Earth System Modeling Framework

ESMF Reference Manual for C

Version 6.2.0

ESMF Joint Specification Team: V. Balaji, Byron Boville, SamCheung, Tom Clune, Nancy
Collins, Tony Craig, Carlos Cruz, Arlindo da Silva, CecdlalLuca, Rosalinda de Fainchtein,
Brian Eaton, Bob Hallberg, Tom Henderson, Chris Hill, Markdell, Rob Jacob, Phil Jones,
Erik Kluzek, Brian Kauffman, Jay Larson, Peggy Li, Fei Liahd Michalakes, Sylvia Murphy,
David Neckels, Ryan O Kuinghttons, Bob Oehmke, Chuck Pamegclim Rosinski, Will Sawyer,
Earl Schwab, Shepard Smithline, Walter Spector, Don ShMak, Suarez, Spencer Swift, Gerhard
Theurich, Atanas Trayanov, Silverio Vasquez, Jon WolfguWWang, Mike Young, Leonid
Zaslavsky

May 17, 2013

http://www.earthsystemmodeling.org

Acknowledgements

The ESMF software is based on the contributions of a broachuamity. Below are the software packages that are
included in ESMF or strongly influenced our design. We'd ltkeexpress our gratitude to the developers of these
codes for access to their software as well as their ideaséridea

Parallel I/O (PIO) developers at NCAR and DOE LaboratoriesHeir excellent work on this package and their
help in making it work with ESMF

The Spherical Coordinate Remapping and Interpolation &#pekSCRIP) from Los Alamos, which informed
the design of our regridding functionality

The Model Coupling Toolkit (MCT) from Argonne National Latadory, on which we based our sparse matrix
multiply approach to general regridding

The Inpack configuration attributes package from NASA Geddwhich was adapted for use in ESMF by
members of NASA Global Modeling and Assimilation group

The Flexible Modeling System (FMS) package from GFDL andGeldard Earth Modeling System (GEMS)
from NASA Goddard, both of which provided inspiration foetbverall ESMF architecture

The Common Component Architecture (CCA) effort within thegartment of Energy, from which we drew
many ideas about how to design components

The Vector Signal Image Processing Library (VSIPL) andiedgcessors, which informed many aspects of our
design, and the radar system software design group at lnhaidoratory

The Portable, Extensible Toolkit for Scientific Computat{®ETSc) package from Argonne National Labora-
tories, on which we based our initial makefile system

The Community Climate System Model (CCSM) and Weather Rekeand Forecasting (WRF) modeling
groups at NCAR, who have provided valuable feedback on tegydend implementation of the framework

Contents

IL_ESMF Overview 8
l S the Earth S Modeling Erameworkp 9
[2__The ESMF Reference Manual for € 9
: 15 — : = 10
4__How to Submit Comments, Bug Reports, and Feature Requebts 10
I5__The ESMF Anplication Progﬁggzgg E%ectacd 11

ules 11

B.2 DeepandShallow Claskes 11

5.5 ESME Spatial CIASSES . « .« « « v v v e e e e e e e 13
B.6 FESMEMAOS o o o o e e 14
5.7 _ESMF Specification Clashes o v v v 14
5.8 ESMF Utility CIASS®S« « v o e o e e e e e e e 14
i6__Integrating ESMF into Applications] 14
%&Mﬂmﬁmﬂue 15
£ 15
[z__OQverall Rules and Behaviar 16
[.1 | ocal and Global Views and Associated CONVEOKIONS . . v v v v v v v e e e e e 16
7.2 _Allocation RUIES e 16
7.3 Assignment, Equality, Copying and Comparing Objects.ot 16
[8__Overall Design and Implementation Notds 17

Il Applications| 18

9__Overview of Superstructurd 20

0.1 Superstructure Clasbes 20

[11.2.1 ESMC GridCompCrehte v v o e

[[1.2.2 ESMC_GrdCompDestloy -« v v oottt

I%;,g,g ESMC QE!QQQQEE!QQ!EG
1.2.4 ESMC GridCompGetinternalState 0 o i e e e

[[12.5 ESMC_GHdCompIniialie oo oot e

11.2.6 ESMC GridCompPrnt.

[11.27 ESMC GridCompRlIN

1221 ESMC CplCompCrehte v v e e,

[[2.2.2 ESMC_CplCompDestloy« v oottt

[12.2.3 ESMC CplCompFinalizet iuurnoono....

M'%Muwﬁiemﬂate
2.2.5 ESMC CplComplnitialire

1226 ESMC CplCompPrnt o o o e e

(227 ESMC CplCompRIN . . . o o o oo e e

[13.2.1 ESMC SciCompCrehte

[13.2.2 ESMC _SciCompDestioy voii it e

[3.2.3 ESMC_SCICOMPPIN -« « « o o oovee e et e e e

[14_State Clads

41 Descriptidn

30
30
31
31
31
32
33
33
34
35
36
36
37

38
38
38
38
39
39
40
41
42
42
43
44
44

45
45
45
45
46
46

a7
47
47
47
47
48
48
49
49
50
51

52

MArravCredte 66
[17.2.2 ESMC ArrayDestrDy oot v i e 67
[17.2.3 ESMC ArrayGetNAME o oot vo et it e e e e 68
IJ__Z,Z,A_ES_M_C_ArravGetH’tr 68

[19 Grid Clas$ 70
o1 Descriptidn 70
[19.1.1 Grid Representationin ESMF o o 71

19.1.2 Supported Grlljs ... 71

[19.23 FSMC GRIDSTATUSo 76
|19..2.4_ES.M.C=F£).LEKJ.ND 76
|19..2.5_ES.M.C=SIAGQERJQC 76
[19.3 Restrictions and FUtUre WOIK o o o o e 78
oz |§E§|§n and Implementation NAES« o o o et e e 78
1941 GridTopolodyo e 78

B2_Appendix A: Master List of Constants

124

125

125
125
125
125
125
125
125
125
125
126
126
126
126
126
127

127

128

Part |
ESMF Overview

1 Whatis the Earth System Modeling Framework?

The Earth System Modeling Framework (ESMF) is a suite ofveaf tools for developing high-performance, multi-
component Earth science modeling applications. Such egifins may include a few or dozens of components
representing atmospheric, oceanic, terrestrial, or qithgsical domains, and their constituent processes (dysami
chemical, biological, etc.). Often these components aveldped by different groups independently, and must be
“coupled” together using software that transfers and fanss data among the components in order to form functional
simulations.

ESMF supports the development of these complex applicatioa number of ways. It introduces a set of simple,
consistent componentinterfaces that apply to all typeswifonents, including couplers themselves. These intesfac
expose in an obvious way the inputs and outputs of each coempolh offers a variety of data structures for transferring
data between components, and libraries for regriddinge txivancement, and other common modeling functions.
Finally, it provides a growing set of tools for using metad#t describe components and their input and output
fields. This capability is important because componentsaha self-describing can be integrated more easily into
automated workflows, model and dataset distribution antysisgortals, and other emerging “semantically enabled”
computational environments.

ESMF is not a single Earth system model into which all compémenust fit, and its distribution doesn’t contain
any scientific code. Rather it provides a way of structurioghponents so that they can be used in many differ-
ent user-written applications and contexts with minimadeonodification, and so they can be coupled together in
new configurations with relative ease. The idea is to creaeyncomponents across a broad community, and so to
encourage new collaborations and combinations.

ESMF offers the flexibility needed by this diverse user ba#eis tested nightly on more than two dozen plat-
form/compiler combinations; can be run on one processohaugands; supports shared and distributed memory
programming models and a hybrid model; can run componenqtsesgially (on all the same processors) or concur-
rently (on mutually exclusive processors); and supponiglsiexecutable or multiple executable modes.

ESMF’s generality and breadth of function can make it dangnfor the novice user. To help users navigate the
software, we try to apply consistent names and behaviougirout and to provide many examples. The large-scale
structure of the software is straightforward. The utistend data structures for building modeling components are
called the ESMHRnfrastructure The coupling interfaces and drivers are called shperstructure User code sits
between these two layers, making calls to the infrastrediioraries underneath and being scheduled and synchbnize
by the superstructure above. The configuration resemblasdwsch, as shown in FiguEé 1.

ESMF users may choose to extensively rewrite their codeskmadvantage of the ESMF infrastructure, or they may
decide to simply wrap their components in the ESMF supestira in order to utilize framework coupling services.
Either way, we encourage users to contact/our suppori tegomestions arise about how to best use the software, or
how to structure their application. ESMF is more than sofewi’s a group of people dedicated to realizing the vision
of a collaborative model development community that spasiutional and national bounds.

2 The ESMF Reference Manual for C

ESMF has a complete set of Fortran interfaces and some Gaogsr ThisEESMF Reference Manu# a listing of
ESMF interfaces for C.

Interfaces are grouped by class. A class is comprised ofdateahd methods for a specific concept like a physical
field. Superstructure classes are listed first in Mi#ual followed by infrastructure classes.

The major classes in the ESMF superstructure are Compqmvelnitsh usually represent large pieces of functional-
ity such as atmosphere and ocean models, and States, wkitheadata structures used to transfer data between

mailto:esmf_support@list.woc.noaa.gov

Figure 1. Schematic of the ESMF “sandwich” architecture.e Ttamework consists of two parts, an upper level
superstructure layer and a lower levehfrastructure layer. User code is sandwiched between these two layers.

ESMF Superstructure
AppDriver
Component Classes: GridComp, CplComp, State

User Code

ESMF Infrastructure
Data Classes: Bundle, Field, Grid, Array
Utility Classes: Clock, LogErr, DELayout, VM, Config

Components. There are both data structures and utilitidseife SMF infrastructure. Data structures include multi-
dimensional Arrays, Fields that are comprised of an Array arGrid, and collections of Arrays and Fields called
ArrayBundles and FieldBundles, respectively. There aitiytbraries for data decomposition and communications
time management, logging and error handling, and appticatbnfiguration.

3 How to Contact User Support and Find Additional Informatio n

The ESMF team can answer questions about the interfacespeedn this document. For user support, please contact
esmt_support@Iist.woc.noaa.gov.

The website], http://www.earthsystemmodeling.org, mtevinore information of the ESMF project as a whole. The
website includes release notes and known bugs for eaclorarihe framework, supported platforms, project history,
values, and metrics, related projects, the ESMF managestreicture, and more. THESMFE User’s Guideontains
build and installation instructions, an overview of the HSBlystem and a description of how its classes interrelate
(this version of the document corresponds to the last pwilision of the framework). Also available on the ESMF
website is thieSMF Developer’s Guidthat details ESMF procedures and conventions.

4 How to Submit Comments, Bug Reports, and Feature Requests

We welcome input on any aspect of the ESMF project. Send igmsstand comments to
esmf_support@list.woc.noaa.gov.

10

mailto:esmf_support@list.woc.noaa.gov
http://www.earthsystemmodeling.org
http://www.earthsystemmodeling.org/esmf_releases/public/last/ESMF_usrdoc/
http://www.earthsystemmodeling.org/documents/dev_guide/
mailto:esmf_support@list.woc.noaa.gov

5 The ESMF Application Programming Interface

The ESMF Application Programming Interface (API) is basadh® object-oriented programming concept ofass

A class is a software construct that is used for grouping @fetlated variables together with the subroutines and
functions that operate on them. We use classes in ESMF betiaers help to organize the code, and often make it
easier to maintain and understand. A particular instaneectdss is called aobject. For example, Field is an ESMF
class. An actual Field calledenper at ur e is an object. That is about as far as we will go into softwagiregering
terminology.

The C interface is implemented so that the variables agsalcigith a class are stored in a C structure. For example,
anESMC_Fi el d structure stores the data array, grid information, and dataassociated with a physical field. The
structure for each class is defined in a C header file. The tipesaassociated with each class are also defined in the
header files.

The header files for ESMF are bundled together and can besmttesth a singlé ncl ude statement#i ncl ude
"ESMC. h". By convention, the C entry points are named using “ESMC” peéix.

5.1 Standard Methods and Interface Rules

ESMF defines a set of standard methods and interface rulelsdlibacross the entire API. These are:

e ESMC <Cl ass>Create() and ESMC <C ass>Destroy(), for creating and destroying objects
of ESMF classes that require internal memory managementalledc ESMF deep classes). The
ESMC <O ass>Cr eat e() method allocates memory for the object itself and for indéruariables, and ini-
tializes variables where appropriate. It is always writhsra function that returns a derived type instance of the
class, i.e. an object.

e ESMC <Cl ass>Set () and ESMC_<C ass>Cet (), for setting and retrieving a particular item or flag.
In general, these methods are overloaded for all cases viherigem can be manipulated as a name/value
pair. If identifying the item requires more than a name, onthe class is of sufficient complexity
that overloading in this way would result in an overwhelmingmber of options, we define specific
ESMC _<d ass>Set <Sonet hi ng>() andESMC_<Cl ass>Get <Sorret hi ng>() interfaces.

e ESMC <O ass>Add(), ESMC _<d ass>AddRepl ace(), ESMC _<d ass>Renpve(), and
ESMC <O ass>Repl ace(), for manipulating objects of ESMF container classes - sisdBSMC St at e
andESMC _Fi el dBundl e. For example, th&SMC_Fi el dBundl eAdd() method adds another Field to an
existing FieldBundle object.

e ESMC <O ass>Pri nt (), for printing the contents of an object to standard out. Thiethod is mainly
intended for debugging.

e ESMC <Cl ass>ReadRestart () andESMC <Cl ass>WiteRestart (), for saving the contents of a
class and restoring it exactly. Read and write restart nustiave not yet been implemented for most ESMF
classes, so where necessary the user needs to write redtas themselves.

e ESMC <O ass>Val i dat e(), for determining whether a class is internally consisterfor example,
ESMC Fi el dval i dat e() validates the internal consistency of a Field object.

5.2 Deep and Shallow Classes

The ESMF contains two types of classes.

11

Deepclasses requirBSMC_<Cl ass>Cr eat e() andESMC _<C ass>Destroy() calls. They involve memory
allocation take significant time to set up (involving memorgnagement) and should not be created in a time-critical
portion of code. Deep objects persist even after the methathich they were created has returned. Most classes
in ESMF, including GridComp, CplComp, State, Fields, Filddles, Arrays, ArrayBundles, Grids, and Clocks, fall
into this category.

Shal | ow classes do not posseBSMC_<Cl ass>Cr eat e() andESMC <Ol ass>Destroy() calls. They are
simply declared and their values set usingg8MC_<Cl ass>Set () call. Examples of shallow classes are Time,
Timelnterval, and ArraySpec. Shallow classes do not takg to set up and can be declared and set within a time-
critical code segment. Shallow objects stop existing whemtethod in which they were declared has returned.

An exception to this is when a shallow object, such as a Timstdred in a deep object such as a Clock. The Clock
then carries a copy of the Time in persistent memory. The Ténteallocated with th&SMC_Cl ockDest r oy ()
call.

See Sectiofl8, Overall Design and Implementation Notesg faief discussion of deep and shallow classes from an
implementation perspective. For an in-depth look at thégthesnd inter-language issues related to deep and shallow
classes, see tliEESMF Implementation Repbrt

5.3 Special Methods

The following are special methods which, in one case, areired by any application using ESMF, and in the other
case must be called by any application that is using ESMF Qoents.

e ESMC Initialize() andESMC _Fi nal i ze() are required methods that must bracket the use of ESMF
within an application. They manage the resources requaedrt ESMF and shut it down gracefully. ESMF
does not support restarts in the same executable, E8MC | niti al i ze() should not be called after
ESMC Fi nalize().

e ESMC <Type>Conplnitialize(), ESMC <Type>ConpRun(), and
ESMC _<Type>ConpFi nal i ze() are component methods that are used at the highest levelnwith
ESMF.<Type> may be<Gr i d>, for Gridded Components such as oceans or atmosphere€pdr>, for
Coupler Components that are used to connect them. The ¢mftémese methods is not part of the ESMF.
Instead the methods call into associated subroutinesnwiiter code.

5.4 The ESMF Data Hierarchy
The ESMF APl is organized around an hierarchy of classestrtin model data. The operations that are performed
on model data, such as regridding, redistribution, and hpttates, are methods of these classes.
The main data classes offered by the ESMF C API, in order oéasing complexity, are:
e Array An ESMF Array is a distributed, multi-dimensional arrayttlcan carry information such as its type,
kind, rank, and associated halo widths. It contains a rafar¢o a native language array.

e Field A Field represents a physical scalar or vector field. It cioista reference to an Array along with grid
information and metadata.

e StateA State represents the collection of data that a Componth@reiequires to run (an Import State) or can
make available to other Components (an Export State). sStaéy contain references to Arrays, ArrayBundles,
Fields, FieldBundles, or other States.

12

http://www.earthsystemmodeling.org/documents/IMPL_repdoc/

e Component A Component is a piece of software with a distinct functionSME- currently recognizes two
types of Components. Components that represent a physioadid or process, such as an atmospheric model,
are called Gridded Components since they are usually dizedeon an underlying grid. The Components
responsible for regridding and transferring data betweedddd Components are called Coupler Components.
Each Component is associated with an Import and an Expas.SEmmponents can be nested so that simpler
Components are contained within more complex ones.

Underlying these data classes are native language arr&FRrrays and Fields can be queried for the C pointer to
the actual data. You can perform communication operatidhereon the ESMF data objects or directly on C arrays
through the VM class, which serves as a unifying wrapperifgriduted and shared memory communication libraries.

5.5 ESMF Spatial Classes

Like the hierarchy of model data classes, ranging from timpke to the complex, ESMF is organized around an hierar-
chy of classes that represent different spaces associ#ted somputation. Each of these spaces can be manipulated,
in order to give the user control over how a computation i<eted. For Earth system models, this hierarchy starts
with the address space associated with the computer anadsxie the physical region described by the application.
The main spatial classes in ESMF, from those closest to tlehimato those closest to the application, are:

e TheVirtual Machine, or VM The ESMF VM is an abstraction of a parallel computing envinent that en-
compasses both shared and distributed memory, single alidoone systems. Its primary purpose is resource
allocation and management. Each Component runs in its ownuéiig the resources it defines. The elements
of a VM arePersistent Execution Threadsor PETSs, that are executing iKirtual Address Spaces or VASSs.

A simple case is one in which every PET is associated with glesilPI process. In this case every PET is
executing in its own private VAS. If Components are nesteel parent Component allocates a subset of its PETs
to its children. The children have some flexibility, subjexthe constraints of the computing environment, to
decide how they want to use the resources associated wifPEfe they've received.

e DELayout A DELayout represents a data decomposition (we also refénisoas a distribution). Its basic
elements ar®ecomposition Elementsor DEs. A DELayout associates a set of DEs with the PETs in a VM.
DEs are not necessarily one-to-one with PETSs. For caché&ibigoor user-managed multi-threading, more DEs
than PETs may be defined. Fewer DEs than PETs may also be défamealpplication requires it.

The current ESMF C API does not provide user access to the ddtlt@lass.

¢ DistGrid A DistGrid represents the index space associated with a risl a useful abstraction because often
a full specification of grid coordinates is not necessarydfing data communication patterns. The DistGrid
contains information about the sequence and connectifitiata points, which is sufficient information for
many operations. Arrays are defined on DistGrids.

e Array An Array defines how the index space described in the DistiSr@gsociated with the VAS of each PET.
This association considers the type, kind and rank of thexed data. Fields are defined on Arrays.

e Grid A Grid is an abstraction of a physical space. It associatesedinate system, a set of coordinates, and
a topology to a collection of grid cells. Grids in ESMF are qoised of DistGrids plus additional coordinate
information.

The current ESMF C API does not provide user access to thedzsd.

e Field A Field may contain more dimensions than the Grid that it ésdbtized on. For example, for convenience
during integration, a user may want to define a single FieJdailthat holds snapshots of data at multiple times.
Fields also keep track of the stagger location of a Field gaiat within its associated Grid cell.

13

5.6 ESMF Maps

In order to define how the index spaces of the spatial clasdaterto each other, we require either implicit rules
(in which case the relationship between spaces is definecetaull), or special Map arrays that allow the user to
specify the desired association. The form of the speciinati usually that the position of the array element carries
information about the first object, and the value of the aekment carries information about the second object.
ESMF includes @i st Gri dToAr rayMap, agri dToFi el dvap, adi st Gi dToGri dMap, and others.

5.7 ESMF Specification Classes
It can be useful to make small packets of descriptive par@arseESMF has one of these:

e ArraySpec, for storing the specifics, such as type/kind/rank, of aayarr

5.8 ESMF Utility Classes
There are a number of utilities in ESMF that can be used inudgetly. These are:

e Attributes, for storing metadata about Fields, FieldBundles, Statied,other classes. (Not currently available
through the ESMF C API.)

e TimeMgr, for calendar, time, clock and alarm functions.
e LogErr, forlogging and error handling.

e Config, for creating resource files that can replace namelists arsistent way of setting configuration param-
eters.

6 Integrating ESMF into Applications

Depending on the requirements of the application, the usgrwant to begin integrating ESMF in either a top-down
or bottom-up manner. In the top-down approach, tools at tiperstructure level are used to help reorganize and
structure the interactions among large-scale componerikgiapplication. It is appropriate when interoperabikity

a primary concern; for example, when several differentivassor implementations of components are going to be
swapped in, or a particular component is going to be used itipfeucontexts. Another reason for deciding on a
top-down approach is that the application contains legadg that for some reason (e.qg., intertwined functions, very
large, highly performance-tuned, resource limitatiohs)¢ is little motivation to fully restructure. The supeusture

can usually be incorporated into such applications in a Wayis non-intrusive.

In the bottom-up approach, the user selects desiredesiljtata communications, calendar management, perfoenanc
profiling, logging and error handling, etc.) from the ESMFrastructure and either writes new code using them,
introduces them into existing code, or replaces the funality in existing code with them. This makes sense when
maximizing code reuse and minimizing maintenance costg@h There may be a specific need for functionality or
the component writer may be starting from scratch. The cemanagement utility is a popular place to start.

14

6.1 Using the ESMF Superstructure

The following is a typical set of steps involved in adoptihg ESMF superstructure. The first two tasks, which occur
before an ESMF call is ever made, have the potential to be t® difficult and time-consuming. They are the work
of splitting an application into components and ensurirag tach component has well-defined stages of execution.
ESMF aside, this sort of code structure helps to promoteegifun clarity and maintainability, and the effort putant

it is likely to be a good investment.

1. Decide how to organize the application as discrete Gddaled Coupler Components. This might involve
reorganizing code so that individual components are cjeseparated and their interactions consist of a minimal
number of data exchanges.

2. Divide the code for each componentinto initialize, rurg &inalize methods. These methods can be multi-phase,
eg.,init 1, init_2.

3. Pack any data that will be transferred between compomant& SMF Import and Export State data structures.
This is done by first wrapping model data in either ESMF ArraiyBields. Arrays are simpler to create and use
than Fields, but carry less information and have a moredichiinge of operations. These Arrays and Fields
are then added to Import and Export States. They may be paateArrayBundles or FieldBundles first, for
more efficient communications. Metadata describing theehddta can also be added. At the end of this step,
the data to be transferred between components will be in gpaonand largely self-describing form.

4. Pack time information into ESMF time management datagires.

5. Using code templates provided in the ESMF distributiorate ESMF Gridded and Coupler Components to
represent each component in the user code.

6. Write a set services routine that sets ESMF entry pointedch user component’s initialize, run, and finalize
methods.

7. Run the application using an ESMF Application Driver.

6.2 Constants

Named constants are used throughout ESMF to specify thevaiimany arguments with multiple well defined
values in a consistent way. These constants are defined bwadltype that follows this pattern:

ESMF_<CONSTANT_NAME>_FI ag
The values of the constant are then specified by this pattern:

ESMF_<CONSTANT _NAME> <VALUEL>
ESMF_<CONSTANT_NAME>_<VALUE2>
ESMF_<CONSTANT_NAME> <VALUE3>

A master list of all available constants can be found in sef2.

15

7 Overall Rules and Behavior

7.1 Local and Global Views and Associated Conventions

ESMF data objects such as Fields are distributed over DES,easich DE getting a portion of the data. Depending on

the task, a local or global view of the object may be preferalvl a local view, data indices start with the first element

on the DE and end with the last element on the same DE. In algl@yg there is an assumed or specified order to the
set of DEs over which the object is distributed. Data inditast with the first element on the first DE, and continue

across all the elements in the sequence of DEs. The lastri#ga represents the number of elements in the entire
object. The DistGrid provides the mapping between localglodal data indices.

The convention in ESMF is that entities with a global view éao prefix. Entities with a DE-local (and in some
cases, PET-local) view have the prefix “local.”

Just as data is distributed over DEs, DEs themselves carsbiédied over PETs. This is an advanced feature for
users who would like to create multiple local chunks of d&daalgorithmic or performance reasons. Local DEs are
those DEs that are located on the local PET. Local DE labeliwgys starts at 0 and goes to localDeCount-1, where
localDeCount is the number of DEs on the local PET. Global DEbers also start at 0 and go to deCount-1. The
DELayout class provides the mapping between local and g@Baaumbers.

7.2 Allocation Rules

The basic rule of allocation and deallocation for the ESMmisoever allocates it is responsible for deallocating it.

ESMF methods that allocate their own space for data will [deate that space when the object is de-
stroyed. Methods which accept a user-allocated buffer, dgample ESMC Fi el dCreate() with the
ESMF_DATACOPY _REFERENCE flag, will not deallocate that buffer at the time the objectiestroyed. The user
must deallocate the buffer when all use of it is complete.

Classes such as Fields, FieldBundles, and States may heaysAFields, Grids and FieldBundles created externally
and associated with them. These associated items are nogygEbalong with the rest of the data object since it is
possible for the items to be added to more than one data atjectime (e.g. the same Grid could be part of many
Fields). It is the user’s responsibility to delete thesmiavhen the last use of them is done.

7.3 Assignment, Equality, Copying and Comparing Objects

The equal sign assignment has not been overloaded in ESMgblulting in the standard C behavior. This behavior
has been documented as the first entry in the API documents#iction for each ESMF class. For deep ESMF
objects the assignment results in setting an alias the the &5MF object in memory. For shallow ESMF objects
the assignment is essentially a equivalent to a copy of tfecbbFor deep classes the equality operators have been
overloaded to test for the alias condition as a counter paha assignment behavior. This and the not equal operator
are documented following the assignemnt in the class APlich@ntation sections.

Deep object copies are implemented as a special variane&3RIC_<Cl ass>Cr eat e() methods. It takes an ex-
isting deep object as on of the required arguments. At thigt pot all deep classes ha#8MC_<Cl ass>Cr eat e()
methods that allow object copy.

Due to the complexity of deep classes there are many aspbets eomparing two objects of the same class. ESMF
provideESMC _<Cl ass>Mat ch() methods, which are functions that return a class specificmfietg. At this point
not all deep classes halESMC_<Cl ass>Mat ch() methods that allow deep object comparison.

16

8 Overall Design and Implementation Notes

1. Deep and shallow classeg he deep and shallow classes described in Selctidon 5.2 itifferw and where they
are allocated within a multi-language implementation emiwinent. We distinguish between the implementation
language, which is the language a method is written in, aaadafiing language, which is the language that the
user application is written in. Deep classes are allocatitthe process heap by the implementation language.
Shallow classes are allocated off the stack by the callinguage.

2. Base classAll ESMF classes are built upon a Base class, which holds # setaf system-wide capabilities.

17

Part Il

Applications

The main product delivered by ESMF is the ESMF library thiives application developers to write programs based
on the ESMF Fortran or C APIs. In addition to the programmibgary, ESMF distributions come with a small set of
applications that are of general interest to the commuiiityese applications utilize the ESMF library to implement
features such as printing general information about the E$Mtallation, or generating regrid weight files. The
provided ESMF applications are intended to be used as s@dwdemand line tools.

The bundled ESMF applications are built and installed dytiire usual ESMF installation process, which is described
in detail in the ESMF User’s Guide section "Building and &lhg the ESMF". After the installation the applications
will be located in theeESMF_APPSDI Rdirectory, which can be found as a Makefile variable ingbaf . nk file. The
esnf . nk file can be found in th&SM-_| NSTALL_LI BDI Rdirectory after a successful installation. The ESMF
User’s Guide discusses tlesnf . mk mechanism to access the bundled applications in more detglction "Using
Bundled ESMF Applications".

Refer to the "Application" section of the ESMF Fortran refece manual for more information. In addition, each
application supports the standard- hel p command line argument, providing a brief description of Howvoke
the program.

18

Part Il

Superstructure

19

9 Overview of Superstructure

ESMF superstructure classes define an architecture fomédisg Earth system applications from modelicgmpo-
nents A component may be defined in terms of the physical domainithepresents, such as an atmosphere or sea
ice model. It may also be defined in terms of a computationattion, such as a data assimilation system. Earth
system research often requires that such componerdeuyged together to create an application. By coupling we
mean the data transformations and, on parallel computistesys, data transfers, that are necessary to allow data from
one componentto be utilized by another. ESMF offers regngichethods and other tools to simplify the organization
and execution of inter-component data exchanges.

In addition to components defined at the level of major ptalglomains and computational functions, components
may be defined that represent smaller computational fumetidgthin larger components, such as the transformation
of data between the physics and dynamics in a spectral atmaosmodel, or the creation of nested higher resolution
regions within a coarser grid. The objective is to couple ponents at varying scales both flexibly and efficiently.
ESMF encourages a hierachical application structure, islwlarge components branch into smaller sub-components
(see FigurEl?). ESMF also makes it easier for the same comptmee used in multiple contexts without changes to
its source code.

Key Features

Modular, component-based architecture.

Hierarchical assembly of components into applications.

Use of components in multiple contexts without modification

Sequential or concurrent component execution.

Single program, multiple datastream (SPMD) applicatiamsriaximum portability and reconfigurability.
Multiple program, multiple datastream (MPMD) option forileility.

9.1 Superstructure Classes

There are a small number of classes in the ESMF supersteuctur

e ComponentAn ESMF component has two parts, one that is supplied by ESMFoae that is supplied by the
user. The part that is supplied by the framework is an ESMivelétype that is either a Gridded Component
(GridComp) or a Coupler ComponentCplComp). A Gridded Component typically represents a physical
domain in which data is associated with one or more gridseXxample, a sea ice model. A Coupler Component
arranges and executes data transformations and transtersdm one or more Gridded Components. Gridded
Components and Coupler Components have standard methidh,include initialize, run, and finalize. These
methods can be multi-phase.

The second part of an ESMF Component is user code, such asel arathta assimilation system. Users set
entry points within their code so that it is callable by thenfrework. In practice, setting entry points means that
within user code there are calls to ESMF methods that agsotia name of a Fortran subroutine with a cor-
responding standard ESMF operation. For example, a usgefvinitialization routine calledry Oceanl ni t
might be associated with the standard initialize routinemESMF Gridded Component named “myOcean”
that represents an ocean model.

e State ESMF Components exchange information with other Companenly through States. A State is an
ESMF derived type that can contain Fields, FieldBundlesays, ArrayBundles, and other States. A Compo-
nent is associated with two States,larport State and anExport State. Its Import State holds the data that it
receives from other Components. Its Export State contaitesttiat it makes available to other Components.

20

Figure 2: ESMF enables applications such as the atmosphenieral circulation model GEOS-5 to be structured
hierarchically, and reconfigured and extended easily. Baghn this diagram is an ESMF Gridded Component.

GEOS-5

|

|

gravity_wave_drag || fvcore | | surface || chemistry || moist_processes || radiation || turbulence |
I
| lake || land_ice ||data_ocean || land | | infrared || solar |
| vegetation || catchment |

An ESMF coupled application typically involves a parentdaied Component, two or more child Gridded Components
and one or more Coupler Components.

The parent Gridded Component is responsible for creatimghiid Gridded Components that are exchanging data, for
creating the Coupler, for creating the necessary Importtaqubrt States, and for setting up the desired sequencing.
The application’s “main” routine calls the parent Griddedn@ponent’s initialize, run, and finalize methods in order
to execute the application. For each of these standard mgthibe parent Gridded Component in turn calls the
corresponding methods in the child Gridded Components hadCbupler Component. For example, consider a
simple coupled ocean/atmosphere simulation. When thialiné method of the parent Gridded Componentis called
by the application, it in turn calls the initialize methodsts child atmosphere and ocean Gridded Components, and
the initialize method of an ocean-to-atmosphere Couplen@ment. FigurEl3 shows this schematically.

9.2 Hierarchical Creation of Components

Components are allocated computational resources in thedbPersistent Execution Threadsor PETs. A list of

a Component’s PETs is contained in a structure calletitaal Machine , or VM. The VM also contains information
about the topology and characteristics of the underlyimgmater. Components are created hierarchically, with garen
Components creating child Components and allocating samakkaf their PETs to each one. By default ESMF creates
a new VM for each child Component, which allows Componentailor their VM resources to match their needs. In
some cases a child may want to share its parent’s VM - ESMF@®tgthis too.

21

Figure 3: A call to a standard ESMF initialize (run, finalizeg¢thod by a parent component triggers calls to initialize
(run, finalize) all of its child components.

AppDriver (“Main”)
Call Initialize Call Run Call Finalize
<
Initialize] [Run] [Finalize]
Parent GridComp “Hurricane Model”
Call Initialize Call Run Call Finalize
<

Initialize Run | Finalize |

Child GridComp “Atmospherg”

Initialize | Run r_FinaIize

Child GridComp "Ocean”

Initialize | Run r_FinaIize

Child CplComp “Atm-Ocean Coupler”

A Gridded Component may exist across all the PETs in an agtjit. A Gridded Component may also reside on
a subset of PETs in an application. These PETs may whollycaenwith, be wholly contained within, or wholly
contain another Component.

9.3 Sequential and Concurrent Execution of Components

When a set of Gridded Components and a Coupler runs in segoeribe same set of PETs the application is executing
in a sequentialmode. When Gridded Components are created and run on nyuéxalusive sets of PETs, and are
coupled by a Coupler Component that extends over the unitresé sets, the mode of executiosdcurrent.

Figurel3 illustrates a typical configuration for a simple plea sequential application, and Figlite 5 shows a possible
configuration for the same application running in a conaitrneode.

Parent Components can select if and when to wait for conatlyrexecuting child Components, synchronizing only
when required.

22

It is possible for ESMF applications to contain some Compobsets that are executing sequentially and others that
are executing concurrently. We might have, for examplepaphere and land Components created on the same subset
of PETSs, ocean and sea ice Components created on the remaifieTs, and a Coupler created across all the PETs
in the application.

9.4 Intra-Component Communication

All data transfers within an ESMF application ocauithin a component. For example, a Gridded Component may
contain halo updates. Another example is that a Coupler @oet may redistribute data between two Gridded

Components. As aresult, the architecture of ESMF does marakon any particular data communication mechanism,
and new communication schemes can be introduced withadtaffy the overall structure of the application.

Since all data communication happens within a componenduplér Component must be created on the union of the
PETSs of all the Gridded Components that it couples.

9.5 Data Distribution and Scoping in Components

The scope of distributed objects is the VM of the currentlg@aring Component. For this reason, all PETs in the
current VM must make the same distributed object creatidls.c/hen a Coupler Component running on a super-
set of a Gridded Component's PETs needs to make commumiozdits involving objects created by the Gridded
Component, an ESMF-supplied function callE8MF_St at eReconci | e() creates proxy objects for those PETs
that had no previous information about the distributed ciisjeProxy objects contain no local data but can be used in
communication calls (such as regrid or redistribute) tadbe the remote source for data being moved to the current
PET, or to describe the remote destination for data beingashénom the local PET. Figuid 6 is a simple schematic
that shows the sequence of events in a reconcile call.

9.6 Performance

The ESMF design enables the user to configure ESMF applisasio that data is transferred directly from one com-
ponent to another, without requiring that it be copied ot e different data buffer as an interim step. This is likely
to be the most efficient way of performing inter-componentging. However, if desired, an application can also be
configured so that data from a source component is sent tdiaadiset of Coupler Component PETs for processing
before being sent to its destination.

The ability to overlap computation with communication isestial for performance. When running with ESMF the
user can initiate data sends during Gridded Component #gacas soon as the data is ready. Computations can then
proceed simultaneously with the data transfer.

23

Figure 4: Schematic of the run method of a coupled applinatigth an “Atmosphere” and an “Ocean” Gridded Com-
ponent running sequentially with an “Atm-Ocean CouplerfieTtop-level “Hurricane Model” Gridded Component
contains the sequencing information and time advanceroept | The application driver, Coupler, and all Gridded
Components are distributed over nine PETSs.

PETs -
1 2 3 4 5 6 7 8 9
-
3
® AppDriver (“Main”)
Call Run
\j
(Run]
GridComp “Hurricane Model”
LOOP Call Run
f Run]
GridComp
“Atmosphere”
{ Run]
GridComp
“Ocean”
r Run]
CplComp
“Atm-Ocean Coupler”

24

Figure 5: Schematic of the run method of a coupled applinatidgth an “Atmosphere” and an “Ocean” Gridded
Component running concurrently with an “Atm-Ocean Coupl€he top-level “Hurricane Model” Gridded Compo-
nent contains the sequencing information and time advaectloop. The application driver, Coupler, and top-level
“Hurricane Model” Gridded Component are distributed overenPETs. The “Atmosphere” Gridded Component is

distributed over three PETs and the “Ocean” Gridded Compiiselistributed over six PETS.

PETs >

awll |

AppDriver (“Main”)

Call Run

f Run]

GridComp “Hurricane Model”

LOOP Call Run

(Run] (Run]
GridComp GridComp
“Atmosphere” “Ocean”
f Run]
CplComp
“Atm-Ocean Coupler”

25

Figure 6: AnESMF_St at eReconci | e() call creates proxy objects for use in subsequent commuaoiceslls.
The reconcile call would normally be made during Coupleiafization.

PETs

>

-
3
Initialize]
CplComp
\/ “Atm-Ocean Coupler”
AtmState OcnState

AtmFieldl ||
AtmField2 ||
AtmField3 ||
...... OcnField1
...... OcnField2
...... OcnField3

call ESMF_StateReconcile()

AtmState OcnState
AtmFieldl AtmField1-proxy
AtmField2 AtmField2-proxy
AtmField3 AtmField3-proxy

OcnField1-proxy OcnField1
OcnField2-proxy OcnField2
OcnField3-proxy OcnField3

26

9.7 Object Model

The following is a simplified UML diagram showing the relat&hips among ESMF superstructure classes. See
Appendix A, A Brief Introduction to UML, for a translation table that lists the symbols in the diagend their
meaning.

Comp

Possible extensions

GridComp CplComp @ @

10 Application Driver and Required ESMF Methods

10.1 Description

Every ESMF application needs a driver code. Typically theettdayer is implemented as the "main" of the applica-
tion, although this is not strictly an ESMF requirement. Farst ESMF applications the task of the application driver
will be very generic: Initialize ESMF, create a top level Qmmnent and call its Intialize, Run and Finalize methods,
before destroying the top level Component again and caliBiyiF Finalize.

ESMF provides a number of different application driver tdautgs in the
$ESM-_DI R/ src/ Super struct ure/ AppDri ver directory. An appropriate one can be chosen depend-
ing on how the application is to be structured:

Sequential vs. Concurrent ExecutionIn a sequential execution model every Component executal BETS, with
each Component completing execution before the next Coemidiegins. This has the appeal of simplicity of
data consumption and production: when a Gridded Compomants ll required data is available for use, and
when a Gridded Component finishes all data produced is resdphsumption by the next Gridded Component.
This approach also has the possibility of less data moveih#e grid and data decomposition is done such
that each processor's memory contains the data needed hgth€omponent.

In a concurrent execution model subgroups of PETs run Gdiemponents and multiple Gridded Components
are active at the same time. Data exchange must be cooribateeen Gridded Components so that data
deadlock does not occur. This strategy has the advantag®wiray coupling to other Gridded Components
at any time during the computational process, includinghaeing to return to the calling level of code before
making data available.

Pairwise vs. Hub and SpokeCoupler Components are responsible for taking data fronGrieled Component and
putting it into the form expected by another Gridded Comman€his mightinclude regridding, change of units,
averaging, or binning.

27

Coupler Components can be written foslirwise data exchange: the Coupler Component takes data from a
single Component and transforms it for use by another si@gidded Component. This simplifies the structure
of the Coupler Component code.

Couplers can also be written usinghab and spokenodel where a single Coupler accepts data from all other
Components, can do data merging or splitting, and formatsfdaall other Components.

Multiple Couplers, using either of the above two models ensanixture of these approaches, are also possible.

Implementation Language The ESMF framework currently has Fortran interfaces fopalbblic functions. Some
functions also have C interfaces, and the number of thes@&cted to increase over time.

Number of Executables The simplest way to run an application is to run the same d@abtaiprogram on all PETS.
Different Components can still be run on mutually excludREETs by using branching (e.g., if this is PET 1,
2, or 3, run Component A, if it is PET 4, 5, or 6 run ComponentBj)is is aSPMD model, Single Program
Multiple Data.

The alternative is to start a different executable prograndifferent PETs. This is 8IPMD model, Multiple
Program Multiple Data. There are complications with many gontrol systems on multiprocessor machines
in getting the different executables started, and gettirigriprocess communcations established. ESMF cur-
rently has some support for MPMD: different Components camas separate executables, but the Coupler that
transfers data between the Components must still run onrtios wf their PETs. This means that the Coupler
Component must be linked into all of the executables.

10.2 Required ESMF Methods

There are a few methods that every ESMF application mustagunt First, ESMC I nitialize() and
ESMC Fi nal i ze() are in complete analogy tPl I nit() andMPI _Fi nal i ze() known from MPI. All
ESMF programs, serial or parallel, must initialize the ES8§Btem at the beginning, and finalize it at the end of exe-
cution. The behavior of calling any ESMF method befBBMC | niti al i ze(), or afterESMC_Fi nal i ze() is
undefined.

Second, every ESMF Component that is accessed by an ESMEatjapi requires that its set services routine is called
throughESMC _<Gri d/ Cpl >ConpSet Ser vi ces() . The Component must implement one public entry point, its
set services routine, that can be called throughBSMC <Gri d/ Cpl >ConpSet Ser vi ces() library routine.
The Component set services routine is responsible fongegtitry points for the standard ESMF Component methods
Initialize, Run, and Finalize.

Finally, the Component library cabESMC_<Gri d/ Cpl >ConpSet VM) can optionally be issuelsefore calling
ESMC <Gri d/ Cpl >ConpSet Ser vi ces() . Similar toESMC _<Gri d/ Cpl >ConpSet Ser vi ces(), the
ESMC <Gri d/ Cpl >ConmpSet VM) call requires a public entry point into the Component. ibal the Component
to adjust certain aspects of its execution environmentits@wn VM, before it is started up.

The following sections discuss the above mentioned aspentsre detail.

10.2.1 ESMC_Initialize - Initialize ESMF

INTERFACE:
int ESMC Initialize(

int xrc, /1 return code
) /1 optional argunents (see bel ow)

28

RETURN VALUE:
Return code; equals ESM-_SUCCESS if there are no errors.

DESCRIPTION:

Initialize the ESMF. This method must be called before amepbESMF methods are used. The method contains a
barrier before returning, ensuring that all processes ntaecessfully through initialization.

Typically ESMC I nitialize() will call MPI _I nit() internally unless MPI has been initialized by the user
code before initializing the framework. If the MPI initiafition is left toESMC | ni ti al i ze() itinherits all of the
MPI implementation dependent limitations of what may or may be done befor®Pl | ni t (). For instance, it

is unsafe for some MPI implementations, such as MPICH, taQibdfore the MPI environment is initialized. Please
consult the documentation of your MPI implementation fatadls.

Optional arguments are recognised. To indicate the enceadptional argument lisESMC_Ar gLast must be used.
A minimal call toESMC I nitialize() would be:

ESMC Initialize (NULL, ESMC ArglLast);

The optional arguments are specified usingEB®C | ni t Ar g macros. For example, to turn off logging so that no
log files would be created, tHeSMC | ni ti al i ze() call would be coded as:

ESMC Initialize (&rc,
ESMC | ni t Ar gLogKi ndFl ag(ESMC_LOGKI ND_NONE) ,
ESMC ArglLast);

Before exiting the application the user must &8MC_Fi nal i ze() to release resources and clean up the ESMF

gracefully.

The arguments are:

[rc] Return code; equaBSM-_SUCCESS if there are no errorsNULL may be passed when the return code is not
desired.

[ESMC_InitArgDefaultCalKind(ARG)] Macro specifying the default calendar kind for the entirplegation. Valid
values forARGare documented in sectibn 2512.1. If not specified, defemESMC_CALKI ND_NOCAL ENDAR.

[ESMC_InitArgDefaultConfigFilename(ARG)] Macro specifying the name of the default configuration filetfe
Config class. If not specified, no default file is used.

[ESMC_InitArgLogFilename(ARG)] Macro specifying the name used as part of the default log fileenfor the
default log. If not specified, defaults ESM-_LogFi | e.

[ESMC_InitArgLogKindFlag(ARG)] Macro specifying the default Log kind to be used by ESMF Lognisiger.
Valid values forARGare documented in sectibn3012.1. If not specified, defanESMC LOGKI ND_MULTI .

ESMC_ArgLast Macro indicating the end of the optional argument list. Trhisst be provided even when there are
no optional arguments.

29

10.2.2 ESMC_Finalize - Finalize the ESMF Framework

INTERFACE:

int ESMC Finalize(void);

RETURN VALUE:
Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

This must be called once on each PET before the applicatitatexallow ESMF to flush buffers, close open connec-
tions, and release internal resources cleanly.

11 GridComp Class

11.1 Description

In Earth system modeling, the most natural way to think abouESMF Gridded Component, BEMC Gri dConp,

is as a piece of code representing a particular physical shoreach as an atmospheric model or an ocean model.
Gridded Components may also represent individual prosessgeh as radiation or chemistry. It's up to the application
writer to decide how deeply to “componentize.”

Earth system software components tend to share a numbersif femtures. Most ingest and produce a variety
of physical fields, refer to a (possibly noncontiguous) ighatgion and a grid that is partitioned across a set of
computational resources, and require a clock for thingsstiepping a governing set of PDEs forward in time. Most
can also be divided into distinct initialize, run, and fizalcomputational phases. These common characteristics are
used within ESMF to define a Gridded Component data strutiaitds tailored for Earth system modeling and yet is
still flexible enough to represent a variety of domains.

A well designed Gridded Component does not store informaititernally about how it couples to other Gridded
Components. That allows it to be used in different contextsaut changes to source code. The idea here is to avoid
situations in which slightly different versions of the samedel source are maintained for use in different contexts -
standalone vs. coupled versions, for example. Data is gassend out of Gridded Components using an ESMF State,
this is described in Sectidn T#.1.

An ESMF Gridded Component has two parts, one which is usitewrand another which is part of the framework.
The user-written part is software that represents a phlydigaain or performs some other computational function. It
forms the body of the Gridded Component. It may be a piecegafde code, or it may be developed expressly for use
with ESMF. It must contain routines with standard ESMF ifgtees that can be called to initialize, run, and finalize the
Gridded Component. These routines can have separatelegiladses, such as distinct first and second initialization
steps.

ESMF provides the Gridded Component derived tyg®\VMC Gri dConp. An ESMC_Gri dConp must be created
for every portion of the application that will be represehis a separate component. For example, in a climate model,
there may be Gridded Components representing the landposea ice, and atmosphere. If the application contains
an ensemble of identical Gridded Components, every onethiasvn associateHSMC _Gri dConp. Each Gridded

30

Component has its own name and is allocated a set of comgmahtiesources, in the form of an ESMF Virtual
Machine, oVM

The user-written part of a Gridded Component is associatddanESMC_Gr i dConp derived type through a routine
calledESMC_Set Ser vi ces() . This is a routine that the user must write, and declare pulriside the SetServices
routine the user must cdiSMC_Set Ent r yPoi nt () methods that associate a standard ESMF operation with the
name of the corresponding Fortran subroutine in their useée c

11.2 Class API

11.2.1 ESMC_GridCompCreate - Create a Gridded Component

INTERFACE:

ESMC Gri dConp ESMC _Gri dConpCr eat e(

const char =*nane, /1 in
const char =*configFile, /1 in
ESMC O ock cl ock, /1 in
int *rc /1 out
)
RETURN VALUE:

Newl y created ESMC Gi dConp obj ect.

DESCRIPTION:

This interface creates aBSMC_Gr i dConp object. By default, a separate VM context will be createddach
component. This implies creating a new MPI communicator alatating additional memory to manage the VM
resources.

The arguments are:

name Name of the newly-creatdeSMC_Gr i dConp.

configFile The filename of aESMC_Conf i g format file. If specified, this file is opened &MC_Conf i g config-
uration object is created for the file, and attached to thecmwponent.

clock Component-specifiESMC_Cl ock. This clock is available to be queried and updated by the new
ESMC_Gri dConp as it chooses. This should not be the parent component chddkh should be maintained
and passed down to the initialize/run/finalize routinessafely.

[rc] Return code; equalsSM-_SUCCESS if there are no errors.

11.2.2 ESMC_GridCompDestroy - Destroy a Gridded Component

INTERFACE:

31

int ESMC Gri dConpDestroy(
ESMC_Gri dConp *conp /1 inout
);
RETURN VALUE:
Return code; equals ESM-_SUCCESS if there are no errors.

DESCRIPTION:

Releases all resources associated withESSIC Gri dConp.

The arguments are:

comp Release all resources associated with BEBMC Gri dConp and mark the object as invalid. It is an error to
pass this object into any other routines after being desttoy

11.2.3 ESMC_GridCompFinalize - Finalize a Gridded Componat

INTERFACE:
int ESMC Gi dConpFinalize(
ESMC _Gri dConp conp, /1 inout
ESMC State inportState, /1 inout
ESMC St at e export St at e, /1 inout
ESMC O ock cl ock, /1 in
i nt phase, /1 in
int ruserRc /1 out
)
RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Call the associated user finalize code for a GridComp.

The arguments are:

comp ESMC_Gri dConp to call finalize routine for.
importState ESMC_St at e containing import data for coupling.
exportState ESMC_St at e containing export data for coupling.

clock ExternalESMC_Cl ock for passing in time information. This is generally the paeamponent’s clock, and
will be treated as read-only by the child component. Thedcbidimponent can maintain a private clock for its
own internal time computations.

32

phase Component providers must document whether each of thdiinesiaresi ngl e- phase ornul ti - phase.
Single-phase routines require only one invocation to cetegheir work. Multi-phase routines provide multiple
subroutines to accomplish the work, accomodating compsmvetnich must complete part of their work, return
to the caller and allow other processing to occur, and theimmee the original operation. For multiple-phase
child components, this is the integer phase number to bek@u/o For single-phase child components this
argument must be 1.

[userRc] Return code set byser Rout i ne before returning.

11.2.4 ESMC_GridCompGetinternalState - Get the Internal Sate of a Gridded Component

INTERFACE:

void *ESMC_Gri dConpGet | nt er nal St at e(

ESMC_Gri dConp conp, /1 in
int *rc /1 out
)
RETURN VALUE:

Pointer to private data block that is stored in the internal state.

DESCRIPTION:

Available to be called by aBSMC _Gr i dConp at any time afteESMC_Gri dConpSet | nt er nal St at e has been
called. Since init, run, and finalize must be separate suines) data that they need to share in common can either
be global data, or can be allocated in a private data blockilaadddress of that block can be registered with the
framework and retrieved by this call. When running multipistantiations of afeSMC_Gr i dConp, for example
during ensemble runs, it may be simpler to maintain privat& épecific to each run with private data blocks. A
correspondingESMC_Gr i dConpSet | nt er nal St at e call sets the data pointer to this block, and this call reése

the data pointer.

Only thelastdata block set viESMC_Gri dConpSet | nt er nal St at e will be accessible.

The arguments are:

comp An ESMC_Gri dConp object.
[rc] Return code; equalESM-_SUCCESS if there are no errors.

11.2.5 ESMC_GridComplnitialize - Initialize a Gridded Component

INTERFACE:

33

int ESMC GridConplnitialize(

ESMC_Gri dConp conp, /1 inout

ESMC State inport State, /1 inout

ESMC St ate export State, /1 inout

ESMC d ock cl ock, /1l in

i nt phase, /1 in

int *userRc /1 out
)
RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.
DESCRIPTION:

Call the associated user initialization code for a GridComp

The arguments are:

comp ESMC_Gri dConp to call initialize routine for.
importState ESMC_St at e containing import data for coupling.
exportState ESMC_St at e containing export data for coupling.

clock ExternalESMC_Cl ock for passing in time information. This is generally the paremponent’s clock, and
will be treated as read-only by the child component. Thedchidimponent can maintain a private clock for its
own internal time computations.

phase Component providers must document whether each of theinesiaresi ngl e- phase ornul ti - phase.
Single-phase routines require only one invocation to cetegheir work. Multi-phase routines provide multiple
subroutines to accomplish the work, accomodating compsvelnich must complete part of their work, return
to the caller and allow other processing to occur, and therirmee the original operation. For multiple-phase
child components, this is the integer phase number to bek@u/o For single-phase child components this
argument must be 1.

[userRc] Return code set byser Rout i ne before returning.

11.2.6 ESMC_GridCompPrint - Print the contents of a GridComp

INTERFACE:
int ESMC Gri dConpPri nt (
ESMC_Gri dConp conp /1 in
);
RETURN VALUE:

Return code; equals ESM-_SUCCESS if there are no errors.

34

DESCRIPTION:

Prints information about aBSMC_Gri dConp to st dout .

The arguments are:

comp An ESMC_Gri dConp object.

11.2.7 ESMC_GridCompRun - Run a Gridded Component

INTERFACE:

int ESMC Gri dConpRun(

ESMC _Gri dConp conp, /1 inout
ESMC State inportState, /1 inout
ESMC St at e export St at e, /1 inout
ESMC O ock cl ock, /1 in
i nt phase, /1 in
int ruserRc /1 out
)
RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Call the associated user run code for a GridComp.

The arguments are:

comp ESMC_Gri dConp to call run routine for.
importState ESMC_St at e containing import data for coupling.
exportState ESMC_St at e containing export data for coupling.

clock ExternalESMC_Cl ock for passing in time information. This is generally the paeamponent’s clock, and
will be treated as read-only by the child component. Thedcbidlmponent can maintain a private clock for its
own internal time computations.

phase Component providers must document whether each of thdiineriaresi ngl e- phase ormul ti - phase.
Single-phase routines require only one invocation to cetegheir work. Multi-phase routines provide multiple
subroutines to accomplish the work, accomodating comgsivetnich must complete part of their work, return
to the caller and allow other processing to occur, and thetimmee the original operation. For multiple-phase
child components, this is the integer phase number to bek@u/o For single-phase child components this
argument must be 1.

[userRc] Return code set byser Rout i ne before returning.

35

11.2.8 ESMC_GridCompSetEntryPoint - Set user routine as eny point for standard Component method

INTERFACE:

int ESMC_Gri dConpSet Ent r yPoi nt (

ESMC _Gri dConp conp, [l in
enum ESMC Met hod net hod, /[l in
void (*userRouti ne) [l in
(ESMC Gri dConp, ESMC State, ESMC State, ESMC Clock *, int *),
i nt phase [1 in
);
RETURN VALUE:

Return code; equals ESM-_SUCCESS if there are no errors.

DESCRIPTION:

Registers a user-supplieder Rout i ne as the entry point for one of the predefined Component methditlr this
call theuser Rout i ne becomes accessible via the standard Component method API.

The arguments are:

comp An ESMC_Gri dConp object.

method One of a set of predefined Component methods - e.g.ESM-_METHOD | NI Tl ALI ZE,
ESMF_METHOD_RUN, ESMF_METHOD _FI NALI ZE. See sectiol32.8 for a complete list of valid method
options.

userRoutine The user-supplied subroutine to be associated for this ©oemnet hod. This subroutine does not
have to be public.

phase The phase number for multi-phase methods.

11.2.9 ESMC_GridCompSetinternalState - Set the Internal &te of a Gridded Component

INTERFACE:

int ESMC Gri dConpSet | nternal State(

ESMC_Gri dConp conp, /1 inout
void *data /1 in
)
RETURN VALUE:

Return code; equals ESM-_SUCCESS if there are no errors.

36

DESCRIPTION:

Available to be called by aBSMC_Gr i dConp at any time, but expected to be most useful when called dihieg
registration process, or initialization. Since init, ramd finalize must be separate subroutines, data that theljtoee
share in common can either be global data, or can be allogategrivate data block and the address of that block
can be registered with the framework and retrieved by sulegcalls. When running multiple instantiations of an
ESMC_Gri dConp, for example during ensemble runs, it may be simpler to raairgrivate data specific to each run
with private data blocks. A correspondiB§MC_Gri dConmpGet | nt er nal St at e call retrieves the data pointer.

Only thelastdata block set viESMC_Gri dConpSet | nt er nal St at e will be accessible.

The arguments are:

comp An ESMC_Gri dConp object.

data Pointer to private data block to be stored.

11.2.10 ESMC_GridCompSetServices - Call user routine to gaster GridComp methods

INTERFACE:

int ESMC_Gri dConpSet Servi ces(

ESMC _Gri dConp conp, /1 in
voi d (*userRoutine) (ESMC Gri dConp, int *), /1 in
int *userRc /1 out
)
RETURN VALUE:

Return code; equals ESM-_SUCCESS if there are no errors.

DESCRIPTION:

Callinto user providedser Rout i ne which is responsible for setting Component’s Initializ&¥n() and Finalize()
services.

The arguments are:

comp Gridded Component.
userRoutine Routine to be called.

userRc Return code set byser Rout i ne before returning.

The Component writer must supply a subroutine with the exaetface shown above for theser Rout i ne argu-
ment.

The wuserRoutine, when called by the framework, must make successive calls to
ESMC _Gri dConpSet Ent r yPoi nt () to preset callback routines for standard Component liggé), Run() and
Finalize() methods.

37

12 CplComp Class

12.1 Description

In a large, multi-component application such as a weathexcksting or climate prediction system running within
ESMF, physical domains and major system functions are septed as Gridded Components (see Se€fiod 11.1).
A Coupler Component, dESMC_Cpl Conp, arranges and executes the data transformations betweearitided
Components. Ideally, Coupler Components should contathalinformation about inter-component communication
for an application. This enables the Gridded Componentsimpplication to be used in multiple contexts; that is, used
in different coupled configurations without changes tortlseurce code. For example, the same atmosphere might
in one case be coupled to an ocean in a hurricane predictialelmand to a data assimilation system for numerical
weather prediction in another. A single Coupler Componantauple two or more Gridded Components.

Like Gridded Components, Coupler Components have two pamtsthat is provided by the user and another that is
part of the framework. The user-written portion of the sa@itevis the coupling code necessary for a particular exchange
between Gridded Components. This portion of the Coupler @orant code must be divided into separately callable
initialize, run, and finalize methods. The interfaces fas# methods are prescribed by ESMF.

The term “user-written” is somewhat misleading here, sinithin a Coupler Component the user can leverage ESMF
infrastructure software for regridding, redistributidower-level communications, calendar management, aner oth
functions. However, ESMF is unlikely to offer all the soft@anecessary to customize a data transfer between Gridded
Components. For instance, ESMF does not currently offds tmo unit tranformations or time averaging operations,
SO users must manage those operations themselves.

The second part of a Coupler Component isE8&C_Cpl Conp derived type within ESMF. The user must create one
of these types to represent a specific coupling functiorh asdhe regular transfer of data between a data assimilation
system and an atmospheric model.

The user-written part of a Coupler Component is associaiddam ESMC_Cpl Conp derived type through a rou-
tine calledESMC_Set Servi ces(). This is a routine that the user must write and declare puhbliside the
ESMC_Set Ser vi ces() routine the user must caiSMC_Set Ent r yPoi nt () methods that associate a stan-
dard ESMF operation with the name of the corresponding &oitubroutine in their user code. For example, a user
routine called “couplerlnit” might be associated with thamlard initialize routine in a Coupler Component.

12.2 Class API

12.2.1 ESMC_CplCompCreate - Create a Coupler Component

INTERFACE:

ESMC_Cpl Conp ESMC_Cpl ConpCr eat e(

const char =*nane, /[l in
const char =*configFile, /[l in
ESMC d ock cl ock, /[l in
int *rc /1 out
)
RETURN VALUE:

Lt is not necessary to create a Coupler Component for eadtidodl datatransfer.

38

Newl y created ESMC Cpl Conp object.

DESCRIPTION:

This interface creates MC_Cpl Conp object. By default, a separate VM context will be createdefach compo-
nent. This implies creating a new MPI communicator and alliog additional memory to manage the VM resources.

The arguments are:

name Name of the newly-creatdeSMC_Cpl Conp.

configFile The filename of aESMC_Conf i g format file. If specified, this file is opened &MC_Conf i g config-
uration object is created for the file, and attached to thecmwponent.

clock Component-specifiESMC_Cl ock. This clock is available to be queried and updated by the new
ESMC_Cpl Conp as it chooses. This should not be the parent component cldikh should be maintained
and passed down to the initialize/run/finalize routinessafely.

[rc] Return code; equalsSM-_SUCCESS if there are no errors.

12.2.2 ESMC_CplCompDestroy - Destroy a Coupler Component

INTERFACE:
i nt ESMC Cpl ConpDest roy(
ESMC_Cpl Conp *conp /1 inout
);
RETURN VALUE:

Return code; equals ESM-_SUCCESS if there are no errors.

DESCRIPTION:

Releases all resources associated withESSC Cpl Conp.

The arguments are:

comp Release all resources associated withE8MC Cpl Conp and mark the object as invalid. Itis an error to pass
this object into any other routines after being destroyed.

12.2.3 ESMC_CplCompFinalize - Finalize a Coupler Componen

INTERFACE:

39

i nt ESMC Cpl ConpFi nal i ze(

ESMC_Cpl Conp conp, /1 inout
ESMC State inport State, /1 inout
ESMC St ate export State, /1 inout
ESMC d ock cl ock, /1l in
i nt phase, /1 in
int *userRc /1 out
);
RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Call the associated user finalize code for a CplComp.

The arguments are:

comp ESMC_Cpl Conp to call finalize routine for.
importState ESMC_St at e containing import data for coupling.
exportState ESMC_St at e containing export data for coupling.

clock ExternalESMC_Cl ock for passing in time information. This is generally the paeesmponent’s clock, and
will be treated as read-only by the child component. Thedcbidlmponent can maintain a private clock for its
own internal time computations.

phase Component providers must document whether each of theiinesiaresi ngl e- phase ornul ti - phase.
Single-phase routines require only one invocation to cetegheir work. Multi-phase routines provide multiple
subroutines to accomplish the work, accomodating comgsvetnich must complete part of their work, return
to the caller and allow other processing to occur, and therimmee the original operation. For multiple-phase
child components, this is the integer phase number to bek@u/o For single-phase child components this
argument must be 1.

[userRc] Return code set byser Rout i ne before returning.

12.2.4 ESMC_CplCompGetinternalState - Get the internal Sate of a Coupler Component

INTERFACE:

voi d *ESMC _Cpl ConpGCet | nt er nal St at e(

ESMC_Cpl Conp conp, /lin
int *rc /1 out
)
RETURN VALUE:

Pointer to private data block that is stored in the internal state.

40

DESCRIPTION:

Available to be called by aBSMC_Cpl Conp at any time afteESMC_Cpl ConpSet | nt er nal St at e has been
called. Since init, run, and finalize must be separate suines) data that they need to share in common can either
be global data, or can be allocated in a private data blockileadddress of that block can be registered with the
framework and retrieved by this call. When running multipistantiations of areSMC_Cpl Conp, for example
during ensemble runs, it may be simpler to maintain privat& épecific to each run with private data blocks. A
correspondin@geSMC_Cpl ConpSet | nt er nal St at e call sets the data pointer to this block, and this call reése

the data pointer.

Only thelastdata block set vieSMC_Cpl ConpSet | nt er nal St at e will be accessible.

The arguments are:

comp An ESMC_Cpl Conp object.
[rc] Return code; equalsSM-_SUCCESS if there are no errors.

12.2.5 ESMC_CplComplnitialize - Initialize a Coupler Component

INTERFACE:

int ESMC Cpl Conplnitialize(

ESMC_Cpl Conp conp, /1 inout
ESMC St ate inport State, /1 inout
ESMC St at e export St at e, /1 inout
ESMC O ock cl ock, /1 in
i nt phase, /1 in
int ruserRc /1 out
)
RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Call the associated user initialize code for a CplComp.

The arguments are:

comp ESMC_Cpl Conp to call initialize routine for.
importState ESMC_St at e containing import data for coupling.
exportState ESMC_St at e containing export data for coupling.

clock ExternalESMC_Cl ock for passing in time information. This is generally the paeamponent’s clock, and
will be treated as read-only by the child component. Thedcbidmponent can maintain a private clock for its
own internal time computations.

41

phase Component providers must document whether each of thdiinesiaresi ngl e- phase ornul ti - phase.
Single-phase routines require only one invocation to cetegheir work. Multi-phase routines provide multiple
subroutines to accomplish the work, accomodating compsmvetnich must complete part of their work, return
to the caller and allow other processing to occur, and theimmee the original operation. For multiple-phase
child components, this is the integer phase number to bek@u/o For single-phase child components this
argument must be 1.

[userRc] Return code set byser Rout i ne before returning.

12.2.6 ESMC_CplCompPrint - Print a Coupler Component

INTERFACE:
i nt ESMC Cpl ConpPri nt (
ESMC_Cpl Conp conp [l in
)
RETURN VALUE:
Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Prints information about aBSMC_Cpl Conp to st dout .

The arguments are:

comp An ESMC_Cpl Conp object.

12.2.7 ESMC_CplCompRun - Run a Coupler Component

INTERFACE:
i nt ESMC _Cpl ConpRun(
ESMC_Cpl Conp conp, /1 inout
ESMC St ate inport State, /1 inout
ESMC St ate export State, /1 inout
ESMC d ock cl ock, /1l in
i nt phase, /1 in
int xuserRc /1 out
);
RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

42

DESCRIPTION:

Call the associated user run code for a CplComp.

The arguments are:

comp ESMC_Cpl Conp to call run routine for.
importState ESMC_St at e containing import data for coupling.
exportState ESMC_St at e containing export data for coupling.

clock ExternalESMC_Cl ock for passing in time information. This is generally the pareemponent’s clock, and
will be treated as read-only by the child component. Thedcbidmponent can maintain a private clock for its
own internal time computations.

phase Component providers must document whether each of thdiineriaresi ngl e- phase ormul ti - phase.
Single-phase routines require only one invocation to cetegheir work. Multi-phase routines provide multiple
subroutines to accomplish the work, accomodating comgsvetnich must complete part of their work, return
to the caller and allow other processing to occur, and theirmee the original operation. For multiple-phase
child components, this is the integer phase number to bek@u/o For single-phase child components this
argument must be 1.

[userRc] Return code set byser Rout i ne before returning.

12.2.8 ESMC_CplCompSetEntryPoint - Set the Entry point of aCoupler Component

INTERFACE:

i nt ESMC _Cpl ConpSet Ent r yPoi nt (

ESMC_Cpl Conp conp, [1 in
enum ESMC Met hod net hod, [l in
voi d (*userRouti ne) [l in
(ESMC_Cpl Conp, ESMC State, ESMC State, ESMC Clock *, int =*),
i nt phase [l in
);
RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Registers a user-supplieder Rout i ne as the entry point for one of the predefined Component methiftey this
call theuser Rout i ne becomes accessible via the standard Component method API.

The arguments are:

comp An ESMC_Cpl Conp object.

43

method One of a set of predefined Component methods - e.g.ESM-_METHOD | NI Tl ALI ZE,
ESM-_METHOD_RUN, ESMF_METHOD_FI NALI ZE. See sectiofi-32.8 for a complete list of valid method
options.

userRoutine The user-supplied subroutine to be associated for this ©aemgnet hod. This subroutine does not
have to be public.

phase The phase number for multi-phase methods.

12.2.9 ESMC_CplCompSetinternalState - Set the internal $tte of a Coupler Component

INTERFACE:

i nt ESMC Cpl ConpSet | nt er nal St at e(
ESMC_Cpl Conp conp, /1 inout
void *data /1 in

)

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Available to be called by aBSMC_Cpl Comnrp at any time, but expected to be most useful when called duhiag
registration process, or initialization. Since init, ramd finalize must be separate subroutines, data that theljtoee
share in common can either be global data, or can be allogategrivate data block and the address of that block
can be registered with the framework and retrieved by sulm#cgalls. When running multiple instantiations of an
ESMC_Cpl Conp, for example during ensemble runs, it may be simpler to raairgrivate data specific to each run
with private data blocks. A correspondiBSMC_Cpl ConpGet | nt er nal St at e call retrieves the data pointer.

Only thelastdata block set vieSMC_Cpl ConpSet | nt er nal St at e will be accessible.

The arguments are:

comp An ESMC_Cpl Conp object.

data Pointer to private data block to be stored.

12.2.10 ESMC_CplCompSetServices - Destroy a Coupler Compent

INTERFACE:
i nt ESMC _Cpl ConpSet Ser vi ces(
ESMC_Cpl Conp conp, /1 in
voi d (*userRoutine) (ESMC Cpl Conp, int =), /1 in

int *ruserRc /1l out

);

44

RETURN VALUE:
Return code; equals ESM-_SUCCESS if there are no errors.

DESCRIPTION:

Callinto user providedser Rout i ne which is responsible for setting Component’s Initializ&¥n() and Finalize()
services.

The arguments are:

comp Gridded Component.
userRoutine Routine to be called.

userRc Return code set byser Rout i ne before returning.

The Component writer must supply a subroutine with the exaetface shown above for theser Rout i ne argu-
ment.

The wuserRoutine, when called by the framework, must make successive calls to
ESMC _Cpl ConpSet EntryPoi nt () to preset callback routines for standard Component lizgé), Run()
and Finalize() methods.

13 SciComp Class

13.1 Description

In Earth system modeling, a particular piece of code repte@sga physical domain, such as an atmospheric model or
an ocean model, is typically implemented as an ESMF Griddadgnent, oESMC_Gr i dConp. However, there
are times when physical domains, or realms, need to be eqesl but aren't actual pieces of code, or software.
These domains can be implemented as ESMF Science CompooeE®/C_Sci Conp.

Unlike Gridded and Coupler Components, Science Compormeeatsot associated with software; they don't include
execution routines such as initialize, run and finalize.

13.2 Class API

13.2.1 ESMC_SciCompCreate - Create a Science Component

INTERFACE:

ESMC_Sci Conp ESMC _Sci ConpCr eat e(

const char =*nane, [/ in
int *rc [/ out
)
RETURN VALUE:

45

Newl y created ESMC Sci Conp object.

DESCRIPTION:

This interface creates &BMC_Sci Conp object.

The arguments are:

name Name of the newly-creatdeSMC_Sci Conp.
[rc] Return code; equalBSM-_SUCCESS if there are no errors.

13.2.2 ESMC_SciCompDestroy - Destroy a Science Component

INTERFACE:
i nt ESMC_Sci ConmpDest r oy(
ESMC_Sci Conp *conp /1 inout
);
RETURN VALUE:
Return code; equals ESM-_SUCCESS if there are no errors.

DESCRIPTION:

Releases all resources associated withESSIC Sci Conp.

The arguments are:

comp Release all resources associated withBB8MC Sci Conp and mark the object as invalid. It is an error to pass
this object into any other routines after being destroyed.

13.2.3 ESMC_SciCompPrint - Print the contents of a SciComp

INTERFACE:
i nt ESMC Sci ConpPri nt (

ESMC_Sci Conp conp /1 in
)

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

46

DESCRIPTION:

Prints information about aBSMC_Sci Conp to st dout .

The arguments are:

comp An ESMC_Sci Conp object.

14 State Class

14.1 Description

A State contains the data and metadata to be transferreébe®SMF Components. It is an important class, because
it defines a standard for how data is represented in dataféransetween Earth science components. The State
construct is a rational compromise between a fully prescrilnterface - one that would dictate what specific fields
should be transferred between components - and an inténfadgch data structures are completely ad hoc.

There are two types of States, import and export. An impaateStontains data that is necessary for a Gridded
Component or Coupler Component to execute, and an expdg &atains the data that a Gridded Component or
Coupler Component can make available.

States can contain Arrays, ArrayBundles, Fields, FieldBesy and other States. However, the current C API only
provides State access to Arrays, Fields and nested Statges $annot directly contain native language arrays (i.e.
Fortran or C style arrays). Objects in a State must span thekMhich they are running. For sequentially executing
components which run on the same set of PETSs this happendibg thae object create methods on each PET, creating
the object in unison. For concurrently executing compaos&itich are running on subsets of PETs, an additional
method, calledESMF_St at eReconci | e(), is provided by ESMF to broadcast information about objedigh
were created in sub-components. Currently this method lig available through the ESMF Fortran API. Hence
the Coupler Component reponsible for reconciling StatesifComponent that execute on subsets of PETs must be
written in Fortran.

State methods include creation and deletion, adding aniéviety data items, and performing queries.

14.2 Restrictions and Future Work
1. No synchronization of object ids at object create time Object IDs are using during the reconcile process to

identify objects which are unknown to some subset of the FHRTise currently running VM. Object IDs are
assigned in sequential order at object create time.

One important request by the user community during the EShj€cb design was that there be no communi-
cation overhead or synchronization when creating distedh&E SMF objects. As a consequence it is required to
create these objects imisonacross all PETs in order to keep the ESMF object identifiadgticync.

14.3 Class API

14.3.1 ESMC_StateAddArray - Add an Array object to a State

INTERFACE:

47

i nt ESMC St at eAddArray (
ESMC State state, /1l in
ESMC Array array /1 in
)
RETURN VALUE:

Return code; equals ESM-_SUCCESS if there are no errors.

DESCRIPTION:

Add an Array object to #SMC_St at e object.

The arguments are:

state The State object.

array The Array object to be included within the State.

14.3.2 ESMC_StateAddField - Add a Field object to a State

INTERFACE:

i nt ESMC_St at eAddFi el d(
ESMC State state, /1 in
ESMC Field field /1 in
);

RETURN VALUE:

Return code; equals ESM-_SUCCESS if there are no errors.

DESCRIPTION:

Add an Array object to &SMC_St at e object.

The arguments are:

state The State object.
array The Array object to be included within the State.

14.3.3 ESMC_StateCreate - Create an Array

INTERFACE:

48

ESMC St ate ESMC St at eCr eat ¢(
const char *nane, // in
int *rc /1 out

) y
RETURN VALUE:
Newl y created ESMC St ate object.

DESCRIPTION:

Create arESMC_St at e object.

The arguments are:

[name] The name for the State object. If not specified, i.e. NULL, #adk unique name will be generated:
"StateNNN" where NNN is a unique sequence number from 003% 9

rc Return code; equalESM-_SUCCESS if there are no errors.

14.3.4 ESMC_StateDestroy - Destroy a State

INTERFACE:

i nt ESMC St at eDestroy(
ESMC State *state /1l in

)

RETURN VALUE:
Return code; equals ESM-_SUCCESS if there are no errors.

DESCRIPTION:

Destroy aESMC_St at e object.

The arguments are:

state The State to be destroyed.

14.3.5 ESMC_StateGetArray - Obtains an Array object from a Sate

INTERFACE:

49

int ESMC StateGet Array(

ESMC State state, /1l in
const char =*nane, /1l in
ESMC Array *array /1 out

);
RETURN VALUE:
Return code; equals ESM-_SUCCESS if there are no errors.

DESCRIPTION:

Obtain a pointer to aBSMC_Ar r ay object contained within a State.

The arguments are:

state The State object.
name The name of the desired Array object.

array A pointer to the Array object.

14.3.6 ESMC_StateGetField - Obtains a Field object from a Ste

INTERFACE:

int ESMC StateGetField(
ESMC State state, /1l in
const char *nane, /1l in
ESMC Field *field /1 out

);
RETURN VALUE:
Return code; equals ESM-_SUCCESS if there are no errors.

DESCRIPTION:

Obtain a pointer to 8SMC_Fi el d object contained within a State.

The arguments are:

state The State object.
name The name of the desired Field object.

array A pointer to the Field object.

50

14.3.7 ESMC_StatePrint - Print the contents of a State

INTERFACE:

int ESMC StatePrint(
ESMC State state /1 in

)
RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Prints the contents of BSMC_St at e object.

The arguments are:

state The State to be printed.

51

Part IV

Infrastructure: Fields and Grids

52

15 Overview of Infrastructure Data Handling

The ESMF infrastructure data classes are part of the framésvoierarchy of structures for handling Earth system
model data and metadata on parallel platforms. The hieyascim complexity; the simplest data class in the infras-
tructure represents a distributed data array and the mogblea data class represents a bundle of physical fields that
are discretized on the same grid. However, the current C ABsdhot support bundled data structures yet. Array
and Field are the two data classes offered by the ESMF C |gregiading. Data class methods are called both from
user-written code and from other classes internal to thadveork.

Data classes are distributed o¥@Es, orDecomposition Elements A DE represents a piece of a decomposition. A
DELayout is a collection of DEs with some associated cornvigcthat describes a specific distribution. For example,
the distribution of a grid divided into four segments in thdimension would be expressed in ESMF as a DELayout
with four DEs lying along an x-axis. This abstract concepl#as a data decomposition to be defined in terms of
threads, MPI processes, virtual decomposition elementgrabinations of these without changes to user code. This
is a primary strategy for ensuring optimal performance asrtibility for codes using the ESMF for communications.

ESMF data classes are useful because they provide a stamtargnient way for developers to collect together
information related to model or observational data. Therimiation assembled in a data class includes a data pointer,
a set of attributes (e.g. units, although attributes camladsuser-defined), and a description of an associated dnigl. T
same set of information within an ESMF data object can be byettie framework to arrange intercomponent data
transfers, to perform 1/O, for communications such as gathed scatters, for simplification of interfaces withinruse
code, for debugging, and for other functions. This unifie$ @manizes codes overall so that the user need not define
different representations of metadata for the same field@and for component coupling.

Since it is critical that users be able to introduce ESMF thtir codes easily and incrementally, ESMF data classes
can be created based on native Fortran pointers. Likewisee tare methods for retrieving native Fortran pointers
from within ESMF data objects. This allows the user to perfallocations using ESMF, and to retrieve Fortran
arrays later for optimized model calculations. The ESMRdddsses do not have associated differential operators or
other mathematical methods.

For flexibility, it is not necessary to build an ESMF data abjall at once. For example, it's possible to create a field
but to defer allocation of the associated field data untitertame.

Key Features
Hierarchy of data structures designed specifically for thetiesystem domain and high performance, parallel
computing.

Multi-use ESMF structures simplify user code overall.

Data objects support incremental construction and defexitecation.
Native Fortran arrays can be associated with or retrievech FESMF data objects, for ease of adoption,
convenience, and performance.

15.1 Infrastructure Data Classes

The main classes that are used for model and observatiotaatd@aipulation are as follows:

e Array An ESMF Array contains a data pointer, information aboua#isociated datatype, precision, and dimen-
sion.

Data elements in Arrays are partitioned into categoriesddfby the role the data element plays in distributed
halo operations. Haloing - sometimes called ghosting -@gttactice of copying portions of array data to mul-
tiple memory locations to ensure that data dependencidseaatisfied quickly when performing a calculation.

53

ESMF Arrays contain aexclusivedomain, which contains data elements updated exclusivelydafinitively
by a given DE; acomputational domain, which contains all data elements with values thratgdated by the
DE in computations; andtatal domain, which includes both the computational domain arta el@ments from
other DEs which may be read but are not updated in compugation

e Field A Field holds model and/or observational data together itsthnderlying grid or set of spatial locations.
It provides methods for configuration, initialization, tdgg and retrieving data values, data I/O, data regridding,
and manipulation of attributes.

15.2 Design and Implementation Notes

1. In communication methods such as Regrid, Redist, Scatterthe Field code cascades down through the Array
code, so that the actual implementation exist in only onegoia the source.

54

16 Field Class

16.1 Description

An ESMF Field represents a physical field, such as temperailre motivation for including Fields in ESMF is that
bundles of Fields are the entities that are normally exchdmghen coupling Components.

The ESMF Field class contains distributed and discretizdd @iata, a reference to its associated grid, and metadata.
The Field class stores the gdthggeringor that physical field. This is the relationship of how theadarray of a field
maps onto a grid (e.g. one item per cell located at the cetecepne item per cell located at the NW corner, one item
per cell vertex, etc.). This means that different Fieldsolitdare on the same underlying ESMF Grid but have different
staggerings can share the same Grid object without needlirgplicate it multiple times.

Fields can be added to States for use in inter-Componentdatenunications.

Field communication capabilities include: data redisttitin, regridding, scatter, gather, sparse-matrix miidion,
and halo update. These are discussed in more detail in therdatation for the specific method calls. ESMF does
not currently support vector fields, so the components ofcéovdield must be stored as separate Field objects.

16.2 Constants
16.2.1 ESMC_REGRIDMETHOD

DESCRIPTION:
Specify which interpolation method to use during regriddin

The type of this flag is:
t ype(ESMC_Regri dMet hod_Fl ag)

The valid values are:

ESMC_REGRIDMETHOD_BILINEAR Bilinear interpolation. Destination value is a linear candtion of the
source values in the cell which contains the destinationtpdine weights for the linear combination are based
on the distance of destination point from each source value.

ESMC_REGRIDMETHOD_PATCH Higher-order patch recovery interpolation. Destinatiatue is a weighted
average of 2D polynomial patches constructed from cellsosuding the source cell which contains the des-
tination point. This method typically results in better apymations to values and derivatives than bilinear.
However, because of its larger stencil, it also results inughmarger interpolation matrix (and thus routeHan-
dle) than the bilinear.

ESMC_REGRIDMETHOD_CONSERVE First order conservative interpolation. Value of a destaracell is the
weighted sum of the values of the source cells that it overldihe weights are determined by the amount the
source cell overlaps the destination cell. Will typicalliyeyless accurate approximations to values than the
other interpolation methods, however, will do a much bgttkpreserving the integral of the value between the
source and destination. Needs corner coordinate values podvided in the Grid. Currently only works for
Fields created on the Grid center stagger (or the Mesh eldowation).

55

16.3 Use and Examples

A Field serves as an annotator of data, since it carries aigéen of the grid it is associated with and metadata
such as name and units. Fields can be used in this capacity,ads convenient, descriptive containers into which
arrays can be placed and retrieved. However, for most cdgeprimary use of Fields is in the context of import
and export States, which are the objects that carry couptiftgmation between Components. Fields enable data
to be self-describing, and a State holding ESMF Fields d¢ositdata in a standard format that can be queried and
manipulated.

The sections below go into more detail about Field usage.

16.3.1 Field create and destroy

Fields can be created and destroyed at any time during apiplicexecution. However, these Field methods require
some time to complete. We do not recommend that the userecogadestroy Fields inside performance-critical
computational loops.

All versions of theESMC_Fi el dCr eat e() routines require a Mesh object as input. The Mesh contamifior-
mation needed to know which Decomposition Elements (DEs)participating in the processing of this Field, and
which subsets of the data are local to a particular DE.

The details of how the create process happens depends on @ftie variants of th&SMC_Fi el dCr eat e() call
is used.

When finished with aieSMC_Fi el d, theESMC_Fi el dDest r oy method removes it. However, the objects inside
the ESMC_Fi el d created externally should be destroyed separately, sinjgets can be added to more than one
ESMC _Fi el d. For example, the santeSM-_Mesh can be referenced by multipESMC_Fi el ds. In this case the
internal Mesh is not deleted by tl#<SMC_Fi el dDest r oy call.

16.4 Class API

16.4.1 ESMC_FieldCreateGridArraySpec - Create a Field fran Grid and ArraySpec

INTERFACE:

ESMC Fi el d ESMC _Fi el dCreat eG i dAr r ay Spec(

ESMC Gid grid, /1 in
ESMC_ArraySpec arrayspec, /1 in
enum ESMC_St agger Loc st agger | oc, /1 in
ESMC Interfacelnt =gridToFi el dvap, [l in
ESMC I nterfacelnt »ungri ddedLBound, /1 in
ESMC Interfacelnt *ungri ddedUBound, [l in
const char =*name, /1 in
int *xrc /1 out
)
RETURN VALUE:

Newl y created ESMC Fi el d object.

56

DESCRIPTION:

Creates &SMC_Fi el d object.

The arguments are:

grid A ESMC _Gri d object.
arrayspec A ESMC_Ar r ay Spec object describing data type and kind specification.
staggerloc Stagger location of data in grid cells. The default valueS$/ STAGGERLOC_CENTER.

gridToFieldMap List with number of elements equal to the grid’s dimCounteTikt elements map each dimension
of the grid to a dimension in the field by specifying the appiate field dimension index. The default is to
map all of the grid’s dimensions against the lowest dimamsiaf the field in sequence, i.e. gridToFieldMap
= (/1,2,3,.../). The values of all gridToFieldMap entrieastbe greater than or equal to one and smaller than
or equal to the field rank. It is erroneous to specify the santrgFieldMap entry multiple times. The total
ungridded dimensions in the field are the total field dimemsiless the dimensions in the grid. Ungridded
dimensions must be in the same order they are stored in tle ffehe Field dimCount is less than the Mesh
dimCount then the default gridToFieldMap will contain zefor the rightmost entries. A zero entry in the
gridToFieldMap indicates that the particular Mesh dimenswill be replicating the Field across the DEs along
this direction.

ungriddedLBound Lower bounds of the ungridded dimensions of the field. Thelmemof elements in the ungrid-
dedLBound is equal to the number of ungridded dimensioniserfield. All ungridded dimensions of the field
are also undistributed. When field dimension count is grélgan grid dimension count, both ungriddedLBound
and ungriddedUBound must be specified. When both are spkttiievalues are checked for consistency. Note
that the the ordering of these ungridded dimensions is thme e their order in the field.

ungriddedUBound Upper bounds of the ungridded dimensions of the field. Thebmrraf elements in the ungridde-
dUBound is equal to the number of ungridded dimensions ifi¢he: All ungridded dimensions of the field are
also undistributed. When field dimension count is greatan tirid dimension count, both ungriddedLBound
and ungriddedUBound must be specified. When both are spkttifievalues are checked for consistency. Note
that the the ordering of these ungridded dimensions is tine e their order in the field.

[name] The name for the newly created field. If not specified, i.e. NU& default unique name will be generated:
"FieldNNN" where NNN is a unique sequence number from 0019@. 9

[rc] Return code; equalESM-_SUCCESS if there are no errors.

16.4.2 ESMC_FieldCreateGridTypeKind - Create a Field fromGrid and typekind

INTERFACE:
ESMC Fi el d ESMC Fi el dCreat eG i dTypeKi nd(

ESMC Gid grid, /1 in
enum ESMC TypeKi nd_Fl ag t ypeki nd, /1 in
enum ESMC_St agger Loc st agger | oc, /1 in
ESMC Interfacelnt =gridToFi el dvap, [l in
ESMC Interfacelnt *ungri ddedLBound, [l in
ESMC Interfacelnt *ungri ddedUBound, [l in
const char =*nane, /1 in

57

int *rc /1 out

);

RETURN VALUE:
Newl y created ESMC Fi el d object.

DESCRIPTION:

Creates &SMC_Fi el d object.

The arguments are:

grid A ESMC _Gri d object.
typekind The ESMC_TypeKind_Flag that describes this Field data.
staggerloc Stagger location of data in grid cells. The default valueS$/& STAGGERLOC_CENTER.

gridToFieldMap List with number of elements equal to the grid’s dimCounteTikt elements map each dimension
of the grid to a dimension in the field by specifying the appiate field dimension index. The default is to
map all of the grid’s dimensions against the lowest dimamsiof the field in sequence, i.e. gridToFieldMap
= (/1,2,3,.../). The values of all gridToFieldMap entrieastbe greater than or equal to one and smaller than
or equal to the field rank. It is erroneous to specify the santrgFieldMap entry multiple times. The total
ungridded dimensions in the field are the total field dimemsiless the dimensions in the grid. Ungridded
dimensions must be in the same order they are stored in tle ffehe Field dimCount is less than the Mesh
dimCount then the default gridToFieldMap will contain zefor the rightmost entries. A zero entry in the
gridToFieldMap indicates that the particular Mesh dimenswill be replicating the Field across the DEs along
this direction.

ungriddedLBound Lower bounds of the ungridded dimensions of the field. Thelmemof elements in the ungrid-
dedLBound is equal to the number of ungridded dimensioniserfield. All ungridded dimensions of the field
are also undistributed. When field dimension count is grélgan grid dimension count, both ungriddedLBound
and ungriddedUBound must be specified. When both are spkttitievalues are checked for consistency. Note
that the the ordering of these ungridded dimensions is thme e their order in the field.

ungriddedUBound Upper bounds of the ungridded dimensions of the field. Thebmrraf elements in the ungridde-
dUBound is equal to the number of ungridded dimensions ifi¢he: All ungridded dimensions of the field are
also undistributed. When field dimension count is greatan tirid dimension count, both ungriddedLBound
and ungriddedUBound must be specified. When both are spkttifievalues are checked for consistency. Note
that the the ordering of these ungridded dimensions is tine e their order in the field.

[name] The name for the newly created field. If not specified, i.e. NU& default unique name will be generated:
"FieldNNN" where NNN is a unique sequence number from 0019@. 9

[rc] Return code; equalESM-_SUCCESS if there are no errors.

16.4.3 ESMC_FieldCreateMeshArraySpec - Create a Field fnrm Mesh and ArraySpec

INTERFACE:

58

ESMC Fi el d ESMC Fi el dCr eat eMeshAr r ay Spec(

ESMC Mesh nesh, /1l in
ESMC_ArraySpec arrayspec, /1 in
ESMC Interfacelnt =gridToFi el dvap, [l in
ESMC I nterfacelnt »ungri ddedLBound, /1 in
ESMC I nterfacelnt *ungri ddedUBound, [l in
const char =*name, /1 in
int xrc /1 out

);

RETURN VALUE:

Newl y created ESMC Fi el d object.
DESCRIPTION:

Creates &SMC_Fi el d object.

The arguments are:

mesh A ESMC_Mesh object.
arrayspec A ESMC_Ar r ay Spec object describing data type and kind specification.

gridToFieldMap List with number of elements equal to the grid’s dimCounteTikt elements map each dimension
of the grid to a dimension in the field by specifying the appiate field dimension index. The default is to
map all of the grid’s dimensions against the lowest dimamsiaf the field in sequence, i.e. gridToFieldMap
= (/1,2,3,.../). The values of all gridToFieldMap entrieastbe greater than or equal to one and smaller than
or equal to the field rank. It is erroneous to specify the santrgFieldMap entry multiple times. The total
ungridded dimensions in the field are the total field dimemsiless the dimensions in the grid. Ungridded
dimensions must be in the same order they are stored in tle ffehe Field dimCount is less than the Mesh
dimCount then the default gridToFieldMap will contain zefor the rightmost entries. A zero entry in the
gridToFieldMap indicates that the particular Mesh dimenswill be replicating the Field across the DEs along
this direction.

ungriddedLBound Lower bounds of the ungridded dimensions of the field. Thelmemof elements in the ungrid-
dedLBound is equal to the number of ungridded dimensioniserfield. All ungridded dimensions of the field
are also undistributed. When field dimension count is grélga grid dimension count, both ungriddedLBound
and ungriddedUBound must be specified. When both are spkttifievalues are checked for consistency. Note
that the the ordering of these ungridded dimensions is thme e their order in the field.

ungriddedUBound Upper bounds of the ungridded dimensions of the field. Thebarraf elements in the ungridde-
dUBound is equal to the number of ungridded dimensions ifi¢he: All ungridded dimensions of the field are
also undistributed. When field dimension count is greatan tirid dimension count, both ungriddedLBound
and ungriddedUBound must be specified. When both are spkttitevalues are checked for consistency. Note
that the the ordering of these ungridded dimensions is tine e their order in the field.

[name] The name for the newly created field. If not specified, i.e. NUa default unique name will be generated:
"FieldNNN" where NNN is a unique sequence number from 0019@. 9

[rc] Return code; equalESM-_SUCCESS if there are no errors.

59

16.4.4 ESMC_FieldCreateMeshTypeKind - Create a Field fronMesh and typekind

INTERFACE:
ESMC Fi el d ESMC _Fi el dCr eat eMeshTypeKi nd(
ESMC Mesh mesh, /1 in
enum ESMC_TypeKi nd_Fl ag t ypeki nd, /1 in
enum ESMC_MeshLoc_Fl ag neshl oc, /1l in
ESMC Interfacelnt =gridToFi el dvap, [l in
ESMC I nterfacelnt »ungri ddedLBound, /1 in
ESMC I nterfacel nt ungri ddedUBound, [1 in
const char =*name, /1 in
int xrc /1 out
);
RETURN VALUE:
Newl y created ESMC Fi el d object.
DESCRIPTION:

Creates &SMC_Fi el d object.

The arguments are:

mesh A ESMC_Mesh object.
typekind The ESMC_TypeKind_Flag that describes this Field data.
meshloc The ESMC_MeshLoc_Flag that describes this Field data.

gridToFieldMap List with number of elements equal to the grid’s dimCounteTibt elements map each dimension
of the grid to a dimension in the field by specifying the appiate field dimension index. The default is to
map all of the grid’s dimensions against the lowest dimamsiaf the field in sequence, i.e. gridToFieldMap
=(/1,2,3,.../). The values of all gridToFieldMap entriesshbe greater than or equal to one and smaller than
or equal to the field rank. It is erroneous to specify the santrgFieldMap entry multiple times. The total
ungridded dimensions in the field are the total field dimemsiless the dimensions in the grid. Ungridded
dimensions must be in the same order they are stored in tlle ffehe Field dimCount is less than the Mesh
dimCount then the default gridToFieldMap will contain zefor the rightmost entries. A zero entry in the
gridToFieldMap indicates that the particular Mesh dimenswill be replicating the Field across the DEs along
this direction.

ungriddedLBound Lower bounds of the ungridded dimensions of the field. Thelmemof elements in the ungrid-
dedLBound is equal to the number of ungridded dimensionierfield. All ungridded dimensions of the field
are also undistributed. When field dimension count is grélga grid dimension count, both ungriddedLBound
and ungriddedUBound must be specified. When both are spkttifievalues are checked for consistency. Note
that the the ordering of these ungridded dimensions is tine e their order in the field.

ungriddedUBound Upper bounds of the ungridded dimensions of the field. Thebarraf elements in the ungridde-
dUBound is equal to the number of ungridded dimensions ifi¢he: All ungridded dimensions of the field are
also undistributed. When field dimension count is greaten tirid dimension count, both ungriddedLBound
and ungriddedUBound must be specified. When both are spkttiievalues are checked for consistency. Note
that the the ordering of these ungridded dimensions is time e their order in the field.

60

[name] The name for the newly created field. If not specified, i.e. NUa default unique name will be generated:
"FieldNNN" where NNN is a unique sequence number from 0019@. 9

[rc] Return code; equalESM-_SUCCESS if there are no errors.

16.4.5 ESMC_FieldDestroy - Destroy a Field

INTERFACE:

i nt ESMC Fi el dDestroy(

ESMC Field *field /1 inout
)
RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Releases all resources associated with B8MC Fi el d. Return code; equalESM-_SUCCESS if there are no
errors.

The arguments are:

field Destroy contents of thiESMC _Fi el d.

16.4.6 ESMC_FieldGetArray - Get the internal Array stored in the Field

INTERFACE:

ESMC Array ESMC Fi el dGet Array(
ESMC Field field, Il in
int xrc /'l out

)

RETURN VALUE:

The ESMC Array object stored in the ESMC Fi el d.

DESCRIPTION:

Get the internal Array stored in tHeSMC_Fi el d.

The arguments are:

61

field Getthe internal Array stored in thiESMC _Fi el d.
[rc] Return code; equalESM-_SUCCESS if there are no errors.

16.4.7 ESMC_FieldGetMesh - Get the internal Mesh stored inhe Field

INTERFACE:

ESMC_Mesh ESMC_Fi el dGet Mesh(

ESMC Field field, /1l in
int *rc /1 out
)
RETURN VALUE:

The ESMC Mesh object stored in the ESMC Fi el d.

DESCRIPTION:

Get the internal Mesh stored in tEESMC_Fi el d.

The arguments are:

field Getthe internal Mesh stored in tHESMC Fi el d.
[rc] Return code; equalESM-_SUCCESS if there are no errors.

16.4.8 ESMC_FieldGetPtr - Get the internal Fortran data ponter stored in the Field

INTERFACE:

void *ESMC _Fi el dGet Pt r (

ESMC Field field, /[l in
int | ocal De, [l in
int *rc !/ out
)
RETURN VALUE:

The Fortran data pointer stored in the ESMC Fi el d.

62

DESCRIPTION:

Get the internal Fortran data pointer stored inBSMC _Fi el d.

The arguments are:

field Getthe internal Fortran data pointer stored in #8MC _Fi el d.
localDe Local DE for which information is requestefd0, . . , | ocal DeCount - 1] .

[rc] Return code; equalESM-_SUCCESS if there are no errors.

16.4.9 ESMC_FieldPrint - Print the internal information of a Field

INTERFACE:
int ESMC Fi el dPri nt (
ESMC Field field Il in
)
RETURN VALUE:
Return code; equals ESM-_SUCCESS if there are no errors.
DESCRIPTION:

Print the internal information within thiESMC_Fi el d.

The arguments are:

field Print contents of thi€ESMC _Fi el d.

16.4.10 ESMC_FieldRegridGetArea - Get the area of the celissed for

conservative interpolation

INTERFACE:
int ESMC Fi el dRegri dGet Ar ea(
ESMC Field field Il in
)
RETURN VALUE:

63

Return code; equals ESM-_SUCCESS if there are no errors.

DESCRIPTION:

This subroutine gets the area of the cells used for conseevaterpolation for the grid object associ-
ated with ar eaFi el d and puts them intaar eaFi el d. If created on a 2D Grid, it must be built on
the ESMF_STAGGERLOC CENTER stagger location. If created on a 3D Grid, it must be built ¢ t
ESMF_STAGGERLOC CENTER VCENTER stagger location. If created on a Mesh, it must be built on the
ESMF_MESHLOC _ELEMENT mesh location.

The arguments are:

areaField The Field to put the area values in.

16.4.11 ESMC_FieldRegridStore - Precompute a Field regriding operation and return a RouteHandle

INTERFACE:

i nt ESMC Fi el dRegri dSt or e(

ESMC Field srcField, /1 in
ESMC Fi el d dstField, /[l in

ESMC I nterfacel nt *srcMaskVal ues, /[l in
ESMC Interfacel nt »dst MaskVal ues, /1 in

ESMC Rout eHandl e *rout ehandl e, /1 inout
enum ESMC _Regri dMet hod_Fl ag *regri dnet hod, /1 in
enum ESMC _UnnappedActi on_Fl ag *unmappedacti on, /1 in
ESMC Field *srcFracFi el d, /1 out
ESMC Fi el d *dst FracFi el d); /1 out

RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Creates a sparse matrix operation (stored in routehar@éxontains the calculations and communications neces-
sary to interpolate from srcField to dstField. The routeharcan then be used in the call ESMC_FieldRegrid() to
interpolate between the Fields.

The arguments are:

srcField ESMC_Field with source data.
dstField ESMC_Field with destination data.

srcMaskValues List of values that indicate a source point should be masked 6 not specified, no masking will
occur.

64

dstMaskValues List of values that indicate a destination point should besked out. If not specified, no masking
will occur.

routehandle The handle that implements the regrid, to be used in ESM@Reégrid().
regridmethod The type of interpolation. If not specified, defaults to ESNREGRIDMETHOD_BILINEAR.

unmappedaction Specifies what should happen if there are destination pthiatan’t be mapped to a source cell.
Options are ESMF_UNMAPPEDACTION_ERROR or ESMF_UNMAPPEDAON_IGNORE. If not speci-
fied, defaults to ESMF_UNMAPPEDACTION_ERROR.

[srcFracField] The fraction of each source cell participating in the regding. Only valid when regridmethod is
ESMC_REGRI DMETHOD CONSERVE. This Field needs to be created on the same location (e.gestag) as
the srcField.

[dstFracField] The fraction of each destination cell participating in tegnidding. Only valid when regridmethod is
ESMF_REGRI DMETHOD CONSERVE. This Field needs to be created on the same location (e.gestag) as
the dstField.

16.4.12 ESMC_FieldRegrid - Compute a regridding operation

INTERFACE:
i nt ESMC Fi el dRegri d(
ESMC Field srcField, /1 in
ESMC Field dstField, /1 inout
ESMC Rout eHandl e rout ehandl e, /1l in

enum ESMC Regi on_Fl ag *zeroregion); // in

RETURN VALUE:
Return code; equals ESM-_SUCCESS if there are no errors.

DESCRIPTION:

Execute the precomputed regrid operation stored in rontibato interpolate from srcField to dstField. See
ESMF_FieldRegridStore() on how to precompute the routéleaitt is erroneous to specify the identical Field object
for srcField and dstField arguments. This call is collezticross the current VM.

The arguments are:

srcField ESMC_Field with source data.
dstField ESMC_Field with destination data.
routehandle Handle to the precomputed Route.

[zeroregion] If set to ESMC REG ON_TOTAL (default) the total regions of all DEs imst Fi el d will be ini-
tialized to zero before updating the elements with the tesaf the sparse matrix multiplication. If
set toESMC_REGQ ON_EMPTY the elements irdst Fi el d will not be modified prior to the sparse ma-
trix multiplication and results will be added to the incomielement values. Settinger or egi on to
ESMC_REQ ON_SELECT will only zero out those elements in the destination Arragtthill be updated by the
sparse matrix multiplication.

65

16.4.13 ESMC_FieldRegridRelease - Free resources used byegridding operation

INTERFACE:

int ESMC Fi el dRegri dRel ease(ESMC_Rout eHandl e *rout ehandl e); // inout

RETURN VALUE:
Return code; equals ESM-_SUCCESS if there are no errors.

DESCRIPTION:

Free resources used by regrid object

The arguments are:

routehandle Handle carrying the sparse matrix

17 Array Class

17.1 Description

The Array class is an alternative to the Field class for regméng distributed, structured data. Unlike Fields, Whic
are built to carry grid coordinate information, Arrays camyocarry information about thndicesassociated with
grid cells. Since they do not have coordinate informatiorrags cannot be used to calculate interpolation weights.
However, if the user can supply interpolation weights, theag sparse matrix multiply operation can be used to apply
the weights and transfer data to the new grid. Arrays canpdorm redistribution, scatter, and gather communicatio
operations.

Like Fields, Arrays can be added to a State and used in indergdnent data communications.

From a technical standpoint, the ESMF Array class is an isgh@ce based, distributed data storage class. It provides
DE-local memory allocations within DE-centric index reggoand defines the relationship to the index space described
by the ESMF DistGrid. The Array class offers common commaitidn patterns within the index space formalism.

17.2 Class API

17.2.1 ESMC_ArrayCreate - Create an Array

INTERFACE:

ESMC Array ESMC ArrayCreat e(
ESMC_ArraySpec arrayspec, /1 in

66

ESMC DistGrid distgrid, /1 in

const char* nane, /Il in
int *rc /'l out
)
RETURN VALUE:

Newl y created ESMC Array object.

DESCRIPTION:

Create arESMC_Ar r ay object.

The arguments are:

arrayspec ESMC_Ar r ay Spec object containing the type/kind/rank information.

distgrid ESMC_Di st G'i d object that describes how the Array is decomposed andlalistd over DEs. The dim-
Count of distgrid must be smaller or equal to the rank spetifiearrayspec, otherwise a runtime ESMF error
will be raised.

[name] The name for the Array object. If not specified, i.e. NULL, daddt unigue name will be generated: "Ar-
rayNNN" where NNN is a unique sequence number from 001 to 999.

[rc] Return code; equalsSM-_SUCCESS if there are no errors.

17.2.2 ESMC_ArrayDestroy - Destroy an Array

INTERFACE:

int ESMC ArrayDestroy(
ESMC Array =array /1 inout

);
RETURN VALUE:
Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Destroy arESMC_Ar r ay object.

The arguments are:

array ESMC_Ar r ay object to be destroyed.

67

17.2.3 ESMC_ArrayGetName - Get the name of an Array

INTERFACE:
const char =ESMC _ArrayGet Name(
ESMC Array array, /1 in
int xrc /1 out
);
RETURN VALUE:

Pointer to the Array name string.
DESCRIPTION:
Get the name of the specifi&@BMC_Ar r ay object.
The arguments are:

array ESMC_Ar r ay object to be queried.
[rc] Return code; equalESM-_SUCCESS if there are no errors.

17.2.4 ESMC_ArrayGetPtr - Get pointer to Array data.

INTERFACE:
void *ESMC ArrayGet Ptr(
ESMC Array array, /1 in
i nt | ocal De, [l in
int *rc /1 out
);
RETURN VALUE:

Pointer to the Array data.

DESCRIPTION:

Get pointer to the data of the specifiE8MC_Ar r ay object.

The arguments are:

array ESMC_Ar r ay object to be queried.
localDe Local De for which to data pointer is queried.
[rc] Return code; equalsSM-_SUCCESS if there are no errors.

68

17.2.5 ESMC_ArrayPrint - Print an Array

INTERFACE:

int ESMC ArrayPrint(
ESMC Array array /1 in
);

RETURN VALUE:
Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Print internal information of the specifié&€SMC_Ar r ay object.

The arguments are:

array ESMC_Ar r ay object to be printed.

18 ArraySpec Class

18.1 Description

An ArraySpec is a very simple class that contains type, kamd, rank information about an Array. This information
is stored in two parameterSypeKind describes the data type of the elements in the Array andghetision.Rank
is the number of dimensions in the Array.

The only methods that are associated with the ArraySpes alasthose that allow you to set and retrieve this infor-
mation.

18.2 Class API

18.2.1 ESMC_ArraySpecGet - Get values from an ArraySpec

INTERFACE:

i nt ESMC ArraySpecGCet (

ESMC_ArraySpec arrayspec, /1 inout
int *rank, /Il in
enum ESMC TypeKi nd_Fl ag *typeki nd /1 in
);
RETURN VALUE:

Return code; equals ESM-_SUCCESS if there are no errors.

69

DESCRIPTION:

Returns information about the contents ofEBMC_Ar r ay Spec.

The arguments are:

arrayspec TheESMC_Ar r ay Spec to query.
rank Array rank (dimensionality - 1D, 2D, etc). Maximum allowed7D.

typekind Array typekind. See sectidn 32113 for valid values.

18.2.2 ESMC_ArraySpecSet - Set values for an ArraySpec

INTERFACE:
i nt ESMC _ArraySpecSet (
ESMC_ArraySpec =*arrayspec, /1 inout
int rank, Il in
enum ESMC TypeKi nd_Fl ag t ypeki nd /1 in
)
RETURN VALUE:

Return code; equals ESM-_SUCCESS if there are no errors.

DESCRIPTION:

Set an Array specification - typekind, and rank.

The arguments are:

arrayspec TheESMC _Ar r ay Spec to set.
rank Array rank (dimensionality - 1D, 2D, etc). Maximum allowed7D.

typekind Array typekind. See sectidn 32113 for valid values.

19 Grid Class

19.1 Description

The ESMF Grid class is used to describe the geometry andetiisation of logically rectangular physical grids. It
also contains the description of the grid’s underlying fogy and the decomposition of the physical grid across the
available computational resources. The most frequent Uise dsrid class is to describe physical grids in user code
so that sufficient information is available to perform ESMEthods such as regridding.

70

Key Features
Representation of grids formed by logically rectangulgioas, including uniform and rectilinear grids (e.g.
lat-lon grids), curvilinear grids (e.g. displaced poledgii, and grids formed by connected logically rectangu-
lar regions (e.g. cubed sphere grids).

Support for 1D, 2D, 3D, and higher dimension grids.
Distribution of grids across computational resources frapel operations - users set which grid dimensipns
are distributed.
Grids can be created already distributed, so that no siregeurce needs global information during the
creation process.
Options to define periodicity and other edge connectiviidser explicitly or implicitly via shape shortcuts.
Options for users to define grid coordinates themselveslbpiabricated coordinate generation routirles
for standard grids [NO GENERATION ROUTINES YET].

Options for incremental construction of grids.

Options for using a set of pre-defined stagger locationsmsdtiing custom stagger locations.

19.1.1 Grid Representation in ESMF

ESMF Grids are based on the concepts describéd $tandard Description of Grids Used in Earth System Models
[Balaji 2006]. In this document Balaji introduces the ma@saincept as a means of describing a wide variety of Earth
system model grids. Mosaicis composed of grid tiles connected at their edges. Mosais grcludes simple, single
tile grids as a special case.

The ESMF Grid class is a representation of a mosaic grid. ESMF Grid is constructed of one or more logically
rectangulaTiles. A Tile will usually have some physical significance (e.ge tiegion of the world covered by one
face of a cubed sphere grid).

The piece of a Tile that resides on one DE (for simple caseg; add be thought of as a processor - see section on the
DELayout) is called d ocalTile. For example, the six faces of a cubed sphere grid are eag$, @ihd each Tile can
be divided into many LocalTiles.

Every ESMF Grid contains a DistGrid object, which defines@r&l’s index space, topology, distribution, and con-
nectivities. It enables the user to define the complex edgéarships of tripole and other grids. The DistGrid can be
created explicitly and passed into a Grid creation routiné,can be created implicitly if the user takes a Grid craati
shortcut. The DistGrid used in Grid creation describes top@rties of the Grid cells. In addition to this one, the Grid
internally creates DistGrids for each stagger locatioresehstagger DistGrids are related to the original DistGaid,
may contain extra padding to represent the extent of thexisgace of the stagger. These DistGrids are what are used
when a Field is created on a Grid.

19.1.2 Supported Grids

The range of supported grids in ESMF can be defined by:

e Types of topologies and shapes supported. ESMF supportsramere logically rectangular grid Tiles with
connectivities specified between cells. For more detadsssetiol 19.1]3.

e Types of distributions supported. ESMF supports regulaegular, or arbitrary distributions of data. For more
details see sectidn 19.1 .4.

e Types of coordinates supported. ESMF supports uniforniilirexar, and curvilinear coordinates. For more
details see sectidn I9.1L.5.

71

19.1.3 Grid Topologies and Periodicity

ESMF has shortcuts for the creation of standard Grid topefogrshapesup to 3D. In many cases, these enable the
user to bypass the step of creating a DistGrid before crg#iia@ Grid. There are two sets of methods which allow
the user to do this. These two sets of methods cover the sdroétepologies, but allow the user to specify them in
different ways.

The first set of these are a group of overloaded calls brokdmyuphe number of periodic dimensions they specify.
With these the user can pick the method which creates a Gtidtiwé number of periodic dimensions they need, and
then specify other connectivity options via arguments orttethod. The following is a description of these methods:

ESMF_GridCreateNoPeriDim() Allows the user to create a Grid with no edge connectionsgXample, a regional
Grid with closed boundaries.

ESMF_GridCreatelPeriDim() Allows the user to create a Grid with 1 periodic dimension angports a range of
options for what to do at the pole (see Secfion 19.2.4. Soramples of Grids which can be created here are
tripole spheres, bipole spheres, cylinders with open poles

ESMF_GridCreate2PeriDim() Allows the user to create a Grid with 2 periodic dimensions gikample a torus, or
a regional Grid with doubly periodic boundaries.

More detailed information can be found in the API descriptd each.

The second set of shortcut methods is a set of methods odedaander the nameSM-_Gr i dCr eat e() . These
methods allow the user to specify the connectivites at tideoéeach dimension, by using the ESMF_GridConn_Flag
flag. The table below shows the ESMF_GridConn_Flag settirsgsl to create standard shapes in 2D using the
ESMF_GridCreate() call. Two values are specified for eaatedision, one for the low end and one for the high end
of the dimension’s index values.

2D Shape connflagDim1(1) | connflagDim1(2) | connflagDim2(1) | connflagDim2(2)
Rectangle NONE NONE NONE NONE
Bipole Sphere POLE POLE PERIODIC PERIODIC
Tripole Sphere POLE BIPOLE PERIODIC PERIODIC
Cylinder NONE NONE PERIODIC PERIODIC
Torus PERIODIC PERIODIC PERIODIC PERIODIC

If the user’s grid shape is too complex for an ESMF shortcutin@, or involves more than three dimensions, a
DistGrid can be created to specify the shape in detail. Ti88@id is then passed into a Grid create call.

19.1.4 Grid Distribution

ESMF Grids have several options for data distribution (aéferred to as decomposition). As ESMF Grids are cell
based, these options are all specified in terms of how the icethe Grid are broken up between DEs.

The main distribution options are regular, irregular, angiteary. A regular distribution is one in which the same
number of contiguous grid cells are assigned to each DE idigtgbuted dimension. Aregular distribution is one

in which unequal numbers of contiguous grid cells are assiga each DE in the distributed dimension. &bitrary
distribution is one in which any grid cell can be assignedrtyp RE. Any of these distribution options can be applied
to any of the grid shapes (i.e., rectangle) or types (i.etjligear). Support for arbitrary distribution is limitéd the
current version of ESMF.

72

all a12 a13 a14 a15 a16 all a12 a13 alA a15 a16 b33 b51
21 22 a23 a24 a22 a23 a21 a22 a23 a24 azz azg bGl b62 b63
g, Az, gy Ay, Q5 Agg 8y | 83 83 8y 855 g b, by, by bg, by,
a41 a42 a43 a44 a45 a46 a41 a42 a43 a44 a45 a46 bll
a51 a52 a53 a54 a55 a56 a51 a52 a53 a54 a55 a56 b21 b22 b31 b32
61 62 a63 a64 a65 a66 a61 a62 a63 a64 a65 a66 b12 b13 b23
Regular distribution Irregular distribution Arbitrary distribution

Figure 7: Examples of regular and irregular decompositfangrid a that is 6x6, and an arbitrary decomposition of a
grid b that is 6x3.

¢

<

g<

.(

L

¢

L
© C
Uniform grid Rectilinear grid Curvilinear grid

Figure 8: Types of logically rectangular grid tiles. Recctés show the values needed to specify grid coordinates for
each type.

FigurelT illustrates options for distribution.

A distribution can also be specified using the DistGrid, bygiag object into a Grid create call.

19.1.5 Grid Coordinates

Grid Tiles can have uniform, rectilinear, or curvilinearocdinates. The coordinates ohiform grids are equally
spaced along their axes, and can be fully specified by thalawaies of the two opposing points that define the grid’s
physical span. The coordinatesrettilinear grids are unequally spaced along their axes, and can besjdgified

by giving the spacing of grid points along each axis. The dmates ofturvilinear grids must be specified by giving
the explicit set of coordinates for each grid point. Cungfar grids are often uniform or rectilinear grids that have
been warped; for example, to place a pole over a land masssi ttoes not affect the computations performed on
an ocean model grid. Figufé 8 shows examples of each typedf gr

Each of these coordinate types can be set for each of theasthgdd shapes described in secfion19.1.3.

The table below shows how examples of common single Tilesgallinto this shape and coordinate taxonomy. Note
that any of the grids in the table can have a regular or argittstribution.

73

Uniform Rectilinear Curvilinear
Sphere Global uniform lat-lon grid | Gaussian grid Displaced pole grid
Rectangle Regional uniform lat-lon| Gaussian grid section Polar stereographic grid se¢-
grid tion

19.1.6 Coordinate Specification and Generation

There are two ways of specifying coordinates in ESMF. Théviieg is for the user tsetthe coordinates. The second
way is to take a shortcut and have the framewgekeratethe coordinates.

No ESMF generation routines are currently available.

19.1.7 Staggering

Staggeringis a finite difference technique in which the values of diferphysical quantities are placed at different
locations within a grid cell.

The ESMF Grid class supports a variety of stagger locatimeiding cell centers, corners, and edge centers. The

default stagger location in ESMF is the cell center, andamihts in Grid are based on this assumption. Combinations

of the 2D ESMF stagger locations are sufficient to specifyaitige Arakawa staggers. ESMF also supports staggering

in 3D and higher dimensions. There are shortcuts for stangtaggers, and interfaces through which users can create
custom staggers.

As a default the ESMF Grid class provides symmetric staggeso that cell centers are enclosed by cell perimeter
(e.g. corner) stagger locations. This means the coordaraags for stagger locations other than the center will have
an additional element of padding in order to enclose theamsiter locations. However, to achieve other types of
staggering, the user may alter or eliminate this paddingsiryg.the appropriate options when adding coordinates to a
Grid.

19.1.8 Masking

Masking is the process whereby parts of a grid can be markbd tgnored during an operation, such as regridding.
Masking can be used on a source grid to indicate that certaitiops of the grid should not be used to generate
regridded data. This is useful, for example, if a portionhaf source grid contains unusable values. Masking can also
be used on a destination grid to indicate that the portiomeffield built on that part of the Grid should not receive
regridded data. This is useful, for example, when part ofgifie isn’t being used (e.g. the land portion of an ocean
grid).

ESMF regrid currently supports masking for Fields built drnustured Grids and element masking for Fields
built on unstructured Meshes. The user may mask out pointedansource Field or destination Field or both.
To do masking the user sets mask information in the Grid or HMegson which the Fields passed into the
ESMC Fi el dRegri dSt or e() call are built. Thesr cMaskVal ues anddst MaskVal ues arguments to that
call can then be used to specify which values in that masknmdition indicate that a location should be masked out.
For example, iist MaskVal ues is set to (/1,2/), then any location that has a value of 1 ortBémrmask information

of the Grid or Mesh upon which the destination Field is built ne masked out.

Masking behavior differs slightly between regridding naeth. For non-conservative regridding methods (e.g. bi-
linear or high-order patch), masking is done on points. Resé methods, masking a destination point means that
that point won't participate in regridding (e.g. won'’t badrpolated to). For these methods, masking a source point
means that the entire source cell using that point is maskéd lm other words, if any corner point making up

74

a source cell is masked then the cell is masked. For conservagridding methods (e.g. first-order conserva-
tive) masking is done on cells. Masking a destination celansethat the cell won’t participate in regridding (e.g.
won't be interpolated to). Similarly, masking a source eeélans that the cell won't participate in regridding (e.g.
won't be interpolated from). For any type of interpolatioetmod (conservative or non-conservative) the masking is
set on the location upon which the Fields passed into theddigg call are built. For example, if Fields built on
ESMC_STAGGERLOC CENTERare passed into theSMC _Fi el dRegri dSt or e() call then the masking should
also be set oESMC _STAGGERLOC CENTER.

19.2 Constants
19.2.1 ESMC_COORDSYS

DESCRIPTION:

A set of values which indicates in which system the coordisat the Grid are. This value is useful both to indicate
to other users the type of the coordinates, but also to cdmimthe coordinates are interpreted in regridding methods
(e.g.ESMC _Fi el dRegri dStore()).

The type of this flag is:
t ype(ESMC_Coor dSys_Fl ag)

The valid values are:

ESMC_COORDSYS_CART Cartesian coordinate system. In this system, the cartesiardinates are mapped
to the Grid coordinate dimensions in the following order:y,x, (E.g. usingcoordDi nm=2 in
ESMC_GridGetCoord() references the y dimension)

ESMC_COORDSYS_SPH_DEGSpherical coordinates in degrees. In this system, the mglheroordinates
are mapped to the Grid coordinate dimensions in the follgwonder: longitude, latitude, radius. (E.g.
using coor dDi m=2 in ESMC_GridGetCoord() references the latitude dimersiNiote, however, that
ESMC_FieldRegridStore() currently just supports longéwand latitude (i.e. with this system, only Grids of
dimension 2 are supported in the regridding).

ESMC_COORDSYS_SPH_RADSpherical coordinates in radians. In this system, the $mlecoordinates
are mapped to the Grid coordinate dimensions in the follgwonder: longitude, latitude, radius. (E.g.
using coor dDi mF2 in ESMC_GridGetCoord() references the latitude dimensiNiote, however, that
ESMC_FieldRegridStore() currently just supports longéwand latitude (i.e. with this system, only Grids of
dimension 2 are supported in the regridding).

19.2.2 ESMC_GRIDITEM

DESCRIPTION:

The ESMC Grid can contain other kinds of data besides coatelin This data is referred to as Grid “items”.
Some items may be used by ESMC for calculations involving@migel. The following are the valid values of
ESMC_Gridltem_Flag.

The type of this flag is:
type(ESMC Gridltem Fl ag)

The valid values are:

75

Item Label Type Restriction Type Default ESMC Uses Controls

ESMC_GRIDITEM_MASK | ESMC_TYPEKIND_I4| ESMC_TYPEKIND_4 YES Masking in Regrid
ESMC_GRIDITEM_AREA NONE ESMC_TYPEKIND_R8| YES Conservation in Regric

19.2.3 ESMC_GRIDSTATUS

DESCRIPTION:
The ESMC Grid class can exist in two states. These stateg@sent so that the library code can detect if a Grid has
been appropriately setup for the task at hand. The followneghe valid values of ESMC_GRIDSTATUS.

The type of this flag is:

type(ESMC_Gi dSt at us_Fl ag)

The valid values are:

ESMC_GRIDSTATUS_EMPTY: Status after a Grid has been created VE8MC_Gr i dEnpt yCr eat e. A Grid
object container is allocated but space for internal objesctot. Topology information and coordinate informa-

tion is incomplete. This object can be used&EBMC_Gr i dEnpt yConpl et e() methods in which additional
information is added to the Grid.

ESMC_GRIDSTATUS_COMPLETE: The Grid has a specific topology and distribution, but inctatgpcoordi-
nate arrays. The Grid can be used as the basis for allocatifigld, and coordinates can be added via
ESMC_Gri dCoor dAdd() to allow other functionality.

19.2.4 ESMC_POLEKIND

DESCRIPTION:
This type describes the type of connection that occurs at poée when a Grid is created with
ESMC Gri dCreat elPeri odi cDi n() .

The type of this flag is:
t ype(ESMC_Pol eKi nd_Fl ag)

The valid values are:

ESMC_POLEKIND_NONE No connection at pole.

ESMC_POLEKIND_MONOPOLE This edge is connected to itself. Given that the edge is netsriong, then
elementiis connected to element i+n/2.

ESMC_POLEKIND_BIPOLE This edge is connected to itself. Given that the edge is nahsiong, elementi is
connected to element n-i-1.

19.2.5 ESMC_STAGGERLOC

DESCRIPTION:

In the ESMC Grid class, data can be located at differentiposiin a Grid cell. When setting or retrieving coordinate

data the stagger location is specified to tell the Grid methmu where in the cell to get the data. Although the user
may define their own custom stagger locations, ESMC prowvidsst of predefined locations for ease of use. The
following are the valid predefined stagger locations.

76

Dim. 2

A
ESMF_STAGGERLOC_CORNER ESMF_STAGGERLOC_EDGE2 ESMF_STAGGERLOC_CORNER
ESMF_STAGGERLOC_EDGEI ¢ ° ¢ ESMF_STAGGERLOC EDGElL
ESMF_STAGGERLOC_CENTER
A » Dim. |
ESMF_STAGGERLOC_CORNER ESMF_STAGGERLOC_EDGE2 ESMF_STAGGERLOC_CORNER

Figure 9: 2D Predefined Stagger Locations

The 2D predefined stagger locations (illustrated in fiflirar@)

ESMC_STAGGERLOC_CENTER: The center of the cell.
ESMC_STAGGERLOC_CORNER: The corners of the cell.
ESMC_STAGGERLOC_EDGEL1: The edges offset from the center in the 1st dimension.
ESMC_STAGGERLOC_EDGE?2: The edges offset from the center in the 2nd dimension.

The 3D predefined stagger locations (illustrated in fi§upeate:

ESMC_STAGGERLOC_CENTER_VCENTER: The center of the 3D cell.
ESMC_STAGGERLOC_CORNER_VCENTER: Half way up the vertical edges of the cell.

ESMC_STAGGERLOC_ EDGE1 VCENTER: The center of the face bounded by edge 1 and the vertical dimen
sion.

ESMC_STAGGERLOC_EDGE2_VCENTER: The center of the face bounded by edge 2 and the vertical dimen
sion.

ESMC_STAGGERLOC_CORNER_VFACE: The corners of the 3D cell.

ESMC_STAGGERLOC_EDGE1_VFACE: The center of the edges of the 3D cell parallel offset fromcidater in
the 1st dimension.

ESMC_STAGGERLOC_EDGE?2_VFACE: The center of the edges of the 3D cell parallel offset fromcidater in
the 2nd dimension.

77

Dim. 3

CORNER_VFACE CORNER_VFACE

EDGE2_VFACE 2 _VFACE
CORNER_VFACE ¢ _ VFACE
CORNEH CORNER_VCENTER
EDGE2_VCH E2_VCENTER

CORNER_VCENTER 9 CENTER

—» Dim. 2

COR

EDGE2 V

CORNERivy

Dim. 1

EDGE2_VFACE

CORNER_VFACE
EDGE1_VFACE -

Figure 10: 3D Predefined Stagger Locations

ESMC_STAGGERLOC_CENTER_VFACE: The center of the top and bottom face. The face bounded bysthe 1
and 2nd dimensions.

19.3 Restrictions and Future Work

e 7D limit. Only grids up to 7D will be supported.

e During the first development phase only single tile grids aresupported. In the near future, support for
mosaic grids will be added. The initial implementation viaél to create mosaics that contain tiles of the same
grid type, e.qg. rectilinear.

e Future adaptation. Currently Grids are created and then remain unchanged elfuthre, it would be useful
to provide support for the various forms of grid adaptatidhis would allow the grids to dynamically change
their resolution to more closely match what is needed at ticpdar time and postion during a computation for
front tracking or adaptive meshes.

e Future Grid generation. This class for now only contains the basic functionalitydperating on the grid. In
the future methods will be added to enable the automaticrgéoe of various types of grids.

19.4 Design and Implementation Notes
19.4.1 Grid Topology

TheESMF_Gr i d class depends upon tESMF_Di st G i d class for the specification of its topology. That is, when
creating a Grid, first aBSM-_Di st Gri d is created to describe the appropriate index space topolddy decision

78

was made because it seemed redundant to have a system fgtlasim both classes. It also seems most appropriate
for the machinary for topology creation to be located at theest level possible so that it can be used by other
classes (e.g. thESMF_Arr ay class). Because of this, however, the authors recommenésha natural part of
the implementation of subroutines to generate standaddshapes (e.gESM-_G i dGenSpher e) a set of standard
topology generation subroutines be implemented S _Di st Gri dGenSpher e) for users who want to create

a standard topology, but a custom geometry.

19.5 Class API: General Grid Methods

19.5.1 ESMC_GridCreateNoPeriDim - Create a Grid with no peiodic dimensions

INTERFACE:

ESMC Grid ESMC Gri dCreat eNoPer i Di m(
ESMC Interfacelnt maxlndex, // in

enum ESMC _Coor dSys_Fl ag *coor dSys, /1 in
enum ESMC _TypeKi nd_Fl ag *coordTypeKind, // in
int xrc /1 out
)
RETURN VALUE:

type(ESMC Gri d)

DESCRIPTION:

This call creates an ESMC_Grid with no periodic dimensions.

The arguments are:

maxIindex The upper extent of the grid array.

coordSys The coordinated system of the grid coordinate data. If nokcified then defaults to
ESMF_COORDSYS_SPH_DEG.

coordTypeKind The type/kind of the grid coordinate data. If not specifieghtithe type/kind will be 8 byte reals.
rc Return code; equalBSM-_SUCCESS if there are no errors.

19.5.2 ESMC_GridCreatelPeriDim - Create a Grid with 1 perialic dimension

INTERFACE:

ESMC Grid ESMC Gri dCreatelPeri Di nm(
ESMC Interfacelnt maxlndex, // in
enum ESMC Coor dSys_Fl ag *coor dSys, /1 in
enum ESMC _TypeKi nd_Fl ag *coordTypeKind, // in

79

enum ESMC Pol eKi nd_Flag *poleKind, // in
int *rc /1 out

)

RETURN VALUE:
type(ESMC_Gri d)

DESCRIPTION:

This call creates an ESMC_Grid with 1 periodic dimension.

The arguments are:

maxIindex The upper extent of the grid array.

coordSys The coordinated system of the grid coordinate data. If nokcified then defaults to
ESMF_COORDSYS_SPH_DEG.

coordTypeKind The type/kind of the grid coordinate data. If not specifieghtithe type/kind will be 8 byte reals.

poleKind Two item array which specifies the type of connection whicbuos at the pole. polekindflag(1) the con-
nection that occurs at the minimum end of the index dimengpatekindflag(2) the connection that occurs at
the maximum end of the index dimension. If not specified, #fadlt is ESMF_POLETYPE_MONOPOLE for
both.

rc Return code; equalBSM-_SUCCESS if there are no errors.

19.5.3 ESMC_GridDestroy - Destroy a Grid

INTERFACE:

int ESMC Gri dDest roy(

ESMC Gid =grid /1 in
)
RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Destroy the Grid.

The arguments are:

grid Grid object whose memory is to be freed.

80

19.5.4 ESMC_GridAddltem - Add items to a Grid

INTERFACE:

int ESMC_Gri dAddltem

ESMC Gid grid, [l in
enum ESMC GridltemFlag itenflag, // in
enum ESMC_St agger Loc st agger | oc [l in

);

RETURN VALUE:
Return code; equals ESM-_SUCCESS if there are no errors.

DESCRIPTION:

Add coordinates to the Grid.

The arguments are:

grid Grid object to which the coordinates will be added
itemflag The grid item to add.
staggerloc The stagger location to add. If not present, defaults to ESSTAGGERLOC_CENTER.

19.5.5 ESMC_GridGetltem - Get item from a Grid

INTERFACE:

void + ESMC GridGetltem
ESMC Gid grid, /1 in
enum ESMC Gridltem Flag itenfl ag, /1 in
enum ESMC_St agger Loc st agger | oc, /1 in
int *xrc /1 out

)
RETURN VALUE:

Return code; equals ESM-_SUCCESS if there are no errors.

DESCRIPTION:

Get coordinatess from the Grid.

The arguments are:

81

grid Grid object from which to obtain the coordinates.

itemflag The grid item to add.

staggerloc The stagger location to add. If not present, defaults to ESSTAGGERLOC_CENTER.
rc Return code; equalBSM-_SUCCESS if there are no errors.

19.5.6 ESMC_GridAddCoord - Add coordinates to a Grid

INTERFACE:

int ESMC Gri dAddCoor d(

ESMC Gid grid, [l in
enum ESMC_St agger Loc st agger | oc [l in
);

RETURN VALUE:
Return code; equals ESM-_SUCCESS if there are no errors.

DESCRIPTION:

Add coordinates to the Grid.

The arguments are:

grid Grid object to which the coordinates will be added

staggerloc The stagger location to add. If not present, defaults to ESSTAGGERLOC_CENTER.

19.5.7 ESMC_GridGetCoord - Get coordinates from a Grid

INTERFACE:

void » ESMC Gri dGet Coor d(

ESMC Gid grid, /1 in
int coordDi m /Il in
enum ESMC_St agger Loc st agger | oc, /1 in
i nt *excl usi veLBound, /1 out
i nt *excl usi veUBound, /'l out
int *rc /'l out

82

RETURN VALUE:
Return code; equals ESM-_SUCCESS if there are no errors.

DESCRIPTION:

Get coordinatess from the Grid.

The arguments are:

grid Grid object from which to obtain the coordinates.
coordDim The coordinate dimension from which to get the data.
staggerloc The stagger location to add. If not present, defaults to ESSTAGGERLOC_CENTER.

exclusiveLBound Upon return this holds the lower bounds of the exclusiveaiegiThis bound must be allocated to
be of size equal to the coord dimCount.

exclusiveUBound Upon return this holds the upper bounds of the exclusiveoredr his bound must be allocated to
be of size equal to the coord dimCount.

rc Return code; equalBSM-_SUCCESS if there are no errors.

19.5.8 ESMC_GridGetCoordBounds - Get coordinate bounds fsrm a Grid

INTERFACE:
int ESMC Gri dGet Coor dBounds(
ESMC Gid grid, /1 in
enum ESMC_St agger Loc st agger | oc, /1 in
i nt =excl usi veLBound, /1 out
i nt =excl usi veUBound, /1 out
int *xrc /1 out
)
RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Get coordinates bounds from the Grid.

The arguments are:

grid Grid object from which to obtain the coordinates.

staggerloc The stagger location to add. If not present, defaults to ESSTAGGERLOC_CENTER.

83

exclusiveLBound Upon return this holds the lower bounds of the exclusiveaegiThis bound must be allocated to
be of size equal to the coord dimCount.

exclusiveUBound Upon return this holds the upper bounds of the exclusiveoredr his bound must be allocated to
be of size equal to the coord dimCount.

rc Return code; equalBSM-_SUCCESS if there are no errors.

19.5.9 ESMC_GridWrite - Write a Grid to a VTK file

INTERFACE:

int ESMC GridWite(
ESMC Gid grid, [1 in
enum ESMC_St agger Loc staggerloc, // in
const char* fnane /[l in

)

RETURN VALUE:

Return code; equals ESM-_SUCCESS if there are no errors.

DESCRIPTION:

Write a grid to VTK file.

The arguments are:

grid The grid.
staggerloc The stagger location to add. If not present, defaults to ESSTAGGERLOC_CENTER.

filename The name of the output file.

20 Mesh Class

20.1 Description

Unstructured grids are commonly used in the computatioolattion of Partial Differential equations. These are
especially useful for problems that involve complex geamethere using the less flexible structured grids can result
in grid representation of regions where no computation eded. Finite element and finite volume methods map
naturally to unstructured grids and are used commonly inrdlgdy, ocean modeling, and many other applications.

In order to provide support for application codes using wtstired grids, the ESMF library provides a class for
representing unstructured grids called tilesh. Fields can be created on a Mesh to hold data. In Fortran,
Fields created on a Mesh can also be used as either the saudestmation or both of an interpolaton (i.e. an
ESMF_Fi el dRegri dSt or e() call). This capability is currently not supported with thar@erface, however, if
the C Field is passed via a State to a component written irdothen the regridding can be performed there. The
rest of this section describes the Mesh class and how toecagatuse them in ESMF.

84

20.1.1 Mesh Representation in ESMF

A Mesh in ESMF is described in terms nfdesandelements A node is a point in space which represents where the
coordinate information in a Mesh is located. An element igyaér dimensional shape constructed of nodes. Elements
give a Mesh its shape and define the relationship of the nadasa another. Field data may be located on a Mesh'’s
nodes.

20.1.2 Supported Meshes

The range of Meshes supported by ESMF are defined by sevetatdadimension, element types, and distribution.

ESMF currently only supports Meshes whose number of coatdidimensions (spatial dimension) is 2 or 3. The
dimension of the elements in a Mesh (parametric dimensiarst toe less than or equal to the spatial dimension, but
also must be either 2 or 3. This means that an ESMF mesh mayhae 2D elements in 2D space, 3D elements in
3D space, or a manifold constructed of 2D elements embedd®d space.

ESMF currently supports two types of elements for each Mesarpetric dimension. For a parametric dimension of

2 the supported element types are triangles or quadrilateffar a parametric dimension of 3 the supported element
types are tetrahedrons and hexahedrons. See SEciiod 20 @dgrams of these. The Mesh supports any combination
of element types within a particular dimension, but typesfdifferent dimensions may not be mixed, for example, a

Mesh cannot be constructed of both quadrilaterals anchiedira.

ESMF currently only supports distributions where everyaod a PET must be a part of an element on that PET. In
other words, there must not be nodes without an element oTa PE

20.2 Constants

20.2.1 ESMC_MESHELEMTYPE

DESCRIPTION:

An ESMF Mesh can be constructed from a combination of diffeedements. The type of elements that can be used

in a Mesh depends on the Mesh’s parameteric dimension, vidisét during Mesh creation. The following are the
valid Mesh element types for each valid Mesh parametric dios (2D or 3D) .

ESMC_MESHELEMTYPE_TRI ESMC_MESHELEMTYPE_QUAD

2D el enent types (nunbers are the order for el enment Conn during
Mesh create)

For a Mesh with parametric dimension of 2 the valid elemepégy(illustrated above) are:

85

Element Type Number of Nodeg Description
ESMC_MESHELEMTYPE_TRI 3 A triangle
ESMC_MESHELEMTYPE_QUAD 4 A quadrilateral (e.g. a rectangle)
3 8--mmm - 7
I\ /] /]
I]\ /| /|
/A A I T
/ [\ / [/ |
/ [\ S LR 6 |
4----- |----- 2 | | | |
\ [/ | R [----3
\ [/ | / [/
\'] |/ |/
\]/ | / | /
\ |/ |/ |/
1 I LR 2
ESMC_MESHELEMTYPE_TETRA ESMC_MESHELEMTYPE_HEX

3D el emrent types (nunmbers are the order for el ement Conn during
Mesh create)

For a Mesh with parametric dimension of 3 the valid elemepégy(illustrated above) are:

Element Type Number of Nodeg Description
ESMC_MESHELEMTYPE_TETRA 4 A tetrahedron (CAN'T BE USED IN REGRID
ESMC_MESHELEMTYPE_HEX 8 A hexahedron (e.g. a cube)

20.2.2 ESMF_FILEFORMAT

DESCRIPTION:

This option is used bESMF_MeshCr eat e to specify the type of the input grid file.

The type of this flag is:

type(ESM-_Fi | eFor mat _Fl ag)

The valid values are:

ESMF_FILEFORMAT_SCRIP SCRIP format grid file. The SCRIP format is the format acce g the SCRIP

regridding tooll[1]. For Mesh creation, files of this type ymlork when thegr i d_r ank in the file is equal to
1.

ESMF_FILEFORMAT _ESMFMESH ESMF unstructured grid file format. This format was devetbjpy the
ESMF team to match the capabilities of the Mesh class and &ffioéent to convert to that class.

ESMF_FILEFORMAT_UGRID CF-conventionunstructured grid file format. This format [groposed extention to
the CF-conventions for unstructured grid data model. Gilygonly the 2D flexible mesh topology is supported
in ESMF.

86

20.3 Class API

20.3.1 ESMC_MeshAddElements - Add elements to a Mesh

INTERFACE:
i nt ESMC_MeshAddEl enent s(
ESMC Mesh mesh, /1 inout
int el enent Count, [/ in
int xel enentlds, Il in
i nt xel ement Types, /[l in
i nt *el enent Conn, [/ in
i nt xel enent Mask, Il in
doubl e *el enent Ar ea Il in
)
RETURN VALUE:

Return code; equals ESM-_SUCCESS if there are no errors.

DESCRIPTION:

This call is the third and last part of the three part meshtersaguence and should be called after the mesh is created
with ESMF_MeshCr eat e() 0.3.3) and after the nodes are added \&##VF_MeshAddNodes() @0.32). This

call adds the elements to the mesh and finalizes the creats. tAis call the Mesh is usable, for example a Field may
be built on the created Mesh object and this Field may be usa&$M-_Fi el dRegri dSt or e() call.

The parameters to this cal ement | ds, el ement Types, andel enent Conn describe the elements to be cre-
ated. The description for a particular element lies at tineesimdex location irel enent | ds andel enent Types.
Each entry irel ement Conn consists of the list of nodes used to create that elemerttestonnections for elemeat
intheel enent | ds array will start athumber_of_nodes_in_element(1)+number_of_nodes_in_element(2)+

-+« 4+ number_of_nodes_in_element(e — 1) + 1 in el ement Conn.

mesh Mesh object.
elementCount The number of elements on this PET.

elementlds An array containing the global ids of the elements to be egkan this PET. This input consists of a 1D
array of sizeel enent Count .

elementTypesAn array containing the types of the elements to be createthisnlPET. The types used must be
appropriate for the parametric dimension of the Mesh. Rlsae Sectiof 20.2.1 for the list of options. This
input consists of a 1D array of sis¢ enent Count .

elementConn An array containing the indexes of the sets of nodes to beewiad together to form the elements to
be created on this PET. The entries in this list are NOT nodbailids, but rather each entry is a local index
(1 based) into the list of nodes which were created on this B¥eihe previou€ESMC MeshAddNodes()
call. In other words, an entry of 1 indicates that this elehwamtains the node described bgdel ds(1),
nodeCoor ds(1), etc. passed into theSMC_MeshAddNodes() call on this PET. It is also important to
note that the order of the nodes in an element connectigityriatters. Please see Secfion 20.2.1 for diagrams
illustrating the correct order of nodes in a element. Thigiirconsists of a 1D array with a total size equal to the
sum of the number of nodes in each element on this PET. The @unhbodes in each element is implied by its
element type irel enent Types. The nodes for each element are in sequence in this arraytiie.godes for
element 1 are elementConn(1), elementConn(2), etc.).

87

[elementMask] An array containing values which can be used for element imgskVhich values indicate masking
are chosen via the srcMaskValues or dstMaskValues argene®@SMF_FieldRegridStore() call. This input
consists of a 1D array the size of the number of elements erPT. If not specified (i.e. NULL is passed in),
then no masking will occur.

[elementArea] An array containing elementareas. This input consists @f artay the size of the number of elements
on this PET. If not specified (i.e. NULL is passed in), the edatrareas are internally calculated.

20.3.2 ESMC_MeshAddNodes - Add nodes to a Mesh

INTERFACE:

i nt ESMC_MeshAddNodes(

ESMC Mesh nesh, /1 inout
i nt nodeCount, Il in
i nt *nodel ds, [/ in
doubl e *nodeCoor ds, [/ in
i nt *nodeOaner s Il in
)
RETURN VALUE:

Return code; equals ESM-_SUCCESS if there are no errors.

DESCRIPTION:

This call is the second part of the three part mesh createeseguand should be called after the mesh’s dimen-
sions are set usingSMC _MeshCreat e(). This call adds the nodes to the mesh. The next step is to call
ESMC_MeshAddEl ement s() @IL3E3).

The parameters to this calbdel ds, nodeCoor ds, andnodeOaner s describe the nodes to be created on this
PET. The description for a particular node lies at the samexocation imodel ds andnodeOaner s. Each entry

in nodeCoor ds consists of spatial dimension coordinates, so the coatelrfar node: in thenodel ds array will
start at(n — 1) * spatial Dim + 1.

mesh Mesh object.

nodeCount The number of nodes on this PET.

nodelds An array containing the global ids of the nodes to be createtis PET. This input consists of a 1D array
the size of the number of nodes on this PET (nedeCount).

nodeCoords An array containing the physical coordinates of the noddstoreated on this PET. The coordinates in
this array are ordered so that the coordinates for a node siequence in memory. (e.g. for a Mesh with spatial
dimension 2, the coordinates for node 1 are in nodeCoords@nodeCoords(1), the coordinates for node 2
are in nodeCoords(2) and nodeCoords(3), etc.). This imnsists of a 1D array the sizewbdeCount times
the Mesh'’s spatial dimensiospat i al Di m.

88

nodeOwners An array containing the PETs that own the nodes to be creat¢ki® PET. If the node is shared with
another PET, the value may be a PET other than the currentimig nodes owned by this PET will have PET
local entries in a Field created on the Mesh. This input ciagif a 1D array the size of the number of nodes
on this PET (i.enodeCount).

20.3.3 ESMC_MeshCreate - Create a Mesh as a 3 step process

INTERFACE:
ESMC Mesh ESMC _MeshCr eat e(
int parametricD m /1 in
int spatial Dim /1 in
int xrc /1 out
)
RETURN VALUE:
type(ESMC_Mesh) .. ESMC MeshCreate
DESCRIPTION:

This call is the first part of the three part mesh create sexpienhis call sets the dimension of the elements in the
mesh par anet ri cDi m) and the number of coordinate dimensions in the megia(i al Di m). The next step is

to callESMC_MeshAddNodes() (Z0.3:2) to add the nodes and tHEBMC MeshAddEl enent s() (Z0.31) to add
the elements and finalize the mesh.

The arguments are:
parametricDim Dimension of the topology of the Mesh. (E.g. a mesh constdiof squares would have a parametric
dimension of 2, whereas a Mesh constructed of cubes woulel dvae of 3.)

spatialDim The number of coordinate dimensions needed to describe¢hédns of the nodes making up the Mesh.
For a manifold, the spatial dimesion can be larger than tharpetric dim (e.g. the 2D surface of a sphere in
3D space), but it can’t be smaller.

rc Return code; equalESM-_SUCCESS if there are no errors.

20.3.4 ESMC_MeshCreateFromFile - Create a Mesh from a NetCBgrid file

INTERFACE:
ESMC_Mesh ESMC _MeshCr eat eFronFi | e(
char =*fil enane, /1 in (required)
int fileTypeFl ag, /1 in (required)
i nt xconvert 3D, /1 in (optional)

89

int xconvertToDual, // in (optional)
i nt raddUser Ar ea, /1 in (optional)

char *meshnane, /1 in (optional)
i nt raddMask, /1 in (optional)
char =*var nane, /1 in (optional)
int xrc /1 out
)
RETURN VALUE:
type(ESMC_Mesh) :: ESMC _MeshCreateFrontil e
DESCRIPTION:

Method to create a Mesh object from a NetCDF file in either SCRIGRID, or ESMF file formats.

The required arguments are:

filename The name of the grid file
filetypeflag The file type of the grid file to be read, please see SeEflon2@?2a list of valid options.

[convert3D] if 1, the node coordinates will be converted into 3D Cartisighich is required for a global grid. If not
specified, defaults to 0.

[convertToDual] if 1, the mesh will be converted to its dual. If not specifieefadilts to 1. Converting to dual is only
supported with file typ&SMF_FI LEFORMAT _SCRI P.

[addUserArea] if 1, the cell area will be read in from the GRID file. This feggus only supported when the grid file
is in the SCRIP or ESMF format. If not specified, defaults to 0.

[meshname] The dummy variable for the mesh metadata in the UGRID file & th | etypefl ag is
ESMF_FI LEFORMAT_UGRI D. If not specified, defaults to empty string.

[addMask] If 1, generate the mask using the missing_value attribuiaetkin 'varname’ This flag is only supported
when the grid file is in the UGRID format. If not specified, defa to 0.

[varname] If addMask is 1, provide a variable name stored in the UGRI®ditd the mask will be generated using
the missing value of the data value of this variable. The first dimensions of the variable has to be the the
longitude and the latitude dimension and the mask is defigad the first 2D values of this variable even if this
data is 3D, or 4D array. If not specified, defaults to emptingtr

[rc] Return code; equalsSM-_SUCCESS if there are no errors.

20.3.5 ESMC_MeshGetCoord - Get lat/lon coordinates from a Msh

INTERFACE:

doubl e * ESMC MeshGet Coor d(
ESMC Mesh mesh_in, // in (required)
int * num nodes, /1 out
int = rc /1 out

)E

90

RETURN VALUE:
type(doubl e *) .. ESMC _MeshGet Coord

DESCRIPTION:

This call returns a pointer of values of tydeubl e. The values are the node coordinates ofES&C_Mesh passed

as an argument. The values indicate the longitude and thiéndia for each node in an alternating manner. For
example, forN nodes the values will be lgnlaty, lon, lat;, lony, lat, ..., lony_1, laty_; in that order. So, the
index of thei-th node’s longitude will bé x 2 and the index of thé-th node’s latitude will bé x 2+ 1, with numbering
starting at = 0 for the first node.

The arguments are:

mesh_in Mesh object.
num_nodes Pointer to an integer. The number of nodes found in the inpegiMs returned here.

rc Return code; equalBSM-_SUCCESS if there are no errors.

20.3.6 ESMC_MeshDestroy - Destroy a Mesh

INTERFACE:

i nt ESMC_MeshDest r oy(
ESMC Mesh *nesh /1 in

)

RETURN VALUE:
Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Destroy the Mesh. This call removes all internal memory eissed withnesh. After this call mesh will no longer
be usable.

The arguments are:

mesh Mesh object whose memory is to be freed.

20.3.7 ESMC_MeshFreeMemory - Remove a Mesh and its memory

INTERFACE:

91

i nt ESMC MeshFreeMenory(
ESMC Mesh nesh /[l in

)

RETURN VALUE:
Return code; equals ESM-_SUCCESS if there are no errors.

DESCRIPTION:

This call removes the portions aksh which contain connection and coordinate information. Aftes call, Fields
build onmesh will no longer be usable as part of &M-_Fi el dRegri dSt or e() operation. However, after this
call Fields built omesh can still be used in aBSMF_Fi el dRegr i d() operation if the routehandle was generated
beforehand. New Fields may also be builtroes h after this call.

The arguments are:

mesh Mesh object whose memory is to be freed.

20.3.8 ESMC_MeshGetLocalElementCount - Get the number oflements in a Mesh on the current PET

INTERFACE:

i nt ESMC_MeshGet Local El ement Count (

ESMC Mesh mesh, /1 in
i nt *el enent Count [/ out
)
RETURN VALUE:

Return code; equals ESM-_SUCCESS if there are no errors.

DESCRIPTION:

Query the number of elements in a mesh on the local PET. Theraxqts are:

mesh The mesh

elementCount The number of elements on this PET.

92

20.3.9 ESMC_MeshGetLocalNodeCount - Get the number of nogdan a Mesh on the current PET

INTERFACE:
i nt ESMC _MeshGet Local NodeCount (
ESMC Mesh nesh, /[l in
i nt *nodeCount /'l out
)
RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Query the number of nodes in a mesh on the local PET. The amjsraee:

mesh The mesh

nodeCount The number of nodes on this PET.

20.3.10 ESMC_MeshGetOwnedElementCount - Get the number @lements in a Mesh owned by the current

PET
INTERFACE:
i nt ESMC _MeshGet OmedEl ement Count (
ESMC Mesh nesh, /[l in
i nt +el ement Count /1 out
)
RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Query the number of elements in a mesh owned by the local PE$.number will be equal or less than the local
element count. The arguments are:

mesh The mesh

elementCount The number of elements owned by this PET.

93

20.3.11 ESMC_MeshGetOwnedNodeCount - Get the number of ned in a Mesh owned by the current PET

INTERFACE:

i nt ESMC_MeshGet OmedNodeCount (

ESMC Mesh mesh, /1 in
i nt *nodeCount [/ out
)
RETURN VALUE:

Return code; equals ESM-_SUCCESS if there are no errors.

DESCRIPTION:

Query the number of nodes in a mesh owned by the local PET.ntimger will be equal or less than the local node
count. The arguments are:

mesh The mesh

nodeCount The number of nodes owned by this PET.

21 DistGrid Class

21.1 Description

The ESMF DistGrid class sits on top of the DELayout class ¢uotently directly accessible through the ESMF C
API) and holds domain information in index space. A DistGriject captures the index space topology and describes
its decomposition in terms of DEs. Combined with DELayoud &M the DistGrid defines the data distribution of a
domain decomposition across the computational resouf@sBSMF Component.

The global domain is defined as the union or “tilework” of legjly rectangular (LR) sub-domains ttes. The
DistGrid create methods allow the specification of sucheavtirk global domain and its decomposition into exclusive,
DE-local LR regions according to various degrees of usecifipd constraints. Complex index space topologies can
be constructed by specifying connection relationshipaben tiles during creation.

The DistGrid class holds domain information for all DEs. E&8E is associated with a local LR region. No overlap of
the regions is allowed. The DistGrid offers query methods &llow DE-local topology information to be extracted,
e.g. for the construction of halos by higher classes.

A DistGrid object only contains decomposable dimensiofe minimum rank for a DistGrid objectis 1. A maximum
rank does not exist for DistGrid objects, however, rankatmethan 7 may lead to difficulties with respect to the
Fortran API of higher classes based on DistGrid. The rank@E&ayout object contained within a DistGrid object
must be equal to the DistGrid rank. Higher class objectsubatthe DistGrid, such as an Array object, may be of
different rank than the associated DistGrid object. Thééiglass object will hold the mapping information between
its dimensions and the DistGrid dimensions.

94

21.2 Class API

21.2.1 ESMC_DistGridCreate - Create a DistGrid

INTERFACE:
ESMC DistGid ESMC Di st Gri dCreat e(
ESMC I nterfacel nt m nlndexl nterfaceArg, /1 in
ESMC I nterfacel nt nmaxl ndexl nterfaceArg, /1 in
int *rc /1 out
);
RETURN VALUE:

Newly created ESMC DistGid object.

DESCRIPTION:

Create arESMC_Di st Gri d from a single logically rectangular (LR) tile with defaukecomposition. The default
decomposition isleCount x1 x ... x 1, wheredeCount is the number of DEs in a default DELayout, equal to
pet Count . This means that the default decomposition will be into agyraEs as there are PETs, with 1 DE per
PET.

The arguments are:

minindex Global coordinate tuple of the lower corner of the tile.
maxIndex Global coordinate tuple of the upper corner of the tile.

[rc] Return code; equalESM-_SUCCESS if there are no errors.

21.2.2 ESMC_DistGridDestroy - Destroy a DistGrid

INTERFACE:
int ESMC Di st Gi dDestroy(

ESMC DistGid =distgrid /1 inout
)

RETURN VALUE:
Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Destroy arESMC _Di st Gri d object.

The arguments are:

95

distgrid ESMC _Di st Gri d object to be destroyed.

21.2.3 ESMC_DistGridPrint - Print a DistGrid

INTERFACE:

int ESMC Di stGidPrint(

ESMC DistGid distgrid [1 in
)
RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Print internal information of the specifi&€SMC _Di st Gri d object.

The arguments are:

distgrid ESMC _Di st Gri d object to be destroyed.

22 RouteHandle Class

22.1 Description

The ESMF RouteHandle class provides a unified interfacdlfomae-based communciation methods across the Field,
FieldBundle, Array, and ArrayBundle classes. All routeséshcommunication methods implement a pre-computation
step, returning a RouteHandle, an execution step, and aseeltep. Typically the pre-computation, or Store() step
will be a lot more expensive (both in memory and time) thanekecution step. The idea is that once precomputed,
a RouteHandle will be executed many times over during a maohelmaking the execution time a very preformance
critical piece of code. In ESMF, Regridding, Redisting, &faloing are implemented as route-based communication
methods. The following sections discuss the RouteHandleauts that apply uniformly to all route-based communi-
cation methods, across all of the above mentioned classes.

22.2 Use and Examples
The user interacts with the RouteHandle class through theisased communication methods of Field, FieldBundle,

Array, and ArrayBundle. The usage of these methods areibdesdn detail under their respective class documentation
section. The following examples focus on the RouteHanddeets common across classes and methods.

22.3 Restrictions and Future Work

¢ Non-blocking communication via theout esyncf | ag option is implemented for Fields and Arrays. Itist
yet available for FieldBundles and ArrayBundles.

96

22.4 Design and Implementation Notes

Internally all route-based communication calls are impated as sparse matrix multiplications. The precompuge ste
for all of the supported communication methods can be bnakethree steps:

1. Construction of the sparse matrix for the specific comization method.
2. Generation of the communication pattern according tesgagse matrix.

3. Encoding of the communication pattern for each partiaigaPET in form of an XXE stream.

22.5 Class API

22.5.1 ESMC_RouteHandlePrint - Print a RouteHandle

INTERFACE:

i nt ESMC Rout eHandl ePri nt (
ESMC Rout eHandl e rh /1l in

)1
RETURN VALUE:
Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Print internal information of the specifié&€SMC _Rout eHandl| e object.

The arguments are:

rh ESMC_Rout eHandl e object to be printed.

97

Part V

Infrastructure: Utilities

98

23 Overview of Infrastructure Utility Classes

The ESMF utilities are a set of tools for quickly assemblingd®ling applications.

The Time Management Library provides utilities for time amde interval representation, as well as a higher-level
utility, a clock, that controls model time stepping.

The ESMF Config class provides configuration managementbais®ASA DAO's Inpak package, a collection of
methods for accessing files containing input parametersain an ASCII format.

The ESMF LogErr class consists of a method for writing em@rning, and informational messages to a default Log
file that is created during ESMF initialization.

The ESMF VM (Virtual Machine) class provides methods for ryirgy information about a VM. A VM is a generic
representation of hardware and system software resoufdese is exactly one VM object per ESMF Component,
providing the execution environment for the Component cdde VM class handles all resource management tasks
for the Component class and provides a description of thenlyidg configuration of the compute resources used by
a Component. In addition to resource description and managg the VM class offers the lowest level of ESMF
communication methods.

99

24 Time Manager Utility

The ESMF Time Manager utility includes software for time dimde interval representation, as well as model time
advancement. Since multi-component geophysical apfitabften require synchronization across the time manage-
ment schemes of the individual components, the Time Marssgfandard calendars and consistent time representation
promote component interoperability.

Key Features
Drift-free timekeeping through an integer-based intetimaé representation. Both integers and reals can be
specified at the interface.

Support for many calendar kinds.

Support for both concurrent and sequential modes of comypa@xecution.

24.1 Time Manager Classes
There are four ESMF classes that represent time concepts:

e Calendar A Calendar can be used to keep track of the date as an ESMFd@rddmponent advances in time.
Standard calendars (such as Gregorian and 360-day) arersegbhp

e Time A Time represents a time instant in a particular calendat sis November 28, 1964, at 7:00pm EST in
the Gregorian calendar. The Time class can be used to reptasestart and stop time of a time integration.

e Timelnterval Timelntervals represent a period of time, such as 3 hourse Bteps can be represented using
Timelntervals.

e Clock Clocks collect the parameters and methods used for modeldthaancement into a convenient package.
A Clock can be queried for quantities such as current sinmrddtme and time step. Clock methods include
incrementing the current time, and printing the its corgent

24.2 Calendar
The set of supported calendars includes:

Gregorian The standard Gregorian calendar.

no-leap The Gregorian calendar with no leap years.

Julian The standard Julian date calendar.

Julian Day The standard Julian days calendar.

Modified Julian Day The Modified Julian days calendar.
360-day A 30-day-per-month, 12-month-per-year calendar.

no calendar Tracks only elapsed model time in hours, minutes, seconds.

See SectiofZ9.1 for more details on supported standamddzaie and how to create a customized ESMF Calendar.

100

24.3 Time Instants and Timelntervals

Timelntervals and Time instants (simply called Times) & ¢omputational building blocks of the Time Manager
utility. Times support different queries for values of midiual Time components such as year and hour. See Sec-
tions[2Z6.1 and_2711, respectively, for use of Times and Tineevals.

24.4 Clocks

It is useful to identify a higher-level concept to repeayestep a Time forward by a Timelnterval. We refer to this

capability as a Clock, and include in its required featuhesability to store the start and stop times of a model run,
and to query the value of quantities such as the current timettee number of time steps taken. Applications may
contain temporary or multiple Clocks. Sectlon28.1 deswitine use of Clocks in detail.

101

25 Calendar Class

25.1 Description

The Calendar class represents the standard calendarsnugedphysical modeling: Gregorian, Julian, Julian Day,
Modified Julian Day, no-leap, 360-day, and no-calendaeftescriptions are provided for each calendar below.

25.2 Constants
25.2.1 ESMC_CALKIND

DESCRIPTION:
Supported calendar kinds.

The type of this flag is:
t ype(ESM-_Cal Ki nd_Fl ag)

The valid values are:

ESMC_CALKIND_360DAY Valid range: machine limits
In the 360-day calendar, there are 12 months, each of whisl3@alays. Like the no-leap calendar, this is a
simple approximation to the Gregorian calendar sometirsed by modelers.

ESMC_CALKIND_GREGORIAN Valid range: 3/1/4801 BC to 10/29/292,277,019,914
The Gregorian calendar is the calendar currently in usautitrout Western countries. Named after Pope Gre-
gory XIIl, it is a minor correction to the older Julian calerdIn the Gregorian calendar every fourth year is a
leap year in which February has 29 and not 28 days; howevars yhvisible by 100 are not leap years unless
they are also divisible by 400. As in the Julian calendarsdsgin at midnight.

ESMC_CALKIND_JULIAN Valid range: 3/1/4713 BC to 4/24/292,271,018,333
The Julian calendar was introduced by Julius Caesar in 46 Brd reached its final form in 4 A.D. The Julian
calendar differs from the Gregorian only in the determiratdf leap years, lacking the correction for years
divisible by 100 and 400 in the Gregorian calendar. In th@dualendar, any year is a leap year if divisible by
4. Days are considered to begin at midnight.

ESMC_CALKIND_JULIANDAY Valid range: +/- 1x104
Julian days simply enumerate the days and fraction of a daghwiave elapsed since the start of the Julian
era, defined as beginning at noon on Monday, 1st January oflyd8 B.C. in the Julian calendar. Julian days,
unlike the dates in the Julian and Gregorian calendarsnizgioon.

ESMC_CALKIND_MODJULIANDAY Valid range: +/- 1x104
The Modified Julian Day (MJD) was introduced by space scistn the late 1950's. It is defined as an offset
from the Julian Day (JD):

MJD = JD - 2400000.5
The half day is subtracted so that the day starts at midnight.

ESMC_CALKIND_NOCALENDAR Valid range: machine limits
The no-calendar option simply tracks the elapsed modelitinseconds.

ESMC_CALKIND_NOLEAP Valid range: machine limits
The no-leap calendar is the Gregorian calendar with no leapsy- February is always assumed to have 28 days.
Modelers sometimes use this calendar as a simple, closexapyation to the Gregorian calendar.

102

25.3 Class API

25.3.1 ESMC_CalendarCreate - Create a Calendar

INTERFACE:
ESMC_Cal endar ESMC_Cal endar Cr eat e(
const char =*nane, /1 in
enum ESMC Cal Ki nd_Fl ag cal ki ndf | ag, /1 in
int *rc /1 out
)
RETURN VALUE:

Newl y created ESMC Cal endar obj ect.

DESCRIPTION:

Creates and setsESMC _Cal endar object to the given built-ieSMC_Cal Ki nd_Fl ag.

The arguments are:

[name] The name for the newly created Calendar. If not specifiedNIgLL, a default unique name will be gener-
ated: "CalendarNNN" where NNN is a unique sequence number @01 to 999.

calkindflag The built-inESMC_Cal Ki nd_Fl ag. Valid values are:
ESMC_CALKI ND_360DAY,
ESMC_CALKI ND_GREGORI AN,
ESMC_CALKI ND_JULI AN,
ESMC_CALKI ND_JULI ANDAY,
ESMC_CALKI ND_MODJULI ANDAY,
ESMC_CALKI ND_NOCALENDAR,
andESMC_CALKI ND_NOLEAP.
See Sectiorl_25.2 for a description of each calendar kind.

[rc] Return code; equalESM-_SUCCESS if there are no errors.

25.3.2 ESMC_CalendarDestroy - Destroy a Calendar

INTERFACE:

i nt ESMC_Cal endar Dest r oy(
ESMC _Cal endar +cal endar /1 inout

);

RETURN VALUE:

103

Return code; equals ESM-_SUCCESS if there are no errors.

DESCRIPTION:

Releases all resources associated withESKSIC Cal endar .

The arguments are:

calendar Destroy contents of thiESMC_Cal endar .

25.3.3 ESMC_CalendarPrint - Print a Calendar

INTERFACE:

i nt ESMC_Cal endar Pri nt (
ESMC Cal endar cal endar /[l in

);

RETURN VALUE:
Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Prints out arESMC_Cal endar 's properties test di 0, in support of testing and debugging.

The arguments are:

calendar ESMC_Cal endar object to be printed.

104

26 Time Class

26.1 Description

A Time represents a specific point in time.
There are Time methods defined for setting and getting a Time.

A Time that is specified in hours does not need to be associatgll a standard calendar; use
ESMC_CALKIND_NOCALENDAR. A Time whose specification inaas time units of a year must be associated
with a standard calendar. The ESMF representation of a datethe Calendar class, is described in Sedfion 25.1.
TheESMC_Ti neSet method is used to initialize a Time as well as associate h wi€Calendar. If a Time method is
invoked in which a Calendar is necessary and one has not beghes ESMF method will return an error condition.

In the ESMF the Timelnterval class is used to represent tier@g@s. This class is frequently used in combination
with the Time class. The Clock class, for example, advanaaefrtime by incrementing a Time with a Timelnterval.

26.2 Class API

26.2.1 ESMC_TimeGet - Get a Time value

INTERFACE:
i nt ESMC_Ti meGet (

ESMC Tinme tine, /1l in
ESMC | 4 xyy, /1 out
ESMC | 4 *h, /1 out
ESMC Cal endar =cal endar, /1 out
enum ESMC Cal Ki nd_Fl ag *cal ki ndf | ag, /1 out
int *xtineZone /1 out

);

RETURN VALUE:

Return code; equals ESM-_SUCCESS if there are no errors.

DESCRIPTION:

Gets the value of aBSMC_Ti ne in units specified by the user.

The arguments are:

time ESMC_Ti e object to be queried.

[yy] Integeryear (>= 32-bit).

[h] Integer hours.

[calendar] AssociatedESMC_Cal endar .
[calkindflag] AssociatedESMC _Cal Ki nd_Fl ag.

105

26.2.2 ESMC_TimePrint - Print a Time

INTERFACE:
i nt ESMC Ti mePrint (

ESMC Tine tinme // in
)

RETURN VALUE:
Return code; equals ESM-_SUCCESS if there are no errors.

DESCRIPTION:

Prints out arESMC_Ti ne’s properties tast di 0, in support of testing and debugging.

The arguments are:

time ESMC_Ti e object to be printed.

26.2.3 ESMC_TimeSet - Initialize or set a Time

INTERFACE:

i nt ESMC Ti meSet (

ESMC Tinme =tine, /1 inout
ESMC | 4 vyy, /1 in
ESMC |4 h, /1 in
ESMC Cal endar cal endar, /1l in
enum ESMC Cal Ki nd_Fl ag cal ki ndf | ag, /1 in
int tinmeZone /1 in
);
RETURN VALUE:

Return code; equals ESM-_SUCCESS if there are no errors.

DESCRIPTION:

Initializes anESMC_Ti e with a set of user-specified units.

The arguments are:

time ESMC_Ti e object to initialize or set.

106

yy Integer year (>= 32-bit).
h Integer hours.

calendar AssociatedESMC_Cal endar . If not created, defaults to calendasMC_CALKI ND_NOCALENDAR or
default specified ifeSMC_| ni ti al i ze() . If created, has precedence over calkindflag below.

calkindflag Specifies associatde€SMC_Cal endar if calendar argument above not created. More convenient way
of specifying a built-in calendar kind.

107

27 Timelnterval Class

27.1 Description

A Timelnterval represents a period between time instahtsar be either positive or negative.

There are Timelnterval methods defined for setting andrggttiTimelnterval, for printing the contents of a Timeln-
terval.

The class used to represent time instants in ESMF is Timethasdlass is frequently used in operations along with
Timelntervals. The Clock class, for example, advances frtode by incrementing a Time with a Timelnterval.

Timelntervals are used by other parts of the ESMF timekegpjistem, such as Clocks; see Sediion]28.1.

27.2 Class API

27.2.1 ESMC_TimelntervalGet - Get a Timelnterval value

INTERFACE:

i nt ESMC Ti nel nt erval Get (

ESMC Tinel nterval tineinterval, [l in
ESMC | 8 *s i 8, /1 out
ESMC R8 *h r8 /1 out
)
RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Gets the value of aBSMC_Ti nel nt eval in units specified by the user.

The arguments are:

timeinterval ESMC_Ti nel nt er val object to be queried.
[s_i8] Integer seconds (large, >= 64-bit).

[h_r8] Double precision hours.

27.2.2 ESMC_TimelntervalPrint - Print a Timelnterval

INTERFACE:

108

i nt ESMC Ti nmel nterval Print(

ESMC Ti nel nterval tineinterval /[l in
);
RETURN VALUE:
Return code; equals ESM-_SUCCESS if there are no errors.
DESCRIPTION:

Prints out arESMC_Ti nel nt er val 's properties tst di 0, in support of testing and debugging.

The arguments are:

timeinterval ESMC_Ti nel nt er val object to be printed.

27.2.3 ESMC_TimelntervalSet - Initialize or set a Timelnteval

INTERFACE:

i nt ESMC_Ti nel nt erval Set (

ESMC Tinel nterval =*tinmeinterval, /1 inout

ESMC 14 h Il in
)
RETURN VALUE:

Return code; equals ESM-_SUCCESS if there are no errors.
DESCRIPTION:

Sets the value of thESMC_Ti nel nt er val in units specified by the user.

The arguments are:

timeinterval ESMC_Ti nel nt er val object to initialize or set.

h Integer hours.

109

28 Clock Class

28.1 Description

The Clock class advances model time and tracks its assdaate on a specified Calendar. It stores start time, stop
time, current time, and a time step.

There are methods for setting and getting the Times assdovth a Clock. Methods are defined for advancing the
Clock’s current time and printing a Clock’s contents.

28.2 Class API

28.2.1 ESMC_ClockAdvance - Advance a Clock’s current time ¥ one time step

INTERFACE:

i nt ESMC O ockAdvance(
ESMC _d ock cl ock /1 in

);

RETURN VALUE:
Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Advances th&SMC_Cl ock’s current time by one time step.

The arguments are:

clock ESMC_Cl ock object to be advanced.

28.2.2 ESMC_ClockCreate - Create a Clock

INTERFACE:

ESMC C ock ESMC C ockCr eat g(

const char =*nane, /1 in
ESMC Ti el nterval tineStep, /1 in
ESMC Tinme startTine, /1 in
ESMC Ti me stopTi ne, /1 in
int *xrc /1 out

110

RETURN VALUE:
Newl y created ESMC O ock object.

DESCRIPTION:

Creates and sets the initial values in a ieSMC_Cl ock object.

The arguments are:

[name] The name for the newly created Clock. If not specified, i.e LNlA default unique name will be generated:
"ClockNNN" where NNN is a unique sequence number from 0019%®. 9

timeStep TheESMC_Cl ock’s time step interval, which can be positive or negative.

startTime TheESMC_C ock’s starting time. Can be less than or or greater than stop Tdey@ending on a positive
or negative timeStep, respectively, and whether a stopBrepecified; see below.

stopTime TheESMC_Cl ock’s stopping time. Can be greater than or less than the staetTdepending on a positive
or negative timeStep, respectively.

[rc] Return code; equalESM-_SUCCESS if there are no errors.

28.2.3 ESMC_ClockDestroy - Destroy a Clock

INTERFACE:

i nt ESMC O ockDestroy(
ESMC O ock =*cl ock /1 inout

);

RETURN VALUE:
Return code; equals ESM-_SUCCESS if there are no errors.

DESCRIPTION:

Releases all resources associated withEHSSC Cl ock.

The arguments are:

clock Destroy contents of thiESMC_Cl ock.

111

28.2.4 ESMC_ClockGet - Get a Clock’s properties

INTERFACE:
i nt ESMC O ockGet (
ESMC d ock cl ock, /[l in
ESMC Ti nel nterval =*currSinili ne, /1 out
ESMC | 8 *advanceCount /1 out
);
RETURN VALUE:

Return code; equals ESM-_SUCCESS if there are no errors.

DESCRIPTION:

Gets one or more of the properties of BBMC_Cl ocKk.

The arguments are:

clock ESMC_Cl ock object to be queried.
[currSimTime] The current simulation time.

[advanceCount] The number of times thESMC_Cl ock has been advanced.

28.2.5 ESMC_ClockPrint - Print the contents of a Clock

INTERFACE:

int ESMC _d ockPri nt (
ESMC d ock cl ock /1 in

);

RETURN VALUE:
Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Prints out arESMC_Cl ock'’s properties tast di 0, in support of testing and debugging.

The arguments are:

clock ESMC_Cl ock object to be printed.

112

29 Config Class

29.1 Description

ESMF Configuration Management is based on NASA DAQO’s Inpakp@6bkage, a Fortran 90 collection of rou-
tines/functions for accessiResource Filegn ASCII format. The package is optimized for minimizing fieatted 1/0,
performing all of its string operations in memory using Fantintrinsic functions.

29.1.1 Package history

The ESMF Configuration Management Package was evolved hyid@aslavsky and Arlindo da Silva from Ipack90
package created by Arlindo da Silva at NASA DAO.

Back in the 70’s Eli Isaacson wrote IOPACK in Fortran 66. Indwf 1987 Arlindo da Silva wrote Inpak77 using For-
tran 77 string functions; Inpak 77 is a vastly simplified IGR but has its own goodies not found in IOPACK. Inpak
90 removes some obsolete functionality in Inpak77, andgsatse whole resource file in memory for performance.

29.2 Class API

29.2.1 ESMC_ConfigCreate - Create a Config object

INTERFACE:

ESMC Config ESMC Confi gCreat e(
intx rc /1 out

)

RETURN VALUE:
ESMC Config* to newy allocated ESMC Confi g

DESCRIPTION:

Creates aftSMC_Conf i g for use in subsequent calls.

The arguments are:

[rc] Return code; equalESM-_SUCCESS if there are no errors.

29.2.2 ESMC_ConfigDestroy - Destroy a Config object

INTERFACE:

113

i nt ESMC Confi gDestroy(

ESMC _Config* config [l in
)
RETURN VALUE:
Return code; equals ESMF_SUCCESS if there are no errors.
DESCRIPTION:

Destroys theonf i g object.

The arguments are:

config Already createdeSMC_Conf i g object to destroy.

29.2.3 ESMC_ConfigFindLabel - Find a label

INTERFACE:

i nt ESMC_Confi gFi ndLabel (
ESMC Config confi g, /1 in
const charx | abel, /1 in
int xi sPresent /1 out

);

RETURN VALUE:
Return code; equals ESMF_SUCCESS if there are no errors.
If Iabel not found, and the {\tt isPresent} pointer is {\tt NULL},
an error will be returned.

DESCRIPTION:

Finds the abel (key)intheconfi g file.

Since the search is done by looking for a word in the wholeugspfile, it is important to use special conventions to
distinguish labels from other words in the resource filese DO convention is to finish line labels by : and table
labels by ::.

The arguments are:

config Already createdeSMC_Conf i g object.
label Identifying label.

[isPresent] Label presence flag. (optional). If non-NULL, the targetast® 1 when the label is found; otherwise set
to 0.

114

29.2.4 ESMC_ConfigGetDim - Get table sizes

INTERFACE:
i nt ESMC Confi gGet Di m(
ESMC Config confi g, /1 in
intx |ineCount, /1 out
i nt* col umCount, /1 out
/1 optional argunent |i st
)
RETURN VALUE:
Return code; equals ESMF_SUCCESS if there are no errors.
DESCRIPTION:

Returns the number of lines in the tablelinneCount and the maximum number of words in a table line in
col umCount .

The arguments are:

config Already createdeSMC_Conf i g object.
lineCount Returned number of lines in the table.
columnCount Returned maximum number of words in a table line.

[label] Identifying label (optional).

Due to this method accepting optional arguments, the figalraent must b&ESMC_Ar gLast .

29.2.5 ESMC_ConfigGetLen - Get the length of the line in words

INTERFACE:
i nt ESMC Confi gGet Len(
ESMC Config confi g, [l in
i nt* wordCount, /1 out
/1 optional argunent I|ist
);
RETURN VALUE:
Return code; equals ESM-_SUCCESS if there are no errors.
DESCRIPTION:

Gets the length of the line in words by counting words disréimg types. Returns the word count as an integer.

The arguments are:

115

config Already createdeSMC_Conf i g object.
wordCount Returned number of words in the line.

[label] Identifying label. If not specified, use the current linet{opal).

Due to this method accepting optional arguments, the figalraent must b&ESMC_Ar gLast .

29.2.6 ESMC_ConfigLoadFile - Load resource file into memory

INTERFACE:
i nt ESMC Confi gLoadFil e(
ESMC Config confi g, /1 in
const charx file, /1 in
/1 optional argunent list
)
RETURN VALUE:
Return code; equals ESM-_SUCCESS if there are no errors.
DESCRIPTION:

Resource file with i | enane is loaded into memory.

The arguments are:

config Already createdeSMC_Conf i g object.
file Configuration file name.

[delayout] ESMC_DELayout associated with thisonf i g object. **NOTE: This argument is not currently sup-
ported.

[unique] If specified as true, uniqueness of labels are checked aodaerde set if duplicates found (optional).

Due to this method accepting optional arguments, the figalraent must b&ESMC_Ar gLast .

29.2.7 ESMC_ConfigNextLine - Find next line

INTERFACE:
i nt ESMC _Confi gNext Li ne(
ESMC Config confi g, /[l in

int *tabl eEnd /1l out
)

116

RETURN VALUE:
Return code; equals ESM-_SUCCESS if there are no errors.

DESCRIPTION:

Selects the next line (for tables).

The arguments are:

config Already createdeSMC_Conf i g object.
[tableEnd] End of table mark (::) found flag. Returns 1 when found, and @mot found.

29.2.8 ESMC_ConfigValidate - Validate a Config object

INTERFACE:

i nt ESMC Confi gVal i dat e(

ESMC Config confi g, /1 in

/1 optional argunent I|ist
);

RETURN VALUE:

Return code; equals ESM-_SUCCESS if there are no errors.
Equal s ESM-_RC ATTR UNUSED i f any unused attributes are found
with option "unusedAttributes" bel ow.

DESCRIPTION:

Checks whether eonf i g object is valid.

The arguments are:

config Already createdeSMC_Conf i g object.

[options] If none specified: simply check that the buffer is not full atiee pointers are within range (op-
tional). "unusedAttributes" - Report to the default logfisdl attributes not retrieved via a call to
ESMC ConfigGet Attribute() or ESMC Confi gGet Char (). The attribute name (label) will be
logged viaESMC_LogEr r with the WARNING log message type. For an array-valuedlattd, retrieving
at least one value vieBSMC _Confi gGet Attri but e() or ESMC _Confi gGet Char () constitutes being
"used."

Due to this method accepting optional arguments, the figalraent must b&ESMC_Ar gLast .

117

30 LogClass

30.1 Description

The Log class consists of a variety of methods for writingperwarning, and informational messages to files. A
default Log is created at ESMF initialization.

When ESMF is started witfleSMC | ni ti al i ze(), multiple Log files will be created by PET number. The
PET number (in the formaPETx.) will be prepended to each file name where x is the PET numbdre T
ESMC LogWite() call is used to issue messages to the log. As part of the caflessage can be tagged as
either an informational, warning, or error message.

The messages may be buffered within ESMF before appearthg log. All messages will be properly flushed to the
log files whenESMC_Fi nal i ze() is called.

30.2 Constants
30.2.1 ESMC_LOGKIND

DESCRIPTION:
Specifies a single log file, multiple log files (one per PET)noiog files.

The valid values are:

ESMC_LOGKIND_SINGLE Use a single log file, combining messages from all of the PENGt supported on
some platforms.

ESMC_LOGKIND_MULTI Use multiple log files — one per PET.
ESMC_LOGKIND_NONE Do not issue messages to a log file.

30.2.2 ESMC_LOGMSG
DESCRIPTION:

Specifies a message level.

The valid values are:

ESMC_LOGMSG_INFO Informational messages
ESMC_LOGMSG_WARNING Warning messages
ESMC_LOGMSG_ERROR Error messages
ESMC_LOGMSG_TRACE Trace messages

118

30.3 Class API

30.3.1 ESMC_LogWrite - Write an entry into the Log file

INTERFACE:

int ESMC LogWite(
const char nsg[], // in
int nmegtype [l in
);
RETURN VALUE:

Return code; equals ESM-_SUCCESS if there are no errors.

DESCRIPTION:

Write an entry into the Log file.

The arguments are:

msg The message to be written.

msgtype The message type. This flag is documented in seEfion80.2.2

30.3.2 ESMC_LogSet - Set Log properties

INTERFACE:

i nt ESMC LogSet (
int flush /1 in

)1
RETURN VALUE:
Return code; equals ESMF_SUCCESS if there are no errors.

DESCRIPTION:

Set Log properties.

The arguments are:

flush If setto ESMF_TRUE, flush log messages immediately, rathem buffering them. Default is to flush after 10
messages.

119

31 VM Class

31.1 Description

The ESMF VM (Virtual Machine) class is a generic represeotedf hardware and system software resources. There
is exactly one VM object per ESMF Component, providing theaexion environment for the Component code. The

VM class handles all resource management tasks for the Cuampolass and provides a description of the underlying
configuration of the compute resources used by a Component.

In addition to resource description and management, the VAgsmffers the lowest level of ESMF communication

methods. The VM communication calls are very similar to MP4ta references in VM communication calls must

be provided as raw, language specific, one-dimensionatigraus data arrays. The similarity between VM and

MPI communication calls is striking and there are many egfeint point-to-point and collective communication calls.

However, unlike MPI, the VM communication calls support comnication between threaded PETs in a completely
transparent fashion.

Many ESMF applications do not interact with the VM class dilevery much. The resource management aspect
is wrapped completely transparent into the ESMF Componamtept. Often the only reason that user code queries
a Component object for the associated VM object is to inqaieut resource information, such as thecal Pet

or thepet Count . Further, for most applications the use of higher level camitation APIs, such as provided by
Array and Field, are much more convenient than using the éollVM communication calls.

The basic elements of a VM are called PETs, which stands ficigtent Execution Threads. These are equivalent to
OS threads with a lifetime of at least that of the associatedponent. All VM functionality is expressed in terms of
PETs. In the simplest, and most common case, a PET is equitalan MPI process. However, ESMF also supports
multi-threading, where multiple PETs run as Pthreads atie¢ same virtual address space (VAS).

31.2 Class API

31.2.1 ESMC_VMGet - Get VM internals

INTERFACE:
int ESMC_VMGet (
ESMC VM vim /1l in
int x| ocal Pet, /1 out
i nt xpet Count, /1 out
i nt *peCount, /1 out
MPI _Conmm = npi Comuni cat or, /1 out
i nt *pt hreadsEnabl edFl ag, /1 out
i nt *openMPEnabl edFl ag /1 out
)
RETURN VALUE:

Return code; equals ESM-_SUCCESS if there are no errors.

DESCRIPTION:
Get internal information about the specifiE8MC_VMobiject.

120

The arguments are:

vm QueriedESMC_VMobject.

[localPet] Upon return this holds the id of the PET that issued this call.

[petCount] Upon return this holds the number of PETs in the specHSNC_VMobject.
[peCount] Upon return this holds the number of PEs referenced by theifigeESMC _VVMobject.

[mpiCommunicator] Upon return this holds the MPI intra-communicator used k& ghecifiedESMC_VMobject.
This communicator may be used for user-level MPI commuidnat It is recommended that the user duplicates
the communicator vid'Pl _Conm Dup() in order to prevent any interference with ESMF communicetio

[pthreadsEnabledFlag] A return value of '1’ indicates that the ESMF library was cdlag with Pthreads enabled.
A return value of '0’ indicates that Pthreads are disablethénESMF library.

[openMPEnabledFlag] A return value of '1’ indicates that the ESMF library was cdlag with OpenMP enabled.
A return value of '0’ indicates that OpenMP is disabled in E&MF library.

[rc] Return code; equalESM-_SUCCESS if there are no errors.

31.2.2 ESMC_VMGetCurrent - Get current VM

INTERFACE:

ESMC_VM ESMC_VMGet Cur r ent (
int *rc /1 out

);
RETURN VALUE:
VM obj ect of the current execution context.

DESCRIPTION:

Get the ESMC_VM object of the current execution context. CalliflgsSMC VMGet Current () within an
ESMF Component, will return the same VM object BSMC Gri dConpGet (..., vmevm ...) or
ESMC Cpl ConpGet (..., vhrvm ...).

The main purpose of providingSMC_VMGet Cur r ent () is to simplify ESMF adoption in legacy code. Specifi-
cally, code that usesPl _COVM WORLD deep within its calling tree can easily be modified to use tireect MPI
communicator of the current ESMF execution context. Theaathge is that these modifications are very local, and
do not require wide reaching interface changes in the legadg to pass down the ESMF component object, or the
MPI communicator.

The use oESMC_VMCet Cur r ent () is strongly discouraged in newly written Component codstdad, the ESMF
Component object should be used as the appropriate contdiEESMF context information. This object should be
passed between the subroutines of a Component, and bedjfeagramy Component specific information.

Outside of a Component context, i.e. within the driver cahtéhe call toESMC_VMzEet Cur r ent () is identical to
ESMC _VMGet d obal ().

The arguments are:

121

[rc] Return code; equalESM-_SUCCESS if there are no errors.

31.2.3 ESMC_VMGetGlobal - Get global VM

INTERFACE:

ESMC_VM ESMC_VMGet d obal (
int *rc /1 out

);
RETURN VALUE:
VM obj ect of the gl obal execution context.

DESCRIPTION:

Get the globalESMC VM object. This is the VM object that is created duriB§MC I niti ali ze() and is
the ultimate parent of all VM objects in an ESMF applicatioft is identical to the VM object returned by
ESMC Initialize(..., vhmevm ...).

The ESMC_VMGet d obal () call provides access to information about the global exenuwtontext via the global
VM. This call is necessary because ESMF does not create al@#&MF Component duringSMC_| niti al i ze()
that could be queried for information about the global exiecucontext of an ESMF application.

Usage ofESMC VMGet G obal () from within Component code is strongly discouraged. ESMREn@onents
should only access their own VM objects through Componerthats. Global information, if required by the
Component user code, should be passed down to the CompaoentHe driver through the Component calling
interface.

The arguments are:

[rc] Return code; equalESM-_SUCCESS if there are no errors.

31.2.4 ESMC_VMPrint - Printa VM

INTERFACE:
i nt ESMC VMPri nt (
ESMC VM vm /[l in
);
RETURN VALUE:

Return code; equals ESMF_SUCCESS if there are no errors.

122

DESCRIPTION:

Print internal information of the specifié€SMC_VMobject.

The arguments are:

vm ESMC _VMobiject to be printed.

123

Part VI
References

References

[1] Jones, P.W. SCRIP: A Spherical Coordinate Remapping aihderpolation Package.
http://www.acl.lanl.gov/climate/software/SCRIP/. Lé#¢amos National Laboratory Software Release LACC
98-45.

[2] Rumbaugh, J., I. Jacobson, and G. Boo€he Unified Modeling Language Reference Mandaldison-Wesley,
1999.

124

Part VII

Appendices

32 Appendix A: Master List of Constants

32.1 ESMC_CALKIND

This flag is documented in sectibn 2512.1.

32.2 ESMC_COORDSYS

This flag is documented in sectibn1912.1.

32.3 ESMC_GRIDITEM

This flag is documented in sectibn1912.2.

32.4 ESMC_GRIDSTATUS

This flag is documented in sectibn 19]2.3.

32.5 ESMC_LOGKIND

This flag is documented in sectibn3012.1.

32.6 ESMC_LOGMSG

This flag is documented in sectibn3012.2.

32.7 ESMC_MESHELEMTYPE

This flag is documented in sectibn 2012.1.

32.8 ESMF_METHOD

DESCRIPTION:
Specify standard ESMF Component method.
The type of this flag is:

t ype(ESM-_Met hod_Fl ag)

125

The valid values are:

ESMF_METHOD_FINALIZE Finalize method.
ESMF_METHOD_INITIALIZE Initialize method.
ESMF_METHOD_ READRESTART ReadRestart method.
ESMF_METHOD_RUN Run method.

ESMF_METHOD WRITERESTART WriteRestart method.

32.9 ESMC_POLEKIND

This flag is documented in sectibn 19]2.4.

32.10 ESMC_REGION

DESCRIPTION:
Specifies various regions in the data layout of an Array oldrogject.

The type of this flag is:
t ype(ESMC_Regi on_Fl ag)

The valid values are:

ESMC_REGION_TOTAL Total allocated memory.
ESMC_REGION_SELECT Region of operation-specific elements.
ESMC_REGION_EMPTY The empty region contains no elements.

32.11 ESMC_REGRIDMETHOD

This flag is documented in sectibn 1612.1.

32.12 ESMC_STAGGERLOC

This flag is documented in sectibn 19]2.5.

32.13 ESMC_TYPEKIND

DESCRIPTION:

Named constants used to indicate type and kind combinasopgorted by the overloaded ESMC interfaces. The
corresponding Fortran kind-parameter constants areitbesdn the ESMF_TYPEKIND section of Appendices of the
ESMF Fortran reference manual.

The type of these named constants is:

126

type(ESMC _TypeKi nd_Fl ag)

The named constants are:

ESMC_TYPEKIND_I1 Indicates 1 byte integer.
ESMC_TYPEKIND_I2 Indicates 2 byte integer.
ESMC_TYPEKIND_14 Indicates 4 byte integer.
ESMC_TYPEKIND_I8 Indicates 8 byte integer.
ESMC_TYPEKIND_R4 Indicates 4 byte real.
ESMC_TYPEKIND_R8 Indicates 8 byte real.

32.14 ESMC_UNMAPPEDACTION

DESCRIPTION:
Indicates what action to take with respect to unmapped rEgtn points and the entries of the sparse matrix that
correspond to these points.

The type of this flag is:

t ype(ESMC_UnmappedActi on_Fl ag)

The valid values are:

ESMC_UNMAPPEDACTION_ERROR An error is issued when there exist destination points ingaidding op-
eration that are not mapped by corresponding source points.

ESMC_UNMAPPEDACTION_IGNORE Destination points which do not have corresponding souaistg are
ignored and zeros are used for the entries of the sparsexrtiadtiis generated.

33 Appendix B: A Brief Introduction to UML

The schematic below shows the Unified Modeling Language (YMitation for the class diagrams presented in this
Reference ManualFor more on UML, see references suchTée Unified Modeling Language Reference Manual
Rumbaugh et al[]2].

127

ClassA

ClassB

Comp

—r—

GridComp

Public class. This is a class whose methods can be called by the user. In Fortran
a public class is usually associated with a derived type and a corresponding
module that contains class methods and flags.

Private class. This type of class does not have methods that should be called by
the user. Like a public class it is usually associated with a derived type and a
corresponding module.

A line indicates some sort of association among classes.

A hollow diamond at one end of a line drawn between classes represents an
association called aggregation. Aggregation is a part-whole relationship that can
be read as “the class at the end of the line without the diamond is part of the class
at the end of the line with the diamond.” The class that is the “part” can be
created and destroyed separately, and it is usually implemented as a reference
contained with the structure of the class that is the “whole.”

A filled diamond at one end of a line drawn between classes represents an
association called composition. Composition is a part-whole relationship that is
similar to aggregation, but stronger. It implies that that class that is the “part” is
created and destroyed by the class that is the “whole.” It is often implemented as
a structure within part of the contiguous memory of a larger structure.

Multiplicity indicators at association line ends show how many classes on the one
end are associated with how many classes on the other end.

The triangle indicates an inheritance relationship. Inheritance means that a child
class shares a set of characteristics (such as the same attributes or methods) with a
parent class. The child can specialize and extend the behavior of the parent. This
diagram shows a GridComp class that inherits from a more general Comp class.

This simple diagram shows that a public class called Field is associated with
another public class, called Grid. The aggregation relationship indicated by the
unfilled diamond means that a Field contains a Grid, but that a Grid can be
created and destroyed outside of a Field. The diagram multiplicities show that a
Field can be associated with no Grid or with one Grid, but that a single Grid can
be associated with any number of Fields.

34 Appendix C: ESMF Error Return Codes

The tables below show the possible error return codes fdrafoand C methods.

ESMF_SUCCESS
ESMF_RC_OBJ_BAD
ESMF_ RC OBJ_INIT
ESMF_RC_OBJ_CREATE
ESMF_RC_OBJ_COR
ESMF_RC_OBJ_WRONG
ESMF_RC_ARG_BAD
ESMF_RC_ARG_RANK
ESMF_RC_ARG S| ZE
ESMF_RC_ARG_VALUE
ESMF_RC_ARG_DUP
ESMF_RC_ARG_SAMETYPE
ESMF_RC_ARG_SAMECOWM
ESMF_RC_ARG_| NCOVP
ESMF_RC_ARG_CORRUPT
ESMF_RC_ARG_WRONG
ESMF_RC_ARG_OUTOFRANGE
ESMF_RC_ARG_OPT
ESMF_RC_NOT_| MPL
ESMF_RC_FI LE_OPEN

ESMF_RC_FI LE_CREATE
ESMF_RC_FI LE_READ
ESMF_RC FI LE_WRI TE
ESMF_RC_FI LE_UNEXPECTED

ESMF_RC_FI LE_CLOSE
ESMF_RC_FI LE_ACTI VE
ESMF_RC_PTR_NULL
ESMF_RC_PTR_BAD
ESMF_RC_PTR_NOTALLOC
ESMF_RC_PTR_| SALLOC
ESMF_RC_MEM

ESMF_RC_MEM ALLOCATE
ESMF_RC_MEM DEALLOCATE
ESMF_RC_MEMC
ESMF_RC_DUP_NAME
ESMF_RC_LONG_NAVE
ESMF_RC_LONG_STR
ESMF_RC_COPY_FAI L
ESMF_RC DI V_ZERO
ESMF_RC_CANNOT _GET
ESMF_RC_CANNOT_SET
ESMF_RC_NOT_FOUND
ESMF_RC_NOT_VALI D
ESMF_RC_| NTNRL_LI ST
ESMF_RC_| NTNRL_I NCONS
ESMF_RC_| NTNRL_BAD
ESMF_RC_SYS
ESMF_RC_BUSY

ESMF_RC LI B

ESMF_RC_LI B_NOT_PRESENT
ESMF_RC_ATTR_UNUSED
ESMF_RC_OBJ_NOT_CREATED
ESMF_RC_OBJ_DELETED
ESMF_RC_NOT_SET

©CoOoO~NOUTA_AWNEO

129

ESMF_RC_VAL_WVRONG 54

ESMF_RC_VAL_ERRBOUND 55
ESMF_RC VAL_OUTOFRANGE 56
ESMF_RC_ATTR_NOTSET 57
ESMF_RC_ATTR_WRONGTYPE 58
ESMF_RC_ATTR_| TEMSOFF 59
ESMF_RC_ATTR_LI NK 60
ESMF_RC_BUFFER_SHORT 61
ESMF_RC_TI MEOUT 62

62-499 reserved for future Fortran symetric return code definitions

ESMC_RC_OBJ_BAD 501
ESMC_ RC OBJ_INIT 502
ESMC_RC_OBJ_CREATE 503
ESMC_RC_OBJ_COR 504
ESMC_RC_OBJ_WRONG 505
ESMC_RC_ARG_BAD 506
ESMC_RC_ARG_RANK 507
ESMC_RC_ARG S| ZE 508
ESMC_RC_ARG_VALUE 509
ESMC_RC_ARG_DUP 510
ESMC_RC_ARG_SAMETYPE 511
ESMC_RC_ARG_SAMECOWM 512
ESMC_RC_ARG_| NCOVP 513
ESMC_RC_ARG_CORRUPT 514
ESMC_RC_ARG_WRONG 515
ESMC_RC_ARG OUTOFRANGE 516
ESMC_RC_ARG_OPT 517
ESMC_RC_NOT_I MPL 518
ESMC_RC_FI LE_OPEN 519
ESMC_RC_FI LE_CREATE 520
ESMC_RC_FI LE_READ 521
ESMC_RC_FI LE_WRI TE 522
ESMC_RC_FI LE_UNEXPECTED 523
ESMC_RC_FI LE_CLOSE 524
ESMC_RC_FI LE_ACTI VE 525
ESMC_RC_PTR_NULL 526
ESMC_RC_PTR_BAD 527
ESMC_RC_PTR_NOTALLOC 528
ESMC_RC_PTR_| SALLOC 529
ESMC_RC_MEM 530
ESMC_RC_MEM ALLOCATE 531
ESMC_RC_MEM DEALLOCATE 532
ESMC_RC_MEMC 533
ESMC_RC_DUP_NAME 534
ESMC_RC_LONG_NAVE 535
ESMC_RC_LONG_STR 536
ESMC_RC_COPY_FAI L 537
ESMC_RC DI V_ZERO 538
ESMC_RC_CANNOT_GET 539

130

ESMC_RC_CANNOT_SET 540

ESMC_RC_NOT_FOUND 541
ESMC_RC_NOT_VALI D 542
ESMC_RC_| NTNRL_LI ST 543
ESMC_RC_I NTNRL_I NCONS 544
ESMC_RC_| NTNRL_BAD 545
ESMC_RC_SYS 546
ESMC_RC_BUSY 547
ESMC_RC LI B 548
ESMC_RC LI B_NOT_PRESENT 549
ESMC_RC_ATTR_UNUSED 550
ESMC_RC_OBJ_NOT_CREATED 551
ESMC_RC_OBJ_DELETED 552
ESMC_RC_NOT_SET 553
ESMC_RC_VAL_WRONG 554
ESMC_RC_VAL_ERRBOUND 555
ESMC_RC_VAL_OUTOFRANGE 556
ESMC_RC_ATTR_NOTSET 557

ESMC_RC_ATTR_WRONGTYPE 558
ESMC_RC_ATTR_| TEMSOFF 559

ESMC_RC_ATTR_LI NK 560
ESMC_RC_BUFFER_SHORT 561
ESMC_RC_TI MEOUT 562

562-999 reserved for future C/ C++ symretric return code definitions

131

	I ESMF Overview
	What is the Earth System Modeling Framework?
	The ESMF Reference Manual for C
	How to Contact User Support and Find Additional Information
	How to Submit Comments, Bug Reports, and Feature Requests
	The ESMF Application Programming Interface
	Standard Methods and Interface Rules
	Deep and Shallow Classes
	Special Methods
	The ESMF Data Hierarchy
	ESMF Spatial Classes
	ESMF Maps
	ESMF Specification Classes
	ESMF Utility Classes

	Integrating ESMF into Applications
	Using the ESMF Superstructure
	Constants

	Overall Rules and Behavior
	Local and Global Views and Associated Conventions
	Allocation Rules
	Assignment, Equality, Copying and Comparing Objects

	Overall Design and Implementation Notes

	II Applications
	III Superstructure
	Overview of Superstructure
	Superstructure Classes
	Hierarchical Creation of Components
	Sequential and Concurrent Execution of Components
	Intra-Component Communication
	Data Distribution and Scoping in Components
	Performance
	Object Model

	Application Driver and Required ESMF Methods
	Description
	Required ESMF Methods
	ESMC_Initialize
	ESMC_Finalize

	GridComp Class
	Description
	Class API
	ESMC_GridCompCreate
	ESMC_GridCompDestroy
	ESMC_GridCompFinalize
	ESMC_GridCompGetInternalState
	ESMC_GridCompInitialize
	ESMC_GridCompPrint
	ESMC_GridCompRun
	ESMC_GridCompSetEntryPoint
	ESMC_GridCompSetInternalState
	ESMC_GridCompSetServices

	CplComp Class
	Description
	Class API
	ESMC_CplCompCreate
	ESMC_CplCompDestroy
	ESMC_CplCompFinalize
	ESMC_CplCompGetInternalState
	ESMC_CplCompInitialize
	ESMC_CplCompPrint
	ESMC_CplCompRun
	ESMC_CplCompSetEntryPoint
	ESMC_CplCompSetInternalState
	ESMC_CplCompSetServices

	SciComp Class
	Description
	Class API
	ESMC_SciCompCreate
	ESMC_SciCompDestroy
	ESMC_SciCompPrint

	State Class
	Description
	Restrictions and Future Work
	Class API
	ESMC_StateAddArray
	ESMC_StateAddField
	ESMC_StateCreate
	ESMC_StateDestroy
	ESMC_StateGetArray
	ESMC_StateGetField
	ESMC_StatePrint

	IV Infrastructure: Fields and Grids
	Overview of Infrastructure Data Handling
	Infrastructure Data Classes
	Design and Implementation Notes

	Field Class
	Description
	Constants
	ESMC_REGRIDMETHOD

	Use and Examples
	Field create and destroy

	Class API
	ESMC_FieldCreateGridArraySpec
	ESMC_FieldCreateGridTypeKind
	ESMC_FieldCreateMeshArraySpec
	ESMC_FieldCreateMeshTypeKind
	ESMC_FieldDestroy
	ESMC_FieldGetArray
	ESMC_FieldGetMesh
	ESMC_FieldGetPtr
	ESMC_FieldPrint
	ESMC_FieldRegridGetArea
	ESMC_FieldRegridStore
	ESMC_FieldRegrid
	ESMC_FieldRegridRelease

	Array Class
	Description
	Class API
	ESMC_ArrayCreate
	ESMC_ArrayDestroy
	ESMC_ArrayGetName
	ESMC_ArrayGetPtr
	ESMC_ArrayPrint

	ArraySpec Class
	Description
	Class API
	ESMC_ArraySpecGet
	ESMC_ArraySpecSet

	Grid Class
	Description
	Grid Representation in ESMF
	Supported Grids
	Grid Topologies and Periodicity
	Grid Distribution
	Grid Coordinates
	Coordinate Specification and Generation
	Staggering
	Masking

	Constants
	ESMC_COORDSYS
	ESMC_GRIDITEM
	ESMC_GRIDSTATUS
	ESMC_POLEKIND
	ESMC_STAGGERLOC

	Restrictions and Future Work
	Design and Implementation Notes
	Grid Topology

	Class API: General Grid Methods
	ESMC_GridCreateNoPeriDim
	ESMC_GridCreate1PeriDim
	ESMC_GridDestroy
	ESMC_GridAddItem
	ESMC_GridGetItem
	ESMC_GridAddCoord
	ESMC_GridGetCoord
	ESMC_GridGetCoordBounds
	ESMC_GridWrite

	Mesh Class
	Description
	Mesh Representation in ESMF
	Supported Meshes

	Constants
	ESMC_MESHELEMTYPE
	ESMF_FILEFORMAT

	Class API
	ESMC_MeshAddElements
	ESMC_MeshAddNodes
	ESMC_MeshCreate
	ESMC_MeshCreateFromFile
	ESMC_MeshGetCoord
	ESMC_MeshDestroy
	ESMC_MeshFreeMemory
	ESMC_MeshGetLocalElementCount
	ESMC_MeshGetLocalNodeCount
	ESMC_MeshGetOwnedElementCount
	ESMC_MeshGetOwnedNodeCount

	DistGrid Class
	Description
	Class API
	ESMC_DistGridCreate
	ESMC_DistGridDestroy
	ESMC_DistGridPrint

	RouteHandle Class
	Description
	Use and Examples
	Restrictions and Future Work
	Design and Implementation Notes
	Class API
	ESMC_RouteHandlePrint

	V Infrastructure: Utilities
	Overview of Infrastructure Utility Classes
	Time Manager Utility
	Time Manager Classes
	Calendar
	Time Instants and TimeIntervals
	Clocks

	Calendar Class
	Description
	Constants
	ESMC_CALKIND

	Class API
	ESMC_CalendarCreate
	ESMC_CalendarDestroy
	ESMC_CalendarPrint

	Time Class
	Description
	Class API
	ESMC_TimeGet
	ESMC_TimePrint
	ESMC_TimeSet

	TimeInterval Class
	Description
	Class API
	ESMC_TimeIntervalGet
	ESMC_TimeIntervalPrint
	ESMC_TimeIntervalSet

	Clock Class
	Description
	Class API
	ESMC_ClockAdvance
	ESMC_ClockCreate
	ESMC_ClockDestroy
	ESMC_ClockGet
	ESMC_ClockPrint

	Config Class
	Description
	Package history

	Class API
	ESMC_ConfigCreate
	ESMC_ConfigDestroy
	ESMC_ConfigFindLabel
	ESMC_ConfigGetDim
	ESMC_ConfigGetLen
	ESMC_ConfigLoadFile
	ESMC_ConfigNextLine
	ESMC_ConfigValidate

	Log Class
	Description
	Constants
	ESMC_LOGKIND
	ESMC_LOGMSG

	Class API
	ESMC_LogWrite
	ESMC_LogSet

	VM Class
	Description
	Class API
	ESMC_VMGet
	ESMC_VMGetCurrent
	ESMC_VMGetGlobal
	ESMC_VMPrint

	VI References
	VII Appendices
	Appendix A: Master List of Constants
	ESMC_CALKIND
	ESMC_COORDSYS
	ESMC_GRIDITEM
	ESMC_GRIDSTATUS
	ESMC_LOGKIND
	ESMC_LOGMSG
	ESMC_MESHELEMTYPE
	ESMF_METHOD
	ESMC_POLEKIND
	ESMC_REGION
	ESMC_REGRIDMETHOD
	ESMC_STAGGERLOC
	ESMC_TYPEKIND
	ESMC_UNMAPPEDACTION

	Appendix B: A Brief Introduction to UML
	Appendix C: ESMF Error Return Codes

