
Earth System Modeling Framework

ESMF User Guide

Version 6.2.0

ESMF Joint Specification Team: V. Balaji, Byron Boville, Samson Cheung, Tom Clune, Nancy
Collins, Tony Craig, Carlos Cruz, Arlindo da Silva, CeceliaDeLuca, Rosalinda de Fainchtein,
Brian Eaton, Bob Hallberg, Tom Henderson, Chris Hill, Mark Iredell, Rob Jacob, Phil Jones,
Erik Kluzek, Brian Kauffman, Jay Larson, Peggy Li, Fei Liu, John Michalakes, Sylvia Murphy,

David Neckels, Ryan O Kuinghttons, Bob Oehmke, Chuck Panaccione, Jim Rosinski, Will Sawyer,
Earl Schwab, Shepard Smithline, Walter Spector, Don Stark,Max Suarez, Spencer Swift, Gerhard

Theurich, Atanas Trayanov, Silverio Vasquez, Jon Wolfe, Weiyu Yang, Mike Young, Leonid
Zaslavsky

May 17, 2013

http://www.earthsystemmodeling.org

Acknowledgements

The ESMF software is based on the contributions of a broad community. Below are the software packages that are
included in ESMF or strongly influenced our design. We’d liketo express our gratitude to the developers of these
codes for access to their software as well as their ideas and advice.

• Parallel I/O (PIO) developers at NCAR and DOE Laboratories for their excellent work on this package and their
help in making it work with ESMF

• The Spherical Coordinate Remapping and Interpolation Package (SCRIP) from Los Alamos, which informed
the design of our regridding functionality

• The Model Coupling Toolkit (MCT) from Argonne National Laboratory, on which we based our sparse matrix
multiply approach to general regridding

• The Inpack configuration attributes package from NASA Goddard, which was adapted for use in ESMF by
members of NASA Global Modeling and Assimilation group

• The Flexible Modeling System (FMS) package from GFDL and theGoddard Earth Modeling System (GEMS)
from NASA Goddard, both of which provided inspiration for the overall ESMF architecture

• The Common Component Architecture (CCA) effort within the Department of Energy, from which we drew
many ideas about how to design components

• The Vector Signal Image Processing Library (VSIPL) and its predecessors, which informed many aspects of our
design, and the radar system software design group at Lincoln Laboratory

• The Portable, Extensible Toolkit for Scientific Computation (PETSc) package from Argonne National Labora-
tories, on which we based our initial makefile system

• The Community Climate System Model (CCSM) and Weather Research and Forecasting (WRF) modeling
groups at NCAR, who have provided valuable feedback on the design and implementation of the framework

1

Contents

1 What is the Earth System Modeling Framework? 4

2 The ESMF User’s Guide 4

3 How to Contact User Support and Find Additional Informatio n 5

4 How to Submit Comments, Bug Reports, and Feature Requests 5

5 Quick Start 6
5.1 Downloading ESMF 6

5.1.1 From the ESMF web site 6
5.1.2 From the SourceForge website 6

5.2 Unpacking the download 6
5.3 Directory Structure 7
5.4 Building ESMF 7

5.4.1 Environment variables 7
5.4.2 GNU make 9
5.4.3 gmake info 9
5.4.4 Building makefile targets 12
5.4.5 Testing makefile targets 12
5.4.6 Building and using bundled ESMF applications 13

6 Compiling and Linking User Code against an ESMF Installation 14

7 Using Bundled ESMF Applications 16

8 Building and Installing the ESMF 18
8.1 ESMF Download Options 18
8.2 System Requirements 18
8.3 Third Party Libraries 18

8.3.1 LAPACK 19
8.3.2 NetCDF 19
8.3.3 Parallel-NetCDF 20
8.3.4 PIO 21
8.3.5 XERCES 21

8.4 ESMF Environment Variables 22
8.5 Supported Platforms 28
8.6 Building the ESMF Library 30
8.7 Building the ESMF Documentation 31
8.8 Installing the ESMF 31

9 Porting the ESMF 32
9.1 The ESMF Build System 32

9.1.1 General structure 33
9.1.2 Build configuration 33
9.1.3 Source code configuration 34

9.2 Porting the ESMF to New Platforms 34
9.2.1 Customizing thebuild_rules.mk fragment . 35
9.2.2 CustomizingESMC_Conf.h andESMF_Conf.inc . 39

9.3 Shared Object Libraries 39

2

9.4 Customized SITE Files 40

10 Validating an ESMF Build 40
10.1 Running ESMF Self-Tests 40

10.1.1 Setting up ESMF to run test suite applications 41
10.1.2 Running ESMF unit tests 42
10.1.3 Running ESMF system tests 45

10.2 Running ESMF Examples 47
10.2.1 Example source code 47
10.2.2 Building and running examples 47

11 Architectural Overview 50
11.1 Key Concepts 50

11.1.1 Modularity 50
11.1.2 Flexibility 50
11.1.3 Hierarchical organization 51
11.1.4 Communication within Components 51
11.1.5 Uniform communication API 51

11.2 Superstructure 51
11.2.1 Import and export State classes 51
11.2.2 Interface standards 53
11.2.3 Gridded Component class 53
11.2.4 Coupler Component class 53
11.2.5 Flexible data and control flow 53

11.3 Infrastructure 55
11.3.1 FieldBundle, Field and Array classes 55
11.3.2 Grid class 56
11.3.3 Time and Calendar management 56
11.3.4 Config resource file manager 56
11.3.5 DELayout and virtual machine 56
11.3.6 Logging and error handling 56
11.3.7 File input and output 56

12 How to Adapt Applications for ESMF 56
12.1 Individual Components 57
12.2 Full Application 58

13 Glossary 59

References 65

3

1 What is the Earth System Modeling Framework?

The Earth System Modeling Framework (ESMF) is a suite of software tools for developing high-performance, multi-
component Earth science modeling applications. Such applications may include a few or dozens of components
representing atmospheric, oceanic, terrestrial, or otherphysical domains, and their constituent processes (dynamical,
chemical, biological, etc.). Often these components are developed by different groups independently, and must be
“coupled” together using software that transfers and transforms data among the components in order to form functional
simulations.

ESMF supports the development of these complex applications in a number of ways. It introduces a set of simple,
consistent component interfaces that apply to all types of components, including couplers themselves. These interfaces
expose in an obvious way the inputs and outputs of each component. It offers a variety of data structures for transferring
data between components, and libraries for regridding, time advancement, and other common modeling functions.
Finally, it provides a growing set of tools for using metadata to describe components and their input and output
fields. This capability is important because components that are self-describing can be integrated more easily into
automated workflows, model and dataset distribution and analysis portals, and other emerging “semantically enabled”
computational environments.

ESMF is not a single Earth system model into which all components must fit, and its distribution doesn’t contain
any scientific code. Rather it provides a way of structuring components so that they can be used in many differ-
ent user-written applications and contexts with minimal code modification, and so they can be coupled together in
new configurations with relative ease. The idea is to create many components across a broad community, and so to
encourage new collaborations and combinations.

ESMF offers the flexibility needed by this diverse user base.It is tested nightly on more than two dozen plat-
form/compiler combinations; can be run on one processor or thousands; supports shared and distributed memory
programming models and a hybrid model; can run components sequentially (on all the same processors) or concur-
rently (on mutually exclusive processors); and supports single executable or multiple executable modes.

ESMF’s generality and breadth of function can make it daunting for the novice user. To help users navigate the
software, we try to apply consistent names and behavior throughout and to provide many examples. The large-scale
structure of the software is straightforward. The utilities and data structures for building modeling components are
called the ESMFinfrastructure. The coupling interfaces and drivers are called thesuperstructure. User code sits
between these two layers, making calls to the infrastructure libraries underneath and being scheduled and synchronized
by the superstructure above. The configuration resembles a sandwich, as shown in Figure 1.

ESMF users may choose to extensively rewrite their codes to take advantage of the ESMF infrastructure, or they may
decide to simply wrap their components in the ESMF superstructure in order to utilize framework coupling services.
Either way, we encourage users to contact our support team ifquestions arise about how to best use the software, or
how to structure their application. ESMF is more than software; it’s a group of people dedicated to realizing the vision
of a collaborative model development community that spans insitutional and national bounds.

2 The ESMF User’s Guide

This ESMF User’s Guideis mainly an installation and build guide for the new ESMF user and a build reference for
the experienced user. New users are strongly encouraged to download the ESMF software and try running the system
tests and examples that illustrate both ESMF utilities and coupling services.

TheUser’s Guideis organized as follows. The next two sections, 3 and 4, concern user support and how to submit
comments on the ESMF system to our development team. Sections 5 through 10 contain aQuick Startguide that
explains how to install the ESMF software and run the self-tests, followed by more detail on ESMF structure and

4

mailto:esmf_support@list.woc.noaa.gov

Figure 1: Schematic of the ESMF “sandwich” architecture. Inthis design the framework consists of two parts, an
upper levelsuperstructure layer and a lower-levelinfrastructure layer. User code is sandwiched between these two
layers.

Time

ESMF Superstructure

AppDriver

Component Classes: GridComp, CplComp, State

Time

ESMF Infrastructure

Data Classes: Bundle, Field, Grid, Array

Utility Classes: Clock, LogErr, DELayout, VM, Config

Time
U
ser Code

operation, such as a description of the directory structureand how to build and run the ESMF example programs.
Section 11 is an architectural overview that describes the framework’s basic goals and features. Section 12 details the
steps required to adapt a component for use with ESMF. Finally, to help you become familiar with ESMF terminology,
the last section in theUser’s Guideis a glossary.

3 How to Contact User Support and Find Additional Informatio n

The ESMF team can provide assistance in using the framework in your applications. For user support, please contact
esmf_support@list.woc.noaa.gov.

More information on the ESMF project as a whole is available on the ESMF website,
http://www.earthsystemmodeling.org. The website includes release notes and known bugs for each version of the
framework, supported platforms, project history, values,and metrics, related projects, the ESMF management struc-
ture, and much more. Those curious about specific interfacesshould refer to theESMF Reference Manual for Fortran,
which contains a detailed listing and description of the ESMF API (this version of the document corresponds to the
last public version of the framework). Also available on theESMF website is theESMF Developer’s Guidethat
details our project procedures and conventions.

4 How to Submit Comments, Bug Reports, and Feature Requests

We welcome input on any aspect of the ESMF project. Send questions and comments to
esmf_support@list.woc.noaa.gov.

5

mailto:esmf_support@list.woc.noaa.gov
http://www.earthsystemmodeling.org
http://www.earthsystemmodeling.org/esmf_releases/public/last/ESMF_refdoc/
http://www.earthsystemmodeling.org/documents/dev_guide/
mailto:esmf_support@list.woc.noaa.gov

5 Quick Start

This section gives a brief description of how to get the ESMF software, build it, and run the self-tests to verify the
installation was successful. There is also a short guide forusing the bundled ESMF applications. More detailed
information on each of these steps is provided in sections 8,10 and 7, respectively.

With a growing user community requiring access to ESMF, central computing resources (such as ORNL for the
JaguarandKrakensupercomputers) have recently started providing system wide ESMF installations. The availablity
of center-managed ESMF installations dramatically increases the ease of use of ESMF. Practically it means that if
you are working on a system (such asJaguar) that offers a standard ESMF installation, you do not have todownload,
build and validate your own ESMF installation from source! Instead you can proceed directly to using ESMF as a
programming library or through access to the bundled applications as described in sections 6 and 7, respectively.

5.1 Downloading ESMF

5.1.1 From the ESMF web site

ESMF is distributed as a source code tar file. The tar file for the latest public release, release notes, known bugs,
supported platforms, documentation, and other related information can be found on the ESMF website, under the
Download tab:

http://www.earthsystemmodeling.org -> Download

The source code for all other releases including the HEAD of the CVS trunk and the last stable version can be found
by following theView All Releaseslink on the left hand navigation bar underDownload:

http://www.earthsystemmodeling.org -> Download -> View A ll Releases

5.1.2 From the SourceForge website

ESMF can also be downloaded from the SourceForge website from theFiles link on that website.

http://sourceforge.net/projects/esmf -> Files

Follow the directions on that web page to download a tar file.

5.2 Unpacking the download

The source code comes as a zipped tar file. First unzip the file:

gunzip esmf * .tar.gz

Then untar the file:

tar -xf esmf * .tar

This will create a directory calledesmf .

6

5.3 Directory Structure

The current list of directories includes the following:

• README

• build

• build_config

• makefile

• scripts

• src

The build_config directory contains subdirectories for different operating system and compiler combinations.
This is a useful area to examine if porting ESMF to a new platform.

5.4 Building ESMF

After downloading and unpacking the ESMF tar file, the build procedure is:

1. Set the required environment variables.

2. Typegmake info to view and verify your settings

3. Typegmake to build the library.

4. Typegmake check to run self-tests to verify the build was successful.

See the following sections for more information on each of these steps.

5.4.1 Environment variables

The syntax for setting environment variables depends on which shell you are running. Examples of the two most
common ways to set an environment variable are:

ksh export ESMF_DIR=/home/joeuser/esmf

csh setenv ESMF_DIR /home/joeuser/esmf

The shell environment variables listed below are the ones most frequently used. There are others which address needs
on specific platforms or are needed under more unusual circumstances; see Section 8 for the full list.

ESMF_DIR The environment variableESMF_DIRmust be set to the full pathname of the top level ESMF directory
before building the framework. This is the only environmentvariable which is required to be set on all platforms
under all conditions.

ESMF_BOPT This environment variable controls the build option. To make a debuggable version of the library set
ESMF_BOPTto g before building. The default isO(capital oh) which builds an optimized version of the library.
If ESMF_BOPTis O, ESMF_OPTLEVELcan also be set to a numeric value between 0 and 4 to select a specific
optimization level.

7

ESMF_COMM On systems with a vendor-supplied MPI communications library the vendor library is chosen by
default for communications andESMF_COMMneed not be set. For other systems (e.g. Linux or Darwin) a
multitude of MPI implementations is available andESMF_COMMmust be set to indicate which implementation
is used to build the ESMF library. SetESMF_COMMaccording to your situation to:mpich, mpich2, lam,
openmpi or intelmpi . ESMF_COMMmay also be set touser indicating that the user will set all the required
flags using advanced ESMF environment variables.

Alternatively, ESMF comes with a single-processor MPI-bypass library which is the default for Linux and
Darwin systems. To force the use of this bypass library setESMF_COMMequal tompiuni .

ESMF_COMPILER The ESMF library build requires a working Fortran90 and C++ compiler. On platforms that
don’t come with a single vendor supplied compiler suite (e.g. Linux or Darwin)ESMF_COMPILERmust be
set to select which Fortran and C++ compilers are being used to build the ESMF library. Notice that set-
ting theESMF_COMPILERvariable doesnot affect how the compiler executables are located on the system.
ESMF_COMPILER(together withESMF_COMM) affect the name that is expected for the compiler executa-
bles. Furthermore, theESMF_COMPILERsetting is used to select compiler and linker flags consistent with the
compilers indicated.

By default Fortran and C++ compiler executables are expected to be located in a location contained in the user’s
PATHenvironment variable. This means that if you cannot locate the correct compiler executable via thewhich
command on the shell prompt the ESMF build system won’t find iteither!

There are advanced ESMF environment variables that can be used to select specific compiler executables by
specifying the full path. This can be used to pick specific compiler executables without having to modify the
PATHenvironment variable.

Use ’gmake info’ to see which compiler executables the ESMF build system will be using according to your
environment variable settings.

To see possible values forESMF_COMPILER, cd to $ESMF_DIR/build_config and list the directories
there. The first part of each directory name corresponds to the output of ’uname -s’ for this platform. The second
part contains possible values forESMF_COMPILER. In some cases multiple combinations of Fortran and C++
compilers are possible, e.g. there isintel and intelgcc available for Linux. SettingESMF_COMPILER
to intel indicates that both Intel Fortran and C++ compilers are used, whereasintelgcc indicates that the
Intel Fortran compiler is used in combination with GCC’s C++compiler.

If you do not find a configuration that matches your situation you will need to port ESMF.

ESMF_ABI If a system supports 32-bit and 64-bit (pointer wordsize) application binary interfaces (ABIs), this vari-
able can be set to select which ABI to use. Valid values are32 or 64 . By default the most common ABI
is chosen. On x86_64 achitectures three additional, more specific ABI settings are available,x86_64_32 ,
x86_64_small andx86_64_medium .

ESMF_SITE The SourceForgeesmfcontrib repository contains makefiles which have already been customized
for certain machines. If one exists for your site and you wishto use it, download the corresponding files into the
build_contrib directory and setESMF_SITE to your location (which corresponds to the last part of the
directory name). See the SourceForge sitehttp://sourceforge.net/projects/esmfcontrib for
more information.

ESMF_ETCDIR If a user wants to add Attribute package specification files for their own customized Attribute
packages, this is where they should go. ESMF will look in thisdirectory for files that specify which Attributes
are in an Attribute package for certain ESMF objects, and what the appropriate initial values would be for those
Attributes. The format for these Attribute package specification files is to be defined in a future ESMF release.
This environment variable is largely for internal use at this point.

ESMF_INSTALL_PREFIX This variable specifies the prefix of the installation path used during the installation
process accessible thought the install target. Libraries,F90 module files, header files and documentation all are

8

installed relative toESMF_INSTALL_PREFIXby default. TheESMF_INSTALL_PREFIXmay be provided
as absolute path or relative toESMF_DIR.

5.4.2 GNU make

The ESMF build system uses the GNU make program; it is normally namedgmake but may also be simplymake or
gnumake on some platforms (we will usegmake in this document). ESMF does not use configure or autoconf; the
selection of various options is done by setting environmentvariables before building the framework.

5.4.3 gmake info

gmake info is a command that assists the user in verifying that the ESMF variables have been set appropriatly. It
also tells the user the paths to various libraries e.g. MPI that are set on the system. The user to review this information
to verify their settings. In the case of a build failure, thisinformation is invaluable and will be the first thing asked for
by the ESMF support team. Below is anexample outputfrom gmake info :

--- -----------
Make version:
GNU Make 3.80
Copyright (C) 2002 Free Software Foundation, Inc.
This is free software; see the source for copying conditions .
There is NO warranty; not even for MERCHANTABILITY or FITNES S FOR A
PARTICULAR PURPOSE.

--- -----------
Fortran Compiler version:
Intel(R) Fortran Compiler for applications running on Inte l(R) 64, \
Version 10.1
Build 20081024 Package ID: l_fc_p_10.1.021
Copyright (C) 1985-2008 Intel Corporation. All rights rese rved.

Version 10.1

--- -----------
C++ Compiler version:
Intel(R) C++ Compiler for applications running on Intel(R) 64, Version 10.1
Build 20081024 Package ID: l_cc_p_10.1.021
Copyright (C) 1985-2008 Intel Corporation. All rights rese rved.

Version 10.1

--- -----------
Preprocessor version:
gcc (GCC) 4.1.2 20070115 (SUSE Linux)
Copyright (C) 2006 Free Software Foundation, Inc.
This is free software; see the source for copying conditions . There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PART ICULAR PURPOSE.

9

--- -----------
ESMF_VERSION_STRING: 5.1.0
--- -----------

--- -----------

* User set ESMF environment variables *
ESMF_OS=Linux
ESMF_TESTMPMD=ON
ESMF_TESTHARNESS_ARRAY=RUN_ESMF_TestHarnessArrayUNI_2
ESMF_DIR=/nobackupp10/scvasque/daily_builds/intel/e smf
ESMF_TESTHARNESS_FIELD=RUN_ESMF_TestHarnessFieldUNI _1
ESMF_TESTWITHTHREADS=OFF
ESMF_COMM=mpiuni
ESMF_INSTALL_PREFIX= /nobackupp10/scvasque/daily_bui lds/intel/esmf/.. \
/install_dir
ESMF_TESTEXHAUSTIVE=ON
ESMF_BOPT=g
ESMF_SITE=default
ESMF_ABI=64
ESMF_COMPILER=intel

--- -----------

* ESMF environment variables *
ESMF_DIR: /nobackupp10/scvasque/daily_builds/intel/e smf
ESMF_OS: Linux
ESMF_MACHINE: x86_64
ESMF_ABI: 64
ESMF_COMPILER: intel
ESMF_BOPT: g
ESMF_COMM: mpiuni
ESMF_SITE: default
ESMF_PTHREADS: ON
ESMF_OPENMP: ON
ESMF_ARRAY_LITE: FALSE
ESMF_NO_INTEGER_1_BYTE: FALSE
ESMF_NO_INTEGER_2_BYTE: FALSE
ESMF_FORTRANSYMBOLS: default
ESMF_DEFER_LIB_BUILD: ON
ESMF_TESTEXHAUSTIVE: ON
ESMF_TESTWITHTHREADS: OFF
ESMF_TESTMPMD: ON
ESMF_TESTSHAREDOBJ: OFF
ESMF_TESTFORCEOPENMP: OFF
ESMF_TESTHARNESS_ARRAY: RUN_ESMF_TestHarnessArrayUNI_2
ESMF_TESTHARNESS_FIELD: RUN_ESMF_TestHarnessFieldUNI _1
ESMF_MPIRUN: /nobackupp10/scvasque/daily_builds/inte l/esmf/src/ \

Infrastructure/stubs/mpiuni/mpirun

--- -----------

* ESMF environment variables pointing to 3rd party software *

10

--- -----------

* ESMF environment variables for final installation *
ESMF_INSTALL_PREFIX: /nobackupp10/scvasque/daily_bui lds/intel/esmf/../ \
install_dir
ESMF_INSTALL_HEADERDIR: include
ESMF_INSTALL_MODDIR: mod/modg/Linux.intel.64.mpiuni. default
ESMF_INSTALL_LIBDIR: lib/libg/Linux.intel.64.mpiuni. default
ESMF_INSTALL_BINDIR: bin/bing/Linux.intel.64.mpiuni. default
ESMF_INSTALL_DOCDIR: doc

--- -----------

* Compilers, Linkers, Flags, and Libraries *
Location of the preprocessor: /usr/bin/gcc
Location of the Fortran compiler: /nasa/intel/fce/10.1.0 21/bin/ifort
Location of the Fortran linker: /nasa/intel/fce/10.1.021 /bin/ifort
Location of the C++ compiler: /nasa/intel/cce/10.1.021/b in/icpc
Location of the C++ linker: /nasa/intel/cce/10.1.021/bin /icpc

Fortran compiler flags:
ESMF_F90COMPILEOPTS: -g -fPIC -m64 -mcmodel=small -threa ds -openmp
ESMF_F90COMPILEPATHS: -I/nobackupp10/scvasque/daily_ builds/intel/esmf/mod/ \
modg/Linux.intel.64.mpiuni.default -I/nobackupp10/sc vasque/daily_builds \
/intel/esmf/src/include
ESMF_F90COMPILECPPFLAGS: -DESMF_TESTEXHAUSTIVE -DSx86_64_small=1 \
-DESMF_OS_Linux=1 -DESMF_MPIUNI
ESMF_F90COMPILEFREECPP:
ESMF_F90COMPILEFREENOCPP:
ESMF_F90COMPILEFIXCPP:
ESMF_F90COMPILEFIXNOCPP:

Fortran linker flags:
ESMF_F90LINKOPTS: -m64 -mcmodel=small -threads -openmp
ESMF_F90LINKPATHS: -L/nobackupp10/scvasque/daily_bui lds/intel/esmf/lib/libg/ \
Linux.intel.64.mpiuni.default -L/nasa/sgi/mpt/1.25/l ib -L/nasa/intel/ \
cce/10.1.021/lib/shared -L/nasa/intel/fce/10.1.021/l ib/shared -L/nasa/ \
intel/cce/10.1.021/lib -L/nasa/intel/fce/10.1.021/li b -L/nasa/intel/cce/ \
10.1.021/lib -L/usr/lib64/gcc/x86_64-suse-linux/4.1. 2/ -L/usr/lib64/gcc/ \
x86_64-suse-linux/4.1.2/../../../../lib64
ESMF_F90LINKRPATHS:
-Wl,-rpath,/nobackupp10/scvasque/daily_builds/intel /esmf/lib/libg/ \
Linux.intel.64.mpiuni.default
ESMF_F90LINKLIBS: -limf -lsvml -lm -lipgo -lguide -lstdc+ + -lirc -lgcc_s \
-lgcc -lirc -lpthread -lgcc_s -lgcc -lirc_s -ldl -lrt -ldl
ESMF_F90ESMFLINKLIBS: -lesmf -limf -lsvml -lm -lipgo -lgu ide -lstdc++ -lirc \
-lgcc_s -lgcc -lirc -lpthread -lgcc_s -lgcc -lirc_s -ldl -l rt -ldl

C++ compiler flags:
ESMF_CXXCOMPILEOPTS: -g -fPIC -m64 -mcmodel=small -pthre ad -openmp
ESMF_CXXCOMPILEPATHS: -I/nobackupp10/scvasque/daily_ builds/intel/ esmf/src/ \

11

include -I/nobackupp10/scvasque/daily_builds/intel/e smf/src/Infrastructure \
/stubs/mpiuni
ESMF_CXXCOMPILECPPFLAGS: -DESMF_TESTEXHAUSTIVE -DSx86_64_small=1 \
-DESMF_OS_Linux=1 -D__SDIR__=’’ -DESMF_MPIUNI

C++ linker flags:
ESMF_CXXLINKOPTS: -m64 -mcmodel=small -pthread -openmp
ESMF_CXXLINKPATHS: -L/nobackupp10/scvasque/daily_bui lds/intel/esmf/lib/libg/ \
Linux.intel.64.mpiuni.default -L/nasa/intel/fce/10.1 .021/lib/
ESMF_CXXLINKRPATHS: -Wl,-rpath,/nobackupp10/scvasque /daily_builds/intel/esmf/ \
lib/libg/Linux.intel.64.mpiuni.default -Wl,-rpath,/n asa/intel/fce/ \
10.1.021/lib/
ESMF_CXXLINKLIBS: -lifport -lifcoremt -limf -lsvml -lm -l ipgo -lguide -lirc \
-lpthread -lgcc_s -lgcc -lirc_s -ldl -lrt -ldl
ESMF_CXXESMFLINKLIBS: -lesmf -lifport -lifcoremt -limf - lsvml -lm -lipgo \
-lguide -lirc -lpthread -lgcc_s -lgcc -lirc_s -ldl -lrt -ld l

--- -----------
Compiling on Thu Oct 21 02:15:56 PDT 2010 on r75i0n8
Machine characteristics: Linux r75i0n8 2.6.16.60-0.68.1 .20100916-nasa \
#1 SMP Fri
Sep 17 17:49:05 UTC 2010 x86_64 x86_64 x86_64 GNU/Linux
=== ===========

5.4.4 Building makefile targets

The makefiles follow the GNU target standards where possible. The most frequently used targets for building are
listed below:

lib build the ESMF libraries only (default)

all build the libraries, unit and system tests and examples

doc build the documentation (requires specific latex macros packages and additional utilities; see Section 8 for more
details on the requirements).

info print out extensive system configuration information aboutwhat compilers, libraries, paths, flags, etc are being
used

clean remove all files built for this platform/compiler/wordsize.

clobber remove all files built for all architectures

install install the ESMF library in a custom location

5.4.5 Testing makefile targets

To build and run the unit and system tests, type:

12

gmake check

A summary report of success and failures will be printed out at the end.

See section 10.1.1 on how to set up ESMF to be able to launch thebundled test and example applications.

Other test-related targets are:

all_tests build and run all available tests and examples

build_all_tests build tests and examples; do not execute

run_all_tests run tests and examples without rebuilding; print a summary of the results

check_all_testsprint out the results summary without re-executing

dust_all_tests remove all test and example output files

clean_all_testsremove all test and example executables and output files

For all the targets listed above, the stringall_tests can be replaced with one of the strings listed below to selecta
specific type of test:

unit_tests unit tests exercise a single part of the system

system_testssystem tests combine functions across the system

examples examples contain code illustrating a single type of function

For example,gmake build_examples recompiles the example programs but does not execute them.gmake
dust_unit_tests removes all output files generated when executing the unit tests, but leaves the executables.
gmake clean_system_tests removes all executables and files associated with the systemtests.

For the unit tests only, there is an additional environment variable which affects how the tests are built:

ESMF_TESTEXHAUSTIVE If this variable is set toONbefore compiling the unit tests, longer and more exhaustive
unit tests will be run. Note that this is a compile-time and not run-time option.

5.4.6 Building and using bundled ESMF applications

This section describes how the bundled ESMF applications can be built and used from inside the ESMF source tree.
Notice that this is sort of a quick and dirty way of accessing the ESMF applications. It is supported as convenience to
those users interested in quickly gaining access to the bundled ESMF applications, and do not mind the shortcomings
of this approach. Users interested in maximum portability should instead follow the instructions provided in section 7.

To build the bundled ESMF applications type:

gmake build_apps

This will build the applications and place the executables under the$ESMF_DIR/apps directory inside the ESMF
source tree. The applications can be directly executed fromwithin the$ESMF_DIR/apps directory following the
system specific rules for execution. The details will dependon whether ESMF was built with or without MPI depen-
dency. In the latter case the system specific rules for launching parallel applications must be followed. System specific
execution details on this level are outside of ESMF’s scope.

For most systems, the MPI version of the ESMF bundled applications can be executed by a command equivalent to:

13

mpirun -np X $(ESMF_DIR)/apps/..../application

whereX specifies the total number of PETs andapplication is the name of the specific ESMF application to be
executed. The.... in the path indicates the precise subdirectory structure under./apps which follows the standard
ESMF pattern also used for the./tests and./examples subdirectories.

All bundled ESMF applications support the standard’--help’ command line option that prints out information
on its proper use. More detailed instructions of the individual applications are available in the "Applications" section
of theESMF Reference Manual.

6 Compiling and Linking User Code against an ESMF Installation

Building user applications against an ESMF installation requires that the compiler and linker be able to find the
appropriate ESMF header, module and library files. If this procedure has been documented by the installer of the
ESMF library on your system then follow the directions given. Otherwise it is up to the user to determine and provide
the required compiler and linker flags. Every ESMF installation provides a file namedesmf.mk that contains the
relevant information.

The location of theesmf.mk file should be documented by the party that installed ESMF on the system. We recom-
mend that a single ESMF specific environment variable,ESMFMKFILE, be provided by the system that points to the
esmf.mk file. See section 8.8 for the related discussion aimed at the person that installs ESMF on a system.

The information inesmf.mk is defined in form of variables. In fact, syntacticallyesmf.mk is a makefile fragment
and can be imported by an application specific makefile via theinclude command. All the variables inesmf.mk
start with the "ESMF_" prefix to prevent conflicts. The information inesmf.mk is fully specified and is not affected
by any variables set in the user’s environment.

The information defined inesmf.mk includes Fortran compiler and linker, as well as C++ compiler and linker. It
further includes the recommended Fortran and C++ specific compiler and linker flags for building ESMF applications.
One way of using theesmf.mk is to glean the necessary information from it. This information can then be used
either directly on the command line when compiling a user application, or to hardwire the settings into the application
specific build system. However, the recommended use ofesmf.mk is to include this file in the application specific
makefile directly via theinclude command.

TheMakefile template below demonstrates how a user build system can be constructed to leverage theesmf.mk
file. In practice, most user build systems will be more complex. However, this template does show that the added
complexity introduced by usingesmf.mk is minimal. Examples of how to use this build system in realistic user
scenarios can be found in the external demos.

The advantages of usingesmf.mk , over hard coding suitable compiler and linker flags into theuser build system
directly, are robustness and portability. Robustness is a consequence of the fact that everything defined inesmf.mk
corresponds to the exact settings used during the ESMF library build (consistency) and during the ESMF test suite
build. Usingesmf.mk thus guarantees that the user application is build in the exact same manner as the ESMF test
suite applications that undergo strict regression testingbefore every ESMF release. Portability means that a user build
system, which usesesmf.mk in the way the templateMakefile demonstrates, will function as expected on any
system where ESMF was successfully installed and tested, without the need of modifying anything. Everyesmf.mk
is generated during a specific ESMF installation using the ESMF tested settings for the host platform.

14

http://www.earthsystemmodeling.org/users/code_examples/external_demos/external_demos.shtml

#############################
Makefile template for user ESMF application, leveragin g esmf.mk mechanism
#############################

#############################
Finding and including esmf.mk ######################

Note: This fully portable Makefile template depends on fin ding environment
variable "ESMFMKFILE" set to point to the appropriate "esm f.mk" file,
as is discussed in the User’s Guide.
However, you can still use this Makefile template even if th e person
that installed ESMF on your system did not provide for a mech anism to
automatically set the environment variable "ESMFMKFILE" . In this case
either manually set "ESMFMKFILE" in your environment or ha rd code the
location of "esmf.mk" into the include statement below.
Notice that the latter approach has negative impact on port ability.

ifneq ($(origin ESMFMKFILE), environment)
$(error Environment variable ESMFMKFILE was not set.)
endif

include $(ESMFMKFILE)

#############################
Compiler and linker rules using ESMF_ variables supplie d by esmf.mk

.SUFFIXES: .f90 .F90 .c .C

.f90:
$(ESMF_F90COMPILER) -c $(ESMF_F90COMPILEOPTS) $(ESMF_F90COMPILEPATHS) \

$(ESMF_F90COMPILEFREENOCPP) $<
$(ESMF_F90LINKER) $(ESMF_F90LINKOPTS) $(ESMF_F90LINKP ATHS) \

$(ESMF_F90LINKRPATHS) -o $@ $* .o $(ESMF_F90ESMFLINKLIBS)

.F90:
$(ESMF_F90COMPILER) -c $(ESMF_F90COMPILEOPTS) $(ESMF_F90COMPILEPATHS) \

$(ESMF_F90COMPILEFREECPP) $(ESMF_F90COMPILECPPFLAGS)$<
$(ESMF_F90LINKER) $(ESMF_F90LINKOPTS) $(ESMF_F90LINKP ATHS) \

$(ESMF_F90LINKRPATHS) -o $@ $* .o $(ESMF_F90ESMFLINKLIBS)

.c:
$(ESMF_CXXCOMPILER) -c $(ESMF_CXXCOMPILEOPTS) \

$(ESMF_CXXCOMPILEPATHSLOCAL) $(ESMF_CXXCOMPILEPATHS)\
$(ESMF_CXXCOMPILECPPFLAGS) $<

$(ESMF_CXXLINKER) $(ESMF_CXXLINKOPTS) $(ESMF_CXXLINKPATHS) \
$(ESMF_CXXLINKRPATHS) -o $@ $* .o $(ESMF_CXXESMFLINKLIBS)

.C:
$(ESMF_CXXCOMPILER) -c $(ESMF_CXXCOMPILEOPTS) \

$(ESMF_CXXCOMPILEPATHSLOCAL) $(ESMF_CXXCOMPILEPATHS)\
$(ESMF_CXXCOMPILECPPFLAGS) $<

15

$(ESMF_CXXLINKER) $(ESMF_CXXLINKOPTS) $(ESMF_CXXLINKPATHS) \
$(ESMF_CXXLINKRPATHS) -o $@ $* .o $(ESMF_CXXESMFLINKLIBS)

#############################
Sample targets for user ESMF applications ############

all: esmf_UserApplication esmc_UserApplication

esmf_UserApplication:

esmc_UserApplication:

#############################

7 Using Bundled ESMF Applications

ESMF comes with a set of bundled applications in the form of standard command line tools. These applications include
convenient access to general information about an ESMF installation, and regrid weight file generation (sometimes
referred to as "offline" regridding). This section providesassistance with respect to building and running the bundled
applications. If you are using a pre-installed ESMF on your system, follow the local instructions provided by the
installer or system admin of how to access and run the ESMF applications. Often access is as simple as loading a
configuration module to have the correct path to the ESMF application binaries added to yourPATHenvironment
variable.

There are two ways a user may choose to build and access the bundled ESMF applications. Users that prefer not to
go through the full ESMF installation process have the option to build the bundled applications inside of the ESMF
source tree, very similar to how the unit tests, system testsand examples are built. This option is outlined in section
5.4.6 and should only be considered by users that want quick access to the applications and are not interested in a
sharable installation or the development of portable scripts and makefiles that use the applications. Users interestedin
the latter should consider the more standard second option outlined below.

The bundled ESMF applications are built automatically in the process of installing ESMF following the instructions
given in section 8.8. On systems that offer system-wide ESMFinstallations (e.g. via modules or similar mechanisms)
the user need not worry about the build and installation details. Once installed, the applications are accessible through
their precise location on the system. For this purpuse everyESMF installation provides a file namedesmf.mk that
contains the variableESMF_APPSDIRwhich specifies the precise application path.

Theesmf.mk mechanism used for application access is the same as the one described in section 6 for writing robust
and portable user makefiles for building and linking user applications against an ESMF installation. One feature of
theesmf.mk mechanism is that only one single piece of information must be known about an ESMF installation to
use it, and that is the location of fileesmf.mk itself. The location of this file should be documented by the party that
installed ESMF on the system. We recommend that a single ESMFspecific environment variable ESMFMKFILE be
provided by the system that points to theesmf.mk file. See section 8.8 for the related discussion aimed at the person
that installs ESMF on a system.

Once the exact location of the bundled ESMF application fileshas been determined, either by inspecting the asso-
ciatedesmf.mk file, or by using theESMF_APPSDIRmakefile variable directly in the user script or makefile, the
applications can be executed following the system specific rules for execution. The details will depend on whether
ESMF was built with or without MPI dependency. In the latter case the system specific rules for launching parallel
applications must be followed. System specific execution details on this level are outside of ESMF’s scope. How-

16

ever, ESMF does offer specific application use examples as part of theexternal_demosmodule described online at the
External Demos webpage. For most systems, the MPI version ofthe ESMF bundled applications can be executed by
a command equivalent to:

mpirun -np X $(ESMF_APPSDIR)/application

whereX specifies the total number of PETs andapplication is the name of the specific ESMF application to be
executed.

All bundled ESMF applications support the standard’--help’ command line option that prints out information
on its proper use. More detailed instructions of the individual applications are available in the "Applications" section
of theESMF Reference Manual.

17

http://www.earthsystemmodeling.org/users/code_examples/external_demos/external_demos.shtml

8 Building and Installing the ESMF

This section goes into more detail about how to build and install the ESMF software.

8.1 ESMF Download Options

Major releases of the ESMF software can be downloaded by following the instructions on the theDownload link on
the ESMF website, http://www.earthsystemmodeling.org.

The ESMF is distributed as a full source code tree. You will need to compile the code into thelibesmf.a library.
On some platforms a shared library,libesmf.so , is also created. Follow the instructions in the following sections
to build the library and link it with your application.

8.2 System Requirements

The following compilers and utilities are required for compiling, linking and testing the ESMF software:

• Fortran90 (or later) compiler;

• C++ compiler;

• MPI implementation compatible with the above compilers (but see below);

• GNU’s gcc compiler - for a standard cpp preprocessor implementation;

• GNU make;

• Perl - for running test scripts.

The following packages are optional, and only used for selected capabilities:

• LAPACK - version 3.x or newer

• NetCDF - version 3.6.x or newer

• parallel-NetCDF - version 1.2.0 or newer

• Xerces - version 3.1.0 or newer

Alternatively ESMF can be built using a single-processor MPI-bypass library that comes with ESMF. It allows ESMF
applications to be linked and run in single-process mode.

In order to build html and pdf versions of the ESMF documentation, LATEX, the latex2html conversion utility, and the
Unix/Linux dvipdf utility must be installed.

8.3 Third Party Libraries

Some portions of the ESMF library can offer enhanced capabilities when certain third party libraries are available.
This section describes these dependencies and the associated environment settings that allow the user to control them.

18

http://www.earthsystemmodeling.org
http://gcc.gnu.org
http://www.gnu.org/software/make/make.html
http://www.perl.com/download.csp
http://www.latex-project.org
http://www.latex2html.org

8.3.1 LAPACK

The patch recovery regridding method of the ESMF Mesh class requires solving local least squares problems. It uses
the LAPACK DGELSYsolver to carry out this task.

The following environment variables control whether a minimal set of Lapack code that comes with ESMF is used,
or whether ESMF should link against an externally availableLapack installation. Alternatively, ESMF’s Lapack-
dependent features can be turned off altogether.

ESMF_LAPACK Possible value:"internal" (default), "OFF" , "system" , "mkl" , "netlib" , "scsl" ,
<userstring>.

"internal" (default) ESMF will be compiled with Lapack-dependent features. A minimal set of La-
pack/BLAS code included in ESMF will be used to satisfy the dependencies.

"OFF" Disables Lapack-dependent code.

"system" A system-dependent external Lapack/BLAS installation is used to satisfy the external dependencies
of the Lapack-dependent ESMF code. SetsESMF_LAPACK_LIBSappropriately.

"mkl" The Intel MKL library is used to satisfy the external dependencies of the Lapack-dependent ESMF
code. SetsESMF_LAPACK_LIBSto "-lmkl_lapack -lmkl" , unless it is already defined in the
user environment.

"netlib" The NETLIB library is used to satisfy the external dependencies of the Lapack-dependent ESMF
code. SetsESMF_LAPACK_LIBSto "-llapack -lblas" , unless it is already defined in the user
environment.

"scsl" The SCSL library is used to satisfy the external dependencies of the Lapack-dependent ESMF code.
SetsESMF_LAPACK_LIBSto "-lscs" , unless it is already defined in the user environment.

<userstring> Enables ESMF’s Lapack-dependent code, but does not set a default forESMF_LAPACK_LIBS.
ESMF_LAPACK_LIBS, and if required,ESMF_LAPACK_LIBPATH, must be set explicitly in the user
environment.

ESMF_LAPACK_LIBPATH Typical value:/usr/local/lib (no default).

Specifies the path where the LAPACK library is located.

ESMF_LAPACK_LIBS Typical value:"-llapack -lblas" (default is dependent onESMF_LAPACK).

Specifies the linker directive needed to link the LAPACK library to the application. On some systems, the BLAS
library must also be included.

8.3.2 NetCDF

ESMF provides the ability to read Grid and Mesh data in NetCDFformat. The following environment variables enable,
and specify the name and location of the desired NetCDF library and associated header files:

ESMF_NETCDF Possible value:not set(default),"split" , "standard" , <userstring>.

not set (default) NetCDF-dependent features will be disabled. TheESMF_NETCDF_INCLUDE,
ESMF_NETCDF_LIBPATH, andESMF_NETCDF_LIBSenvironment variables will be ignored.

"split" ESMF_NETCDF_LIBS will be set to "-lnetcdff -lnetcdf_c++ -lnetcdf" . This
option is useful for systems which have the Fortran and C bindings archived in seperate library
files; the C++ bindings are always in a separate library file. The ESMF_NETCDF_INCLUDEand
ESMF_NETCDF_LIBPATHenvironment variables will also be used, if defined.

19

http://www.netlib.org/lapack
http://www.unidata.ucar.edu/software/netcdf/

"standard" ESMF_NETCDF_LIBS will be set to"-lnetcdf_c++ -lnetcdf" . This option is use-
ful when the Fortran and C bindings are archived together in the same library file, alongside the always
separate C++ bindings library file. TheESMF_NETCDF_INCLUDEandESMF_NETCDF_LIBPATHen-
vironment variables will also be used, if defined.

<userstring> If set, ESMF_NETCDF_INCLUDE, ESMF_NETCDF_LIBPATH, and ESMF_NETCDF_LIBS
environment variables will be used, if defined.

ESMF_NETCDF_INCLUDE Typical value:/usr/local/include (no default).

Specifies the path where the NetCDF header files are located.

ESMF_NETCDF_LIBPATH Typical value:/usr/local/lib (no default).

Specifies the path where the NetCDF library file is located.

ESMF_NETCDF_LIBS Typical value:"-lnetcdf_c++ -lnetcdf" (no default).

Specifies the linker directives needed to link the NetCDF library to the application.

The default value depends on the setting ofESMF_NETCDF. For the typical case whereESMF_NETCDFis set
to "standard" , ESMF_NETCDF_LIBSis set to"-lnetcdf_c++ -lnetcdf" . WhenESMF_NETCDF
is set to"split" , ESMF_NETCDF_LIBSis set to"-lnetcdff -lnetcdf_c++ -lnetcdf" .

In the NetCDF 4.2 released in March 2012, the C, C++, and Fortran libraries are released as separate packages. To
compile ESMF with NetCDF 4.2, it is required to have the NetCDF 4.2 Fortran Library, the NetCDF 4.2 C Library,
and the NetCDF 4.2 Legacy C++ Library installed in the same directory. TheESMF_NETCDFenvironement variable
has to be set to"split" . Note that currently ESMF does not work with the new C++ API introduced in NetCDF
4.2, therefore, the Legacy C++ Library has to be used.

8.3.3 Parallel-NetCDF

ESMF provides the ability to write Mesh weights using Parallel-NetCDF. The following environment variables enable
and specify the name and location of the desired Parallel-NetCDF library and associated header files:

ESMF_PNETCDF Possible value:not set(default),"standard" , <userstring>.

When defined, enables the use of Parallel-NetCDF.

not set (default) PNETCDF-dependent features will be disabled. The ESMF_PNETCDF_INCLUDE,
ESMF_PNETCDF_LIBPATH, andESMF_PNETCDF_LIBSenvironment variables will be ignored.

"standard" ESMF_PNETCDF_LIBS will be set to"-lpnetcdf" . The ESMF_PNETCDF_INCLUDE
andESMF_PNETCDF_LIBPATHenvironment variables will also be used, if defined.

<userstring> If set, ESMF_PNETCDF_INCLUDE, ESMF_PNETCDF_LIBPATH, and
ESMF_PNETCDF_LIBSenvironment variables will be used.

ESMF_PNETCDF_INCLUDE Typical value:/usr/local/include (no default).

Specifies the path where the Parallel-NetCDF header files arelocated.

ESMF_PNETCDF_LIBPATH Typical value:/usr/local/lib (no default).

Specifies the path where the Parallel-NetCDF library file is located.

ESMF_PNETCDF_LIBS Typical value:"-lpnetcdf" (no default).

Specifies the linker directives needed to link the Parallel-NetCDF library to the application.

20

http://trac.mcs.anl.gov/projects/parallel-netcdf

8.3.4 PIO

ESMF provides the ability to read and write data in both binary and NetCDF formats through ParallelIO (PIO), a
third-party IO software library that is integrated in the ESMF library. The following environment variable enables PIO
functionalities inside of ESMF.

The PIO code depends on MPI I/O support by the underlying MPI implementation to provide the binary format.
Almost all current MPI implementations support MPI I/O to the required degree. For NetCDF format support the
integrated PIO code depends onESMF_PNETCDF(see 8.3.3) and/orESMF_NETCDF(see 8.3.2) being enabled.

ESMF_PIO Possible value:not set(default),"internal" .

not set (default) PIO-dependent features will be disabled.

"OFF" Disables PIO-dependent code.

"internal" PIO-dependent features will be enabled and will use the PIO library that is included and built
with ESMF.

8.3.5 XERCES

ESMF provides the ability to read Attribute data in XML file format via the XERCES C++ library. (Writing Attribute
XML files is performed with the standard C++ output file streamfacility, rather than with Xerces). The following
environment variables enable, and specify the name and location of the desired XERCES C++ library and associated
header files:

ESMF_XERCES Possible value:not set(default),"standard" , <userstring>.

not set (default) XERCES-dependent features will be disabled. TheESMF_XERCES_INCLUDE,
ESMF_XERCES_LIBPATH, andESMF_XERCES_LIBSenvironment variables will be ignored.

"standard" ESMF_XERCES_LIBS will be set to"-lxerces-c" . TheESMF_XERCES_INCLUDEand
ESMF_XERCES_LIBPATHenvironment variables will also be used, if defined.

<userstring> If set, ESMF_XERCES_INCLUDE, ESMF_XERCES_LIBPATH, and ESMF_XERCES_LIBS
environment variables will be used, if defined.

ESMF_XERCES_INCLUDE Typical value:/usr/local/include (no default).

Specifies the path where the XERCES C++ header files are located.

ESMF_XERCES_LIBPATH Typical value:/usr/local/lib (no default).

Specifies the path where the XERCES C++ library file is located.

ESMF_XERCES_LIBS Typical value:"-lxerces-c" (no default).

Specifies the linker directives needed to link the XERCES C++library to the application.

The default value depends on the setting ofESMF_XERCES. For the typical case whereESMF_XERCESis set
to "standard" , ESMF_XERCES_LIBSis set to"-lxerces-c" .

21

http://code.google.com/p/parallelio/
http://xerces.apache.org/xerces-c/

8.4 ESMF Environment Variables

The following is a full alphabetical list of all environmentvariables which are used by the ESMF build system. In
many cases onlyESMF_DIRmust be set. On Linux and Darwin systemsESMF_COMPILERandESMF_COMMmust
also be set to select the appropriate Fortran and C++ compilers and MPI implementation. The other variables have
default values which work for most systems.

ESMF_ABI Possible value:32 , 64 , x86_64_32 , x86_64_small , x86_64_medium

If a system supports 32-bit and 64-bit (pointer wordsize) application binary interfaces (ABIs), this variable can
be set to select which ABI to use. Valid values are32 or 64 . By default the most common ABI is chosen. On
x86_64 achitectures three additional, more specific ABI settings are available,x86_64_32 , x86_64_small
andx86_64_medium .

ESMF_ARRAY_LITE Possible value:TRUE, FALSE(default)

Not normally set by user. ESMF auto-generates subroutine interfaces for a wide variety of data arrays of different
ranks, shapes, and types. Setting this variable toTRUEinstructs ESMF tonot generating interfaces for 5D, 6D,
and 7D arrays. This shrinks the amount of autogenerated codeas well as the number of overloaded interfaces.

ESMF_BOPT Possible value:g, O(default)

This environment variable controls the build option. To make a debuggable version of the library set
ESMF_BOPTto g before building. The default isO (capital oh) which builds an optimized version of the
library. If ESMF_BOPTis O, ESMF_OPTLEVELcan also be set to a numeric value between 0 and 4 to select a
specific optimization level.

ESMF_COMM Possible value:system-dependent

On systems with a vendor-supplied MPI communications library the vendor library is chosen by default for
communications andESMF_COMMneed not be set. For other systems (e.g. Linux or Darwin) a multitude of MPI
implementations is available andESMF_COMMmust be set to indicate which implementation is used to build
the ESMF library. SetESMF_COMMaccording to your situation to:mpich, mpich2, lam, openmpi or
intelmpi . ESMF_COMMmay also be set touser indicating that the user will set all the required flags using
advanced ESMF environment variables.

Alternatively, ESMF comes with a single-processor MPI-bypass library which is the default for Linux and
Darwin systems. To force the use of this bypass library setESMF_COMMequal to "mpiuni".

ESMF_COMPILER Possible value:system-dependent

The ESMF library build requires a working Fortran90 and C++ compiler. On platforms that don’t come with
a single vendor supplied compiler suite (e.g. Linux or Darwin) ESMF_COMPILERmust be set to select which
Fortran and C++ compilers are being used to build the ESMF library. Notice that setting theESMF_COMPILER
variable doesnot affect how the compiler executables are located on the system. ESMF_COMPILER(to-
gether withESMF_COMM) affect the name that is expected for the compiler executables. Furthermore, the
ESMF_COMPILERsetting is used to select compiler and linker flags consistent with the compilers indicated.

By default Fortran and C++ compiler executables are expected to be located in a location contained in the user’s
PATHenvironment variable. This means that if you cannot locate the correct compiler executable via thewhich
command on the shell prompt the ESMF build system won’t find iteither!

There are advanced ESMF environment variables that can be used to select specific compiler executables by
specifying the full path. This can be used to pick specific compiler executables without having to modify the
PATHenvironment variable.

Use ’gmake info’ to see which compiler executables the ESMF build system will be using according to your
environment variable settings.

22

To see possible values forESMF_COMPILER, cd to $ESMF_DIR/build_config and list the directories
there. The first part of each directory name corresponds to the output of ’uname -s’ for this platform. The second
part contains possible values forESMF_COMPILER. In some cases multiple combinations of Fortran and C++
compilers are possible, e.g. there isintel and intelgcc available for Linux. SettingESMF_COMPILER
to intel indicates that both Intel Fortran and C++ compilers are used, whereasintelgcc indicates that the
Intel Fortran compiler is used in combination with GCC’s C++compiler.

If you do not find a configuration that matches your situation you will need to port ESMF.

ESMF_CXX Possible value:executable

This variable can be used to override the default C++ compiler and linker front-end executables. The executable
may be specified with absolute path overriding the location determined by default from the user’s PATH variable.

ESMF_CXXCOMPILEOPTS Possible value:list of flags

Prepend compiler flags to the list of flags the ESMF build system determines.

ESMF_CXXCOMPILEPATHS Possible value:list of paths, each prepended with -I

Prepend compiler search paths to the list of search paths theESMF build system determines.

ESMF_CXXCOMPILER Possible value:executable

This variable can be used to override the default C++ compiler front-end executables. The executable may be
specified with absolute path overriding the location determined by default from the user’s PATH variable.

ESMF_CXXLINKER Possible value:executable

This variable can be used to override the default C++ linker front-end executables. The executable may be
specified with absolute path overriding the location determined by default from the user’s PATH variable.

ESMF_CXXLINKLIBS Possible value:list of libraries, each prepended with -l

Prepend libraries to the list of libraries the ESMF build system determines.

ESMF_CXXLINKOPTS Possible value:list of flags

Prepend linker flags to the list of flags the ESMF build system determines.

ESMF_CXXLINKPATHS Possible value:list of paths, each prepended with -L

Prepend linker search paths to the list of search paths the ESMF build system determines.

ESMF_CXXLINKRPATHS Possible value:list of paths, each prepended with the correct rpath option

Prepend linker rpaths to the list of rpaths the ESMF build system determines.

ESMF_CXXOPTFLAG Possible value:flag

This variable can be used to override the default C++ optimization flag.

ESMF_DEFER_LIB_BUILD Possible value:ON (default),OFF

This variable can be used to override the deferring of the build of the ESMF library. By default, the library is
built after all of the source files have been compiled. This speeds up the build process. It also allows parallel
compilation of source code when the -j flag is used with gmake.Setting this environment variable toOFFforces
the library to be updated after each individual compilation, thus disabling the ability to use parallel compilation.

ESMF_DIR Possible value:absolute path

The environment variableESMF_DIRmust be set to the full pathname of the top level ESMF directory before
building the framework. This is the only environment variable which is required to be set on all platforms under
all conditions.

23

ESMF_F90 Possible value:executable

This variable can be used to override the default Fortran90 compiler and linker front-end executables. The
executable may be specified with absolute path overriding the location determined by default from the user’s
PATH variable.

ESMF_F90COMPILEOPTS Possible value:list of flags

Prepend compiler flags to the list of flags the ESMF build system determines.

ESMF_F90COMPILEPATHS Possible value:list of paths, each prepended with -I

Prepend compiler search paths to the list of search paths theESMF build system determines.

ESMF_F90COMPILER Possible value:executable

This variable can be used to override the default Fortran90 compiler front-end executables. The executable may
be specified with absolute path overriding the location determined by default from the user’s PATH variable.

ESMF_F90IMOD Possible value:flag

This variable can be used to override the default flag (-I) used to specify a Fortran module directory.

ESMF_F90LINKER Possible value:executable

This variable can be used to override the default Fortran90 linker front-end executables. The executable may be
specified with absolute path overriding the location determined by default from the user’s PATH variable.

ESMF_F90LINKLIBS Possible value:list of libraries, each prepended with -l

Prepend libraries to the list of libraries the ESMF build system determines.

ESMF_F90LINKOPTS Possible value:list of flags

Prepend linker flags to the list of flags the ESMF build system determines.

ESMF_F90LINKPATHS Possible value:list of paths, each prepended with -L

Prepend linker search paths to the list of search paths the ESMF build system determines.

ESMF_F90LINKRPATHS Possible value:list of paths, each prepended with the correct rpath option

Prepend linker rpaths to the list of rpaths the ESMF build system determines.

ESMF_F90OPTFLAG Possible value:flag

This variable can be used to override the default Fortran90 optimization flag.

ESMF_INSTALL_BINDIR Possible value:relative or absolute path

Location into which to install the ESMF apps during installation. This location can be specified as absolute path
(starting with "/") or relative toESMF_INSTALL_PREFIX.

ESMF_INSTALL_DOCDIR Possible value:relative or absolute path

Location into which to install the documentation during installation. This location can be specified as absolute
path (starting with "/") or relative toESMF_INSTALL_PREFIX.

ESMF_INSTALL_HEADERDIR Possible value:relative or absolute path

Location into which to install the header files during installation. This location can be specified as absolute path
(starting with "/") or relative toESMF_INSTALL_PREFIX.

ESMF_INSTALL_LIBDIR Possible value:relative or absolute path

Location into which to install the library files during installation. This location can be specified as absolute path
(starting with "/") or relative toESMF_INSTALL_PREFIX.

24

ESMF_INSTALL_MODDIR Possible value:relative or absolute path

Location into which to install the F90 module files during installation. This location can be specified as absolute
path (starting with "/") or relative toESMF_INSTALL_PREFIX.

ESMF_INSTALL_PREFIX Possible value:relative or absolute path

This variable specifies the prefix of the installation path used during the installation process accessible thought
the install target. Libraries, F90 module files, header filesand documentation all are installed relative to
ESMF_INSTALL_PREFIX by default. TheESMF_INSTALL_PREFIX may be provided as absolute path
(starting with "/") or relative toESMF_DIR.

ESMF_LAPACK See 8.3.1

ESMF_LAPACK_LIBPATH See 8.3.1

ESMF_LAPACK_LIBS See 8.3.1

ESMF_MACHINE Possible value: output ofuname -m where available.

Not normally set by user. This variable indicates achitectual details about the machine on which the ESMF
library is being built. The value of this variable will affect which ABI settings are available and what they mean.
ESMF_MACHINEis set automatically.

ESMF_MPIBATCHOPTIONS Possible value:system-dependent

Variable used to pass system-specific queue options to the batch system. Typically the queue, project and limits
are set. See section 10.1.1 for a discussion of this option.

ESMF_MPILAUNCHOPTIONS Possible value:system-dependent

Variable used to pass system-specific options to the MPI launch facility. See section 10.1.1 for a discussion of
this option.

ESMF_MPIMPMDRUN Possible value:executable

This variable can be used to override the default utility used to launch parallel execution of ESMF test applica-
tions in MPMD mode. The executable inESMF_MPIMPMDRUNmay be specified with path.

ESMF_MPIRUN Possible value:executable

This variable can be used to override the default utility used to launch parallel ESMF test or example applica-
tions. The executable inESMF_MPIRUNmay be specified with path. See section 10.1.1 for a discussion of this
option.

ESMF_MPISCRIPTOPTIONS Possible value:system-dependent

Variable used to pass system-specific options to the first level MPI script accessed by ESMF. See section 10.1.1
for a discussion of this option.

ESMF_NETCDF See 8.3.2

ESMF_NETCDF_INCLUDE See 8.3.2

ESMF_NETCDF_LIBPATH See 8.3.2

ESMF_NETCDF_LIBS See 8.3.2

ESMF_NO_INTEGER_1_BYTE Possible value:TRUE(default),FALSE

Not normally set by user. Setting this variable toFALSE instructs ESMF to generating data array interfaces for
data types of 1-byte integers.

25

ESMF_NO_INTEGER_2_BYTE Possible value:TRUE(default),FALSE

Not normally set by user. Setting this variable toFALSE instructs ESMF to generating data array interfaces for
data types of 2-byte integers.

ESMF_OPENACC Possible value:ON, OFF(default)

Compiles and links the ESMF library with OpenACC compiler flags.

ESMF_OPENMP Possible value:ON, OFF(default is system dependent)

Compiles and links the ESMF library with OpenMP compiler flags.

ESMF_OPTLEVEL Possible value:numerical value

SeeESMF_BOPTfor details.

ESMF_OS Possible value: output ofuname -s except when cross-compiling or forUNICOS/mpwhereESMF_OS
is Unicos .

Not normally set by user unless cross-compiling. This variable indicates the target system for which the ESMF
library is being built. Under normal circumstances, i.e. ESMF is being build on the target system,ESMF_OS
is set automatically. However, when cross-compiling for a different target systemESMF_OSmust be set to the
respective target OS. For example, when compiling for the Cray X1 on an interactive X1 nodeESMF_OSwill
be set automatically. However, when ESMF is being cross-compiled for the X1 on a Linux host the user must
setESMF_OSto Unicos manually in order to indicate the intended target platform.

ESMF_PNETCDF See 8.3.3

ESMF_PNETCDF_INCLUDE See 8.3.3

ESMF_PNETCDF_LIBPATH See 8.3.3

ESMF_PNETCDF_LIBS See 8.3.3

ESMF_PTHREADS Possible value:ON(default on most platforms),OFF

This compile-time option controls ESMF’s dependency on a functioning Pthreads library. The default option
is set toONwith the exception of IRIX64 and platforms that don’t provide Pthreads. On IRIX64 the use of
Pthreads in ESMF is disabled by default because the Pthreadslibrary conflicts with the use of OpenMP on this
platform.

The user can override the default setting ofESMF_PTHREADSon all platforms that provide Pthread support.
Setting theESMF_PTHREADSenvironment variable toOFF will disable ESMF’s Pthreads feature set. On
platforms that don’t support Pthreads, e.g. IBM BlueGene/Lor Cray XT3, the defaultOFFsetting cannot be
overridden!

ESMF_SITE Possible value:site string, default

Build configure file site name or the value default. If not set,then the value of default is assumed. When
including platform-specific files, this value is used as the third part of the directory name (parts 1 and 2 are the
ESMF_OS value and ESMF_COMPILER value, respectively.)

The Sourceforgeesmfcontrib repository contains makefiles which have already been customized for cer-
tain machines. If one exists for your site and you wish to use it, download the corresponding files into the
build_contrib directory and setESMF_SITE to your location (which corresponds to the last part of the
directory name). See the Sourceforge site http://sourceforge.net/projects/esmfcontrib for more information.

ESMF_TESTEXHAUSTIVE Possible value:ON, OFF(default)

Variable specifying how to compile the unit tests. If set to the valueON, then all unit tests will be compiled and
will be executed when the test is run. If unset or set to any other value, only a subset of the unit tests will be
included to verify basic functions. Note that this is a compile-time selection, not a run-time option.

26

http://sourceforge.net/projects/esmfcontrib

ESMF_TESTFORCEOPENACC Possible value:ON, OFF(default)

TheONsetting enforces usage of OpenACC compiler flags when building ESMF test applications. This allows
testing of user-level OpenACC usage even withESMF_OPENACCset toOFF.

ESMF_TESTFORCEOPENMP Possible value:ON, OFF(default)

TheONsetting enforces usage of OpenMP compiler flags when building ESMF test applications. This allows
testing of user-level OpenMP usage even withESMF_OPENMPset toOFF.

ESMF_TESTHARNESS_ARRAY Possible value:test harness make target(default not set)

Variable specifying the test harness makefile target for thearray class. If this variable is not specified, a default
test scenario will be run for the array class. See the ESMF Software Developer’s Guide for instructions for
selecting other test harness scenarios.

ESMF_TESTHARNESS_FIELD Possible value:test harness make target(default not set)

Variable specifying the test harness makefile target for thefield class. If this variable is not specified, a default
test scenario will be run for the field class. See the ESMF Software Developer’s Guide for instructions for
selecting other test harness scenarios.

ESMF_TESTMPMD Possible value:ON, OFF(default)

Variable specifying whether to run MPMD-style tests, i.e. test applications that start up as multiple separate
executables.

ESMF_TESTSHAREDOBJ Possible value:ON, OFF(default)

Variable specifying whether to run shared object tests. This requires that the compute environment supports
shared objects, and that the ESMF library is available in form of a shared library.

ESMF_TESTWITHTHREADS Possible value:ON, OFF(default)

If this environment variable is set toONbeforethe ESMF system tests are build they will activate ESMF thread-
ing in their code. Specifically each component will be executed using ESMF single threading instead of the
default non-threaded mode. The difference between non-threaded and ESMF single threaded execution should
be completely transparent. Notice that the setting ofESMF_TESTWITHTHREADSdoesnot alter ESMF’s de-
pendency on Pthreads but tests ESMF threading features during the system tests. An ESMF library that was
compiled with disabled Pthread features (via theESMF_PTHREADSvariable) will produce ESMF error mes-
sages during system test execution if the system tests were compiled withESMF_TESTWITHTHREADSset to
ON.

ESMF_XERCES See 8.3.5

ESMF_XERCES_INCLUDE See 8.3.5

ESMF_XERCES_LIBPATH See 8.3.5

ESMF_XERCES_LIBS See 8.3.5

Environment variables must be set in the user’s shell or whencalling gmake. It isnotnecessary to edit ESMF makefiles
or other build system files to set these variables. Here is an example of setting an environment variable in the csh/tcsh
shell:

setenv ESMF_ABI 32

In bash/ksh shell environment variables are set this way:

27

export ESMF_ABI=32

Environment variables can also be set from the gmake commandline:

gmake ESMF_ABI=32

8.5 Supported Platforms

The following two tables list various combinations of environment variable settings used by the ESMF build system.
A default value in the compiler column indicates the vendor compiler.A mpi value in the comm column indicates
the vendor MPI implementation.

The first table lists the exact combinations which are testedregularly and are fully supported. The second table lists
all possible combinations which are included in the build system.

Fully tested combinations: (See http://www.earthsystemmodeling.org/download/platforms/ for the most up-to-date
table of supported combinations.)

ESMF_OS ESMF_COMPILER ESMF_COMM ESMF_ABI F90 compiler C++ compiler

Cray XC30 Unicos intel mpi 64 ftn/ifort 13.0.1.117 CC/icpc13.0.1.117

Cray XE6 Unicos gfortran mpi 64 ftn/gfortran4.7.2 CC/g++4.7.2

Cray XE6 Unicos intel mpi 64 ftn/ifort 13.0.1.117 CC/icpc13.0.1.117

Cray XE6 Unicos pgi mpi 64 ftn/pgf9012.4-0 CC/pgCC12.4-0

IBM iDataPlex Unicos intel mpich2 64 ifort 12.1.5.339 icpc 12.1.5.339

Mac Xeon (64) Darwin g95 mpiuni 32 g950.92(4.0.3) g++ 4.2.1

mpich2
mvapich2

Mac Xeon (64) Darwin gfortran mpich2 64 gfortran4.5.3 g++ 4.5.3

mvapich2
Mac Xeon (64) Darwin nag mpiuni 64 nagfor5.3(854) g++ 4.2.1

mpich2
mvapich2

PC Xeon (64) Linux g95 mpiuni 64 g950.92(4.0.3) g++ 4.4.0

mpich2
mvapich2
openmpi

PC Xeon (64) Linux gfortran mpich2 64 gfortran4.4.0 g++ 4.4.0

mvapich2
openmpi

PC Xeon (64) Linux nag mpiuni 64 nagfor5.3(854) g++ 4.4.0

mpich2
mvapich2
openmpi

PC Xeon (64) Cluster Linux g95 mvapich2 64 g950.92(4.0.3) g++ 4.1.2

PC Xeon (64) Cluster Linux gfortran mpich2 64 gfortran4.4.6 g++ 4.4.6

mvapich2
PC Xeon (64) Cluster Linux intel mpich2 64 ifort 11.1.064 icpc 11.1.064

mvapich2
PC Xeon (64) Cluster Linux pgi mvapich2 64 pgf909.0-4 pgCC9.0-4

PC Xeon (64) Cluster Linux intel mvapich2 64 ifort 12.1.4.319 icpc 12.1.4.319

28

http://www.earthsystemmodeling.org/download/platforms/

openmpi
PC Xeon (64) Cluster Linux pgi mvapich2 64 pgf9012.5-0 pgCC12.5-0

PC Xeon (Westmere) ClusterLinux intel openmpi 64 ifort 12.1.4.319 icpc 12.1.4.319

PC Xeon (Westmere) ClusterLinux pgi openmpi 64 pgf9012.3-0 pgCC12.3-0

PC Xeon (64) Cluster Linux g95 mvapich2 64 g950.93(4.0.3) g++ 4.3.2

PC Xeon (64) Cluster Linux gfortran mvapich2 64 gfortran4.7.1 g++ 4.7.1

PC Xeon (64) Cluster Linux gfortran openmpi 64 gfortran4.6.3 g++ 4.6.3

PC Xeon (64) Cluster Linux intel intelmpi 64 ifort 11.1.069 icpc 11.1.069

openmpi
PC Xeon (64) Cluster Linux intel mvapich2 64 ifort 13.1.1.163 icpc 13.1.1.163

PC Xeon (64) Cluster Linux intel mpiuni 64 ifort 12.1.0.233 icpc 12.1.0.233

PC Xeon (64) Cluster Linux nag mpiuni 64 nagfor5.3.1(907) g++ 4.3.4

mvapich2
openmpi

PC Xeon (64) Cluster Linux pgi mvapich2 64 pgf9012.10-0 pgCC12.10-0

openmpi
SGI Altix ICE Linux gfortran mpiuni 64 gfortran4.4.5 g++ 4.4.5

mvapich2
mpi

SGI Altix ICE Linux intel mpiuni 64 ifort 12.0.2 icpc 12.0.2

mvapich2
mpi
intelmpi

SGI Altix ICE Linux pgi mpiuni 64 pgf9012.5-0 pgCC12.5-0

mpi
SGI Altix ICE Linux intel mpi 64 ifort 12.1.0.233 icpc 12.1.0.233

SGI Altix ICE Linux pgi mpi 64 pgf9011.10-0 pgCC11.10-0

SGI Altix XE Cluster Cygwin g95 mpiuni 32 g950.93(4.1.1) g++ 4.5.3

SGI Altix XE Cluster Cygwin gfortran mpiuni 32 gfortran4.5.3 g++ 4.5.3

SGI Altix XE Cluster MinGW intel msmpi 64 ifort 12.1.3.300 icl 12.1.3.300

SGI Altix XE Cluster MinGW intelcl msmpi 64 ifort 12.1.3.300 cl 14.00.50727.762

All possible options. Where multiple options exist, and the default is independent of ESMF_MACHINE, the default
value is inbold:

ESMF_OS ESMF_COMPILER ESMF_COMM ESMF_ABI

AIX default mpiuni, mpi,user 32, 64
Cygwin g95 mpiuni ,mpich,mpich2,lam,openmpi,user 32, 64
Cygwin gfortran mpiuni ,mpich,mpich2,lam,openmpi,user 32, 64
Darwin absoft mpiuni ,mpich,mpich2,mvapich2,lam,openmpi,user 32, 64
Darwin g95 mpiuni ,mpich,mpich2,mvapich2,lam,openmpi,user 32, 64
Darwin gfortran mpiuni ,mpich,mpich2,mvapich2,lam,openmpi,user 32, 64
Darwin intel mpiuni ,mpich,mpich2,mvapich2,lam,openmpi,user 32, 64
Darwin intelgcc mpiuni ,mpich,mpich2,lam,openmpi,user 32, 64
Darwin nag mpiuni ,mpich,mpich2,mvapich2,lam,openmpi,user 32, 64
Darwin xlf mpiuni ,mpich,mpich2,lam,openmpi,user 32
Darwin xlfgcc mpiuni ,mpich,mpich2,lam,openmpi,user 32
IRIX64 default mpiuni, mpi,user 32, 64
Linux absoft mpiuni ,mpich,mpich2,mvapich2,lam,openmpi,user 32, 64
Linux absoftintel mpiuni ,mpich,mpich2,lam,openmpi,user 32, 64

29

Linux g95 mpiuni ,mpich,mpich2,mvapich2,lam,openmpi,user 32, 64, ia64_6 4,
x86_64_32,
x86_64_small,
x86_64_medium

Linux gfortran mpiuni ,mpich,mpich2,mvapich2,lam,openmpi,user 32, 64, ia64_6 4,
x86_64_32,
x86_64_small,
x86_64_medium

Linux intel mpiuni ,mpi,mpich,mpich2,mvapich2,lam,openmpi, 32, 64, ia64_6 4,
user,intelmpi,scalimpi x86_64_32,

x86_64_small,
x86_64_medium

Linux intelgcc mpiuni ,mpich,mpich2,lam,openmpi, 32, 64, ia64_64,
user,intelmpi x86_64_32,

x86_64_small,
x86_64_medium

Linux lahey mpiuni ,mpich,mpich2,mvapich2,lam,openmpi,user 32
Linux nag mpiuni ,mpich,mpich2,mvapich2,lam,openmpi,user 32
Linux nagintel mpiuni ,mpich,mpich2,lam,openmpi,user 32
Linux pathscale mpiuni ,mpich,mpich2,lam,openmpi,user 32, 64, x86_64_32,

x86_64_small,
x86_64_medium

Linux pgi mpiuni ,mpich,mpich2,mvapich,mvapich2 32, 64, x86_64_32,
lam,openmpi,user,scalimpi x86_64_small,

x86_64_medium
Linux pgigcc mpiuni ,mpich,mpich2,lam,openmpi,user 32
Linux xlf mpiuni, mpi,user 32
MinGW intel mpiuni ,msmpi,user 32, 64
MinGW intelcl mpiuni ,msmpi,user 32, 64
OSF1 default mpiuni, mpi,user 64
SunOS default mpiuni, mpi,user 32, 64
Unicos default mpiuni, mpi,user 64
Unicos cce mpiuni, mpi,user 64
Unicos gfortran mpiuni, mpi,user 64
Unicos intel mpiuni, mpi,user 64
Unicos pathscale mpiuni, mpi,user 64
Unicos pgi mpiuni, mpi,user 64

Building the library for multiple architectures or optionsat the same time is supported; building or running the tests or
examples is restricted to one platform/architecture at a time. The output from the test cases will be stored in a separate
directories so the results will be kept separate for different architectures or options.

8.6 Building the ESMF Library

GNU make is required to build the library. On some systems this will be just the commandmake. On others it might
be installed asgmake or evengnumake . In any event, use the –version option with the make command to determine
if it is GNU make.

Build the library with the command:

30

gmake

Makefiles throughout the framework are configured to allow users to compile files only in the directory wheregmake
is entered. Shared libraries are rebuilt only if necessary.In addition the entire ESMF framework may be built from
any directory by enteringgmake all , assuming that all the environmental variables are set correctly as described in
Section 8.4.

The makefiles are also configured to allow multiple make targets to be compiled in parallel, via the gmake -j flag. For
example, to use eight parallel processes to build the library, use -j8:

gmake -j8 lib

The parallel compilation feature depends onESMF_DEFER_LIB_BUILD=ON(the default) so that the library build
will be deferred until all files have been compiled.

The -j option should only be used during the creation of the library. The test base and examples will not work correctly
with -j set larger than 1.

Users may also run examples or execute unit tests of specific classes by changing directories to the desired class
examples or tests directories and enteringgmake run_examples or gmake run_unit_tests , respec-
tively. For non-multiprocessor machines, uni-processor targets are available asgmake run_examples_uni or
gmake run_unit_tests_uni .

8.7 Building the ESMF Documentation

The ESMF source documentation consists of anESMF User’s Guideand anESMF Reference Manual for Fortran.

The tarballs on the ESMF website for ESMF versions 3.0.1 and later do not contain the ESMF documentation files.
The documentation is available on the ESMF website in html orpdf form and most users should not need to build it
from the source.

If a user does want to build the documentation, they will needto download theesmf module from the ESMF Source-
Forge repository (see section 5.1.1. Latex and latex2html must be installed.

To build documentation:

gmake doc ! Builds the manuals, including pdf and html.

The resulting documentation files will be located in the top level directory $ESMF_DIR/doc

8.8 Installing the ESMF

The ESMF build system offers the standardinstall target to install all necessary files created during the build
process into user specified locations. The installation procedure will also install the ESMF documentation if it has
been built successfully following the procedure outlined above.

The installation location can be customized using sixESMF_environment variables:

• ESMF_INSTALL_PREFIX– prefix for the other five variables.

• ESMF_INSTALL_HEADERDIR– where to install header files.

31

• ESMF_INSTALL_LIBDIR – where to install library files.

• ESMF_INSTALL_MODDIR– where to install Fortran module files.

• ESMF_INSTALL_BINDIR – where to install application files.

• ESMF_INSTALL_DOCDIR– where to install documentation files.

Section 8.4 describes what each of these environment variables does and how to set them.

Install ESMF with the command:

gmake install

Check the ESMF installation with the command:

gmake installcheck

Advice to installers.To complete the installation of ESMF, a single ESMF specific environment variable should be set.
The variable is namedESMFMKFILE, and it must point to theesmf.mk file that was generated during the installation
process. Systems that support multiple ESMF installationsvia management software (e.g.modules, softenv, ...) should
set/reset theESMFMKFILEenvironment variable as part of the configuration.

Additionally, it is typically conventient to append the user’s PATHenvironment variable to provide access to the ESMF
applications that were built during the installation process. The application binaries are located in the directory that
was specifyied asESMF_INSTALL_BINDIR during the ESMF installation. The location is also stored invariable
ESMF_APPSDIR, defined in fileesmf.mk . Systems that make ESMF installations available through management
software (e.g.modules, softenv, ...) should modify the user’sPATHenvironment variable as part of the configuration.

Hint. By default, fileesmf.mk is located next to the ESMF library file in directoryESMF_INSTALL_LIBDIR .
Consequently, unlessesmf.mk has been moved to a different location after the installation, the correct setting for
ESMFMKFILEis $(ESMF_INSTALL_LIBDIR)/esmf.mk .

Rationale. The only piece of information that is needed to use an ESMF installation is the exact location of the
associatedesmf.mk file. This file contains all of the relevant settings and flags that allow a user to build their
application against the ESMF installation. Standardizingthe mechanism by which the location ofesmf.mk is made
available to the user by the system will help users in the design of portable application build systems. (See sections 6
and 7 for details about the usage ofesmf.mk .) Further, modifying the user’sPATHenvironment variable is optional,
since the location of the ESMF application binaries is available through theesmf.mk file. However, setting the
user’sPATHvariable so that the ESMF applications are directly and conveniently accessible from the command line
is recommended, especially if managment software (e.g.modules, softenv, ...) is used on the system.

9 Porting the ESMF

This section goes into more detail about the ESMF build system and how to port the ESMF software to new platforms.

9.1 The ESMF Build System

For most users the description of the build system in previous sections should be sufficient. Some users, however,
may wish to have a more detailed knowledge of the make system either for configuring different build options or for
porting to unsupported platforms.

32

9.1.1 General structure

The main components of the build system are:

• Build directories with makefile fragments

There are two directories containing makefile fragment filesused by the ESMF build system.

Thebuild directory contains the generic makefile fragment filecommon.mk that is included by the top level
makefile in the source tree. Thecommon.mk contains generic build system settings and build rules used
across all platforms. A user should have no reason to editcommon.mk.

The build_config directory contains subdirectories with makefile fragments(build_rules.mk) for
each supported platform defining compilers, compiler flags and the various other definitions that are necessary
to build on each platform. One of thebuild_rules.mk files will be included by thebuild/common.mk
file depending on the values of the environment variables ESMF_OS, ESMF_COMPILER and ESMF_SITE.
See below for more details on environment variables.

• Environment variables

Environment variables with the prefixESMF_are used to pass user specified information to the ESMF build
system. A full list ofESMF_environment variables is provided in section 8.4 of this document.

Most environment variables are optional and the ESMF build system will use default settings if it finds these
variable unset. One piece of information that must always beprovided by setting the respective environment
variable is the root of the ESMF directory. There are three sets of source codes the build system supports. All
need environment variables set to point to their top level source code directories.

ESMF Library

To build the ESMF library, ESMF_DIR needs to be set to the top level ESMF library source code directory.

Implementation Report

The build system needs ESMF_IMPL_DIR set to the top level source code directory of the Implementation
Report source tree to build the report and to build and run theexamples.

EVA Applications

An EVA source code tree does not contain a copy of the ESMF build system. Instead it uses a copy
found in an ESMF library source code tree. Building the EVA applications requires that ESMF_EVA_DIR
and ESMF_DIR be set. ESMF_EVA_DIR has to be set to the top directory of the EVA source code.
ESMF_DIR has to be set to the top directory of an ESMF source code tree.

• Makefiles

Every source tree contains amakefile in its top level directory. Thismakefile includes thecommon.mk
file from thebuild directory which in turn includes the platform specificbuild_rules.mk file from one
of the build_config subdirectories. The top levelmakefile contains makefile settings specific for the
source code that it is found in.

Each directory in the source tree contains amakefile which includes the top levelmakefile . These local
makefiles include definitions that allow the local files and documents to be built.

9.1.2 Build configuration

A single makefile or makefile fragment from the build system never constitutes a complete set of build rules and
settings. Starting from the local makefile, successive include commands are used to string together makefiles and
makefile fragments to create a complete system of build rulesand settings. Configuration of the build system is done

33

by including a configuration makefile fragment. A configuration for a specific machine or compiler is referred to as a
site configuration.

The string of files included is fairly short. Makefiles below the top level makefile include the top level makefile. The
top level makefile includesbuild/common.mk and thenbuild/common.mk includes a configuration file from
the build_config directory. The configuration files in thebuild_config directory contain the platform and
site specific build settings. The os, compiler and site that afile configures is determined by its name. The configuration
makefile fragments follow the naming convention

build_config/ESMF_OS.ESMF_COMPILER.ESMF_SITE/build_ rules.mk

whereESMF_OS, ESMF_COMPILERand ESMF_SITE are environment variables either set by the user or given
default values by the build system.ESMF_OSis the target operating system. If the build is performedon the target
systemESMF_OSwill typically have the value returned by the commanduname -s . ESMF_COMPILERis the
compiler name.ESMF_SITE, if set, is generally the current machine name, the location, or the organization (e.g. mit,
cola). If there are no site specific files for a particular platform, thenESMF_COMPILERandESMF_SITEwill be set
to default . Examples:

! Default configuation for IBM AIX systems
build_config/AIX.default.default/build_rules.mk

! Linux configuation using lahey compilers.
build_config/Linux.lahey.default/build_rules.mk

9.1.3 Source code configuration

Some of the ESMF C++ and Fortran source files contain preprocessor directives to configure the source code for
specific platforms. The directives are included in the source code and are pre-processed before the source code is
compiled. The directives are used to determine among other things, the size of variable types.

The ESMF build system provides preprocessor directives inESMC_Conf.h andESMF_Conf.inc files that are
included in the source code. These files are located in

build_config/ESMF_OS.ESMF_COMPILER.ESMF_SITE/ESMC_C onf.h
build_config/ESMF_OS.ESMF_COMPILER.ESMF_SITE/ESMF_C onf.inc

whereESMF_OS, ESMF_COMPILERandESMF_SITE are environment variables set by the user or given default
values be the build system. Based on the settings of these environment variables the build system provides a path to
the correct files during source code compilation.

9.2 Porting the ESMF to New Platforms

The ESMF build system can be ported to other Unix platforms byadding a new platform specific make-
file fragment and two associated configuration files. These files (build_rules.mk , ESMC_Conf.h ,
ESMF_Conf.inc) must be placed into a new subdirectory of thebuild_config directory, following the
ESMF_OS.ESMF_COMPILER.ESMF_SITEnaming convention.

When porting to a new platform it is often helpful to start with a copy of the configuration of an existing ESMF port.
You may, for example, want to start with a copy of thebuild_config/Linux.g95.default directory when
working on a new Linux configuration.

34

9.2.1 Customizing thebuild_rules.mk fragment

The purpose of thebuild_rules.mk makefile fragment is to customize the build procedure for a specific platform.
The customization is done via makefile variables. The mainmakefile at the top level of the ESMF directory
structure first includes thecommon.mkmakefile fragment. This common makefile fragment defines a large number of
variables, setting them either to generally valid default values or to specific values the user has set in their environment
usingESMF_style environment variables.

The platform specificbuild_rules.mk makefile fragment is included bycommon.mk after the variables have
been initialized, butbeforeany rules are defined incommon.mkusing these variables. This givesbuild_rules.mk
a chance to modify these variables as it may be necessary to accommodate platform specific properties.

Fortunately only a very small subset of variables pre-defined in common.mk typically need to be modified or over-
ridden inbuild_rules.mk with platform specific settings. However, there are some variables thatmustbe set in
everybuild_rules.mk file. These are variables that are not pre-set incommon.mk.

ESMF_CXXDEFAULT Default C++ compiler to be used on this platform. This variable will be used by
common.mk to set the associatedESMF_CXXvariables.

ESMF_CXXCOMPILER_VERSION Command that when executed will provide information about the version of
the C++ compiler to stdout.

ESMF_F90DEFAULT Default Fortran compiler to be used on this platform. This variable will be used by
common.mk to set the associatedESMF_F90variables.

ESMF_F90COMPILER_VERSION Command that when executed will provide information about the version of
the F90 compiler to stdout.

ESMF_MPIRUNDEFAULT Default MPI job launch facility to be used on this platform. This variable will be used
by common.mk to set the associatedESMF_MPIRUNvariables.

The following is a complete alphabetical list of variables that are pre-set incommon.mkbeforebuild_rules.mk is
included. Some of these variables correspond toESMF_environment variables while others have a more complicated
dependency on the environment variables set by the user.

ESMF_ABI

ESMF_APPSDIR

ESMF_AR

ESMF_ARCREATEFLAGS

ESMF_ARCREATEFLAGSDEFAULT

ESMF_ARDEFAULT

ESMF_AREXTRACTFLAGS

ESMF_AREXTRACTFLAGSDEFAULT

ESMF_ARRAY_LITE

ESMF_BOPT

ESMF_BUILD

35

ESMF_BUILD_DOCDIR

ESMF_COMM

ESMF_COMPILER

ESMF_CONFDIR

ESMF_CPP

ESMF_CPPDEFAULT

ESMF_CXXCOMPILECPPFLAGS

ESMF_CXXCOMPILEOPTS

ESMF_CXXCOMPILEPATHS

ESMF_CXXCOMPILEPATHSLOCAL

ESMF_CXXCOMPILER

ESMF_CXXCOMPILERDEFAULT

ESMF_CXXESMFLINKLIBS

ESMF_CXXLINKER

ESMF_CXXLINKERDEFAULT

ESMF_CXXLINKLIBS

ESMF_CXXLINKOPTS

ESMF_CXXLINKPATHS

ESMF_CXXLINKRPATHS

ESMF_CXXOPTFLAG

ESMF_CXXOPTFLAG_G

ESMF_CXXOPTFLAG_O

ESMF_CXXOPTFLAG_X

ESMF_DIR

ESMF_DOCDIR

ESMF_EXDIR

ESMF_F90COMPILECPPFLAGS

ESMF_F90COMPILEFIXCPP

ESMF_F90COMPILEFIXNOCPP

ESMF_F90COMPILEFREECPP

ESMF_F90COMPILEFREENOCPP

36

ESMF_F90COMPILEOPTS

ESMF_F90COMPILEPATHS

ESMF_F90COMPILEPATHSLOCAL

ESMF_F90COMPILER

ESMF_F90COMPILERDEFAULT

ESMF_F90ESMFLINKLIBS

ESMF_F90IMOD

ESMF_F90LINKER

ESMF_F90LINKERDEFAULT

ESMF_F90LINKLIBS

ESMF_F90LINKOPTS

ESMF_F90LINKPATHS

ESMF_F90LINKRPATHS

ESMF_F90MODDIR

ESMF_F90OPTFLAG

ESMF_F90OPTFLAG_G

ESMF_F90OPTFLAG_O

ESMF_F90OPTFLAG_X

ESMF_GREPV

ESMF_INCDIR

ESMF_INSTALL_BINDIR

ESMF_INSTALL_BINDIR_ABSPATH

ESMF_INSTALL_DOCDIR

ESMF_INSTALL_DOCDIR_ABSPATH

ESMF_INSTALL_HEADERDIR

ESMF_INSTALL_HEADERDIR_ABSPATH

ESMF_INSTALL_LIBDIR

ESMF_INSTALL_LIBDIR_ABSPATH

ESMF_INSTALL_MODDIR

ESMF_INSTALL_MODDIR_ABSPATH

ESMF_INSTALL_PREFIX

37

ESMF_INSTALL_PREFIX_ABSPATH

ESMF_LDIR

ESMF_LIBDIR

ESMF_LOCOBJDIR

ESMF_MACHINE

ESMF_MODDIR

ESMF_MPIBATCHOPTIONS

ESMF_MPILAUNCHOPTIONS

ESMF_MPIMPMDRUN

ESMF_MPIMPMDRUNDEFAULT

ESMF_MPIRUN

ESMF_MPIRUNDEFAULT

ESMF_MPISCRIPTOPTIONS

ESMF_MV

ESMF_NO_INTEGER_1_BYTE

ESMF_NO_INTEGER_2_BYTE

ESMF_OS

ESMF_OPTLEVEL

ESMF_PTHREADS

ESMF_PTHREADSDEFAULT

ESMF_RANLIB

ESMF_RANLIBDEFAULT

ESMF_RM

ESMF_RPATHPREFIX

ESMF_SED

ESMF_SEDDEFAULT

ESMF_SITE

ESMF_SITEDIR

ESMF_SL_LIBLIBS

ESMF_SL_LIBLINKER

ESMF_SL_LIBOPTS

38

ESMF_SL_LIBS_TO_MAKE

ESMF_SL_SUFFIX

ESMF_STDIR

ESMF_TEMPLATES

ESMF_TESTDIR

ESMF_TESTEXHAUSTIVE

ESMF_TESTMPMD

ESMF_TESTWITHTHREADS

ESMF_UTCDIR

ESMF_UTCSCRIPTS

ESMF_WC

9.2.2 CustomizingESMC_Conf.h and ESMF_Conf.inc

TheESMC_Conf.h file is used to define several settings used during compilation of ESMF library code written in
C++.

FTN_X(func) Macro that will correctly expand "func" to match the Fortransymbol convention. Use this macro for
function names that contain an underscore.

FTNX(func) Macro that will correctly expand "func" to match the Fortransymbol convention. Use this macro for
function names that donotcontain an underscore.

ESMCI_FortranStrLenArg Typedef to match the data type of the ’hidden’ string length argument that Fortran uses
when passing CHARACTER strings.

ESMF_PRESENT(arg) Macro for a boolean expression that returns TRUE if "arg" is a"present" argument passed
from Fortran into C++.

ESMC_POINTER_SIZE Size of C pointer in bytes.

TheESMF_Conf.inc file is used tooptionallydefine two important macros:

ESMF_NO_INITIALIZERS If this macro is defined ESMF will assume that initializers inside Fortran derived type
definitions are not supported.

ESMF_SEQUENCE_BUG If this macro is defined ESMF will not use theSEQUENCEspecifier inside Fortran de-
rived types under certain circumstances.

9.3 Shared Object Libraries

On some platforms, a shared object library is created in addition to the standard.a archive library. Shared object li-
braries are libraries that are loaded by the first program that uses them. All programs that start afterwards automatically
use the existing shared library. The library is kept in memory as long as any active program is still using it.

Shared object libraries can be pre-linked to system libraries and using them can simplify dealing with ESMF’s depen-
dency on Fortran90 and C++ runtime libraries.

39

9.4 Customized SITE Files

In an effort to provide platform specific information for building ESMF and linking the libraries with your application,
a SourceForge site,esmfcontrib , has been created. To locate the platform makefiles for a specific institution, check
out thebuild_config_files using the appropriate CVSROOT. The URL for theesmfcontrib SourceForge
site is:

http://sourceforge.net/projects/esmfcontrib/

Additionally, you may check out all the platform makefile fragments for a particular institution from the
esmfcontrib site. For example, to check out the available makefile fragments for platforms at the National Center
for Atmospheric Research,ncar , change directories to

$ESMF_DIR/build_config

and use the following CVS command:

cvs -z3 -d:ext:$username@cvs.sourceforge.net:/cvsroot /esmfcontrib checkout ncar

The following directories will be checked out:

AIX.default.bluesky
Linux.lahey.longs

To build using these makefiles you must set the environment variableESMF_SITEto bluesky , or longs .

At the present time, we have files for the following institutions:

anl - Argonne National Laboratory
cola - Center for Ocean-Land-Atmosphere Studies
gsfc - Goddard Space Flight Center
mit - Massachusetts Institute of Technology
ncar - National Center for Atmospheric Research

Users are encouraged to contribute pertinent information to theesmfcontrib respository.

10 Validating an ESMF Build

This section goes into more detail about how to run the tests,which are included with the ESMF software, to validate
an ESMF build.

10.1 Running ESMF Self-Tests

Robustness and portability are primary goals of the ESMF development effort. To ensure that these goals are met,
the ESMF includes a comprehesive suite of tests. They allow testing and validation of everything from individual

40

functions to complete system tests. These test suites are used by the ESMF development team as part of their regular
development process. ESMF users can run the testing suites to verify that the framework software was built and
installed properly, and is running correctly on a particular platform.

Test targets will compile the ESMF library if it has not already been built.

10.1.1 Setting up ESMF to run test suite applications

Unless the ESMF library was built in MPI-bypass mode (mpiuni), all applications compiled and linked against ESMF
automatically become MPI applications and must be executedas such. The ESMF test suite and example applications
are no different in this respect.

Details of how to execute MPI applications vary widely from system to system. ESMF uses an mpirun script mecha-
nism to abstract away most of these differences. All ESMF makefile targets that require the execution of applications
do this by launching the application via the executable specified in theESMF_MPIRUNvariable. ESMF assumes that
an MPI applications can be launched acrossNprocesses by calling

$(ESMF_MPIRUN) -np N application

and that the output of the application arrives at the callingshell viastdout andstderr .

On systems that allow direct launching of MPI application via a suitablempirun facility, ESMF can use it di-
rectly. This is the ESMF default for all those configurationsthat come with a suitablempirun . In these cases the
ESMF_MPIRUNenvironment variable does not need to be set by the user.

There are systems, however, that allow direct launching of MPI application but provide a launch mechanism that is
incompatible with ESMF’s assumptions. In these cases a simple mpirun wrapper is required. The ESMF./scripts
directory contains wrappers for several cases in this class, e.g. for interactive POE access on IBM machines and
aprun , as well asyod on Cray machines. The ESMF configurations will access the appropriate wrapper scripts by
default if necessary.

Finally, there are those systems that utilize batch software to access the parallel execution environment. One option
is to execute the ESMF test targets from within a batch session, either interactively or from within a script. In this
case the batch software does not add any additional complexity for ESMF. The same issues discussed above, of how
to launch an MPI application, apply directly.

However, in some cases it is more convenient to execute the ESMF test target on the front-end machine, and have
ESMF access the batch software each time it needs to launch anapplication. In fact, on IBM systems this is often the
only working option, because the integrated POE system willexecute each application on the exact same number of
processes specified during batch access, regardless of how many ways parallel a specific application needs to be run.

Two modes of operation need to be considered for the ESMF batch access. First, if interactive batch access is available,
it is straight forward to write anmpirun script that fulfills the ESMF requirements outlined above. The ESMF
./scripts directory contains several scripts that access various parallel launching facilities though interactive LSF.

Second, if interactive batch access is not available, a morecomplex scripting approach is necessary. The basic require-
ments in this case are that ESMF must be able to launch MPI applications acrossNprocesses by calling

$(ESMF_MPIRUN) -np N application ,

that the output of the application will be available in a file namedapplication.stdout after the script finishes,
and that theESMF_MPIRUNscript blocks execution untilapplication.stdout has become accessible.

41

The ESMF./scripts directory contains scripts of this flavor for a wide variety of batch systems. Most of these
scripts, when called through ESMF, will generate a customized, temporary batch script for a specific executable "on
the fly" and submit this batch script to the queuing software.The script then waits for completion of the submitted job,
after which it copies the output, received through a system specific mechanism, into the prescribed file.

Regardless of whether the batch system access is interactive or not, it is often necessary to specify various system
specific options when calling the batch submission tool. ESMF utilizes theESMF_MPIBATCHOPTIONSenvironment
variable to pass user supplied values to the batch system.

The environment variableESMF_MPISCRIPTOPTIONSis available to pass user specified options to the actual
script specified byESMF_MPIRUN. However,ESMF_MPISCRIPTOPTIONSwill only be added automatically to
theESMF_MPIRUNcall if the specifiedESMF_MPIRUNcan be found in the ESMF./scripts directory.

Finally, the value ofESMF_MPILAUNCHOPTIONSis passed to the MPI launch facility by default, i.e if
ESMF_MPIRUNwas not specified by the user. In case the user specifiesESMF_MPIRUNto be anything else but
scripts out of the ESMF./scripts directory, it is the user’s responsibility to addESMF_MPISCRIPTOPTIONS
to ESMF_MPIRUNand/or to utilizeESMF_MPILAUNCHOPTIONSwithin the specified script.

The possibilities covered by the generic scripts provided in the ESMF./scripts directory, combined with the
ESMF_MPISCRIPTOPTIONS,ESMF_MPIBATCHOPTIONS, andESMF_MPILAUNCHOPTIONSenvironment vari-
ables, will satisfy the majority of common situations. There are, however, circumstances for which a customized,
user-provided mpirun script is necessary. One such situation arises with the LoadLeveler batch software. LoadLeveler
typically requires a list of options specified in the actual batch script. This is most easily handled by a script that
produces such a system and user specific script "on the fly". Another situation is where certain modules or software
packages need to be made available inside the batch script. Again this is most easily handled by a customized script
the user writes and provides to ESMF via theESMF_MPIRUNenvironment variable. This will override any default
settings for the configuration and rely on the user provided script instead.

Users that face the need to write a customized mpirun script for their parallel execution environment are en-
couraged to start with the closest match from the ESMF./scripts directory and customize it to their sit-
uation. The best way to see how the existing scripts are used on the supported platforms is to go to the
http://www.earthsystemmodeling.org/download/platforms/ web page and follow the link for the platform of interest.
Each test report contains the output ofgmake info , which lists the settings of theESMF_MPIxxx environment
variables.

Furthermore, theesmfcontrib repository on SourceForge hosts ascripts module that contains scripts that
were customized to certain user environments. These scripts are not generic enough to be included in the ESMF
distribution, but users faced with the need to customize a script to their environment may find the script collection
on esmfcontrib a valuable resource. Please refer to http://sourceforge.net/projects/esmfcontrib on how to access
esmfcontrib , and thescripts module in particular.

10.1.2 Running ESMF unit tests

The unit tests provided with the ESMF library evaluate the following:

• correctness of individual functions

• behavior of individual modules or classes

• appropriate error handling

Unit tests can be run in either an exhaustive or a non-exhaustive (sanity check) mode. The exhaustive mode includes
the sanity check tests. Typically, sanity checks for each ESMF capability include creating and destroying an object

42

http://www.earthsystemmodeling.org/download/platforms/
http://sourceforge.net/projects/esmfcontrib

and testing its basic function using a valid argument set. Inthe exhaustive mode, a wide range of valid and non-valid
arguments are evaluated for correct behavior.

The following commands are used to build and run the unit tests provided with the ESMF:

gmake [ESMF_TESTEXHAUSTIVE=<ON,OFF>] unit_tests
gmake [ESMF_TESTEXHAUSTIVE=<ON,OFF>] unit_tests_uni

Thetests_uni target runs the tests on a single processor. Thetests target runs the test on multiple processors.

The non-exhaustive set of unit tests should all pass. At thispoint in development, the exhaustive tests do not all pass.
Current problems with unit tests are being tracked and corrected by the ESMF development team.

The results of running the unit tests can be found in the following location:

${ESMF_DIR}/test/test${ESMF_BOPT}/${ESMF_OS}.${ESMF _COMPILER}.${ESMF_ABI}. \
${ESMF_SITE}

For example, if your esmf source files have been placed in:

/usr/local/esmf

If your platform is a Linux uni-processor that has an installed Lahey Fortran compiler and ESMF_COMPILER has
been set to lahey, then the build system configuration file will be:

build_config/Linux.lahey.default/build_rules.mk

If you want to run a debug version of non-exhaustive unit tests, then you use these commands from /usr/local/esmf:

setenv ESMF_DIR /usr/local/esmf
gmake ESMF_BOPT=g ESMF_SITE=lahey ESMF_TESTEXHAUSTIVE=OFF tests_uni

If you are using ksh, then replace the setenv command with:

export ESMF_DIR=/usr/local/esmf

The results of the unit tests will be in:

/usr/local/esmf/test/testg/Linux.lahey.32.default/

At the end of unit test execution a script runs to analyze the results.

The script output indicates whether there are any unit test failures. If any unit tests fail, please check if the failuresare
listed as known bugs in the ESMF release page http://www.earthsystemmodeling.org/download/releases.shtml for your
platform and compiler. If the failures are not listed pleasecontact ESMF Support at esmf_support@list.woc.noaa.gov
Please indicate which unit tests are failing, and attach theoutput of the "gmake info" command to the email.

The script output indicates whether there are any unit test failures. The following is a sample from the script output:

43

http://www.earthsystemmodeling.org/download/releases.shtml
mailto:esmf_support@list.woc.noaa.gov

The unit tests in the following files all pass:

src/Infrastructure/Array/tests/ESMF_ArrayUTest.F90
src/Infrastructure/ArrayDataMap/tests/ESMF_ArrayDat aMapUTest.F90
src/Infrastructure/Base/tests/ESMF_BaseUTest.F90
src/Infrastructure/FieldBundle/tests/ESMF_FieldBund leUTest.F90
src/Infrastructure/FieldBundleDataMap/tests/ESMF_Fi eldBundleDataMapUTest.F90
src/Infrastructure/Config/tests/ESMF_ConfigUTest.F9 0
src/Infrastructure/DELayout/tests/ESMF_DELayoutUTes t.F90
src/Infrastructure/Field/tests/ESMF_FRoute4UTest.F9 0
src/Infrastructure/Field/tests/ESMF_FieldUTest.F90
src/Infrastructure/FieldComm/tests/ESMF_FieldGather UTest.F90
src/Infrastructure/FieldDataMap/tests/ESMF_FieldDat aMapUTest.F90
src/Infrastructure/Grid/tests/ESMF_GridUTest.F90
src/Infrastructure/LocalArray/tests/ESMF_ArrayDataU Test.F90
src/Infrastructure/LocalArray/tests/ESMF_ArrayF90Pt rUTest.F90
src/Infrastructure/LocalArray/tests/ESMF_LocalArray UTest.F90
src/Infrastructure/LogErr/tests/ESMF_LogErrUTest.F9 0
src/Infrastructure/Regrid/tests/ESMF_Regrid1UTest.F 90
src/Infrastructure/Regrid/tests/ESMF_RegridUTest.F9 0
src/Infrastructure/TimeMgr/tests/ESMF_AlarmUTest.F9 0
src/Infrastructure/TimeMgr/tests/ESMF_CalRangeUTest .F90
src/Infrastructure/TimeMgr/tests/ESMF_ClockUTest.F9 0
src/Infrastructure/TimeMgr/tests/ESMF_TimeIntervalU Test.F90
src/Infrastructure/TimeMgr/tests/ESMF_TimeUTest.F90
src/Infrastructure/VM/tests/ESMF_VMBarrierUTest.F90
src/Infrastructure/VM/tests/ESMF_VMBroadcastUTest.F 90
src/Infrastructure/VM/tests/ESMF_VMGatherUTest.F90
src/Infrastructure/VM/tests/ESMF_VMScatterUTest.F90
src/Infrastructure/VM/tests/ESMF_VMSendVMRecvUTest. F90
src/Infrastructure/VM/tests/ESMF_VMUTest.F90
src/Superstructure/Component/tests/ESMF_CplCompCrea teUTest.F90
src/Superstructure/Component/tests/ESMF_GridCompCre ateUTest.F90
src/Superstructure/State/tests/ESMF_StateUTest.F90

The following unit test files failed to build, failed to exec ute or
crashed during execution:

src/Infrastructure/TimeMgr/tests/ESMF_CalendarUTest .F90
src/Infrastructure/VM/tests/ESMF_VMSendRecvUTest.F9 0

The following unit test files had failed unit tests:

src/Infrastructure/Field/tests/ESMF_FRoute8UTest.F9 0
src/Infrastructure/Grid/tests/ESMF_GridCreateUTest. F90

44

The following individual unit tests fail:

FAIL DELayout Get Test, ESMF_FRoute8UTest.F90, line 139
FAIL Grid Distribute Test, ESMF_GridCreateUTest.F90, lin e 198

The stdout files for the unit tests can be found at:
/home/bluedawn/svasquez/script_dirs/daily_builds/es mf/test/testO/ \
AIX.default.64.default

Found 1224 exhaustive multi processor unit tests, 1220 pass and 4 fail.

The following is an example of the output generated when a unit test fails:

ESMF_FieldUTest.stdout: FAIL Unique default Field names T est, FLD1.5.1
& 1.7.1, ESMF_FieldUTest.F90, line 204 Field names
not unique

10.1.3 Running ESMF system tests

The system tests provided with the ESMF library evaluate:

• interface agreement between parts of the system

• behavior of the system as a whole

The current system test suite includes tests that perform layout reduction operations, redistribution-transpose, halo
operations, component creation and intra-grid communication. Some of the system tests are no longer compatible with
the current API, but are included in the release for completeness. A complete description of each available system
test and its current compatibility status can be found at theESMF website, http://www.earthsystemmodeling.org. The
testing and validation page is accessible from theDevelopmentlink on the navigation bar.

The following commands are used to build and run the system tests:

gmake [SYSTEM_TEST=xxx] system_tests
gmake [SYSTEM_TEST=xxx] system_tests_uni

Thesystem_tests_uni target runs the tests on a single processor. Thesystem_tests target runs the test on
multiple processors.

If a particular SYSTEM_TEST is not specified, then all available system tests are built and run.

The results of the test can be found in the following location:

${ESMF_DIR}/test/test${ESMF_BOPT}/${ESMF_OS}.${ESMF _COMPILER}.${ESMF_ABI}. \
${ESMF_SITE}

For example, if your ESMF source files have been placed in yourhome directory:

45

http://www.earthsystemmodeling.org

~/esmf

and your platform and compiler configuration is:

Alpha multi-processor using the native compiler

and you want to run an optimized version of system test SimpleCoupling, then you use these commands from the
directory/̃esmf .

setenv ESMF_PROJECT <project_name>
gmake ESMF_DIR=‘pwd‘ SYSTEM_TEST=ESMF_SimpleCoupling s ystem_tests

If you are using ksh then replace the setenv command with this:

export ESMF_PROJECT=<project_name>

The results will be in:

~/esmf/test/testO/OSF1.default.64.default/ESMF_Simp leCouplingSTest.stdout

At the end of system test execution a script runs to analyze the results.

The script output indicates whether there are any system test failures. If any system tests fail, please check if the fail-
ures are listed as known bugs in the ESMF release page http://www.earthsystemmodeling.org/download/releases.shtml
for your platform and compiler. If the failures are not listed please contact ESMF Support at
esmf_support@list.woc.noaa.gov Please indicate which system tests are failing, and attach the output of the "gmake
info" command to the email.

The script output indicates whether there are any system test failures. The following is a sample from the script output:

The following system tests passed:

src/system_tests/ESMF_CompCreate/ESMF_CompCreateSTe st.F90
src/system_tests/ESMF_FieldExcl/ESMF_FieldExclSTest .F90
src/system_tests/ESMF_FieldHalo/ESMF_FieldHaloSTest .F90
src/system_tests/ESMF_FieldHaloPer/ESMF_FieldHaloPe rSTest.F90
src/system_tests/ESMF_FieldRedist/ESMF_FieldRedistS Test.F90
src/system_tests/ESMF_FieldRegrid/ESMF_FieldRegridS Test.F90
src/system_tests/ESMF_FieldRegridMulti/ESMF_FieldRe gridMultiSTest.F90
src/system_tests/ESMF_FieldRegridOrder/ESMF_FieldRe gridOrderSTest.F90
src/system_tests/ESMF_FlowComp/ESMF_FlowCompSTest.F 90
src/system_tests/ESMF_FlowWithCoupling/ESMF_FlowWit hCouplingSTest.F90
src/system_tests/ESMF_SimpleCoupling/ESMF_SimpleCou plingSTest.F90
src/system_tests/ESMF_VectorStorage/ESMF_VectorStor ageSTest.F90

The following system tests failed, did not build, or did not e xecute:

46

http://www.earthsystemmodeling.org/download/releases.shtml
mailto:esmf_support@list.woc.noaa.gov

src/system_tests/ESMF_FieldRegridConserv/ESMF_Field RegridConsrvSTest.F90
src/system_tests/ESMF_RowReduce/ESMF_RowReduceSTest .F90

The stdout files for the system_tests can be found at:
/home/bluedawn/svasquez/script_dirs/daily_builds/es mf/test/testO/ \
AIX.default.64.default

Found 14 system tests, 12 passed and 2 failed.

10.2 Running ESMF Examples

10.2.1 Example source code

Example source code for each class is found in the class’s example directory. For example, source code for the Time
Manager class examples are found in this directory:

ESMF_DIR/src/Infrastructure/TimeMgr/examples/

While the example code is formatted to be included in the documentation, it also runs and compiles to ensure accuracy.
Examples generally contain simple usage of the basic methods for the class.

10.2.2 Building and running examples

The GNU makefile targetsexamples andexamples_uni build and run programs found in a class’s examples
directory. After the examples are built, theexamples target runs the examples using multiple processors, while
examples_uni runs the examples on a single processor.

These targets first build the ESMF library.

Run from ESMF_DIR, this command will build and run all examples on multiple processors:

gmake examples

If the command is run in an example source code directory, then only the example from that directory will be built and
run. The examples and output files are created in this directory:

ESMF_DIR/examples/examples$ESMF_BOPT/$ESMF_OS.$ESMF _COMPILER.$ESMF_ABI. \
$ESMF_SITE/

The name of an output file will begin with the name of the example that created it followed by .stdout.

At the end of examples execution a script runs to analyze the results.

47

The script output indicates whether there are any example failures. If any examples fail, please check if the failures are
listed as known bugs in the ESMF release page http://www.earthsystemmodeling.org/download/releases.shtml for your
platform and compiler. If the failures are not listed pleasecontact ESMF Support at esmf_support@list.woc.noaa.gov
Please indicate which examples are failing, and attach the output of the "gmake info" command to the email.

The following is a sample from the script output:

The following examples passed:

src/Infrastructure/Array/examples/ESMF_ArrayCreateE x.F90
src/Infrastructure/Array/examples/ESMF_ArrayGetEx.F 90
src/Infrastructure/ArrayComm/examples/ESMF_ArrayCom mEx.F90
src/Infrastructure/ArrayDataMap/examples/ESMF_Array DataMapEx.F90
src/Infrastructure/ArraySpec/examples/ESMF_ArraySpe cEx.F90
src/Infrastructure/FieldBundle/examples/ESMF_FieldB undleCreateEx.F90
src/Infrastructure/FieldBundleDataMap/examples/ESMF _FieldBundleDataMapEx.F90
src/Infrastructure/DELayout/examples/ESMF_DELayoutE x.F90
src/Infrastructure/Field/examples/ESMF_FieldCreateE x.F90
src/Infrastructure/Field/examples/ESMF_FieldFromUse rEx.F90
src/Infrastructure/Field/examples/ESMF_FieldGlobalE x.F90
src/Infrastructure/Field/examples/ESMF_FieldWriteEx .F90
src/Infrastructure/FieldComm/examples/ESMF_FieldCom mEx.F90
src/Infrastructure/FieldDataMap/examples/ESMF_Field DataMapEx.F90
src/Infrastructure/LogErr/examples/ESMF_LogErrEx.F9 0
src/Infrastructure/Regrid/examples/ESMF_RegridEx.F9 0
src/Infrastructure/Route/examples/ESMF_RouteEx.F90
src/Infrastructure/TimeMgr/examples/ESMF_AlarmEx.F9 0
src/Infrastructure/TimeMgr/examples/ESMF_CalendarEx .F90
src/Infrastructure/TimeMgr/examples/ESMF_ClockEx.F9 0
src/Infrastructure/TimeMgr/examples/ESMF_TimeEx.F90
src/Infrastructure/VM/examples/ESMF_VMAllFullReduce Ex.F90
src/Infrastructure/VM/examples/ESMF_VMComponentEx.F 90
src/Infrastructure/VM/examples/ESMF_VMDefaultBasics Ex.F90
src/Infrastructure/VM/examples/ESMF_VMGetMPICommuni catorEx.F90
src/Infrastructure/VM/examples/ESMF_VMScatterVMGath erEx.F90
src/Infrastructure/VM/examples/ESMF_VMSendVMRecvEx. F90
src/Superstructure/Component/examples/ESMF_AppMainE x.F90
src/Superstructure/Component/examples/ESMF_CplEx.F9 0
src/Superstructure/Component/examples/ESMF_GCompEx. F90
src/Superstructure/State/examples/ESMF_StateEx.F90
src/Superstructure/State/examples/ESMF_StateReconci leEx.F90

The following examples failed, did not build, or did not exec ute:

src/Infrastructure/Grid/examples/ESMF_GridCreateEx. F90

48

http://www.earthsystemmodeling.org/download/releases.shtml
mailto:esmf_support@list.woc.noaa.gov

src/Infrastructure/TimeMgr/examples/ESMF_TimeInterv alEx.F90

The stdout files for the examples can be found at:
/home/bluedawn/svasquez/script_dirs/daily_builds/es mf/examples/
examplesO/AIX.default.64.default

Found 34 examples, 32 passed and 2 failed.

49

11 Architectural Overview

The ESMF architecture is characterized by the layering strategy shown in Figure 1. User code components that
implement thescienceportions of an application, for example a sea ice or land model, are sandwiched between two
layers. The upper layer is denoted thesuperstructure layer and the lower layer theinfrastructure layer. The role of
the superstructure layer is to provide a shell which encompasses user code and provides a context for interconnecting
input and output data streams between components. The key elements of the superstructure are described in Section
11.2. These elements include classes that wrap user code, ensuring that all components present consistent interfaces.
The infrastructure layer provides a foundation that developers of science components can use to speed construction
and to ensure consistent, guaranteed behavior. The elements of the infrastructure include constructs to support parallel
processing with data types tailored to Earth science applications, specialized libraries to support consistent time and
calendar management and performance, error handling and scalable I/O tools. The infrastructure layer is described
in Section 11.3. A hierarchical combination of superstructure, user code components, and infrastructure are joined
together to form an ESMF application.

11.1 Key Concepts

The ESMF architecture and programming paradigm are based upon five key concepts: modularity, flexibility, hierar-
chical organization, communication within components, and a uniform communication API.

11.1.1 Modularity

The ESMF design is based upon modular Components. There are two types of Components, one of which represents
models (Gridded Components) and one which represents couplers (Coupler Components). Data are always passed
between Components using a data structure called a State, which can store Fields, FieldBundles of Fields, Arrays,
and other States. A Gridded Component stores no informationabout the internals of the Gridded Components that
it interacts with; this information is passed in through theargument lists of the initialize, run, and finalize methods.
The information that is passed in through the argument list can be a State from another Gridded Component, or it can
be a function pointer that performs a computation or communication on a State. These function pointers are called
Transforms, and they are available as AttachableMethods created by Coupler Components. They are called inside the
Gridded Component they are passed into. Although Transforms add some complexity to the framework (and their
use is not required), they are what will enable ESMF to accommodate virtually any model of communication between
Components.

Modularity means that an ESMF component stores nothing about the internals of other components. This
allows components to be used more easily in multiple contexts.

11.1.2 Flexibility

The ESMF does not dictate how models should be coupled; it simply provides tools for creating couplers. For ex-
ample, both a hub-and-spokes type coupling strategy and pairwise strategies are supported. The ESMF also allows
model communications to occur mid-timestep, if desired. Sequential, concurrent, and mixed modes of execution are
supported.

The ESMF does not impose restrictions on how data flows through an application. This accommodates scientific
innovation - if you want your atmospheric model to communicate with your sea ice model mid-timestep, ESMF
will not stop you.

50

11.1.3 Hierarchical organization

ESMF allows applications to be composed hierarchically. For example, physics and dynamics modules can be defined
as separate Gridded Components, coupled together with a Coupler Component, and all of these nested within a single
atmospheric Gridded Component. The atmospheric Gridded Component can be run standalone, or can be included in
a larger climate or data assimilation application. See Figure 2 for an illustrative example.

The data structure that enables scalability in ESMF is the derived type Gridded Component. Fortran alone does not
allow you to create generic components - you’d have to createderived types for PhysComp, and DynComp, and
PhysDynCouplerComp, and AtmComp. In ESMF, these are alwaysof type GridComp or CplComp, so they can
be called by the same drivers (whether that driver is a standard ESMF driver or another model), and use the same
methods without having to overload them with many specific derived types. It is the same idea when you want to
support different implementations of the same component, like multiple dynamics.

The ESMF defines a hierarchical, scalable architecture thatis natural for organizing very complex applications,
and for allowing exchangeable Components.

11.1.4 Communication within Components

Communication in ESMF always occurs within a Component. It can occur internal to a Gridded Component, and have
nothing to do with interactions with other Components (setting aside synchronization issues), or it can occur within a
Coupler Component or a transform generated by a Coupler Component. A result of the rule that all communication
happens within a Component is that Coupler Components must always be defined on the union of all the Components
that they couple together. Models can choose to use whatevermechanism they want for intra-model communications.

The point is that although the ESMF defines some simple rules for communication, the communication mecha-
nism that the framework uses is not hardwired into its architecture - the sends and receives or puts and gets are
enclosed within Gridded Components, Coupler Components and Transforms. The intent is to accommodate
multiple models of communication and technical innovations.

11.1.5 Uniform communication API

ESMF has a single API for shared and distributed memory that,unlike MPI, accounts for NUMA achitectures and does
not treat all processes as being identical. It is possible for users to set ESMF communications to a strictly message
passing mode and put in their own OpenMP commands.

The goal is to create a programming paradigm that is peformance sensitive to the architecture beneath it with-
out being discouragingly complicated.

11.2 Superstructure

The ESMF superstructure layer in a unifying context within which user components are interconnected. Classes called
Gridded Components, Coupler Components, andStatesare used within the superstructure to achieve this flexibility.

11.2.1 Import and export State classes

User code components under ESMF use special interface objects for Component to Component data exchanges. These
objects are of type import State and export State. These special types support a variety of methods that allow user code
components to do things like fill an export State object with data to be shared with other components or query an

51

Figure 2: A typical building block for an ESMF application consists of a parent Gridded Component, two or more
child Gridded Components, and a Coupler Component. The parent Gridded Component is called by an application
driver. All ESMF Components have initialize, run, and finalize methods. The diagram shows that when the application
driver calls initialize on a parent Gridded Component, the call cascades down to all of its children, so that the result is
that the entire “tree” of Components is initialized. The runand finalize methods work the same way. In this example a
hurricane simulation is built from ocean and atmosphere Gridded Components. The data exchange between the ocean
and atmosphere is handled by an ocean-atmosphere Coupler Component. Since the whole hurricane simulation is a
Gridded Component, it could be easily be treated as a child and coupled to another Gridded Component, rather than
being driven directly by the application driver. A similar diagram could be drawn for an atmospheric model containing
physics and dynamics components, as described in Section 11.1.3.

Child
GridComp
 “Atmosphere”

Parent
GridComp
 “Hurricane Model”

Finalize

Child
GridComp
 “Ocean”

Finalize

Child
CplComp
 “Atm-Ocean Coupler”

Finalize

Call Initialize
 Call Finalize
Call Run

Initialize
 Run
 Finalize

Initialize

Initialize

Initialize

Run

Run

Run

AppDriver
 (“Main”)

Call Initialize
 Call Finalize
Call Run

52

import State object to determine its contents. In keeping with the overall requirements for high-performance it is
permitted for import State and export State contents to use references or pointers to Component data, so that costly
data copies of potentially large data structures can be avoided where possible. The content of an import State and an
export State can be made self-describing.

11.2.2 Interface standards

The import State and export State abstractions are designedto be flexible enough so that ESMF does not need to
mandate a single format for fields. For example, ESMF does notprescribe the units of quantities exported or imported.
However, ESMF does provide mechanisms to describe units, memory layout, and grid coordinates. This allows the
ESMF software to support a range of different policies for physical fields. The interoperability experiments that we
are using to demonstrate ESMF make use of the emerging CF conventions [1] for describing physical fields. This is a
policy choice for that set of experiments. The ESMF softwareitself can support arbitrary conventions for labeling and
characterizing the contents of States.

11.2.3 Gridded Component class

The Gridded Component class describes a user component thattakes in one import State and produces one export
State. Examples of Gridded Components are major Earth system model components such as land surface models,
ocean models, atmospheric models and sea ice models. Components used for linear algebra manipulations in a state
estimation or data assimilation optimization procedure are also created as Gridded Components. In general the fields
within an import State and export State of a Gridded Component will use the same discrete grid.

11.2.4 Coupler Component class

The other top-level Component class supported in the ESMF architecture is a Coupler Component. This class is used
for Components that take one or more import States as input and map them through spatial and temporal interpolation
or extrapolation onto one or more output export States. In a Coupler Component it is often the case that the export
State(s) is on a different discrete grid to that of the importState(s). For example, in a coupled ocean-atmosphere
simulation a Coupler Component might be used to map a set of sea-surface fields in an ocean model to appropriate
planetary boundary layer fields in an atmospheric model.

11.2.5 Flexible data and control flow

Import States, export States, Gridded Components and Coupler Components can be arrayed flexibly within a super-
structure layer. Using these constructs, it is possible to configure a set of Components with multiple pairwise Coupler
Components, Figure 4. It is also possible to configure a set ofconcurrently executing Gridded Components joined
through a single Coupler Component of the style shown in Figure 3.

The set of superstructure abstractions allows flexible dataflow and control between components. However, compo-
nents will often use different discrete grids, and time-stepping components may march forward with different time
intervals. In a parallel compute environment different components may be distributed in a different manner on the
underlying compute resources. The ESMF infrastructure layer provides elements to manage this complexity.

53

Figure 3: ESMF supports configurations with a single centralCoupler Component. In this case inputs from all Gridded
Components are transferred and regridded through the central coupler.

Ocean

SeaIce

Land
 Coupler

Atmosphere

DATA
 DATA

D

A

T

A

D

A

T

A

Figure 4: ESMF also supports configurations with multiple point to point Coupler Components. These take inputs
from one Gridded Component and transfer and regrid the data before passing it to another Gridded Component.
This schematic shows a flow of data between two Coupler Components that connect three Gridded Components: an
atmosphere model with a land model, and the same atmosphere model with a data assimilation system.

Land

AtmLandCoupler

Atmosphere

AtmAssimCoupler

D
A

T
A

 D
A
T
A

D
A

T
A

 D
A
T
A

DataAssim

54

Figure 5: Schematic showing the coupling of components thatuse different discrete Grids and different time-stepping.
In this example, ComponentNCAR Atmospheremight use a spectral Grid based on spherical harmonics, Compo-
nentGFDL Oceanmight use a latitude-longitude Grid but with a patched decomposition that does not include land
masses, and ComponentNSIPP Landmight use a m osaic-based Grid for representing vegetation patchiness and a
catchment area based Grid for river routings. The ESMF infrastructure layer contains tools to help develop software
for coupling between Components on different Grids, mapping between Components with different distributions in
a multi-processor compute environment and synchronizing events between Components with different time-stepping
intervals and algorithms.

NCAR

Atmosphere

GFDL

Ocean

NSIPP

Land

11.3 Infrastructure

Figure 5 illustrates three Gridded Components, each with a different Grids, being coupled together. In order to achieve
this coupling several steps beyond defining import State andexport State objects to act as data conduits are required.
Coupler Components are needed that can interpolate betweenthe different Grids. The necessary transformations may
also involve mapping between different units and/or memorylayout conventions for the Fields that pass between
Components. In a parallel compute environment the Coupler Components may also be required to map between
different domain decompositions. In order to advance in time correctly the separate Gridded Components must have
compatible notions of time. Approaches to parallelism within the Gridded Components must also be compatible.
The Infrastructure layer contains a set of classes that address these issues andassist in managing overall system
complexity.

11.3.1 FieldBundle, Field and Array classes

FieldBundle, Field and Array classes contain data togetherwith descriptive physical and computational attribute infor-
mation. The physical attributes include information that describes the units of the data. The computational attributes
include information on the layout in memory of the field data.The Field class is primarily geared toward structured
data. A comparable class, called Location Stream, providesa self-describing container for unstructured observational
data streams.

55

11.3.2 Grid class

TheGrid class is an extensible class that holds discrete grid information. It has subtypes that allow it to serve as a
container for the full range of different physical grids that might arise in a coupled system. In the example in figure 5
objects of type Grid would hold grid information for each of the spectral grid, the latitude-longitude grid, the mosaic
grid and the catchment grid.

The Grid class is also used to represent the decomposition ofa data structure into subdomains, typically for parallel
processing purposes. The class is designed to support a generalized “ghosting” for tiled decompositions of finite
difference, finite volume and finite element codes.

11.3.3 Time and Calendar management

To support synchronization between Components, several time and calendar management classes are provided. These
capabilities are provided in the Time, Time Interval, Calendar, Clock, and Alarm classes. These classes allow Gridded
and Coupler Component processing to be latched to a common controlling Clock, and to schedule notification of
regular events, such as a coupling intervals, and unique events.

11.3.4 Config resource file manager

The Config class is a utility for accessing configuration filesthat are in ASCII format. This utility enables configuration
files to be prepared using more flexible formatting than Fortran namelists - for example, it permits the input of tables
of data.

11.3.5 DELayout and virtual machine

To provide a mechanism for ensuring performance portability, ESMF defines DELayout and virtual machine (VM)
classes. These classes provide a set of high-level and platform independent interfaces to performance critical parallel
processing communication routines. These routines can be tuned to specific platforms to ensure optimal parallel
performance on many platforms.

11.3.6 Logging and error handling

The LogErr class is designed to aid in managing the complexity of multi-Component applications. It provides ESMF
with a unified mechanism for managing logs and error reporting.

11.3.7 File input and output

The infrastructure layer will define a set ofIO classes for storing and retrieving Array, Field, and Grid information to
and from persistent storage.

12 How to Adapt Applications for ESMF

In this section we describe how to bring existing applications into the framework.

56

12.1 Individual Components

• Decide what parts will become Gridded Components

A Gridded Component is a self-contained piece of code which will be initialized, will be called once or many
times to run, and then will be finalized. It will be expected toeither take in data from other components/models,
produce data, or both.

Generally a computational model like an ocean or atmospheremodel will map either to a single component or
to a set of multiple nested components.

• Decide what data is produced

A component provides data to other components using an ESMF State object. A component should fill the State
object with a description of all possible values that it can export. Generally, a piece of code external to the
component (the AppDriver, or a parent component) will be responsible for marking which of these items are
actually going to be needed. Then the component can choose toeither produce all possible data items (simpler
but less efficient) or only produce the data items marked as being needed. The component should consult the
CF data naming conventions when it is listing what data it canproduce.

• Decide what data is needed

A component gets data from other components using an ESMF State object. The application developer must
figure out how to get any required fields from other componentsin the application.

• Make the data blocks private

A component should communicate to other components only through the framework. All global data items
should be private to Fortran modules, and ideally should be isolated to a single derived type which is allocated
at run time.

• Divide the code up into start/middle/end phases

A component needs to provide 3 routines which handle initialization, running, and finalization. (For codes
which have multiple phases of initialize, run, and finalize it is possible to have multiple initialize, run, and
finalize routines.)

The initialize routine needs to allocate space, initializedata items, boundary conditions, and do whatever else is
necessary in order to prepare the component to run.

For a sequential application in which all components are on the same set of processors, the run phase will be
called multiple times. Each time the model is expected to take in any new data from other models, do its com-
putation, and produce data needed by other components. A concurrent model, in which different components
are run on different processors, may execute the same way. Alternatively, it may have its run routine called only
once and may use different parts of the framework to arrange data exchange with other models. This feature is
not yet implemented in ESMF.

The finalize routine needs to release space, write out results, close open files, and generally close down the
computation gracefully.

• Make a "Set Services" subroutine

Components need to provide only a single externally visibleentry point. It will be called at start time, and its
job is to register with the framework which routines satisfythe initialize, run, and finalize requirements. If it has
a single derived type that holds its private data, that can beregistered too.

• Create ESMF Fields and FieldBundles for holding data

An ESMF State object is fundamentally an annotated list of other ESMF items, most often expected to be
ESMF FieldBundles (groups of Fields on the same grid). Otherthings which can be placed in a State object are
Fields, Arrays (raw data with no gridding/coordinate information) and other States (generally used by coupling

57

http://cf-pcmdi.llnl.gov/

code). Any data which is going to be received from other components or sent to other components needs to be
represented as an ESMF object.

To create an ESMF Field the code must create an ESMF Array object to contain the data values, and usually an
ESMF Grid object to describe the computational grid where the values are located. If this is an observational
data stream the locations of the data values will be held in anESMF Location Stream object instead of a Grid.

• Be able to read an ESMF clock

During the execution of the run routine, information about time is transferred between components through
ESMF Clocks. The component needs to be able to at least query aClock for the current time using framework
methods.

• Decide how much of the lower level infrastructure to use

The ESMF framework provides a rich set of time management functions, data management and query functions,
and other utility routines which help to insulate the user’scode from the differences in hardware architectures,
system software, and runtime environments. It is up to the user to select which parts of these functions they
choose to use.

12.2 Full Application

• Decide on which components to use

Select from the set of ESMF components available.

• Understand the data flow in order to customize a Coupler Component

Examine what data is produced by each component and what datais needed by each component. The role of
Coupler Components in the ESMF is to set up any necessary regridding and data conversions to match output
data from one component to input data in another.

• Write or adapt a Coupler Component

Decide on a strategy for how to do the coupling. There can be a single coupler for the application or multiple
couplers. Single couplers follow a "hub and spoke" model. Multiple couplers can couple between subsets of
the components, and can be written to couple either only one-way (e.g. output of component A into input of
component B), or two-way (both A to B and B to A).

The coupler must understand States, Fields, FieldBundles,Grids, and Arrays and ESMF execution/environment
objects such as DELayouts.

• Use or adapt a main program

The main program can be a copy of a driver found in any of thesystem_tests sub-directories. The cus-
tomization needed is touse the correct Component module files, to gain access to theSetServices routines.

Although ESMF provides example source code for the main program, it isnot considered part of the framework
and can be changed by the user as needed.

The final thing the main program must do is callESMF_Finalize() . This will close down the framework
and release any associated resources.

The main program is responsible for creating a top-level Gridded Component, which in turn creates other Grid-
ded and Coupler Components. We encourage this hierarchicaldesign because it aids in extensibility - the top
level Gridded Component can be nested in another larger application. The top-level component contains the
main time loop and is responsible for calling theSetServices entry point for each child component it cre-
ates.

58

13 Glossary

This glossary defines terms used in Earth system modeling to describe parallel computer architectures, grids and grid
decompositions, and numerical and computational methods.

360-day calendar A calendar in which every one of twelve months has thirty days. See also Calendar,
no-leap calendar.

Accumulator A facility for collecting and averaging data values. Generally accumulators are associated with tempo-
ral averaging, although they might be associated with otherweighted averaging operations. ESMF does not yet
have accumulators.

Application Programming Interface (API) API refers to the set of routines and types in a software package that are
available to its users. It doesn’t include private or internal routines or types.

Alarm Like a real alarm clock, the ESMF Alarm class notifies the userof an event that occurs at a particular time (or
set of times). In order to determine whether it is "ringing",an ESMF Alarm is “read” by an explicit application
action. An Alarm is associated with a particular Clock.

Application A coherent computational entity run as a single executable or set of communicating executables. It
typically consists of a set of interacting components. See also component.

Array An ESMF class that represents a multi-dimensional data array. Unlike a native Fortran or C++ array, an ESMF
Array can store information about halo points. See also halo.

Background grid A background grid associates each point in an observationaldata stream (Location Stream)
with a location on a grid. A single grid cell may contain zero or more Location Stream points. See also
Location Stream, cell.

BUFR Binary Universal Form of Representation. This is a World Meteorological Organization data format. See
BUFR links.

FieldBundle The ESMF FieldBundle class represents a set of fields that areassociated with the same physical grid
and are distributed in the same fashion across the same physical axes. Fields within a FieldBundle may be
staggered differently and may have different (non-distributed) dimensions. See also Field, Packed FieldBundle,
Loose FieldBundle.

Calendar The Calendar is an ESMF class that stores a representation ofa particular calendar type, such as Gregorian.
See also specific calendar types such as 360-day and no-leap.

Cell A physical location that is specified by both its extent (vertices) and nominal central location, and is associated
with a single integer index value or a set of integer index values (e.g. (i) for 1-d, (i,j) for 2-d, (i,j,k) for 3d). See
also index.

CF Conventions Climate and Forecast Conventions. These are emerging conventions for expressing Earth science
metadata. See the CF home page.

Change Review Board (CRB)The Change Review Board is the ESMF management body that setsproject schedules
and priorities. Its Terms of Reference are in the ESMF Project Plan.

Clock Clock is an ESMF class that tracks the passage of time and reports the current time instant. An ESMF Clock
is stepped forward in increments of a time step, and can be associated with one or more Alarms. See also Time,
Time Interval, Alarm.

59

http://rda.ucar.edu/docs/formats/bufr/
http://www.cgd.ucar.edu/cms/eaton/cf-metadata/
http://www.earthsystemmodeling.org/management/

Component The ESMF Component class represents large-scale computational entities associated with a par-
ticular physical process or computational function, such as a land model. Currently ESMF supports
Gridded Component and Coupler Component classes. Components may be generic or user-supplied.

Computational domain For a given DE, the data points that have unique global indices and are updated by the DE.
See also exclusive domain, total domain, halo.

Computational resource Something that appears as a physical or virtual computer resource. Example of computa-
tional resources are a CPU, a network connection, a communication API, a protocol, a particular network fabric
or a piece of computer memory.

Concurrent execution Concurrent execution of model components occurs when two ormore components, whether
in the same or different executables, run simultaneously. See also Sequential execution.

Congruent If all Fields in a FieldBundle contain the same data type, rank, shape, and relative locations, the Field-
Bundle is said to be congruent.

Coupler Component An ESMF Component that includes all data and actions needed to enable communication be-
tween two or more Gridded Components. See also component, Gridded Component.

Curvilinear grid A curvilinear grid is a logically rectangular grid in which coordinates in physical space must be
specified by giving the explicit coordinates for each point.Curvilinear grids are often uniform or rectilinear grids
that have been warped, for example in order to place a pole over land points so it does not affect the computations
performed on an ocean model grid. See also logically rectangular grid, Uniform grid, Rectilinear grid.

Data dependencyThe property of a computational operator that defines the data indices required to perform the
computation at a point.

Data parallel The quality of an application that allows roughly the same calculation to be performed by all processors
at the same time on the same data set, which is partitioned among multiple memory locations. Single compo-
nents that do not contain nested components are often data parallel. See also task parallel, SPMD, MPMD.

Data transpose Rearrangement of data arrays that share the same global domain.

Day of year The day number in the calendar year. January 1 is day 1 of the year. Day of year expressed in a floating
point format is used to express the day number plus the time ofday. For example, assuming a Gregorian
calendar:

date day of year
10 January 2000, 6Z 10.25
31 December 2000, 18Z 366.75

DE Short for Decomposition Element.

DELayout DELayout is the ESMF class that defines the topology of a set ofDEs and specifies how the DEs are
assigned to PETs in an ESMF Virtual Machine.

Decomposition Element (DE)A DE is the smallest unit of decomposition of a computationaltask. DEs are virtual
units, not necessarily having a 1-to-1 correspondence to the Persistent Execution Threads (PETs) of a VM or the
physical Processing Elements (PEs) in the underlying physical machine. Consequently there are no restrictions
on the number of DEs that can be created. The application writer may chose the number of DEs to best match
the computational problem and the employed algorithm. A DELayout assigns a topology to Decomposition
Elements. See also DELayout.

Deep object In an environment in which the calling and implementation language of a library are different, deep ob-
jects are defined as those whose memory is allocated by the implementation language. See also shallow object.

60

Distributed Grid DistGrid is the ESMF class that defines the decomposition of aGrid’s global index space across a
DELayout. DistGrid objects are contained in an ESMF Grid. See also Grid, DELayout.

Distribution The function that expresses the relationship between the indices in a Distributed Grid and the elements
in a DELayout. See also Distributed Grid, DELayout.

Domain decomposition The act of grid distribution: creating a DistGrid, and associating grid points with the Dist-
Grid. The dimensionality of the domain decomposition is thesame as the dimensionality of the associated
DistGrid.

Exact The word exact is used to denote entities, such as time instants and time intervals, for which truncation-free
arithmetic is required.

Exchange grid A grid whose vertices are formed by the intersection of the vertices of two overlying grids. Each cell
in the exchange grid overlies exactly one cell in each grid ofthe exchange. See also grid, cell.

Exchange PacketsExchange Packets are a private ESMF class that contains datain an optimal form for data transfers.

Exclusive domain For a given DE, the set of data points that are not replicated on any other DE. See also total domain,
computational domain, halo.

Executable A program that is under independent control by the operatingsystem.

Export State The data and metadata that a component can make available forexchange with other components. This
may be data at a physical boundary (e.g land-atmosphere interface) or in other cases, it might be the entire model
state. See also State, import State.

Field The ESMF Field class represents a tangible or derived quantity defined within a continuous region of space.
The Field class includes the physical grid associated with the quantity and a decomposition that specifies how
data associated with points in the physical grid are distributed in computer memory and/or how computational
work is divided among threads. A Field also includes a specification of gridpoint staggering and any metadata
necessary for a full description of its data. See also Grid.

Framework We use the term framework to refer to a structured collectionof software building blocks that can be
used and customized to develop components, assemble them into an application, and run the application.

Generic component A generic component is one supplied by the framework. The user is not expected to customize
or otherwise modify it. ESMF does not currently contain any generic components. See also user component,
component.

Generic transform A generic transform is an operation supplied by the framework, for example, a method that
converts gridded data from one supported grid and/or decomposition to another using a specified technique. See
also user transform.

Global domain A global domain refers to the full extent of a DELayout or Grid.

Global reduction Reduction operations (sum, max, min, etc.) that condense data distributed over a global domain.
See also global broadcast.

Global broadcast Scatter operations on data distributed over a global domain. See also global reduction.

Gregorian The Gregorian calendar is the most widely used calendar in the world. The calendar’s zeroth year is at
the birth of Jesus Christ. Years after the origin (anno Domini, or AD) are positive, and before (Before Christ, or
BC) are negative. Several corrections (leap year, 100 year,400 year) are necessary to keep the calendar aligned
with solar cycles. See also Calendar.

61

GRIB The GRid in Binary Data format from the World MeteorologicalOrganization. This format is frequently used
by operational weather centers. See the GRIB and GRIB2 home pages.

Grid The discrete division of space associated with a particularcoordinate system. The ESMF Grid class contains
coordinate, domain decomposition, and memory organization information required to manipulate Fields, as well
as to create and execute Grid transforms. See also Distributed Grid, DELayout.

Grid staggering A descriptor of relative locations of scalar and vector dataon a structured grid. On different stag-
gered grids, vector data may lie at cell faces or vertices, while scalar data may lie in the interior.

Grid topology Description of data connectivities for a grid.

Grid union The formation of a new grid by taking the union of the verticesof two input grids. See also Grid.

Gridded Component An ESMF class that represents a component that is associatedwith one or more grids. No
requirements may be placed on the physical content of a Gridded Component’s data or on the nature of its
computations. See also component, Coupler Component.

Halo For a given DE, a halo is a set of data points from the computational domains of neighboring DEs that are repli-
cated locally for computational convenience. A halo can be defined as all the data points in a DE’s total domain
excluding those in its computational domain. See also computational domain, total domain, exclusive domain.

Halo update A halo update operation involves synchronization of the values of some or all halo points with the
current values of those points on other DEs. See also halo.

Import State The data and metadata that a component requires from other components in order to run. See also State,
export State.

Index An integer value associated with a set of coordinates.

Index space The space implied by a set of indices. An index space has a defined dimensionality and connectivity.

Index space locationA location within an index space. An index space location maybe fractional. See also
physical location.

Instantiate To create an actual instance of a software class. For example, each variable of derived type Field in an
ESMF Fortran application is an instance of the Field class.

Interface Used generally to refer to a set of operations that characterize the behavior of a class or a component. Also
used to refer to the name and argument list of a particular method.

Joint Milestone Codeset(JMC) Joint Milestone Codeset. This is the set of climate, weatherand data assimilation
applications used as ESMF testbeds during the initial NASA-funded phase of ESMF development.

Joint Specification Team(JST) The JST is the body of developers and users who collaborate tocreate the ESMF
software. The main form of communication for the JST is the weekly telecon. Terms of Reference are in the
ESMF Project Plan.

LocalArray A LocalArray is the portion of an ESMF Array that resides on a particular DE. See also Array.

LocalTile A LocalTile is the portion of a grid Tile that resides on a particular DE. See also Tile.

Location Stream An ESMF class that represents a list of locations with no assumed relationship between these
locations. The elements of a Location Stream are not assumedto share the same metadata. Location Streams
are not yet implemented. See also background grid.

62

http://www.wmo.ch/pages/prog/www/WDM/Guides/Guide-binary-2.html
http://www.wmo.ch/web/www/DPS/grib-2.html
http://www.earthsystemmodeling.org/management/

Logically rectangular grid A grid in which a set of coordinates (x,y,z, ...) in physical space can be mapped one-to-
one to a set of regularly spaced points (i,j,k, ...) in a rectangular logical space, preserving proximate relation-
ships. See also Grid.

Loose FieldBundle A loose FieldBundle is an ESMF FieldBundle object that contains fields whose data is not con-
tiguous in memory. See also FieldBundle, packed FieldBundle.

Machine model A generic representation of the computing platform architecture.

Mask A data field marking a span within a larger data field.

Memory domain The portion of memory associated with the data on a given DE. The memory domain is always at
least as large as the total domain. See also total domain.

Mosaic grid A mosaic grid is composed of multiple logically rectangulargrid tiles that are connected at their edges,
for example, a cubed sphere grid. See also grid tile.

MPMD Multiple Program Multiple Datastream. Multiple executables, any of which could itself be an SPMD exe-
cutable, executing independently within an application. See also SPMD.

Namelist An I/O feature supported by Fortran that defines a structuredsyntax for creating text files of initial variable
settings and defines language features for compactly reading the files. The syntax for Namelist files can be found
in most Fortran manuals and tutorial texts.

NetCDF Network Common Data Form. This is a popular I/O library and data format in the Earth sciences. See
NetCDF home page.

Node A node is a set of computational resources that is typically located in close proximity on a computing platform
and that is associated with a single shared memory buffer.

No-leap calendar In this calendar every year uses the same months and days per month as in a non-leap year of a
Gregorian calendar. See also Calendar, 360-day calendar.

Packed FieldBundle A packed FieldBundle is an ESMF FieldBundle object that contains a data buffer with field data
arranged contiguously in memory. See also FieldBundle, loose FieldBundle.

Parallel execution The term parallel execution refers to the execution of a software application on more than one PE.
See also serial.

PE Short for Processing Element.

PET Short for Persistent Execution Thread.

Persistent Execution Thread (PET) Provides a path for executing an instruction sequence. A PEThas a lifetime at
least as long as the associated data objects. The PET is a key abstraction used in the ESMF Virtual Machine.

Physical location A point in physical space to which a data point pertains. See also index space location.

Platform The processor hardware, operating system, compiler and parallel library that together form a unique com-
pilation target.

Processing Element (PE)A Processing Element (PE) is the smallest physical processing unit available on a particular
hardware platform.

Rectilinear grid A rectilinear grid is a logically rectangular grid in which the coordinates in physical space can be
fully specified by the spacing of grid points along each grid axis. The gridpoints are located where the coordinate
values intersect. The spacing along each axis may vary. See also logically rectangular grid, Uniform grid,
Curvilinear grid.

63

http://www.unidata.ucar.edu/software/netcdf/

Scheduler An operating system component that assigns system resources (processors, memory, CPU time, I/O chan-
nels, etc.) to executables.

Search Search refers to the process of determining which processors must exchange data (and how much) when
regridding between decomposed grids. See also sweep.

Sequential executionSequential execution of model components describes the case in which one component waits
for another to finish before it begins to run. Components executing sequentially may be in the same or different
executables and may have coincident or non-overlapping memory distributions. See Concurrent execution.

Serial Execution The term serial execution refers to the execution of a software application on only one PET. See
also parallel execution.

Shallow object In an environment in which the calling and implementation language of a library are different, shallow
objects are defined as those whose memory is allocated by the calling language. See also deep object.

Span The physical extent associated with a grid.

SPMD Single Program Multiple Datastream. A single executable, possibly with many components (representing for
example the atmosphere, the ocean, land surface) executingserially or concurrently. See also MPMD.

State The ESMF State class may contain Arrays, FieldBundles, Fields, or other States. It is used to transfer data
between components. See also import State, export State.

Sweep Sweep refers to the regridding process of looping through lists ofcells from one grid, hunting for interactions
with a specified point or subsegment from the other grid. The type of interaction depends on the regrid method
and is either an intersection with an identified subsegment or containment of an identified point. The limitation
of the range of cells that must be examined is also consideredpart of the sweep algorithm. See also search.

System time Time spent doing system tasks such as I/O or in system calls. May also include time spent running other
processes on a multiprocessor system. See also user time, wall clock time.

Task parallel The quality of an application that allows different calculations to be performed by different processors
at the same time on what are usually different data sets. Large-scale task parallelism is often associated with
multi-component applications in which each component represents a separate domain or function. Task parallel
applications may be run with components executing either sequentially or concurrently, and either in a SPMD
or MPMD mode. See also data parallel, SPMD, MPMD, sequentialexecution, concurrent execution.

Some grids used in Earth system modeling, such as cubed sphere grids, are most naturally represented as a set
of logically rectangular grids that are connected at their edges. Following V. Balaji [2006] we refer to each of
the logically rectangular grids in a composite grid, or mosaic grid, as a Tile. See also mosaic grid, LocalTile.

Time Time is an ESMF class that is made up of a time and date and an associated calendar. It may include a time
zone.Jan 3rd 1999, 03:30:24.56s, UTCis one example of a Time. See also Calendar.

Time Interval Time Interval is an ESMF class that represents the period between any two time instants, measured
in units, such as days, seconds, and fractions of a second. The periods2 days and 10 seconds, 86400 and 1/3
secondsand31104000.75 secondsare all possible values for Time Intervals. Mathematical operations such as
addition, multiplication, and subdivision can be applied to Time Intervals, and they can have negative values.
See also Time

Total domain For a given DE, the entirety of the data points allocated, included replicated points from neighboring
DEs. See also computational domain, exclusive domain, halo

A logically rectangular grid in which the coordinates in physical space can be completely specified by the two
sets of coordinates that define the opposing corner points ofthe physical span. The coordinates of each point in
physical space can be obtained by interpolating from the corner points, using the evenly spaced logical grid to
specify evenly spaced grid point locations. See also logically rectangular grid, Rectilinear grid, Curvilinear grid.

64

User component A component that is customized or written by the user. All ESMF components are currently user
components. See also generic component.

User time Processor time actually spent executing a PET’s code. See also system time, wall clock time.

User transform A user-supplied method that is used to extend framework capabilities beyond generic transforms.
See also generic transform.

Virtual Address Space (VAS) A term that refers to the address space in which the computer memory is represented
and becomes accessible to an executing PET.

VM Short for Virtual Machine.

Virtual Machine (VM) An ESMF class that abstracts hardware and operating system details. The VM’s responsi-
bilities are resource management and topological description of the underlying compute resources in terms of
PETs. In addition the VM provides a transparent, low level communication API.

Wall clock time Elapsed real-world time (i.e. difference between start time minus stop time). See also system time,
user time.

References

[1] Eaton, B., J. Gregory, B. Drach, K. Taylor, and S. Hankin.NetCDF Climate and Forecast (CF) Metadata Conven-
tion. http://www.cgd.ucar.edu/cms/eaton/cf-metadata/index.html.

65

	What is the Earth System Modeling Framework?
	The ESMF User's Guide
	How to Contact User Support and Find Additional Information
	How to Submit Comments, Bug Reports, and Feature Requests
	Quick Start
	Downloading ESMF
	From the ESMF web site
	From the SourceForge website

	Unpacking the download
	Directory Structure
	Building ESMF
	Environment variables
	GNU make
	gmake info
	Building makefile targets
	Testing makefile targets
	Building and using bundled ESMF applications

	Compiling and Linking User Code against an ESMF Installation
	Using Bundled ESMF Applications
	Building and Installing the ESMF
	ESMF Download Options
	System Requirements
	Third Party Libraries
	LAPACK
	NetCDF
	Parallel-NetCDF
	PIO
	XERCES

	ESMF Environment Variables
	Supported Platforms
	Building the ESMF Library
	Building the ESMF Documentation
	Installing the ESMF

	Porting the ESMF
	The ESMF Build System
	General structure
	Build configuration
	Source code configuration

	Porting the ESMF to New Platforms
	Customizing the build_rules.mk fragment
	Customizing ESMC_Conf.h and ESMF_Conf.inc

	Shared Object Libraries
	Customized SITE Files

	Validating an ESMF Build
	Running ESMF Self-Tests
	Setting up ESMF to run test suite applications
	Running ESMF unit tests
	Running ESMF system tests

	Running ESMF Examples
	Example source code
	Building and running examples

	Architectural Overview
	Key Concepts
	Modularity
	Flexibility
	Hierarchical organization
	Communication within Components
	Uniform communication API

	Superstructure
	Import and export State classes
	Interface standards
	Gridded Component class
	Coupler Component class
	Flexible data and control flow

	Infrastructure
	FieldBundle, Field and Array classes
	Grid class
	Time and Calendar management
	Config resource file manager
	DELayout and virtual machine
	Logging and error handling
	File input and output

	How to Adapt Applications for ESMF
	Individual Components
	Full Application

	Glossary
	References

