Earth System Modeling Framework

ESMF Reference Manual for C

Version 5.2

ESMF Joint Specification Team: V. Balaji, Byron Boville, SamCheung, Tom Clune, Nancy
Collins, Tony Craig, Carlos Cruz, Arlindo da Silva, CecdlalLuca, Rosalinda de Fainchtein,
Brian Eaton, Bob Hallberg, Tom Henderson, Chris Hill, Markdell, Rob Jacob, Phil Jones,
Erik Kluzek, Brian Kauffman, Jay Larson, Peggy Li, Fei Liahd Michalakes, Sylvia Murphy,
David Neckels, Ryan O Kuinghttons, Bob Oehmke, Chuck PamegcJim Rosinski, Will Sawyer,
Earl Schwab, Shepard Smithline, Walter Spector, Don ShMak, Suarez, Spencer Swift, Gerhard
Theurich, Atanas Trayanov, Silverio Vasquez, Jon Wolfguwang, Mike Young, Leonid
Zaslavsky

April 10, 2012

http://www.earthsystemmodeling.org

Acknowledgements

The ESMF software is based on the contributions of a broadwmamity. Below are the software packages that
are included in ESMF or strongly influenced our design. Wid to express our gratitude to the developers of these
codes for access to their software as well as their ideaséridea

Parallel I/O (PIO) developers at NCAR and DOE LaboratoriesHeir excellent work on this package and their
help in making it work with ESMF

The Spherical Coordinate Remapping and Interpolation &#pekSCRIP) from Los Alamos, which informed
the design of our regridding functionality

The Model Coupling Toolkit (MCT) from Argonne National Latadory, on which we based our sparse matrix
multiply approach to general regridding

The Inpack configuration attributes package from NASA Geddwhich was adapted for use in ESMF by
members of NASA Global Modeling and Assimilation group

The Flexible Modeling System (FMS) package from GFDL andGeldard Earth Modeling System (GEMS)
from NASA Goddard, both of which provided inspiration foetbverall ESMF architecture

The Common Component Architecture (CCA) effort within thegartment of Energy, from which we drew
many ideas about how to design components

The Vector Signal Image Processing Library (VSIPL) andiedgcessors, which informed many aspects of our
design, and the radar system software design group at lnhaidoratory

The Portable, Extensible Toolkit for Scientific Computat{®ETSc) package from Argonne National Labora-
tories, on which we based our initial makefile system

The Community Climate System Model (CCSM) and Weather Rekeand Forecasting (WRF) modeling
groups at NCAR, who have provided valuable feedback on tegydend implementation of the framework

Contents

I__ESMF Overview 7

12.2.6 ESMC GndComDPr nt 38
[12.2 7 ESMC GndComDRhn 38

[19 Mesh Class 61
191 Descriptidn 61

Part |
ESMF Overview

1 Whatis the Earth System Modeling Framework?

The Earth System Modeling Framework (ESMF) is a suite ofveafé tools for developing high-performance, multi-
component Earth science modeling applications. Such egifins may include a few or dozens of components
representing atmospheric, oceanic, terrestrial, or githgsical domains, and their constituent processes (dyasmi
chemical, biological, etc.). Often these components aveldped by different groups independently, and must be
“coupled” together using software that transfers and fanss data among the components in order to form functional
simulations.

ESMF supports the development of these complex applicatioa number of ways. It introduces a set of simple,
consistent componentinterfaces that apply to all typeswifonents, including couplers themselves. These intesfac
expose in an obvious way the inputs and outputs of each coempolh offers a variety of data structures for transferring
data between components, and libraries for regriddinge taivancement, and other common modeling functions.
Finally, it provides a growing set of tools for using metad#&t describe components and their input and output
fields. This capability is important because componentsaha self-describing can be integrated more easily into
automated workflows, model and dataset distribution antysisgortals, and other emerging “semantically enabled”
computational environments.

ESMF is not a single Earth system model into which all compésieust fit, and its distribution doesn’t contain
any scientific code. Rather it provides a way of structurioghponents so that they can be used in many differ-
ent user-written applications and contexts with minimaleonodification, and so they can be coupled together in
new configurations with relative ease. The idea is to creaeyncomponents across a broad community, and so to
encourage new collaborations and combinations.

ESMF offers the flexibility needed by this diverse user baseés tested nightly on more than two dozen plat-
form/compiler combinations; can be run on one processdraudands; supports shared and distributed memory pro-
gramming models and a hybrid model; can run components atiglhg (on all the same processors) or concurrently
(on mutually exclusive processors); and supports singéew@able or multiple executable modes.

ESMF'’s generality and breadth of function can make it daunfor the novice user. To help users navigate
the software, we try to apply consistent names and behawioughout and to provide many examples. The large-
scale structure of the software is straightforward. Thiies and data structures for building modeling compogent
are called the ESMinfrastructure The coupling interfaces and drivers are calledghperstructure User code sits
between these two layers, making calls to the infrastrediioraries underneath and being scheduled and synchobnize
by the superstructure above. The configuration resemblasdwsch, as shown in Figuié 1.

ESMF users may choose to extensively rewrite their codeski advantage of the ESMF infrastructure, or they
may decide to simply wrap their components in the ESMF suipmtsire in order to utilize framework coupling
services. Either way, we encourage users to contact ouosuggan if questions arise about how to best use the
software, or how to structure their application. ESMF is enthhan software; it's a group of people dedicated to
realizing the vision of a collaborative model developmearhmunity that spans insitutional and national bounds.

2 The ESMF Reference Manual for C

ESMF has a complete set of Fortran interfaces and some Gaoésr ThisEESMF Reference Manu# a listing of
ESMF interfaces for C.

Interfaces are grouped by class. A class is comprised ofateeahd methods for a specific concept like a physical
field. Superstructure classes are listed first in Miéual followed by infrastructure classes.

The major classes in the ESMF superstructure are Compgnerith usually represent large pieces of function-
ality such as atmosphere and ocean models, and States, arkithe data structures used to transfer data between
Components. There are both data structures and utilitidseife SMF infrastructure. Data structures include multi-
dimensional Arrays, Fields that are comprised of an Array arGrid, and collections of Arrays and Fields called
ArrayBundles and FieldBundles, respectively. There aitiytbraries for data decomposition and communications
time management, logging and error handling, and applicabnfiguration.

mailto:esmf_support@list.woc.noaa.gov

Figure 1. Schematic of the ESMF “sandwich” architecture.e Ttamework consists of two parts, an upper level
superstructure layer and a lower levehfrastructure layer. User code is sandwiched between these two layers.

ESMF Superstructure
AppDriver
Component Classes: GridComp, CplComp, State

User Code

ESMF Infrastructure
Data Classes: Bundle, Field, Grid, Array
Utility Classes: Clock, LogErr, DELayout, VM, Config

3 How to Contact User Support and Find Additional Informatio n

The ESMF team can answer questions about the interfacespeesn this document. For user support, please contact
esmf_support@list.woc.noaa.gov.

The website, http://www.earthsystemmodeling.org, ptevinore information of the ESMF project as a whole.
The website includes release notes and known bugs for eastornef the framework, supported platforms, project
history, values, and metrics, related projects, the ESMRagament structure, and more. TBSMF User’s Guide
contains build and installation instructions, an overviefiithe ESMF system and a description of how its classes
interrelate (this version of the document correspondsedakt public version of the framework). Also available on
the ESMF website is tHESMF Developer’s Guidthat details ESMF procedures and conventions.

4 How to Submit Comments, Bug Reports, and Feature Requests

We welcome input on any aspect of the ESMF project. Send igmsstand comments to
esmf_support@list.woc.noaa.gov.

mailto:esmf_support@list.woc.noaa.gov
http://www.earthsystemmodeling.org
http://www.earthsystemmodeling.org/esmf_releases/public/last/ESMF_usrdoc/
http://www.earthsystemmodeling.org/documents/dev_guide/
mailto:esmf_support@list.woc.noaa.gov

5 The ESMF Application Programming Interface

The ESMF Application Programming Interface (API) is basadh® object-oriented programming concept ofass

A class is a software construct that is used for grouping @fetlated variables together with the subroutines and
functions that operate on them. We use classes in ESMF betiaers help to organize the code, and often make it
easier to maintain and understand. A particular instaneectdss is called aobject. For example, Field is an ESMF
class. An actual Field calleidenper at ur e is an object. That is about as far as we will go into softwagiregering
terminology.

The Cinterface is implemented so that the variables agwsabth a class are stored in a C structure. For example,
anESMC_Fi el d structure stores the data array, grid information, and dataassociated with a physical field. The
structure for each class is defined in a C header file. The tipesaassociated with each class are also defined in the
header files.

The header files for ESMF are bundled together and can be ssttesith a single ncl ude statement,

#i ncl ude "ESMC. h". By convention, the C entry points are named using “ESMC” peéix.

5.1 Standard Methods and Interface Rules

ESMF defines a set of standard methods and interface rulelsdlibacross the entire API. These are:

e ESMC <Cl ass>Create() and ESMC <C ass>Destroy(), for creating and destroying objects
of ESMF classes that require internal memory managementalledc ESMF deep classes). The
ESMC_<d ass>Cr eat e() method allocates memory for the object itself and for irdérariables, and ini-
tializes variables where appropriate. It is always writhsra function that returns a derived type instance of the
class, i.e. an object.

e ESMC <Cl ass>Set () andESMC <Cl ass>Cet (), for setting and retrieving a particular item or flag.
In general, these methods are overloaded for all cases wheridéem can be manipulated as a name/value
pair. If identifying the item requires more than a name, orthé class is of sufficient complexity
that overloading in this way would result in an overwhelmingmber of options, we define specific
ESMC_<d ass>Set <Sonet hi ng>() andESMC_<Cl ass>Get <Sormret hi ng>() interfaces.

e ESMC <O ass>Add(), ESMC <O ass>AddRepl ace(), ESMC _<d ass>Renove(), and
ESMC <O ass>Repl ace(), for manipulating objects of ESMF container classes - sisdBSMC St at e
andESMC _Fi el dBundl e. For example, th&SMC_Fi el dBundl eAdd() method adds another Field to an
existing FieldBundle object.

e ESMC <O ass>Pri nt (), for printing the contents of an object to standard out. Thiathod is mainly
intended for debugging.

e ESMC <Cl ass>ReadRestart () andESMC <Cl ass>WiteRestart (), for saving the contents of a
class and restoring it exactly. Read and write restart nustiave not yet been implemented for most ESMF
classes, so where necessary the user needs to write redteas themselves.

e ESMC <O ass>Val i dat e(), for determining whether a class is internally consisterfor example,
ESMC Fi el dval i dat e() validates the internal consistency of a Field object.

5.2 Deep and Shallow Classes

The ESMF contains two types of classes.

Deepclasses requirESMC_<Cl ass>Cr eat e() andESMC_<Cl ass>Dest roy() calls. They involve mem-
ory allocation take significant time to set up (involving mammanagement) and should not be created in a time-
critical portion of code. Deep objects persist even afterrttethod in which they were created has returned. Most

10

classes in ESMF, including GridComp, CplComp, State, BiekleldBundles, Arrays, ArrayBundles, Grids, and
Clocks, fall into this category.

Shal | ow classes do not posseBSMC_<Cl ass>Cr eat e() andESMC_<C ass>Dest roy() calls. They
are simply declared and their values set usinge8MC_<Cl ass>Set () call. Examples of shallow classes are
Time, Timelnterval, and ArraySpec. Shallow classes do ake tong to set up and can be declared and set within a
time-critical code segment. Shallow objects stop existihgn the method in which they were declared has returned.

An exception to this is when a shallow object, such as a Tiegtorred in a deep object such as a Clock. The Clock
then carries a copy of the Time in persistent memory. The Teneallocated with th&SMC_Cl ockDest r oy()
call.

See Sectior??, Overall Design and Implementation Notes, for a brief déston of deep and shallow classes
from an implementation perspective. For an in-depth loakeatdesign and inter-language issues related to deep and
shallow classes, see tB&SMF Implementation Report

5.3 Special Methods

The following are special methods which, in one case, areired by any application using ESMF, and in the other
case must be called by any application that is using ESMF @oents.

e ESMC Initialize() andESMC Fi nal i ze() are required methods that must bracket the use of ESMF
within an application. They manage the resources requaedrt ESMF and shut it down gracefully. ESMF
does not support restarts in the same executable, E8MC | niti al i ze() should not be called after
ESMC Fi nalize().

e ESMC <Type>Conplnitialize(), ESMC _<Type>ConmpRun(), and
ESMC _<Type>ConpFi nal i ze() are component methods that are used at the highest levelnwith
ESMF. <Type> may be<G i d>, for Gridded Components such as oceans or atmosphere&pdr>, for
Coupler Components that are used to connect them. The ¢mftémese methods is not part of the ESMF.
Instead the methods call into associated subroutinesmwitter code.

5.4 The ESMF Data Hierarchy

The ESMF APl is organized around an hierarchy of classestratin model data. The operations that are performed
on model data, such as regridding, redistribution, and hpttates, are methods of these classes.
The main data classes offered by the ESMF C API, in order oéasing complexity, are:

e Array An ESMF Array is a distributed, multi-dimensional arrayttlcan carry information such as its type,
kind, rank, and associated halo widths. It contains a rafar¢o a native language array.

e Field A Field represents a physical scalar or vector field. It cimista reference to an Array along with grid
information and metadata.

e StateA State represents the collection of data that a Compon#h@reiequires to run (an Import State) or can
make available to other Components (an Export State). sStaéy contain references to Arrays, ArrayBundles,
Fields, FieldBundles, or other States.

e Component A Component is a piece of software with a distinct functionSME- currently recognizes two
types of Components. Components that represent a physicaid or process, such as an atmospheric model,
are called Gridded Components since they are usually dizedeon an underlying grid. The Components
responsible for regridding and transferring data betweedded Components are called Coupler Components.
Each Component is associated with an Import and an Expdea.SEamponents can be nested so that simpler
Components are contained within more complex ones.

Underlying these data classes are native language arr@FRrrays and Fields can be queried for the C pointer
to the actual data. You can perform communication operatither on the ESMF data objects or directly on C arrays
through the VM class, which serves as a unifying wrapperifgriduted and shared memory communication libraries.

11

http://www.earthsystemmodeling.org/documents/IMPL_repdoc/

5.5 ESMF Spatial Classes

Like the hierarchy of model data classes, ranging from timgpke to the complex, ESMF is organized around an hierar-
chy of classes that represent different spaces associ#ted somputation. Each of these spaces can be manipulated,
in order to give the user control over how a computation iseted. For Earth system models, this hierarchy starts
with the address space associated with the computer anadsxie the physical region described by the application.
The main spatial classes in ESMF, from those closest to theimato those closest to the application, are:

e TheVirtual Machine, or VM The ESMF VM is an abstraction of a parallel computing envinent that en-
compasses both shared and distributed memory, single alidoone systems. Its primary purpose is resource
allocation and management. Each Component runs in its ownuéiig the resources it defines. The elements
of a VM arePersistent Execution Threadsor PETs, that are executing iNfirtual Address Spaces or VASSs.

A simple case is one in which every PET is associated with glesilPI process. In this case every PET is
executing in its own private VAS. If Components are nestieel parent Component allocates a subset of its PETs
to its children. The children have some flexibility, subjerthe constraints of the computing environment, to
decide how they want to use the resources associated witPEfe they've received.

e DELayout A DELayout represents a data decomposition (we also refénisoas a distribution). Its basic
elements ar®ecomposition Elementsor DEs. A DELayout associates a set of DEs with the PETs in a VM.
DEs are not necessarily one-to-one with PETs. For caché&ibigoor user-managed multi-threading, more DEs
than PETs may be defined. Fewer DEs than PETs may also be défamealpplication requires it.

The current ESMF C API does not provide user access to the {pitlialass.
e DistGrid A DistGrid represents the index space associated with a brisla useful abstraction because often
a full specification of grid coordinates is not necessarydbng data communication patterns. The DistGrid

contains information about the sequence and connecti¥itiata points, which is sufficient information for
many operations. Arrays are defined on DistGrids.

e Array An Array defines how the index space described in the DistiSrgsociated with the VAS of each PET.
This association considers the type, kind and rank of thexed data. Fields are defined on Arrays.

e Grid A Grid is an abstraction of a physical space. It associatesoadinate system, a set of coordinates, and
a topology to a collection of grid cells. Grids in ESMF are qoised of DistGrids plus additional coordinate
information.

The current ESMF C API does not provide user access to thedzsd.

o Field A Field may contain more dimensions than the Grid that it &editized on. For example, for convenience
during integration, a user may want to define a single FieJdailthat holds snapshots of data at multiple times.
Fields also keep track of the stagger location of a Field gatat within its associated Grid cell.

5.6 ESMF Maps

In order to define how the index spaces of the spatial clagdaterto each other, we require either implicit rules
(in which case the relationship between spaces is definecetaull), or special Map arrays that allow the user to
specify the desired association. The form of the specitina usually that the position of the array element carries
information about the first object, and the value of the aekyment carries information about the second object.
ESMF includes @i st Gri dToAr rayMap, agri dToFi el dvap, adi st Gi dToGri dvap, and others.

5.7 ESMF Specification Classes
It can be useful to make small packets of descriptive pararseESMF has one of these:

e ArraySpec, for storing the specifics, such as type/kind/rank, of aayarr

12

5.8 ESMF Utility Classes
There are a number of utilities in ESMF that can be used inugg®tly. These are:

e Attributes, for storing metadata about Fields, FieldBundles, Stated,other classes. (Not currently available
through the ESMF C API.)

e TimeMgr, for calendar, time, clock and alarm functions.
e LogErr, forlogging and error handling.

e Config, for creating resource files that can replace namelists assistent way of setting configuration param-
eters.

6 Overall Rules and Behavior

6.1 Local and Global Views and Associated Conventions

ESMF data objects such as Fields are distributed over DHS,eaich DE getting a portion of the data. Depending on
the task, a local or global view of the object may be prefexalnl a local view, data indices start with the first element
on the DE and end with the last element on the same DE. In algl@yg there is an assumed or specified order to the
set of DEs over which the object is distributed. Data ind&tast with the first element on the first DE, and continue
across all the elements in the sequence of DEs. The lastri#ga represents the number of elements in the entire
object. The DistGrid provides the mapping between localglofal data indices.

The convention in ESMF is that entities with a global view &aw prefix. Entities with a DE-local (and in some
cases, PET-local) view have the prefix “local.”

Just as data is distributed over DEs, DEs themselves carstribdied over PETs. This is an advanced feature for
users who would like to create multiple local chunks of d&daalgorithmic or performance reasons. Local DEs are
those DEs that are located on the local PET. Local DE labaiwgys starts at O and goes to localDeCount-1, where
localDeCount is the number of DEs on the local PET. Global DEbers also start at 0 and go to deCount-1. The
DELayout class provides the mapping between local and g@Baxumbers.

6.2 Allocation Rules

The basic rule of allocation and deallocation for the ESMmisoever allocates it is responsible for deallocating it.

ESMF methods that allocate their own space for data will [deate that space when the object is de-
stroyed. Methods which accept a user-allocated buffer, deample ESMC_Fi el dCreate() with the
ESMF_DATACOPY_REFERENCE flag, will not deallocate that buffer at the time the objectiestroyed. The user
must deallocate the buffer when all use of it is complete.

Classes such as Fields, FieldBundles, and States may heaysAFields, Grids and FieldBundles created exter-
nally and associated with them. These associated itemsadestroyed along with the rest of the data object since it
is possible for the items to be added to more than one datatadja time (e.g. the same Grid could be part of many
Fields). It is the user’s responsibility to delete thesmiavhen the last use of them is done.

6.3 Assignment, Equality, Copying and Comparing Objects

The equal sign assignment has not been overloaded in ESMdbulting in the standard C behavior. This behavior
has been documented as the first entry in the API documentséiction for each ESMF class. For deep ESMF
objects the assignment results in setting an alias the the &SMF object in memory. For shallow ESMF objects
the assignment is essentially a equivalent to a copy of tfecbbFor deep classes the equality operators have been
overloaded to test for the alias condition as a counter pahta assignment behavior. This and the not equal operator
are documented following the assignemnt in the class APlich@ntation sections.

13

Deep object copies are implemented as a special varianteoE8MC <Cl ass>Cr eat e() methods. It
takes an existing deep object as on of the required argumers$ this point not all deep classes have
ESMC_<d ass>Cr eat e() methods that allow object copy.

Due to the complexity of deep classes there are many asp&éets eomparing two objects of the same class.
ESMF provideESMC_<C ass>Mat ch() methods, which are functions that return a class specifichmftag. At
this point not all deep classes has®MC _<Cl ass>Mat ch() methods that allow deep object comparison.

7 Integrating ESMF into Applications

Depending on the requirements of the application, the usgrwant to begin integrating ESMF in either a top-down
or bottom-up manner. In the top-down approach, tools at tiperstructure level are used to help reorganize and
structure the interactions among large-scale componerigiapplication. It is appropriate when interoperability

a primary concern; for example, when several differentivassor implementations of components are going to be
swapped in, or a particular component is going to be used itiptfeucontexts. Another reason for deciding on a
top-down approach is that the application contains legadg that for some reason (e.qg., intertwined functions, very
large, highly performance-tuned, resource limitatiohs)¢ is little motivation to fully restructure. The supeusture

can usually be incorporated into such applications in a Wayis non-intrusive.

In the bottom-up approach, the user selects desired egilfiata communications, calendar management, perfor-
mance profiling, logging and error handling, etc.) from tH&ME infrastructure and either writes new code using
them, introduces them into existing code, or replaces thetfonality in existing code with them. This makes sense
when maximizing code reuse and minimizing maintenancesdsst goal. There may be a specific need for function-
ality or the component writer may be starting from scratche Talendar management utility is a popular place to
start.

7.1 Using the ESMF Superstructure

The following is a typical set of steps involved in adoptihg ESMF superstructure. The first two tasks, which occur
before an ESMF call is ever made, have the potential to be t® difficult and time-consuming. They are the work
of splitting an application into components and ensurirag tach component has well-defined stages of execution.
ESMF aside, this sort of code structure helps to promoteegifun clarity and maintainability, and the effort putant

it is likely to be a good investment.

1. Decide how to organize the application as discrete Gddated Coupler Components. This might involve
reorganizing code so that individual components are cjeseparated and their interactions consist of a minimal
number of data exchanges.

2. Divide the code for each componentinto initialize, rurg &inalize methods. These methods can be multi-phase,
eg.,init 1, init_2.

3. Pack any data that will be transferred between compomant& SMF Import and Export State data structures.
This is done by first wrapping model data in either ESMF ArraiyBields. Arrays are simpler to create and use
than Fields, but carry less information and have a more dichiange of operations. These Arrays and Fields
are then added to Import and Export States. They may be paakedrrayBundles or FieldBundles first, for
more efficient communications. Metadata describing theehddta can also be added. At the end of this step,
the data to be transferred between components will be in gaotand largely self-describing form.

4. Pack time information into ESMF time management datagires.

5. Using code templates provided in the ESMF distributioeate ESMF Gridded and Coupler Components to
represent each component in the user code.

6. Write a set services routine that sets ESMF entry pointedch user component’s initialize, run, and finalize
methods.

14

7. Run the application using an ESMF Application Driver.

15

Part I
Applications

The main product delivered by ESMF is the ESMF library thhives application developers to write programs based
on the ESMF API. In addition to the programming library, ESHKiBtributions come with a small set of applications

that are of general interest to the community. These apfitautilize the ESMF library to implement features such

as printing general information about the ESMF installatior generating regrid weight files. The provided ESMF
applications are intended to be used as standard commantbtits.

The bundled ESMF applications are built and installed dutire usual ESMF installation process, which is de-
scribed in detail in the ESMF User’s Guide section "Buildiengd Installing the ESMF". After the installation the
applications will be located in thESM-_APPSDI R directory, which can be found as a Makefile variable in the
esnf . nk file. Theesnt . nk file can be found in th&SM-_| NSTALL LI BDI Rdirectory after a successful instal-
lation. The ESMF User’s Guide discusses ésaf . nk mechanism to access the bundled applications in more detail
in section "Using Bundled ESMF Applications".

The following sections provide in-depth documentation lté bundled ESMF applications. In addition, each
application supports the standard- hel p command line argument, providing a brief description of Howvoke
the program.

8 ESMF_Info

8.1 Description

TheESMF_I nf o application prints basic information about the ESMF inatadn tost dout .
The application usage is as follows:

ESMF_Info [--help]

wher e
--hel p prints a brief usage nessage

9 ESMF_RegridWeightGen

9.1 Description

This section describes the offline regridding applicatioovgled by ESMF. Regridding, also called remapping or
interpolation, is the process of changing the grid that dietedata values while preserving qualities of the origina
data. Different kinds of transformations are appropriatedifferent problems. Regridding may be needed when
communicating data between Earth system model compongestiss land and atmosphere, or between different data
sets to support operations such as visualization.

Regridding can be broken into two stages. The first stagerisrgéion of an interpolation weight matrix that de-
scribes how points in the source grid contribute to pointhédestination grid. The second stage is the multiplicatio
of values on the source grid by the interpolation weight iratr produce values on the destination grid. This occurs
through a parallel sparse matrix multiply.

There are two options for accessing ESMF regridding fumetiity: integrated and offline. Integrated regridding
is a process whereby interpolation weights are generagesubroutine calls during the execution of the user’s code.
The integrated regridding can also perform the paralletsspanatrix multiply. In other words, ESMF integrated
regridding allows a user to perform the whole process ofjatation within their code. For a further description of
ESMF integrated regridding please see Secti@ann contrast to integrated regridding, offline regriddiegiprocess

16

whereby interpolation weights are generated by a sepafitéFEapplication, not within the user code. The ESMF
offline regridding application also only generates theripdéation matrix, the user is responsible for reading iis thi
matrix and doing the actual interpolation (multiplicatiby the sparse matrix) in their code. The rest of this section
further describes ESMF offline regridding.

For a discussion of installing and accessing ESMF apptinatsuch as this one please see the beginning of this
part of the refernce manual (Sectioh I1) or for the quickegiraach to just building and accessing the applications
please refer to the “Building and using bundled ESMF appitica” Section in the ESMF User’s Guide.

As described above, this tool reads in two grid files and astpeights for interpolation between the two grids.
The input and output files are all in NetCDF format. The grid<fiare either in the same formiail9.4 as is used as an
input to SCRIP([3], or in the ESMF unstructured grid for@&t The weight file is the same fornfat B.5 as is output
by SCRIP. The interpolation weights can be generated withbilinear, patch, or first order conservative methods
decribed below. Masking is supported for 2D logically regfalar (i.e. with grid_rank=2) grids in the SCRIP format.
This application can do regrid weight generation from a glaio regional source grid to a global or regional destirratio
grid. It assumes that the source and destination grids aeespinere and that the coordinates given in the files are
latitude and longitude values. The coordinates can eitbanhiegrees or radians (this is indicated by the “units”
attribute attached to the value). As is true with many glabatiels, this application currently assumes the latitude
and longitude refer to positions on a perfect sphere, assggptm a more complex and accurate representation of the
earth’s true shape such as would be used in a GIS system. (ESMffent user base doesn't require this level of
detail in representing the earth’s shape, but it could bedduthe future if necessary.) This file based regrid weight
generation application is parallel. This application iedisn the ESMF_RegridWeightGenCheck external demo, so
that can serve as an example of its use.

This application requires the NetCDF libary to read the §jléd and write out the weight files in NetCDF format.

In addition, it also requires the LAPACK library to gener#ite patch regridding weights. To compile ESMF with
the NetCDF library and the LAPACK library, please refer te tfThird Party Libraries” Section in the ESMF User’s
Guide for more information.

Internally this application uses the ESMF public API to gate the interpolation weights. If a source or destina-
tion grid is logically rectangular, theBSMF_Gri dCr eat e() ??is used to create an ESMF_Grid object. The cell
center coordinates of the input grid are put into the cenégger locationESMF_ STAGGERLOC _CENTER). In addi-
tion, the corner coordinates are also putinto the cornggstdocation ESM-_ STAGGERLOC _CORNER), for conser-
vative regridding. The methddSMF_MeshCr eat e() ??is used to create an ESMF_Mesh object, if the source or
destination grid is a cubed sphere grid or an unstructurield @then making this call, the flagonver t 3Dis set to
TRUE to convert the 2D coordinates into 3D Cartesian coordin&asrently, ESMF only supports triangle or quadri-
lateral element types for a 2D Mesh. Therefore, when the aeln unstructured grid contain more than four edges,
they are broken into multiple triangle elements befe8F MeshCr eat e() is called to create the ESMF_Mesh
object. After the calculation of the weight matrix based lo& broken up cells, the matrix entries for the triangles are
merged together, so that the output matrix is in terms of thgral cells. InternalhlESM-_Fi el dRegr i dSt or e()
is used to generate the weight table and indices table repting the interpolation matrix.

The regridding occurs in 3D to avoid problems with periogicind with the pole singularity. This application
supports four options for handling the pole region (i.e. ¢hgty area above the top row of the source grid or below
the bottom row of the source grid). The first option is to ledwe pole region empty (“-p none”), in this case if a
destination point lies above or below the top row of the sewyad, it will fail to map, yielding an error (unless “-i”
is specified). With the next two options, the pole region iadiad by constructing an artificial pole in the center of
the top and bottom row of grid points and then filling in theioegfrom this pole to the edges of the source grid with
triangles. The pole is located at the average of the podititime points surrounding it, but moved outward to be at the
same radius as the rest of the points in the grid. The differ&etween these two artificial pole options is what value
is used at the pole. The default pole option (“-p all’) sets\thlue at the pole to be the average of the values of all of
the grid points surrounding the pole. For the other optiep "), the user chooses a number N from 1 to the number
of source grid points around the pole. For each destinatiomtpthe value at the pole is then the average of the N
source points surrounding that destination point. Foraisepole option (“-p teeth”) no artificial pole is construtite
instead the pole region is covered by connecting pointssadt® top and bottom row of the source Grid into triangles.
As this makes the top and bottom of the source sphere flat,lfy @nough difference between the size of the source

17

http://www.earthsystemmodeling.org/users/code_examples/external_demos/external_demos.shtml

and destination pole regions, this can still result in unpeajdestination points. Only pole option “none” is currgntl
supported with the conservative interpolation method fim conserve”).

Masking is supported for grids generated from a SCRIP filerev/ttee grid_rank=2 (i.e. 2D logically rectangular
grids). Masking is currently not supported for unstructligeids. If the variable “grid_imask” is set to O for a grid
point, then that point is considered masked out and won'tdeel in the weights generated by the application.

If a destination point can’t be mapped because it falls detie unmasked source grid, then the default behavior
of the application is to stop with an error. By specifying ‘b the equivalent “—ignore_unmapped” the user can cause
the application to ignore unmapped destination points.his ¢ase, the output matrix won't contain entries for the
unmapped destination points.

This regridding application can be used to generate biljipegich, or first-order conservative interpolation wegght
The default interpolation method is bilinear. The algaritbhsed by this application to generate the bilinear weights
is the standard one found in many textbooks. Each destmatiint is mapped to a location in the source Mesh,
the position of the destination point relative to the soyomts surrounding it is used to calculate the interpofatio
weights.

This application can also be used to generate patch inggipoiweights. Patch interpolation is the ESMF version
of a technique called “patch recovery” commonly used in dirdstement modelind [1] [2]. It typically results in
better approximations to values and derivatives when coadda bilinear interpolation. Patch interpolation works b
constructing multiple polynomial patches to representdii in a source element. For 2D grids, these polynomials
are currently 2nd degree 2D polynomials. The interpolatdderat the destination point is the weighted average of
the values of the patches at that point.

The patch interpolation process works as follows. For eachice element containing a destination point we
construct a patch for each corner node that makes up the eldmg. 4 patches for quadrilateral elements, 3 for
triangular elements). To construct a polynomial patch foomer node we gather all the elements around that node.
(Note that this means that the patch interpolation weiglefzedds on the source element’s nodes, and the nodes
of all elements neighboring the source element.) We therausast squares fitting algorithm to choose the set of
coefficients for the polynomial that produces the best fittfer data in the elements. This polynomial will give a
value at the destination point that fits the source data iretbments surrounding the corner node. We then repeat
this process for each corner node of the source elementajargen new polynomial for each set of elements. To
calculate the value at the destination point we do a weightedage of the values of each of the corner polynomials
evaluated at that point. The weight for a corner’s polyndisithe bilinear weight of the destination point with regard
to that corner. The patch method has a larger stencil thahilihear, for this reason the patch weight matrix can be
correspondingly larger than the bilinear matrix (e.g. faquadrilateral grid the patch matrix is around 4x the size of
the bilinear matrix). This can be an issue when performinggaid weight generation operation close to the memory
limit on a machine.

First-order conservative interpolatian [4] is also avialiéaas a regridding method. This method will typically have
a larger interpolation error than the previous two methbdswill do a much better job of preserving the value of the
integral of data between the source and destination gridhisnmethod the value across each source cell is treated
as a constant. The weights for a particular destination aedl the area of intersection of each source cell with the
destination cell divided by the area of the destination daleas in this case are the great circle areas of the polygons
which make up the cells (the cells around each center areaddfinthe corner coordinates in the grid file).

The interpolation weights generated by this applicatienautput to a NetCDF file (specified by the "-w" or "—
weight" keywords). The format of this file is the same as tlategated by SCRIP. See Section 9.5 for a description
of the format. Note that the sequence of the weights in theditevary with the number of processors used to run the
application. This means that two weight files generated loygudifferent numbers of processors can contain exactly
the same interpolation matrix, but can appear differentdirect line by line comparison (such as would be done by
ncdiff).

9.2 Usage

The command line arguments are all keyword based. Both thg keyword prefixed with * - - or the one
character short keyword prefixed with * are supported. The format to run the application is as falow

18

ESMF_Regri dWei ght Gen - - hel p]

--version]

--source|-s] src_grid_filename
--destination|-d] dst_grid_fil ename
--weight]|-w] out_weight file
--method| -n] [bilinear|patch|conserve]
--pole|-p] [none|all|teeth|1]|2]..]
--ignore_unmapped| -i]

-src_type [SCRI P| ESMF]

--dst _type [SCRI P| ESMF]

-t [SCRI P| ESMF]

-r

--src_regiona

--dst _regiona

[
[
[
[
[
[
[
[

--64bit_offset

wher e
--hel p - Print the usage nessage and exit.
--version - Print ESMF version and license information and exit.
--source or -s - a required argunment specifying the source grid

file nanme

--destination or -d - a required argunment specifying the destination
grid file nane

--weight or -w - a required argunment specifying the output regridding
wei ght file nane

--method or -m - an optional argunent specifying which interpolation
method is used. The val ue can be one of the foll ow ng:

bilinear - for bilinear interpolation, also the
default nethod if not specified.
pat ch - for patch recovery interpolation
conserve - for first-order conservative interpol ation
--pole or -p - an optional argunent indicating what to do with
t he pol e.

The val ue can be one of the follow ng:

none - No pole, the source grid ends at the top
(and bottonm) row of nodes specified in
<source grid>.

al | - Construct an artificial pole placed in the
center of the top (or botton) row of nodes,
but projected onto the sphere forned by the
rest of the grid. The value at this pole is
the average of all the pole values. This
is the default option

teeth - No new pole point is constructed, instead

19

the holes at the poles are filled by
constructing triangles across the top and
bottom row of the source Gid. This can be
useful because no averagi ng occurs, however,
because the top and bottom of the sphere are
now flat, for a big enough m snmatch between
the size of the destination and source pole
regi ons, sone destination points nmay stil

not be able to be mapped to the source Gid.

<N> - Construct an artificial pole placed in the
center of the top (or botton) row of nodes,
but projected onto the sphere forned by the
rest of the grid. The value at this pole is
t he average of the N source nodes next to
t he pol e and surroundi ng the destination
point (i.e. the value may differ for each
destination point. Here Nranges from1l to
t he nunber of nodes around the pole.
--ignore_unmapped
or
-

i gnore unmapped destination points. If not specified
the default is to stop with an error if an unmapped
point is found.

--src_type - an optional argunent specifying the source grid file
type. The value could be either SCRI P or ESM-
Currently, the ESMF file type is only available for
the unstructured grid. The default option is SCRI P

--dst _type - an optional argunent specifying the destination grid
file type. The value could be either SCRI P or ESMF
Currently, the ESMF file type is only available for
the unstructured grid. The default option is SCRI P

-t - an optional argunent specifying the file types for
both the source and the destination grid files. The
default optionis SCRIP. |If both -t and --src_type
or --dst _type are given at the same tine and they
di sagree with each other, an error nessage will be
gener at ed.

-r - an optional argunent specifying that the source and
destination grids are regional grids. |If the argunent
is not given, the grids are assuned to be gl obal

--src_regional - an optional argunent specifying that the source is
a regional grid and the destination is a global grid.

--dst _regional - an optional argunent specifying that the destination
is aregional grid and the source is a global grid.

20

--64bit_of fset - an optional argunent specifying that the weight file
will be created in the Net CDF 64-bit offset format to
all ow variables larger than 2GB. Note the 64-bit
of fset format is not supported in the Net COF version
earlier than 3.6.0. An error nessage will be generated
if this flag is specified while the application is
linked with a NetCDF library earlier than 3.6.0.

9.3 Examples

The example below shows the command to generate a set ofreatige interpolation weights between a global

SCRIP format source grid file (src.nc) and a global SCRIP &dmhestination grid file (dst.nc). The weights are written
into file w.nc. In this case the ESMF library and applicatibage been compiled using an MPI parallel communication
library (e.g. setting ESMF_COMM to openmpi) to enable itdo in parallel. To demonstrate running in parallel the
mpirun script is used to run the application in parallel orrdggssors.

npirun -np 4 ./ESM-_Regri dWightGen -s src.nc -d dst.nc -mconserve -w W. nc

The next example below shows the command to do the same thitigeaprevious example except for three
changes. The first change is this time the source grid ismeg{6—src_regional”). The second change is that for this
example bilinear interpolation (“-m bilinear”) is beingads Because bilinear is the default, we could also omit the
“-m bilinear”. The third change is that in this example sonfighe destination points are expected to not be found
in the source grid, but the user is ok with that and just wamisé points to not appear in the weight file instead of
causing an error (“-i").

npirun -np 4 ./ESM-_RegridWightGen -i --src_regional -s src.nc -d dst.nc \
-mbilinear -w w. nc

9.4 SCRIP Grid File Format
A SCRIP format grid file is a NetCDF file and the header of a sampd file is shown as follows:

net cdf remap_grid_T42 {
di mensi ons:
grid_size = 8192 ;
grid_corners = 4 ;
grid rank = 2 ;

vari abl es:

int grid_dinms(grid_rank) ;

doubl e grid center _lat(grid_size) ;
grid _center_lat:units = "radi ans”

doubl e grid center _lon(grid_size) ;
grid_center_lon:units = "radi ans"

int grid_imask(grid_size) ;
grid_imask:units = "unitless"

doubl e grid corner_lat(grid_size, grid corners)

21

grid_corner_lat:units = "radi ans" ;
doubl e grid_corner _lon(grid_size, grid _corners) ;
grid_corner_lon:units ="radians" ;

/1 gl obal attributes:
‘title = "T42 Gaussian Gid" ;
}

Thegri d_si ze dimension is the total number of cells in the grighi d_r ank refers to the number of di-
mensions.gri d_rank is 2 for a 2D logically rectangular grid and 1 for an unstruetligrid. The integer array
gri d_di ns gives the number of grid cells along each dimension. The murabcorners (vertices) in each grid cell
is given bygri d_cor ner s. Note that if your grid has a variable number of corners od geills, then you should
setgri d_cor ner s to be the highest value and use redundant points on cellsfevitér corners. The grid corner
coordinates must be written in an order which traces thddeitsf a grid cell in a counterclockwise order.

The integer arragr i d_i mask is used to mask out grid cells which should not participathé@regridding. The
array should by zero for any points that do not participattheregridding and one for all other points. Coordinate
arrays provide the latitudes and longitudes of cell cerdaarscell corners. The unit of the coordinates can be either
"radi ans" or "degr ees".

9.5 Regrid Interpolation Weight File Format

The regridding weight output file is in NetCDF format and @ntsome grid information from each grid as well
as the regridding indices and weights. Following is the kead a sample output weight file that was generated by
regridding a logically rectangular 2D grid to a triangle mmesstructured grid:

net cdf t42npas-bilinear {
di mensi ons:

n_a = 8192 ;
n_b = 20480 ;
n_s = 42456 ;
nv_a =4 ;
nv_b = 3;

numwgts = 1 ;
src_grid_rank
dst _grid_rank
vari abl es:

int src_grid_dins(src_grid_rank) ;
int dst_grid dins(dst_grid_rank) ;
doubl e yc_a(n_a) ;

yc_a:units = "degrees" ;

doubl e yc_b(n_b) ;

yc_b:units = "radians" ;

doubl e xc_a(n_a) ;

XC_a:units = "degrees" ;

doubl e xc_b(n_b) ;

Xc_b:units = "radians" ;

double yv_a(n_a, nv_a) ;
yv_a:units = "degrees" ;

double xv_a(n_a, nv_a) ;
XvV_a:units = "degrees" ;

doubl e yv_b(n_b, nv_b) ;
yv_b:units = "radians" ;

2,
1;

22

double xv_b(n_b, nv_b) ;

Xv_b:units = "radi ans" ;

int mask_a(n_a) ;

mask_a:units = "unitless" ;

int mask_b(n_b) ;

mask_b:units = "unitless" ;

doubl e area_a(n_a) ;

area_a:units = "square radi ans" ;
doubl e area_b(n_b) ;

area_b:units = "square radi ans" ;
double frac_a(n_a) ;

frac_a:units = "unitless" ;

doubl e frac_b(n_b) ;

frac_b:units = "unitless" ;

int col(n_s) ;

int romn_s) ;

doubl e S(n_s) ;

/1 gl obal attributes:

'title = "ESMF O fline Regridding Wi ght CGenerator" ;
:normalization = "destarea" ;

:map_nethod = "Bilinear remappi ng" ;

:conventions = "NCAR-CSM' ;

:domain_a = "T42_grid.nc" ;

:domain_b = "grid-dual.nc" ;

cgrid_file_src = "T42_grid.nc" ;

;grid file dst = "grid-dual.nc" ;
:CVS revision = "5.3.0 beta snapshot" ;
}

Variables ended with "a" are the variables for the source grid and the ones ended'whHh are the vari-
ables for the destination grid. For instane&,_a andyc_a are corresponding to thgri d_center _| on and
grid_center_| at variables in the source grid file. The grid information irdés the center and corner co-
ordinates and the grid mask array from the input grid file ams ¢rid area and grid frac arrays calculated by
ESMF_Regri dWei ght Gen. The grid area array currently is only computed by the coradie remapping op-
tion. The values of the area array are set to zeros for biliaed patch remappings. For conservative remapping, the
grid frac array returns the area fraction of the grid cell ebhparticipates in the remapping. For bilinear and patch
remapping, the destination grid frac array is one where titkpgint participates in the remapping and zero otherwise.
For bilinear and patch remapping, the source grid frac dsrajways set to zero.

Thei ndi ces andwei ght s generated bYeSMF_Fi el dRegri dSt or e() are stored in the output file as
variablescol ,r owandS. Wherecol andr oware the indices to the source and the destination grid Getlsse are
a one-dimension array with length defined by dimensios. Sis the weight which is multiplied by the source value
indicated bycol and then summed with the destination value indicated day to build the final interpolated value
of the destination.

23

Part Il
Superstructure

24

10 Overview of Superstructure

ESMF superstructure classes define an architecture fomédisg Earth system applications from modelicgmpo-
nents A component may be defined in terms of the physical domainithepresents, such as an atmosphere or sea
ice model. It may also be defined in terms of a computationattion, such as a data assimilation system. Earth
system research often requires that such componertsupged together to create an application. By coupling we
mean the data transformations and, on parallel computistgsys, data transfers, that are necessary to allow data from
one componentto be utilized by another. ESMF offers regngichethods and other tools to simplify the organization
and execution of inter-component data exchanges.

In addition to components defined at the level of major plalslomains and computational functions, components
may be defined that represent smaller computational fumetidgthin larger components, such as the transformation
of data between the physics and dynamics in a spectral atmaosmodel, or the creation of nested higher resolution
regions within a coarser grid. The objective is to couple ponents at varying scales both flexibly and efficiently.
ESMF encourages a hierachical application structure, islwlarge components branch into smaller sub-components
(see Figurgl?). ESMF also makes it easier for the same comptmiee used in multiple contexts without changes to
its source code.

Key Features

Modular, component-based architecture.

Hierarchical assembly of components into applications.

Use of components in multiple contexts without modification

Sequential or concurrent component execution.

Single program, multiple datastream (SPMD) applicatiamsiiaximum portability and reconfigurability.
Multiple program, multiple datastream (MPMD) option forileility.

10.1 Superstructure Classes

There are a small number of classes in the ESMF supersteuctur

e ComponentAn ESMF component has two parts, one that is supplied by ESMFoae that is supplied by the
user. The part that is supplied by the framework is an ESMive@type that is either a Gridded Component
(GridComp) or a Coupler ComponentCplComp). A Gridded Component typically represents a physical
domain in which data is associated with one or more gridsexample, a sea ice model. A Coupler Component
arranges and executes data transformations and transtersdn one or more Gridded Components. Gridded
Components and Coupler Components have standard methidh,include initialize, run, and finalize. These
methods can be multi-phase.

The second part of an ESMF Component is user code, such asel arathta assimilation system. Users set
entry points within their code so that it is callable by thenfrework. In practice, setting entry points means that
within user code there are calls to ESMF methods that agedtia name of a Fortran subroutine with a cor-
responding standard ESMF operation. For example, a usgemvinitialization routine calledny Oceanl ni t
might be associated with the standard initialize routin@amfESMF Gridded Component named “myOcean”
that represents an ocean model.

e State ESMF Components exchange information with other Companenly through States. A State is an
ESMF derived type that can contain Fields, FieldBundlesays, ArrayBundles, and other States. A Compo-
nent is associated with two States,larport State and anExport State. Its Import State holds the data that it
receives from other Components. Its Export State contaitesttiat it makes available to other Components.

An ESMF coupled application typically involves a parentdgied Component, two or more child Gridded Com-
ponents and one or more Coupler Components.

The parent Gridded Component is responsible for creatiaghiid Gridded Components that are exchanging data,
for creating the Coupler, for creating the necessary ImmudtExport States, and for setting up the desired sequencing

25

Figure 2: ESMF enables applications such as the atmosphenieral circulation model GEOS-5 to be structured
hierarchically, and reconfigured and extended easily. Baghn this diagram is an ESMF Gridded Component.

GEOS-5

|

|

gravity_wave_drag || fvcore | | surface || chemistry || moist_processes || radiation || turbulence |
I
| lake || land_ice ||data_ocean || land | | infrared || solar |
| vegetation || catchment |

The application’s “main” routine calls the parent Griddedn@ponent’s initialize, run, and finalize methods in order
to execute the application. For each of these standard mgthibe parent Gridded Component in turn calls the
corresponding methods in the child Gridded Components hadCoupler Component. For example, consider a
simple coupled ocean/atmosphere simulation. When thialiné method of the parent Gridded Componentis called
by the application, it in turn calls the initialize methodsts child atmosphere and ocean Gridded Components, and
the initialize method of an ocean-to-atmosphere Couplen@ment. FigurEl3 shows this schematically.

10.2 Hierarchical Creation of Components

Components are allocated computational resources in thedbPersistent Execution Threadsor PETs. A list of
a Component’s PETs is contained in a structure calletitaal Machine , or VM. The VM also contains information
about the topology and characteristics of the underlyingmater. Components are created hierarchically, with garen
Components creating child Components and allocating samakaf their PETs to each one. By default ESMF creates
a new VM for each child Component, which allows Componentailor their VM resources to match their needs. In
some cases a child may want to share its parent’s VM - ESMFa®tgthis too.

A Gridded Component may exist across all the PETs in an agiic. A Gridded Component may also reside
on a subset of PETs in an application. These PETs may whalhgicke with, be wholly contained within, or wholly
contain another Component.

26

Figure 3: A call to a standard ESMF initialize (run, finalizeg¢thod by a parent component triggers calls to initialize
(run, finalize) all of its child components.

AppDriver (“Main”)

Call Initialize Call Run Call Finalize

Initialize] [Run] [Finalize]

Parent GridComp “Hurricane Model”

Call Initialize Call Run Call Finalize

Y Y A

Initialize | r Run | rFinaIize |
! Child GridComp “A‘Emospher y
(Initialize | r Run | f Finalize]

Child GridComp “Ocean”

Y \J
Initialize Run [Finalize]

Child CplComp “Atm-Ocean Coupler”

L.l

(9]

27

10.3 Sequential and Concurrent Execution of Components

When a set of Gridded Components and a Coupler runs in segoeribe same set of PETs the application is executing
in a sequentialmode. When Gridded Components are created and run on nyuéxalusive sets of PETs, and are
coupled by a Coupler Component that extends over the unitresé sets, the mode of executiogdcurrent.

Figure[4 illustrates a typical configuration for a simple plea sequential application, and Figlide 5 shows a
possible configuration for the same application runningéemcurrent mode.

Parent Components can select if and when to wait for conatlyrexecuting child Components, synchronizing
only when required.

It is possible for ESMF applications to contain some Compbiets that are executing sequentially and others
that are executing concurrently. We might have, for examatt®osphere and land Components created on the same
subset of PETs, ocean and sea ice Components created omiiader of PETs, and a Coupler created across all the
PETs in the application.

10.4 Intra-Component Communication

All data transfers within an ESMF application ocauithin a component. For example, a Gridded Component may
contain halo updates. Another example is that a Coupler @oemt may redistribute data between two Gridded
Components. As aresult, the architecture of ESMF does matrabon any particular data communication mechanism,
and new communication schemes can be introduced withadtaffy the overall structure of the application.

Since all data communication happens within a componentuplér Component must be created on the union of
the PETs of all the Gridded Components that it couples.

10.5 Data Distribution and Scoping in Components

The scope of distributed objects is the VM of the currentlgaring Component. For this reason, all PETs in the
current VM must make the same distributed object creatidls.c/hen a Coupler Component running on a super-
set of a Gridded Component's PETs needs to make commumiozdits involving objects created by the Gridded
Component, an ESMF-supplied function callE8M~_St at eReconci | e() creates proxy objects for those PETs
that had no previous information about the distributed aisjeProxy objects contain no local data but can be used in
communication calls (such as regrid or redistribute) tacdbs the remote source for data being moved to the current
PET, or to describe the remote destination for data beingathénom the local PET. Figuid 6 is a simple schematic
that shows the sequence of events in a reconcile call.

10.6 Performance

The ESMF design enables the user to configure ESMF applisasio that data is transferred directly from one com-
ponent to another, without requiring that it be copied ot e different data buffer as an interim step. This is likely
to be the most efficient way of performing inter-componentgling. However, if desired, an application can also be
configured so that data from a source component is sent tdiaafiset of Coupler Component PETs for processing
before being sent to its destination.

The ability to overlap computation with communication isestial for performance. When running with ESMF
the user can initiate data sends during Gridded Componegtuérn, as soon as the data is ready. Computations can
then proceed simultaneously with the data transfer.

28

Figure 4: Schematic of the run method of a coupled applinatigth an “Atmosphere” and an “Ocean” Gridded Com-
ponent running sequentially with an “Atm-Ocean CouplerfieTtop-level “Hurricane Model” Gridded Component
contains the sequencing information and time advanceroept | The application driver, Coupler, and all Gridded
Components are distributed over nine PETSs.

PETs -
1 2 3 4 5 6 7 8 9
-
3
® AppDriver (“Main”)
Call Run
\j
(Run]
GridComp “Hurricane Model”
LOOP Call Run
f Run]
GridComp
“Atmosphere”
{ Run]
GridComp
“Ocean”
r Run]
CplComp
“Atm-Ocean Coupler”

29

Figure 5: Schematic of the run method of a coupled applinatidgth an “Atmosphere” and an “Ocean” Gridded
Component running concurrently with an “Atm-Ocean Coupl€he top-level “Hurricane Model” Gridded Compo-
nent contains the sequencing information and time advaectloop. The application driver, Coupler, and top-level
“Hurricane Model” Gridded Component are distributed overenPETs. The “Atmosphere” Gridded Component is

distributed over three PETs and the “Ocean” Gridded Compiiselistributed over six PETS.

PETs >

awll |

AppDriver (“Main”)

Call Run

f Run]

GridComp “Hurricane Model”

LOOP Call Run

(Run] (Run]
GridComp GridComp
“Atmosphere” “Ocean”
f Run]
CplComp
“Atm-Ocean Coupler”

30

Figure 6: AnESMF_St at eReconci | e() call creates proxy objects for use in subsequent commuaoiceslls.
The reconcile call would normally be made during Coupleiafization.

PETs

>

-
3
Initialize]
CplComp
\/ “Atm-Ocean Coupler”
AtmState OcnState

AtmFieldl ||
AtmField2 ||
AtmField3 ||
...... OcnField1
...... OcnField2
...... OcnField3

call ESMF_StateReconcile()

AtmState OcnState
AtmFieldl AtmField1-proxy
AtmField2 AtmField2-proxy
AtmField3 AtmField3-proxy

OcnField1-proxy OcnField1
OcnField2-proxy OcnField2
OcnField3-proxy OcnField3

31

10.7 Object Model

The following is a simplified UML diagram showing the relat&hips among ESMF superstructure classes. See
Appendix A, A Brief Introduction to UML, for a translation table that lists the symbols in the diagend their
meaning.

Comp

Possible extensions

GridComp CplComp @ @

11 Application Driver and Required ESMF Methods

11.1 Description

Every ESMF application needs a driver code. Typically theettdayer is implemented as the "main" of the applica-
tion, although this is not strictly an ESMF requirement. Farst ESMF applications the task of the application driver
will be very generic: Initialize ESMF, create a top level Qmnent and call its Intialize, Run and Finalize methods,
before destroying the top level Component again and caliBiyiF Finalize.

ESMF provides a number of different application driver tdatgs in the
$ESM-_DI R/ sr ¢/ Super structure/ AppDri ver directory. An appropriate one can be chosen depend-
ing on how the application is to be structured:

Sequential vs. Concurrent ExecutionIn a sequential execution model every Component executall BETS, with
each Component completing execution before the next Coemdregins. This has the appeal of simplicity of
data consumption and production: when a Gridded Compomants ll required data is available for use, and
when a Gridded Component finishes all data produced is resdphsumption by the next Gridded Component.
This approach also has the possibility of less data moveih#re grid and data decomposition is done such
that each processor's memory contains the data needed hgth€omponent.

In a concurrent execution model subgroups of PETs run Gdididenponents and multiple Gridded Components
are active at the same time. Data exchange must be coomdibate&een Gridded Components so that data
deadlock does not occur. This strategy has the advantag®wairey coupling to other Gridded Components
at any time during the computational process, includinghaving to return to the calling level of code before
making data available.

Pairwise vs. Hub and SpokeCoupler Components are responsible for taking data fronGriteled Component and
putting it into the form expected by another Gridded Commbn€his might include regridding, change of units,
averaging, or binning.

Coupler Components can be written fosirwise data exchange: the Coupler Component takes data from a
single Component and transforms it for use by another si@gidded Component. This simplifies the structure
of the Coupler Component code.

Couplers can also be written usinghab and spokenodel where a single Coupler accepts data from all other
Components, can do data merging or splitting, and formatsfdaall other Components.

32

Multiple Couplers, using either of the above two models ansanixture of these approaches, are also possible.

Implementation Language The ESMF framework currently has Fortran interfaces fopalblic functions. Some
functions also have C interfaces, and the number of theseiscéed to increase over time.

Number of Executables The simplest way to run an application is to run the same d@abtiprogram on all PETS.
Different Components can still be run on mutually excludREETs by using branching (e.g., if this is PET 1,
2, or 3, run Component A, if it is PET 4, 5, or 6 run ComponentBj)is is aSPMD model, Single Program
Multiple Data.

The alternative is to start a different executable prograndifferent PETs. This is 8IPMD model, Multiple
Program Multiple Data. There are complications with many gontrol systems on multiprocessor machines
in getting the different executables started, and gettiigriprocess communcations established. ESMF cur-
rently has some support for MPMD: different Components camas separate executables, but the Coupler that
transfers data between the Components must still run onrtios wf their PETs. This means that the Coupler
Component must be linked into all of the executables.

11.2 Required ESMF Methods

There are a few methods that every ESMF application mustagunt First, ESMC I nitialize() and
ESMC Fi nal i ze() are in complete analogy tPl I nit () andMPI _Fi nal i ze() known from MPI. All
ESMF programs, serial or parallel, must initialize the ES8§Btem at the beginning, and finalize it at the end of exe-
cution. The behavior of calling any ESMF method befe8MC | niti al i ze(), or afterESMC _Fi nal i ze() is
undefined.

Second, every ESMF Component that is accessed by an ESMieatjipi requires that its set services routine
is called througheSMC_<Gri d/ Cpl >ConpSet Ser vi ces() . The Component must implement one public entry
point, its set services routine, that can be called throhgfESEMC _<Gri d/ Cpl >ConpSet Ser vi ces() library
routine. The Component set services routine is responf@ibietting entry points for the standard ESMF Component
methods Initialize, Run, and Finalize.

Finally, the Component library caliSMC_<Gri d/ Cpl >ConpSet VM) can optionally be issudseforecalling
ESMC_<Gri d/ Cpl >ConpSet Ser vi ces() . Similar toESMC_<Gri d/ Cpl >ConpSet Ser vi ces() , the
ESMC <Gri d/ Cpl >ConmpSet VM) call requires a public entry pointinto the Component. ibal the Component
to adjust certain aspects of its execution environmentits@wn VM, before it is started up.

The following sections discuss the above mentioned aspentsre detail.

11.2.1 ESMC lInitialize - Initialize the ESMF Framework

INTERFACE:
int ESMC Initialize(
int xrc, /1 return code
co); /1 optional argunents
#defi ne ESMC | ni t ArgDef aul t Confi gFi | ename(ARG \

ESMCI _Arg(ESMCI _I ni t Ar gDef aul t Confi gFi | enanel D, ARG

RETURN VALUE:
Return code; equals ESM-_SUCCESS if there are no errors.
DESCRIPTION:

Initialize the ESMF. This method must be called before amepESMF methods are used. The method contains a
barrier before returning, ensuring that all processes ritaiecessfully through initialization.

33

Typically ESMC I nitialize() will call MPI _I nit() internally unless MPI has been initialized by the user
code before initializing the framework. If the MPI initiahtion is left toESMC | ni ti al i ze() itinherits all of the
MPI implementation dependent limitations of what may or may be done befor®Pl _I ni t () . For instance, it

is unsafe for some MPI implementations, such as MPICH, tdQibdfore the MPI environment is initialized. Please
consult the documentation of your MPI implementation faiadls.

Before exiting the application the user must &8MC_Fi nal i ze() to release resources and clean up the ESMF
gracefully.

The arguments are:

[rc] Return code; equalsSM-_SUCCESS if there are no errors.

[defaultConfigFilename] Name of the default configuration file for the entire applimat

11.2.2 ESMC_Finalize - Finanalize the ESMF Framework

INTERFACE:
int ESMC Finalize(void);

RETURN VALUE:
Return code; equals ESMF_SUCCESS if there are no errors.
DESCRIPTION:

This must be called once on each PET before the applicatitatexallow ESMF to flush buffers, close open connec-
tions, and release internal resources cleanly.

12 GridComp Class

12.1 Description

In Earth system modeling, the most natural way to think abolESMF Gridded Component, BEMC_Gr i dConp,

is as a piece of code representing a particular physical odgreach as an atmospheric model or an ocean model.
Gridded Components may also represent individual prosessgeh as radiation or chemistry. It's up to the application
writer to decide how deeply to “componentize.”

Earth system software components tend to share a numbersif femtures. Most ingest and produce a variety
of physical fields, refer to a (possibly noncontiguous) ighatgion and a grid that is partitioned across a set of
computational resources, and require a clock for thingsstiepping a governing set of PDEs forward in time. Most
can also be divided into distinct initialize, run, and fizalcomputational phases. These common characteristics are
used within ESMF to define a Gridded Component data strutiaitds tailored for Earth system modeling and yet is
still flexible enough to represent a variety of domains.

A well designed Gridded Component does not store informaititernally about how it couples to other Gridded
Components. That allows it to be used in different contextsaut changes to source code. The idea here is to avoid
situations in which slightly different versions of the samedel source are maintained for use in different contexts -
standalone vs. coupled versions, for example. Data is gassed out of Gridded Components using an ESMF State,
this is described in Sectién 14.1.

An ESMF Gridded Component has two parts, one which is usitewrand another which is part of the framework.
The user-written part is software that represents a phiydigaain or performs some other computational function. It
forms the body of the Gridded Component. It may be a piecegafde code, or it may be developed expressly for use
with ESMF. It must contain routines with standard ESMF ifgees that can be called to initialize, run, and finalize the
Gridded Component. These routines can have separateleglladises, such as distinct first and second initialization
steps.

34

ESMF provides the Gridded Component derived tyg®\VMC Gri dConp. An ESMC_Gri dConp must be created

for every portion of the application that will be represehis a separate component. For example, in a climate model,
there may be Gridded Components representing the landnosea ice, and atmosphere. If the application contains
an ensemble of identical Gridded Components, every onethasvin associatetHSMC Gri dConp. Each Gridded
Component has its own name and is allocated a set of compuahtiesources, in the form of an ESMF Virtual
Machine, oiVM

The user-written part of a Gridded Component is associatbtdanESMC_Gr i dConp derived type through a routine
calledESMC_Set Ser vi ces() . This is a routine that the user must write, and declare pulriside the SetServices
routine the user must cdiSMC_Set Ent r yPoi nt () methods that associate a standard ESMF operation with the
name of the corresponding Fortran subroutine in their useée c

12.2 Class API
12.2.1 ESMC_GridCompCreate - Create a Gridded Component

INTERFACE:
ESMC Gri dConp ESMC _Gri dConpCr eat e(
const char =*nane, /1 in
const char =*configFile, /1 in
ESMC O ock cl ock, /[l in
int *xrc /1 out
);
RETURN VALUE:
Newl y created ESMC Gri dConp obj ect.
DESCRIPTION:

This interface creates aBSMC _Gri dConp object. By default, a separate VM context will be createddach
component. This implies creating a new MPI communicator alatating additional memory to manage the VM
resources.

The arguments are:

name Name of the newly-creatdeSMC_Gr i dConp.

mtype ESMC_Gri dConp model type, where models includeSSMF_ATM ESMF_LAND, ESMF_OCEAN,
ESMF_SEAI CE, ESMF_RI VER, andESM-_GRI DCOVPTYPE_UNKNOWN. Note that this has no meaning to
the framework, it is an annotation for user code to query.seedon?? for a complete list of valid types.

configFile The filename of aESMC_Conf i g format file. If specified, this file is opened &MC_Conf i g config-
uration object is created for the file, and attached to thecmwponent.

clock Component-specifiESMC_Cl ock. This clock is available to be queried and updated by the new
ESMC_Gri dConp as it chooses. This should not be the parent component chddkh should be maintained
and passed down to the initialize/run/finalize routinessafely.

[rc] Return code; equalsSM-_SUCCESS if there are no errors.

12.2.2 ESMC_GridCompDestroy - Destroy a Gridded Component

INTERFACE:

35

int ESMC Gri dConpDestroy(
ESMC_Gri dConp *conp /1 inout
);

RETURN VALUE:
Return code; equals ESM-_SUCCESS if there are no errors.
DESCRIPTION:

Releases all resources associated withESSIC Gri dConp.
The arguments are:

comp Release all resources associated with BEBMC Gri dConp and mark the object as invalid. It is an error to
pass this object into any other routines after being desttoy

12.2.3 ESMC_GridCompFinalize - Finalize a Gridded Componat

INTERFACE:
int ESMC Gi dConpFinalize(
ESMC_Gri dConp conp, /1 inout
ESMC State inportState, /1 inout
ESMC St at e export St at e, /1 inout
ESMC d ock cl ock, /1l in
i nt phase, /1 in
int ruserRc /1 out
);
RETURN VALUE:

Return code; equals ESM-_SUCCESS if there are no errors.
DESCRIPTION:

Call the associated user finalize code for a GridComp.
The arguments are:

comp ESMC_Gri dConp to call finalize routine for.
importState ESMC_St at e containing import data for coupling.
exportState ESMC_St at e containing export data for coupling.

clock ExternalESMC_Cl ock for passing in time information. This is generally the paeemponent’s clock, and
will be treated as read-only by the child component. Thedcbidmponent can maintain a private clock for its
own internal time computations.

phase Component providers must document whether each of thdiineriaresi ngl e- phase ormul ti - phase.
Single-phase routines require only one invocation to cetegheir work. Multi-phase routines provide multiple
subroutines to accomplish the work, accomodating compsvelnich must complete part of their work, return
to the caller and allow other processing to occur, and theirmee the original operation. For multiple-phase
child components, this is the integer phase number to bekéwio For single-phase child components this
argument must be 1.

[userRc] Return code set byser Rout i ne before returning.

36

12.2.4 ESMC_GridCompGetinternalState - Get the Internal Sate of a Gridded Component

INTERFACE:
void *ESMC_Gri dConpGet | nt er nal St at e(
ESMC_Gri dConp conp, /1 in
int *rc /1 out
)
RETURN VALUE:

Pointer to private data block that is stored in the internal state.

DESCRIPTION:

Available to be called by aBSMC _Gr i dConp at any time afteESMC_Gri dConpSet | nt er nal St at e has been
called. Since init, run, and finalize must be separate suines) data that they need to share in common can either
be global data, or can be allocated in a private data blockilaadddress of that block can be registered with the
framework and retrieved by this call. When running multipistantiations of afeSMC_Gr i dConp, for example
during ensemble runs, it may be simpler to maintain privat& épecific to each run with private data blocks. A
correspondingESMC_Gr i dConpSet | nt er nal St at e call sets the data pointer to this block, and this call reése

the data pointer.

Only thelastdata block set vieSMC_Gri dConpSet | nt er nal St at e will be accessible.

The arguments are:

comp An ESMC_Gri dConp object.
[rc] Return code; equalESM-_SUCCESS if there are no errors.

12.2.5 ESMC_GridComplnitialize - Initialize a Gridded Component

INTERFACE:
int ESMC GridConplnitialize(

ESMC_Gri dConp conp, /1 inout
ESMC State inportState, /1 inout
ESMC St ate export State, /1 inout
ESMC d ock cl ock, /1l in
i nt phase, /1 in
int xuserRc /1 out

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.
DESCRIPTION:

Call the associated user initialization code for a GridComp
The arguments are:

comp ESMC_Gri dConp to call initialize routine for.
importState ESMC_St at e containing import data for coupling.

exportState ESMC_St at e containing export data for coupling.

37

clock ExternalESMC_Cl ock for passing in time information. This is generally the paeamponent’s clock, and
will be treated as read-only by the child component. Thedcbilmponent can maintain a private clock for its
own internal time computations.

phase Component providers must document whether each of thelinesiaresi ngl e- phase ornul ti - phase.
Single-phase routines require only one invocation to cetegheir work. Multi-phase routines provide multiple
subroutines to accomplish the work, accomodating compsmvelnich must complete part of their work, return
to the caller and allow other processing to occur, and theimmee the original operation. For multiple-phase
child components, this is the integer phase number to bekétio For single-phase child components this
argument must be 1.

[userRc] Return code set byser Rout i ne before returning.

12.2.6 ESMC_GridCompPrint - Print the contents of a GridComp

INTERFACE:

int ESMC Gri dConpPri nt (
ESMC Gri dConp conp [l in
)

RETURN VALUE:
Return code; equals ESMF_SUCCESS if there are no errors.
DESCRIPTION:

Prints information about aBSMC_Gri dConp to st dout .
The arguments are:

comp An ESMC_Gri dConp object.

12.2.7 ESMC_GridCompRun - Run a Gridded Component

INTERFACE:
int ESMC _Gri dConpRun(
ESMC_Gri dConp conp, /1 inout
ESMC State inportState, /1 inout
ESMC St at e export St at e, /1 inout
ESMC d ock cl ock, /1l in
i nt phase, /1 in
int ruserRc /1 out
);
RETURN VALUE:

Return code; equals ESM-_SUCCESS if there are no errors.
DESCRIPTION:

Call the associated user run code for a GridComp.
The arguments are:

38

comp ESMC _Gri dConp to call run routine for.
importState ESMC_St at e containing import data for coupling.
exportState ESMC_St at e containing export data for coupling.

clock ExternalESMC_Cl ock for passing in time information. This is generally the pareemponent’s clock, and
will be treated as read-only by the child component. Thedcbidlmponent can maintain a private clock for its
own internal time computations.

phase Component providers must document whether each of theiinesiaresi ngl e- phase ornul ti - phase.
Single-phase routines require only one invocation to cetegheir work. Multi-phase routines provide multiple
subroutines to accomplish the work, accomodating comgsivetnich must complete part of their work, return
to the caller and allow other processing to occur, and therimmee the original operation. For multiple-phase
child components, this is the integer phase number to bek@u/o For single-phase child components this
argument must be 1.

[userRc] Return code set byser Rout i ne before returning.

12.2.8 ESMC_GridCompSetEntryPoint - Set user routine as eny point for standard Component method

INTERFACE:
int ESMC Gri dConpSet Ent r yPoi nt (
ESMC_Gri dConp conp, /1 in
enum ESMC_Met hod net hod, [l in
voi d (*userRouti ne) [l in
(ESMC_Gi dConp, ESMC State, ESMC State, ESMC Clock *, int x),
i nt phase [l in
);
RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.
DESCRIPTION:

Registers a user-supplieder Rout i ne as the entry point for one of the predefined Component methditly this
call theuser Rout i ne becomes accessible via the standard Component method API.
The arguments are:

comp An ESMC_Gri dConp object.

method One of a set of predefined Component methods - e.g.ESM-_METHOD | NI Tl ALI ZE,
ESMF_METHOD _RUN, ESM-_METHOD FI NALI ZE. See sectior?? for a complete list of valid method
options.

userRoutine The user-supplied subroutine to be associated for this ©asmtnet hod. This subroutine does not
have to be public.

phase The phase number for multi-phase methods.

39

12.2.9 ESMC_GridCompSetinternalState - Set the Internal &ate of a Gridded Component

INTERFACE:
int ESMC Gri dConpSet | nternal State(

ESMC _Gri dConp conp, /1 inout

void *data /1 in
)
RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Available to be called by aBSMC_Gr i dConp at any time, but expected to be most useful when called dihiag
registration process, or initialization. Since init, ramd finalize must be separate subroutines, data that thejtoee
share in common can either be global data, or can be allogaggrivate data block and the address of that block
can be registered with the framework and retrieved by sulegaalls. When running multiple instantiations of an
ESMC_Gri dConp, for example during ensemble runs, it may be simpler to raairgrivate data specific to each run
with private data blocks. A correspondiBSMC _Gri dConpGet | nt er nal St at e call retrieves the data pointer.
Only thelastdata block set viESMC_Gri dConpSet | nt er nal St at e will be accessible.

The arguments are:

comp An ESMC_Gri dConp object.

data Pointer to private data block to be stored.

12.2.10 ESMC_GridCompSetServices - Call user routine to gaster GridComp methods

INTERFACE:
int ESMC_Gri dConpSet Servi ces(
ESMC _Gri dConp conp, /1 in
void (*userRoutine) (ESMC_G'i dConp, int =*), /[l in
int xuserRc /'l out
)
RETURN VALUE:
Return code; equals ESMF_SUCCESS if there are no errors.
DESCRIPTION:

Call into user providedser Rout i ne which is responsible for setting Component’s Initializ&¥n() and Finalize()
services.
The arguments are:

comp Gridded Component.
userRoutine Routine to be called.
userRc Return code set byser Rout i ne before returning.

The Component writer must supply a subroutine with the exaetface shown above for theser Rout i ne argu-
ment.

The wuserRoutine, when called by the framework, must make successive calls to
ESMC _Gri dConpSet Ent r yPoi nt () to preset callback routines for standard Component liggé), Run() and
Finalize() methods.

40

13 CplComp Class
13.1 Description

In a large, multi-component application such as a weathexcksting or climate prediction system running within
ESMF, physical domains and major system functions are septed as Gridded Components (see Sefion 12.1).
A Coupler Component, dESMC_Cpl Conp, arranges and executes the data transformations betwedaritided
Components. Ideally, Coupler Components should contathalinformation about inter-component communication
for an application. This enables the Gridded Componentsiapplication to be used in multiple contexts; that is, used
in different coupled configurations without changes tortlseurce code. For example, the same atmosphere might
in one case be coupled to an ocean in a hurricane predictialelmand to a data assimilation system for numerical
weather prediction in another. A single Coupler Componantauple two or more Gridded Components.

Like Gridded Components, Coupler Components have two pamtsthat is provided by the user and another that is
part of the framework. The user-written portion of the sa@itevis the coupling code necessary for a particular exchange
between Gridded Components. This portion of the Coupler @orant code must be divided into separately callable
initialize, run, and finalize methods. The interfaces fas# methods are prescribed by ESMF.

The term “user-written” is somewhat misleading here, sinithin a Coupler Component the user can leverage ESMF
infrastructure software for regridding, redistributidower-level communications, calendar management, aner oth
functions. However, ESMF is unlikely to offer all the soff@aecessary to customize a data transfer between Gridded
Components. For instance, ESMF does not currently offds imo unit tranformations or time averaging operations,
SO users must manage those operations themselves.

The second part of a Coupler Component isE8&C_Cpl Conp derived type within ESMF. The user must create one
of these types to represent a specific coupling functiorh asdhe regular transfer of data between a data assimilation
system and an atmospheric modkl.

The user-written part of a Coupler Component is associaffdam ESMC_Cpl Conp derived type through a rou-
tine calledESMC_Set Servi ces(). This is a routine that the user must write and declare puhbliside the
ESMC_Set Ser vi ces() routine the user must calSMC_Set Ent r yPoi nt () methods that associate a stan-
dard ESMF operation with the name of the corresponding &oiubroutine in their user code. For example, a user
routine called “couplerlnit” might be associated with thamlard initialize routine in a Coupler Component.

13.2 Class API
13.2.1 ESMC_CplCompCreate - Create a Coupler Component

INTERFACE:
ESMC_Cpl Conp ESMC_Cpl ConpCr eat e(
const char =nane, /[l in
const char =*configFile, /1 in
ESMC d ock cl ock, /[l in
int *rc /1 out

)
RETURN VALUE:
Newl y created ESMC Cpl Conp object.
DESCRIPTION:

This interface creates &BMC_Cpl Conp object. By default, a separate VM context will be createdsfach compo-
nent. This implies creating a new MPI communicator and alliog additional memory to manage the VM resources.
The arguments are:

name Name of the newly-creatdeSMC_Cpl Conp.

1t is not necessary to create a Coupler Component for eadhidndl datatransfer.

41

configFile The filename of aESMC_Conf i g format file. If specified, this file is opened &MC_Conf i g config-
uration object is created for the file, and attached to thecmwponent.

clock Component-specifiESMC_Cl ock. This clock is available to be queried and updated by the new
ESMC_Cpl Conp as it chooses. This should not be the parent component cldtdkh should be maintained
and passed down to the initialize/run/finalize routinesasafely.

[rc] Return code; equalESM-_SUCCESS if there are no errors.

13.2.2 ESMC_CplCompDestroy - Destroy a Coupler Component

INTERFACE:

i nt ESMC Cpl ConpDest roy(
ESMC_Cpl Conp *conp /1 inout
)

RETURN VALUE:
Return code; equals ESMF_SUCCESS if there are no errors.
DESCRIPTION:

Releases all resources associated withESSIC Cpl Conp.
The arguments are:

comp Release all resources associated withEB8MC Cpl Conp and mark the object as invalid. Itis an error to pass
this object into any other routines after being destroyed.

13.2.3 ESMC_CplCompFinalize - Finalize a Coupler Componen

INTERFACE:
i nt ESMC_Cpl ConpFi nal i ze(
ESMC_Cpl Conp conp, /1 inout
ESMC State inport State, /1 inout
ESMC St at e export St at e, /1 inout
ESMC O ock cl ock, /1 in
i nt phase, /1 in
int ruserRc /1 out
)
RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.
DESCRIPTION:

Call the associated user finalize code for a CplComp.
The arguments are:

comp ESMC_Cpl Conp to call finalize routine for.

importState ESMC_St at e containing import data for coupling.

42

exportState ESMC_St at e containing export data for coupling.

clock ExternalESMC_Cl ock for passing in time information. This is generally the paeemponent’s clock, and
will be treated as read-only by the child component. Thedcbidmponent can maintain a private clock for its
own internal time computations.

phase Component providers must document whether each of thediinesiaresi ngl e- phase ornul ti - phase.
Single-phase routines require only one invocation to cetegheir work. Multi-phase routines provide multiple
subroutines to accomplish the work, accomodating compsvelnich must complete part of their work, return
to the caller and allow other processing to occur, and therimmee the original operation. For multiple-phase
child components, this is the integer phase number to bek@u/o For single-phase child components this
argument must be 1.

[userRc] Return code set byser Rout i ne before returning.

13.2.4 ESMC_CplCompGetinternalState - Get the internal Sate of a Coupler Component

INTERFACE:
voi d *ESMC_Cpl ConpCet | nt er nal St at e(
ESMC_Cpl Conp conp, /1in
int *xrc /1 out
);
RETURN VALUE:

Pointer to private data block that is stored in the internal state.
DESCRIPTION:

Available to be called by aBSMC Cpl Conp at any time afteESMC_Cpl ConpSet | nt er nal St at e has been
called. Since init, run, and finalize must be separate suines) data that they need to share in common can either
be global data, or can be allocated in a private data blockile@dddress of that block can be registered with the
framework and retrieved by this call. When running multipistantiations of areSMC_Cpl Conp, for example
during ensemble runs, it may be simpler to maintain privat& épecific to each run with private data blocks. A
correspondingeSMC_Cpl ConpSet | nt er nal St at e call sets the data pointer to this block, and this call rease

the data pointer.

Only thelastdata block set viESMC_Cpl ConpSet | nt er nal St at e will be accessible.

The arguments are:

comp An ESMC_Cpl Conp object.
[rc] Return code; equalESM-_SUCCESS if there are no errors.

13.2.5 ESMC_CplComplnitialize - Initialize a Coupler Component

INTERFACE:

int ESMC Cpl Conplnitialize(
ESMC_Cpl Conp conp, /1 inout
ESMC State inportState, /1 inout
ESMC St ate export State, /1 inout
ESMC d ock cl ock, /1l in
i nt phase, /1 in
int xuserRc /1 out

);

43

RETURN VALUE:
Return code; equals ESMF_SUCCESS if there are no errors.
DESCRIPTION:

Call the associated user initialize code for a CplComp.
The arguments are:

comp ESMC_Cpl Conp to call initialize routine for.
importState ESMC_St at e containing import data for coupling.
exportState ESMC_St at e containing export data for coupling.

clock ExternalESMC_Cl ock for passing in time information. This is generally the paeamponent’s clock, and
will be treated as read-only by the child component. Thedcbiimponent can maintain a private clock for its
own internal time computations.

phase Component providers must document whether each of thdiineriaresi ngl e- phase ormul ti - phase.
Single-phase routines require only one invocation to cetegheir work. Multi-phase routines provide multiple
subroutines to accomplish the work, accomodating comgsivetnich must complete part of their work, return
to the caller and allow other processing to occur, and thetirmee the original operation. For multiple-phase
child components, this is the integer phase number to bekétio For single-phase child components this
argument must be 1.

[userRc] Return code set byser Rout i ne before returning.

13.2.6 ESMC_CplCompPrint - Print a Coupler Component

INTERFACE:

i nt ESMC_Cpl CompPri nt (
ESMC_Cpl Conp conp [l in
);

RETURN VALUE:
Return code; equals ESMF_SUCCESS if there are no errors.
DESCRIPTION:

Prints information about aBSMC_Cpl Conp to st dout .
The arguments are:

comp An ESMC_Cpl Conp object.

13.2.7 ESMC_CplCompRun - Run a Coupler Component

INTERFACE:

44

i nt ESMC _Cpl ConpRun(

ESMC_Cpl Conp conp, /1 inout

ESMC State inport State, /1 inout

ESMC St ate export State, /1 inout

ESMC d ock cl ock, /1l in

i nt phase, /1 in

int *userRc /1 out
)
RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.
DESCRIPTION:

Call the associated user run code for a CplComp.
The arguments are:

comp ESMC_Cpl Conp to call run routine for.
importState ESMC_St at e containing import data for coupling.
exportState ESMC_St at e containing export data for coupling.

clock ExternalESMC_Cl ock for passing in time information. This is generally the paemponent’s clock, and
will be treated as read-only by the child component. Thedcbidmponent can maintain a private clock for its
own internal time computations.

phase Component providers must document whether each of thdiineriaresi ngl e- phase ormul ti - phase.
Single-phase routines require only one invocation to cetegheir work. Multi-phase routines provide multiple
subroutines to accomplish the work, accomodating compsvelnich must complete part of their work, return
to the caller and allow other processing to occur, and theirmee the original operation. For multiple-phase
child components, this is the integer phase number to bek@io For single-phase child components this
argument must be 1.

[userRc] Return code set byser Rout i ne before returning.

13.2.8 ESMC_CplCompSetEntryPoint - Set the Entry point of aCoupler Component

INTERFACE:
i nt ESMC _Cpl ConpSet Ent r yPoi nt (
ESMC_Cpl Conp conp, [l in
enum ESMC Met hod net hod, /[l in
voi d (*userRouti ne) [l in
(ESMC_Cpl Conp, ESMC State, ESMC State, ESMC Clock *, int =*),
i nt phase /1 in
)
RETURN VALUE:
Return code; equals ESM-_SUCCESS if there are no errors.
DESCRIPTION:

Registers a user-supplieder Rout i ne as the entry point for one of the predefined Component methiftey this
call theuser Rout i ne becomes accessible via the standard Component method API.
The arguments are:

45

comp An ESMC_Cpl Conp object.

method One of a set of predefined Component methods - e.g.ESM-_METHOD | NI Tl ALI ZE,
ESMF_METHOD _RUN, ESM-_METHOD FI NALI ZE. See sectior?? for a complete list of valid method
options.

userRoutine The user-supplied subroutine to be associated for this ©asmtnet hod. This subroutine does not
have to be public.

phase The phase number for multi-phase methods.

13.2.9 ESMC_CplCompSetinternalState - Set the internal $tte of a Coupler Component

INTERFACE:

i nt ESMC _Cpl ConpSet | nt er nal St at e(
ESMC_Cpl Conp conp, /1 inout
void *data /1 in

);

RETURN VALUE:

Return code; equals ESM-_SUCCESS if there are no errors.
DESCRIPTION:

Available to be called by aBSMC_Cpl Comnp at any time, but expected to be most useful when called duhiag
registration process, or initialization. Since init, ramd finalize must be separate subroutines, data that theljtoee
share in common can either be global data, or can be allogategrivate data block and the address of that block
can be registered with the framework and retrieved by sulegcalls. When running multiple instantiations of an
ESMC_Cpl Conp, for example during ensemble runs, it may be simpler to raairrivate data specific to each run
with private data blocks. A correspondiBSMC_Cpl ConpGet | nt er nal St at e call retrieves the data pointer.
Only thelastdata block set viESMC_Cpl ConpSet | nt er nal St at e will be accessible.

The arguments are:

comp An ESMC_Cpl Conp object.

data Pointer to private data block to be stored.

13.2.10 ESMC_CplCompSetServices - Destroy a Coupler Compent

INTERFACE:
i nt ESMC_Cpl ConmpSet Ser vi ces(
ESMC_Cpl Conp conp, /1 in
voi d (*userRoutine) (ESMC Cpl Conp, int =), /[l in
int ruserRc /1 out
)
RETURN VALUE:

Return code; equals ESM-_SUCCESS if there are no errors.

46

DESCRIPTION:

Call into user providedser Rout i ne which is responsible for setting Component’s Initializ&¥n() and Finalize()
services.
The arguments are:

comp Gridded Component.
userRoutine Routine to be called.
userRc Return code set byser Rout i ne before returning.

The Component writer must supply a subroutine with the exaetface shown above for theser Rout i ne argu-
ment.

The wuserRoutine, when called by the framework, must make successive calls to
ESMC _Cpl ConpSet EntryPoi nt () to preset callback routines for standard Component lizgé), Run()
and Finalize() methods.

14 State Class
14.1 Description

A State contains the data and metadata to be transferreéde®SMF Components. It is an important class, because
it defines a standard for how data is represented in dataféranisetween Earth science components. The State
construct is a rational compromise between a fully prescrimterface - one that would dictate what specific fields
should be transferred between components - and an inténfadech data structures are completely ad hoc.

There are two types of States, import and export. An impaateStontains data that is necessary for a Gridded
Component or Coupler Component to execute, and an expdd &atains the data that a Gridded Component or
Coupler Component can make available.

States can contain Arrays, ArrayBundles, Fields, FieldBes, and other States. However, the current C API only
provides State access to Arrays, Fields and nested Statees $annot directly contain native language arrays (i.e.
Fortran or C style arrays). Objects in a State must span theWMhich they are running. For sequentially executing
components which run on the same set of PETs this happendling the object create methods on each PET, creating
the object in unison. For concurrently executing compaos&ttich are running on subsets of PETs, an additional
method, calledESMF_St at eReconci | e() , is provided by ESMF to broadcast information about objedigh
were created in sub-components. Currently this method lig arailable through the ESMF Fortran API. Hence
the Coupler Component reponsible for reconciling StatesifComponent that execute on subsets of PETs must be
written in Fortran.

State methods include creation and deletion, adding aridviglg data items, and performing queries.

14.2 Restrictions and Future Work

1. No synchronization of object ids at object create time Object IDs are using during the reconcile process to
identify objects which are unknown to some subset of the HETise currently running VM. Object IDs are
assigned in sequential order at object create time.

One important request by the user community during the EShj€cb design was that there be no communi-
cation overhead or synchronization when creating distedh&E SMF objects. As a consequence it is required to
create these objects imisonacross all PETs in order to keep the ESMF object identifiadticsync.

14.3 Class API
14.3.1 ESMC_StateAddArray - Add an Array object to a State

INTERFACE:

47

i nt ESMC St at eAddArray (
ESMC State state, /1l in
ESMC Array array /1 in

)

RETURN VALUE:
Return code; equals ESMF_SUCCESS if there are no errors.
DESCRIPTION:

Add an Array object to &SMC_St at e object.
The arguments are:

state The State object.
array The Array object to be included within the State.

14.3.2 ESMC_StateAddField - Add a Field object to a State

INTERFACE:

i nt ESMC_St at eAddFi el d(
ESMC State state, /1l in
ESMC Field field /1 in

) y
RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.
DESCRIPTION:

Add an Array object to &SMC_St at e object.
The arguments are:

state The State object.
array The Array object to be included within the State.

14.3.3 ESMC_StateCreate - Create an Array

INTERFACE:

ESMC St ate ESMC St at eCr eat ¢(
const char *nane, // in

int xrc /1 out
)
RETURN VALUE:
Newl y created ESMC St ate object.
DESCRIPTION:

Create arESMC_St at e object.
The arguments are:

48

[name] The name for the State object. If not specified, i.e. NULL, #adk unique name will be generated:
"StateNNN" where NNN is a unique sequence number from 00B% 9

rc Return code; equalBSM-_SUCCESS if there are no errors.

14.3.4 ESMC_StateDestroy - Destroy a State

INTERFACE:

i nt ESMC_St at eDest roy(
ESMC State *state /1 in

)
RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.
DESCRIPTION:

Destroy aESMC_St at e object.
The arguments are:

state The State to be destroyed.

14.3.5 ESMC_StateGetArray - Obtains an Array object from a Sate

INTERFACE:

int ESMC StateGet Array(
ESMC State state, /1l in
const char =*nane, /1l in

ESMC Array *array /1 out
)

RETURN VALUE:
Return code; equals ESMF_SUCCESS if there are no errors.
DESCRIPTION:

Obtain a pointer to aBSMC_Ar r ay object contained within a State.
The arguments are:

state The State object.
name The name of the desired Array object.

array A pointer to the Array object.

49

14.3.6 ESMC_StateGetField - Obtains a Field object from a Ste

INTERFACE:

int ESMC St ateGet Fi el d(
ESMC State state, /1 in
const char =*nane, /Il in

ESMC Field *field /1 out
)

RETURN VALUE:
Return code; equals ESM-_SUCCESS if there are no errors.
DESCRIPTION:

Obtain a pointer to #8SMC_Fi el d object contained within a State.
The arguments are:

state The State object.
name The name of the desired Field object.

array A pointer to the Field object.

14.3.7 ESMC_StatePrint - Print the contents of a State

INTERFACE:

int ESMC StatePrint(
ESMC State state /1l in
);

RETURN VALUE:
Return code; equals ESM-_SUCCESS if there are no errors.
DESCRIPTION:

Prints the contents of BSMC_St at e object.
The arguments are:

state The State to be printed.

50

Part IV
Infrastructure: Fields and Grids

51

15 Overview of Infrastructure Data Handling

The ESMF infrastructure data classes are part of the framesvoierarchy of structures for handling Earth system
model data and metadata on parallel platforms. The hieyascim complexity; the simplest data class in the infras-
tructure represents a distributed data array and the mogtles data class represents a bundle of physical fields that
are discretized on the same grid. However, the current C ABsdhot support bundled data structures yet. Array
and Field are the two data classes offered by the ESMF C |gregoiading. Data class methods are called both from
user-written code and from other classes internal to thmadveork.

Data classes are distributed o¥@Es, orDecomposition Elements A DE represents a piece of a decomposition. A
DELayout is a collection of DEs with some associated cornvigcthat describes a specific distribution. For example,
the distribution of a grid divided into four segments in thdimnension would be expressed in ESMF as a DELayout
with four DEs lying along an x-axis. This abstract concepl#as a data decomposition to be defined in terms of
threads, MPI processes, virtual decomposition elementnmbinations of these without changes to user code. This
is a primary strategy for ensuring optimal performance asrtibility for codes using the ESMF for communications.
ESMF data classes are useful because they provide a stamdargnient way for developers to collect together
information related to model or observational data. Therimiation assembled in a data class includes a data pointer,
a set of attributes (e.g. units, although attributes camladsuser-defined), and a description of an associated dnigl. T
same set of information within an ESMF data object can be bygettie framework to arrange intercomponent data
transfers, to perform 1/O, for communications such as gathed scatters, for simplification of interfaces withinruse
code, for debugging, and for other functions. This unified amganizes codes overall so that the user need not define
different representations of metadata for the same field@and for component coupling.

Since it is critical that users be able to introduce ESMF thtir codes easily and incrementally, ESMF data classes
can be created based on native Fortran pointers. Likewisee tare methods for retrieving native Fortran pointers
from within ESMF data objects. This allows the user to perfallocations using ESMF, and to retrieve Fortran
arrays later for optimized model calculations. The ESMRdddsses do not have associated differential operators or
other mathematical methods.

For flexibility, it is not necessary to build an ESMF data abjall at once. For example, it's possible to create a field
but to defer allocation of the associated field data untitertame.

Key Features
Hierarchy of data structures designed specifically for thetiesystem domain and high performance, parallel
computing.

Multi-use ESMF structures simplify user code overall.

Data objects support incremental construction and defexitecation.
Native Fortran arrays can be associated with or retrievech FESMF data objects, for ease of adoption,
convenience, and performance.

15.1 Infrastructure Data Classes

The main classes that are used for model and observatiotaatdaipulation are as follows:

e Array An ESMF Array contains a data pointer, information abouagisociated datatype, precision, and dimen-
sion.

Data elements in Arrays are partitioned into categoriesddfby the role the data element plays in distributed
halo operations. Haloing - sometimes called ghosting -@gttactice of copying portions of array data to mul-
tiple memory locations to ensure that data dependencidsecaatisfied quickly when performing a calculation.
ESMF Arrays contain aexclusivedomain, which contains data elements updated exclusivelydafinitively

by a given DE; acomputational domain, which contains all data elements with values tratadated by the
DE in computations; andtatal domain, which includes both the computational domain ana €l@ments from
other DEs which may be read but are not updated in compugation

e Field A Field holds model and/or observational data together itsthnderlying grid or set of spatial locations.
It provides methods for configuration, initialization, tdgg and retrieving data values, data I/O, data regridding,
and manipulation of attributes.

52

15.2 Design and Implementation Notes

1. In communication methods such as Regrid, Redist, Scatterthe Field code cascades down through the Array
code, so that the actual implementation exist in only onegia the source.

53

16 Field Class

16.1 Description

An ESMF Field represents a physical field, such as temperailre motivation for including Fields in ESMF is that
bundles of Fields are the entities that are normally excedmghen coupling Components.

The ESMF Field class contains distributed and discretized flata, a reference to its associated grid, and metadata.
The Field class stores the gsthggeringor that physical field. This is the relationship of how theadarray of a field
maps onto a grid (e.g. one item per cell located at the ceteceone item per cell located at the NW corner, one item
per cell vertex, etc.). This means that different Fieldsolitdare on the same underlying ESMF Grid but have different
staggerings can share the same Grid object without needlirgplicate it multiple times.

Fields can be added to States for use in inter-Componentdatenunications.

Field communication capabilities include: data redisttitin, regridding, scatter, gather, sparse-matrix miidgion,

and halo update. These are discussed in more detail in therdatation for the specific method calls. ESMF does
not currently support vector fields, so the components ofcéovdield must be stored as separate Field objects.

A Field serves as an annotator of data, since it carries aigéen of the grid it is associated with and metadata
such as name and units. Fields can be used in this capacity,ads convenient, descriptive containers into which
arrays can be placed and retrieved. However, for most cdageprimary use of Fields is in the context of import
and export States, which are the objects that carry couptifoigmation between Components. Fields enable data
to be self-describing, and a State holding ESMF Fields ¢ositdata in a standard format that can be queried and
manipulated.

The sections below go into more detail about Field usage.

16.1.1 Field create and destroy

Fields can be created and destroyed at any time during agiplicexecution. However, these Field methods require
some time to complete. We do not recommend that the userecogadestroy Fields inside performance-critical
computational loops.

All versions of theESMC_Fi el dCr eat e() routines require a Mesh object as input. The Mesh contamfior-
mation needed to know which Decomposition Elements (DEs)participating in the processing of this Field, and
which subsets of the data are local to a particular DE.

The details of how the create process happens depends on e@ftie variants of th&SMC_Fi el dCr eat e() call

is used.

When finished with aieSMC_Fi el d, theESMC_Fi el dDest r oy method removes it. However, the objects inside
the ESMC_Fi el d created externally should be destroyed separately, singets can be added to more than one
ESMC _Fi el d. For example, the sante€SM-_Mesh can be referenced by multipESMC_Fi el ds. In this case the
internal Mesh is not deleted by tl#SMC_Fi el dDest r oy call.

16.2 Class API
16.2.1 ESMC_FieldCreate - Create a Field

INTERFACE:
ESMC Fi el d ESMC Fi el dCr eat ¢(
ESMC Mesh nesh, /1l in
ESMC_ArraySpec arrayspec, /1 in
ESMC Interfacelnt gridToFi el dvap, /1 in
ESMC I nterfacel nt ungri ddedLBound, /1 in
ESMC Interfacel nt ungri ddedUBound, /1 in
const char =*nane, /1 in
int *xrc /1 out
)
RETURN VALUE:

54

Newl y created ESMC Fi el d object.
DESCRIPTION:

Creates &SMC_Fi el d object.
The arguments are:

mesh A ESMC_Mesh object.
arrayspec A ESMC_Ar r ay Spec object describing data type and kind specification.

gridToFieldMap List with number of elements equal to the grid’s dimCounteTikt elements map each dimension
of the grid to a dimension in the field by specifying the appiate field dimension index. The default is to
map all of the grid’s dimensions against the lowest dimamsiaf the field in sequence, i.e. gridToFieldMap
=(/1,2,3,.../). The values of all gridToFieldMap entriesshbe greater than or equal to one and smaller than
or equal to the field rank. It is erroneous to specify the sanrgFieldMap entry multiple times. The total
ungridded dimensions in the field are the total field dimemsiless the dimensions in the grid. Ungridded
dimensions must be in the same order they are stored in the ffehe Field dimCount is less than the Mesh
dimCount then the default gridToFieldMap will contain zefor the rightmost entries. A zero entry in the
gridToFieldMap indicates that the particular Mesh dimenswill be replicating the Field across the DEs along
this direction.

ungriddedLBound Lower bounds of the ungridded dimensions of the field. Thelmemof elements in the ungrid-
dedLBound is equal to the number of ungridded dimensioniérfield. All ungridded dimensions of the field
are also undistributed. When field dimension count is grehgan grid dimension count, both ungriddedLBound
and ungriddedUBound must be specified. When both are spkttifievalues are checked for consistency. Note
that the the ordering of these ungridded dimensions is tine e their order in the field.

ungriddedUBound Upper bounds of the ungridded dimensions of the field. Thebmrraf elements in the ungridde-
dUBound is equal to the number of ungridded dimensions iffi¢he. All ungridded dimensions of the field are
also undistributed. When field dimension count is greatan tijrid dimension count, both ungriddedLBound
and ungriddedUBound must be specified. When both are spkttifievalues are checked for consistency. Note
that the the ordering of these ungridded dimensions is time e their order in the field.

[name] The name for the newly created field. If not specified, i.e. NU& default unique name will be generated:
"FieldNNN" where NNN is a unique sequence number from 0019@. 9

[rc] Return code; equalsSM-_SUCCESS if there are no errors.

16.2.2 ESMC_FieldDestroy - Destroy a Field

INTERFACE:
i nt ESMC Fi el dDestroy(
ESMC Field *field /1 inout
)
RETURN VALUE:
Return code; equals ESMF_SUCCESS if there are no errors.
DESCRIPTION:

Releases all resources associated with B8MC Fi el d. Return code; equalESM-_SUCCESS if there are no
errors.
The arguments are:

field Destroy contents of thiESMC Fi el d.

55

16.2.3 ESMC_FieldGetArray - Get the internal Array stored in the Field

INTERFACE:

ESMC Array ESMC Fi el dGet Array(
ESMC Field field, /Il in
int *rc /1 out

)

RETURN VALUE:

The ESMC Array object stored in the ESMC Fi el d.
DESCRIPTION:

Get the internal Array stored in tHeSMC_Fi el d.
The arguments are:

field Getthe internal Array stored in thiESMC_Fi el d.
[rc] Return code; equalsSM-_SUCCESS if there are no errors.

16.2.4 ESMC_FieldGetMesh - Get the internal Mesh stored inhte Field

INTERFACE:

ESMC_Mesh ESMC_Fi el dGet Mesh(
ESMC Field field, /1l in
int *rc /1 out

)

RETURN VALUE:

The ESMC Mesh object stored in the ESMC Fi el d.
DESCRIPTION:

Get the internal Mesh stored in tBESMC_Fi el d.
The arguments are:

field Getthe internal Mesh stored in tHESMC Fi el d.
[rc] Return code; equalESM-_SUCCESS if there are no errors.

16.2.5 ESMC_FieldGetPtr - Get the internal Fortran data ponter stored in the Field

INTERFACE:

void *ESMC Fi el dGet Pt r (
ESMC Field field, /Il in
int |ocal De, Il in

int *rc /1 out

);

56

RETURN VALUE:
The Fortran data pointer stored in the ESMC Fi el d.
DESCRIPTION:

Get the internal Fortran data pointer stored inBSMC Fi el d.
The arguments are:

field Getthe internal Fortran data pointer stored in #8C _Fi el d.
localDe Local DE for which information is requestefdO0, . . , | ocal DeCount - 1] .

[rc] Return code; equalBSM-_SUCCESS if there are no errors.

16.2.6 ESMC_FieldPrint - Print the internal information of a Field

INTERFACE:
int ESMC_Fi el dPrint(
ESMC Field field Il in
)
RETURN VALUE:
Return code; equals ESMF_SUCCESS if there are no errors.
DESCRIPTION:

Print the internal information within thifESMC_Fi el d. Return code; equalsSM-_SUCCESS if there are no errors.
The arguments are:

field Print contents of thiESMC _Fi el d.

17 Array Class

17.1 Description

The Array class is an alternative to the Field class for regméng distributed, structured data. Unlike Fields, Whic
are built to carry grid coordinate information, Arrays camyocarry information about thndicesassociated with

grid cells. Since they do not have coordinate informatiorrags cannot be used to calculate interpolation weights.
However, if the user can supply interpolation weights, theag sparse matrix multiply operation can be used to apply
the weights and transfer data to the new grid. Arrays canmdgorm redistribution, scatter, and gather communicatio
operations.

Like Fields, Arrays can be added to a State and used in indergdnent data communications.

From a technical standpoint, the ESMF Array class is an isghace based, distributed data storage class. It provides
DE-local memory allocations within DE-centric index reggoand defines the relationship to the index space described
by the ESMF DistGrid. The Array class offers common commaitidn patterns within the index space formalism.

17.2 Class API
17.2.1 ESMC_ArrayCreate - Create an Array

INTERFACE:

57

ESMC Array ESMC ArrayCreat e(
ESMC_ArraySpec arrayspec, /1 in

ESMC DistGid distgrid, /1 in
const char* nane, /1l in
int *rc !/ out
)
RETURN VALUE:

Newl y created ESMC Array object.
DESCRIPTION:

Create arESMC_Ar r ay object.
The arguments are:

arrayspec ESMC_Ar r ay Spec object containing the type/kind/rank information.

distgrid ESMC _Di st Gri d object that describes how the Array is decomposed andluiséd over DEs. The dim-
Count of distgrid must be smaller or equal to the rank spetifiearrayspec, otherwise a runtime ESMF error
will be raised.

[name] The name for the Array object. If not specified, i.e. NULL, daidt unigue name will be generated: "Ar-
rayNNN" where NNN is a unique sequence number from 001 to 999.

[rc] Return code; equalESM-_SUCCESS if there are no errors.

17.2.2 ESMC_ArrayDestroy - Destroy an Array

INTERFACE:

i nt ESMC ArrayDestroy(
ESMC Array *array /1 inout
)

RETURN VALUE:
Return code; equals ESMF_SUCCESS if there are no errors.
DESCRIPTION:

Destroy arESMC_Ar r ay object.
The arguments are:

array ESMC_Ar r ay object to be destroyed.

17.2.3 ESMC_ArrayGetName - Get the name of an Array

INTERFACE:
const char =ESMC _ArrayGet Name(
ESMC Array array, /1 in

int *rc /1 out

)

58

RETURN VALUE:
Pointer to the Array name string.
DESCRIPTION:

Get the name of the specifi&SMC_Ar r ay object.
The arguments are:

array ESMC_Ar r ay object to be queried.
[rc] Return code; equalESM-_SUCCESS if there are no errors.

17.2.4 ESMC_ArrayGetPtr - Get pointer to Array data.

INTERFACE:
void *ESMC _ArrayGet Pt r(
ESMC Array array, /1 in
int |ocal De, /1l in
int *rc /1 out
)
RETURN VALUE:

Pointer to the Array data.
DESCRIPTION:

Get pointer to the data of the specifiE8MC_Ar r ay object.
The arguments are:

array ESMC_Ar r ay object to be queried.
localDe Local De for which to data pointer is queried.

[rc] Return code; equalESM-_SUCCESS if there are no errors.

17.2.5 ESMC_ArrayPrint - Print an Array

INTERFACE:

int ESMC ArrayPrint(
ESMC Array array /1 in
)

RETURN VALUE:
Return code; equals ESMF_SUCCESS if there are no errors.
DESCRIPTION:

Print internal information of the specifié&€SMC_Ar r ay object.
The arguments are:

array ESMC_Ar r ay object to be printed.

59

18 ArraySpec Class
18.1 Description

An ArraySpec is a very simple class that contains type, kamdi, rank information about an Array. This information
is stored in two parameterSypeKind describes the data type of the elements in the Array andphetision.Rank

is the number of dimensions in the Array.

The only methods that are associated with the ArraySpes al@sthose that allow you to set and retrieve this infor-
mation.

18.2 Class API
18.2.1 ESMC_ArraySpecGet - Get values from an ArraySpec

INTERFACE:
i nt ESMC _ArraySpecGCet (
ESMC_ArraySpec arrayspec, /1 inout
int *rank, Il in
enum ESMC TypeKi nd *t ypeki nd /1 in
)
RETURN VALUE:
Return code; equals ESMF_SUCCESS if there are no errors.
DESCRIPTION:

Returns information about the contents ofEBMC_Ar r ay Spec.
The arguments are:

arrayspec TheESMC_Ar r ay Spec to query.
rank Array rank (dimensionality - 1D, 2D, etc). Maximum allowed7D.

typekind Array typekind. See section ?? for valid values.

18.2.2 ESMC_ArraySpecSet - Set values for an ArraySpec

INTERFACE:
i nt ESMC _ArraySpecSet (

ESMC_ArraySpec =*arrayspec, /1 inout

int rank, Il in

enum ESMC TypeKi nd t ypeki nd /[l in
)
RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Set an Array specification - typekind, and rank.
The arguments are:

arrayspec TheESMC _Ar r ay Spec to set.
rank Array rank (dimensionality - 1D, 2D, etc). Maximum allowed7D.

typekind Array typekind. See section ?? for valid values.

60

19 Mesh Class
19.1 Description

Unstructured grids are commonly used in the computatioolattion of Partial Differential equations. These are
especially useful for problems that involve complex geamethere using the less flexible structured grids can result
in grid representation of regions where no computation eded. Finite element and finite volume methods map
naturally to unstructured grids and are used commonly irdlgdy, ocean modeling, and many other applications.

In order to provide support for application codes using wstired grids, the ESMF library provides a class for
representing unstructured grids called tesh. Fields can be created on a Mesh to hold data. In Fortran,
Fields created on a Mesh can also be used as either the saudestmation or both of an interpolaton (i.e. an
ESMF_Fi el dRegri dSt or e() call). This capability is currently not supported with thar@erface, however, if
the C Field is passed via a State to a component written irdothen the regridding can be performed there. The
rest of this section describes the Mesh class and how toecagatuse them in ESMF.

19.1.1 Mesh Representation in ESMF

A Mesh in ESMF is described in terms nfdesandelements A node is a point in space which represents where the
coordinate information in a Mesh is located. An element igyaér dimensional shape constructed of nodes. Elements
give a Mesh its shape and define the relationship of the nadasa another. Field data may be located on a Mesh'’s
nodes.

19.1.2 Supported Meshes

The range of Meshes supported by ESMF are defined by sevetatdadimension, element types, and distribution.
ESMF currently only supports Meshes whose number of coatdidimensions (spatial dimension) is 2 or 3. The
dimension of the elements in a Mesh (parametric dimensiarst toe less than or equal to the spatial dimension, but
also must be either 2 or 3. This means that an ESMF mesh mayhse 2D elements in 2D space, 3D elements in
3D space, or a manifold constructed of 2D elements embedd#d space.

ESMF currently supports two types of elements for each Mashrpetric dimension. For a parametric dimension of
2 the supported element types are triangles or quadrdmtéi@ar a parametric dimension of 3 the supported element
types are tetrahedrons and hexahedrons. See Section fb® @dgrams of these. The Mesh supports any combination
of element types within a particular dimension, but typesfdifferent dimensions may not be mixed, for example, a
Mesh cannot be constructed of both quadralaterals andhégira.

ESMF currently only supports distributions where everyaod a PET must be a part of an element on that PET. In
other words, there must not be nodes without an element oiTa PE

19.2 Constants

19.2.1 ESMC_MESHELEMTYPE

DESCRIPTION:

An ESMF Mesh can be constructed from a combination of diffeedements. The type of elements that can be used
in a Mesh depends on the Mesh’s parameteric dimension, vidistt during Mesh creation. The following are the
valid Mesh element types for each valid Mesh parametric dsios (2D or 3D) .

61

ESMC_MESHELEMTYPE_TRI ESMC_MESHELEMTYPE_QUAD

2D el erent types (nunmbers are the order for el ement Conn during
Mesh create)

For a Mesh with parametric dimension of 2 the valid elemepe¢$/(illustrated above) are:

Element Type Number of Nodeg Description
ESMC_MESHELEMTYPE_TRI 3 A triangle
ESMC_MESHELEMTYPE_QUAD 4 A quadrilateral (e.g. a rectangle)
3 8- 7
I\ /| /]
I]\ /| /]
I\ I .
/ [\ / [/ |
/ [\ R R 6 |
4----- |----- 2 | | | |
\ [/ | R [----3
\ [/ | / [/
\ |/ |/
\ |/ | / | /
\ [/ | / [/
1 R LR 2
ESMC_MESHELEMIYPE_TETRA ESMC_MESHELEMI'YPE_HEX

3D el erent types (nunmbers are the order for el ement Conn during
Mesh create)

For a Mesh with parametric dimension of 3 the valid elemepe¢$/(illustrated above) are:

Element Type Number of Nodeg Description
ESMC_MESHELEMTYPE_TETRA 4 A tetrahedron (CAN'T BE USED IN REGRID
ESMC_MESHELEMTYPE_HEX 8 A hexahedron (e.g. a cube)

19.3 Class API

19.3.1 ESMC_MeshAddElements - Add elements to a Mesh

INTERFACE:
i nt ESMC_MeshAddEl enent s(
ESMC Mesh mesh, /1 inout
int el enent Count, [/ in
int xel enentlds, Il in
i nt xel ement Types, /1 in
int el enent Conn [/ in
)
RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

62

DESCRIPTION:

This call is the third and last part of the three part meshtersaguence and should be called after the mesh is created
with ESMF_MeshCr eat e() (19.3.3) and after the nodes are added \&#&#VF MeshAddNodes() (I9.3.2). This

call adds the elements to the mesh and finalizes the creats.tAis call the Mesh is usable, for example a Field may
be built on the created Mesh object and this Field may be usa&$M-_Fi el dRegri dSt or e() call.

The parameters to this cal ement | ds, el ement Types, andel enent Conn describe the elements to be cre-
ated. The description for a particular element lies at tineesimdex location irel enent | ds andel enent Types.

Each entry irel ement Conn consists of the list of nodes used to create that elemerttestonnections for elemeat
intheel enent | ds array will start athumber_of_nodes_in_element(1)+number_of_nodes_in_element(2)+

-+« + number_of_nodes_in_element(e — 1) + 1 in el ement Conn.

mesh Mesh object.
elementCount The number of elements on this PET.

elementlds An array containing the global ids of the elements to be ekan this PET. This input consists of a 1D
array of sizeel emrent Count .

elementTypesAn array containing the types of the elements to be createthislPET. The types used must be
appropriate for the parametric dimension of the Mesh. lelsag Sectiof? for the list of options. This input
consists of a 1D array of sizd enent Count .

elementConn An array containing the indexes of the sets of nodes to beewiad together to form the elements to
be created on this PET. The entries in this list are NOT nodbailids, but rather each entry is a local index
(1 based) into the list of nodes which were created on this B¥eihe previou€SMC MeshAddNodes()
call. In other words, an entry of 1 indicates that this elehwamtains the node described bgdel ds(1),
nodeCoor ds(1), etc. passed into theSMC_MeshAddNodes() call on this PET. It is also important to
note that the order of the nodes in an element connectidtyntiatters. Please see Sectihfor diagrams
illustrating the correct order of nodes in a element. Thigiirconsists of a 1D array with a total size equal to the
sum of the number of nodes in each element on this PET. The @unhbodes in each element is implied by its
element type irel enent Types. The nodes for each element are in sequence in this arraytiie.godes for
element 1 are elementConn(1), elementConn(2), etc.).

19.3.2 ESMC_MeshAddNodes - Add nodes to a Mesh

INTERFACE:
i nt ESMC MeshAddNodes(
ESMC Mesh mesh, /1 inout
i nt nodeCount, /[l in
i nt x*nodel ds, /[l in
doubl e *nodeCoords, /1 in
i nt *nodeOmners /[l in
)
RETURN VALUE:
Return code; equals ESM-_SUCCESS if there are no errors.
DESCRIPTION:

This call is the second part of the three part mesh createeseguand should be called after the mesh’s dimen-
sions are set usingSMC _MeshCreat e(). This call adds the nodes to the mesh. The next step is to call
ESMC_MeshAddEl enent s() (19.3.3).

63

The parameters to this callbdel ds, nodeCoor ds, andnodeOaner s describe the nodes to be created on this
PET. The description for a particular node lies at the samextocation imodel ds andnodeOaner s. Each entry

in nodeCoor ds consists of spatial dimension coordinates, so the coatelrfar node: in thenodel ds array will
start at(n — 1) * spatial Dim + 1.

mesh Mesh object.
nodeCount The number of nodes on this PET.

nodelds An array containing the global ids of the nodes to be createthis PET. This input consists of a 1D array
the size of the number of nodes on this PET (edeCount).

nodeCoords An array containing the physical coordinates of the nodétoreated on this PET. The coordinates in
this array are ordered so that the coordinates for a node equence in memory. (e.g. for a Mesh with spatial
dimension 2, the coordinates for node 1 are in nodeCoords@nodeCoords(1), the coordinates for node 2
are in nodeCoords(2) and nodeCoords(3), etc.). This inmaists of a 1D array the sizewbdeCount times
the Mesh'’s spatial dimensiospat i al Di m.

nodeOwners An array containing the PETs that own the nodes to be create¢di® PET. If the node is shared with
another PET, the value may be a PET other than the currentimig nodes owned by this PET will have PET
local entries in a Field created on the Mesh. This input ctagif a 1D array the size of the number of nodes
on this PET (i.enodeCount).

19.3.3 ESMC_MeshCreate - Create a Mesh as a 3 step process

INTERFACE:
ESMC Mesh ESMC _MeshCr eat e(
int parametricDi m /1 in
int spatial Dim /1 in
int xrc /1 out
)
RETURN VALUE:
type(ESMC_Mesh) :: ESMC _MeshCreate
DESCRIPTION:

This call is the first part of the three part mesh create sexpienhis call sets the dimension of the elements in the
mesh par anet ri cDi m) and the number of coordinate dimensions in the megia(i al Di m). The next step is

to callESMC_MeshAddNodes() (19.3.2) to add the nodes and tHEBMC_MeshAddEl enent s() (I9.3.1) to add
the elements and finalize the mesh.

The arguments are:

parametricDim Dimension of the topology of the Mesh. (E.g. a mesh constdiof squares would have a parametric
dimension of 2, whereas a Mesh constructed of cubes woulel dwaw of 3.)

spatialDim The number of coordinate dimensions needed to describe¢htdns of the nodes making up the Mesh.
For a manifold, the spatial dimesion can be larger than tharpetric dim (e.g. the 2D surface of a sphere in
3D space), but it can’t be smaller.

rc Return code; equalESM-_SUCCESS if there are no errors.

64

19.3.4 ESMC_MeshDestroy - Destroy a Mesh

INTERFACE:
i nt ESMC_MeshDest r oy(
ESMC Mesh *nesh /1l in
)
RETURN VALUE:
Return code; equals ESMF_SUCCESS if there are no errors.
DESCRIPTION:

Destroy the Mesh. This call removes all internal memory eissed withmesh. After this call mesh will no longer
be usable.
The arguments are:

mesh Mesh object whose memory is to be freed.

19.3.5 ESMC_MeshFreeMemory - Remove a Mesh and its memory

INTERFACE:

i nt ESMC MeshFreeMenory(
ESMC Mesh mesh /1 in

)

RETURN VALUE:
Return code; equals ESMF_SUCCESS if there are no errors.
DESCRIPTION:

This call removes the portions aksh which contain connection and coordinate information. Aftes call, Fields
build onmesh will no longer be usable as part of &M-_Fi el dRegri dSt or e() operation. However, after this
call Fields built omesh can still be used in aBSMF_Fi el dRegr i d() operation if the routehandle was generated
beforehand. New Fields may also be builtroes h after this call.

The arguments are:

mesh Mesh object whose memory is to be freed.

19.3.6 ESMC_MeshGetLocalElementCount - Get the number oflements in a Mesh owned by the current

PET

INTERFACE:
i nt ESMC MeshGet Local El ement Count (
ESMC Mesh nesh, /[l in

i nt *el ement Count /1 out

);

65

RETURN VALUE:
Return code; equals ESMF_SUCCESS if there are no errors.
DESCRIPTION:

Query the number of elements in a mesh owned by the local PETaiguments are:
mesh The mesh

elementCount The number of elements on this PET.

19.3.7 ESMC_MeshGetLocalNodeCount - Get the number of noden a Mesh owned by the current PET

INTERFACE:

i nt ESMC_MeshGet Local NodeCount (
ESMC Mesh mesh, /1 in
i nt *nodeCount /1 out

);

RETURN VALUE:

Return code; equals ESM-_SUCCESS if there are no errors.
DESCRIPTION:

Query the number of nodes in a mesh owned by the local PET. iijuereents are:
mesh The mesh

nodeCount The number of nodes on this PET.

20 DistGrid Class

20.1 Description

The ESMF DistGrid class sits on top of the DELayout class ¢uotently directly accessible through the ESMF C
API) and holds domain information in index space. A DistGriject captures the index space topology and describes
its decomposition in terms of DEs. Combined with DELayoud &M the DistGrid defines the data distribution of a
domain decomposition across the computational resouf@sBSMF Component.

The global domain is defined as the union or “tilework” of leally rectangular (LR) sub-domains tles. The
DistGrid create methods allow the specification of sucheavtirk global domain and its decomposition into exclusive,
DE-local LR regions according to various degrees of usetifipd constraints. Complex index space topologies can
be constructed by specifying connection relationshipaben tiles during creation.

The DistGrid class holds domain information for all DEs. E&8E is associated with a local LR region. No overlap of
the regions is allowed. The DistGrid offers query methods &llow DE-local topology information to be extracted,
e.g. for the construction of halos by higher classes.

A DistGrid object only contains decomposable dimensiomg minimum rank for a DistGrid objectis 1. A maximum
rank does not exist for DistGrid objects, however, rankagmethan 7 may lead to difficulties with respect to the
Fortran API of higher classes based on DistGrid. The rankE&ayout object contained within a DistGrid object
must be equal to the DistGrid rank. Higher class objectsubatthe DistGrid, such as an Array object, may be of
different rank than the associated DistGrid object. Thééiglass object will hold the mapping information between
its dimensions and the DistGrid dimensions.

66

20.2 Class API
20.2.1 ESMC_DistGridCreate - Create a DistGrid

INTERFACE:
ESMC DistGid ESMC Di st Gri dCreat e(
ESMC I nterfacel nt m nlndexl nterfaceArg, /1 in
ESMC I nterfacel nt maxl ndexl nt erfaceArg, /1 in
int *rc /1 out
)
RETURN VALUE:

Newl y created ESMC DistGid object.
DESCRIPTION:

Create arESMC _Di st Gri d from a single logically rectangular (LR) tile with defaulecomposition. The default
decomposition igsleCount x1 x ... x 1, wheredeCount is the number of DEs in a default DELayout, equal to
pet Count . This means that the default decomposition will be into agymaEs as there are PETs, with 1 DE per
PET.

The arguments are:

minindex Global coordinate tuple of the lower corner of the tile.
maxIndex Global coordinate tuple of the upper corner of the tile.

[rc] Return code; equalESM-_SUCCESS if there are no errors.

20.2.2 ESMC_DistGridDestroy - Destroy a DistGrid

INTERFACE:

int ESMC Di st Gri dDestroy(
ESMC DistGid =distgrid /1 inout
)

RETURN VALUE:
Return code; equals ESM-_SUCCESS if there are no errors.
DESCRIPTION:

Destroy arESMC _Di st Gri d object.
The arguments are:

distgrid ESMC_Di st Gri d object to be destroyed.

20.2.3 ESMC_DistGridPrint - Print a DistGrid

INTERFACE:

67

int ESMC Di stGidPrint(

ESMC DistGid distgrid [1 in
);
RETURN VALUE:

Return code; equals ESM-_SUCCESS if there are no errors.
DESCRIPTION:

Print internal information of the specifié€SMC_Di st G'i d object.
The arguments are:

distgrid ESMC _Di st Gri d object to be destroyed.

68

Part V
Infrastructure: Utilities

69

21 Overview of Infrastructure Utility Classes

The ESMF utilities are a set of tools for quickly assemblingd®mling applications.

The Time Management Library provides utilities for time amde interval representation, as well as a higher-level
utility, a clock, that controls model time stepping.

The ESMF Config class provides configuration managementbais®&ASA DAO’s Inpak package, a collection of
methods for accessing files containing input parametersdio an ASCII format.

The ESMF LogErr class consists of a method for writing em@rning, and informational messages to a default Log
file that is created during ESMF initialization.

The ESMF VM (Virtual Machine) class provides methods for iyirgg information about a VM. A VM is a generic
representation of hardware and system software resoufdese is exactly one VM object per ESMF Component,
providing the execution environment for the Component cddes VM class handles all resource management tasks
for the Component class and provides a description of thenlyidg configuration of the compute resources used by
a Component. In addition to resource description and managg the VM class offers the lowest level of ESMF
communication methods.

70

22 Time Manager Utility

The ESMF Time Manager utility includes software for time dimde interval representation, as well as model time
advancement. Since multi-component geophysical apfitabften require synchronization across the time manage-
ment schemes of the individual components, the Time Marsgfandard calendars and consistent time representation
promote component interoperability.

Key Features
Drift-free timekeeping through an integer-based intetimaé representation. Both integers and reals can be
specified at the interface.

Support for many calendar kinds.

Support for both concurrent and sequential modes of comga@xecution.

22.1 Time Manager Classes
There are four ESMF classes that represent time concepts:

e Calendar A Calendar can be used to keep track of the date as an ESMFd@rddmponent advances in time.
Standard calendars (such as Gregorian and 360-day) arerseghp

e Time A Time represents a time instant in a particular calendat st November 28, 1964, at 7:00pm EST in
the Gregorian calendar. The Time class can be used to repthsestart and stop time of a time integration.

e Timelnterval Timelntervals represent a period of time, such as 3 hourse Bteps can be represented using
Timelntervals.

e Clock Clocks collect the parameters and methods used for modeldthwancement into a convenient package.
A Clock can be queried for quantities such as current sinmrddtme and time step. Clock methods include
incrementing the current time, and printing the its corgent

22.2 Calendar

The set of supported calendars includes:

Gregorian The standard Gregorian calendar.

no-leap The Gregorian calendar with no leap years.

Julian The standard Julian date calendar.

Julian Day The standard Julian days calendar.

Modified Julian Day The Modified Julian days calendar.

360-day A 30-day-per-month, 12-month-per-year calendar.

no calendar Tracks only elapsed model time in hours, minutes, seconds.

See Section 231 for more details on supported standamddzate and how to create a customized ESMF Calendar.

22.3 Time Instants and Timelntervals

Timelntervals and Time instants (simply called Times) & ¢omputational building blocks of the Time Manager
utility. Times support different queries for values of midiual Time components such as year and hour. See Sec-
tions[24.1 and_2511, respectively, for use of Times and TinesVals.

71

22.4 Clocks

It is useful to identify a higher-level concept to repeayestep a Time forward by a Timelnterval. We refer to this

capability as a Clock, and include in its required featuhesability to store the start and stop times of a model run,
and to query the value of quantities such as the current timettee number of time steps taken. Applications may
contain temporary or multiple Clocks. Sectlon 26.1 deswitne use of Clocks in detail.

72

23 Calendar Class
23.1 Description

The Calendar class represents the standard calendarsnugedphysical modeling: Gregorian, Julian, Julian Day,
Modified Julian Day, no-leap, 360-day, and no-calendaefRtescriptions are provided for each calendar below.

23.2 Constants
23.2.1 ESMC_CALKIND

DESCRIPTION:

Supported calendar kinds.

The type of this flag is:

t ype(ESM-_Cal Ki nd_Fl ag)
The valid values are:

ESMC_CALKIND_360DAY Valid range: machine limits
In the 360-day calendar, there are 12 months, each of whisl3@alays. Like the no-leap calendar, this is a
simple approximation to the Gregorian calendar sometirsed by modelers.

ESMC_CALKIND_GREGORIAN Valid range: 3/1/4801 BC to 10/29/292,277,019,914
The Gregorian calendar is the calendar currently in usautitrout Western countries. Named after Pope Gre-
gory XIIl, it is a minor correction to the older Julian caledIn the Gregorian calendar every fourth year is a
leap year in which February has 29 and not 28 days; howevars yhvisible by 100 are not leap years unless
they are also divisible by 400. As in the Julian calendarsdaggin at midnight.

ESMC_CALKIND_JULIAN Valid range: 3/1/4713 BC to 4/24/292,271,018,333
The Julian calendar was introduced by Julius Caesar in 46 Brd reached its final form in 4 A.D. The Julian
calendar differs from the Gregorian only in the determiratdf leap years, lacking the correction for years
divisible by 100 and 400 in the Gregorian calendar. In th@dualendar, any year is a leap year if divisible by
4. Days are considered to begin at midnight.

ESMC_CALKIND_JULIANDAY Valid range: +/- 1x10*
Julian days simply enumerate the days and fraction of a daghniave elapsed since the start of the Julian
era, defined as beginning at noon on Monday, 1st January oflyd& B.C. in the Julian calendar. Julian days,
unlike the dates in the Julian and Gregorian calendarsnizgioon.

ESMC_CALKIND_MODJULIANDAY Valid range: +/- 1x104
The Modified Julian Day (MJD) was introduced by space scitstn the late 1950’s. It is defined as an offset
from the Julian Day (JD):

MJD = JD - 2400000.5
The half day is subtracted so that the day starts at midnight.

ESMC_CALKIND_NOCALENDAR Valid range: machine limits
The no-calendar option simply tracks the elapsed modelitinseconds.

ESMC_CALKIND_NOLEAP Valid range: machine limits
The no-leap calendar is the Gregorian calendar with no leapsy- February is always assumed to have 28 days.
Modelers sometimes use this calendar as a simple, closexapation to the Gregorian calendar.

23.3 Class API
23.3.1 ESMC_CalendarCreate - Create a Calendar

INTERFACE:

73

ESMC _Cal endar ESMC_Cal endar Cr eat e(

const char =*nane, /1 in
enum ESMC_Cal Ki nd_Fl ag cal ki ndf | ag, /1 in
int *rc /1 out
)
RETURN VALUE:
Newl y created ESMC Cal endar obj ect.
DESCRIPTION:

Creates and setsESMC_Cal endar object to the given built-ifeSMC_Cal Ki nd_Fl ag.
The arguments are:

[name] The name for the newly created Calendar. If not specifiedNIgLL, a default unique name will be gener-
ated: "CalendarNNN" where NNN is a unique sequence number @01 to 999.

calkindflag The built-inESMC_Cal Ki nd_Fl ag. Valid values are:
ESMC_CALKI ND_360DAY,
ESMC_CALKI ND_GREGORI AN,
ESMC_CALKI ND_JULI AN,
ESMC_CALKI ND_JULI ANDAY,
ESMC_CALKI ND_MODJULI ANDAY,
ESMC_CALKI ND_NOCAL ENDAR,
andESMC_CALKI ND_NOLEAP.
See Sectior_23.2 for a description of each calendar kind.

[rc] Return code; equalBSM-_SUCCESS if there are no errors.

23.3.2 ESMC_CalendarDestroy - Destroy a Calendar

INTERFACE:

i nt ESMC_Cal endar Dest r oy(
ESMC _Cal endar =cal endar /1 inout

);

RETURN VALUE:
Return code; equals ESM-_SUCCESS if there are no errors.
DESCRIPTION:

Releases all resources associated withESSIC Cal endar .
The arguments are:

calendar Destroy contents of thiESMC_Cal endar .

74

23.3.3 ESMC_CalendarPrint - Print a Calendar

INTERFACE:

i nt ESMC_Cal endar Pri nt (
ESMC Cal endar cal endar /1 in

);

RETURN VALUE:
Return code; equals ESM-_SUCCESS if there are no errors.
DESCRIPTION:

Prints out arESMC_Cal endar 's properties test di 0, in support of testing and debugging.
The arguments are:

calendar ESMC_Cal endar object to be printed.

75

24 Time Class
24.1 Description

A Time represents a specific point in time.

There are Time methods defined for setting and getting a Time.

A Time that is specified in hours does not need to be associatgll a standard calendar; use
ESMC_CALKIND_NOCALENDAR. A Time whose specification inaas time units of a year must be associated
with a standard calendar. The ESMF representation of a datethe Calendar class, is described in Sedfion 23.1.
TheESMC_Ti neSet method is used to initialize a Time as well as associate h wi€Calendar. If a Time method is
invoked in which a Calendar is necessary and one has not beghes ESMF method will return an error condition.

In the ESMF the Timelnterval class is used to represent tier@g@s. This class is frequently used in combination
with the Time class. The Clock class, for example, advanaaefrtime by incrementing a Time with a Timelnterval.

24.2 Class API
24.2.1 ESMC_TimeGet - Get a Time value

INTERFACE:

i nt ESMC Ti meGet (
ESMC Tine tine, /1 in
ESMC |4 xyy, /1 out
ESMC | 4 «h, /1 out
ESMC _Cal endar =*cal endar, /1 out
enum ESMC_Cal Ki nd_Fl ag *cal ki ndf I ag, /1 out
int *=tineZone /1 out

);

RETURN VALUE:
Return code; equals ESM-_SUCCESS if there are no errors.

DESCRIPTION:

Gets the value of aBSMC_Ti ne in units specified by the user.
The arguments are:

time ESMC_Ti e object to be queried.

[yyl Integer year (>= 32-bit).

[h] Integer hours.

[calendar] AssociatedESMC_Cal endar .
[calkindflag] AssociatedESMC Cal Ki nd_Fl ag.

24.2.2 ESMC_TimePrint - Print a Time

INTERFACE:

i nt ESMC Ti mePrint (
ESMC Tine time // in
)

76

RETURN VALUE:
Return code; equals ESMF_SUCCESS if there are no errors.
DESCRIPTION:

Prints out arESMC_Ti ne’s properties tast di 0, in support of testing and debugging.
The arguments are:

time ESMC_Ti e object to be printed.

24.2.3 ESMC_TimeSet - Initialize or set a Time

INTERFACE:
i nt ESMC_Ti neSet (
ESMC Tinme *tine, /1 inout
ESMC |4 vyy, /1 in
ESMC 14 h, /1 in
ESMC _Cal endar cal endar, /1 in
enum ESMC_Cal Ki nd_Fl ag cal ki ndf | ag, /1 in
int timeZone /1 in
)
RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.
DESCRIPTION:

Initializes anESMC_Ti e with a set of user-specified units.
The arguments are:

time ESMC_Ti e object to initialize or set.
yy Integer year (>= 32-bit).
h Integer hours.

calendar AssociatedESMC_Cal endar . If not created, defaults to calenda8MC _CALKI ND_NOCALENDAR or
default specified ieSMC_| ni ti al i ze() . If created, has precedence over calkindflag below.

calkindflag Specifies associatde€SMC_Cal endar if calendar argument above not created. More convenient way
of specifying a built-in calendar kind.

77

25 Timelnterval Class

25.1 Description

A Timelnterval represents a period between time instahtsar be either positive or negative.

There are Timelnterval methods defined for setting andrgge#tiTimelnterval, for printing the contents of a Timeln-
terval.

The class used to represent time instants in ESMF is Timethasdlass is frequently used in operations along with
Timelntervals. The Clock class, for example, advances frtode by incrementing a Time with a Timelnterval.
Timelntervals are used by other parts of the ESMF timekegpjistem, such as Clocks; see Sedfion]26.1.

25.2 Class API
25.2.1 ESMC_TimelntervalGet - Get a Timelnterval value

INTERFACE:
i nt ESMC_Ti nel nt erval Get (
ESMC Tinel nterval tineinterval, [l in
ESMC I8 *s_i 8, /1 out
ESMC R8 *h r8 /1 out
)
RETURN VALUE:
Return code; equals ESMF_SUCCESS if there are no errors.
DESCRIPTION:

Gets the value of aBSMC_Ti nel nt eval in units specified by the user.
The arguments are:

timeinterval ESMC_Ti el nt er val object to be queried.
[s_i8] Integer seconds (large, >= 64-bit).

[h_r8] Double precision hours.

25.2.2 ESMC_TimelntervalPrint - Print a Timelnterval

INTERFACE:
i nt ESMC Ti nmel nterval Print(
ESMC Ti nel nterval tineinterval [l in
);
RETURN VALUE:
Return code; equals ESM-_SUCCESS if there are no errors.
DESCRIPTION:

Prints out arESMC_Ti nel nt er val 's properties tst di 0, in support of testing and debugging.
The arguments are:

timeinterval ESMC_Ti nel nt er val object to be printed.

78

25.2.3 ESMC_TimelntervalSet - Initialize or set a Timelnteval

INTERFACE:
i nt ESMC_Ti nel nt erval Set (
ESMC Tinelnterval =*tinmeinterval, /1 inout
ESMC 14 h /1 in
);
RETURN VALUE:

Return code; equals ESM-_SUCCESS if there are no errors.
DESCRIPTION:

Sets the value of thESMC_Ti nel nt er val in units specified by the user.
The arguments are:

timeinterval ESMC_Ti nel nt er val object to initialize or set.

h Integer hours.

79

26 Clock Class
26.1 Description

The Clock class advances model time and tracks its assdaate on a specified Calendar. It stores start time, stop
time, current time, and a time step.

There are methods for setting and getting the Times assdowgth a Clock. Methods are defined for advancing the
Clock’s current time and printing a Clock’s contents.

26.2 Class API

26.2.1 ESMC_ClockAdvance - Advance a Clock’s current time Y one time step

INTERFACE:

i nt ESMC O ockAdvance(
ESMC _C ock cl ock /1 in

) ’
RETURN VALUE:

Return code; equals ESM-_SUCCESS if there are no errors.
DESCRIPTION:

Advances th&SMC _C ock’s current time by one time step.
The arguments are:

clock ESMC_Cl ock object to be advanced.

26.2.2 ESMC_ClockCreate - Create a Clock

INTERFACE:
ESMC C ock ESMC C ockCr eat g(
const char =*nane, /1 in
ESMC Ti el nterval tinmeStep, /1 in
ESMC Tinme startTine, /1 in
ESMC Ti nme stopTi ne, /1 in
int *rc /1 out
)
RETURN VALUE:

Newl y created ESMC O ock object.
DESCRIPTION:

Creates and sets the initial values in a iE8MC_Cl ock object.
The arguments are:

[name] The name for the newly created Clock. If not specified, i.e LNLa default unique name will be generated:
"ClockNNN" where NNN is a unique sequence number from 0019®. 9

80

timeStep TheESMC_C ock’s time step interval, which can be positive or negative.

startTime TheESMC _C ock’s starting time. Can be less than or or greater than stopTdey@ending on a positive
or negative timeStep, respectively, and whether a stopErspecified; see below.

stopTime TheESMC_Cl ock’s stopping time. Can be greater than or less than the staetTdepending on a positive
or negative timeStep, respectively.

[rc] Return code; equalESM-_SUCCESS if there are no errors.

26.2.3 ESMC_ClockDestroy - Destroy a Clock

INTERFACE:

i nt ESMC C ockDestroy(
ESMC d ock =*cl ock /1 inout

);

RETURN VALUE:
Return code; equals ESMF_SUCCESS if there are no errors.
DESCRIPTION:

Releases all resources associated withESSC Cl ock.
The arguments are:

clock Destroy contents of thiESMC _C ock.

26.2.4 ESMC_ClockGet - Get a Clock’s properties

INTERFACE:
int ESMC d ockGet (
ESMC d ock cl ock, /[l in
ESMC Ti nel nterval =*currSinili ne, /1 out
ESMC | 8 *advanceCount /1 out
);
RETURN VALUE:
Return code; equals ESMF_SUCCESS if there are no errors.
DESCRIPTION:

Gets one or more of the properties of BBMC_Cl ocKk.
The arguments are:

clock ESMC_Cl ock object to be queried.
[currSimTime] The current simulation time.

[advanceCount] The number of times thESMC_Cl ock has been advanced.

81

26.2.5 ESMC_ClockPrint - Print the contents of a Clock

INTERFACE:

int ESMC _d ockPri nt (
ESMC _d ock cl ock /1 in

)

RETURN VALUE:
Return code; equals ESM-_SUCCESS if there are no errors.
DESCRIPTION:

Prints out arESMC_Cl ock'’s properties tast di 0, in support of testing and debugging.
The arguments are:

clock ESMC_Cl ock object to be printed.

27 Config Class

27.1 Description

ESMF Configuration Management is based on NASA DAO’s Inpakp@6kage, a Fortran 90 collection of rou-
tines/functions for accessirResource Filegn ASCII format. The package is optimized for minimizing fieatted 1/0,
performing all of its string operations in memory using Fantintrinsic functions.

27.1.1 Package history

The ESMF Configuration Management Package was evolved hyid &@aslavsky and Arlindo da Silva from Ipack90
package created by Arlindo da Silva at NASA DAO.

Back in the 70’s Eli Isaacson wrote IOPACK in Fortran 66. Indwf 1987 Arlindo da Silva wrote Inpak77 using For-
tran 77 string functions; Inpak 77 is a vastly simplified G but has its own goodies not found in IOPACK. Inpak
90 removes some obsolete functionality in Inpak77, andgsatse whole resource file in memory for performance.

27.2 Class API
27.2.1 ESMC_ConfigCreate - Create a Config object

INTERFACE:
ESMC Confi g ESMC Confi gCreat e(
intx rc /1 out
)
RETURN VALUE:
ESMC Config* to newy allocated ESMC Config
DESCRIPTION:

Creates aeSMC_Conf i g for use in subsequent calls.
The arguments are:

[rc] Return code; equalBSM-_SUCCESS if there are no errors.

82

27.2.2 ESMC_ConfigDestroy - Destroy a Config object

INTERFACE:
i nt ESMC Confi gDestroy(
).ESI\/C_Config* config /1 in
RETURN VALUE:
Return code; equals ESM-_SUCCESS if there are no errors.
DESCRIPTION:

Destroys theonf i g object.
The arguments are:

config Already createdeSMC_Conf i g object to destroy.

27.2.3 ESMC_ConfigFindLabel - Find a label

INTERFACE:
i nt ESMC _Confi gFi ndLabel (
ESMC Config confi g, /1 in
const char=* | abel /1l in
)
RETURN VALUE:

Return code; equals ESM-_SUCCESS if there are no errors.
Equals -1 if buffer could not be |oaded, -2 if |abel not found,
and -3 if invalid operation with index.

DESCRIPTION:

Finds thd abel (key)intheconfi g file.

Since the search is done by looking for a word in the wholeussfile, it is important to use special conventions to
distinguish labels from other words in the resource filese WO convention is to finish line labels by : and table

labels by ::.
The arguments are:

config Already createdeSMC_Conf i g object.
label Identifying label.

27.2.4 ESMC_ConfigGetDim - Get table sizes

INTERFACE:
i nt ESMC Confi gGet Di m(
ESMC Config confi g, /1 in
int+ |ineCount, /1 out
i nt+ col umCount, /1 out
- /1 optional argunent I|ist
)

83

RETURN VALUE:
Return code; equals ESMF_SUCCESS if there are no errors.
DESCRIPTION:

Returns the number of lines in the tablelinneCount and the maximum number of words in a table line in
col umCount .
The arguments are:

config Already createdeSMC_Conf i g object.

lineCount Returned number of lines in the table.

columnCount Returned maximum number of words in a table line.

[label] Identifying label (optional).

Due to this method accepting optional arguments, the figalraent must b&ESMC_Ar gLast .

27.2.5 ESMC_ConfigGetLen - Get the length of the line in words

INTERFACE:
i nt ESMC Confi gGet Len(
ESMC Config confi g, /1 in
i nt* wordCount, /1 out
/1 optional argunent |i st
)
RETURN VALUE:
Return code; equals ESMF_SUCCESS if there are no errors.
DESCRIPTION:

Gets the length of the line in words by counting words disréimg types. Returns the word count as an integer.
The arguments are:

config Already createdeSMC_Conf i g object.
wordCount Returned number of words in the line.
[label] Identifying label. If not specified, use the current linetjopal).

Due to this method accepting optional arguments, the figalraent must b&ESMC_Ar gLast .

27.2.6 ESMC_ConfigLoadFile - Load resource file into memory

INTERFACE:
i nt ESMC Confi gLoadFil e(
ESMC Config confi g, /1 in
const char* file, /1 in

/1 optional argunent |i st

.

84

RETURN VALUE:
Return code; equals ESM-_SUCCESS if there are no errors.
DESCRIPTION:

Resource file with i | enane is loaded into memory.
The arguments are:

config Already createdeSMC_Conf i g object.
file Configuration file name.

[delayout] ESMC_DELayout associated with thisonf i g object. **NOTE: This argument is not currently sup-
ported.

[unique] If specified as true, uniqueness of labels are checked aodcerde set if duplicates found (optional).

Due to this method accepting optional arguments, the figalraent must b&ESMC_Ar gLast .

27.2.7 ESMC_ConfigNextLine - Find next line

INTERFACE:
i nt ESMC _Confi gNext Li ne(
ESMC Config confi g, /1 in
int +tabl eEnd /'l out
)
RETURN VALUE:

Return code; equals ESM-_SUCCESS if there are no errors.
DESCRIPTION:

Selects the next line (for tables).
The arguments are:

config Already createdeSMC_Conf i g object.
[tableEnd] End of table mark (::) found flag. Returns 1 when found, and émwot found.

27.2.8 ESMC_ConfigValidate - Validate a Config object

INTERFACE:
i nt ESMC Confi gVal i dat e(
ESMC Config confi g, [l in
/1 optional argunent li st
)
RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.
Equal s ESM-_RC ATTR UNUSED i f any unused attributes are found
with option "unusedAttributes" bel ow.

85

DESCRIPTION:

Checks whether aonf i g object is valid.
The arguments are:

config Already createdeSMC_Conf i g object.

[options] If none specified: simply check that the buffer is not full atiee pointers are within range (op-
tional). "unusedAttributes" - Report to the default logfigdl attributes not retrieved via a call to
ESMC ConfigGet Attribute() or ESMC Confi gGet Char (). The attribute name (label) will be
logged viaESMC_LogEr r with the WARNING log message type. For an array-valuedlaitd, retrieving
at least one value viBSMC_Confi gGet Attri but e() or ESMC_Conf i gGet Char () constitutes being
"used."

Due to this method accepting optional arguments, the figalraent must b&ESMC_Ar gLast .

28 Log Class
28.1 Description

The Log class consists of a variety of methods for writingperwarning, and informational messages to files. A
default Log is created at ESMF initialization.

When ESMF is started witleSMC | ni ti al i ze(), multiple Log files will be created by PET number. The
PET number (in the formaPETx.) will be prepended to each file name where x is the PET numbdre T
ESMC LogWite() call is used to issue messages to the log. As part of the caflessage can be tagged as
either an informational, warning, or error message.

The messages may be buffered within ESMF before appearthg log. All messages will be properly flushed to the
log files whenESMC_Fi nal i ze() is called.

28.2 Class API
28.2.1 ESMC_LogWrite - Write an entry into the Log file

INTERFACE:
int ESMC LogWite(
const char nsg[], // in

int negtype /1 in
)

RETURN VALUE:
Return code; equals ESM-_SUCCESS if there are no errors.
DESCRIPTION:

Write an entry into the Log file.
The arguments are:

msg The message to be written.

msgtype The message type. Can be one of ESMC_LOG_INFO,ESMC_LOG NWR, or ESMF_LOG_ERROR.

86

29 VM Class
29.1 Description

The ESMF VM (Virtual Machine) class is a generic represeotedf hardware and system software resources. There
is exactly one VM object per ESMF Component, providing theceion environment for the Component code. The
VM class handles all resource management tasks for the Quampolass and provides a description of the underlying
configuration of the compute resources used by a Component.

In addition to resource description and management, the VAgsmffers the lowest level of ESMF communication
methods. The VM communication calls are very similar to MP4ta references in VM communication calls must
be provided as raw, language specific, one-dimensionatigraus data arrays. The similarity between VM and
MPI communication calls is striking and there are many egfeint point-to-point and collective communication calls.
However, unlike MPI, the VM communication calls support comnication between threaded PETs in a completely
transparent fashion.

Many ESMF applications do not interact with the VM class dilyvery much. The resource management aspect
is wrapped completely transparent into the ESMF Componamtept. Often the only reason that user code queries
a Component object for the associated VM object is to inqaireut resource information, such as thecal Pet

or thepet Count . Further, for most applications the use of higher level camitation APIs, such as provided by
Array and Field, are much more convenient than using the éowllVM communication calls.

The basic elements of a VM are called PETs, which stands ficig®ent Execution Threads. These are equivalent to
OS threads with a lifetime of at least that of the associatedponent. All VM functionality is expressed in terms of
PETs. In the simplest, and most common case, a PET is equitalan MPI process. However, ESMF also supports
multi-threading, where multiple PETs run as Pthreads antie¢ same virtual address space (VAS).

29.2 Class API
29.2.1 ESMC_VMGet - Get VM internals

INTERFACE:
int ESMC_VMGet (
ESMC VM vim /1l in
int x| ocal Pet, /1 out
i nt xpet Count, /1 out
i nt *peCount, /1 out
MPI _Conmm = npi Comuni cat or, /1 out
i nt *pt hreadsEnabl edFl ag, /1 out
i nt *openMPEnabl edFl ag /1 out
)
RETURN VALUE:

Return code; equals ESM-_SUCCESS if there are no errors.
DESCRIPTION:

Get internal information about the specifiE8MC_VMobject.
The arguments are:

vm QueriedESMC_VMaobject.

[localPet] Upon return this holds the id of the PET that issued this call.

[petCount] Upon return this holds the number of PETs in the specE8MC_VMobject.
[peCount] Upon return this holds the number of PEs referenced by thefigbESMC VMobject.

87

[mpiCommunicator] Upon return this holds the MPI intra-communicator used k& ghecifiedESMC_VMobject.
This communicator may be used for user-level MPI commuidnat It is recommended that the user duplicates
the communicator vid/Pl _Conm Dup() in order to prevent any interference with ESMF communicetio

[pthreadsEnabledFlag] A return value of '1’ indicates that the ESMF library was cdleg@ with Pthreads enabled.
A return value of '0’ indicates that Pthreads are disablethénESMF library.

[openMPEnabledFlag] A return value of '1’ indicates that the ESMF library was cdlag with OpenMP enabled.
A return value of '0’ indicates that OpenMP is disabled in Ef&MF library.

[rc] Return code; equalESM-_SUCCESS if there are no errors.

29.2.2 ESMC_VMGetCurrent - Get current VM

INTERFACE:
ESMC_VM ESMC_VMGet Cur r ent (
int *rc /1 out
)
RETURN VALUE:

VM obj ect of the current execution context.

DESCRIPTION:

Get the ESMC_VM object of the current execution context. CalliflgsSMC VMGet Current () within an
ESMF Component, will return the same VM object BSMC Gri dConpGet (..., vmevm ...) or
ESMC Cpl ConpGet (..., vhrvm ...).

The main purpose of providingSMC_VMGet Cur r ent () is to simplify ESMF adoption in legacy code. Specifi-
cally, code that usesPl _COVM WORLD deep within its calling tree can easily be modified to use tireect MPI
communicator of the current ESMF execution context. Theaathge is that these modifications are very local, and
do not require wide reaching interface changes in the legadg to pass down the ESMF component object, or the
MPI communicator.

The use oESMC_VMCet Cur r ent () is strongly discouraged in newly written Component codstdad, the ESMF
Component object should be used as the appropriate contdiEESMF context information. This object should be
passed between the subroutines of a Component, and bedjfeagraamy Component specific information.

Outside of a Component context, i.e. within the driver catéhe call toESMC_VMzEet Cur r ent () is identical to
ESMC _VMGet d obal ().

The arguments are:

[rc] Return code; equalESM-_SUCCESS if there are no errors.

29.2.3 ESMC_VMGetGlobal - Get global VM
INTERFACE:
ESMC_VM ESMC_VMzet d obal (
int xrc /1 out
)

RETURN VALUE:

88

VM obj ect of the gl obal execution context.

DESCRIPTION:

Get the globalESMC VM object. This is the VM object that is created duriB§MC I nitiali ze() and is
the ultimate parent of all VM objects in an ESMF applicatioft is identical to the VM object returned by
ESMC Initialize(..., vhevm ...).

The ESMC_VMZet d obal () call provides access to information about the global exenuwtontext via the global
VM. This call is necessary because ESMF does not create ald#&@MF Component duringSMC | niti al i ze()
that could be queried for information about the global execucontext of an ESMF application.

Usage ofESMC_VMGet G obal () from within Component code is strongly discouraged. ESMRn@onents
should only access their own VM objects through Componerthatls. Global information, if required by the
Component user code, should be passed down to the Compeoentie driver through the Component calling
interface.

The arguments are:

[rc] Return code; equalBSM-_SUCCESS if there are no errors.

29.2.4 ESMC_VMPrint - Printa VM

INTERFACE:

i nt ESMC VMPri nt (
ESMC VM vm /1 in

);
RETURN VALUE:
Return code; equals ESM-_SUCCESS if there are no errors.
DESCRIPTION:

Print internal information of the specifié€SMC_VMobject.
The arguments are:

vm ESMC _VMobiject to be printed.

89

Part VI
References

References

[1] Khoei S.A. Gharehbaghi A, R. The superconvergent pagciovery technique and data transfer operators in 3d
plasticity problemsFinite Elements in Analysis and DesigtB(8), 2007.

[2] K.C. Hung H. Gu, Z. Zong. A modified superconvergent patebovery method and its application to large
deformation problemdrinite Elements in Analysis and Desigtd(5-6), 2004.

[3] Jones, P.W. SCRIP: A Spherical Coordinate Remapping aihderpolation Package.
http://www.acl.lanl.gov/climate/software/SCRIP/. Lé#¢amos National Laboratory Software Release LACC
98-45.

[4] D. Ramshaw. Conservative rezoning algorithm for geliezd two-dimensional mesheslournal of Computa-
tional Physics59, 1985.

[5] Rumbaugh, J., I. Jacobson, and G. Boo€the Unified Modeling Language Reference Mandaldison-Wesley,
1999.

90

Part VII
Appendices

30 Appendix A: A Brief Introduction to UML

The schematic below shows the Unified Modeling Language (YUMitation for the class diagrams presented in this
Reference ManualFor more on UML, see references suchTée Unified Modeling Language Reference Manual
Rumbaugh et al[]5].

Public class. This is a class whose methods can be called by the user. In Fortran
ClassA) .

a public class is usually associated with a derived type and a corresponding

module that contains class methods and flags.

Private class. This type of class does not have methods that should be called by
ClassB the user. Like a public class it is usually associated with a derived type and a

corresponding module.

A line indicates some sort of association among classes.

A hollow diamond at one end of a line drawn between classes represents an
association called aggregation. Aggregation is a part-whole relationship that can

S be read as “the class at the end of the line without the diamond is part of the class
at the end of the line with the diamond.” The class that is the “part” can be
created and destroyed separately, and it is usually implemented as a reference
contained with the structure of the class that is the “whole.”

A filled diamond at one end of a line drawn between classes represents an
association called composition. Composition is a part-whole relationship that is

o—— similar to aggregation, but stronger. It implies that that class that is the “part” is
created and destroyed by the class that is the “whole.” It is often implemented as
a structure within part of the contiguous memory of a larger structure.

1 1.n Multiplicity indicators at association line ends show how many classes on the one
end are associated with how many classes on the other end.

Comp

The triangle indicates an inheritance relationship. Inheritance means that a child
i|k class shares a set of characteristics (such as the same attributes or methods) with a
parent class. The child can specialize and extend the behavior of the parent. This

GridComp diagram shows a GridComp class that inherits from a more general Comp class.

This simple diagram shows that a public class called Field is associated with
another public class, called Grid. The aggregation relationship indicated by the
unfilled diamond means that a Field contains a Grid, but that a Grid can be
created and destroyed outside of a Field. The diagram multiplicities show that a
Field can be associated with no Grid or with one Grid, but that a single Grid can
be associated with any number of Fields.

91

31 Appendix B: ESMF Error Return Codes

The tables below show the possible error return codes fdrdroand C methods.

ESMF_SUCCESS 0
ESMF_RC_OBJ_BAD 1
ESMF_RC OBJ_INIT 2
ESMF_RC_OBJ_CREATE 3
ESMF_RC_OBJ_COR 4
ESMF_RC_OBJ_WRONG 5
ESMF_RC_ARG_BAD 6
ESMF_RC_ARG_RANK 7
ESMF_RC_ARG S| ZE 8
ESMF_RC_ARG_VALUE 9

ESMF_RC_ARG_DUP 10
ESMF_RC_ARG_SAMETYPE 11
ESMF_RC_ARG_SAMECOWM 12
ESMF_RC_ARG_| NCOVP 13
ESMF_RC_ARG_CORRUPT 14
ESMF_RC_ARG_WRONG 15
ESMF_RC_ARG OUTOFRANGE 16
ESMF_RC_ARG_OPT 17
ESMF_RC_NOT_I MPL 18
ESMF_RC_FI LE_OPEN 19
ESMF_RC_FI LE_CREATE 20
ESMF_RC_FI LE_READ 21
ESMF_RC_FI LE_WRI TE 22
ESMF_RC_FI LE_UNEXPECTED 23
ESMF_RC_FI LE_CLOSE 24
ESMF_RC_FI LE_ACTI VE 25
ESMF_RC_PTR_NULL 26
ESMF_RC_PTR_BAD 27
ESMF_RC_PTR_NOTALLOC 28
ESMF_RC_PTR_| SALLOC 29
ESMF_RC_MEM 30
ESMF_RC_MEM ALLOCATE 31
ESMF_RC_MEM DEALLOCATE 32
ESMF_RC_MEMC 33
ESMF_RC_DUP_NAME 34
ESMF_RC_LONG_NAVE 35
ESMF_RC_LONG_STR 36
ESMF_RC_COPY_FAI L 37
ESMF_RC DI V_ZERO 38
ESMF_RC_CANNOT_GET 39
ESMF_RC_CANNOT_SET 40
ESMF_RC_NOT_FOUND 41
ESMF_RC_NOT_VALI D 42
ESMF_RC_| NTNRL_LI ST 43
ESMF_RC_| NTNRL_| NCONS 44
ESMF_RC_| NTNRL_BAD 45
ESMF_RC_SYS 46

92

ESMF_RC_BUSY 47

ESMF_RC LI B 48
ESMF_RC LI B_NOT_PRESENT 49
ESMF_RC_ATTR_UNUSED 50
ESMF_RC_OBJ_NOT_CREATED 51
ESMF_RC_OBJ_DELETED 52
ESMF_RC_NOT_SET 53
ESMF_RC_VAL_WRONG 54
ESMF_RC_VAL_ERRBOUND 55
ESMF_RC _VAL_OUTOFRANGE 56
ESMF_RC_ATTR_NOTSET 57
ESMF_RC_ATTR WRONGTYPE 58
ESMF_RC_ATTR_| TEMSOFF 59
ESMF_RC_ATTR_LI NK 60
ESMF_RC_BUFFER_SHORT 61

62-499 reserved for future Fortran symetric return code definitions

ESMC_RC_OBJ_BAD 501
ESMC RC OBJ_INIT 502
ESMC_RC_OBJ_CREATE 503
ESMC_RC_OBJ_COR 504
ESMC_RC_OBJ_WRONG 505
ESMC_RC_ARG_BAD 506
ESMC_RC_ARG_RANK 507
ESMC_RC_ARG S| ZE 508
ESMC_RC_ARG_VALUE 509
ESMC_RC_ARG_DUP 510
ESMC_RC_ARG_SAMETYPE 511
ESMC_RC_ARG_SAMECOWM 512
ESMC_RC_ARG_| NCOVP 513
ESMC_RC_ARG_CORRUPT 514
ESMC_RC_ARG_WRONG 515
ESMC_RC_ARG OUTOFRANGE 516
ESMC_RC_ARG_OPT 517
ESMC_RC_NOT_I MPL 518
ESMC_RC_FI LE_OPEN 519
ESMC_RC_FI LE_CREATE 520
ESMC_RC_FI LE_READ 521
ESMC_RC_FI LE_WRI TE 522
ESMC_RC_FI LE_UNEXPECTED 523
ESMC_RC_FI LE_CLOSE 524
ESMC_RC_FI LE_ACTI VE 525
ESMC_RC_PTR_NULL 526
ESMC_RC_PTR_BAD 527
ESMC_RC_PTR_NOTALLOC 528
ESMC_RC_PTR_| SALLOC 529
ESMC_RC_MEM 530
ESMC_RC_MEM ALLOCATE 531
ESMC_RC_MEM DEALLOCATE 532
ESMC_RC_MEMC 533

93

ESMC_RC_DUP_NAME 534

ESMC_RC_LONG_NAVE 535
ESMC_RC_LONG_STR 536
ESMC_RC_COPY_FAI L 537
ESMC_RC DI V_ZERO 538
ESMC_RC_CANNOT_GET 539
ESMC_RC_CANNOT_SET 540
ESMC_RC_NOT_FOUND 541
ESMC_RC_NOT_VALI D 542
ESMC_RC_| NTNRL_LI ST 543
ESMC_RC_I NTNRL_I NCONS 544
ESMC_RC_| NTNRL_BAD 545
ESMC_RC_SYS 546
ESMC_RC_BUSY 547
ESMC_RC LI B 548
ESMC_RC LI B_NOT_PRESENT 549
ESMC_RC_ATTR_UNUSED 550
ESMC_RC_OBJ_NOT_CREATED 551
ESMC_RC_OBJ_DELETED 552
ESMC_RC_NOT_SET 553
ESMC_RC_VAL_WRONG 554
ESMC_RC_VAL_ERRBOUND 555
ESMC_RC_VAL_OUTOFRANGE 556
ESMC_RC_ATTR_NOTSET 557

ESMC_RC_ATTR_WRONGTYPE 558
ESMC_RC_ATTR_| TEMSOFF 559
ESMC_RC_ATTR_LI NK 560
ESMC_RC_BUFFER_SHORT 561

562-999 reserved for future C/ C++ symretric return code definitions

94

	I ESMF Overview
	What is the Earth System Modeling Framework?
	The ESMF Reference Manual for C
	How to Contact User Support and Find Additional Information
	How to Submit Comments, Bug Reports, and Feature Requests
	The ESMF Application Programming Interface
	Standard Methods and Interface Rules
	Deep and Shallow Classes
	Special Methods
	The ESMF Data Hierarchy
	ESMF Spatial Classes
	ESMF Maps
	ESMF Specification Classes
	ESMF Utility Classes

	Overall Rules and Behavior
	Local and Global Views and Associated Conventions
	Allocation Rules
	Assignment, Equality, Copying and Comparing Objects

	Integrating ESMF into Applications
	Using the ESMF Superstructure

	II Applications
	ESMF_Info
	Description

	ESMF_RegridWeightGen
	Description
	Usage
	Examples
	SCRIP Grid File Format
	Regrid Interpolation Weight File Format

	III Superstructure
	Overview of Superstructure
	Superstructure Classes
	Hierarchical Creation of Components
	Sequential and Concurrent Execution of Components
	Intra-Component Communication
	Data Distribution and Scoping in Components
	Performance
	Object Model

	Application Driver and Required ESMF Methods
	Description
	Required ESMF Methods
	ESMC_Initialize
	ESMC_Finalize

	GridComp Class
	Description
	Class API
	ESMC_GridCompCreate
	ESMC_GridCompDestroy
	ESMC_GridCompFinalize
	ESMC_GridCompGetInternalState
	ESMC_GridCompInitialize
	ESMC_GridCompPrint
	ESMC_GridCompRun
	ESMC_GridCompSetEntryPoint
	ESMC_GridCompSetInternalState
	ESMC_GridCompSetServices

	CplComp Class
	Description
	Class API
	ESMC_CplCompCreate
	ESMC_CplCompDestroy
	ESMC_CplCompFinalize
	ESMC_CplCompGetInternalState
	ESMC_CplCompInitialize
	ESMC_CplCompPrint
	ESMC_CplCompRun
	ESMC_CplCompSetEntryPoint
	ESMC_CplCompSetInternalState
	ESMC_CplCompSetServices

	State Class
	Description
	Restrictions and Future Work
	Class API
	ESMC_StateAddArray
	ESMC_StateAddField
	ESMC_StateCreate
	ESMC_StateDestroy
	ESMC_StateGetArray
	ESMC_StateGetField
	ESMC_StatePrint

	IV Infrastructure: Fields and Grids
	Overview of Infrastructure Data Handling
	Infrastructure Data Classes
	Design and Implementation Notes

	Field Class
	Description
	Field create and destroy

	Class API
	ESMC_FieldCreate
	ESMC_FieldDestroy
	ESMC_FieldGetArray
	ESMC_FieldGetMesh
	ESMC_FieldGetPtr
	ESMC_FieldPrint

	Array Class
	Description
	Class API
	ESMC_ArrayCreate
	ESMC_ArrayDestroy
	ESMC_ArrayGetName
	ESMC_ArrayGetPtr
	ESMC_ArrayPrint

	ArraySpec Class
	Description
	Class API
	ESMC_ArraySpecGet
	ESMC_ArraySpecSet

	Mesh Class
	Description
	Mesh Representation in ESMF
	Supported Meshes

	Constants
	ESMC_MESHELEMTYPE

	Class API
	ESMC_MeshAddElements
	ESMC_MeshAddNodes
	ESMC_MeshCreate
	ESMC_MeshDestroy
	ESMC_MeshFreeMemory
	ESMC_MeshGetLocalElementCount
	ESMC_MeshGetLocalNodeCount

	DistGrid Class
	Description
	Class API
	ESMC_DistGridCreate
	ESMC_DistGridDestroy
	ESMC_DistGridPrint

	V Infrastructure: Utilities
	Overview of Infrastructure Utility Classes
	Time Manager Utility
	Time Manager Classes
	Calendar
	Time Instants and TimeIntervals
	Clocks

	Calendar Class
	Description
	Constants
	ESMC_CALKIND

	Class API
	ESMC_CalendarCreate
	ESMC_CalendarDestroy
	ESMC_CalendarPrint

	Time Class
	Description
	Class API
	ESMC_TimeGet
	ESMC_TimePrint
	ESMC_TimeSet

	TimeInterval Class
	Description
	Class API
	ESMC_TimeIntervalGet
	ESMC_TimeIntervalPrint
	ESMC_TimeIntervalSet

	Clock Class
	Description
	Class API
	ESMC_ClockAdvance
	ESMC_ClockCreate
	ESMC_ClockDestroy
	ESMC_ClockGet
	ESMC_ClockPrint

	Config Class
	Description
	Package history

	Class API
	ESMC_ConfigCreate
	ESMC_ConfigDestroy
	ESMC_ConfigFindLabel
	ESMC_ConfigGetDim
	ESMC_ConfigGetLen
	ESMC_ConfigLoadFile
	ESMC_ConfigNextLine
	ESMC_ConfigValidate

	Log Class
	Description
	Class API
	ESMC_LogWrite

	VM Class
	Description
	Class API
	ESMC_VMGet
	ESMC_VMGetCurrent
	ESMC_VMGetGlobal
	ESMC_VMPrint

	VI References
	VII Appendices
	Appendix A: A Brief Introduction to UML
	Appendix B: ESMF Error Return Codes

