
Earth System Modeling Framework

ESMF Reference Manual for C

Version 5.2

ESMF Joint Specification Team: V. Balaji, Byron Boville, Samson Cheung, Tom Clune, Nancy
Collins, Tony Craig, Carlos Cruz, Arlindo da Silva, CeceliaDeLuca, Rosalinda de Fainchtein,
Brian Eaton, Bob Hallberg, Tom Henderson, Chris Hill, Mark Iredell, Rob Jacob, Phil Jones,
Erik Kluzek, Brian Kauffman, Jay Larson, Peggy Li, Fei Liu, John Michalakes, Sylvia Murphy,

David Neckels, Ryan O Kuinghttons, Bob Oehmke, Chuck Panaccione, Jim Rosinski, Will Sawyer,
Earl Schwab, Shepard Smithline, Walter Spector, Don Stark,Max Suarez, Spencer Swift, Gerhard

Theurich, Atanas Trayanov, Silverio Vasquez, Jon Wolfe, Weiyu Yang, Mike Young, Leonid
Zaslavsky

April 10, 2012

http://www.earthsystemmodeling.org

Acknowledgements

The ESMF software is based on the contributions of a broad community. Below are the software packages that
are included in ESMF or strongly influenced our design. We’d like to express our gratitude to the developers of these
codes for access to their software as well as their ideas and advice.

• Parallel I/O (PIO) developers at NCAR and DOE Laboratories for their excellent work on this package and their
help in making it work with ESMF

• The Spherical Coordinate Remapping and Interpolation Package (SCRIP) from Los Alamos, which informed
the design of our regridding functionality

• The Model Coupling Toolkit (MCT) from Argonne National Laboratory, on which we based our sparse matrix
multiply approach to general regridding

• The Inpack configuration attributes package from NASA Goddard, which was adapted for use in ESMF by
members of NASA Global Modeling and Assimilation group

• The Flexible Modeling System (FMS) package from GFDL and theGoddard Earth Modeling System (GEMS)
from NASA Goddard, both of which provided inspiration for the overall ESMF architecture

• The Common Component Architecture (CCA) effort within the Department of Energy, from which we drew
many ideas about how to design components

• The Vector Signal Image Processing Library (VSIPL) and its predecessors, which informed many aspects of our
design, and the radar system software design group at Lincoln Laboratory

• The Portable, Extensible Toolkit for Scientific Computation (PETSc) package from Argonne National Labora-
tories, on which we based our initial makefile system

• The Community Climate System Model (CCSM) and Weather Research and Forecasting (WRF) modeling
groups at NCAR, who have provided valuable feedback on the design and implementation of the framework

1

Contents

I ESMF Overview 7

1 What is the Earth System Modeling Framework? 8

2 The ESMF Reference Manual for C 8

3 How to Contact User Support and Find Additional Informatio n 9

4 How to Submit Comments, Bug Reports, and Feature Requests 9

5 The ESMF Application Programming Interface 10
5.1 Standard Methods and Interface Rules 10
5.2 Deep and Shallow Classes 10
5.3 Special Methods 11
5.4 The ESMF Data Hierarchy 11
5.5 ESMF Spatial Classes 12
5.6 ESMF Maps 12
5.7 ESMF Specification Classes 12
5.8 ESMF Utility Classes 13

6 Overall Rules and Behavior 13
6.1 Local and Global Views and Associated Conventions 13
6.2 Allocation Rules 13
6.3 Assignment, Equality, Copying and Comparing Objects . .. 13

7 Integrating ESMF into Applications 14
7.1 Using the ESMF Superstructure 14

II Applications 16

8 ESMF_Info 16
8.1 Description 16

9 ESMF_RegridWeightGen 16
9.1 Description 16
9.2 Usage 18
9.3 Examples 21
9.4 SCRIP Grid File Format 21
9.5 Regrid Interpolation Weight File Format 22

III Superstructure 24

10 Overview of Superstructure 25
10.1 Superstructure Classes 25
10.2 Hierarchical Creation of Components 26
10.3 Sequential and Concurrent Execution of Components 28
10.4 Intra-Component Communication 28
10.5 Data Distribution and Scoping in Components 28

2

10.6 Performance 28
10.7 Object Model 32

11 Application Driver and Required ESMF Methods 32
11.1 Description 32
11.2 Required ESMF Methods 33

11.2.1 ESMC_Initialize 33
11.2.2 ESMC_Finalize 34

12 GridComp Class 34
12.1 Description 34
12.2 Class API 35

12.2.1 ESMC_GridCompCreate 35
12.2.2 ESMC_GridCompDestroy 35
12.2.3 ESMC_GridCompFinalize 36
12.2.4 ESMC_GridCompGetInternalState 37
12.2.5 ESMC_GridCompInitialize 37
12.2.6 ESMC_GridCompPrint 38
12.2.7 ESMC_GridCompRun 38
12.2.8 ESMC_GridCompSetEntryPoint 39
12.2.9 ESMC_GridCompSetInternalState 40
12.2.10 ESMC_GridCompSetServices 40

13 CplComp Class 41
13.1 Description 41
13.2 Class API 41

13.2.1 ESMC_CplCompCreate 41
13.2.2 ESMC_CplCompDestroy 42
13.2.3 ESMC_CplCompFinalize 42
13.2.4 ESMC_CplCompGetInternalState 43
13.2.5 ESMC_CplCompInitialize 43
13.2.6 ESMC_CplCompPrint 44
13.2.7 ESMC_CplCompRun 44
13.2.8 ESMC_CplCompSetEntryPoint 45
13.2.9 ESMC_CplCompSetInternalState 46
13.2.10 ESMC_CplCompSetServices 46

14 State Class 47
14.1 Description 47
14.2 Restrictions and Future Work 47
14.3 Class API 47

14.3.1 ESMC_StateAddArray 47
14.3.2 ESMC_StateAddField 48
14.3.3 ESMC_StateCreate 48
14.3.4 ESMC_StateDestroy 49
14.3.5 ESMC_StateGetArray 49
14.3.6 ESMC_StateGetField 50
14.3.7 ESMC_StatePrint 50

IV Infrastructure: Fields and Grids 51

3

15 Overview of Infrastructure Data Handling 52
15.1 Infrastructure Data Classes 52
15.2 Design and Implementation Notes 53

16 Field Class 54
16.1 Description 54

16.1.1 Field create and destroy 54
16.2 Class API 54

16.2.1 ESMC_FieldCreate 54
16.2.2 ESMC_FieldDestroy 55
16.2.3 ESMC_FieldGetArray 56
16.2.4 ESMC_FieldGetMesh 56
16.2.5 ESMC_FieldGetPtr 56
16.2.6 ESMC_FieldPrint 57

17 Array Class 57
17.1 Description 57
17.2 Class API 57

17.2.1 ESMC_ArrayCreate 57
17.2.2 ESMC_ArrayDestroy 58
17.2.3 ESMC_ArrayGetName 58
17.2.4 ESMC_ArrayGetPtr 59
17.2.5 ESMC_ArrayPrint 59

18 ArraySpec Class 60
18.1 Description 60
18.2 Class API 60

18.2.1 ESMC_ArraySpecGet 60
18.2.2 ESMC_ArraySpecSet 60

19 Mesh Class 61
19.1 Description 61

19.1.1 Mesh Representation in ESMF 61
19.1.2 Supported Meshes 61

19.2 Constants 61
19.2.1 ESMC_MESHELEMTYPE 61

19.3 Class API 62
19.3.1 ESMC_MeshAddElements 62
19.3.2 ESMC_MeshAddNodes 63
19.3.3 ESMC_MeshCreate 64
19.3.4 ESMC_MeshDestroy 65
19.3.5 ESMC_MeshFreeMemory 65
19.3.6 ESMC_MeshGetLocalElementCount 65
19.3.7 ESMC_MeshGetLocalNodeCount 66

20 DistGrid Class 66
20.1 Description 66
20.2 Class API 67

20.2.1 ESMC_DistGridCreate 67
20.2.2 ESMC_DistGridDestroy 67
20.2.3 ESMC_DistGridPrint 67

4

V Infrastructure: Utilities 69

21 Overview of Infrastructure Utility Classes 70

22 Time Manager Utility 71
22.1 Time Manager Classes 71
22.2 Calendar 71
22.3 Time Instants and TimeIntervals 71
22.4 Clocks 72

23 Calendar Class 73
23.1 Description 73
23.2 Constants 73

23.2.1 ESMC_CALKIND 73
23.3 Class API 73

23.3.1 ESMC_CalendarCreate 73
23.3.2 ESMC_CalendarDestroy 74
23.3.3 ESMC_CalendarPrint 75

24 Time Class 76
24.1 Description 76
24.2 Class API 76

24.2.1 ESMC_TimeGet 76
24.2.2 ESMC_TimePrint 76
24.2.3 ESMC_TimeSet 77

25 TimeInterval Class 78
25.1 Description 78
25.2 Class API 78

25.2.1 ESMC_TimeIntervalGet 78
25.2.2 ESMC_TimeIntervalPrint 78
25.2.3 ESMC_TimeIntervalSet 79

26 Clock Class 80
26.1 Description 80
26.2 Class API 80

26.2.1 ESMC_ClockAdvance 80
26.2.2 ESMC_ClockCreate 80
26.2.3 ESMC_ClockDestroy 81
26.2.4 ESMC_ClockGet 81
26.2.5 ESMC_ClockPrint 82

27 Config Class 82
27.1 Description 82

27.1.1 Package history 82
27.2 Class API 82

27.2.1 ESMC_ConfigCreate 82
27.2.2 ESMC_ConfigDestroy 83
27.2.3 ESMC_ConfigFindLabel 83
27.2.4 ESMC_ConfigGetDim 83
27.2.5 ESMC_ConfigGetLen 84
27.2.6 ESMC_ConfigLoadFile 84

5

27.2.7 ESMC_ConfigNextLine 85
27.2.8 ESMC_ConfigValidate 85

28 Log Class 86
28.1 Description 86
28.2 Class API 86

28.2.1 ESMC_LogWrite 86

29 VM Class 87
29.1 Description 87
29.2 Class API 87

29.2.1 ESMC_VMGet 87
29.2.2 ESMC_VMGetCurrent 88
29.2.3 ESMC_VMGetGlobal 88
29.2.4 ESMC_VMPrint 89

VI References 90

VII Appendices 91

30 Appendix A: A Brief Introduction to UML 91

31 Appendix B: ESMF Error Return Codes 92

6

Part I

ESMF Overview

7

1 What is the Earth System Modeling Framework?

The Earth System Modeling Framework (ESMF) is a suite of software tools for developing high-performance, multi-
component Earth science modeling applications. Such applications may include a few or dozens of components
representing atmospheric, oceanic, terrestrial, or otherphysical domains, and their constituent processes (dynamical,
chemical, biological, etc.). Often these components are developed by different groups independently, and must be
“coupled” together using software that transfers and transforms data among the components in order to form functional
simulations.

ESMF supports the development of these complex applications in a number of ways. It introduces a set of simple,
consistent component interfaces that apply to all types of components, including couplers themselves. These interfaces
expose in an obvious way the inputs and outputs of each component. It offers a variety of data structures for transferring
data between components, and libraries for regridding, time advancement, and other common modeling functions.
Finally, it provides a growing set of tools for using metadata to describe components and their input and output
fields. This capability is important because components that are self-describing can be integrated more easily into
automated workflows, model and dataset distribution and analysis portals, and other emerging “semantically enabled”
computational environments.

ESMF is not a single Earth system model into which all components must fit, and its distribution doesn’t contain
any scientific code. Rather it provides a way of structuring components so that they can be used in many differ-
ent user-written applications and contexts with minimal code modification, and so they can be coupled together in
new configurations with relative ease. The idea is to create many components across a broad community, and so to
encourage new collaborations and combinations.

ESMF offers the flexibility needed by this diverse user base.It is tested nightly on more than two dozen plat-
form/compiler combinations; can be run on one processor or thousands; supports shared and distributed memory pro-
gramming models and a hybrid model; can run components sequentially (on all the same processors) or concurrently
(on mutually exclusive processors); and supports single executable or multiple executable modes.

ESMF’s generality and breadth of function can make it daunting for the novice user. To help users navigate
the software, we try to apply consistent names and behavior throughout and to provide many examples. The large-
scale structure of the software is straightforward. The utilities and data structures for building modeling components
are called the ESMFinfrastructure. The coupling interfaces and drivers are called thesuperstructure. User code sits
between these two layers, making calls to the infrastructure libraries underneath and being scheduled and synchronized
by the superstructure above. The configuration resembles a sandwich, as shown in Figure 1.

ESMF users may choose to extensively rewrite their codes to take advantage of the ESMF infrastructure, or they
may decide to simply wrap their components in the ESMF superstructure in order to utilize framework coupling
services. Either way, we encourage users to contact our support team if questions arise about how to best use the
software, or how to structure their application. ESMF is more than software; it’s a group of people dedicated to
realizing the vision of a collaborative model development community that spans insitutional and national bounds.

2 The ESMF Reference Manual for C

ESMF has a complete set of Fortran interfaces and some C interfaces. ThisESMF Reference Manualis a listing of
ESMF interfaces for C.

Interfaces are grouped by class. A class is comprised of the data and methods for a specific concept like a physical
field. Superstructure classes are listed first in thisManual, followed by infrastructure classes.

The major classes in the ESMF superstructure are Components, which usually represent large pieces of function-
ality such as atmosphere and ocean models, and States, whichare the data structures used to transfer data between
Components. There are both data structures and utilities inthe ESMF infrastructure. Data structures include multi-
dimensional Arrays, Fields that are comprised of an Array and a Grid, and collections of Arrays and Fields called
ArrayBundles and FieldBundles, respectively. There are utility libraries for data decomposition and communications,
time management, logging and error handling, and application configuration.

8

mailto:esmf_support@list.woc.noaa.gov

Figure 1: Schematic of the ESMF “sandwich” architecture. The framework consists of two parts, an upper level
superstructure layer and a lower levelinfrastructure layer. User code is sandwiched between these two layers.

Time

ESMF Superstructure

AppDriver

Component Classes: GridComp, CplComp, State

Time

ESMF Infrastructure

Data Classes: Bundle, Field, Grid, Array

Utility Classes: Clock, LogErr, DELayout, VM, Config

Time
U
ser Code

3 How to Contact User Support and Find Additional Informatio n

The ESMF team can answer questions about the interfaces presented in this document. For user support, please contact
esmf_support@list.woc.noaa.gov.

The website, http://www.earthsystemmodeling.org, provide more information of the ESMF project as a whole.
The website includes release notes and known bugs for each version of the framework, supported platforms, project
history, values, and metrics, related projects, the ESMF management structure, and more. TheESMF User’s Guide
contains build and installation instructions, an overviewof the ESMF system and a description of how its classes
interrelate (this version of the document corresponds to the last public version of the framework). Also available on
the ESMF website is theESMF Developer’s Guidethat details ESMF procedures and conventions.

4 How to Submit Comments, Bug Reports, and Feature Requests

We welcome input on any aspect of the ESMF project. Send questions and comments to
esmf_support@list.woc.noaa.gov.

9

mailto:esmf_support@list.woc.noaa.gov
http://www.earthsystemmodeling.org
http://www.earthsystemmodeling.org/esmf_releases/public/last/ESMF_usrdoc/
http://www.earthsystemmodeling.org/documents/dev_guide/
mailto:esmf_support@list.woc.noaa.gov

5 The ESMF Application Programming Interface

The ESMF Application Programming Interface (API) is based on the object-oriented programming concept of aclass.
A class is a software construct that is used for grouping a setof related variables together with the subroutines and
functions that operate on them. We use classes in ESMF because they help to organize the code, and often make it
easier to maintain and understand. A particular instance ofa class is called anobject. For example, Field is an ESMF
class. An actual Field calledtemperature is an object. That is about as far as we will go into software engineering
terminology.

The C interface is implemented so that the variables associated with a class are stored in a C structure. For example,
anESMC_Field structure stores the data array, grid information, and metadata associated with a physical field. The
structure for each class is defined in a C header file. The operations associated with each class are also defined in the
header files.

The header files for ESMF are bundled together and can be accessed with a singleinclude statement,
#include "ESMC.h". By convention, the C entry points are named using “ESMC” as aprefix.

5.1 Standard Methods and Interface Rules

ESMF defines a set of standard methods and interface rules that hold across the entire API. These are:

• ESMC_<Class>Create() and ESMC_<Class>Destroy(), for creating and destroying objects
of ESMF classes that require internal memory management (- called ESMF deep classes). The
ESMC_<Class>Create()method allocates memory for the object itself and for internal variables, and ini-
tializes variables where appropriate. It is always writtenas a function that returns a derived type instance of the
class, i.e. an object.

• ESMC_<Class>Set() andESMC_<Class>Get(), for setting and retrieving a particular item or flag.
In general, these methods are overloaded for all cases wherethe item can be manipulated as a name/value
pair. If identifying the item requires more than a name, or ifthe class is of sufficient complexity
that overloading in this way would result in an overwhelmingnumber of options, we define specific
ESMC_<Class>Set<Something>() andESMC_<Class>Get<Something>() interfaces.

• ESMC_<Class>Add(), ESMC_<Class>AddReplace(), ESMC_<Class>Remove(), and
ESMC_<Class>Replace(), for manipulating objects of ESMF container classes - such as ESMC_State
andESMC_FieldBundle. For example, theESMC_FieldBundleAdd()method adds another Field to an
existing FieldBundle object.

• ESMC_<Class>Print(), for printing the contents of an object to standard out. Thismethod is mainly
intended for debugging.

• ESMC_<Class>ReadRestart() andESMC_<Class>WriteRestart(), for saving the contents of a
class and restoring it exactly. Read and write restart methods have not yet been implemented for most ESMF
classes, so where necessary the user needs to write restart values themselves.

• ESMC_<Class>Validate(), for determining whether a class is internally consistent.For example,
ESMC_FieldValidate() validates the internal consistency of a Field object.

5.2 Deep and Shallow Classes

The ESMF contains two types of classes.
Deepclasses requireESMC_<Class>Create() andESMC_<Class>Destroy() calls. They involve mem-

ory allocation take significant time to set up (involving memory management) and should not be created in a time-
critical portion of code. Deep objects persist even after the method in which they were created has returned. Most

10

classes in ESMF, including GridComp, CplComp, State, Fields, FieldBundles, Arrays, ArrayBundles, Grids, and
Clocks, fall into this category.

Shallow classes do not possessESMC_<Class>Create() andESMC_<Class>Destroy() calls. They
are simply declared and their values set using anESMC_<Class>Set() call. Examples of shallow classes are
Time, TimeInterval, and ArraySpec. Shallow classes do not take long to set up and can be declared and set within a
time-critical code segment. Shallow objects stop existingwhen the method in which they were declared has returned.

An exception to this is when a shallow object, such as a Time, is stored in a deep object such as a Clock. The Clock
then carries a copy of the Time in persistent memory. The Timeis deallocated with theESMC_ClockDestroy()
call.

See Section??, Overall Design and Implementation Notes, for a brief discussion of deep and shallow classes
from an implementation perspective. For an in-depth look atthe design and inter-language issues related to deep and
shallow classes, see theESMF Implementation Report.

5.3 Special Methods

The following are special methods which, in one case, are required by any application using ESMF, and in the other
case must be called by any application that is using ESMF Components.

• ESMC_Initialize() andESMC_Finalize() are required methods that must bracket the use of ESMF
within an application. They manage the resources required to run ESMF and shut it down gracefully. ESMF
does not support restarts in the same executable, i.e.ESMC_Initialize() should not be called after
ESMC_Finalize().

• ESMC_<Type>CompInitialize(), ESMC_<Type>CompRun(), and
ESMC_<Type>CompFinalize() are component methods that are used at the highest level within
ESMF.<Type> may be<Grid>, for Gridded Components such as oceans or atmospheres, or<Cpl>, for
Coupler Components that are used to connect them. The content of these methods is not part of the ESMF.
Instead the methods call into associated subroutines within user code.

5.4 The ESMF Data Hierarchy

The ESMF API is organized around an hierarchy of classes thatcontain model data. The operations that are performed
on model data, such as regridding, redistribution, and haloupdates, are methods of these classes.

The main data classes offered by the ESMF C API, in order of increasing complexity, are:

• Array An ESMF Array is a distributed, multi-dimensional array that can carry information such as its type,
kind, rank, and associated halo widths. It contains a reference to a native language array.

• Field A Field represents a physical scalar or vector field. It contains a reference to an Array along with grid
information and metadata.

• StateA State represents the collection of data that a Component either requires to run (an Import State) or can
make available to other Components (an Export State). States may contain references to Arrays, ArrayBundles,
Fields, FieldBundles, or other States.

• Component A Component is a piece of software with a distinct function. ESMF currently recognizes two
types of Components. Components that represent a physical domain or process, such as an atmospheric model,
are called Gridded Components since they are usually discretized on an underlying grid. The Components
responsible for regridding and transferring data between Gridded Components are called Coupler Components.
Each Component is associated with an Import and an Export State. Components can be nested so that simpler
Components are contained within more complex ones.

Underlying these data classes are native language arrays. ESMF Arrays and Fields can be queried for the C pointer
to the actual data. You can perform communication operations either on the ESMF data objects or directly on C arrays
through the VM class, which serves as a unifying wrapper for distributed and shared memory communication libraries.

11

http://www.earthsystemmodeling.org/documents/IMPL_repdoc/

5.5 ESMF Spatial Classes

Like the hierarchy of model data classes, ranging from the simple to the complex, ESMF is organized around an hierar-
chy of classes that represent different spaces associated with a computation. Each of these spaces can be manipulated,
in order to give the user control over how a computation is executed. For Earth system models, this hierarchy starts
with the address space associated with the computer and extends to the physical region described by the application.
The main spatial classes in ESMF, from those closest to the machine to those closest to the application, are:

• TheVirtual Machine , or VM The ESMF VM is an abstraction of a parallel computing environment that en-
compasses both shared and distributed memory, single and multi-core systems. Its primary purpose is resource
allocation and management. Each Component runs in its own VM, using the resources it defines. The elements
of a VM arePersistent Execution Threads, or PETs, that are executing inVirtual Address Spaces, or VASs.
A simple case is one in which every PET is associated with a single MPI process. In this case every PET is
executing in its own private VAS. If Components are nested, the parent Component allocates a subset of its PETs
to its children. The children have some flexibility, subjectto the constraints of the computing environment, to
decide how they want to use the resources associated with thePETs they’ve received.

• DELayout A DELayout represents a data decomposition (we also refer tothis as a distribution). Its basic
elements areDecomposition Elements, or DEs. A DELayout associates a set of DEs with the PETs in a VM.
DEs are not necessarily one-to-one with PETs. For cache blocking, or user-managed multi-threading, more DEs
than PETs may be defined. Fewer DEs than PETs may also be definedif an application requires it.

The current ESMF C API does not provide user access to the DELayout class.

• DistGrid A DistGrid represents the index space associated with a grid. It is a useful abstraction because often
a full specification of grid coordinates is not necessary to define data communication patterns. The DistGrid
contains information about the sequence and connectivity of data points, which is sufficient information for
many operations. Arrays are defined on DistGrids.

• Array An Array defines how the index space described in the DistGridis associated with the VAS of each PET.
This association considers the type, kind and rank of the indexed data. Fields are defined on Arrays.

• Grid A Grid is an abstraction of a physical space. It associates a coordinate system, a set of coordinates, and
a topology to a collection of grid cells. Grids in ESMF are comprised of DistGrids plus additional coordinate
information.

The current ESMF C API does not provide user access to the Gridclass.

• Field A Field may contain more dimensions than the Grid that it is discretized on. For example, for convenience
during integration, a user may want to define a single Field object that holds snapshots of data at multiple times.
Fields also keep track of the stagger location of a Field datapoint within its associated Grid cell.

5.6 ESMF Maps

In order to define how the index spaces of the spatial classes relate to each other, we require either implicit rules
(in which case the relationship between spaces is defined by default), or special Map arrays that allow the user to
specify the desired association. The form of the specification is usually that the position of the array element carries
information about the first object, and the value of the arrayelement carries information about the second object.
ESMF includes adistGridToArrayMap, agridToFieldMap, adistGridToGridMap, and others.

5.7 ESMF Specification Classes

It can be useful to make small packets of descriptive parameters. ESMF has one of these:

• ArraySpec, for storing the specifics, such as type/kind/rank, of an array.

12

5.8 ESMF Utility Classes

There are a number of utilities in ESMF that can be used independently. These are:

• Attributes , for storing metadata about Fields, FieldBundles, States,and other classes. (Not currently available
through the ESMF C API.)

• TimeMgr , for calendar, time, clock and alarm functions.

• LogErr , for logging and error handling.

• Config, for creating resource files that can replace namelists as a consistent way of setting configuration param-
eters.

6 Overall Rules and Behavior

6.1 Local and Global Views and Associated Conventions

ESMF data objects such as Fields are distributed over DEs, with each DE getting a portion of the data. Depending on
the task, a local or global view of the object may be preferable. In a local view, data indices start with the first element
on the DE and end with the last element on the same DE. In a global view, there is an assumed or specified order to the
set of DEs over which the object is distributed. Data indicesstart with the first element on the first DE, and continue
across all the elements in the sequence of DEs. The last data index represents the number of elements in the entire
object. The DistGrid provides the mapping between local andglobal data indices.

The convention in ESMF is that entities with a global view have no prefix. Entities with a DE-local (and in some
cases, PET-local) view have the prefix “local.”

Just as data is distributed over DEs, DEs themselves can be distributed over PETs. This is an advanced feature for
users who would like to create multiple local chunks of data,for algorithmic or performance reasons. Local DEs are
those DEs that are located on the local PET. Local DE labelingalways starts at 0 and goes to localDeCount-1, where
localDeCount is the number of DEs on the local PET. Global DE numbers also start at 0 and go to deCount-1. The
DELayout class provides the mapping between local and global DE numbers.

6.2 Allocation Rules

The basic rule of allocation and deallocation for the ESMF is: whoever allocates it is responsible for deallocating it.
ESMF methods that allocate their own space for data will deallocate that space when the object is de-

stroyed. Methods which accept a user-allocated buffer, forexample ESMC_FieldCreate() with the
ESMF_DATACOPY_REFERENCE flag, will not deallocate that buffer at the time the object isdestroyed. The user
must deallocate the buffer when all use of it is complete.

Classes such as Fields, FieldBundles, and States may have Arrays, Fields, Grids and FieldBundles created exter-
nally and associated with them. These associated items are not destroyed along with the rest of the data object since it
is possible for the items to be added to more than one data object at a time (e.g. the same Grid could be part of many
Fields). It is the user’s responsibility to delete these items when the last use of them is done.

6.3 Assignment, Equality, Copying and Comparing Objects

The equal sign assignment has not been overloaded in ESMF, thus resulting in the standard C behavior. This behavior
has been documented as the first entry in the API documentation section for each ESMF class. For deep ESMF
objects the assignment results in setting an alias the the same ESMF object in memory. For shallow ESMF objects
the assignment is essentially a equivalent to a copy of the object. For deep classes the equality operators have been
overloaded to test for the alias condition as a counter part to the assignment behavior. This and the not equal operator
are documented following the assignemnt in the class API documentation sections.

13

Deep object copies are implemented as a special variant of the ESMC_<Class>Create() methods. It
takes an existing deep object as on of the required arguments. At this point not all deep classes have
ESMC_<Class>Create()methods that allow object copy.

Due to the complexity of deep classes there are many aspects when comparing two objects of the same class.
ESMF provideESMC_<Class>Match() methods, which are functions that return a class specific match flag. At
this point not all deep classes haveESMC_<Class>Match()methods that allow deep object comparison.

7 Integrating ESMF into Applications

Depending on the requirements of the application, the user may want to begin integrating ESMF in either a top-down
or bottom-up manner. In the top-down approach, tools at the superstructure level are used to help reorganize and
structure the interactions among large-scale components in the application. It is appropriate when interoperabilityis
a primary concern; for example, when several different versions or implementations of components are going to be
swapped in, or a particular component is going to be used in multiple contexts. Another reason for deciding on a
top-down approach is that the application contains legacy code that for some reason (e.g., intertwined functions, very
large, highly performance-tuned, resource limitations) there is little motivation to fully restructure. The superstructure
can usually be incorporated into such applications in a way that is non-intrusive.

In the bottom-up approach, the user selects desired utilities (data communications, calendar management, perfor-
mance profiling, logging and error handling, etc.) from the ESMF infrastructure and either writes new code using
them, introduces them into existing code, or replaces the functionality in existing code with them. This makes sense
when maximizing code reuse and minimizing maintenance costs is a goal. There may be a specific need for function-
ality or the component writer may be starting from scratch. The calendar management utility is a popular place to
start.

7.1 Using the ESMF Superstructure

The following is a typical set of steps involved in adopting the ESMF superstructure. The first two tasks, which occur
before an ESMF call is ever made, have the potential to be the most difficult and time-consuming. They are the work
of splitting an application into components and ensuring that each component has well-defined stages of execution.
ESMF aside, this sort of code structure helps to promote application clarity and maintainability, and the effort put into
it is likely to be a good investment.

1. Decide how to organize the application as discrete Gridded and Coupler Components. This might involve
reorganizing code so that individual components are cleanly separated and their interactions consist of a minimal
number of data exchanges.

2. Divide the code for each component into initialize, run, and finalize methods. These methods can be multi-phase,
e.g.,init_1, init_2.

3. Pack any data that will be transferred between componentsinto ESMF Import and Export State data structures.
This is done by first wrapping model data in either ESMF Arraysor Fields. Arrays are simpler to create and use
than Fields, but carry less information and have a more limited range of operations. These Arrays and Fields
are then added to Import and Export States. They may be packedinto ArrayBundles or FieldBundles first, for
more efficient communications. Metadata describing the model data can also be added. At the end of this step,
the data to be transferred between components will be in a compact and largely self-describing form.

4. Pack time information into ESMF time management data structures.

5. Using code templates provided in the ESMF distribution, create ESMF Gridded and Coupler Components to
represent each component in the user code.

6. Write a set services routine that sets ESMF entry points for each user component’s initialize, run, and finalize
methods.

14

7. Run the application using an ESMF Application Driver.

15

Part II

Applications
The main product delivered by ESMF is the ESMF library that allows application developers to write programs based
on the ESMF API. In addition to the programming library, ESMFdistributions come with a small set of applications
that are of general interest to the community. These applications utilize the ESMF library to implement features such
as printing general information about the ESMF installation, or generating regrid weight files. The provided ESMF
applications are intended to be used as standard command line tools.

The bundled ESMF applications are built and installed during the usual ESMF installation process, which is de-
scribed in detail in the ESMF User’s Guide section "Buildingand Installing the ESMF". After the installation the
applications will be located in theESMF_APPSDIR directory, which can be found as a Makefile variable in the
esmf.mk file. Theesmf.mk file can be found in theESMF_INSTALL_LIBDIR directory after a successful instal-
lation. The ESMF User’s Guide discusses theesmf.mk mechanism to access the bundled applications in more detail
in section "Using Bundled ESMF Applications".

The following sections provide in-depth documentation of the bundled ESMF applications. In addition, each
application supports the standard--help command line argument, providing a brief description of howto invoke
the program.

8 ESMF_Info

8.1 Description

TheESMF_Info application prints basic information about the ESMF installation tostdout.
The application usage is as follows:

ESMF_Info [--help]

where
--help prints a brief usage message

9 ESMF_RegridWeightGen

9.1 Description

This section describes the offline regridding application provided by ESMF. Regridding, also called remapping or
interpolation, is the process of changing the grid that underlies data values while preserving qualities of the original
data. Different kinds of transformations are appropriate for different problems. Regridding may be needed when
communicating data between Earth system model components such as land and atmosphere, or between different data
sets to support operations such as visualization.

Regridding can be broken into two stages. The first stage is generation of an interpolation weight matrix that de-
scribes how points in the source grid contribute to points inthe destination grid. The second stage is the multiplication
of values on the source grid by the interpolation weight matrix to produce values on the destination grid. This occurs
through a parallel sparse matrix multiply.

There are two options for accessing ESMF regridding functionality: integrated and offline. Integrated regridding
is a process whereby interpolation weights are generated via subroutine calls during the execution of the user’s code.
The integrated regridding can also perform the parallel sparse matrix multiply. In other words, ESMF integrated
regridding allows a user to perform the whole process of interpolation within their code. For a further description of
ESMF integrated regridding please see Section??. In contrast to integrated regridding, offline regridding is a process

16

whereby interpolation weights are generated by a separate ESMF application, not within the user code. The ESMF
offline regridding application also only generates the interpolation matrix, the user is responsible for reading in this
matrix and doing the actual interpolation (multiplicationby the sparse matrix) in their code. The rest of this section
further describes ESMF offline regridding.

For a discussion of installing and accessing ESMF applications such as this one please see the beginning of this
part of the refernce manual (Section II) or for the quickest approach to just building and accessing the applications
please refer to the “Building and using bundled ESMF applications” Section in the ESMF User’s Guide.

As described above, this tool reads in two grid files and outputs weights for interpolation between the two grids.
The input and output files are all in NetCDF format. The grid files are either in the same format 9.4 as is used as an
input to SCRIP [3], or in the ESMF unstructured grid format??. The weight file is the same format 9.5 as is output
by SCRIP. The interpolation weights can be generated with the bilinear, patch, or first order conservative methods
decribed below. Masking is supported for 2D logically rectangular (i.e. with grid_rank=2) grids in the SCRIP format.
This application can do regrid weight generation from a global or regional source grid to a global or regional destination
grid. It assumes that the source and destination grids are ona sphere and that the coordinates given in the files are
latitude and longitude values. The coordinates can either be in degrees or radians (this is indicated by the “units”
attribute attached to the value). As is true with many globalmodels, this application currently assumes the latitude
and longitude refer to positions on a perfect sphere, as opposed to a more complex and accurate representation of the
earth’s true shape such as would be used in a GIS system. (ESMF’s current user base doesn’t require this level of
detail in representing the earth’s shape, but it could be added in the future if necessary.) This file based regrid weight
generation application is parallel. This application is used in the ESMF_RegridWeightGenCheck external demo, so
that can serve as an example of its use.

This application requires the NetCDF libary to read the gridfiles and write out the weight files in NetCDF format.
In addition, it also requires the LAPACK library to generatethe patch regridding weights. To compile ESMF with
the NetCDF library and the LAPACK library, please refer to the “Third Party Libraries” Section in the ESMF User’s
Guide for more information.

Internally this application uses the ESMF public API to generate the interpolation weights. If a source or destina-
tion grid is logically rectangular, thenESMF_GridCreate() ?? is used to create an ESMF_Grid object. The cell
center coordinates of the input grid are put into the center stagger location (ESMF_STAGGERLOC_CENTER). In addi-
tion, the corner coordinates are also put into the corner stagger location (ESMF_STAGGERLOC_CORNER), for conser-
vative regridding. The methodESMF_MeshCreate() ?? is used to create an ESMF_Mesh object, if the source or
destination grid is a cubed sphere grid or an unstructured grid. When making this call, the flagconvert3D is set to
TRUE to convert the 2D coordinates into 3D Cartesian coordinates. Currently, ESMF only supports triangle or quadri-
lateral element types for a 2D Mesh. Therefore, when the cells in an unstructured grid contain more than four edges,
they are broken into multiple triangle elements beforeESMF_MeshCreate() is called to create the ESMF_Mesh
object. After the calculation of the weight matrix based on the broken up cells, the matrix entries for the triangles are
merged together, so that the output matrix is in terms of the original cells. InternallyESMF_FieldRegridStore()
is used to generate the weight table and indices table representing the interpolation matrix.

The regridding occurs in 3D to avoid problems with periodicity and with the pole singularity. This application
supports four options for handling the pole region (i.e. theempty area above the top row of the source grid or below
the bottom row of the source grid). The first option is to leavethe pole region empty (“-p none”), in this case if a
destination point lies above or below the top row of the source grid, it will fail to map, yielding an error (unless “-i”
is specified). With the next two options, the pole region is handled by constructing an artificial pole in the center of
the top and bottom row of grid points and then filling in the region from this pole to the edges of the source grid with
triangles. The pole is located at the average of the positionof the points surrounding it, but moved outward to be at the
same radius as the rest of the points in the grid. The difference between these two artificial pole options is what value
is used at the pole. The default pole option (“-p all”) sets the value at the pole to be the average of the values of all of
the grid points surrounding the pole. For the other option (“-p N”), the user chooses a number N from 1 to the number
of source grid points around the pole. For each destination point, the value at the pole is then the average of the N
source points surrounding that destination point. For the last pole option (“-p teeth”) no artificial pole is constructed,
instead the pole region is covered by connecting points across the top and bottom row of the source Grid into triangles.
As this makes the top and bottom of the source sphere flat, for abig enough difference between the size of the source

17

http://www.earthsystemmodeling.org/users/code_examples/external_demos/external_demos.shtml

and destination pole regions, this can still result in unmapped destination points. Only pole option “none” is currently
supported with the conservative interpolation method (i.e. “-m conserve”).

Masking is supported for grids generated from a SCRIP file where the grid_rank=2 (i.e. 2D logically rectangular
grids). Masking is currently not supported for unstructured grids. If the variable “grid_imask” is set to 0 for a grid
point, then that point is considered masked out and won’t be used in the weights generated by the application.

If a destination point can’t be mapped because it falls outside the unmasked source grid, then the default behavior
of the application is to stop with an error. By specifying “-i” or the equivalent “–ignore_unmapped” the user can cause
the application to ignore unmapped destination points. In this case, the output matrix won’t contain entries for the
unmapped destination points.

This regridding application can be used to generate bilinear, patch, or first-order conservative interpolation weights.
The default interpolation method is bilinear. The algorithm used by this application to generate the bilinear weights
is the standard one found in many textbooks. Each destination point is mapped to a location in the source Mesh,
the position of the destination point relative to the sourcepoints surrounding it is used to calculate the interpolation
weights.

This application can also be used to generate patch interpolation weights. Patch interpolation is the ESMF version
of a technique called “patch recovery” commonly used in finite element modeling [1] [2]. It typically results in
better approximations to values and derivatives when compared to bilinear interpolation. Patch interpolation works by
constructing multiple polynomial patches to represent thedata in a source element. For 2D grids, these polynomials
are currently 2nd degree 2D polynomials. The interpolated value at the destination point is the weighted average of
the values of the patches at that point.

The patch interpolation process works as follows. For each source element containing a destination point we
construct a patch for each corner node that makes up the element (e.g. 4 patches for quadrilateral elements, 3 for
triangular elements). To construct a polynomial patch for acorner node we gather all the elements around that node.
(Note that this means that the patch interpolation weights depends on the source element’s nodes, and the nodes
of all elements neighboring the source element.) We then usea least squares fitting algorithm to choose the set of
coefficients for the polynomial that produces the best fit forthe data in the elements. This polynomial will give a
value at the destination point that fits the source data in theelements surrounding the corner node. We then repeat
this process for each corner node of the source element generating a new polynomial for each set of elements. To
calculate the value at the destination point we do a weightedaverage of the values of each of the corner polynomials
evaluated at that point. The weight for a corner’s polynomial is the bilinear weight of the destination point with regard
to that corner. The patch method has a larger stencil than thebilinear, for this reason the patch weight matrix can be
correspondingly larger than the bilinear matrix (e.g. for aquadrilateral grid the patch matrix is around 4x the size of
the bilinear matrix). This can be an issue when performing a regrid weight generation operation close to the memory
limit on a machine.

First-order conservative interpolation [4] is also available as a regridding method. This method will typically have
a larger interpolation error than the previous two methods,but will do a much better job of preserving the value of the
integral of data between the source and destination grid. Inthis method the value across each source cell is treated
as a constant. The weights for a particular destination cell, are the area of intersection of each source cell with the
destination cell divided by the area of the destination cell. Areas in this case are the great circle areas of the polygons
which make up the cells (the cells around each center are defined by the corner coordinates in the grid file).

The interpolation weights generated by this application are output to a NetCDF file (specified by the "-w" or "–
weight" keywords). The format of this file is the same as that generated by SCRIP. See Section 9.5 for a description
of the format. Note that the sequence of the weights in the filecan vary with the number of processors used to run the
application. This means that two weight files generated by using different numbers of processors can contain exactly
the same interpolation matrix, but can appear different in adirect line by line comparison (such as would be done by
ncdiff).

9.2 Usage

The command line arguments are all keyword based. Both the long keyword prefixed with ’--’ or the one
character short keyword prefixed with’-’ are supported. The format to run the application is as follows:

18

ESMF_RegridWeightGen [--help]
[--version]
[--source|-s] src_grid_filename
[--destination|-d] dst_grid_filename
[--weight|-w] out_weight_file
[--method|-m] [bilinear|patch|conserve]
[--pole|-p] [none|all|teeth|1|2|..]
[--ignore_unmapped|-i]
--src_type [SCRIP|ESMF]
--dst_type [SCRIP|ESMF]
-t [SCRIP|ESMF]
-r
--src_regional
--dst_regional

--64bit_offset

where
--help - Print the usage message and exit.
--version - Print ESMF version and license information and exit.
--source or -s - a required argument specifying the source grid

file name

--destination or -d - a required argument specifying the destination
grid file name

--weight or -w - a required argument specifying the output regridding
weight file name

--method or -m - an optional argument specifying which interpolation
method is used. The value can be one of the following:

bilinear - for bilinear interpolation, also the
default method if not specified.

patch - for patch recovery interpolation
conserve - for first-order conservative interpolation

--pole or -p - an optional argument indicating what to do with
the pole.
The value can be one of the following:

none - No pole, the source grid ends at the top
(and bottom) row of nodes specified in
<source grid>.

all - Construct an artificial pole placed in the
center of the top (or bottom) row of nodes,
but projected onto the sphere formed by the
rest of the grid. The value at this pole is
the average of all the pole values. This
is the default option.

teeth - No new pole point is constructed, instead

19

the holes at the poles are filled by
constructing triangles across the top and
bottom row of the source Grid. This can be
useful because no averaging occurs, however,
because the top and bottom of the sphere are
now flat, for a big enough mismatch between
the size of the destination and source pole
regions, some destination points may still
not be able to be mapped to the source Grid.

<N> - Construct an artificial pole placed in the
center of the top (or bottom) row of nodes,
but projected onto the sphere formed by the
rest of the grid. The value at this pole is
the average of the N source nodes next to
the pole and surrounding the destination
point (i.e. the value may differ for each
destination point. Here N ranges from 1 to
the number of nodes around the pole.

--ignore_unmapped
or
-i - ignore unmapped destination points. If not specified

the default is to stop with an error if an unmapped
point is found.

--src_type - an optional argument specifying the source grid file
type. The value could be either SCRIP or ESMF.
Currently, the ESMF file type is only available for
the unstructured grid. The default option is SCRIP.

--dst_type - an optional argument specifying the destination grid
file type. The value could be either SCRIP or ESMF.
Currently, the ESMF file type is only available for
the unstructured grid. The default option is SCRIP.

-t - an optional argument specifying the file types for
both the source and the destination grid files. The
default option is SCRIP. If both -t and --src_type
or --dst_type are given at the same time and they
disagree with each other, an error message will be
generated.

-r - an optional argument specifying that the source and
destination grids are regional grids. If the argument
is not given, the grids are assumed to be global.

--src_regional - an optional argument specifying that the source is
a regional grid and the destination is a global grid.

--dst_regional - an optional argument specifying that the destination
is a regional grid and the source is a global grid.

20

--64bit_offset - an optional argument specifying that the weight file
will be created in the NetCDF 64-bit offset format to
allow variables larger than 2GB. Note the 64-bit
offset format is not supported in the NetCDF version
earlier than 3.6.0. An error message will be generated
if this flag is specified while the application is
linked with a NetCDF library earlier than 3.6.0.

9.3 Examples

The example below shows the command to generate a set of conservative interpolation weights between a global
SCRIP format source grid file (src.nc) and a global SCRIP format destination grid file (dst.nc). The weights are written
into file w.nc. In this case the ESMF library and applicationshave been compiled using an MPI parallel communication
library (e.g. setting ESMF_COMM to openmpi) to enable it to run in parallel. To demonstrate running in parallel the
mpirun script is used to run the application in parallel on 4 processors.

mpirun -np 4 ./ESMF_RegridWeightGen -s src.nc -d dst.nc -m conserve -w w.nc

The next example below shows the command to do the same thing as the previous example except for three
changes. The first change is this time the source grid is regional (“–src_regional”). The second change is that for this
example bilinear interpolation (“-m bilinear”) is being used. Because bilinear is the default, we could also omit the
“-m bilinear”. The third change is that in this example some of the destination points are expected to not be found
in the source grid, but the user is ok with that and just wants those points to not appear in the weight file instead of
causing an error (“-i”).

mpirun -np 4 ./ESMF_RegridWeightGen -i --src_regional -s src.nc -d dst.nc \
-m bilinear -w w.nc

9.4 SCRIP Grid File Format

A SCRIP format grid file is a NetCDF file and the header of a sample grid file is shown as follows:

netcdf remap_grid_T42 {
dimensions:

grid_size = 8192 ;
grid_corners = 4 ;
grid_rank = 2 ;

variables:
int grid_dims(grid_rank) ;
double grid_center_lat(grid_size) ;

grid_center_lat:units = "radians" ;
double grid_center_lon(grid_size) ;

grid_center_lon:units = "radians" ;
int grid_imask(grid_size) ;

grid_imask:units = "unitless" ;
double grid_corner_lat(grid_size, grid_corners) ;

21

grid_corner_lat:units = "radians" ;
double grid_corner_lon(grid_size, grid_corners) ;

grid_corner_lon:units ="radians" ;

// global attributes:
:title = "T42 Gaussian Grid" ;

}

Thegrid_size dimension is the total number of cells in the grid;grid_rank refers to the number of di-
mensions.grid_rank is 2 for a 2D logically rectangular grid and 1 for an unstructured grid. The integer array
grid_dims gives the number of grid cells along each dimension. The number of corners (vertices) in each grid cell
is given bygrid_corners. Note that if your grid has a variable number of corners on grid cells, then you should
setgrid_corners to be the highest value and use redundant points on cells withfewer corners. The grid corner
coordinates must be written in an order which traces the outside of a grid cell in a counterclockwise order.

The integer arraygrid_imask is used to mask out grid cells which should not participate inthe regridding. The
array should by zero for any points that do not participate inthe regridding and one for all other points. Coordinate
arrays provide the latitudes and longitudes of cell centersand cell corners. The unit of the coordinates can be either
"radians" or "degrees".

9.5 Regrid Interpolation Weight File Format

The regridding weight output file is in NetCDF format and contain some grid information from each grid as well
as the regridding indices and weights. Following is the header of a sample output weight file that was generated by
regridding a logically rectangular 2D grid to a triangle mesh unstructured grid:

netcdf t42mpas-bilinear {
dimensions:
n_a = 8192 ;
n_b = 20480 ;
n_s = 42456 ;
nv_a = 4 ;
nv_b = 3 ;
num_wgts = 1 ;
src_grid_rank = 2 ;
dst_grid_rank = 1 ;
variables:
int src_grid_dims(src_grid_rank) ;
int dst_grid_dims(dst_grid_rank) ;
double yc_a(n_a) ;
yc_a:units = "degrees" ;
double yc_b(n_b) ;
yc_b:units = "radians" ;
double xc_a(n_a) ;
xc_a:units = "degrees" ;
double xc_b(n_b) ;
xc_b:units = "radians" ;
double yv_a(n_a, nv_a) ;
yv_a:units = "degrees" ;
double xv_a(n_a, nv_a) ;
xv_a:units = "degrees" ;
double yv_b(n_b, nv_b) ;
yv_b:units = "radians" ;

22

double xv_b(n_b, nv_b) ;
xv_b:units = "radians" ;
int mask_a(n_a) ;
mask_a:units = "unitless" ;
int mask_b(n_b) ;
mask_b:units = "unitless" ;
double area_a(n_a) ;
area_a:units = "square radians" ;
double area_b(n_b) ;
area_b:units = "square radians" ;
double frac_a(n_a) ;
frac_a:units = "unitless" ;
double frac_b(n_b) ;
frac_b:units = "unitless" ;
int col(n_s) ;
int row(n_s) ;
double S(n_s) ;

// global attributes:
:title = "ESMF Offline Regridding Weight Generator" ;
:normalization = "destarea" ;
:map_method = "Bilinear remapping" ;
:conventions = "NCAR-CSM" ;
:domain_a = "T42_grid.nc" ;
:domain_b = "grid-dual.nc" ;
:grid_file_src = "T42_grid.nc" ;
:grid_file_dst = "grid-dual.nc" ;
:CVS_revision = "5.3.0 beta snapshot" ;
}

Variables ended with "_a" are the variables for the source grid and the ones ended with"_b" are the vari-
ables for the destination grid. For instance,xc_a andyc_a are corresponding to thegrid_center_lon and
grid_center_lat variables in the source grid file. The grid information includes the center and corner co-
ordinates and the grid mask array from the input grid file and the grid area and grid frac arrays calculated by
ESMF_RegridWeightGen. The grid area array currently is only computed by the conservative remapping op-
tion. The values of the area array are set to zeros for bilinear and patch remappings. For conservative remapping, the
grid frac array returns the area fraction of the grid cell which participates in the remapping. For bilinear and patch
remapping, the destination grid frac array is one where the grid point participates in the remapping and zero otherwise.
For bilinear and patch remapping, the source grid frac arrayis always set to zero.

The indices andweights generated byESMF_FieldRegridStore() are stored in the output file as
variablescol, row andS. Wherecol androw are the indices to the source and the destination grid cells.These are
a one-dimension array with length defined by dimensionn_s. S is the weight which is multiplied by the source value
indicated bycol and then summed with the destination value indicated byrow to build the final interpolated value
of the destination.

23

Part III

Superstructure

24

10 Overview of Superstructure

ESMF superstructure classes define an architecture for assembling Earth system applications from modelingcompo-
nents. A component may be defined in terms of the physical domain that it represents, such as an atmosphere or sea
ice model. It may also be defined in terms of a computational function, such as a data assimilation system. Earth
system research often requires that such components becoupled together to create an application. By coupling we
mean the data transformations and, on parallel computing systems, data transfers, that are necessary to allow data from
one component to be utilized by another. ESMF offers regridding methods and other tools to simplify the organization
and execution of inter-component data exchanges.

In addition to components defined at the level of major physical domains and computational functions, components
may be defined that represent smaller computational functions within larger components, such as the transformation
of data between the physics and dynamics in a spectral atmosphere model, or the creation of nested higher resolution
regions within a coarser grid. The objective is to couple components at varying scales both flexibly and efficiently.
ESMF encourages a hierachical application structure, in which large components branch into smaller sub-components
(see Figure 2). ESMF also makes it easier for the same component to be used in multiple contexts without changes to
its source code.

Key Features
Modular, component-based architecture.
Hierarchical assembly of components into applications.
Use of components in multiple contexts without modification.
Sequential or concurrent component execution.
Single program, multiple datastream (SPMD) applications for maximum portability and reconfigurability.
Multiple program, multiple datastream (MPMD) option for flexibility.

10.1 Superstructure Classes

There are a small number of classes in the ESMF superstructure:

• ComponentAn ESMF component has two parts, one that is supplied by ESMF and one that is supplied by the
user. The part that is supplied by the framework is an ESMF derived type that is either a Gridded Component
(GridComp) or a Coupler Component (CplComp). A Gridded Component typically represents a physical
domain in which data is associated with one or more grids - forexample, a sea ice model. A Coupler Component
arranges and executes data transformations and transfers between one or more Gridded Components. Gridded
Components and Coupler Components have standard methods, which include initialize, run, and finalize. These
methods can be multi-phase.

The second part of an ESMF Component is user code, such as a model or data assimilation system. Users set
entry points within their code so that it is callable by the framework. In practice, setting entry points means that
within user code there are calls to ESMF methods that associate the name of a Fortran subroutine with a cor-
responding standard ESMF operation. For example, a user-written initialization routine calledmyOceanInit
might be associated with the standard initialize routine ofan ESMF Gridded Component named “myOcean”
that represents an ocean model.

• State ESMF Components exchange information with other Components only through States. A State is an
ESMF derived type that can contain Fields, FieldBundles, Arrays, ArrayBundles, and other States. A Compo-
nent is associated with two States, anImport State and anExport State. Its Import State holds the data that it
receives from other Components. Its Export State contains data that it makes available to other Components.

An ESMF coupled application typically involves a parent Gridded Component, two or more child Gridded Com-
ponents and one or more Coupler Components.

The parent Gridded Component is responsible for creating the child Gridded Components that are exchanging data,
for creating the Coupler, for creating the necessary Importand Export States, and for setting up the desired sequencing.

25

Figure 2: ESMF enables applications such as the atmosphericgeneral circulation model GEOS-5 to be structured
hierarchically, and reconfigured and extended easily. Eachbox in this diagram is an ESMF Gridded Component.

GEOS-5

surface
fvcore
gravity_wave_drag

history
agcm

dynamics
 physics

chemistry
 moist_processes
 radiation
 turbulence

infrared
 solar
lake
 land_ice
 data_ocean
 land

vegetation
 catchment

The application’s “main” routine calls the parent Gridded Component’s initialize, run, and finalize methods in order
to execute the application. For each of these standard methods, the parent Gridded Component in turn calls the
corresponding methods in the child Gridded Components and the Coupler Component. For example, consider a
simple coupled ocean/atmosphere simulation. When the initialize method of the parent Gridded Component is called
by the application, it in turn calls the initialize methods of its child atmosphere and ocean Gridded Components, and
the initialize method of an ocean-to-atmosphere Coupler Component. Figure 3 shows this schematically.

10.2 Hierarchical Creation of Components

Components are allocated computational resources in the form of Persistent Execution Threads, or PETs. A list of
a Component’s PETs is contained in a structure called aVirtual Machine , or VM . The VM also contains information
about the topology and characteristics of the underlying computer. Components are created hierarchically, with parent
Components creating child Components and allocating some or all of their PETs to each one. By default ESMF creates
a new VM for each child Component, which allows Components totailor their VM resources to match their needs. In
some cases a child may want to share its parent’s VM - ESMF supports this too.

A Gridded Component may exist across all the PETs in an application. A Gridded Component may also reside
on a subset of PETs in an application. These PETs may wholly coincide with, be wholly contained within, or wholly
contain another Component.

26

Figure 3: A call to a standard ESMF initialize (run, finalize)method by a parent component triggers calls to initialize
(run, finalize) all of its child components.

Child
GridComp
 “Atmosphere”

Parent
GridComp
 “Hurricane Model”

Finalize

Child
GridComp
 “Ocean”

Finalize

Child
CplComp
 “Atm-Ocean Coupler”

Finalize

Call Initialize
 Call Finalize
Call Run

Initialize
 Run
 Finalize

Initialize

Initialize

Initialize

Run

Run

Run

AppDriver
 (“Main”)

Call Initialize
 Call Finalize
Call Run

27

10.3 Sequential and Concurrent Execution of Components

When a set of Gridded Components and a Coupler runs in sequence on the same set of PETs the application is executing
in a sequentialmode. When Gridded Components are created and run on mutually exclusive sets of PETs, and are
coupled by a Coupler Component that extends over the union ofthese sets, the mode of execution isconcurrent.

Figure 4 illustrates a typical configuration for a simple coupled sequential application, and Figure 5 shows a
possible configuration for the same application running in aconcurrent mode.

Parent Components can select if and when to wait for concurrently executing child Components, synchronizing
only when required.

It is possible for ESMF applications to contain some Component sets that are executing sequentially and others
that are executing concurrently. We might have, for example, atmosphere and land Components created on the same
subset of PETs, ocean and sea ice Components created on the remainder of PETs, and a Coupler created across all the
PETs in the application.

10.4 Intra-Component Communication

All data transfers within an ESMF application occurwithin a component. For example, a Gridded Component may
contain halo updates. Another example is that a Coupler Component may redistribute data between two Gridded
Components. As a result, the architecture of ESMF does not depend on any particular data communication mechanism,
and new communication schemes can be introduced without affecting the overall structure of the application.

Since all data communication happens within a component, a Coupler Component must be created on the union of
the PETs of all the Gridded Components that it couples.

10.5 Data Distribution and Scoping in Components

The scope of distributed objects is the VM of the currently executing Component. For this reason, all PETs in the
current VM must make the same distributed object creation calls. When a Coupler Component running on a super-
set of a Gridded Component’s PETs needs to make communication calls involving objects created by the Gridded
Component, an ESMF-supplied function calledESMF_StateReconcile() creates proxy objects for those PETs
that had no previous information about the distributed objects. Proxy objects contain no local data but can be used in
communication calls (such as regrid or redistribute) to describe the remote source for data being moved to the current
PET, or to describe the remote destination for data being moved from the local PET. Figure 6 is a simple schematic
that shows the sequence of events in a reconcile call.

10.6 Performance

The ESMF design enables the user to configure ESMF applications so that data is transferred directly from one com-
ponent to another, without requiring that it be copied or sent to a different data buffer as an interim step. This is likely
to be the most efficient way of performing inter-component coupling. However, if desired, an application can also be
configured so that data from a source component is sent to a distinct set of Coupler Component PETs for processing
before being sent to its destination.

The ability to overlap computation with communication is essential for performance. When running with ESMF
the user can initiate data sends during Gridded Component execution, as soon as the data is ready. Computations can
then proceed simultaneously with the data transfer.

28

Figure 4: Schematic of the run method of a coupled application, with an “Atmosphere” and an “Ocean” Gridded Com-
ponent running sequentially with an “Atm-Ocean Coupler.” The top-level “Hurricane Model” Gridded Component
contains the sequencing information and time advancement loop. The application driver, Coupler, and all Gridded
Components are distributed over nine PETs.

GridComp

“Atmosphere”

GridComp
 “Hurricane Model”

GridComp

“Ocean”

CplComp

“Atm-Ocean Coupler”

LOOP
Call Run

Run

Run

Run

Run

AppDriver
 (“Main”)

Call Run

1
 2
 3
 5
4
 6

PETs

T

i
m

e

7
 8
 9

29

Figure 5: Schematic of the run method of a coupled application, with an “Atmosphere” and an “Ocean” Gridded
Component running concurrently with an “Atm-Ocean Coupler.” The top-level “Hurricane Model” Gridded Compo-
nent contains the sequencing information and time advancement loop. The application driver, Coupler, and top-level
“Hurricane Model” Gridded Component are distributed over nine PETs. The “Atmosphere” Gridded Component is
distributed over three PETs and the “Ocean” Gridded Component is distributed over six PETs.

GridComp

“Atmosphere”

GridComp
 “Hurricane Model”

GridComp

“Ocean”

CplComp

“Atm-Ocean Coupler”

LOOP
Call Run

Run

Run
 Run

Run

AppDriver
 (“Main”)

Call Run

1
 2
 3
 5
4
 6

PETs

T

i
m

e

7
 8
 9

30

Figure 6: AnESMF_StateReconcile() call creates proxy objects for use in subsequent communication calls.
The reconcile call would normally be made during Coupler initialization.

CplComp

“Atm-Ocean Coupler”

1
 2
 3
 5
4
 6

PETs

T

i
m

e

7
 8
 9

OcnState

 …...

 …...

 …...

 OcnField1

 OcnField2

 OcnField3

AtmState

 AtmField1

 AtmField2

 AtmField3

 ……

 ……

 ……

call ESMF_StateReconcile()

Initialize

AtmState

 AtmField1

 AtmField2

 AtmField3

 OcnField1-proxy

 OcnField2-proxy

 OcnField3-proxy

OcnState

 AtmField1-proxy

 AtmField2-proxy

 AtmField3-proxy

 OcnField1

 OcnField2

 OcnField3

31

10.7 Object Model

The following is a simplified UML diagram showing the relationships among ESMF superstructure classes. See
Appendix A, A Brief Introduction to UML, for a translation table that lists the symbols in the diagram and their
meaning.

GridComp
 CplComp

Comp

Possible extensions

DataComp
VisComp

...

11 Application Driver and Required ESMF Methods

11.1 Description

Every ESMF application needs a driver code. Typically the driver layer is implemented as the "main" of the applica-
tion, although this is not strictly an ESMF requirement. Formost ESMF applications the task of the application driver
will be very generic: Initialize ESMF, create a top level Component and call its Intialize, Run and Finalize methods,
before destroying the top level Component again and callingESMF Finalize.

ESMF provides a number of different application driver templates in the
$ESMF_DIR/src/Superstructure/AppDriver directory. An appropriate one can be chosen depend-
ing on how the application is to be structured:

Sequential vs. Concurrent ExecutionIn a sequential execution model every Component executes onall PETs, with
each Component completing execution before the next Component begins. This has the appeal of simplicity of
data consumption and production: when a Gridded Component starts all required data is available for use, and
when a Gridded Component finishes all data produced is ready for consumption by the next Gridded Component.
This approach also has the possibility of less data movementif the grid and data decomposition is done such
that each processor’s memory contains the data needed by thenext Component.

In a concurrent execution model subgroups of PETs run Gridded Components and multiple Gridded Components
are active at the same time. Data exchange must be coordinated between Gridded Components so that data
deadlock does not occur. This strategy has the advantage of allowing coupling to other Gridded Components
at any time during the computational process, including nothaving to return to the calling level of code before
making data available.

Pairwise vs. Hub and SpokeCoupler Components are responsible for taking data from oneGridded Component and
putting it into the form expected by another Gridded Component. This might include regridding, change of units,
averaging, or binning.

Coupler Components can be written forpairwisedata exchange: the Coupler Component takes data from a
single Component and transforms it for use by another singleGridded Component. This simplifies the structure
of the Coupler Component code.

Couplers can also be written using ahub and spokemodel where a single Coupler accepts data from all other
Components, can do data merging or splitting, and formats data for all other Components.

32

Multiple Couplers, using either of the above two models or some mixture of these approaches, are also possible.

Implementation Language The ESMF framework currently has Fortran interfaces for allpublic functions. Some
functions also have C interfaces, and the number of these is expected to increase over time.

Number of Executables The simplest way to run an application is to run the same executable program on all PETs.
Different Components can still be run on mutually exclusivePETs by using branching (e.g., if this is PET 1,
2, or 3, run Component A, if it is PET 4, 5, or 6 run Component B).This is aSPMD model, Single Program
Multiple Data.

The alternative is to start a different executable program on different PETs. This is aMPMD model, Multiple
Program Multiple Data. There are complications with many job control systems on multiprocessor machines
in getting the different executables started, and getting inter-process communcations established. ESMF cur-
rently has some support for MPMD: different Components can run as separate executables, but the Coupler that
transfers data between the Components must still run on the union of their PETs. This means that the Coupler
Component must be linked into all of the executables.

11.2 Required ESMF Methods

There are a few methods that every ESMF application must contain. First, ESMC_Initialize() and
ESMC_Finalize() are in complete analogy toMPI_Init() andMPI_Finalize() known from MPI. All
ESMF programs, serial or parallel, must initialize the ESMFsystem at the beginning, and finalize it at the end of exe-
cution. The behavior of calling any ESMF method beforeESMC_Initialize(), or afterESMC_Finalize() is
undefined.

Second, every ESMF Component that is accessed by an ESMF application requires that its set services routine
is called throughESMC_<Grid/Cpl>CompSetServices(). The Component must implement one public entry
point, its set services routine, that can be called through theESMC_<Grid/Cpl>CompSetServices() library
routine. The Component set services routine is responsiblefor setting entry points for the standard ESMF Component
methods Initialize, Run, and Finalize.

Finally, the Component library callESMC_<Grid/Cpl>CompSetVM() can optionally be issuesbeforecalling
ESMC_<Grid/Cpl>CompSetServices(). Similar toESMC_<Grid/Cpl>CompSetServices(), the
ESMC_<Grid/Cpl>CompSetVM() call requires a public entry point into the Component. It allows the Component
to adjust certain aspects of its execution environment, i.e. its own VM, before it is started up.

The following sections discuss the above mentioned aspectsin more detail.

11.2.1 ESMC_Initialize - Initialize the ESMF Framework

INTERFACE:

int ESMC_Initialize(
int *rc, // return code
...); // optional arguments

#define ESMC_InitArgDefaultConfigFilename(ARG) \
ESMCI_Arg(ESMCI_InitArgDefaultConfigFilenameID,ARG)

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Initialize the ESMF. This method must be called before any other ESMF methods are used. The method contains a
barrier before returning, ensuring that all processes madeit successfully through initialization.

33

Typically ESMC_Initialize() will call MPI_Init() internally unless MPI has been initialized by the user
code before initializing the framework. If the MPI initialization is left toESMC_Initialize() it inherits all of the
MPI implementation dependent limitations of what may or maynot be done beforeMPI_Init(). For instance, it
is unsafe for some MPI implementations, such as MPICH, to do IO before the MPI environment is initialized. Please
consult the documentation of your MPI implementation for details.
Before exiting the application the user must callESMC_Finalize() to release resources and clean up the ESMF
gracefully.
The arguments are:

[rc] Return code; equalsESMF_SUCCESS if there are no errors.

[defaultConfigFilename] Name of the default configuration file for the entire application.

11.2.2 ESMC_Finalize - Finanalize the ESMF Framework

INTERFACE:

int ESMC_Finalize(void);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

This must be called once on each PET before the application exits to allow ESMF to flush buffers, close open connec-
tions, and release internal resources cleanly.

12 GridComp Class

12.1 Description

In Earth system modeling, the most natural way to think aboutan ESMF Gridded Component, orESMC_GridComp,
is as a piece of code representing a particular physical domain, such as an atmospheric model or an ocean model.
Gridded Components may also represent individual processes, such as radiation or chemistry. It’s up to the application
writer to decide how deeply to “componentize.”
Earth system software components tend to share a number of basic features. Most ingest and produce a variety
of physical fields, refer to a (possibly noncontiguous) spatial region and a grid that is partitioned across a set of
computational resources, and require a clock for things like stepping a governing set of PDEs forward in time. Most
can also be divided into distinct initialize, run, and finalize computational phases. These common characteristics are
used within ESMF to define a Gridded Component data structurethat is tailored for Earth system modeling and yet is
still flexible enough to represent a variety of domains.
A well designed Gridded Component does not store information internally about how it couples to other Gridded
Components. That allows it to be used in different contexts without changes to source code. The idea here is to avoid
situations in which slightly different versions of the samemodel source are maintained for use in different contexts -
standalone vs. coupled versions, for example. Data is passed in and out of Gridded Components using an ESMF State,
this is described in Section 14.1.
An ESMF Gridded Component has two parts, one which is user-written and another which is part of the framework.
The user-written part is software that represents a physical domain or performs some other computational function. It
forms the body of the Gridded Component. It may be a piece of legacy code, or it may be developed expressly for use
with ESMF. It must contain routines with standard ESMF interfaces that can be called to initialize, run, and finalize the
Gridded Component. These routines can have separate callable phases, such as distinct first and second initialization
steps.

34

ESMF provides the Gridded Component derived type,ESMC_GridComp. An ESMC_GridComp must be created
for every portion of the application that will be represented as a separate component. For example, in a climate model,
there may be Gridded Components representing the land, ocean, sea ice, and atmosphere. If the application contains
an ensemble of identical Gridded Components, every one has its own associatedESMC_GridComp. Each Gridded
Component has its own name and is allocated a set of computational resources, in the form of an ESMF Virtual
Machine, orVM.
The user-written part of a Gridded Component is associated with anESMC_GridComp derived type through a routine
calledESMC_SetServices(). This is a routine that the user must write, and declare public. Inside the SetServices
routine the user must callESMC_SetEntryPoint() methods that associate a standard ESMF operation with the
name of the corresponding Fortran subroutine in their user code.

12.2 Class API

12.2.1 ESMC_GridCompCreate - Create a Gridded Component

INTERFACE:

ESMC_GridComp ESMC_GridCompCreate(
const char *name, // in
const char *configFile, // in
ESMC_Clock clock, // in
int *rc // out

);

RETURN VALUE:

Newly created ESMC_GridComp object.

DESCRIPTION:

This interface creates anESMC_GridComp object. By default, a separate VM context will be created foreach
component. This implies creating a new MPI communicator andallocating additional memory to manage the VM
resources.
The arguments are:

name Name of the newly-createdESMC_GridComp.

mtype ESMC_GridComp model type, where models includesESMF_ATM, ESMF_LAND, ESMF_OCEAN,
ESMF_SEAICE, ESMF_RIVER, andESMF_GRIDCOMPTYPE_UNKNOWN. Note that this has no meaning to
the framework, it is an annotation for user code to query. Seesection?? for a complete list of valid types.

configFile The filename of anESMC_Config format file. If specified, this file is opened anESMC_Config config-
uration object is created for the file, and attached to the newcomponent.

clock Component-specificESMC_Clock. This clock is available to be queried and updated by the new
ESMC_GridComp as it chooses. This should not be the parent component clock,which should be maintained
and passed down to the initialize/run/finalize routines separately.

[rc] Return code; equalsESMF_SUCCESS if there are no errors.

12.2.2 ESMC_GridCompDestroy - Destroy a Gridded Component

INTERFACE:

35

int ESMC_GridCompDestroy(
ESMC_GridComp *comp // inout

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Releases all resources associated with thisESMC_GridComp.
The arguments are:

comp Release all resources associated with thisESMC_GridComp and mark the object as invalid. It is an error to
pass this object into any other routines after being destroyed.

12.2.3 ESMC_GridCompFinalize - Finalize a Gridded Component

INTERFACE:

int ESMC_GridCompFinalize(
ESMC_GridComp comp, // inout
ESMC_State importState, // inout
ESMC_State exportState, // inout
ESMC_Clock clock, // in
int phase, // in
int *userRc // out

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Call the associated user finalize code for a GridComp.
The arguments are:

comp ESMC_GridComp to call finalize routine for.

importState ESMC_State containing import data for coupling.

exportState ESMC_State containing export data for coupling.

clock ExternalESMC_Clock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations.

phase Component providers must document whether each of their routines aresingle-phase ormulti-phase.
Single-phase routines require only one invocation to complete their work. Multi-phase routines provide multiple
subroutines to accomplish the work, accomodating components which must complete part of their work, return
to the caller and allow other processing to occur, and then continue the original operation. For multiple-phase
child components, this is the integer phase number to be invoked. For single-phase child components this
argument must be 1.

[userRc] Return code set byuserRoutine before returning.

36

12.2.4 ESMC_GridCompGetInternalState - Get the Internal State of a Gridded Component

INTERFACE:

void *ESMC_GridCompGetInternalState(
ESMC_GridComp comp, // in
int *rc // out

);

RETURN VALUE:

Pointer to private data block that is stored in the internal state.

DESCRIPTION:

Available to be called by anESMC_GridComp at any time afterESMC_GridCompSetInternalState has been
called. Since init, run, and finalize must be separate subroutines, data that they need to share in common can either
be global data, or can be allocated in a private data block andthe address of that block can be registered with the
framework and retrieved by this call. When running multipleinstantiations of anESMC_GridComp, for example
during ensemble runs, it may be simpler to maintain private data specific to each run with private data blocks. A
correspondingESMC_GridCompSetInternalStatecall sets the data pointer to this block, and this call retrieves
the data pointer.
Only thelast data block set viaESMC_GridCompSetInternalStatewill be accessible.
The arguments are:

comp An ESMC_GridComp object.

[rc] Return code; equalsESMF_SUCCESS if there are no errors.

12.2.5 ESMC_GridCompInitialize - Initialize a Gridded Component

INTERFACE:

int ESMC_GridCompInitialize(
ESMC_GridComp comp, // inout
ESMC_State importState, // inout
ESMC_State exportState, // inout
ESMC_Clock clock, // in
int phase, // in
int *userRc // out

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Call the associated user initialization code for a GridComp.
The arguments are:

comp ESMC_GridComp to call initialize routine for.

importState ESMC_State containing import data for coupling.

exportState ESMC_State containing export data for coupling.

37

clock ExternalESMC_Clock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations.

phase Component providers must document whether each of their routines aresingle-phase ormulti-phase.
Single-phase routines require only one invocation to complete their work. Multi-phase routines provide multiple
subroutines to accomplish the work, accomodating components which must complete part of their work, return
to the caller and allow other processing to occur, and then continue the original operation. For multiple-phase
child components, this is the integer phase number to be invoked. For single-phase child components this
argument must be 1.

[userRc] Return code set byuserRoutine before returning.

12.2.6 ESMC_GridCompPrint - Print the contents of a GridComp

INTERFACE:

int ESMC_GridCompPrint(
ESMC_GridComp comp // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Prints information about anESMC_GridComp to stdout.
The arguments are:

comp An ESMC_GridComp object.

12.2.7 ESMC_GridCompRun - Run a Gridded Component

INTERFACE:

int ESMC_GridCompRun(
ESMC_GridComp comp, // inout
ESMC_State importState, // inout
ESMC_State exportState, // inout
ESMC_Clock clock, // in
int phase, // in
int *userRc // out

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Call the associated user run code for a GridComp.
The arguments are:

38

comp ESMC_GridComp to call run routine for.

importState ESMC_State containing import data for coupling.

exportState ESMC_State containing export data for coupling.

clock ExternalESMC_Clock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations.

phase Component providers must document whether each of their routines aresingle-phase ormulti-phase.
Single-phase routines require only one invocation to complete their work. Multi-phase routines provide multiple
subroutines to accomplish the work, accomodating components which must complete part of their work, return
to the caller and allow other processing to occur, and then continue the original operation. For multiple-phase
child components, this is the integer phase number to be invoked. For single-phase child components this
argument must be 1.

[userRc] Return code set byuserRoutine before returning.

12.2.8 ESMC_GridCompSetEntryPoint - Set user routine as entry point for standard Component method

INTERFACE:

int ESMC_GridCompSetEntryPoint(
ESMC_GridComp comp, // in
enum ESMC_Method method, // in
void (*userRoutine) // in

(ESMC_GridComp, ESMC_State, ESMC_State, ESMC_Clock *, int *),
int phase // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Registers a user-supplieduserRoutine as the entry point for one of the predefined Component methods. After this
call theuserRoutine becomes accessible via the standard Component method API.
The arguments are:

comp An ESMC_GridComp object.

method One of a set of predefined Component methods - e.g.ESMF_METHOD_INITIALIZE,
ESMF_METHOD_RUN, ESMF_METHOD_FINALIZE. See section?? for a complete list of valid method
options.

userRoutine The user-supplied subroutine to be associated for this Componentmethod. This subroutine does not
have to be public.

phase The phase number for multi-phase methods.

39

12.2.9 ESMC_GridCompSetInternalState - Set the Internal State of a Gridded Component

INTERFACE:

int ESMC_GridCompSetInternalState(
ESMC_GridComp comp, // inout
void *data // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Available to be called by anESMC_GridComp at any time, but expected to be most useful when called duringthe
registration process, or initialization. Since init, run,and finalize must be separate subroutines, data that they need to
share in common can either be global data, or can be allocatedin a private data block and the address of that block
can be registered with the framework and retrieved by subsequent calls. When running multiple instantiations of an
ESMC_GridComp, for example during ensemble runs, it may be simpler to maintain private data specific to each run
with private data blocks. A correspondingESMC_GridCompGetInternalState call retrieves the data pointer.
Only thelast data block set viaESMC_GridCompSetInternalStatewill be accessible.
The arguments are:

comp An ESMC_GridComp object.

data Pointer to private data block to be stored.

12.2.10 ESMC_GridCompSetServices - Call user routine to register GridComp methods

INTERFACE:

int ESMC_GridCompSetServices(
ESMC_GridComp comp, // in
void (*userRoutine)(ESMC_GridComp, int *), // in
int *userRc // out

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Call into user provideduserRoutinewhich is responsible for setting Component’s Initialize(), Run() and Finalize()
services.
The arguments are:

comp Gridded Component.

userRoutine Routine to be called.

userRc Return code set byuserRoutine before returning.

The Component writer must supply a subroutine with the exactinterface shown above for theuserRoutine argu-
ment.
The userRoutine, when called by the framework, must make successive calls to
ESMC_GridCompSetEntryPoint() to preset callback routines for standard Component Initialize(), Run() and
Finalize() methods.

40

13 CplComp Class

13.1 Description

In a large, multi-component application such as a weather forecasting or climate prediction system running within
ESMF, physical domains and major system functions are represented as Gridded Components (see Section 12.1).
A Coupler Component, orESMC_CplComp, arranges and executes the data transformations between the Gridded
Components. Ideally, Coupler Components should contain all the information about inter-component communication
for an application. This enables the Gridded Components in the application to be used in multiple contexts; that is, used
in different coupled configurations without changes to their source code. For example, the same atmosphere might
in one case be coupled to an ocean in a hurricane prediction model, and to a data assimilation system for numerical
weather prediction in another. A single Coupler Component can couple two or more Gridded Components.
Like Gridded Components, Coupler Components have two parts, one that is provided by the user and another that is
part of the framework. The user-written portion of the software is the coupling code necessary for a particular exchange
between Gridded Components. This portion of the Coupler Component code must be divided into separately callable
initialize, run, and finalize methods. The interfaces for these methods are prescribed by ESMF.
The term “user-written” is somewhat misleading here, sincewithin a Coupler Component the user can leverage ESMF
infrastructure software for regridding, redistribution,lower-level communications, calendar management, and other
functions. However, ESMF is unlikely to offer all the software necessary to customize a data transfer between Gridded
Components. For instance, ESMF does not currently offer tools for unit tranformations or time averaging operations,
so users must manage those operations themselves.
The second part of a Coupler Component is theESMC_CplComp derived type within ESMF. The user must create one
of these types to represent a specific coupling function, such as the regular transfer of data between a data assimilation
system and an atmospheric model.1

The user-written part of a Coupler Component is associated with anESMC_CplComp derived type through a rou-
tine calledESMC_SetServices(). This is a routine that the user must write and declare public. Inside the
ESMC_SetServices() routine the user must callESMC_SetEntryPoint() methods that associate a stan-
dard ESMF operation with the name of the corresponding Fortran subroutine in their user code. For example, a user
routine called “couplerInit” might be associated with the standard initialize routine in a Coupler Component.

13.2 Class API

13.2.1 ESMC_CplCompCreate - Create a Coupler Component

INTERFACE:

ESMC_CplComp ESMC_CplCompCreate(
const char *name, // in
const char *configFile, // in
ESMC_Clock clock, // in
int *rc // out

);

RETURN VALUE:

Newly created ESMC_CplComp object.

DESCRIPTION:

This interface creates anESMC_CplComp object. By default, a separate VM context will be created foreach compo-
nent. This implies creating a new MPI communicator and allocating additional memory to manage the VM resources.
The arguments are:

name Name of the newly-createdESMC_CplComp.

1It is not necessary to create a Coupler Component for each individual datatransfer.

41

configFile The filename of anESMC_Config format file. If specified, this file is opened anESMC_Config config-
uration object is created for the file, and attached to the newcomponent.

clock Component-specificESMC_Clock. This clock is available to be queried and updated by the new
ESMC_CplComp as it chooses. This should not be the parent component clock,which should be maintained
and passed down to the initialize/run/finalize routines separately.

[rc] Return code; equalsESMF_SUCCESS if there are no errors.

13.2.2 ESMC_CplCompDestroy - Destroy a Coupler Component

INTERFACE:

int ESMC_CplCompDestroy(
ESMC_CplComp *comp // inout

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Releases all resources associated with thisESMC_CplComp.
The arguments are:

comp Release all resources associated with thisESMC_CplComp and mark the object as invalid. It is an error to pass
this object into any other routines after being destroyed.

13.2.3 ESMC_CplCompFinalize - Finalize a Coupler Component

INTERFACE:

int ESMC_CplCompFinalize(
ESMC_CplComp comp, // inout
ESMC_State importState, // inout
ESMC_State exportState, // inout
ESMC_Clock clock, // in
int phase, // in
int *userRc // out

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Call the associated user finalize code for a CplComp.
The arguments are:

comp ESMC_CplComp to call finalize routine for.

importState ESMC_State containing import data for coupling.

42

exportState ESMC_State containing export data for coupling.

clock ExternalESMC_Clock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations.

phase Component providers must document whether each of their routines aresingle-phase ormulti-phase.
Single-phase routines require only one invocation to complete their work. Multi-phase routines provide multiple
subroutines to accomplish the work, accomodating components which must complete part of their work, return
to the caller and allow other processing to occur, and then continue the original operation. For multiple-phase
child components, this is the integer phase number to be invoked. For single-phase child components this
argument must be 1.

[userRc] Return code set byuserRoutine before returning.

13.2.4 ESMC_CplCompGetInternalState - Get the internal State of a Coupler Component

INTERFACE:

void *ESMC_CplCompGetInternalState(
ESMC_CplComp comp, //in
int *rc // out

);

RETURN VALUE:

Pointer to private data block that is stored in the internal state.

DESCRIPTION:

Available to be called by anESMC_CplComp at any time afterESMC_CplCompSetInternalState has been
called. Since init, run, and finalize must be separate subroutines, data that they need to share in common can either
be global data, or can be allocated in a private data block andthe address of that block can be registered with the
framework and retrieved by this call. When running multipleinstantiations of anESMC_CplComp, for example
during ensemble runs, it may be simpler to maintain private data specific to each run with private data blocks. A
correspondingESMC_CplCompSetInternalState call sets the data pointer to this block, and this call retrieves
the data pointer.
Only thelast data block set viaESMC_CplCompSetInternalStatewill be accessible.
The arguments are:

comp An ESMC_CplComp object.

[rc] Return code; equalsESMF_SUCCESS if there are no errors.

13.2.5 ESMC_CplCompInitialize - Initialize a Coupler Component

INTERFACE:

int ESMC_CplCompInitialize(
ESMC_CplComp comp, // inout
ESMC_State importState, // inout
ESMC_State exportState, // inout
ESMC_Clock clock, // in
int phase, // in
int *userRc // out

);

43

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Call the associated user initialize code for a CplComp.
The arguments are:

comp ESMC_CplComp to call initialize routine for.

importState ESMC_State containing import data for coupling.

exportState ESMC_State containing export data for coupling.

clock ExternalESMC_Clock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations.

phase Component providers must document whether each of their routines aresingle-phase ormulti-phase.
Single-phase routines require only one invocation to complete their work. Multi-phase routines provide multiple
subroutines to accomplish the work, accomodating components which must complete part of their work, return
to the caller and allow other processing to occur, and then continue the original operation. For multiple-phase
child components, this is the integer phase number to be invoked. For single-phase child components this
argument must be 1.

[userRc] Return code set byuserRoutine before returning.

13.2.6 ESMC_CplCompPrint - Print a Coupler Component

INTERFACE:

int ESMC_CplCompPrint(
ESMC_CplComp comp // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Prints information about anESMC_CplComp to stdout.
The arguments are:

comp An ESMC_CplComp object.

13.2.7 ESMC_CplCompRun - Run a Coupler Component

INTERFACE:

44

int ESMC_CplCompRun(
ESMC_CplComp comp, // inout
ESMC_State importState, // inout
ESMC_State exportState, // inout
ESMC_Clock clock, // in
int phase, // in
int *userRc // out

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Call the associated user run code for a CplComp.
The arguments are:

comp ESMC_CplComp to call run routine for.

importState ESMC_State containing import data for coupling.

exportState ESMC_State containing export data for coupling.

clock ExternalESMC_Clock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations.

phase Component providers must document whether each of their routines aresingle-phase ormulti-phase.
Single-phase routines require only one invocation to complete their work. Multi-phase routines provide multiple
subroutines to accomplish the work, accomodating components which must complete part of their work, return
to the caller and allow other processing to occur, and then continue the original operation. For multiple-phase
child components, this is the integer phase number to be invoked. For single-phase child components this
argument must be 1.

[userRc] Return code set byuserRoutine before returning.

13.2.8 ESMC_CplCompSetEntryPoint - Set the Entry point of aCoupler Component

INTERFACE:

int ESMC_CplCompSetEntryPoint(
ESMC_CplComp comp, // in
enum ESMC_Method method, // in
void (*userRoutine) // in

(ESMC_CplComp, ESMC_State, ESMC_State, ESMC_Clock *, int *),
int phase // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Registers a user-supplieduserRoutine as the entry point for one of the predefined Component methods. After this
call theuserRoutine becomes accessible via the standard Component method API.
The arguments are:

45

comp An ESMC_CplComp object.

method One of a set of predefined Component methods - e.g.ESMF_METHOD_INITIALIZE,
ESMF_METHOD_RUN, ESMF_METHOD_FINALIZE. See section?? for a complete list of valid method
options.

userRoutine The user-supplied subroutine to be associated for this Componentmethod. This subroutine does not
have to be public.

phase The phase number for multi-phase methods.

13.2.9 ESMC_CplCompSetInternalState - Set the internal State of a Coupler Component

INTERFACE:

int ESMC_CplCompSetInternalState(
ESMC_CplComp comp, // inout
void *data // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Available to be called by anESMC_CplComp at any time, but expected to be most useful when called duringthe
registration process, or initialization. Since init, run,and finalize must be separate subroutines, data that they need to
share in common can either be global data, or can be allocatedin a private data block and the address of that block
can be registered with the framework and retrieved by subsequent calls. When running multiple instantiations of an
ESMC_CplComp, for example during ensemble runs, it may be simpler to maintain private data specific to each run
with private data blocks. A correspondingESMC_CplCompGetInternalState call retrieves the data pointer.
Only thelast data block set viaESMC_CplCompSetInternalStatewill be accessible.
The arguments are:

comp An ESMC_CplComp object.

data Pointer to private data block to be stored.

13.2.10 ESMC_CplCompSetServices - Destroy a Coupler Component

INTERFACE:

int ESMC_CplCompSetServices(
ESMC_CplComp comp, // in
void (*userRoutine)(ESMC_CplComp, int *), // in
int *userRc // out

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

46

DESCRIPTION:

Call into user provideduserRoutinewhich is responsible for setting Component’s Initialize(), Run() and Finalize()
services.
The arguments are:

comp Gridded Component.

userRoutine Routine to be called.

userRc Return code set byuserRoutine before returning.

The Component writer must supply a subroutine with the exactinterface shown above for theuserRoutine argu-
ment.
The userRoutine, when called by the framework, must make successive calls to
ESMC_CplCompSetEntryPoint() to preset callback routines for standard Component Initialize(), Run()
and Finalize() methods.

14 State Class

14.1 Description

A State contains the data and metadata to be transferred between ESMF Components. It is an important class, because
it defines a standard for how data is represented in data transfers between Earth science components. The State
construct is a rational compromise between a fully prescribed interface - one that would dictate what specific fields
should be transferred between components - and an interfacein which data structures are completely ad hoc.
There are two types of States, import and export. An import State contains data that is necessary for a Gridded
Component or Coupler Component to execute, and an export State contains the data that a Gridded Component or
Coupler Component can make available.
States can contain Arrays, ArrayBundles, Fields, FieldBundles, and other States. However, the current C API only
provides State access to Arrays, Fields and nested States. States cannot directly contain native language arrays (i.e.
Fortran or C style arrays). Objects in a State must span the VMon which they are running. For sequentially executing
components which run on the same set of PETs this happens by calling the object create methods on each PET, creating
the object in unison. For concurrently executing components which are running on subsets of PETs, an additional
method, calledESMF_StateReconcile(), is provided by ESMF to broadcast information about objectswhich
were created in sub-components. Currently this method is only available through the ESMF Fortran API. Hence
the Coupler Component reponsible for reconciling States from Component that execute on subsets of PETs must be
written in Fortran.
State methods include creation and deletion, adding and retrieving data items, and performing queries.

14.2 Restrictions and Future Work

1. No synchronization of object ids at object create time.Object IDs are using during the reconcile process to
identify objects which are unknown to some subset of the PETsin the currently running VM. Object IDs are
assigned in sequential order at object create time.

One important request by the user community during the ESMF object design was that there be no communi-
cation overhead or synchronization when creating distributed ESMF objects. As a consequence it is required to
create these objects inunison across all PETs in order to keep the ESMF object identifiaction in sync.

14.3 Class API

14.3.1 ESMC_StateAddArray - Add an Array object to a State

INTERFACE:

47

int ESMC_StateAddArray(
ESMC_State state, // in
ESMC_Array array // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Add an Array object to aESMC_State object.
The arguments are:

state The State object.

array The Array object to be included within the State.

14.3.2 ESMC_StateAddField - Add a Field object to a State

INTERFACE:

int ESMC_StateAddField(
ESMC_State state, // in
ESMC_Field field // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Add an Array object to aESMC_State object.
The arguments are:

state The State object.

array The Array object to be included within the State.

14.3.3 ESMC_StateCreate - Create an Array

INTERFACE:

ESMC_State ESMC_StateCreate(
const char *name, // in
int *rc // out

);

RETURN VALUE:

Newly created ESMC_State object.

DESCRIPTION:

Create anESMC_State object.
The arguments are:

48

[name] The name for the State object. If not specified, i.e. NULL, a default unique name will be generated:
"StateNNN" where NNN is a unique sequence number from 001 to 999.

rc Return code; equalsESMF_SUCCESS if there are no errors.

14.3.4 ESMC_StateDestroy - Destroy a State

INTERFACE:

int ESMC_StateDestroy(
ESMC_State *state // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Destroy aESMC_State object.
The arguments are:

state The State to be destroyed.

14.3.5 ESMC_StateGetArray - Obtains an Array object from a State

INTERFACE:

int ESMC_StateGetArray(
ESMC_State state, // in
const char *name, // in
ESMC_Array *array // out

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Obtain a pointer to anESMC_Array object contained within a State.
The arguments are:

state The State object.

name The name of the desired Array object.

array A pointer to the Array object.

49

14.3.6 ESMC_StateGetField - Obtains a Field object from a State

INTERFACE:

int ESMC_StateGetField(
ESMC_State state, // in
const char *name, // in
ESMC_Field *field // out

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Obtain a pointer to aESMC_Field object contained within a State.
The arguments are:

state The State object.

name The name of the desired Field object.

array A pointer to the Field object.

14.3.7 ESMC_StatePrint - Print the contents of a State

INTERFACE:

int ESMC_StatePrint(
ESMC_State state // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Prints the contents of aESMC_State object.
The arguments are:

state The State to be printed.

50

Part IV

Infrastructure: Fields and Grids

51

15 Overview of Infrastructure Data Handling

The ESMF infrastructure data classes are part of the framework’s hierarchy of structures for handling Earth system
model data and metadata on parallel platforms. The hierarchy is in complexity; the simplest data class in the infras-
tructure represents a distributed data array and the most complex data class represents a bundle of physical fields that
are discretized on the same grid. However, the current C API does not support bundled data structures yet. Array
and Field are the two data classes offered by the ESMF C language binding. Data class methods are called both from
user-written code and from other classes internal to the framework.
Data classes are distributed overDEs, orDecomposition Elements. A DE represents a piece of a decomposition. A
DELayout is a collection of DEs with some associated connectivity that describes a specific distribution. For example,
the distribution of a grid divided into four segments in the x-dimension would be expressed in ESMF as a DELayout
with four DEs lying along an x-axis. This abstract concept enables a data decomposition to be defined in terms of
threads, MPI processes, virtual decomposition elements, or combinations of these without changes to user code. This
is a primary strategy for ensuring optimal performance and portability for codes using the ESMF for communications.
ESMF data classes are useful because they provide a standard, convenient way for developers to collect together
information related to model or observational data. The information assembled in a data class includes a data pointer,
a set of attributes (e.g. units, although attributes can also be user-defined), and a description of an associated grid. The
same set of information within an ESMF data object can be usedby the framework to arrange intercomponent data
transfers, to perform I/O, for communications such as gathers and scatters, for simplification of interfaces within user
code, for debugging, and for other functions. This unifies and organizes codes overall so that the user need not define
different representations of metadata for the same field forI/O and for component coupling.
Since it is critical that users be able to introduce ESMF intotheir codes easily and incrementally, ESMF data classes
can be created based on native Fortran pointers. Likewise, there are methods for retrieving native Fortran pointers
from within ESMF data objects. This allows the user to perform allocations using ESMF, and to retrieve Fortran
arrays later for optimized model calculations. The ESMF data classes do not have associated differential operators or
other mathematical methods.
For flexibility, it is not necessary to build an ESMF data object all at once. For example, it’s possible to create a field
but to defer allocation of the associated field data until a later time.

Key Features
Hierarchy of data structures designed specifically for the Earth system domain and high performance, parallel
computing.
Multi-use ESMF structures simplify user code overall.
Data objects support incremental construction and deferred allocation.
Native Fortran arrays can be associated with or retrieved from ESMF data objects, for ease of adoption,
convenience, and performance.

15.1 Infrastructure Data Classes

The main classes that are used for model and observational data manipulation are as follows:

• Array An ESMF Array contains a data pointer, information about itsassociated datatype, precision, and dimen-
sion.

Data elements in Arrays are partitioned into categories defined by the role the data element plays in distributed
halo operations. Haloing - sometimes called ghosting - is the practice of copying portions of array data to mul-
tiple memory locations to ensure that data dependencies canbe satisfied quickly when performing a calculation.
ESMF Arrays contain anexclusivedomain, which contains data elements updated exclusively and definitively
by a given DE; acomputational domain, which contains all data elements with values that are updated by the
DE in computations; and atotal domain, which includes both the computational domain and data elements from
other DEs which may be read but are not updated in computations.

• Field A Field holds model and/or observational data together withits underlying grid or set of spatial locations.
It provides methods for configuration, initialization, setting and retrieving data values, data I/O, data regridding,
and manipulation of attributes.

52

15.2 Design and Implementation Notes

1. In communication methods such as Regrid, Redist, Scatter, etc. the Field code cascades down through the Array
code, so that the actual implementation exist in only one place in the source.

53

16 Field Class

16.1 Description

An ESMF Field represents a physical field, such as temperature. The motivation for including Fields in ESMF is that
bundles of Fields are the entities that are normally exchanged when coupling Components.
The ESMF Field class contains distributed and discretized field data, a reference to its associated grid, and metadata.
The Field class stores the gridstaggeringfor that physical field. This is the relationship of how the data array of a field
maps onto a grid (e.g. one item per cell located at the cell center, one item per cell located at the NW corner, one item
per cell vertex, etc.). This means that different Fields which are on the same underlying ESMF Grid but have different
staggerings can share the same Grid object without needing to replicate it multiple times.
Fields can be added to States for use in inter-Component datacommunications.
Field communication capabilities include: data redistribution, regridding, scatter, gather, sparse-matrix multiplication,
and halo update. These are discussed in more detail in the documentation for the specific method calls. ESMF does
not currently support vector fields, so the components of a vector field must be stored as separate Field objects.
A Field serves as an annotator of data, since it carries a description of the grid it is associated with and metadata
such as name and units. Fields can be used in this capacity alone, as convenient, descriptive containers into which
arrays can be placed and retrieved. However, for most codes the primary use of Fields is in the context of import
and export States, which are the objects that carry couplinginformation between Components. Fields enable data
to be self-describing, and a State holding ESMF Fields contains data in a standard format that can be queried and
manipulated.
The sections below go into more detail about Field usage.

16.1.1 Field create and destroy

Fields can be created and destroyed at any time during application execution. However, these Field methods require
some time to complete. We do not recommend that the user create or destroy Fields inside performance-critical
computational loops.
All versions of theESMC_FieldCreate() routines require a Mesh object as input. The Mesh contains the infor-
mation needed to know which Decomposition Elements (DEs) are participating in the processing of this Field, and
which subsets of the data are local to a particular DE.
The details of how the create process happens depends on which of the variants of theESMC_FieldCreate() call
is used.
When finished with anESMC_Field, theESMC_FieldDestroy method removes it. However, the objects inside
theESMC_Field created externally should be destroyed separately, since objects can be added to more than one
ESMC_Field. For example, the sameESMF_Mesh can be referenced by multipleESMC_Fields. In this case the
internal Mesh is not deleted by theESMC_FieldDestroy call.

16.2 Class API

16.2.1 ESMC_FieldCreate - Create a Field

INTERFACE:

ESMC_Field ESMC_FieldCreate(
ESMC_Mesh mesh, // in
ESMC_ArraySpec arrayspec, // in
ESMC_InterfaceInt gridToFieldMap, // in
ESMC_InterfaceInt ungriddedLBound, // in
ESMC_InterfaceInt ungriddedUBound, // in
const char *name, // in
int *rc // out

);

RETURN VALUE:

54

Newly created ESMC_Field object.

DESCRIPTION:

Creates aESMC_Field object.
The arguments are:

mesh A ESMC_Mesh object.

arrayspec A ESMC_ArraySpec object describing data type and kind specification.

gridToFieldMap List with number of elements equal to the grid’s dimCount. The list elements map each dimension
of the grid to a dimension in the field by specifying the appropriate field dimension index. The default is to
map all of the grid’s dimensions against the lowest dimensions of the field in sequence, i.e. gridToFieldMap
= (/1,2,3,.../). The values of all gridToFieldMap entries must be greater than or equal to one and smaller than
or equal to the field rank. It is erroneous to specify the same gridToFieldMap entry multiple times. The total
ungridded dimensions in the field are the total field dimensions less the dimensions in the grid. Ungridded
dimensions must be in the same order they are stored in the field. If the Field dimCount is less than the Mesh
dimCount then the default gridToFieldMap will contain zeros for the rightmost entries. A zero entry in the
gridToFieldMap indicates that the particular Mesh dimension will be replicating the Field across the DEs along
this direction.

ungriddedLBound Lower bounds of the ungridded dimensions of the field. The number of elements in the ungrid-
dedLBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions of the field
are also undistributed. When field dimension count is greater than grid dimension count, both ungriddedLBound
and ungriddedUBound must be specified. When both are specified the values are checked for consistency. Note
that the the ordering of these ungridded dimensions is the same as their order in the field.

ungriddedUBound Upper bounds of the ungridded dimensions of the field. The number of elements in the ungridde-
dUBound is equal to the number of ungridded dimensions in thefield. All ungridded dimensions of the field are
also undistributed. When field dimension count is greater than grid dimension count, both ungriddedLBound
and ungriddedUBound must be specified. When both are specified the values are checked for consistency. Note
that the the ordering of these ungridded dimensions is the same as their order in the field.

[name] The name for the newly created field. If not specified, i.e. NULL, a default unique name will be generated:
"FieldNNN" where NNN is a unique sequence number from 001 to 999.

[rc] Return code; equalsESMF_SUCCESS if there are no errors.

16.2.2 ESMC_FieldDestroy - Destroy a Field

INTERFACE:

int ESMC_FieldDestroy(
ESMC_Field *field // inout

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Releases all resources associated with thisESMC_Field. Return code; equalsESMF_SUCCESS if there are no
errors.
The arguments are:

field Destroy contents of thisESMC_Field.

55

16.2.3 ESMC_FieldGetArray - Get the internal Array stored in the Field

INTERFACE:

ESMC_Array ESMC_FieldGetArray(
ESMC_Field field, // in
int *rc // out

);

RETURN VALUE:

The ESMC_Array object stored in the ESMC_Field.

DESCRIPTION:

Get the internal Array stored in theESMC_Field.
The arguments are:

field Get the internal Array stored in thisESMC_Field.

[rc] Return code; equalsESMF_SUCCESS if there are no errors.

16.2.4 ESMC_FieldGetMesh - Get the internal Mesh stored in the Field

INTERFACE:

ESMC_Mesh ESMC_FieldGetMesh(
ESMC_Field field, // in
int *rc // out

);

RETURN VALUE:

The ESMC_Mesh object stored in the ESMC_Field.

DESCRIPTION:

Get the internal Mesh stored in theESMC_Field.
The arguments are:

field Get the internal Mesh stored in thisESMC_Field.

[rc] Return code; equalsESMF_SUCCESS if there are no errors.

16.2.5 ESMC_FieldGetPtr - Get the internal Fortran data pointer stored in the Field

INTERFACE:

void *ESMC_FieldGetPtr(
ESMC_Field field, // in
int localDe, // in
int *rc // out

);

56

RETURN VALUE:

The Fortran data pointer stored in the ESMC_Field.

DESCRIPTION:

Get the internal Fortran data pointer stored in theESMC_Field.
The arguments are:

field Get the internal Fortran data pointer stored in thisESMC_Field.

localDe Local DE for which information is requested.[0,..,localDeCount-1].

[rc] Return code; equalsESMF_SUCCESS if there are no errors.

16.2.6 ESMC_FieldPrint - Print the internal information of a Field

INTERFACE:

int ESMC_FieldPrint(
ESMC_Field field // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Print the internal information within thisESMC_Field. Return code; equalsESMF_SUCCESS if there are no errors.
The arguments are:

field Print contents of thisESMC_Field.

17 Array Class

17.1 Description

The Array class is an alternative to the Field class for representing distributed, structured data. Unlike Fields, which
are built to carry grid coordinate information, Arrays can only carry information about theindicesassociated with
grid cells. Since they do not have coordinate information, Arrays cannot be used to calculate interpolation weights.
However, if the user can supply interpolation weights, the Array sparse matrix multiply operation can be used to apply
the weights and transfer data to the new grid. Arrays can alsoperform redistribution, scatter, and gather communication
operations.
Like Fields, Arrays can be added to a State and used in inter-Component data communications.
From a technical standpoint, the ESMF Array class is an indexspace based, distributed data storage class. It provides
DE-local memory allocations within DE-centric index regions and defines the relationship to the index space described
by the ESMF DistGrid. The Array class offers common communication patterns within the index space formalism.

17.2 Class API

17.2.1 ESMC_ArrayCreate - Create an Array

INTERFACE:

57

ESMC_Array ESMC_ArrayCreate(
ESMC_ArraySpec arrayspec, // in
ESMC_DistGrid distgrid, // in
const char* name, // in
int *rc // out

);

RETURN VALUE:

Newly created ESMC_Array object.

DESCRIPTION:

Create anESMC_Array object.
The arguments are:

arrayspec ESMC_ArraySpec object containing the type/kind/rank information.

distgrid ESMC_DistGrid object that describes how the Array is decomposed and distributed over DEs. The dim-
Count of distgrid must be smaller or equal to the rank specified in arrayspec, otherwise a runtime ESMF error
will be raised.

[name] The name for the Array object. If not specified, i.e. NULL, a default unique name will be generated: "Ar-
rayNNN" where NNN is a unique sequence number from 001 to 999.

[rc] Return code; equalsESMF_SUCCESS if there are no errors.

17.2.2 ESMC_ArrayDestroy - Destroy an Array

INTERFACE:

int ESMC_ArrayDestroy(
ESMC_Array *array // inout

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Destroy anESMC_Array object.
The arguments are:

array ESMC_Array object to be destroyed.

17.2.3 ESMC_ArrayGetName - Get the name of an Array

INTERFACE:

const char *ESMC_ArrayGetName(
ESMC_Array array, // in
int *rc // out

);

58

RETURN VALUE:

Pointer to the Array name string.

DESCRIPTION:

Get the name of the specifiedESMC_Array object.
The arguments are:

array ESMC_Array object to be queried.

[rc] Return code; equalsESMF_SUCCESS if there are no errors.

17.2.4 ESMC_ArrayGetPtr - Get pointer to Array data.

INTERFACE:

void *ESMC_ArrayGetPtr(
ESMC_Array array, // in
int localDe, // in
int *rc // out

);

RETURN VALUE:

Pointer to the Array data.

DESCRIPTION:

Get pointer to the data of the specifiedESMC_Array object.
The arguments are:

array ESMC_Array object to be queried.

localDe Local De for which to data pointer is queried.

[rc] Return code; equalsESMF_SUCCESS if there are no errors.

17.2.5 ESMC_ArrayPrint - Print an Array

INTERFACE:

int ESMC_ArrayPrint(
ESMC_Array array // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Print internal information of the specifiedESMC_Array object.
The arguments are:

array ESMC_Array object to be printed.

59

18 ArraySpec Class

18.1 Description

An ArraySpec is a very simple class that contains type, kind,and rank information about an Array. This information
is stored in two parameters.TypeKind describes the data type of the elements in the Array and theirprecision.Rank
is the number of dimensions in the Array.
The only methods that are associated with the ArraySpec class are those that allow you to set and retrieve this infor-
mation.

18.2 Class API

18.2.1 ESMC_ArraySpecGet - Get values from an ArraySpec

INTERFACE:

int ESMC_ArraySpecGet(
ESMC_ArraySpec arrayspec, // inout
int *rank, // in
enum ESMC_TypeKind *typekind // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Returns information about the contents of anESMC_ArraySpec.
The arguments are:

arrayspec TheESMC_ArraySpec to query.

rank Array rank (dimensionality - 1D, 2D, etc). Maximum allowed is 7D.

typekind Array typekind. See section ?? for valid values.

18.2.2 ESMC_ArraySpecSet - Set values for an ArraySpec

INTERFACE:

int ESMC_ArraySpecSet(
ESMC_ArraySpec *arrayspec, // inout
int rank, // in
enum ESMC_TypeKind typekind // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Set an Array specification - typekind, and rank.
The arguments are:

arrayspec TheESMC_ArraySpec to set.

rank Array rank (dimensionality - 1D, 2D, etc). Maximum allowed is 7D.

typekind Array typekind. See section ?? for valid values.

60

19 Mesh Class

19.1 Description

Unstructured grids are commonly used in the computational solution of Partial Differential equations. These are
especially useful for problems that involve complex geometry, where using the less flexible structured grids can result
in grid representation of regions where no computation is needed. Finite element and finite volume methods map
naturally to unstructured grids and are used commonly in hydrology, ocean modeling, and many other applications.
In order to provide support for application codes using unstructured grids, the ESMF library provides a class for
representing unstructured grids called theMesh. Fields can be created on a Mesh to hold data. In Fortran,
Fields created on a Mesh can also be used as either the source or destination or both of an interpolaton (i.e. an
ESMF_FieldRegridStore() call). This capability is currently not supported with the Cinterface, however, if
the C Field is passed via a State to a component written in Fortran then the regridding can be performed there. The
rest of this section describes the Mesh class and how to create and use them in ESMF.

19.1.1 Mesh Representation in ESMF

A Mesh in ESMF is described in terms ofnodesandelements. A node is a point in space which represents where the
coordinate information in a Mesh is located. An element is a higher dimensional shape constructed of nodes. Elements
give a Mesh its shape and define the relationship of the nodes to one another. Field data may be located on a Mesh’s
nodes.

19.1.2 Supported Meshes

The range of Meshes supported by ESMF are defined by several factors: dimension, element types, and distribution.
ESMF currently only supports Meshes whose number of coordinate dimensions (spatial dimension) is 2 or 3. The
dimension of the elements in a Mesh (parametric dimension) must be less than or equal to the spatial dimension, but
also must be either 2 or 3. This means that an ESMF mesh may be either 2D elements in 2D space, 3D elements in
3D space, or a manifold constructed of 2D elements embedded in 3D space.
ESMF currently supports two types of elements for each Mesh parametric dimension. For a parametric dimension of
2 the supported element types are triangles or quadralaterals. For a parametric dimension of 3 the supported element
types are tetrahedrons and hexahedrons. See Section 19.2.1for diagrams of these. The Mesh supports any combination
of element types within a particular dimension, but types from different dimensions may not be mixed, for example, a
Mesh cannot be constructed of both quadralaterals and tetrahedra.
ESMF currently only supports distributions where every node on a PET must be a part of an element on that PET. In
other words, there must not be nodes without an element on a PET.

19.2 Constants

19.2.1 ESMC_MESHELEMTYPE

DESCRIPTION:
An ESMF Mesh can be constructed from a combination of different elements. The type of elements that can be used
in a Mesh depends on the Mesh’s parameteric dimension, whichis set during Mesh creation. The following are the
valid Mesh element types for each valid Mesh parametric dimension (2D or 3D) .

3 4 ---------- 3
/ \ | |

/ \ | |
/ \ | |

/ \ | |
/ \ | |

1 --------- 2 1 ---------- 2

61

ESMC_MESHELEMTYPE_TRI ESMC_MESHELEMTYPE_QUAD

2D element types (numbers are the order for elementConn during
Mesh create)

For a Mesh with parametric dimension of 2 the valid element types (illustrated above) are:

Element Type Number of Nodes Description
ESMC_MESHELEMTYPE_TRI 3 A triangle
ESMC_MESHELEMTYPE_QUAD 4 A quadrilateral (e.g. a rectangle)

3 8---------------7
/|\ /| /|

/ | \ / | / |
/ | \ / | / |
/ | \ / | / |

/ | \ 5---------------6 |
4-----|-----2 | | | |
\ | / | 4----------|----3
\ | / | / | /
\ | / | / | /
\ | / | / | /
\|/ |/ |/
1 1---------------2

ESMC_MESHELEMTYPE_TETRA ESMC_MESHELEMTYPE_HEX

3D element types (numbers are the order for elementConn during
Mesh create)

For a Mesh with parametric dimension of 3 the valid element types (illustrated above) are:

Element Type Number of Nodes Description
ESMC_MESHELEMTYPE_TETRA 4 A tetrahedron (CAN’T BE USED IN REGRID)
ESMC_MESHELEMTYPE_HEX 8 A hexahedron (e.g. a cube)

19.3 Class API

19.3.1 ESMC_MeshAddElements - Add elements to a Mesh

INTERFACE:

int ESMC_MeshAddElements(
ESMC_Mesh mesh, // inout
int elementCount, // in
int *elementIds, // in
int *elementTypes, // in
int *elementConn // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

62

DESCRIPTION:

This call is the third and last part of the three part mesh create sequence and should be called after the mesh is created
with ESMF_MeshCreate() (19.3.3) and after the nodes are added withESMF_MeshAddNodes() (19.3.2). This
call adds the elements to the mesh and finalizes the create. After this call the Mesh is usable, for example a Field may
be built on the created Mesh object and this Field may be used in aESMF_FieldRegridStore() call.
The parameters to this callelementIds, elementTypes, andelementConn describe the elements to be cre-
ated. The description for a particular element lies at the same index location inelementIds andelementTypes.
Each entry inelementConn consists of the list of nodes used to create that element, so the connections for elemente
in theelementIds array will start atnumber_of_nodes_in_element(1)+number_of_nodes_in_element(2)+
· · · + number_of_nodes_in_element(e− 1) + 1 in elementConn.

mesh Mesh object.

elementCount The number of elements on this PET.

elementIds An array containing the global ids of the elements to be created on this PET. This input consists of a 1D
array of sizeelementCount.

elementTypesAn array containing the types of the elements to be created onthis PET. The types used must be
appropriate for the parametric dimension of the Mesh. Please see Section?? for the list of options. This input
consists of a 1D array of sizeelementCount.

elementConn An array containing the indexes of the sets of nodes to be connected together to form the elements to
be created on this PET. The entries in this list are NOT node global ids, but rather each entry is a local index
(1 based) into the list of nodes which were created on this PETby the previousESMC_MeshAddNodes()
call. In other words, an entry of 1 indicates that this element contains the node described bynodeIds(1),
nodeCoords(1), etc. passed into theESMC_MeshAddNodes() call on this PET. It is also important to
note that the order of the nodes in an element connectivity list matters. Please see Section?? for diagrams
illustrating the correct order of nodes in a element. This input consists of a 1D array with a total size equal to the
sum of the number of nodes in each element on this PET. The number of nodes in each element is implied by its
element type inelementTypes. The nodes for each element are in sequence in this array (e.g. the nodes for
element 1 are elementConn(1), elementConn(2), etc.).

19.3.2 ESMC_MeshAddNodes - Add nodes to a Mesh

INTERFACE:

int ESMC_MeshAddNodes(
ESMC_Mesh mesh, // inout
int nodeCount, // in
int *nodeIds, // in
double *nodeCoords, // in
int *nodeOwners // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

This call is the second part of the three part mesh create sequence and should be called after the mesh’s dimen-
sions are set usingESMC_MeshCreate(). This call adds the nodes to the mesh. The next step is to call
ESMC_MeshAddElements() (19.3.3).

63

The parameters to this callnodeIds, nodeCoords, andnodeOwners describe the nodes to be created on this
PET. The description for a particular node lies at the same index location innodeIds andnodeOwners. Each entry
in nodeCoords consists of spatial dimension coordinates, so the coordinates for noden in thenodeIds array will
start at(n − 1) ∗ spatialDim + 1.

mesh Mesh object.

nodeCount The number of nodes on this PET.

nodeIds An array containing the global ids of the nodes to be created on this PET. This input consists of a 1D array
the size of the number of nodes on this PET (i.e.nodeCount).

nodeCoords An array containing the physical coordinates of the nodes tobe created on this PET. The coordinates in
this array are ordered so that the coordinates for a node lie in sequence in memory. (e.g. for a Mesh with spatial
dimension 2, the coordinates for node 1 are in nodeCoords(0)and nodeCoords(1), the coordinates for node 2
are in nodeCoords(2) and nodeCoords(3), etc.). This input consists of a 1D array the size ofnodeCount times
the Mesh’s spatial dimension (spatialDim).

nodeOwners An array containing the PETs that own the nodes to be created on this PET. If the node is shared with
another PET, the value may be a PET other than the current one.Only nodes owned by this PET will have PET
local entries in a Field created on the Mesh. This input consists of a 1D array the size of the number of nodes
on this PET (i.e.nodeCount).

19.3.3 ESMC_MeshCreate - Create a Mesh as a 3 step process

INTERFACE:

ESMC_Mesh ESMC_MeshCreate(
int parametricDim, // in
int spatialDim, // in
int *rc // out

);

RETURN VALUE:

type(ESMC_Mesh) :: ESMC_MeshCreate

DESCRIPTION:

This call is the first part of the three part mesh create sequence. This call sets the dimension of the elements in the
mesh (parametricDim) and the number of coordinate dimensions in the mesh (spatialDim). The next step is
to callESMC_MeshAddNodes() (19.3.2) to add the nodes and thenESMC_MeshAddElements() (19.3.1) to add
the elements and finalize the mesh.
The arguments are:

parametricDim Dimension of the topology of the Mesh. (E.g. a mesh constructed of squares would have a parametric
dimension of 2, whereas a Mesh constructed of cubes would have one of 3.)

spatialDim The number of coordinate dimensions needed to describe the locations of the nodes making up the Mesh.
For a manifold, the spatial dimesion can be larger than the parametric dim (e.g. the 2D surface of a sphere in
3D space), but it can’t be smaller.

rc Return code; equalsESMF_SUCCESS if there are no errors.

64

19.3.4 ESMC_MeshDestroy - Destroy a Mesh

INTERFACE:

int ESMC_MeshDestroy(
ESMC_Mesh *mesh // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Destroy the Mesh. This call removes all internal memory associated withmesh. After this call mesh will no longer
be usable.
The arguments are:

mesh Mesh object whose memory is to be freed.

19.3.5 ESMC_MeshFreeMemory - Remove a Mesh and its memory

INTERFACE:

int ESMC_MeshFreeMemory(
ESMC_Mesh mesh // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

This call removes the portions ofmesh which contain connection and coordinate information. After this call, Fields
build onmesh will no longer be usable as part of anESMF_FieldRegridStore() operation. However, after this
call Fields built onmesh can still be used in anESMF_FieldRegrid() operation if the routehandle was generated
beforehand. New Fields may also be built onmesh after this call.
The arguments are:

mesh Mesh object whose memory is to be freed.

19.3.6 ESMC_MeshGetLocalElementCount - Get the number of elements in a Mesh owned by the current
PET

INTERFACE:

int ESMC_MeshGetLocalElementCount(
ESMC_Mesh mesh, // in
int *elementCount // out

);

65

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Query the number of elements in a mesh owned by the local PET. The arguments are:

mesh The mesh

elementCount The number of elements on this PET.

19.3.7 ESMC_MeshGetLocalNodeCount - Get the number of nodes in a Mesh owned by the current PET

INTERFACE:

int ESMC_MeshGetLocalNodeCount(
ESMC_Mesh mesh, // in
int *nodeCount // out

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Query the number of nodes in a mesh owned by the local PET. The arguments are:

mesh The mesh

nodeCount The number of nodes on this PET.

20 DistGrid Class

20.1 Description

The ESMF DistGrid class sits on top of the DELayout class (notcurrently directly accessible through the ESMF C
API) and holds domain information in index space. A DistGridobject captures the index space topology and describes
its decomposition in terms of DEs. Combined with DELayout and VM the DistGrid defines the data distribution of a
domain decomposition across the computational resources of an ESMF Component.
The global domain is defined as the union or “tilework” of logically rectangular (LR) sub-domains ortiles. The
DistGrid create methods allow the specification of such a tilework global domain and its decomposition into exclusive,
DE-local LR regions according to various degrees of user specified constraints. Complex index space topologies can
be constructed by specifying connection relationships between tiles during creation.
The DistGrid class holds domain information for all DEs. Each DE is associated with a local LR region. No overlap of
the regions is allowed. The DistGrid offers query methods that allow DE-local topology information to be extracted,
e.g. for the construction of halos by higher classes.
A DistGrid object only contains decomposable dimensions. The minimum rank for a DistGrid object is 1. A maximum
rank does not exist for DistGrid objects, however, ranks greater than 7 may lead to difficulties with respect to the
Fortran API of higher classes based on DistGrid. The rank of aDELayout object contained within a DistGrid object
must be equal to the DistGrid rank. Higher class objects thatuse the DistGrid, such as an Array object, may be of
different rank than the associated DistGrid object. The higher class object will hold the mapping information between
its dimensions and the DistGrid dimensions.

66

20.2 Class API

20.2.1 ESMC_DistGridCreate - Create a DistGrid

INTERFACE:

ESMC_DistGrid ESMC_DistGridCreate(
ESMC_InterfaceInt minIndexInterfaceArg, // in
ESMC_InterfaceInt maxIndexInterfaceArg, // in
int *rc // out

);

RETURN VALUE:

Newly created ESMC_DistGrid object.

DESCRIPTION:

Create anESMC_DistGrid from a single logically rectangular (LR) tile with default decomposition. The default
decomposition isdeCount×1 × ... × 1, wheredeCount is the number of DEs in a default DELayout, equal to
petCount. This means that the default decomposition will be into as many DEs as there are PETs, with 1 DE per
PET.
The arguments are:

minIndex Global coordinate tuple of the lower corner of the tile.

maxIndex Global coordinate tuple of the upper corner of the tile.

[rc] Return code; equalsESMF_SUCCESS if there are no errors.

20.2.2 ESMC_DistGridDestroy - Destroy a DistGrid

INTERFACE:

int ESMC_DistGridDestroy(
ESMC_DistGrid *distgrid // inout

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Destroy anESMC_DistGrid object.
The arguments are:

distgrid ESMC_DistGrid object to be destroyed.

20.2.3 ESMC_DistGridPrint - Print a DistGrid

INTERFACE:

67

int ESMC_DistGridPrint(
ESMC_DistGrid distgrid // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Print internal information of the specifiedESMC_DistGrid object.
The arguments are:

distgrid ESMC_DistGrid object to be destroyed.

68

Part V

Infrastructure: Utilities

69

21 Overview of Infrastructure Utility Classes

The ESMF utilities are a set of tools for quickly assembling modeling applications.
The Time Management Library provides utilities for time andtime interval representation, as well as a higher-level
utility, a clock, that controls model time stepping.
The ESMF Config class provides configuration management based on NASA DAO’s Inpak package, a collection of
methods for accessing files containing input parameters stored in an ASCII format.
The ESMF LogErr class consists of a method for writing error,warning, and informational messages to a default Log
file that is created during ESMF initialization.
The ESMF VM (Virtual Machine) class provides methods for querying information about a VM. A VM is a generic
representation of hardware and system software resources.There is exactly one VM object per ESMF Component,
providing the execution environment for the Component code. The VM class handles all resource management tasks
for the Component class and provides a description of the underlying configuration of the compute resources used by
a Component. In addition to resource description and management, the VM class offers the lowest level of ESMF
communication methods.

70

22 Time Manager Utility

The ESMF Time Manager utility includes software for time andtime interval representation, as well as model time
advancement. Since multi-component geophysical applications often require synchronization across the time manage-
ment schemes of the individual components, the Time Manager’s standard calendars and consistent time representation
promote component interoperability.

Key Features
Drift-free timekeeping through an integer-based internaltime representation. Both integers and reals can be
specified at the interface.
Support for many calendar kinds.
Support for both concurrent and sequential modes of component execution.

22.1 Time Manager Classes

There are four ESMF classes that represent time concepts:

• Calendar A Calendar can be used to keep track of the date as an ESMF Gridded Component advances in time.
Standard calendars (such as Gregorian and 360-day) are supported.

• Time A Time represents a time instant in a particular calendar, such as November 28, 1964, at 7:00pm EST in
the Gregorian calendar. The Time class can be used to represent the start and stop time of a time integration.

• TimeInterval TimeIntervals represent a period of time, such as 3 hours. Time steps can be represented using
TimeIntervals.

• Clock Clocks collect the parameters and methods used for model time advancement into a convenient package.
A Clock can be queried for quantities such as current simulation time and time step. Clock methods include
incrementing the current time, and printing the its contents.

22.2 Calendar

The set of supported calendars includes:

Gregorian The standard Gregorian calendar.

no-leap The Gregorian calendar with no leap years.

Julian The standard Julian date calendar.

Julian Day The standard Julian days calendar.

Modified Julian Day The Modified Julian days calendar.

360-day A 30-day-per-month, 12-month-per-year calendar.

no calendar Tracks only elapsed model time in hours, minutes, seconds.

See Section 23.1 for more details on supported standard calendars, and how to create a customized ESMF Calendar.

22.3 Time Instants and TimeIntervals

TimeIntervals and Time instants (simply called Times) are the computational building blocks of the Time Manager
utility. Times support different queries for values of individual Time components such as year and hour. See Sec-
tions 24.1 and 25.1, respectively, for use of Times and TimeIntervals.

71

22.4 Clocks

It is useful to identify a higher-level concept to repeatedly step a Time forward by a TimeInterval. We refer to this
capability as a Clock, and include in its required features the ability to store the start and stop times of a model run,
and to query the value of quantities such as the current time and the number of time steps taken. Applications may
contain temporary or multiple Clocks. Section 26.1 describes the use of Clocks in detail.

72

23 Calendar Class

23.1 Description

The Calendar class represents the standard calendars used in geophysical modeling: Gregorian, Julian, Julian Day,
Modified Julian Day, no-leap, 360-day, and no-calendar. Brief descriptions are provided for each calendar below.

23.2 Constants

23.2.1 ESMC_CALKIND

DESCRIPTION:
Supported calendar kinds.
The type of this flag is:
type(ESMF_CalKind_Flag)
The valid values are:

ESMC_CALKIND_360DAY Valid range: machine limits
In the 360-day calendar, there are 12 months, each of which has 30 days. Like the no-leap calendar, this is a
simple approximation to the Gregorian calendar sometimes used by modelers.

ESMC_CALKIND_GREGORIAN Valid range: 3/1/4801 BC to 10/29/292,277,019,914
The Gregorian calendar is the calendar currently in use throughout Western countries. Named after Pope Gre-
gory XIII, it is a minor correction to the older Julian calendar. In the Gregorian calendar every fourth year is a
leap year in which February has 29 and not 28 days; however, years divisible by 100 are not leap years unless
they are also divisible by 400. As in the Julian calendar, days begin at midnight.

ESMC_CALKIND_JULIAN Valid range: 3/1/4713 BC to 4/24/292,271,018,333
The Julian calendar was introduced by Julius Caesar in 46 B.C., and reached its final form in 4 A.D. The Julian
calendar differs from the Gregorian only in the determination of leap years, lacking the correction for years
divisible by 100 and 400 in the Gregorian calendar. In the Julian calendar, any year is a leap year if divisible by
4. Days are considered to begin at midnight.

ESMC_CALKIND_JULIANDAY Valid range: +/- 1x1014

Julian days simply enumerate the days and fraction of a day which have elapsed since the start of the Julian
era, defined as beginning at noon on Monday, 1st January of year 4713 B.C. in the Julian calendar. Julian days,
unlike the dates in the Julian and Gregorian calendars, begin at noon.

ESMC_CALKIND_MODJULIANDAY Valid range: +/- 1x1014

The Modified Julian Day (MJD) was introduced by space scientists in the late 1950’s. It is defined as an offset
from the Julian Day (JD):

MJD = JD - 2400000.5

The half day is subtracted so that the day starts at midnight.

ESMC_CALKIND_NOCALENDAR Valid range: machine limits
The no-calendar option simply tracks the elapsed model timein seconds.

ESMC_CALKIND_NOLEAP Valid range: machine limits
The no-leap calendar is the Gregorian calendar with no leap years - February is always assumed to have 28 days.
Modelers sometimes use this calendar as a simple, close approximation to the Gregorian calendar.

23.3 Class API

23.3.1 ESMC_CalendarCreate - Create a Calendar

INTERFACE:

73

ESMC_Calendar ESMC_CalendarCreate(
const char *name, // in
enum ESMC_CalKind_Flag calkindflag, // in
int *rc // out

);

RETURN VALUE:

Newly created ESMC_Calendar object.

DESCRIPTION:

Creates and sets aESMC_Calendar object to the given built-inESMC_CalKind_Flag.
The arguments are:

[name] The name for the newly created Calendar. If not specified, i.e. NULL, a default unique name will be gener-
ated: "CalendarNNN" where NNN is a unique sequence number from 001 to 999.

calkindflag The built-inESMC_CalKind_Flag. Valid values are:
ESMC_CALKIND_360DAY,
ESMC_CALKIND_GREGORIAN,
ESMC_CALKIND_JULIAN,
ESMC_CALKIND_JULIANDAY,
ESMC_CALKIND_MODJULIANDAY,
ESMC_CALKIND_NOCALENDAR,
andESMC_CALKIND_NOLEAP.
See Section 23.2 for a description of each calendar kind.

[rc] Return code; equalsESMF_SUCCESS if there are no errors.

23.3.2 ESMC_CalendarDestroy - Destroy a Calendar

INTERFACE:

int ESMC_CalendarDestroy(
ESMC_Calendar *calendar // inout

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Releases all resources associated with thisESMC_Calendar.
The arguments are:

calendar Destroy contents of thisESMC_Calendar.

74

23.3.3 ESMC_CalendarPrint - Print a Calendar

INTERFACE:

int ESMC_CalendarPrint(
ESMC_Calendar calendar // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Prints out anESMC_Calendar’s properties tostdio, in support of testing and debugging.
The arguments are:

calendar ESMC_Calendar object to be printed.

75

24 Time Class

24.1 Description

A Time represents a specific point in time.
There are Time methods defined for setting and getting a Time.
A Time that is specified in hours does not need to be associatedwith a standard calendar; use
ESMC_CALKIND_NOCALENDAR. A Time whose specification includes time units of a year must be associated
with a standard calendar. The ESMF representation of a calendar, the Calendar class, is described in Section 23.1.
TheESMC_TimeSet method is used to initialize a Time as well as associate it with a Calendar. If a Time method is
invoked in which a Calendar is necessary and one has not been set, the ESMF method will return an error condition.
In the ESMF the TimeInterval class is used to represent time periods. This class is frequently used in combination
with the Time class. The Clock class, for example, advances model time by incrementing a Time with a TimeInterval.

24.2 Class API

24.2.1 ESMC_TimeGet - Get a Time value

INTERFACE:

int ESMC_TimeGet(
ESMC_Time time, // in
ESMC_I4 *yy, // out
ESMC_I4 *h, // out
ESMC_Calendar *calendar, // out
enum ESMC_CalKind_Flag *calkindflag, // out
int *timeZone // out

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Gets the value of anESMC_Time in units specified by the user.
The arguments are:

time ESMC_Time object to be queried.

[yy] Integer year (>= 32-bit).

[h] Integer hours.

[calendar] AssociatedESMC_Calendar.

[calkindflag] AssociatedESMC_CalKind_Flag.

24.2.2 ESMC_TimePrint - Print a Time

INTERFACE:

int ESMC_TimePrint(
ESMC_Time time // in

);

76

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Prints out anESMC_Time’s properties tostdio, in support of testing and debugging.
The arguments are:

time ESMC_Time object to be printed.

24.2.3 ESMC_TimeSet - Initialize or set a Time

INTERFACE:

int ESMC_TimeSet(
ESMC_Time *time, // inout
ESMC_I4 yy, // in
ESMC_I4 h, // in
ESMC_Calendar calendar, // in
enum ESMC_CalKind_Flag calkindflag, // in
int timeZone // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Initializes anESMC_Time with a set of user-specified units.
The arguments are:

time ESMC_Time object to initialize or set.

yy Integer year (>= 32-bit).

h Integer hours.

calendar AssociatedESMC_Calendar. If not created, defaults to calendarESMC_CALKIND_NOCALENDAR or
default specified inESMC_Initialize(). If created, has precedence over calkindflag below.

calkindflag Specifies associatedESMC_Calendar if calendar argument above not created. More convenient way
of specifying a built-in calendar kind.

77

25 TimeInterval Class

25.1 Description

A TimeInterval represents a period between time instants. It can be either positive or negative.
There are TimeInterval methods defined for setting and getting a TimeInterval, for printing the contents of a TimeIn-
terval.
The class used to represent time instants in ESMF is Time, andthis class is frequently used in operations along with
TimeIntervals. The Clock class, for example, advances model time by incrementing a Time with a TimeInterval.
TimeIntervals are used by other parts of the ESMF timekeeping system, such as Clocks; see Section 26.1.

25.2 Class API

25.2.1 ESMC_TimeIntervalGet - Get a TimeInterval value

INTERFACE:

int ESMC_TimeIntervalGet(
ESMC_TimeInterval timeinterval, // in
ESMC_I8 *s_i8, // out
ESMC_R8 *h_r8 // out

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Gets the value of anESMC_TimeInteval in units specified by the user.
The arguments are:

timeinterval ESMC_TimeInterval object to be queried.

[s_i8] Integer seconds (large, >= 64-bit).

[h_r8] Double precision hours.

25.2.2 ESMC_TimeIntervalPrint - Print a TimeInterval

INTERFACE:

int ESMC_TimeIntervalPrint(
ESMC_TimeInterval timeinterval // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Prints out anESMC_TimeInterval’s properties tostdio, in support of testing and debugging.
The arguments are:

timeinterval ESMC_TimeInterval object to be printed.

78

25.2.3 ESMC_TimeIntervalSet - Initialize or set a TimeInterval

INTERFACE:

int ESMC_TimeIntervalSet(
ESMC_TimeInterval *timeinterval, // inout
ESMC_I4 h // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Sets the value of theESMC_TimeInterval in units specified by the user.
The arguments are:

timeinterval ESMC_TimeInterval object to initialize or set.

h Integer hours.

79

26 Clock Class

26.1 Description

The Clock class advances model time and tracks its associated date on a specified Calendar. It stores start time, stop
time, current time, and a time step.
There are methods for setting and getting the Times associated with a Clock. Methods are defined for advancing the
Clock’s current time and printing a Clock’s contents.

26.2 Class API

26.2.1 ESMC_ClockAdvance - Advance a Clock’s current time by one time step

INTERFACE:

int ESMC_ClockAdvance(
ESMC_Clock clock // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Advances theESMC_Clock’s current time by one time step.
The arguments are:

clock ESMC_Clock object to be advanced.

26.2.2 ESMC_ClockCreate - Create a Clock

INTERFACE:

ESMC_Clock ESMC_ClockCreate(
const char *name, // in
ESMC_TimeInterval timeStep, // in
ESMC_Time startTime, // in
ESMC_Time stopTime, // in
int *rc // out

);

RETURN VALUE:

Newly created ESMC_Clock object.

DESCRIPTION:

Creates and sets the initial values in a newESMC_Clock object.
The arguments are:

[name] The name for the newly created Clock. If not specified, i.e. NULL, a default unique name will be generated:
"ClockNNN" where NNN is a unique sequence number from 001 to 999.

80

timeStep TheESMC_Clock’s time step interval, which can be positive or negative.

startTime TheESMC_Clock’s starting time. Can be less than or or greater than stopTime, depending on a positive
or negative timeStep, respectively, and whether a stopTimeis specified; see below.

stopTime TheESMC_Clock’s stopping time. Can be greater than or less than the startTime, depending on a positive
or negative timeStep, respectively.

[rc] Return code; equalsESMF_SUCCESS if there are no errors.

26.2.3 ESMC_ClockDestroy - Destroy a Clock

INTERFACE:

int ESMC_ClockDestroy(
ESMC_Clock *clock // inout

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Releases all resources associated with thisESMC_Clock.
The arguments are:

clock Destroy contents of thisESMC_Clock.

26.2.4 ESMC_ClockGet - Get a Clock’s properties

INTERFACE:

int ESMC_ClockGet(
ESMC_Clock clock, // in
ESMC_TimeInterval *currSimTime, // out
ESMC_I8 *advanceCount // out

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Gets one or more of the properties of anESMC_Clock.
The arguments are:

clock ESMC_Clock object to be queried.

[currSimTime] The current simulation time.

[advanceCount] The number of times theESMC_Clock has been advanced.

81

26.2.5 ESMC_ClockPrint - Print the contents of a Clock

INTERFACE:

int ESMC_ClockPrint(
ESMC_Clock clock // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Prints out anESMC_Clock’s properties tostdio, in support of testing and debugging.
The arguments are:

clock ESMC_Clock object to be printed.

27 Config Class

27.1 Description

ESMF Configuration Management is based on NASA DAO’s Inpak 90package, a Fortran 90 collection of rou-
tines/functions for accessingResource Filesin ASCII format.The package is optimized for minimizing formatted I/O,
performing all of its string operations in memory using Fortran intrinsic functions.

27.1.1 Package history

The ESMF Configuration Management Package was evolved by Leonid Zaslavsky and Arlindo da Silva from Ipack90
package created by Arlindo da Silva at NASA DAO.
Back in the 70’s Eli Isaacson wrote IOPACK in Fortran 66. In June of 1987 Arlindo da Silva wrote Inpak77 using For-
tran 77 string functions; Inpak 77 is a vastly simplified IOPACK, but has its own goodies not found in IOPACK. Inpak
90 removes some obsolete functionality in Inpak77, and parses the whole resource file in memory for performance.

27.2 Class API

27.2.1 ESMC_ConfigCreate - Create a Config object

INTERFACE:

ESMC_Config ESMC_ConfigCreate(
int* rc // out

);

RETURN VALUE:

ESMC_Config* to newly allocated ESMC_Config

DESCRIPTION:

Creates anESMC_Config for use in subsequent calls.
The arguments are:

[rc] Return code; equalsESMF_SUCCESS if there are no errors.

82

27.2.2 ESMC_ConfigDestroy - Destroy a Config object

INTERFACE:

int ESMC_ConfigDestroy(
ESMC_Config* config // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Destroys theconfig object.
The arguments are:

config Already createdESMC_Config object to destroy.

27.2.3 ESMC_ConfigFindLabel - Find a label

INTERFACE:

int ESMC_ConfigFindLabel(
ESMC_Config config, // in
const char* label // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.
Equals -1 if buffer could not be loaded, -2 if label not found,
and -3 if invalid operation with index.

DESCRIPTION:

Finds thelabel (key) in theconfig file.
Since the search is done by looking for a word in the whole resource file, it is important to use special conventions to
distinguish labels from other words in the resource files. The DAO convention is to finish line labels by : and table
labels by ::.
The arguments are:

config Already createdESMC_Config object.

label Identifying label.

27.2.4 ESMC_ConfigGetDim - Get table sizes

INTERFACE:

int ESMC_ConfigGetDim(
ESMC_Config config, // in
int* lineCount, // out
int* columnCount, // out
... // optional argument list

);

83

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Returns the number of lines in the table inlineCount and the maximum number of words in a table line in
columnCount.
The arguments are:

config Already createdESMC_Config object.

lineCount Returned number of lines in the table.

columnCount Returned maximum number of words in a table line.

[label] Identifying label (optional).

Due to this method accepting optional arguments, the final argument must beESMC_ArgLast.

27.2.5 ESMC_ConfigGetLen - Get the length of the line in words

INTERFACE:

int ESMC_ConfigGetLen(
ESMC_Config config, // in
int* wordCount, // out
... // optional argument list

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Gets the length of the line in words by counting words disregarding types. Returns the word count as an integer.
The arguments are:

config Already createdESMC_Config object.

wordCount Returned number of words in the line.

[label] Identifying label. If not specified, use the current line (optional).

Due to this method accepting optional arguments, the final argument must beESMC_ArgLast.

27.2.6 ESMC_ConfigLoadFile - Load resource file into memory

INTERFACE:

int ESMC_ConfigLoadFile(
ESMC_Config config, // in
const char* file, // in
... // optional argument list

);

84

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Resource file withfilename is loaded into memory.
The arguments are:

config Already createdESMC_Config object.

file Configuration file name.

[delayout] ESMC_DELayout associated with thisconfig object. **NOTE: This argument is not currently sup-
ported.

[unique] If specified as true, uniqueness of labels are checked and error code set if duplicates found (optional).

Due to this method accepting optional arguments, the final argument must beESMC_ArgLast.

27.2.7 ESMC_ConfigNextLine - Find next line

INTERFACE:

int ESMC_ConfigNextLine(
ESMC_Config config, // in
int *tableEnd // out

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Selects the next line (for tables).
The arguments are:

config Already createdESMC_Config object.

[tableEnd] End of table mark (::) found flag. Returns 1 when found, and 0 when not found.

27.2.8 ESMC_ConfigValidate - Validate a Config object

INTERFACE:

int ESMC_ConfigValidate(
ESMC_Config config, // in
... // optional argument list

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.
Equals ESMF_RC_ATTR_UNUSED if any unused attributes are found
with option "unusedAttributes" below.

85

DESCRIPTION:

Checks whether aconfig object is valid.
The arguments are:

config Already createdESMC_Config object.

[options] If none specified: simply check that the buffer is not full andthe pointers are within range (op-
tional). "unusedAttributes" - Report to the default logfileall attributes not retrieved via a call to
ESMC_ConfigGetAttribute() or ESMC_ConfigGetChar(). The attribute name (label) will be
logged viaESMC_LogErr with the WARNING log message type. For an array-valued attribute, retrieving
at least one value viaESMC_ConfigGetAttribute() or ESMC_ConfigGetChar() constitutes being
"used."

Due to this method accepting optional arguments, the final argument must beESMC_ArgLast.

28 Log Class

28.1 Description

The Log class consists of a variety of methods for writing error, warning, and informational messages to files. A
default Log is created at ESMF initialization.
When ESMF is started withESMC_Initialize(), multiple Log files will be created by PET number. The
PET number (in the formatPETx.) will be prepended to each file name where x is the PET number. The
ESMC_LogWrite() call is used to issue messages to the log. As part of the call, amessage can be tagged as
either an informational, warning, or error message.
The messages may be buffered within ESMF before appearing inthe log. All messages will be properly flushed to the
log files whenESMC_Finalize() is called.

28.2 Class API

28.2.1 ESMC_LogWrite - Write an entry into the Log file

INTERFACE:

int ESMC_LogWrite(
const char msg[], // in
int msgtype // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Write an entry into the Log file.
The arguments are:

msg The message to be written.

msgtype The message type. Can be one of ESMC_LOG_INFO, ESMC_LOG_WARNING, or ESMF_LOG_ERROR.

86

29 VM Class

29.1 Description

The ESMF VM (Virtual Machine) class is a generic representation of hardware and system software resources. There
is exactly one VM object per ESMF Component, providing the execution environment for the Component code. The
VM class handles all resource management tasks for the Component class and provides a description of the underlying
configuration of the compute resources used by a Component.
In addition to resource description and management, the VM class offers the lowest level of ESMF communication
methods. The VM communication calls are very similar to MPI.Data references in VM communication calls must
be provided as raw, language specific, one-dimensional, contiguous data arrays. The similarity between VM and
MPI communication calls is striking and there are many equivalent point-to-point and collective communication calls.
However, unlike MPI, the VM communication calls support communication between threaded PETs in a completely
transparent fashion.
Many ESMF applications do not interact with the VM class directly very much. The resource management aspect
is wrapped completely transparent into the ESMF Component concept. Often the only reason that user code queries
a Component object for the associated VM object is to inquireabout resource information, such as thelocalPet
or thepetCount. Further, for most applications the use of higher level communication APIs, such as provided by
Array and Field, are much more convenient than using the low level VM communication calls.
The basic elements of a VM are called PETs, which stands for Persistent Execution Threads. These are equivalent to
OS threads with a lifetime of at least that of the associated component. All VM functionality is expressed in terms of
PETs. In the simplest, and most common case, a PET is equivalent to an MPI process. However, ESMF also supports
multi-threading, where multiple PETs run as Pthreads inside the same virtual address space (VAS).

29.2 Class API

29.2.1 ESMC_VMGet - Get VM internals

INTERFACE:

int ESMC_VMGet(
ESMC_VM vm, // in
int *localPet, // out
int *petCount, // out
int *peCount, // out
MPI_Comm *mpiCommunicator, // out
int *pthreadsEnabledFlag, // out
int *openMPEnabledFlag // out

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Get internal information about the specifiedESMC_VM object.
The arguments are:

vm QueriedESMC_VM object.

[localPet] Upon return this holds the id of the PET that issued this call.

[petCount] Upon return this holds the number of PETs in the specifiedESMC_VM object.

[peCount] Upon return this holds the number of PEs referenced by the specifiedESMC_VM object.

87

[mpiCommunicator] Upon return this holds the MPI intra-communicator used by the specifiedESMC_VM object.
This communicator may be used for user-level MPI communications. It is recommended that the user duplicates
the communicator viaMPI_Comm_Dup() in order to prevent any interference with ESMF communications.

[pthreadsEnabledFlag] A return value of ’1’ indicates that the ESMF library was compiled with Pthreads enabled.
A return value of ’0’ indicates that Pthreads are disabled inthe ESMF library.

[openMPEnabledFlag] A return value of ’1’ indicates that the ESMF library was compiled with OpenMP enabled.
A return value of ’0’ indicates that OpenMP is disabled in theESMF library.

[rc] Return code; equalsESMF_SUCCESS if there are no errors.

29.2.2 ESMC_VMGetCurrent - Get current VM

INTERFACE:

ESMC_VM ESMC_VMGetCurrent(
int *rc // out

);

RETURN VALUE:

VM object of the current execution context.

DESCRIPTION:

Get the ESMC_VM object of the current execution context. CallingESMC_VMGetCurrent() within an
ESMF Component, will return the same VM object asESMC_GridCompGet(..., vm=vm, ...) or
ESMC_CplCompGet(..., vm=vm, ...).
The main purpose of providingESMC_VMGetCurrent() is to simplify ESMF adoption in legacy code. Specifi-
cally, code that usesMPI_COMM_WORLD deep within its calling tree can easily be modified to use the correct MPI
communicator of the current ESMF execution context. The advantage is that these modifications are very local, and
do not require wide reaching interface changes in the legacycode to pass down the ESMF component object, or the
MPI communicator.
The use ofESMC_VMGetCurrent() is strongly discouraged in newly written Component code. Instead, the ESMF
Component object should be used as the appropriate container of ESMF context information. This object should be
passed between the subroutines of a Component, and be queried for any Component specific information.
Outside of a Component context, i.e. within the driver context, the call toESMC_VMGetCurrent() is identical to
ESMC_VMGetGlobal().

The arguments are:

[rc] Return code; equalsESMF_SUCCESS if there are no errors.

29.2.3 ESMC_VMGetGlobal - Get global VM

INTERFACE:

ESMC_VM ESMC_VMGetGlobal(
int *rc // out

);

RETURN VALUE:

88

VM object of the global execution context.

DESCRIPTION:

Get the globalESMC_VM object. This is the VM object that is created duringESMC_Initialize() and is
the ultimate parent of all VM objects in an ESMF application.It is identical to the VM object returned by
ESMC_Initialize(..., vm=vm, ...).
TheESMC_VMGetGlobal() call provides access to information about the global execution context via the global
VM. This call is necessary because ESMF does not create a global ESMF Component duringESMC_Initialize()
that could be queried for information about the global execution context of an ESMF application.
Usage ofESMC_VMGetGlobal() from within Component code is strongly discouraged. ESMF Components
should only access their own VM objects through Component methods. Global information, if required by the
Component user code, should be passed down to the Component from the driver through the Component calling
interface.

The arguments are:

[rc] Return code; equalsESMF_SUCCESS if there are no errors.

29.2.4 ESMC_VMPrint - Print a VM

INTERFACE:

int ESMC_VMPrint(
ESMC_VM vm // in

);

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Print internal information of the specifiedESMC_VM object.
The arguments are:

vm ESMC_VM object to be printed.

89

Part VI

References

References

[1] Khoei S.A. Gharehbaghi A, R. The superconvergent patch recovery technique and data transfer operators in 3d
plasticity problems.Finite Elements in Analysis and Design, 43(8), 2007.

[2] K.C. Hung H. Gu, Z. Zong. A modified superconvergent patchrecovery method and its application to large
deformation problems.Finite Elements in Analysis and Design, 40(5-6), 2004.

[3] Jones, P.W. SCRIP: A Spherical Coordinate Remapping andInterpolation Package.
http://www.acl.lanl.gov/climate/software/SCRIP/. LosAlamos National Laboratory Software Release LACC
98-45.

[4] D. Ramshaw. Conservative rezoning algorithm for generalized two-dimensional meshes.Journal of Computa-
tional Physics, 59, 1985.

[5] Rumbaugh, J., I. Jacobson, and G. Booch.The Unified Modeling Language Reference Manual. Addison-Wesley,
1999.

90

Part VII

Appendices

30 Appendix A: A Brief Introduction to UML

The schematic below shows the Unified Modeling Language (UML) notation for the class diagrams presented in this
Reference Manual. For more on UML, see references such asThe Unified Modeling Language Reference Manual,
Rumbaugh et al, [5].

ClassB

ClassA

Public class. This is a class whose methods can be called by the user. In Fortran

a public class is usually associated with a derived type and a corresponding

module that contains class methods and flags.

Private class. This type of class does not have methods that should be called by

the user. Like a public class it is usually associated with a derived type and a

corresponding module.

A line indicates some sort of association among classes.

A hollow diamond at one end of a line drawn between classes represents an

association called aggregation. Aggregation is a part-whole relationship that can

be read as “the class at the end of the line without the diamond is part of the class

at the end of the line with the diamond.” The class that is the “part” can be

created and destroyed separately, and it is usually implemented as a reference

contained with the structure of the class that is the “whole.”

A filled diamond at one end of a line drawn between classes represents an

association called composition. Composition is a part-whole relationship that is

similar to aggregation, but stronger. It implies that that class that is the “part” is

created and destroyed by the class that is the “whole.” It is often implemented as

a structure within part of the contiguous memory of a larger structure.

Multiplicity indicators at association line ends show how many classes on the one

end are associated with how many classes on the other end.

Field

0..1

0..n

This simple diagram shows that a public class called Field is associated with

another public class, called Grid. The aggregation relationship indicated by the

unfilled diamond means that a Field contains a Grid, but that a Grid can be

created and destroyed outside of a Field. The diagram multiplicities show that a

Field can be associated with no Grid or with one Grid, but that a single Grid can

be associated with any number of Fields.

1
 1..n

Grid

Comp

GridComp

The triangle indicates an inheritance relationship. Inheritance means that a child

class shares a set of characteristics (such as the same attributes or methods) with a

parent class. The child can specialize and extend the behavior of the parent. This

diagram shows a GridComp class that inherits from a more general Comp class.

91

31 Appendix B: ESMF Error Return Codes

The tables below show the possible error return codes for Fortran and C methods.

=====================================
Fortran Symmetric Return Codes 1-500
=====================================

ESMF_SUCCESS 0
ESMF_RC_OBJ_BAD 1
ESMF_RC_OBJ_INIT 2
ESMF_RC_OBJ_CREATE 3
ESMF_RC_OBJ_COR 4
ESMF_RC_OBJ_WRONG 5
ESMF_RC_ARG_BAD 6
ESMF_RC_ARG_RANK 7
ESMF_RC_ARG_SIZE 8
ESMF_RC_ARG_VALUE 9
ESMF_RC_ARG_DUP 10
ESMF_RC_ARG_SAMETYPE 11
ESMF_RC_ARG_SAMECOMM 12
ESMF_RC_ARG_INCOMP 13
ESMF_RC_ARG_CORRUPT 14
ESMF_RC_ARG_WRONG 15
ESMF_RC_ARG_OUTOFRANGE 16
ESMF_RC_ARG_OPT 17
ESMF_RC_NOT_IMPL 18
ESMF_RC_FILE_OPEN 19
ESMF_RC_FILE_CREATE 20
ESMF_RC_FILE_READ 21
ESMF_RC_FILE_WRITE 22
ESMF_RC_FILE_UNEXPECTED 23
ESMF_RC_FILE_CLOSE 24
ESMF_RC_FILE_ACTIVE 25
ESMF_RC_PTR_NULL 26
ESMF_RC_PTR_BAD 27
ESMF_RC_PTR_NOTALLOC 28
ESMF_RC_PTR_ISALLOC 29
ESMF_RC_MEM 30
ESMF_RC_MEM_ALLOCATE 31
ESMF_RC_MEM_DEALLOCATE 32
ESMF_RC_MEMC 33
ESMF_RC_DUP_NAME 34
ESMF_RC_LONG_NAME 35
ESMF_RC_LONG_STR 36
ESMF_RC_COPY_FAIL 37
ESMF_RC_DIV_ZERO 38
ESMF_RC_CANNOT_GET 39
ESMF_RC_CANNOT_SET 40
ESMF_RC_NOT_FOUND 41
ESMF_RC_NOT_VALID 42
ESMF_RC_INTNRL_LIST 43
ESMF_RC_INTNRL_INCONS 44
ESMF_RC_INTNRL_BAD 45
ESMF_RC_SYS 46

92

ESMF_RC_BUSY 47
ESMF_RC_LIB 48
ESMF_RC_LIB_NOT_PRESENT 49
ESMF_RC_ATTR_UNUSED 50
ESMF_RC_OBJ_NOT_CREATED 51
ESMF_RC_OBJ_DELETED 52
ESMF_RC_NOT_SET 53
ESMF_RC_VAL_WRONG 54
ESMF_RC_VAL_ERRBOUND 55
ESMF_RC_VAL_OUTOFRANGE 56
ESMF_RC_ATTR_NOTSET 57
ESMF_RC_ATTR_WRONGTYPE 58
ESMF_RC_ATTR_ITEMSOFF 59
ESMF_RC_ATTR_LINK 60
ESMF_RC_BUFFER_SHORT 61

62-499 reserved for future Fortran symmetric return code definitions

=====================================
C/C++ Symmetric Return Codes 501-999
=====================================

ESMC_RC_OBJ_BAD 501
ESMC_RC_OBJ_INIT 502
ESMC_RC_OBJ_CREATE 503
ESMC_RC_OBJ_COR 504
ESMC_RC_OBJ_WRONG 505
ESMC_RC_ARG_BAD 506
ESMC_RC_ARG_RANK 507
ESMC_RC_ARG_SIZE 508
ESMC_RC_ARG_VALUE 509
ESMC_RC_ARG_DUP 510
ESMC_RC_ARG_SAMETYPE 511
ESMC_RC_ARG_SAMECOMM 512
ESMC_RC_ARG_INCOMP 513
ESMC_RC_ARG_CORRUPT 514
ESMC_RC_ARG_WRONG 515
ESMC_RC_ARG_OUTOFRANGE 516
ESMC_RC_ARG_OPT 517
ESMC_RC_NOT_IMPL 518
ESMC_RC_FILE_OPEN 519
ESMC_RC_FILE_CREATE 520
ESMC_RC_FILE_READ 521
ESMC_RC_FILE_WRITE 522
ESMC_RC_FILE_UNEXPECTED 523
ESMC_RC_FILE_CLOSE 524
ESMC_RC_FILE_ACTIVE 525
ESMC_RC_PTR_NULL 526
ESMC_RC_PTR_BAD 527
ESMC_RC_PTR_NOTALLOC 528
ESMC_RC_PTR_ISALLOC 529
ESMC_RC_MEM 530
ESMC_RC_MEM_ALLOCATE 531
ESMC_RC_MEM_DEALLOCATE 532
ESMC_RC_MEMC 533

93

ESMC_RC_DUP_NAME 534
ESMC_RC_LONG_NAME 535
ESMC_RC_LONG_STR 536
ESMC_RC_COPY_FAIL 537
ESMC_RC_DIV_ZERO 538
ESMC_RC_CANNOT_GET 539
ESMC_RC_CANNOT_SET 540
ESMC_RC_NOT_FOUND 541
ESMC_RC_NOT_VALID 542
ESMC_RC_INTNRL_LIST 543
ESMC_RC_INTNRL_INCONS 544
ESMC_RC_INTNRL_BAD 545
ESMC_RC_SYS 546
ESMC_RC_BUSY 547
ESMC_RC_LIB 548
ESMC_RC_LIB_NOT_PRESENT 549
ESMC_RC_ATTR_UNUSED 550
ESMC_RC_OBJ_NOT_CREATED 551
ESMC_RC_OBJ_DELETED 552
ESMC_RC_NOT_SET 553
ESMC_RC_VAL_WRONG 554
ESMC_RC_VAL_ERRBOUND 555
ESMC_RC_VAL_OUTOFRANGE 556
ESMC_RC_ATTR_NOTSET 557
ESMC_RC_ATTR_WRONGTYPE 558
ESMC_RC_ATTR_ITEMSOFF 559
ESMC_RC_ATTR_LINK 560
ESMC_RC_BUFFER_SHORT 561

562-999 reserved for future C/C++ symmetric return code definitions

=====================================
C/C++ Non-symmetric Return Codes 1000
=====================================

ESMC_RC_OPTARG_BAD 1000

94

	I ESMF Overview
	What is the Earth System Modeling Framework?
	The ESMF Reference Manual for C
	How to Contact User Support and Find Additional Information
	How to Submit Comments, Bug Reports, and Feature Requests
	The ESMF Application Programming Interface
	Standard Methods and Interface Rules
	Deep and Shallow Classes
	Special Methods
	The ESMF Data Hierarchy
	ESMF Spatial Classes
	ESMF Maps
	ESMF Specification Classes
	ESMF Utility Classes

	Overall Rules and Behavior
	Local and Global Views and Associated Conventions
	Allocation Rules
	Assignment, Equality, Copying and Comparing Objects

	Integrating ESMF into Applications
	Using the ESMF Superstructure

	II Applications
	ESMF_Info
	Description

	ESMF_RegridWeightGen
	Description
	Usage
	Examples
	SCRIP Grid File Format
	Regrid Interpolation Weight File Format

	III Superstructure
	Overview of Superstructure
	Superstructure Classes
	Hierarchical Creation of Components
	Sequential and Concurrent Execution of Components
	Intra-Component Communication
	Data Distribution and Scoping in Components
	Performance
	Object Model

	Application Driver and Required ESMF Methods
	Description
	Required ESMF Methods
	ESMC_Initialize
	ESMC_Finalize

	GridComp Class
	Description
	Class API
	ESMC_GridCompCreate
	ESMC_GridCompDestroy
	ESMC_GridCompFinalize
	ESMC_GridCompGetInternalState
	ESMC_GridCompInitialize
	ESMC_GridCompPrint
	ESMC_GridCompRun
	ESMC_GridCompSetEntryPoint
	ESMC_GridCompSetInternalState
	ESMC_GridCompSetServices

	CplComp Class
	Description
	Class API
	ESMC_CplCompCreate
	ESMC_CplCompDestroy
	ESMC_CplCompFinalize
	ESMC_CplCompGetInternalState
	ESMC_CplCompInitialize
	ESMC_CplCompPrint
	ESMC_CplCompRun
	ESMC_CplCompSetEntryPoint
	ESMC_CplCompSetInternalState
	ESMC_CplCompSetServices

	State Class
	Description
	Restrictions and Future Work
	Class API
	ESMC_StateAddArray
	ESMC_StateAddField
	ESMC_StateCreate
	ESMC_StateDestroy
	ESMC_StateGetArray
	ESMC_StateGetField
	ESMC_StatePrint

	IV Infrastructure: Fields and Grids
	Overview of Infrastructure Data Handling
	Infrastructure Data Classes
	Design and Implementation Notes

	Field Class
	Description
	Field create and destroy

	Class API
	ESMC_FieldCreate
	ESMC_FieldDestroy
	ESMC_FieldGetArray
	ESMC_FieldGetMesh
	ESMC_FieldGetPtr
	ESMC_FieldPrint

	Array Class
	Description
	Class API
	ESMC_ArrayCreate
	ESMC_ArrayDestroy
	ESMC_ArrayGetName
	ESMC_ArrayGetPtr
	ESMC_ArrayPrint

	ArraySpec Class
	Description
	Class API
	ESMC_ArraySpecGet
	ESMC_ArraySpecSet

	Mesh Class
	Description
	Mesh Representation in ESMF
	Supported Meshes

	Constants
	ESMC_MESHELEMTYPE

	Class API
	ESMC_MeshAddElements
	ESMC_MeshAddNodes
	ESMC_MeshCreate
	ESMC_MeshDestroy
	ESMC_MeshFreeMemory
	ESMC_MeshGetLocalElementCount
	ESMC_MeshGetLocalNodeCount

	DistGrid Class
	Description
	Class API
	ESMC_DistGridCreate
	ESMC_DistGridDestroy
	ESMC_DistGridPrint

	V Infrastructure: Utilities
	Overview of Infrastructure Utility Classes
	Time Manager Utility
	Time Manager Classes
	Calendar
	Time Instants and TimeIntervals
	Clocks

	Calendar Class
	Description
	Constants
	ESMC_CALKIND

	Class API
	ESMC_CalendarCreate
	ESMC_CalendarDestroy
	ESMC_CalendarPrint

	Time Class
	Description
	Class API
	ESMC_TimeGet
	ESMC_TimePrint
	ESMC_TimeSet

	TimeInterval Class
	Description
	Class API
	ESMC_TimeIntervalGet
	ESMC_TimeIntervalPrint
	ESMC_TimeIntervalSet

	Clock Class
	Description
	Class API
	ESMC_ClockAdvance
	ESMC_ClockCreate
	ESMC_ClockDestroy
	ESMC_ClockGet
	ESMC_ClockPrint

	Config Class
	Description
	Package history

	Class API
	ESMC_ConfigCreate
	ESMC_ConfigDestroy
	ESMC_ConfigFindLabel
	ESMC_ConfigGetDim
	ESMC_ConfigGetLen
	ESMC_ConfigLoadFile
	ESMC_ConfigNextLine
	ESMC_ConfigValidate

	Log Class
	Description
	Class API
	ESMC_LogWrite

	VM Class
	Description
	Class API
	ESMC_VMGet
	ESMC_VMGetCurrent
	ESMC_VMGetGlobal
	ESMC_VMPrint

	VI References
	VII Appendices
	Appendix A: A Brief Introduction to UML
	Appendix B: ESMF Error Return Codes

