnent,

component.

Generic transform A generic transform is an operation supplied by the framé&wfar example, a method that
converts gridded data from one supported grid and/or deositipn to another using a specified technique. See
alsd user fransform.

Global domain A global domain refers to the full extent of a DELayout or Grid

Global reduction Reduction operations (sum, max, min, etc.) that condensedistributed over p_global domain.
See alsf global broadeast

Global broadcast Scatter operations on data distributed ovier a global dans&ie alsp global reductipn.

Gregorian The Gregorian calendar is the most widely used calendareimibrld. The calendar’s zeroth year is at
the birth of Jesus Christ. Years after the origin (anno DénimAD) are positive, and before (Before Christ, or
BC) are negative. Several corrections (leap year, 100 $88ryear) are necessary to keep the calendar aligned
with solar cycles. See al§g Calendar.

GRIB The GRid in Binary Data format from the World Meteorologi€aiganization. This format is frequently used
by operational weather centers. See the GRIB and GRIB2 hagesp

Grid The discrete division of space associated with a partictdardinate system. The ESMF Grid class contains
coordinate, domain decomposition, and memory organizatformation required to manipulate Fields, as well
as to create and execute Grid transforms. Sed also Digidiid| DELCayout.

Grid staggering A descriptor of relative locations of scalar and vector dataa structured grid. On different stag-
gered grids, vector data may lie at cell faces or verticedleveicalar data may lie in the interior.

Grid topology Description of data connectivities for a grid.

Grid union The formation of a new grid by taking the union of the vertioéswvo input grids. See aldo Giid.

71

http://www.wmo.ch/pages/prog/www/WDM/Guides/Guide-binary-2.html
http://www.wmo.ch/web/www/DPS/grib-2.html

Gridded Component An ESMF class that represents a component that is assodciéifedne or more grids. No
requirements may be placed on the physical content of a Edid@bmponent’s data or on the nature of its
computations. See algo componént, Coupler Comppnent.

Halo For a given DE, a halo is a set of data points from the comprtatidomains of neighboring DEs that are repli-
cated locally for computational convenience. A halo candfnéd as all the data points in a DE’s total domain
excluding those in its computational domain. See [also caatjomal domaili, total domdin, exclusive donmain.

Halo update A halo update operation involves synchronization of theigalof some or all halo points with the
current values of those points on other DEs. Seelalsd halo.

Import State The data and metadata that a component requires from otimgrarents in order to run. See dlso State,

Export State.

Index An integer value associated with a set of coordinates.
Index space The space implied by a set of indices. An index space has aedefimensionality and connectivity.

Index space locationA location within an index space. An index space location rbayfractional. See also

pnhysical location.

Instantiate To create an actual instance of a software class. For exaegdh variable of derived type Field in an
ESMF Fortran application is an instance of the Field class.

Interface Used generally to refer to a set of operations that chaiiaetére behavior of a class or a component. Also
used to refer to the name and argument list of a particulahoaet

Joint Milestone Codeset(JMC) Joint Milestone Codeset. This is the set of climate, weadimel data assimilation
applications used as ESMF testbeds during the initial NAG#ded phase of ESMF development.

Joint Specification Team(JST) The JST is the body of developers and users who collaborateetie the ESMF
software. The main form of communication for the JST is thekigtelecon. Terms of Reference are in the
ESMF Project Plan.

LocalArray A LocalArray is the portion of an ESMF Array that resides oreatjgular DE. See aldo Array.
LocalTile A LocalTile is the portion of a grid Tile that resides on a parar DE. See alsb Tile.

Location Stream An ESMF class that represents a list of locations with no meslrelationship between these
locations. The elements of a Location Stream are not asstorgthre the same metadata. Location Streams

are not yet implemented. See grid.

Logically rectangular grid A grid in which a set of coordinates (x,y,z, ...) in physicpase can be mapped one-to-
one to a set of regularly spaced points (i,j,k, ...) in a negtdar logical space, preserving proximate relation-
ships. See aldo Gtid.

Loose FieldBundle A loose FieldBundle is an ESMF FieldBundle object that corgtdields whose data is not con-
tiguous in memory. See algo FieldBuddlle, packed FieldBaind|

Machine model A generic representation of the computing platform archites.

Mask A data field marking a span within a larger data field.

Memory domain The portion of memory associated with the data on a given DEe.fmemory domain is always at
least as large as the total domain. Seelalso fotal ddmain.

Mosaic grid A mosaic grid is composed of multiple logically rectangidad tiles that are connected at their edges,
for example, a cubed sphere grid. See tile.

MPMD Multiple Program Multiple Datastream. Multiple executdl any of which could itself be an SPMD exe-
cutable, executing independently within an applicatioee Slsd SPMD.

72

http://www.earthsystemmodeling.org/management/

Namelist An I/O feature supported by Fortran that defines a structsyathx for creating text files of initial variable
settings and defines language features for compactly rg#ufiles. The syntax for Namelist files can be found
in most Fortran manuals and tutorial texts.

NetCDF Network Common Data Form. This is a popular 1/O library anthdarmat in the Earth sciences. See
NetCDF home page.

Node A node is a set of computational resources that is typicattated in close proximity on a computing platform
and that is associated with a single shared memory buffer.

No-leap calendar In this calendar every year uses the same months and daysop¢h as in a non-leap year of a
Gregorian calendar. See also Calehdar, 360-day calendar.

Packed FieldBundle A packed FieldBundle is an ESMF FieldBundle object that aovsta data buffer with field data
arranged contiguously in memory. See hdlesddaeldBundle

Parallel execution The term parallel execution refers to the execution of axsof application on more than dnelPE.
See alsf serikl.

PE Short fof Processing Elemént.
PET Short fofPersistent Execufion Thréad.

Persistent Execution Thread (PET) Provides a path for executing an instruction sequence. AlRisTa lifetime at
least as long as the associated data objects. The PET is dsesaion used in the ESME Virtual Machine.

Physical location A point in physical space to which a data point pertains. $&#index space locatipn.

Platform The processor hardware, operating system, compiler aradigidibrary that together form a unique com-
pilation target.

Processing Element (PE)A Processing Element (PE) is the smallest physical proegssiit available on a particular
hardware platform.

Rectilinear grid A rectilinear grid is a logically rectangular grid in whiche coordinates in physical space can be
fully specified by the spacing of grid points along each gxid.aThe gridpoints are located where the coordinate
values intersect. The spacing along each axis may vary. Sedamically rectangular grjd, Uniform gilid,

urviliinear grid.

Scheduler An operating system component that assigns system resomoeessors, memory, CPU time, 1/0 chan-
nels, etc.) to executables.

Search Search refers to the process of determining which processors muestamge data (and how much) when
regridding between decomposed grids. See[@aso gweep.

Sequential executionSequential execution of model components describes theeigaghich one component waits
for another to finish before it begins to run. Components atieg sequentially may be in the same or different
executables and may have coincident or non-overlappinganedistributions. Sele Concurrent execution.

Serial Execution The term serial execution refers to theeten of a software application on only one PET. See
alsd parallel execution.

Shallow object In an environmentin which the calling and implementatiarglaage of a library are different, shallow
objects are defined as those whose memory is allocated bylirgdanguage. See also deep object.

Span The physical extent associated with a grid.

SPMD Single Program Multiple Datastream. A single executaldssbly with many components (representing for
example the atmosphere, the ocean, land surface) exesetiiadly or concurrently. See also MPVID.

State The ESMF State class may contain Arrays, FieldBundlesdEjadr other States. It is used to transfer data
between components. See dlso import $fate, expori State.

73

http://www.unidata.ucar.edu/software/netcdf/

Sweep Sweep refers to the regridding process of looping through listsedfs from one grid, hunting for interactions
with a specified point or subsegment from the other grid. Ve of interaction depends on the regrid method
and is either an intersection with an identified subsegmeoaotainment of an identified point. The limitation
of the range of cells that must be examined is also consiqegdf the sweep algorithm. See dlsa selarch.

System time Time spent doing system tasks such as I/O or in system cally.di6o include time spent running other
processes on a multiprocessor system. Seé also usér tithelogk timd.

Task parallel The quality of an application that allows different caldidas to be performed by different processors
at the same time on what are usually different data sets. eksegle task parallelism is often associated with
multi-component applications in which each componentasgnts a separate domain or function. Task parallel
applications may be run with components executing eithguesatially or concurrently, and either in a SPMD
or MPMD mode. See algo data pargllel, SPNID, MPVID, sequeeti@tution concurrent executlon.

Some grids used in Earth system modeling, such as cubedesphids, are most naturally represented as a set
of logically rectangular grids that are connected at theges. Following V. Balaji [2006] we refer to each of
the logically rectangular grids in a composite grid, or miosggid, as a Tile. See al$o mosaic gfid. LocallTile.

Time Time is an ESMF class that is made up of a time and date and aniatesl calendar. It may include a time
zone.Jan 3rd 1999, 03:30:24.56s, UTIE one example of a Time. See alsao Calehdar.

Time Interval Time Interval is an ESMF class that represents the periogd®at any two time instants, measured
in units, such as days, seconds, and fractions of a secorelpdiiods? days and 10 secondd6400 and 1/3
secondsind31104000.75 secondse all possible values for Time Intervals. Mathematicarations such as
addition, multiplication, and subdivision can be applieditme Intervals, and they can have negative values.
See als@ Time

Total domain For a given DE, the entirety of the data points allocateduuhed replicated points from neighboring
DEs. See also computational domain, exclusive darhain] halo

A logically rectangular grid in which the coordinates in gloal space can be completely specified by the two
sets of coordinates that define the opposing corner poirtegihysical span. The coordinates of each pointin
physical space can be obtained by interpolating from thaerguoints, using the evenly spaced logical grid to
specify evenly spaced grid point locations. See[also Idigioactangular grifl, Rectilinear gijiff, Curvilinear grid.

User component A component that is customized or written by the user. All BES8dmponents are currently user
components. See also generic compgnent.

User time Processor time actually spent executing a PET'’s code. Sefsystem tine, wall clock fime.

User transform A user-supplied method that is used to extend frameworkhibijies beyond generic transforms.
See alsp generic transfgrm.

Virtual Address Space (VAS) A term that refers to the address space in which the compugerary is represented
and becomes accessible to an executing PET.

VM Short fof Virtual Machink.

Virtual Machine (VM) An ESMF class that abstracts hardware and operating systtaiisd The VM's responsi-
bilities are resource management and topological degmipf the underlying compute resources in terms of
[PET3. In addition the VM provides a transparent, low levehownication API.

Wall clock time Elapsed real-world time (i.e. difference between staréetiminus stop time). See also system {ime,
luser fimeé.

References

[1] Eaton, B., J. Gregory, B. Drach, K. Taylor, and S. HankietCDF Climate and Forecast (CF) Metadata Conven-
tion. http://www.cgd.ucar.edu/cms/eaton/cf-metadiatii. html.

74

	What is the Earth System Modeling Framework?
	The ESMF User's Guide
	How to Contact User Support and Find Additional Information
	How to Submit Comments, Bug Reports, and Feature Requests
	Quick Start
	Downloading ESMF
	From the ESMF web site
	From the SourceForge website

	Unpacking the download
	Directory Structure
	Building ESMF
	Environment variables
	GNU make
	gmake info
	Building makefile targets
	Testing makefile targets
	Building and using bundled ESMF applications

	Compiling and Linking User Code against an ESMF Installation
	Using Bundled ESMF Applications
	Building and Installing the ESMF
	ESMF Download Options
	System Requirements
	Third Party Libraries
	LAPACK
	NetCDF
	Parallel-NetCDF
	PIO
	XERCES

	ESMF Environment Variables
	Supported Platforms
	Building the ESMF Library
	Building the ESMF Documentation
	Installing the ESMF

	Porting the ESMF
	The ESMF Build System
	General structure
	Build configuration
	Source code configuration

	Porting the ESMF to New Platforms
	Customizing the build_rules.mk fragment
	Customizing ESMC_Conf.h and ESMF_Conf.inc

	Shared Object Libraries
	Customized SITE Files

	Validating an ESMF Build
	Running ESMF Self-Tests
	Setting up ESMF to run test suite applications
	Running ESMF unit tests
	Running ESMF system tests

	Running ESMF Examples
	Example source code
	Building and running examples

	Architectural Overview
	Key Concepts
	Modularity
	Flexibility
	Hierarchical organization
	Communication within Components
	Uniform communication API

	Superstructure
	Import and export State classes
	Interface standards
	Gridded Component class
	Coupler Component class
	Flexible data and control flow

	Infrastructure
	FieldBundle, Field and Array classes
	Grid class
	Time and Calendar management
	Config resource file manager
	DELayout and virtual machine
	Logging and error handling
	File input and output

	ESMF COUPLED_FLOW Demonstration Program
	ESMF COUPLED_FLOW Description
	Program Organization

	ESMF COUPLED_FLOW Demonstration Code Details
	Fortran: Module Interface CoupledFlowApp.F90 - Main program source file for demo (Source File: CoupledFlowApp.F90)
	Namelist Input Parameters for CoupledFlowApp:
	Example of Initializing the Framework:
	Example of Calendar and Clock Creation and Usage:
	Example of Grid Creation:
	Example of State Creation:
	Example of Initialize, Run, and Finalize:
	Example of Object Destruction:
	Example of ESMF Finalize:

	Fortran: Module Interface CoupledFlowDemo.F90 - Top level Gridded Component source (Source File: CoupledFlowDemo.F90)
	Example of Set Services Usage:
	Example of Component Creation:
	Example of State Creation:
	Example of Time Stepping Loop:
	Example of Clock Destruction:

	Fortran: Module Interface FlowSolverMod.F90 - Source file for Flow Solver Component (Source File: FlowSolverMod.F90)
	Namelist Input Parameters for Flowsolver:
	Example of FieldHalo Usage:

	Fortran: Module Interface FlowArraysMod.F90 - Source file for Data for Flow Solver (Source File: FlowArraysMod.F90)
	Example of Field Creation and Array Usage:

	Fortran: Module Interface CouplerMod.F90 - Source for 2-way Coupler Component (Source File: CouplerMod.F90)
	Example of Redist Usage:

	Fortran: Module Interface InjectorMod - Fluid Injection Component (Source File: InjectorMod.F90)
	Namelist Input Parameters for Injector:

	How to Adapt Applications for ESMF
	Individual Components
	Full Application

	Glossary
	References

