
National Unified Operational Prediction Capability

NUOPC Layer Reference

ESMF v6.3.0r

CSC Committee Members

January 31, 2014

NUOPC
CMA/CSC Committee
http://www.weather.gov/nuopc

Contents

1 Description 3

2 Design and Implementation Notes 3
2.1 Generic Components 3
2.2 Field Dictionary 5
2.3 Metadata 6

2.3.1 Model and Mediator Component Metadata 6
2.3.2 Connector Component Metadata 7
2.3.3 Field Metadata 8

2.4 Initialization 9
2.4.1 Initialize Phase Definitions 9
2.4.2 Data-Dependencies during Initialize 11
2.4.3 Transfer of Grid/Mesh Objects between Components 12

3 API 14
3.1 Generic Component: NUOPC_Driver 14
3.2 Generic Component: NUOPC_DriverAtmOcn 16
3.3 Generic Component: NUOPC_DriverAtmOcnMed 18
3.4 Generic Component: NUOPC_ModelBase 20
3.5 Generic Component: NUOPC_Model 21
3.6 Generic Component: NUOPC_Mediator 23
3.7 Generic Component: NUOPC_Connector 25
3.8 Utility Class: NUOPC_RunSequence 28

3.8.1 NUOPC_RunElementAdd 28
3.8.2 NUOPC_RunElementAddComp 29
3.8.3 NUOPC_RunElementAddLink 29
3.8.4 NUOPC_RunElementPrint 30
3.8.5 NUOPC_RunSequenceAdd 30
3.8.6 NUOPC_RunSequenceDeallocate 31
3.8.7 NUOPC_RunSequenceDeallocate 31
3.8.8 NUOPC_RunSequenceIterate 31
3.8.9 NUOPC_RunSequencePrint 32
3.8.10 NUOPC_RunSequencePrint 32
3.8.11 NUOPC_RunSequenceSet 33

3.9 Utility Routines 34
3.9.1 NUOPC_ClockCheckSetClock 34
3.9.2 NUOPC_ClockInitialize 34
3.9.3 NUOPC_ClockPrintCurrTime 35
3.9.4 NUOPC_ClockPrintStartTime 35
3.9.5 NUOPC_ClockPrintStopTime 35
3.9.6 NUOPC_CplCompAreServicesSet 36
3.9.7 NUOPC_CplCompAttributeAdd 36
3.9.8 NUOPC_CplCompAttributeGet 37
3.9.9 NUOPC_CplCompAttributeSet 37
3.9.10 NUOPC_FieldAttributeAdd 38
3.9.11 NUOPC_FieldAttributeGet 39
3.9.12 NUOPC_FieldAttributeSet 39
3.9.13 NUOPC_FieldBundleUpdateTime 40
3.9.14 NUOPC_FieldDictionaryAddEntry 40

1

3.9.15 NUOPC_FieldDictionaryGetEntry 40
3.9.16 NUOPC_FieldDictionaryHasEntry 41
3.9.17 NUOPC_FieldDictionarySetup 41
3.9.18 NUOPC_FieldIsAtTime 42
3.9.19 NUOPC_FillCplList 42
3.9.20 NUOPC_GridCompAreServicesSet 42
3.9.21 NUOPC_GridCompAttributeAdd 43
3.9.22 NUOPC_GridCompCheckSetClock 43
3.9.23 NUOPC_GridCompSetClock 44
3.9.24 NUOPC_GridCompSetServices 44
3.9.25 NUOPC_GridCreateSimpleXY 45
3.9.26 NUOPC_IsCreated 45
3.9.27 NUOPC_StateAdvertiseField 46
3.9.28 NUOPC_StateAdvertiseFields 47
3.9.29 NUOPC_StateBuildStdList 47
3.9.30 NUOPC_StateIsAllConnected 48
3.9.31 NUOPC_StateIsAtTime 48
3.9.32 NUOPC_StateIsFieldConnected 48
3.9.33 NUOPC_StateIsUpdated 49
3.9.34 NUOPC_StateRealizeField 49
3.9.35 NUOPC_StateSetTimestamp 50
3.9.36 NUOPC_StateUpdateTimestamp 50
3.9.37 NUOPC_TimePrint 51

4 Standardized Component Dependencies 52
4.1 Fortran components that are statically built into the executable . 53
4.2 Fortran components that are provided as shared libraries . 56
4.3 Components that are loaded during run-time as shared objects . 57
4.4 Components that depend on components 58
4.5 Components written in C/C++ 60

5 NUOPC Layer Compliance 63
5.1 The Compliance Checker 63
5.2 The Component Explorer 65

2

1 Description

The NUOPC Layer is an add-on to the standard ESMF library. It consists of generic code of two different kinds:utility
routinesandgeneric components. The NUOPC Layer further implements a dictionary for standard field metadata.

The utility routines are subroutines and functions that package frequently used calling sequences of ESMF methods
into single calls. Unlike the pure ESMF API, which is very class centric, the utility routines of the NUOPC Layer
often implement tasks that involve several ESMF classes.

The generic components are provided in form of Fortran modules that implement GridComp and CplComp specific
methods. Generic components are useful when implementing NUOPC compliant driver, model, mediator, or connector
components. The provided generic components form a hierarchy that allows the developer to pick and choose the
appropriate level of specification for a certain application. Depending on how specific the chosen level, generic
components require more or less specialization to result infully implemented components.

2 Design and Implementation Notes

The NUOPC Layer is implemented in Fortran on top of the publicESMF Fortran API.

The NUOPC utility routines form a very straight forward Fortran API, accessible through theNUOPC Fortran module.
The interfaces only use native Fortran types and public ESMFderived types. In order to access the utility API of the
NUOPC Layer, user code must include the following twouse lines:

use ESMF
use NUOPC

2.1 Generic Components

The NUOPC generic components are implemented as acollectionof Fortran modules. Each module implements a sin-
gle, well specified set of standardESMF_GridComp orESMF_CplCompmethods. The nomenclature of the generic
component modules starts with theNUOPC_ prefix and continues with the flavor:Driver, Model, Mediator,
or Connector. This is optionally followed by a string of additional descriptive terms. The four flavors of generic
components implemented by the NUOPC Layer are:

• NUOPC_Driver - A generic driver component. It implements a child component harness, made of State
and Component objects, that follows the NUOPC Common Model Architecture. It is specialized by plugging
Model, Mediator, andConnector components into the harness.Driver components can be plugged
into the harness to construct component hierarchies. The generic Driver initializes its child components
according to a standard Initialization Phase Definition, and drives their Run() methods according a customizable
run sequence.

• NUOPC_Model - A generic model component that wraps a model code so it is suitable to be plugged into a
genericDriver component.

• NUOPC_Mediator - A generic mediator component that wraps custom coupling code (flux calculations, av-
eraging, etc.) so it is suitable to be plugged into a genericDriver component.

• NUOPC_Connector - A generic component that implements Field matching based on metadata and executes
simple transforms (Regrid and Redist). It can be plugged into a genericDriver component.

3

The user code accesses the desired generic component(s) by including ause line for each one. Each generic com-
ponent defines a small set of public names that are made available to the user code through theuse statement. At a
minimum theSetServices method is made public. Some generic components also define a public internal state
type by the standard nameInternalState. It is recommended that the following syntax is used when accessing a
generic component (here with internal state):

use NUOPC_DriverXYZ, only: &
DriverXYZ_SS => SetServices, &
DriverXYZ_IS => InternalState

A generic component is used by user code to implement a specialized version of the component. The user code
therefore also must implement a publicSetServices routine. The first thing this routine must do is call into the
SetServices routine provided by the generic component. It is through this step that the specialized component
inheritsfrom the generic component.

There are three mechanisms through which user code specializes generic components.

1. The specializing user code must set entry points for standard component methods not implemented by the
generic component. Methods (and phases) that need to be implemented are clearly documented in the generic
component description. The user code may further overwritestandard methods already implemented by the
generic component code. However, this should rarely be necessary, and may indicate that there is a better
fitting generic component available. Finally, some genericcomponents come with generic routines that are
suitable candidates for the standard component methods, yet require that the specializing code registers them as
appropriate. Setting entry points for standard component methods is done in theSetServices routine right
after calling into the genericSetServices method.

2. Some generic components require that specific methods areattached to the component. If a generic component
uses specialization through attachable methods, the specific method labels (i.e. the names by which these meth-
ods are registered) and the purpose of the method are clearlydocumented. In some cases attachable methods
are optional. This is clearly documented. Further, some generic components attach a default method to a label,
which then is used for all phases. This default can be overwritten with a phase specific attachable method. At-
taching methods to the component should be done in theSetServices routine right after setting entry points
for the standard component methods.

3. Some generic components provide access to an internal state type. The documentation of a generic component
indicates which internal state members are used for specialization, and how they are expected to be set. Setting
internal state members often requires the availability of other pieces of information. It may happend in the
SetServices routine, but more often inside a specialized standard entrypoint or an attachable method.

Components that inherit from a generic component may chooseto only specialize certain aspects, leaving other aspects
unspecified. This allows a hierarchy of generic components to be implemented with a high degree of code re-use. The
variable level of specialization supports the very differing user needs. Figure 1 depicts the inheritance structure ofthe
NUOPC Generic Components. There are two trees, one is rootedin ESMF_GridComp, while the other is rooted in
ESMF_CplComp.

4

ESMF_GridComp

NUOPC_ModelBase

NUOPC_Model NUOPC_Mediator

NUOPC_Driver

NUOPC_DriverAtmOcn NUOPC_DriverAtmOcnMed

ESMF_CplComp

NUOPC_Connector

Figure 1: The NUOPC Generic Component inheritance structure. The upper tree is rooted inESMF_GridComp,
while the lower tree is rooted inESMF_CplComp. The ESMF data types are shown in green. The four main NUOPC
Generic Component flavors are shown in dark blue boxes. Lightblue boxes contain generic components that specialize
for common cases, while the yellow box shows a parent class inthe inheritance tree.

2.2 Field Dictionary

The NUOPC Layer uses standard metadata on Fields to guide thedecision making that is implemented in generic
code. The genericNUOPC_Connector component, for instance, uses theStandardName Attribute to construct
a list of matching Fields between the import and export States. The NUOPC Field Dictionary provides a software
implementation of a controlled vocabulary for theStandardName Attribute. It also associates each registered
StandardName with canonicalUnits, a defaultLongName, and a defaultShortName.

The NUOPC Layer provides a number of default entries in the Field Dictionary, shown in the table below. The
StandardName Attribute of all default entries complies with the Climate and Forecast (CF) conventions as docu-
mented at http://cf-pcmdi.llnl.gov/.

Currently it is typically that a user of the NUOPC Layer extends the Field Dictionary by calling the
NUOPC_FieldDictionaryAddEntry() interface to add additional entries. It is our intention to grow the num-
ber of default entries over time, and to more strongly leverage the NUOPC Field Dictionary to ensure meta data
interoperability between codes that use the NUOPC Layer.

Besides theStandardName Attribute, the NUOPC Layer currently only uses theUnits entry to verify that Fields
are given in their canonical units. The plan is to extend thisto support unit conversion in the future. The default
LongName and defaultShortName associations are provided as a convenience to the implementor of NUOPC
compliant components; the NUOPC Layer itself does not base any decisions on these two Attributes.

StandardName Units LongName ShortName
(canonical) (default) (default)

air_pressure_at_sea_level Pa Air Pressure at Sea Level pmsl

5

http://cf-pcmdi.llnl.gov/

magnitude_of_surface_downward_stressPa Magnitude of Surface Downward Stresstaum
precipitation_flux kg m-2 s-1 Precipitation Flux prcf
sea_surface_height_above_sea_level m Sea Surface Height Above Sea Level ssh
sea_surface_salinity 1e-3 Sea Surface Salinity sss
sea_surface_temperature K Sea Surface Temperature sst
surface_eastward_sea_water_velocity m s-1 Surface Eastward Sea Water Velocity sscu
surface_downward_eastward_stress Pa Surface Downward Eastward Stress tauu
surface_downward_heat_flux_in_air W m-2 Surface Downward Heat Flux in Air hfns
surface_downward_water_flux kg m-2 s-1 Surface Downward Water Flux wfns
surface_downward_northward_stress Pa Surface Downward Northward Stress tauv
surface_net_downward_shortwave_fluxW m-2 Surface Net Downward Shortwave Fluxrsns
surface_net_downward_longwave_flux W m-2 Surface Net Downward Longwave Flux rlns
surface_northward_sea_water_velocity m s-1 Surface Northward Sea Water Velocity sscv

2.3 Metadata

2.3.1 Model and Mediator Component Metadata

The Model and Mediator Component metadata is implemented asan ESMF Attribute Package:

• Convention: NUOPC

• Purpose: General

• Includes:

– CIM Model Component Simulation Description (see for example the Component Attribute packages sec-
tion in the ESMF v5.2.0rp2 documentation)

• Description: Model/Mediator component description and nesting metadata.

6

http://www.earthsystemmodeling.org/esmf_releases/public/ESMF_5_2_0rp2/ESMF_refdoc/node6.html#SECTION06022100000000000000

Name Definition Controlled Vocabulary
Verbosity String value controlling the ver-

bosity of INFO messages.
high, low

InitializePhaseMap List of string values, mapping the
logical NUOPC initialize phases, of
a specific Initialize Phase Defini-
tion (IPD) version, to the actual
ESMF initialize phase number un-
der which the entry point is regis-
tered.

IPDvXXpY=Z, where
XX = two-digit revision
number, e.g. 01, Y =
logical NUOPC phase
number, Z = actual
ESMF phase number,
with Y, Z > 0 and Y, Z <
10

NestingGeneration Integer value enumerating nesting
level.

0, 1, 2, ...

Nestling Integer value enumerating siblings
within the same generation.

0, 1, 2, ...

InitializeDataComplete String value indicating whether all
initialize data dependencies have
been satisfied.

false, true

InitializeDataProgress String value indicating whether
progress is being made resolving
initialize data dependencies.

false, true

2.3.2 Connector Component Metadata

The Connector Component metadata is implemented as an ESMF Attribute Package:

• Convention: NUOPC

• Purpose: General

• Includes:

– ESG General (see for example the Component Attribute packages section in the ESMF v5.2.0rp2 docu-
mentation)

• Description: Basic component description and connection metadata.

Name Definition Controlled Vocabulary
Verbosity String value controlling the ver-

bosity of INFO messages.
high, low

InitializePhaseMap List of string values, mapping the
logical NUOPC initialize phases, of
a specific Initialize Phase Defini-
tion (IPD) version, to the actual
ESMF initialize phase number un-
der which the entry point is regis-
tered.

IPDvXXpY=Z, where
XX = two-digit revision
number, e.g. 01, Y =
logical NUOPC phase
number, Z = actual
ESMF phase number,
with Y, Z > 0 and Y, Z <
10

CplList List of StandardNames of the con-
nected Fields.

N/A

7

http://www.earthsystemmodeling.org/esmf_releases/public/ESMF_5_2_0rp2/ESMF_refdoc/node6.html#SECTION06022100000000000000

2.3.3 Field Metadata

The Field metadata is implemented as an ESMF Attribute Package:

• Convention: NUOPC

• Purpose: General

• Includes:

– ESG General

• Description: Basic Field description with connection and time stamp metadata.

Name Definition Controlled Vocabulary
Connected Connected status. false, true
TimeStamp Nine integer values representing

ESMF Time object.
N/A

ProducerConnection String value indicating connection
details.

open, targeted,
connected

ConsumerConnection String value indicating connection
details.

open, targeted,
connected

Updated String value indicating updated sta-
tus during initialization.

false, true

TransferOfferGeomObject String value indicating a compo-
nent’s intention to transfer the un-
derlying Grid or Mesh on which an
advertised Field object is defined.

will provide,
can provide,
cannot provide

TransferActiveGeomObject String value indicating the action a
component is supposed to take with
respect to transferring the underly-
ing Grid or Mesh on which an ad-
vertised Field object is defined.

provide, accept

8

2.4 Initialization

2.4.1 Initialize Phase Definitions

The interaction between NUOPC compliant components duringthe initialization process is regulated by theInitialize
Phase Definitionor IPD. The IPDs are versioned, with a higher version number indicating backward compatibility
with all previous versions.

There are two perspectives of looking at the IPD. From the driver perspective the IPD regulates the sequence in
which it must call the different phases of the Initialize() routines of its child components. To this end the generic
NUOPC_Driver component implements support for IPDs up to a version specified in the API documenation.

The other angle of looking at the IPD is from the driver’s child components. From this perspective the IPD assigns
specific meaning to each initialize phase. The child components of a driver can be divided into two groups with
respect to the meaning the IPD assigns to each initialize phase. In one group are the model, mediator, and driver
components, and in the other group are the connector components. The following tables document the meaning of
each initialization phase for the two different child component groups for the different IPD versions. The phases are
listed in the prescribed sequence used by the driver.

IPDv00 label Child Group Meaning
IPDv00p1 model, mediator, driver Advertise the import and export Fields.
IPDv00p1 connector Construct theCplList Attribute on the

connector.
IPDv00p2 model, mediator, driver Realize the import and export Fields.
IPDv00p2 connector Set theConnected Attribute on each im-

port and export Field. Precompute the
RouteHandle.

IPDv00p3 model, mediator, driver Check compatibility of the Fields’
Connected status.

IPDv00p4 model, mediator, driver Handle Field data initialization. Time
stamp the export Fields.

IPDv01 label Child Group Meaning

IPDv01p1 model, mediator, driver Advertise the import and export Fields.
IPDv01p1 connector Construct theCplList Attribute on the

connector.
IPDv01p2 model, mediator, driver unspecified
IPDv01p2 connector Set theConnected Attribute on each im-

port and export Field.
IPDv01p3 model, mediator, driver Realize the import and export Fields.
IPDv01p3 connector Precompute the RouteHandle.
IPDv01p4 model, mediator, driver Check compatibility of the Fields’

Connected status.
IPDv01p5 model, mediator, driver Handle Field data initialization. Time

stamp the export Fields.

9

IPDv02 label Child Group Meaning

IPDv02p1 model, mediator, driver Advertise the import and export Fields.
IPDv02p1 connector Construct theCplList Attribute on the

connector.
IPDv02p2 model, mediator, driver unspecified
IPDv02p2 connector Set theConnected Attribute on each im-

port and export Field.
IPDv02p3 model, mediator, driver Realize the import and export Fields.
IPDv02p3 connector Precompute the RouteHandle.
IPDv02p4 model, mediator, driver Check compatibility of the Fields’

Connected status.
IPDv02p5 model, mediator, driver Handle Field data initialization. Times-

tamp the export Fields.
A loop is entered over all those model, mediator, driver Components that use IPDv02 and have
unsatisfied data dependencies, repeating the following twosteps:
Run() connector Loop over all Connectors that connectto

the Component that is currently indexed by
the outer loop.

IPDv02p5 model, mediator, driver Handle Field data initialization. Time
stamp the export Fields.

Repeat these two steps until all data dependencies have beenstatisfied, or a dead-lock situation
is detected.

10

IPDv03 label Child Group Meaning

IPDv03p1 model, mediator, driver Advertise the import and export Fields, set-
ting TransferOfferGeomObject.

IPDv03p1 connector Construct theCplList Attribute on the
connector.

IPDv03p2 model, mediator, driver unspecified
IPDv03p2 connector Set the Connected Attribute on

each import and export Field. Set the
TransferActionGeomObject
attribute.

IPDv03p3 model, mediator, driver Realize the import and export Fields that
have TransferActionGeomObject
equal to "provide".

IPDv03p3 connector Transfer the Grid/Mesh objects (only Dist-
Grid) for Field pairs that have a provider
and an acceptor side.

IPDv03p4 model, mediator, driver Optionally modify the decomposition and
distribution information of the accepted
Grid/Mesh by replacing the DistGrid.

IPDv03p4 connector Transfer the full Grid/Mesh objects (with
coordinates) for Field pairs that have a
provider and an acceptor side.

IPDv03p5 model, mediator, driver Realize all Fields that have
TransferActionGeomObject
equal to "accept" on the transferred
Grid/Mesh objects.

IPDv03p5 connector Precompute the RouteHandle.
IPDv03p6 model, mediator, driver Check compatibility of the Fields’

Connected status.
IPDv03p7 model, mediator, driver Handle Field data initialization. Times-

tamp the export Fields.
A loop is entered over all those model, mediator, driver Components that use IPDv02 and have
unsatisfied data dependencies, repeating the following twosteps:
Run() connector Loop over all Connectors that connectto

the Component that is currently indexed by
the outer loop.

IPDv03p7 model, mediator, driver Handle Field data initialization. Time
stamp the export Fields.

Repeat these two steps until all data dependencies have beenstatisfied, or a dead-lock situation
is detected.

2.4.2 Data-Dependencies during Initialize

For multi-model applications it is not uncommon that duringstart-up one or more components depends on data from
one or more other components. These type of data-dependencies during initialize can become very complex very
quickly. Finding the "correct" sequence to initialize all components for a complex dependency graph is not trivial. The

11

NUOPC Layer deals with this issue by repeatedly looping overall components that indicate that their initialization
has data dependencies on other components. The loop is finally exited when either all components have indicated
completion of their initialization, or a dead-lock situation is being detected by the NUOPC Layer.

The data-dependency resolution loop is implemented as partof Initialize Phase Definition version 2 (IPDv02) as
defined in section 2.4.1. Participating components communicate their current status to the NUOPC Layer via
Field and Component metadata. Participants are those components that contain anIPDv02p5 assignment in their
InitializePhaseMap Attribute according to section 2.3.1.

Every time a component’sIPDv02p5 initialization phase is called it is responsible for setting the
InitializeDataCompleteandInitializeDataProgressAttributes according to its current status before
returning. For convenience, the NUOPC Layer provides a generic implementation of anIPDv02p5 phase initialize
method for Models and Mediators (available as ESMF Initialize phase 5). This generic implementation takes care
of setting theInitializeDataProgress Attribute automatically. It does so by inspecting theUpdated Field
Attribute (see section 2.3.3) on all the Fields in the component’s exportState. The genericIPDv02p5 implementation
must be specialized by attaching a method for specialization pointlabel_DataInitialize. This specialization
method is responsible for checking the Fields in the importState and for initializing any internal data structures and
Fields in the exportState. Fields that are fully initialized in the exportState must be indicated by setting theirUpdated
Attribute to "true". Once the component is fully initialized it must further set itsInitializeDataComplete At-
tribute to "true" before returning.

During the execution of the data-dependency resolution loop the NUOPC Layer calls all of the Connectorsto a
Model/Mediator component before calling the component’sIPDv02p5 method. Doing so ensures that all the cur-
rently available Fields are passed to the component before it tries to access them duringIPDv02p5. Once a com-
ponent has set itsInitializeDataComplete Attribute to "true" it, and the Connectors to it, will no longer be
called during the remainder of the resolution loop.

Whenall of the components with anIPDv02p5 initialization phase have set theirInitializeDataComplete
Attribute to "true", the NUOPC Layer successfully exits thedata-dependency resolution loop. The loop is also in-
terrupted before allInitializeDataComplete Attributes are set to "true" if a full cycle completes without any
indicated progress. The NUOPC Layer flags this situation as apotential dead-lock and returns with error.

2.4.3 Transfer of Grid/Mesh Objects between Components

There are modeling scenarios where the need arises to transfer physical grid information from one component to
another. One common situation is that of modeling systems that utilize Mediator components to implement the inter-
actions between Model components. Here often the Mediator carries out computations on a Model’s native grid. It
is both cumbersome and error prone to re-defined the same physical grid in two different components. The Initialize
Phase Definition version 3 (IPDv03), defined in section 2.4.1, supports the transfer of ESMF Grid and Mesh objects
between Model and/or Mediator components during initialization.

The NUOPC Layer transfer protocol for GeomObjects (i.e. ESMF Grids and Meshes) is based on two Field attributes:
TransferOfferGeomObject andTransferActionGeomObject. TheTransferOfferGeomObject
attribute is used by the Model and/or Mediator components toindicate for each Field their intent for the associated
GeomObject. The predefined values of this attribute are: "will provide", "can provide", and "cannot provide". The
TransferOfferGeomObject attribute must be set duringIPDv03p1.

The generic Connector uses the intents from both sides and constructs a response according to the table below. The re-
sponse is provided by the Connector duringIPDv03p2 by setting the value of theTransferActionGeomObject
attribute to either "provide" or "accept" on each Field. Fields indicatingTransferActionGeomObject equal to
"provide" must be realized on a Grid or Mesh object in the Model/Mediator initialize method for phaseIPDv03p3.

Fields that hold "accept" for the value of theTransferActionGeomObject attribute require two additional ne-

12

gotiation steps. ByIPDv03p4 the Model/Mediator component can access the transferred Grid/Mesh on the Fields
that have the "accept" value. However, only the DistGrid, i.e. the decomposition and distribution information of the
Grid/Mesh is available at this stage, not the full physical grid information such as the coordinates. At this stage the
Model/Mediator may modify this information by replacing the DistGrid object in the Grid/Mesh. The DistGrid that is
set on the Grid/Mesh objects when leaving the Model/Mediator phaseIPDv03p4 will consequently be used by the
generic Connector to fully transfer the Grid/Mesh object. The fully transferred objects are available on the Fields with
"accept" during Model/Mediator phaseIPDv03p5, where they can be used to realize the respective Field objects. Re-
alizing typically just requires theESMF_FieldEmptyComplete() call to be made. At this point all Field objects
are fully realized and the initialization process can proceed as usual.

The following table shows how the generic Connector sets theTransferActionGeomObject attribute on the
Fields according to the incoming value ofTransferOfferGeomObject.

TransferOfferGeomObject
Incoming side A

TransferOfferGeomObject
Incoming side B

Outgoing setting by generic Connector

"will provide" "will provide" A:TransferActionGeomObject="provide"
B:TransferActionGeomObject="provide"

"will provide" "can provide" A:TransferActionGeomObject="provide"
B:TransferActionGeomObject="accept"

"will provide" "cannot provide" A:TransferActionGeomObject="provide"
B:TransferActionGeomObject="accept"

"can provide" "will provide" A:TransferActionGeomObject="accept"
B:TransferActionGeomObject="provide"

"can provide" "can provide" if (A is import side) then
A:TransferActionGeomObject="provide"
B:TransferActionGeomObject="accept"
if (B is import side) then
A:TransferActionGeomObject="accept"
B:TransferActionGeomObject="provide"

"can provide" "cannot provide" A:TransferActionGeomObject="provide"
B:TransferActionGeomObject="accept"

"cannot provide" "will provide" A:TransferActionGeomObject="accept"
B:TransferActionGeomObject="provide"

"cannot provide" "can provide" A:TransferActionGeomObject="accept"
B:TransferActionGeomObject="provide"

"cannot provide" "cannot provide" Flagged as error!

13

3 API

3.1 Generic Component: NUOPC_Driver

MODULE:

module NUOPC_Driver

DESCRIPTION:
Driver component that drives Model, Mediator, and Connector components. The default is to use explicit time step-
ping. For every Driver time step the same sequence of Model, Mediator, and ConnectorRun methods are called. The
run sequence is fully customizable.

SUPER:

ESMF_GridComp

USE DEPENDENCIES:

use ESMF

SETSERVICES:

subroutine routine_SetServices(gcomp, rc)
type(ESMF_GridComp) :: gcomp
integer, intent(out) :: rc

INITIALIZE:

• phase 0: (REQUIRED, NUOPC PROVIDED)

– Initialize theInitializePhaseMap Attribute according to the NUOPC Initialize Phase Definition
(IPD) version 00 (see section 2.4.1 for a precise definition), with the following mapping:

∗ IPDv00p1 = phase 1: (REQUIRED, NUOPC PROVIDED)

• phase 1: (NUOPC PROVIDED, suitable for: IPDv00p1)

– Allocate and initialize the internal state.

– If the internal clock is not yet set, set the default internalclock to be a copy of the incoming clock, if the
incoming clock is valid.

– Required specializationto set number of Model+Mediator components,modelCount, in the internal
state:label_SetModelCount.

– Allocate internal storage according tomodelCount.

– Optional specializationto provide Model, Mediator, and ConnectorpetList members in the internal
state:label_SetModelPetList.

– Create Model and Mediator components with their import and export States.

– Attach standard NUOPC Model Component metadata.

– Create Connector components.

– Attach standard NUOPC Connector Component metadata.

– Initialize the default run sequence.

14

– Required specializationto set component services:label_SetModelServices.

∗ Call into SetServices() for all Model, Mediator, and Connector components.
∗ Optionally replace the default clock.
∗ Optionally replace the default run sequence.

– Execute Initialize phase=0 for all Model, Mediator, and Connector components. This is the method where
each component is required to initialize itsInitializePhaseMap Attribute.

– Optional specializationto analyze and modify components’InitializePhaseMap Attribute before
the Driver uses it:label_ModifyInitializePhaseMap.

– Implement the initialize sequence for the child components, compatible with up to IPD version 02, as
documented in section 2.4.1.

RUN:

• phase 1: (REQUIRED, NUOPC PROVIDED)

– If the incoming clock is valid, set the internal stop time to one time step interval on the incoming clock.

– Time stepping loop, from current time to stop time, incrementing by time step.

– For each time step iteration, the Model and Connector components Run() methods are being called accord-
ing to the run sequence.

FINALIZE:

• phase 1: (REQUIRED, NUOPC PROVIDED)

– Optional specializationto finalize driver component:label_Finalize.

– Execute all Connector components’ Finalize() methods in order.

– Execute all Model components’ Finalize() methods in order.

– Destroy all Model components and their import and export states.

– Destroy all Connector components.

– Deallocate the run sequence.

– Deallocate the internal state.

INTERNALSTATE:

label_InternalState

type type_InternalState
type(type_InternalStateStruct), pointer :: wrap

end type

type type_InternalStateStruct
integer :: modelCount
type(type_PetList), pointer :: modelPetLists(:)
type(type_PetList), pointer :: connectorPetLists(:,:)
!--- private members --
type(ESMF_GridComp), pointer :: modelComp(:)
type(ESMF_State), pointer :: modelIS(:), modelES(:)
type(ESMF_CplComp), pointer :: connectorComp(:,:)
type(NUOPC_RunSequence), pointer :: runSeq(:)! size may increase dynamic.
integer :: runPhaseToRunSeqMap(10)
type(ESMF_Clock) :: driverClock ! clock of the parent

15

end type

type type_PetList
integer, pointer :: petList(:) !lists that are set here transfer ownership

end type

3.2 Generic Component: NUOPC_DriverAtmOcn

MODULE:

module NUOPC_DriverAtmOcn

DESCRIPTION:
This is a specialization of theNUOPC_Driver generic component, driving a coupled Atmosphere-Ocean model. The
default is to use explicit time stepping. Each driver time step, the same sequence of Atmosphere, Ocean and connector
Run methods are called. The run sequence is fully customizable for cases where explicit time stepping is not suitable.

SUPER:

NUOPC_Driver

USE DEPENDENCIES:

use ESMF

SETSERVICES:

subroutine routine_SetServices(gcomp, rc)
type(ESMF_GridComp) :: gcomp
integer, intent(out) :: rc

INITIALIZE:

• phase 0: (REQUIRED, NUOPC PROVIDED)

– Initialize theInitializePhaseMap Attribute according to the NUOPC Initialize Phase Definition
(IPD) version 00 (see section 2.4.1 for a precise definition), with the following mapping:

∗ IPDv00p1 = phase 1: (REQUIRED, NUOPC PROVIDED)

• phase 1: (NUOPC PROVIDED, suitable for: IPDv00p1)

– Allocate and initialize the internal state.

– If the internal clock is not yet set, set the default internalclock to be a copy of the incoming clock, if the
incoming clock is valid.

– Set the number of model components to 2.

– Allocate internal storage according tomodelCount = 2.

– Optional specializationto provide Model and ConnectorpetList members in the internal state:
label_SetModelPetList.

– Createatm andocn Model components with their import and export States.

– Attach standard NUOPC Model Component metadata.

16

– Createatm2ocn andocn2atm Connector components.
– Attach standard NUOPC Connector Component metadata.
– Initialize the default run sequence.
– Required specializationto set component services:label_SetModelServices.

∗ Call into SetServices() for theatm, ocn, atm2ocn, andocn2atm components.
∗ Optionally replace the default clock.
∗ Optionally replace the default run sequence.

– Execute Initialize phase=0 for all Model, and Connector components. This is the method where each
component is required to initialize itsInitializePhaseMap Attribute.

– Implement the initialize sequence for the child components, compatible with up to IPD version 02, as
documented in section 2.4.1.

RUN:

• phase 1: (REQUIRED, NUOPC PROVIDED)

– If the incoming clock is valid, set the internal stop time to one time step interval on the incoming clock.
– Time stepping loop, from current time to stop time, incrementing by time step.
– For each time step iteration, the Run() methods foratm, ocn, atm2ocn, andocn2atm are being called

according to the run sequence.

FINALIZE:

• phase 1: (REQUIRED, NUOPC PROVIDED)

– Optional specializationto finalize driver component:label_Finalize.
– Execute Finalize() foratm2ocn andocn2atm.
– Execute Finalize() foratm andocn.
– Destroyatm andocn and their import and export States.
– Destroyatm2ocn andocn2atm.
– Deallocate the run sequence.
– Deallocate the internal state.

INTERNALSTATE:

label_InternalState

type type_InternalState
type(type_InternalStateStruct), pointer :: wrap

end type

type type_InternalStateStruct
integer, pointer :: atmPetList(:)
integer, pointer :: ocnPetList(:)
type(ESMF_GridComp) :: atm
type(ESMF_GridComp) :: ocn
type(ESMF_State) :: atmIS, atmES
type(ESMF_State) :: ocnIS, ocnES
integer, pointer :: atm2ocnPetList(:)
integer, pointer :: ocn2atmPetList(:)
type(ESMF_CplComp) :: atm2ocn, ocn2atm
type(NUOPC_RunSequence), pointer :: runSeq(:)

end type

17

3.3 Generic Component: NUOPC_DriverAtmOcnMed

MODULE:

module NUOPC_DriverAtmOcnMed

DESCRIPTION:
This is a specialization of theNUOPC_Driver generic component, driving a coupled Atmosphere-Ocean-Mediator
model. The default is to use explicit time stepping. Each driver time step, the same sequence of Atmosphere, Ocean,
Mediator, and the connectorRun methods are called. The run sequence is fully customizable for cases where explicit
time stepping is not suitable.

SUPER:

NUOPC_Driver

USE DEPENDENCIES:

use ESMF

SETSERVICES:

subroutine routine_SetServices(gcomp, rc)
type(ESMF_GridComp) :: gcomp
integer, intent(out) :: rc

INITIALIZE:

• phase 0: (REQUIRED, NUOPC PROVIDED)

– Initialize theInitializePhaseMap Attribute according to the NUOPC Initialize Phase Definition
(IPD) version 00 (see section 2.4.1 for a precise definition), with the following mapping:

∗ IPDv00p1 = phase 1: (REQUIRED, NUOPC PROVIDED)

• phase 1: (NUOPC PROVIDED, suitable for: IPDv00p1)

– Allocate and initialize the internal state.

– If the internal clock is not yet set, set the default internalclock to be a copy of the incoming clock, if the
incoming clock is valid.

– Set the number of model components to 3.

– Allocate internal storage according tomodelCount = 3.

– Optional specializationto provide Model and ConnectorpetList members in the internal state:
label_SetModelPetList.

– Createatm, ocn, andmed components with their import and export States.

– Attach standard NUOPC Model Component metadata.

– Createatm2med, ocn2med, med2atm, andmed2ocn Connector components.

– Attach standard NUOPC Connector Component metadata.

– Initialize the default run sequence.

– Required specializationto set component services:label_SetModelServices.

∗ Call into SetServices() for theatm, ocn, med, atm2med, ocn2med, med2atm, andmed2ocn
components.

18

∗ Optionally replace the default clock.
∗ Optionally replace the default run sequence.

– Execute Initialize phase=0 for all Model, Mediator, and Connector components. This is the method where
each component is required to initialize itsInitializePhaseMap Attribute.

– Implement the initialize sequence for the child components, compatible with up to IPD version 02, as
documented in section 2.4.1.

RUN:

• phase 1: (REQUIRED, NUOPC PROVIDED)

– If the incoming clock is valid, set the internal stop time to one time step interval on the incoming clock.
– Time stepping loop, from current time to stop time, incrementing by time step.
– For each time step iteration, the Run() methods foratm, ocn, med, atm2med, ocn2med, med2atm,

andmed2ocn are being called according to the run sequence.

FINALIZE:

• phase 1: (REQUIRED, NUOPC PROVIDED)

– Optional specializationto finalize driver component:label_Finalize.
– Execute Finalize() foratm2med, ocn2med, med2atm, andmed2ocn.
– Execute Finalize() foratm, ocn, andmed.
– Destroyatm, ocn, andmed and their import and export States.
– Destroyatm2med, ocn2med, med2atm, andmed2ocn.
– Deallocate the run sequence.
– Deallocate the internal state.

INTERNALSTATE:

label_InternalState

type type_InternalState
type(type_InternalStateStruct), pointer :: wrap

end type

type type_InternalStateStruct
integer, pointer :: atmPetList(:)
integer, pointer :: ocnPetList(:)
integer, pointer :: medPetList(:)
type(ESMF_GridComp) :: atm
type(ESMF_GridComp) :: ocn
type(ESMF_GridComp) :: med
type(ESMF_State) :: atmIS, atmES
type(ESMF_State) :: ocnIS, ocnES
type(ESMF_State) :: medIS, medES
integer, pointer :: atm2medPetList(:)
integer, pointer :: ocn2medPetList(:)
integer, pointer :: med2atmPetList(:)
integer, pointer :: med2ocnPetList(:)
type(ESMF_CplComp) :: atm2med, ocn2med
type(ESMF_CplComp) :: med2atm, med2ocn
type(NUOPC_RunSequence), pointer :: runSeq(:)

end type

19

3.4 Generic Component: NUOPC_ModelBase

MODULE:

module NUOPC_ModelBase

DESCRIPTION:
Model component with a defaultexplicit time dependency. Each time theRun method is called the model integrates
one timeStep forward on the provided Clock. The Clock must beadvanced betweenRun calls. The component’sRun
method flags incompatibility if the current time of the incoming Clock does not match the current time of the model.

SUPER:

ESMF_GridComp

USE DEPENDENCIES:

use ESMF

SETSERVICES:

subroutine routine_SetServices(gcomp, rc)
type(ESMF_GridComp) :: gcomp
integer, intent(out) :: rc

INITIALIZE:

• phase 0: (REQUIRED, NUOPC PROVIDED)

– Initialize theInitializePhaseMap Attribute according to the NUOPC Initialize Phase Definition
(IPD) version 00 (see section 2.4.1 for a precise definition), with the following mapping:

∗ IPDv00p1 = phase 1: (REQUIRED, IMPLEMENTOR PROVIDED)
∗ IPDv00p2 = phase 2: (REQUIRED, IMPLEMENTOR PROVIDED)
∗ IPDv00p3 = phase 3: (REQUIRED, IMPLEMENTOR PROVIDED)
∗ IPDv00p4 = phase 4: (REQUIRED, IMPLEMENTOR PROVIDED)

RUN:

• phase 1: (REQUIRED, NUOPC PROVIDED)

– Allocate internal state memory.

– Assign thedriverClockmember in the internal state as an alias to the incoming clock.

– Optional specialization to check and set the internal clock against the incoming clock:
label_SetRunClock.

– Alternatively use the default specialization: check that internal clock and incoming clock agree on current
time and that the time step of the incoming clock is a multipleof the internal clock time step. Under these
conditions set the internal stop time to one time step interval on the incoming clock. Otherwise exit with
error, flagging incompatibility.

– Optional specializationto check Fields in import State:label_CheckImport.

– Alternatively use the default specialization: check that all import Fields are at the current time of the
internal clock.

20

– Model time stepping loop, starting at current time, runningto stop time on the internal clock using the
internal Clock time step. Timestamp the Fields in the exportState at the beginning of each iteration.

– Required specializationto advance the model each time step:label_Advance.

– Optional specializationto timestamp the Fields in the export State:label_TimestampExport.

– Deallocate internal state memory.

FINALIZE:

• phase 1: (REQUIRED, NUOPC PROVIDED)

– Optionally overwrite the provided NOOP with model finalization code.

INTERNALSTATE:

label_InternalState

type type_InternalState
type(type_InternalStateStruct), pointer :: wrap

end type

type type_InternalStateStruct
type(ESMF_Clock) :: driverClock

end type

3.5 Generic Component: NUOPC_Model

MODULE:

module NUOPC_Model

DESCRIPTION:
Model component with a defaultexplicit time dependency. Each time theRun method is called the model integrates
one timeStep forward on the provided Clock. The Clock must beadvanced betweenRun calls. The component’sRun
method flags incompatibility if the current time of the incoming Clock does not match the current time of the model.

SUPER:

NUOPC_ModelBase

USE DEPENDENCIES:

use ESMF

SETSERVICES:

subroutine routine_SetServices(gcomp, rc)
type(ESMF_GridComp) :: gcomp
integer, intent(out) :: rc

INITIALIZE:

21

• phase 0: (REQUIRED, NUOPC PROVIDED)

– Initialize theInitializePhaseMap Attribute according to the NUOPC Initialize Phase Definition
(IPD) version 00 (see section 2.4.1 for a precise definition), with the following mapping:

∗ IPDv00p1 = phase 1: (REQUIRED, IMPLEMENTOR PROVIDED)
· Advertise Fields in import and export States.

∗ IPDv00p2 = phase 2: (REQUIRED, IMPLEMENTOR PROVIDED)
· Realize the advertised Fields in import and export States.

∗ IPDv00p3 = phase 3: (REQUIRED, NUOPC PROVIDED)
· Check compatibility of the Fields’ Connected status.

∗ IPDv00p4 = phase 4: (REQUIRED, NUOPC PROVIDED)
· Handle Field data initialization. Time stamp the export Fields.

• phase 3: (NUOPC PROVIDED, suitable for: IPDv00p3, IPDv01p4, IPDv02p4)

– If the model internal clock is found to be not set, then set themodel internal clock as a copy of the incoming
clock.

– Optional specializationto set the internal clock and/or alarms:label_SetClock.

– Check compatibility, ensuring all advertised import Fields are connected.

• phase 4: (NUOPC PROVIDED, suitable for: IPDv00p4, IPDv01p5)

– Optional specializationto initialize export Fields:label_DataInitialize

– Time stamp Fields in export State for compatibility checking.

• phase 5: (NUOPC PROVIDED, suitable for: IPDv02p5)

– Optional specializationto initialize export Fields:label_DataInitialize

– Time stamp Fields in export State for compatibility checking.

– Set Component metadata used to resolve initialize data dependencies.

RUN:

• phase 1: (REQUIRED, NUOPC PROVIDED)

– Allocate internal state memory.

– Assign thedriverClockmember in the internal state as an alias to the incoming clock.

– Optional specialization to check and set the internal clock against the incoming clock:
label_SetRunClock.

– Alternatively use the default specialization: check that internal clock and incoming clock agree on current
time and that the time step of the incoming clock is a multipleof the internal clock time step. Under these
conditions set the internal stop time to one time step interval on the incoming clock. Otherwise exit with
error, flagging incompatibility.

– Optional specializationto check Fields in import State:label_CheckImport.

– Alternatively use the default specialization: check that all import Fields are at the current time of the
internal clock.

– Model time stepping loop, starting at current time, runningto stop time on the internal clock using the
internal Clock time step.

– Required specializationto advance the model each time step:label_Advance.

– Timestamp all export Fields at the current time of the internal clock.

– Deallocate internal state memory.

22

FINALIZE:

• phase 1: (REQUIRED, NUOPC PROVIDED)

– Optionally overwrite the provided NOOP with model finalization code.

INTERNALSTATE:

label_InternalState

type type_InternalState
type(type_InternalStateStruct), pointer :: wrap

end type

type type_InternalStateStruct
type(ESMF_Clock) :: driverClock

end type

3.6 Generic Component: NUOPC_Mediator

MODULE:

module NUOPC_Mediator

DESCRIPTION:
Mediator component with a defaultexplicit time dependency. Each time theRun method is called, the time stamp
on the imported Fields must match the current time (on both the incoming and internal Clock). Before returning,
the Mediator time stamps the exported Fields with the same current time, before advancing the internal Clock one
timeStep forward.

SUPER:

NUOPC_ModelBase

USE DEPENDENCIES:

use ESMF

SETSERVICES:

subroutine routine_SetServices(gcomp, rc)
type(ESMF_GridComp) :: gcomp
integer, intent(out) :: rc

INITIALIZE:

• phase 0: (REQUIRED, NUOPC PROVIDED)

– Initialize theInitializePhaseMap Attribute according to the NUOPC Initialize Phase Definition
(IPD) version 00 (see section 2.4.1 for a precise definition), with the following mapping:

∗ IPDv00p1 = phase 1: (REQUIRED, IMPLEMENTOR PROVIDED)
· Advertise Fields in import and export States.

23

∗ IPDv00p2 = phase 2: (REQUIRED, IMPLEMENTOR PROVIDED)
· Realize the advertised Fields in import and export States.

∗ IPDv00p3 = phase 3: (REQUIRED, NUOPC PROVIDED)
· Check compatibility of the Fields’ Connected status.

∗ IPDv00p4 = phase 4: (REQUIRED, NUOPC PROVIDED)
· Handle Field data initialization. Time stamp the export Fields.

• phase 3: (NUOPC PROVIDED, suitable for: IPDv00p3, IPDv01p4, IPDv02p4)

– Set the Mediator internal clock as a copy of the incoming clock.

– Check compatibility, ensuring all advertised import Fields are connected.

• phase 4: (NUOPC PROVIDED, suitable for: IPDv00p4, IPDv01p5)

– Optional specializationto initialize export Fields:label_DataInitialize

– Time stamp Fields in import and export States for compatibility checking.

• phase 5: (NUOPC PROVIDED, suitable for: IPDv02p5)

– Optional specializationto initialize export Fields:label_DataInitialize

– Time stamp Fields in export State for compatibility checking.

– Set Component metadata used to resolve initialize data dependencies.

RUN:

• phase 1: (REQUIRED, NUOPC PROVIDED)

– Allocate internal state memory.

– Assign thedriverClockmember in the internal state as an alias to the incoming clock.

– Optional specialization to check and set the internal clock against the incoming clock:
label_SetRunClock.

– Alternatively use the default specialization: check that internal clock and incoming clock agree on current
time and that the time step of the incoming clock is a multipleof the internal clock time step. Under these
conditions set the internal stop time to one time step interval on the incoming clock. Otherwise exit with
error, flagging incompatibility.

– Optional specializationto check Fields in import State:label_CheckImport.

– Alternatively use the default specialization: check that all import Fields are at the current time of the
internal clock.

– Optional specializationto timestamp the Fields in the export State:label_TimestampExport.

– Alternatively timestamp all export Fields at the current time of the internal clock, i.e. the current time of
the incoming clock.

– Mediator time step forward on the internal Clock, which is the same time step as on the incoming Clock.
This prepares the internal clock for the next iteration.

– Required specializationto mediate the Fields:label_Advance.

– Deallocate internal state memory.

FINALIZE:

• phase 1: (REQUIRED, NUOPC PROVIDED)

– Optionally overwrite the provided NOOP with Mediator finalization code.

24

INTERNALSTATE:

label_InternalState

type type_InternalState
type(type_InternalStateStruct), pointer :: wrap

end type

type type_InternalStateStruct
type(ESMF_Clock) :: driverClock

end type

3.7 Generic Component: NUOPC_Connector

MODULE:

module NUOPC_Connector

DESCRIPTION:
Connector component that uses a default bilinear regrid method duringRun to transfer data from the connected import
Fields to the connected export Fields.

SUPER:

ESMF_CplComp

USE DEPENDENCIES:

use ESMF

SETSERVICES:

subroutine routine_SetServices(cplcomp, rc)
type(ESMF_CplComp) :: cplcomp
integer, intent(out) :: rc

INITIALIZE:

• phase 0: (REQUIRED, NUOPC PROVIDED)

– Initialize theInitializePhaseMap Attribute according to the NUOPC Initialize Phase Definition
(IPD) version 01 (see section 2.4.1 for a precise definition), with the following mapping:

∗ IPDv01p1 = phase 1: (REQUIRED, NUOPC PROVIDED)
∗ IPDv01p2 = phase 2: (REQUIRED, NUOPC PROVIDED)
∗ IPDv01p3 = phase 3: (REQUIRED, NUOPC PROVIDED)

• phase 1: (NUOPC PROVIDED, suitable for: IPDv01p1, IPDv02p1)

– Construct a list of matching Field pairs between import and export State based on theStandardName
Field metadata.

– Store this list ofStandardName entries in theCplList attribute of the Connector Component meta-
data.

25

• phase 2: (NUOPC PROVIDED, suitable for: IPDv01p2, IPDv02p2)

– Allocate and initialize the internal state.

– Use theCplList attribute to constructsrcFields anddstFields FieldBundles in the internal state
that hold matched Field pairs.

– Set theConnected attribute totrue in the Field metadata for each Field that is added to the
srcFields anddstFields FieldBundles.

• phase 3: (NUOPC PROVIDED, suitable for: IPDv01p3, IPDv02p3)

– Use theCplList attribute to constructsrcFields anddstFields FieldBundles in the internal state
that hold matched Field pairs.

– Set theConnected attribute totrue in the Field metadata for each Field that is added to the
srcFields anddstFields FieldBundles.

– Optional specializationto precompute a Connector operation:label_ComputeRouteHandle. Sim-
ple custom implementations store the precomputed communication RouteHandle in therh member of
the internal state. More complex implementations use thestate member in the internal state to store
auxiliary Fields, FieldBundles, and RouteHandles.

– By default (if label_ComputeRouteHandle wasnot provided) precompute the Connector Route-
Handle as a bilinear Regrid operation betweensrcFields anddstFields, with unmappedaction
set toESMF_UNMAPPEDACTION_IGNORE. The resulting RouteHandle is stored in therh member of
the internal state.

RUN:

• phase 1: (REQUIRED, NUOPC PROVIDED)

– Optional specializationto execute a Connector operation:label_ExecuteRouteHandle. Simple
custom implementations access thesrcFields, dstFields, andrh members of the internal state
to implement the required data transfers. More complex implementations access thestate member in
the internal state, which holds the auxiliary Fields, FieldBundles, and RouteHandles that potentially were
added during the optionallabel_ComputeRouteHandlemethod during initialize.

– By default (iflabel_ExecuteRouteHandle wasnot provided) execute the precomputed Connector
RouteHandle betweensrcFields anddstFields.

– Update the time stamp on the Fields indstFields to match the time stamp on the Fields insrcFields.

FINALIZE:

• phase 1: (REQUIRED, NUOPC PROVIDED)

– Optional specializationto release a Connector operation:label_ReleaseRouteHandle.

– By default (iflabel_ReleaseRouteHandle wasnot provided) release the precomputed Connector
RouteHandle.

– Destroy the internal state members.

– Deallocate the internal state.

INTERNALSTATE:

26

label_InternalState

type type_InternalState
type(type_InternalStateStruct), pointer :: wrap

end type

type type_InternalStateStruct
type(ESMF_FieldBundle) :: srcFields
type(ESMF_FieldBundle) :: dstFields
type(ESMF_RouteHandle) :: rh
type(ESMF_State) :: state

end type

27

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
...

...
...

...

...

integer::runPhaseToRunSeqMap(10)

modelComp(:)

..........

..........

..........

..........

..........

..........

..........

type(ESMF_CplComp),pointer::connectorComp(:,:)

..........

runSeq(:)

1

2

3

4

1

2

3

4

ru
n

P
h

as
eT

o
R

u
n

S
eq

M
ap

()

...
type(NUOPC_RunElement), pointer::first
type(ESMF_Clock)::clock

...
type(NUOPC_RunElement), pointer::first
type(ESMF_Clock)::clock

...
type(NUOPC_RunElement), pointer::first
type(ESMF_Clock)::clock

next
phase

next
phase
i, j

next
phase
i, j

next
phase
i, j

next
phase
i, j

next
phase
i, j

next
phase
i, j

next
phase
i, j

next
phase
i, j

co
n

n
ec

to
rC

o
m

p
(:

,:
)

0 1 2 3 4 5

0

1

2

3

4

5

4 53210
type(ESMF_GridComp), pointer::modelComp(:)

type(NUOPC_RunSequence), pointer::runSeq(:)

NUOPC_Driver :: InternalState

NUOPC_RunSequence

NUOPC_RunSequence

NUOPC_RunSequence

N_RE N_RE N_RE N_RE

N_RE N_RE

N_RE N_RE N_RE

i<0,next=>NULL()

i<0, next=>.not.NULL()

model component reference connector component reference ENDDO LINK

i>=0, j<
0

i>
=0

, j
>=

0

i, j

Figure 2: NUOPC_RunSequence class as it relates to the surrounding data structures.

3.8 Utility Class: NUOPC_RunSequence

TheNUOPC_RunSequence class provides a unified data structure that allows simple aswell as complex time loops
to be encoded and executed. There are entry points that allowdifferent run phases to be mapped against distinctly
different time loops.
Figure 2 depicts the data structures surrounding theNUOPC_RunSequence, starting with the InternalState of the
NUOPC_Driver generic component.

3.8.1 NUOPC_RunElementAdd - Add a RunElement to the end of a RunSequence

INTERFACE:

subroutine NUOPC_RunElementAdd(runSeq, i, j, phase, rc)

ARGUMENTS:

type(NUOPC_RunSequence), intent(inout), target :: runSeq
integer, intent(in) :: i, j, phase
integer, optional, intent(out) :: rc

28

DESCRIPTION:

Add a new RunElement at the end of an existing RunSequence. The RunElement is set to the values provided fori,
j, phase.

3.8.2 NUOPC_RunElementAddComp - Add a RunElement for a Component to the end of a RunSequence

INTERFACE:

subroutine NUOPC_RunElementAddComp(runSeq, i, j, phase, rc)

ARGUMENTS:

type(NUOPC_RunSequence), intent(inout), target :: runSeq
integer, intent(in) :: i
integer, intent(in), optional :: j
integer, intent(in), optional :: phase
integer, optional, intent(out) :: rc

DESCRIPTION:

Add a new RunElement for a Component to the end of an existing RunSequence. The RunElement is set to the values
provided fori, j, phase, or as determined by their defaults.

The arguments are:

runSeq An existingNUOPC_RunSequence object.

i Elementi index. This index must be > 0. Corresponds to the Model or Mediator component index ifj < 0.
Corresponds to src side of a Connector ifj >= 0.

[j] Elementj index. Defaults to -1.

[phase] Elementphase index. Defaults to 1.

rc Return code; equalsESMF_SUCCESS if there are no errors.

3.8.3 NUOPC_RunElementAddLink - Add a RunElement for a Link to the end of a RunSequence

INTERFACE:

subroutine NUOPC_RunElementAddLink(runSeq, slot, rc)

ARGUMENTS:

29

type(NUOPC_RunSequence), intent(inout), target :: runSeq
integer, intent(in) :: slot
integer, optional, intent(out) :: rc

DESCRIPTION:

Add a new RunElement for a link to the end of an existing RunSequence.

The arguments are:

runSeq An existingNUOPC_RunSequence object.

slot Run sequence slot to be linked to. Must be > 0.

rc Return code; equalsESMF_SUCCESS if there are no errors.

3.8.4 NUOPC_RunElementPrint - Print info about a RunElement object

INTERFACE:

subroutine NUOPC_RunElementPrint(runElement, rc)

ARGUMENTS:

type(NUOPC_RunElement), intent(in) :: runElement
integer, optional, intent(out) :: rc

DESCRIPTION:

Write information aboutrunElement into the default log file.

3.8.5 NUOPC_RunSequenceAdd - Add more RunSequences to a RunSequence vector

INTERFACE:

subroutine NUOPC_RunSequenceAdd(runSeq, addCount, rc)

ARGUMENTS:

type(NUOPC_RunSequence), pointer :: runSeq(:)
integer, intent(in) :: addCount
integer, optional, intent(out) :: rc

30

DESCRIPTION:

The incoming RunSequence vectorrunSeq is extended byaddCount more RunSequence objects. The existing
RunSequence objects are copied to the front of the new vectorbefore the old vector is deallocated.

3.8.6 NUOPC_RunSequenceDeallocate - Deallocate an entireRunSequence vector

INTERFACE:

! Private name; call using NUOPC_RunSequenceDeallocate()
subroutine NUOPC_RunSequenceArrayDeall(runSeq, rc)

ARGUMENTS:

type(NUOPC_RunSequence), pointer :: runSeq(:)
integer, optional, intent(out) :: rc

DESCRIPTION:

Deallocate all of the RunElements in all of the RunSequence defined in therunSeq vector.

3.8.7 NUOPC_RunSequenceDeallocate - Deallocate a single RunSequence object

INTERFACE:

! Private name; call using NUOPC_RunSequenceDeallocate()
subroutine NUOPC_RunSequenceSingleDeall(runSeq, rc)

ARGUMENTS:

type(NUOPC_RunSequence), intent(inout) :: runSeq
integer, optional, intent(out) :: rc

DESCRIPTION:

Deallocate all of the RunElements in the RunSequence definedbyrunSeq.

3.8.8 NUOPC_RunSequenceIterate - Iterate through a RunSequence

INTERFACE:

31

function NUOPC_RunSequenceIterate(runSeq, runSeqIndex, runElement, rc)

RETURN VALUE:

logical :: NUOPC_RunSequenceIterate

ARGUMENTS:

type(NUOPC_RunSequence), pointer :: runSeq(:)
integer, intent(in) :: runSeqIndex
type(NUOPC_RunElement), pointer :: runElement
integer, optional, intent(out) :: rc

DESCRIPTION:

Iterate through the RunSequence that is in positionrunSeqIndex in therunSeq vector. IfrunElement comes
in unassociated, the iteration starts from the beginning. Otherwise this call takes one forward step relative to the
incomingrunElement, returning the next RunElement inrunElement. In either case, the logical function return
value is.true. if the end of iteration has not been reached by the forward step, and.false. if the end of iteration
has been reached. The returnedrunElement is only valid for a function return value of.true..

3.8.9 NUOPC_RunSequencePrint - Print info about a single RunSequence object

INTERFACE:

! Private name; call using NUOPC_RunSequencePrint()
subroutine NUOPC_RunSequenceSinglePrint(runSeq, rc)

ARGUMENTS:

type(NUOPC_RunSequence), intent(in) :: runSeq
integer, optional, intent(out) :: rc

DESCRIPTION:

Write information aboutrunSeq into the default log file.

3.8.10 NUOPC_RunSequencePrint - Print info about a RunSequence vector

INTERFACE:

! Private name; call using NUOPC_RunSequencePrint()
subroutine NUOPC_RunSequenceArrayPrint(runSeq, rc)

32

ARGUMENTS:

type(NUOPC_RunSequence), pointer :: runSeq(:)
integer, optional, intent(out) :: rc

DESCRIPTION:

Write information about the wholerunSeq vector into the default log file.

3.8.11 NUOPC_RunSequenceSet - Set values inside a RunSequence object

INTERFACE:

subroutine NUOPC_RunSequenceSet(runSeq, clock, rc)

ARGUMENTS:

type(NUOPC_RunSequence), intent(inout) :: runSeq
type(ESMF_Clock), intent(in) :: clock
integer, optional, intent(out) :: rc

DESCRIPTION:

Set the Clock member inrunSeq.

33

3.9 Utility Routines

3.9.1 NUOPC_ClockCheckSetClock - Check a Clock for compatibility

INTERFACE:

subroutine NUOPC_ClockCheckSetClock(setClock, checkClock, &
setStartTimeToCurrent, rc)

ARGUMENTS:

type(ESMF_Clock), intent(inout) :: setClock
type(ESMF_Clock), intent(in) :: checkClock
logical, intent(in), optional :: setStartTimeToCurrent
integer, intent(out), optional :: rc

DESCRIPTION:

ComparessetClock to checkClock to make sure they match in their current Time. Further ensures that
checkClock’s timeStep is a multiple ofsetClock’s timeStep. If both these condition are satisfied then the stop-
Time of thesetClock is set onecheckClock’s timeStep ahead of the current Time, taking into account the
direction of the Clock.

By default the startTime of thesetClock is not modified. However, ifsetStartTimeToCurrent == .true.
the startTime ofsetClock is set to the currentTime ofcheckClock.

3.9.2 NUOPC_ClockInitialize - Initialize a new Clock from Clock and stabilityTimeStep

INTERFACE:

function NUOPC_ClockInitialize(externalClock, stabilityTimeStep, rc)

RETURN VALUE:

type(ESMF_Clock) :: NUOPC_ClockInitialize

ARGUMENTS:

type(ESMF_Clock) :: externalClock
type(ESMF_TimeInterval), intent(in), optional :: stabilityTimeStep
integer, intent(out), optional :: rc

DESCRIPTION:

Returns a new Clock instance that is a copy of the incoming Clock, but potentially with a smaller timestep. The
timestep is chosen so that the timestep of the incoming Clock(externalClock) is a multiple of the new Clock’s
timestep, and at the same time the new timestep is <= thestabilityTimeStep.

34

3.9.3 NUOPC_ClockPrintCurrTime - Formatted print ot curre nt time

INTERFACE:

subroutine NUOPC_ClockPrintCurrTime(clock, string, unit, rc)

ARGUMENTS:

type(ESMF_Clock), intent(in) :: clock
character(*), intent(in), optional :: string
character(*), intent(out), optional :: unit
integer, intent(out), optional :: rc

DESCRIPTION:

Writes the formatted current time ofclock to unit. Prependsstring if provided. If unit is present it must be
an internal unit, i.e. a string variable. Ifunit is not present then the output is written to the default external unit
(typically that would be stdout).

3.9.4 NUOPC_ClockPrintStartTime - Formatted print ot star t time

INTERFACE:

subroutine NUOPC_ClockPrintStartTime(clock, string, unit, rc)

ARGUMENTS:

type(ESMF_Clock), intent(in) :: clock
character(*), intent(in), optional :: string
character(*), intent(out), optional :: unit
integer, intent(out), optional :: rc

DESCRIPTION:

Writes the formatted start time ofclock to unit. Prependsstring if provided. If unit is present it must be
an internal unit, i.e. a string variable. Ifunit is not present then the output is written to the default external unit
(typically that would be stdout).

3.9.5 NUOPC_ClockPrintStopTime - Formatted print ot stop time

INTERFACE:

subroutine NUOPC_ClockPrintStopTime(clock, string, unit, rc)

35

ARGUMENTS:

type(ESMF_Clock), intent(in) :: clock
character(*), intent(in), optional :: string
character(*), intent(out), optional :: unit
integer, intent(out), optional :: rc

DESCRIPTION:

Writes the formatted stop time ofclock to unit. Prependsstring if provided. If unit is present it must be
an internal unit, i.e. a string variable. Ifunit is not present then the output is written to the default external unit
(typically that would be stdout).

3.9.6 NUOPC_CplCompAreServicesSet - Check if SetServiceswas called

INTERFACE:

function NUOPC_CplCompAreServicesSet(comp, rc)

RETURN VALUE:

logical :: NUOPC_CplCompAreServicesSet

ARGUMENTS:

type(ESMF_CplComp), intent(in) :: comp
integer, intent(out), optional :: rc

DESCRIPTION:

Returns.true. if SetServices has been called forcomp. Otherwise returns.false..

3.9.7 NUOPC_CplCompAttributeAdd - Add the NUOPC CplComp Attributes

INTERFACE:

subroutine NUOPC_CplCompAttributeAdd(comp, rc)

ARGUMENTS:

type(ESMF_CplComp), intent(inout) :: comp
integer, intent(out), optional :: rc

36

DESCRIPTION:

Adds standard NUOPC Attributes to a Coupler Component. Checks the provided importState and exportState argu-
ments for matching Fields and adds the list as "CplList" Attribute.

This adds the standard NUOPC Coupler Attribute package: convention="NUOPC", purpose="General" to the Field.
The NUOPC Coupler Attribute package extends the ESG Component Attribute package: convention="ESG", pur-
pose="General".

The arguments are:

comp TheESMF_CplComp object to which the Attributes are added.

[rc] Return code; equalsESMF_SUCCESS if there are no errors.

3.9.8 NUOPC_CplCompAttributeGet - Get a NUOPC CplComp Attribute

INTERFACE:

subroutine NUOPC_CplCompAttributeGet(comp, cplList, cplListSize, rc)

ARGUMENTS:

type(ESMF_CplComp), intent(in) :: comp
character(*), intent(out), optional :: cplList(:)
integer, intent(out), optional :: cplListSize
integer, intent(out), optional :: rc

DESCRIPTION:

Accesses the "CplList" Attribute inside ofcomp using the conventionNUOPC and purposeGeneral. Returns with
error if the Attribute is not present or not set.

3.9.9 NUOPC_CplCompAttributeSet - Set the NUOPC CplComp Attributes

INTERFACE:

subroutine NUOPC_CplCompAttributeSet(comp, importState, exportState, rc)

ARGUMENTS:

type(ESMF_CplComp), intent(inout) :: comp
type(ESMF_State), intent(in) :: importState
type(ESMF_State), intent(in) :: exportState
integer, intent(out), optional :: rc

37

DESCRIPTION:

Checks the provided importState and exportState argumentsfor matching Fields and sets the coupling list as "CplList"
Attribute incomp.

The arguments are:

comp TheESMF_CplComp object to which the Attributes are set.

importState Import State.

exportState Export State.

[rc] Return code; equalsESMF_SUCCESS if there are no errors.

3.9.10 NUOPC_FieldAttributeAdd - Add the NUOPC Field Attri butes

INTERFACE:

subroutine NUOPC_FieldAttributeAdd(field, StandardName, Units, LongName, &
ShortName, Connected, rc)

ARGUMENTS:

type(ESMF_Field) :: field
character(*), intent(in) :: StandardName
character(*), intent(in), optional :: Units
character(*), intent(in), optional :: LongName
character(*), intent(in), optional :: ShortName
character(*), intent(in), optional :: Connected
integer, intent(out), optional :: rc

DESCRIPTION:

Adds standard NUOPC Attributes to a Field object. Checks theprovided arguments against the NUOPC Field Dictio-
nary. Omitted optional information is filled in using defaults out of the NUOPC Field Dictionary.

This adds the standard NUOPC Field Attribute package: convention="NUOPC", purpose="General" to the Field. The
NUOPC Field Attribute package extends the ESG Field Attribute package: convention="ESG", purpose="General".

The arguments are:

field TheESMF_Field object to which the Attributes are added.

StandardName The StandardName of the Field. Must be a StandardName found in the NUOPC Field Dictionary.

[Units] The Units of the Field. Must be convertible to the canonical units specified in the NUOPC Field Dictio-
nary for the specified StandardName. If omitted, the defaultis to use the canonical units associated with the
StandardName in the NUOPC Field Dictionary.

[LongName] The LongName of the Field. NUOPC does not restrict the value of this variable. If omitted, the default
is to use the LongName associated with the StandardName in the NUOPC Field Dictionary.

38

[ShortName] The ShortName of the Field. NUOPC does not restrict the valueof this variable. If omitted, the default
is to use the ShortName associated with the StandardName in the NUOPC Field Dictionary.

[Connected] The connection status of the Field. Must be one of the NUOPC supported values:false or true. If
omitted, the default is a connected status offalse.

[rc] Return code; equalsESMF_SUCCESS if there are no errors.

3.9.11 NUOPC_FieldAttributeGet - Get a NUOPC Field Attribute

INTERFACE:

subroutine NUOPC_FieldAttributeGet(field, name, value, rc)

ARGUMENTS:

type(ESMF_Field), intent(in) :: field
character(*), intent(in) :: name
character(*), intent(out) :: value
integer, intent(out), optional :: rc

DESCRIPTION:

Accesses the Attributename inside offield using the conventionNUOPC and purposeGeneral. Returns with
error if the Attribute is not present or not set.

3.9.12 NUOPC_FieldAttributeSet - Set a NUOPC Field Attribute

INTERFACE:

subroutine NUOPC_FieldAttributeSet(field, name, value, rc)

ARGUMENTS:

type(ESMF_Field) :: field
character(*), intent(in) :: name
character(*), intent(in) :: value
integer, intent(out), optional :: rc

DESCRIPTION:

Set the Attributename inside offield using the conventionNUOPC and purposeGeneral.

39

3.9.13 NUOPC_FieldBundleUpdateTime - Update the time stamp on all Fields in a FieldBundle

INTERFACE:

subroutine NUOPC_FieldBundleUpdateTime(srcFields, dstFields, rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(in) :: srcFields
type(ESMF_FieldBundle), intent(inout) :: dstFields
integer, intent(out), optional :: rc

DESCRIPTION:

Updates the time stamp on all Fields in thedstFields FieldBundle to be the same as in thedstFields Field-
Bundle.

3.9.14 NUOPC_FieldDictionaryAddEntry - Add an entry to the NUOPC Field dictionary

INTERFACE:

subroutine NUOPC_FieldDictionaryAddEntry(standardName, canonicalUnits, &
defaultLongName, defaultShortName, rc)

ARGUMENTS:

character(*), intent(in) :: standardName
character(*), intent(in) :: canonicalUnits
character(*), intent(in), optional :: defaultLongName
character(*), intent(in), optional :: defaultShortName
integer, intent(out), optional :: rc

DESCRIPTION:

Adds an entry to the NUOPC Field dictionary. If necessary thedictionary is first set up.

3.9.15 NUOPC_FieldDictionaryGetEntry - Get information about a NUOPC Field dictionary entry

INTERFACE:

subroutine NUOPC_FieldDictionaryGetEntry(standardName, canonicalUnits, &
defaultLongName, defaultShortName, rc)

40

ARGUMENTS:

character(*), intent(in) :: standardName
character(*), intent(out), optional :: canonicalUnits
character(*), intent(out), optional :: defaultLongName
character(*), intent(out), optional :: defaultShortName
integer, intent(out), optional :: rc

DESCRIPTION:

Returns the canonical units, the default LongName and the default ShortName that the NUOPC Field dictionary
associates with a StandardName.

3.9.16 NUOPC_FieldDictionaryHasEntry - Check whether theNUOPC Field dictionary has a specific entry

INTERFACE:

function NUOPC_FieldDictionaryHasEntry(standardName, rc)

RETURN VALUE:

logical :: NUOPC_FieldDictionaryHasEntry

ARGUMENTS:

character(*), intent(in) :: standardName
integer, intent(out), optional :: rc

DESCRIPTION:

Returns.true. if the NUOPC Field dictionary has an entry with the specified StandardName,.false. otherwise.

3.9.17 NUOPC_FieldDictionarySetup - Setup the NUOPC Fielddictionary

INTERFACE:

subroutine NUOPC_FieldDictionarySetup(rc)

ARGUMENTS:

integer, intent(out), optional :: rc

DESCRIPTION:

Setup the NUOPC Field dictionary.

41

3.9.18 NUOPC_FieldIsAtTime - Check if the Field is at the given Time

INTERFACE:

function NUOPC_FieldIsAtTime(field, time, rc)

RETURN VALUE:

logical :: NUOPC_FieldIsAtTime

ARGUMENTS:

type(ESMF_Field), intent(in) :: field
type(ESMF_Time), intent(in) :: time
integer, intent(out), optional :: rc

DESCRIPTION:

Returns.true. if the Field has a timestamp that matchestime. Otherwise returns.false..

3.9.19 NUOPC_FillCplList - Fill the cplList according to matching Fields

INTERFACE:

subroutine NUOPC_FillCplList(importState, exportState, cplList, rc)

ARGUMENTS:

type(ESMF_State), intent(in) :: importState
type(ESMF_State), intent(in) :: exportState
character(ESMF_MAXSTR), pointer :: cplList(:)
integer, intent(out), optional :: rc

DESCRIPTION:

Constructs a list of matching StandardNames of Fields in theimportState andexportState. Returns this list
in cplList.

The pointer argumentcplList must enter this method unassociated. On return, the deallocation of the potentially
associated pointer becomes the caller’s responsibility.

3.9.20 NUOPC_GridCompAreServicesSet - Check if SetServices was called

INTERFACE:

42

function NUOPC_GridCompAreServicesSet(comp, rc)

RETURN VALUE:

logical :: NUOPC_GridCompAreServicesSet

ARGUMENTS:

type(ESMF_GridComp), intent(in) :: comp
integer, intent(out), optional :: rc

DESCRIPTION:

Returns.true. if SetServices has been called forcomp. Otherwise returns.false..

3.9.21 NUOPC_GridCompAttributeAdd - Add the NUOPC GridComp Attributes

INTERFACE:

subroutine NUOPC_GridCompAttributeAdd(comp, rc)

ARGUMENTS:

type(ESMF_GridComp) :: comp
integer, intent(out), optional :: rc

DESCRIPTION:

Adds standard NUOPC Attributes to a Gridded Component.

This adds the standard NUOPC GridComp Attribute package: convention="NUOPC", purpose="General" to the Grid-
ded Component. The NUOPC GridComp Attribute package extends the CIM Component Attribute package: conven-
tion="CIM 1.5", purpose="ModelComp".

3.9.22 NUOPC_GridCompCheckSetClock - Check Clock compatibility and set stopTime

INTERFACE:

subroutine NUOPC_GridCompCheckSetClock(comp, externalClock, rc)

ARGUMENTS:

type(ESMF_GridComp), intent(inout) :: comp
type(ESMF_Clock), intent(in) :: externalClock
integer, intent(out), optional :: rc

43

DESCRIPTION:

ComparesexternalClock to the Component internal Clock to make sure they match in their current Time. Further
ensures that the external Clock’s timeStep is a multiple of the internal Clock’s timeStep. If both these condition are
satisfied then the stopTime of the internal Clock is set to be reachable in one timeStep of the external Clock, taking
into account the direction of the Clock.

3.9.23 NUOPC_GridCompSetClock - Initialize and set the internal Clock of a GridComp

INTERFACE:

subroutine NUOPC_GridCompSetClock(comp, externalClock, stabilityTimeStep, &
rc)

ARGUMENTS:

type(ESMF_GridComp), intent(inout) :: comp
type(ESMF_Clock), intent(in) :: externalClock
type(ESMF_TimeInterval), intent(in), optional :: stabilityTimeStep
integer, intent(out), optional :: rc

DESCRIPTION:

Sets the Component internal Clock as a copy ofexternalClock, but with a timeStep that is less than or equal to
the stabilityTimeStep. At the same time ensures that the timeStep of the external Clock is a multiple of the internal
Clock’s timeStep. If the stabilityTimeStep argument is notprovided then the internal Clock will simply be set as a
copy of the externalClock.

3.9.24 NUOPC_GridCompSetServices - Try to find and call SetServices in a shared object

INTERFACE:

recursive subroutine NUOPC_GridCompSetServices(comp, sharedObj, userRc, rc)

ARGUMENTS:

type(ESMF_GridComp), intent(inout) :: comp
character(len=*), intent(in), optional :: sharedObj
integer, intent(out), optional :: userRc
integer, intent(out), optional :: rc

DESCRIPTION:

44

Try to find a routine called "SetServices" in the sharedObj and execute it to set the component’s services. An attempt
is made to find a routine that is close in name to "SetServices", allowing compiler name mangeling, i.e. upper and
lower case, as well as trailing underscores.

3.9.25 NUOPC_GridCreateSimpleXY - Create a simple XY cartesian Grid

INTERFACE:

function NUOPC_GridCreateSimpleXY(x_min, y_min, x_max, y_max, &
i_count, j_count, rc)

RETURN VALUE:

type(ESMF_Grid):: NUOPC_GridCreateSimpleXY

ARGUMENTS:

real(ESMF_KIND_R8), intent(in) :: x_min, x_max, y_min, y_max
integer, intent(in) :: i_count, j_count
integer, intent(out), optional :: rc

DESCRIPTION:

Creates and returns a very simple XY cartesian Grid.

3.9.26 NUOPC_IsCreated - Check whether an ESMF object has been created

INTERFACE:

! call using generic interface: NUOPC_IsCreated
function NUOPC_ClockIsCreated(clock, rc)

RETURN VALUE:

logical :: NUOPC_ClockIsCreated

ARGUMENTS:

type(ESMF_Clock) :: clock
integer, intent(out), optional :: rc

DESCRIPTION:

Returns.true. if the ESMF object (hereclock) is in the created state,.false. otherwise.

45

3.9.27 NUOPC_StateAdvertiseField - Advertise a Field in a State

INTERFACE:

subroutine NUOPC_StateAdvertiseField(state, StandardName, Units, &
LongName, ShortName, name, TransferOfferGeomObject, rc)

ARGUMENTS:

type(ESMF_State), intent(inout) :: state
character(*), intent(in) :: StandardName
character(*), intent(in), optional :: Units
character(*), intent(in), optional :: LongName
character(*), intent(in), optional :: ShortName
character(*), intent(in), optional :: name
character(*), intent(in), optional :: TransferOfferGeomObject
integer, intent(out), optional :: rc

DESCRIPTION:

Advertises a Field in a State. This call checks the provided information against the NUOPC Field Dictionary. Omitted
optional information is filled in using defaults out of the NUOPC Field Dictionary.

The arguments are:

state TheESMF_State object through which the Field is advertised.

StandardName The StandardName of the advertised Field. Must be a StandardName found in the NUOPC Field
Dictionary.

[Units] The Units of the advertised Field. Must be convertible to thecanonical units specified in the NUOPC Field
Dictionary for the specified StandardName. If omitted, the default is to use the canonical units associated with
the StandardName in the NUOPC Field Dictionary.

[LongName] The LongName of the advertised Field. NUOPC does not restrict the value of this variable. If omitted,
the default is to use the LongName associated with the StandardName in the NUOPC Field Dictionary.

[ShortName] The ShortName of the advertised Field. NUOPC does not restrict the value of this variable. If omitted,
the default is to use the ShortName associated with the StandardName in the NUOPC Field Dictionary.

[name] The actual name of the advertised Field by which it is accessed in the State object. NUOPC does not restrict
the value of this variable. If omitted, the default is to use the value of the ShortName.

[TransferOfferGeomObject] The transfer offer for the geom object (Grid, Mesh, LocStream, XGrid) associated with
the advertised Field. NUOPC controls the vocabulary of thisattribute: "will provide", "can provide", "cannot
provide". If omitted, the default is "will provide".

[rc] Return code; equalsESMF_SUCCESS if there are no errors.

46

3.9.28 NUOPC_StateAdvertiseFields - Advertise Fields in aState

INTERFACE:

subroutine NUOPC_StateAdvertiseFields(state, StandardNames, rc)

ARGUMENTS:

type(ESMF_State), intent(inout) :: state
character(*), intent(in) :: StandardNames(:)
integer, intent(out), optional :: rc

DESCRIPTION:

Advertises Fields in a State. Defaults are set according to the NUOPC Field Dictionary.

The arguments are:

state TheESMF_State object through which the Field is advertised.

StandardNames A list of StandardNames of the advertised Fields. Must be StandardNames found in the NUOPC
Field Dictionary.

[rc] Return code; equalsESMF_SUCCESS if there are no errors.

3.9.29 NUOPC_StateBuildStdList - Build lists of Field information from a State

INTERFACE:

recursive subroutine NUOPC_StateBuildStdList(state, stdAttrNameList, &
stdItemNameList, stdConnectedList, stdFieldList, rc)

ARGUMENTS:

type(ESMF_State), intent(in) :: state
character(ESMF_MAXSTR), pointer :: stdAttrNameList(:)
character(ESMF_MAXSTR), pointer, optional :: stdItemNameList(:)
character(ESMF_MAXSTR), pointer, optional :: stdConnectedList(:)
type(ESMF_Field), pointer, optional :: stdFieldList(:)
integer, intent(out), optional :: rc

DESCRIPTION:

Constructs lists containing the StandardName, Field name,and connected status of the Fields in thestate. Returns
this information in the list arguments. Recursively parsesthrough nested States.

All pointer arguments present must enter this method unassociated. On return, the deallocation of an associated pointer
becomes the user responsibility.

47

3.9.30 NUOPC_StateIsAllConnected - Check if all the Fieldsin a State are connected

INTERFACE:

function NUOPC_StateIsAllConnected(state, rc)

RETURN VALUE:

logical :: NUOPC_StateIsAllConnected

ARGUMENTS:

type(ESMF_State), intent(in) :: state
integer, intent(out), optional :: rc

DESCRIPTION:

Returns.true. if all the Fields instate are connected. Otherwise returns.false..

3.9.31 NUOPC_StateIsAtTime - Check if all the Fields in a State are at the given Time

INTERFACE:

function NUOPC_StateIsAtTime(state, time, rc)

RETURN VALUE:

logical :: NUOPC_StateIsAtTime

ARGUMENTS:

type(ESMF_State), intent(in) :: state
type(ESMF_Time), intent(in) :: time
integer, intent(out), optional :: rc

DESCRIPTION:

Returns.true. if all the Fields instate have a timestamp that matchestime. Otherwise returns.false..

3.9.32 NUOPC_StateIsFieldConnected - Test if Field in a State is connected

INTERFACE:

48

function NUOPC_StateIsFieldConnected(state, fieldName, rc)

RETURN VALUE:

logical :: NUOPC_StateIsFieldConnected

ARGUMENTS:

type(ESMF_State), intent(in) :: state
character(*), intent(in) :: fieldName
integer, intent(out), optional :: rc

DESCRIPTION:

Returns.true. if Fields with namefieldName contained instate is connected. Otherwise returns.false..

3.9.33 NUOPC_StateIsUpdated - Check if all the Fields in a State are marked as updated

INTERFACE:

function NUOPC_StateIsUpdated(state, count, rc)

RETURN VALUE:

logical :: NUOPC_StateIsUpdated

ARGUMENTS:

type(ESMF_State), intent(in) :: state
integer, intent(out), optional :: count
integer, intent(out), optional :: rc

DESCRIPTION:

Returns.true. if all the Fields instate have their "Updated" Attribute set to "true". Otherwise returns.false..
Thecount argument returns how many of the FIelds have the Updated" Attribtue set to "true".

3.9.34 NUOPC_StateRealizeField - Realize a previously advertised Field in a State

INTERFACE:

subroutine NUOPC_StateRealizeField(state, field, rc)

49

ARGUMENTS:

type(ESMF_State), intent(inout) :: state
type(ESMF_Field), intent(in) :: field
integer, intent(out), optional :: rc

DESCRIPTION:

Realizes a previously advertised Field instate.

3.9.35 NUOPC_StateSetTimestamp - Set a time stamp on all Fields in a State

INTERFACE:

subroutine NUOPC_StateSetTimestamp(state, clock, selective, rc)

ARGUMENTS:

type(ESMF_State), intent(inout) :: state
type(ESMF_Clock), intent(in) :: clock
logical, intent(in), optional :: selective
integer, intent(out), optional :: rc

DESCRIPTION:

Sets the TimeStamp Attribute according toclock on all the Fields instate.

3.9.36 NUOPC_StateUpdateTimestamp - Update the timestampon all the Fields in a State

INTERFACE:

subroutine NUOPC_StateUpdateTimestamp(state, rootPet, rc)

ARGUMENTS:

type(ESMF_State), intent(in) :: state
integer, intent(in) :: rootPet
integer, intent(out), optional :: rc

DESCRIPTION:

Updates the TimeStamp Attribute for all the Fields on all thePETs in the current VM to the TimeStamp Attribute held
by the Field instance on therootPet.

50

3.9.37 NUOPC_TimePrint - Formatted print ot time informati on

INTERFACE:

subroutine NUOPC_TimePrint(time, string, unit, rc)

ARGUMENTS:

type(ESMF_Time), intent(in) :: time
character(*), intent(in), optional :: string
character(*), intent(out), optional :: unit
integer, intent(out), optional :: rc

DESCRIPTION:

Write a formatted time with or withoutstring to unit. If unit is present it must be an internal unit, i.e. a
string variable. Ifunit is not present then the output is written to the default external unit (typically that would be
stdout).

51

4 Standardized Component Dependencies

Most of the NUOPC Layer deals with specifying the interaction between ESMF components within a running ESMF
application. ESMF provides several mechanisms of how an application can be made up of individual Components.
This chapter deals with reigning in the many options supported by ESMF and setting up a standard way for assembling
NUOPC compliant components into a working application.

ESMF supports single executable as well as some forms of multiple executable applications. Currently the NUOPC
Layer only addresses the case of single executable applications. While it is generally true that executing single exe-
cutable applications is easier and more widely supported than executing multiple executable applications, building a
single executable from multiple components can be challenging. This is especially true when the individual compo-
nents are supplied by different groups, and the assembly of the final application happens apart from the component
development. The purpose of standardizing component dependencies as part of the NUOPC Layer is to provide a
solution to the technical aspect of assembling applications built from NUOPC compliant components.

As with the other parts of the NUOPC Layer, the standardized component dependencies specify aspects that ESMF
purposefully leaves unspecified. Having a standard way to deal with component dependencies has several advantages.
It makes reading and understand NUOPC compliant applications more easily. It also provides a means to promote best
practices across a wide range of application systems. Ultimately the goal of standardizing the component dependencies
is to support "plug & build" between NUOPC compliant components and applications, where everything needed to
use a component by a upper level software layer is supplied ina standard way, ready to be used by the software.

There is one aspect of the standardized component dependency that affects the component code itself:The name of
the public set services entry point into a NUOPC compliant component must be called "SetServices". The only
exception to this rule are components that are written in C/C++ and made available for static linking. In this case,
because of lack of namespace protection, theSetServices part must be followed by a component specific suffix.
This will be discussed later in this chapter. For all other cases, unique namespaces exist that allow the entry point to
be calledSetServices across all components.

Having standardized the name of the single public entry point into a component solves the issue of having to commu-
nicate its name to the software layer that intends to use the component. At the same time, limiting the public entry
point to a single accepted name does not remove any flexibility that is generally leveraged by ESMF applications.
Within the context of the NUOPC Layer, there is great flexibility designed into the initialize steps. Removing the need
to have to deal with alternative set services routines focuses and clarifies the NUOPC approach.

The remaining aspects of component dependency standardization all deal with build specific issues, i.e. how does
the software layer that uses a component compile and link against the component code. For now the NUOPC Layer
does not deal with the question on how the component itself isbeing built. Instead the focus is on the information
that a component must provide about itself, and the format ofthis information, in order to be usable by another piece
of software. This clear separation allows components to provide their own independent build system, which often
is critical to ensure bit-for-bit reproducibility. At the same time it does not prevent build systems to be connected
top-down if that is desirable.

Technically the problem of passing component specific buildinformation up the build hierarchy is solved by using
GNU makefile fragments that allow every component to provideinformation in form of variables to the upper level
build system. The NUOPC Layer standardization requires that: Every component must provide a makefile fragment
that defines 6 variables:

ESMF_DEP_FRONT
ESMF_DEP_INCPATH
ESMF_DEP_CMPL_OBJS
ESMF_DEP_LINK_OBJS
ESMF_DEP_SHRD_PATH
ESMF_DEP_SHRD_LIBS

The convention for makefile fragments is to provide them in files with a suffix of.mk. The NUOPC Layer currently
adds no further restriction to the name of the makefile fragment file of a component. There seems little gain in

52

standardizing the name of the NUOPC compliant makefile fragment of a component since the location must be made
available anyway, and adding the specific file name at the end of the supplied path does not appear inappropriate.

The meaning of the 6 makefile variables is defined in a manner that supports many different situations, ranging from
simple statically linked components to situations where components are made available in shared objects, not loaded
by the application until needed during runtime. The design idea of the NUOPC Layer component makefile fragment
is to have each component provide a simple makefile fragment that is self-describing. Usage of advanced options
requires a more sophisticated build system on the software layer thatusesthe component, while at the same time the
same standard format is able to keep simple situations simple.

An indepth understanding of the capabilities of the NUOPC Layer build dependency standard requires looking at
various common cases in detail. The remainder of this chapter is dedicated to this effort. Here a general definition of
each variable is provided.

• ESMF_DEP_FRONT - The name of the Fortran module to be used in a USE statement, or (if it ends in ".h") the
name of the header file to be used in an #include statement, or (if it ends in ".so") the name of the shared object
to be loaded at run-time.

• ESMF_DEP_INCPATH - The include path to find module or header files during compilation. Must be specified
as absolute path.

• ESMF_DEP_CMPL_OBJS - Object files that need to be considered as compile dependencies. Must be specified
with absolute path.

• ESMF_DEP_LINK_OBJS - Object files that need to be considered as link dependencies. Must be specified
with absolute path.

• ESMF_DEP_SHRD_PATH - The path to find shared libraries during link-time (and during run-time unless over-
ridden by LD_LIBRARY_PATH). Must be specified as absolute path.

• ESMF_DEP_SHRD_LIBS - Shared libraries that need to be specified during link-time, and must be available
during run-time. Must be specified with absolute path.

The following sections discuss how the standard makefile fragment is utilized in common use cases. It shows how the
.mk file would need to look like in these cases. Each section further contains hints of how a compliant.mk file can be
auto-generated by the component build system (provider side), as well as hints on how it can be used by an upper level
software layer (consumer side). Makefile segments providedin these hint sections arenot part of the NUOPC Layer
component dependency standard. They are only provided hereas a convenience to the user, showing best practices of
how the standard.mk files can be used in practice. Any specific compiler and linkerflags shown in the hint sections
are those compliant with the GNU Compiler Collection.

The NUOPC Layer standard only covers the contents of the.mk file itself.

4.1 Fortran components that are statically built into the executable

Statically building a component into the executable requires that the associated files (object files, and for Fortran the
associated module files) are available when the applicationis being built. It makes the component code part of the
executable. A change in the component code requires re-compilation and re-linking of the executable.

A NUOPC compliant Fortran component that defines its public entry point in a module called "ABC", where all
component code is contained in a single object file called "abc.o", makes itself available by providing the following
.mk file:

ESMF_DEP_FRONT = ABC
ESMF_DEP_INCPATH = <absolute path to associated ABC module file>
ESMF_DEP_CMPL_OBJS = <absolute path>/abc.o

53

ESMF_DEP_LINK_OBJS = <absolute path>/abc.o
ESMF_DEP_SHRD_PATH =
ESMF_DEP_SHRD_LIBS =

If, however, the component implementation is spread acrossseveral object files (e.g. abc.o and xyz.o), they must all
be listed in theESMF_DEP_LINK_OBJS variable:

ESMF_DEP_FRONT = ABC
ESMF_DEP_INCPATH = <absolute path to associated ABC module file>
ESMF_DEP_CMPL_OBJS = <absolute path>/abc.o
ESMF_DEP_LINK_OBJS = <absolute path>/abc.o <absolute path>/xyz.o
ESMF_DEP_SHRD_PATH =
ESMF_DEP_SHRD_LIBS =

In cases that require a large number of object files to be linked into the executable it is often more convenient to provide
them in an archive file, e.g. "libABC.a". Archive files are also specified inESMF_DEP_LINK_OBJS:

ESMF_DEP_FRONT = ABC
ESMF_DEP_INCPATH = <absolute path to associated ABC module file>
ESMF_DEP_CMPL_OBJS = <absolute path>/abc.o
ESMF_DEP_LINK_OBJS = <absolute path>/libABC.a
ESMF_DEP_SHRD_PATH =
ESMF_DEP_SHRD_LIBS =

Hints for the provider side: A build rule for creating a compliant self-describing.mk file can be added to the
component’s makefile. For the case that component "ABC" is implemented in object files listed in variable "OBJS", a
build rule that produces "abc.mk" could look like this:

.PRECIOUS: %.o
%.mk : %.o

@echo "# ESMF self-describing build dependency makefile fragment" > $@
@echo >> $@
@echo "ESMF_DEP_FRONT = ABC" >> $@
@echo "ESMF_DEP_INCPATH = ‘pwd‘" >> $@
@echo "ESMF_DEP_CMPL_OBJS = ‘pwd‘/"$< >> $@
@echo "ESMF_DEP_LINK_OBJS = "$(addprefix ‘pwd‘/, $(OBJS)) >> $@
@echo "ESMF_DEP_SHRD_PATH = " >> $@
@echo "ESMF_DEP_SHRD_LIBS = " >> $@

abc.mk: $(OBJS)

Hints for the consumer side: The format of the NUOPC compliant.mk files allows the consumer side to collect
the information provided by multiple components into one set of internal variables. Notice that in the makefile code
below it is critical to use the:= style assignment instead of a simple= in order to have the assignment be based on the
currentvalue of the right hand variables.

include abc.mk
DEP_FRONTS := $(DEP_FRONTS) -DFRONT_ABC=$(ESMF_DEP_FRONT)
DEP_INCS := $(DEP_INCS) $(addprefix -I, $(ESMF_DEP_INCPATH))
DEP_CMPL_OBJS := $(DEP_CMPL_OBJS) $(ESMF_DEP_CMPL_OBJS)
DEP_LINK_OBJS := $(DEP_LINK_OBJS) $(ESMF_DEP_LINK_OBJS)
DEP_SHRD_PATH := $(DEP_SHRD_PATH) $(addprefix -L, $(ESMF_DEP_SHRD_PATH))

54

DEP_SHRD_LIBS := $(DEP_SHRD_LIBS) $(addprefix -l, $(ESMF_DEP_SHRD_LIBS))

include xyz.mk
DEP_FRONTS := $(DEP_FRONTS) -DFRONT_XYZ=$(ESMF_DEP_FRONT)
DEP_INCS := $(DEP_INCS) $(addprefix -I, $(ESMF_DEP_INCPATH))
DEP_CMPL_OBJS := $(DEP_CMPL_OBJS) $(ESMF_DEP_CMPL_OBJS)
DEP_LINK_OBJS := $(DEP_LINK_OBJS) $(ESMF_DEP_LINK_OBJS)
DEP_SHRD_PATH := $(DEP_SHRD_PATH) $(addprefix -L, $(ESMF_DEP_SHRD_PATH))
DEP_SHRD_LIBS := $(DEP_SHRD_LIBS) $(addprefix -l, $(ESMF_DEP_SHRD_LIBS))

Besides the accumulation of information into the internal variables, there is a small amount of processing going on.
The module name provided by theESMF_DEP_FRONT variable is assigned to a pre-processor macro. The intention
of this macro is to be used in a FortranUSE statement to access the Fortran module that contains the public access
point of the component.

The include paths inESMF_DEP_INCPATH are prepended with the appropriate compiler flag (here "-I"). The
ESMF_DEP_SHRD_PATH andESMF_DEP_SHRD_LIBS variables are also prepended by the respective compiler
and linker flags in case a component brings in a shared librarydependencies.

Once the.mk files of all component dependencies have been included and processed in this manner, the internal
variables can be used in the build system of the application layer, as shown in the following example:

.SUFFIXES: .f90 .F90 .c .C

%.o : %.f90
$(ESMF_F90COMPILER) -c $(DEP_FRONTS) $(DEP_INCS) \

$(ESMF_F90COMPILEOPTS) $(ESMF_F90COMPILEPATHS) $(ESMF_F90COMPILEFREENOCPP) $<

%.o : %.F90
$(ESMF_F90COMPILER) -c $(DEP_FRONTS) $(DEP_INCS) \

$(ESMF_F90COMPILEOPTS) $(ESMF_F90COMPILEPATHS) $(ESMF_F90COMPILEFREECPP) \
$(ESMF_F90COMPILECPPFLAGS) $<

%.o : %.c
$(ESMF_CXXCOMPILER) -c $(DEP_FRONTS) $(DEP_INCS) \

$(ESMF_CXXCOMPILEOPTS) $(ESMF_CXXCOMPILEPATHSLOCAL) $(ESMF_CXXCOMPILEPATHS) \
$(ESMF_CXXCOMPILECPPFLAGS) $<

%.o : %.C
$(ESMF_CXXCOMPILER) -c $(DEP_FRONTS) $(DEP_INCS) \

$(ESMF_CXXCOMPILEOPTS) $(ESMF_CXXCOMPILEPATHSLOCAL) $(ESMF_CXXCOMPILEPATHS) \
$(ESMF_CXXCOMPILECPPFLAGS) $<

app: app.o appSub.o $(DEP_LINK_OBJS)
$(ESMF_F90LINKER) $(ESMF_F90LINKOPTS) $(ESMF_F90LINKPATHS) \

$(ESMF_F90LINKRPATHS) -o $@ $^ $(DEP_SHRD_PATH) $(DEP_SHRD_LIBS) \
$(ESMF_F90ESMFLINKLIBS)

app.o: appSub.o
appSub.o: $(DEP_CMPL_OBJS)

55

4.2 Fortran components that are provided as shared libraries

Providing a component in form of a shared library requires that the associated files (object files, and for Fortran the
associated module files) are available when the applicationis being built. However, different from the statically linked
case, the component code doesnot become part of the executable, instead it will be loaded separately each time the
executable is loaded during start-up. This requires that the executable finds the component shared libraries, on which it
depends, during start-up. A change in the component code typically does not require re-compilation and re-linking of
the executable, instead a new version of the component shared library will be loaded automatically when it is available
at execution start-up.

A NUOPC compliant Fortran component that defines its public entry point in a module called "ABC", where all
component code is contained in a single shared library called "libABC.so", makes itself available by providing the
following .mk file:

ESMF_DEP_FRONT = ABC
ESMF_DEP_INCPATH = <absolute path to associated ABC module file>
ESMF_DEP_CMPL_OBJS =
ESMF_DEP_LINK_OBJS =
ESMF_DEP_SHRD_PATH = <absolute path to libABC.so>
ESMF_DEP_SHRD_LIBS = libABC.so

Hints for the provider side: The following build rule will create a compliant self-describing.mk file ("abc.mk") for
a component that is made available as a shared library. The case assumes that component "ABC" is implemented in
object files listed in variable "OBJS".

.PRECIOUS: %.so
%.mk : %.so

@echo "# ESMF self-describing build dependency makefile fragment" > $@
@echo >> $@
@echo "ESMF_DEP_FRONT = ABC" >> $@
@echo "ESMF_DEP_INCPATH = ‘pwd‘" >> $@
@echo "ESMF_DEP_CMPL_OBJS = " >> $@
@echo "ESMF_DEP_LINK_OBJS = " >> $@
@echo "ESMF_DEP_SHRD_PATH = ‘pwd‘" >> $@
@echo "ESMF_DEP_SHRD_LIBS = "$* >> $@

abc.mk:

abc.so: $(OBJS)
$(ESMF_CXXLINKER) -shared -o $@ $<
mv $@ lib$@
rm -f $<

Hints for the consumer side:The format of the NUOPC compliant.mk files allows the consumer side to collect the
information provided by multiple components into one set ofinternal variables. This is independent on whether some
or all of the components are provided as shared libraries.

The path specified inESMF_DEP_SHRD_PATH is required when building the executable in order for the linker to find
the shared library. Depending on the situation, it may be desirable to also encode this search path into the executable
through the RPATH mechanism as shown below. However, in somecases, e.g. when the actual shared library to be
used during execution isnotavailable from the same location as during build-time, it may not be useful to encode the
RPATH. In either case, having set theLD_LIBRARY_PATH environment variable to the desired location of the shared
library at run-time will ensure that the correct library fileis found.

Notice that in the makefile code below it is critical to use the:= style assignment instead of a simple= in order to
have the assignment be based on thecurrentvalue of the right hand variables.

56

include abc.mk
DEP_FRONTS := $(DEP_FRONTS) -DFRONT_ABC=$(ESMF_DEP_FRONT)
DEP_INCS := $(DEP_INCS) $(addprefix -I, $(ESMF_DEP_INCPATH))
DEP_CMPL_OBJS := $(DEP_CMPL_OBJS) $(ESMF_DEP_CMPL_OBJS)
DEP_LINK_OBJS := $(DEP_LINK_OBJS) $(ESMF_DEP_LINK_OBJS)
DEP_SHRD_PATH := $(DEP_SHRD_PATH) $(addprefix -L, $(ESMF_DEP_SHRD_PATH)) \
$(addprefix -Wl$(COMMA)-rpath$(COMMA), $(ESMF_DEP_SHRD_PATH))

DEP_SHRD_LIBS := $(DEP_SHRD_LIBS) $(addprefix -l, $(ESMF_DEP_SHRD_LIBS))

(HereCOMMA is a variable that contains a single comma which would cause syntax issues if it was written into the
"addprefix" command directly.)

The internal variables set by the above makefile code can thenbe used by exactly the same makefile rules shown for
the statically linked case. In fact, component "ABC" that comes in through "abc.mk" could either be a statically linked
component or a shared library component. The makefile code shown here for the consumer side handles both cases
alike.

4.3 Components that are loaded during run-time as shared objects

Making components available in the form of shared objects allows the executable to be built in the complete absence
of any information that depends on the component code. The only information required when building the executable
is the name of the shared object file that will supply the component code during run-time. The shared object file of
the component can be replaced at will, and it is not until run-time, when the executable actually tries to access the
component, that the shared object must be available to be loaded.

A NUOPC compliant component where all component code, including its public access point, is contained in a single
shared object called "abc.so", makes itself available by providing the following.mk file:

ESMF_DEP_FRONT = abc.so
ESMF_DEP_INCPATH =
ESMF_DEP_CMPL_OBJS =
ESMF_DEP_LINK_OBJS =
ESMF_DEP_SHRD_PATH =
ESMF_DEP_SHRD_LIBS =

The other parts of the.mk file may be utilized in special cases, but typically the shared object should be self-contained.

It is interesting to note that at this level of abstraction, there is no more difference between a component written in
Fortran, and a component written in in C/C++. In both cases the public entry point available in the shared object
must beSetServices as required by the NUOPC Layer component dependency standard. (NUOPC does allow for
customary name mangling by the Fortran compiler.)

Hints for the provider side: The following build rule will create a compliant self-describing.mk file ("abc.mk") for
a component that is made available as a shared object. The case assumes that component "ABC" is implemented in
object files listed in variable "OBJS".

.PRECIOUS: %.so
%.mk : %.so

@echo "# ESMF self-describing build dependency makefile fragment" > $@
@echo >> $@
@echo "ESMF_DEP_FRONT = "$< >> $@
@echo "ESMF_DEP_INCPATH = " >> $@
@echo "ESMF_DEP_CMPL_OBJS = " >> $@
@echo "ESMF_DEP_LINK_OBJS = " >> $@

57

@echo "ESMF_DEP_SHRD_PATH = " >> $@
@echo "ESMF_DEP_SHRD_LIBS = " >> $@

abc.mk:

abc.so: $(OBJS)
$(ESMF_CXXLINKER) -shared -o $@ $<
rm -f $<

Hints for the consumer side:The format of the NUOPC compliant.mk files still allows the consumer side to collect
the information provided by multiple components into one set of internal variables. This still holds when some or all
of the components are provided as shared objects. In fact it is very simple to make all of the component sections in the
consumer makefile handle both cases.

Notice that in the makefile code below it is critical to use the:= style assignment instead of a simple= in order to
have the assignment be based on thecurrentvalue of the right hand variables.

include abc.mk
ifneq (,$(findstring .so,$(ESMF_DEP_FRONT)))
DEP_FRONTS := $(DEP_FRONTS) -DFRONT_SO_ABC=\"$(ESMF_DEP_FRONT)\"
else
DEP_FRONTS := $(DEP_FRONTS) -DFRONT_ABC=$(ESMF_DEP_FRONT)
endif
DEP_FRONTS := $(DEP_FRONTS) -DFRONT_ABC=$(ESMF_DEP_FRONT)
DEP_INCS := $(DEP_INCS) $(addprefix -I, $(ESMF_DEP_INCPATH))
DEP_CMPL_OBJS := $(DEP_CMPL_OBJS) $(ESMF_DEP_CMPL_OBJS)
DEP_LINK_OBJS := $(DEP_LINK_OBJS) $(ESMF_DEP_LINK_OBJS)
DEP_SHRD_PATH := $(DEP_SHRD_PATH) $(addprefix -L, $(ESMF_DEP_SHRD_PATH)) \
$(addprefix -Wl$(COMMA)-rpath$(COMMA), $(ESMF_DEP_SHRD_PATH))

DEP_SHRD_LIBS := $(DEP_SHRD_LIBS) $(addprefix -l, $(ESMF_DEP_SHRD_LIBS))

The above makefile segment supports component "ABC" that is described in "abc.mk" to be made available as
a Fortran static component, a Fortran shared library, or a shared object. The conditional around assigning vari-
able DEP_FRONTS either leads to having set the macroFRONT_ABC as before, or setting a different macro
FRONT_SO_ABC. The former indicates that a Fortran module is available forthe component and requires aUSE
statement in the code. The latter macro indicates that the component is made available through a shared object, and
the macro can be used to specify the name of the shared object in the associated call.

Again the internal variables set by the above makefile code can be used by the same makefile rules shown for the
statically linked case.

4.4 Components that depend on components

The NUOPC Layer supports component hierarchies where a component can be a child of another component. This
hierarchy of components translates into component build dependencies that must be dealt with in the NUOPC Layer
standardization of component dependencies.

A component that sits in an intermediate level of the component hierarchy depends on the components "below" while
at the same time it introduces a dependency by itself for the parent further "up" in the hierarchy. Within the NUOPC
Layer component dependency standard this means that the intermediate component functions as a consumer of its
child components’.mk files, and as a provider of its own.mk file that is then consumed by its parent. In practice this
double role translates into passing link dependencies and shared library dependencies through to the parent, while the
front and compile dependency is simply defined my the intermediate component itself.

58

Consider a NUOPC compliant component that defines its publicentry point in a module called "ABC", and where all
component code is contained in a single object file called "abc.o". Further assume that component "ABC" depends on
two components "XXX" and "YYY", where "XXX" provides the.mk file:

ESMF_DEP_FRONT = XXX
ESMF_DEP_INCPATH = <absolute path to the associated XXX module file>
ESMF_DEP_CMPL_OBJS = <absolute path>/xxx.o
ESMF_DEP_LINK_OBJS = <absolute path>/xxx.o
ESMF_DEP_SHRD_PATH =
ESMF_DEP_SHRD_LIBS =

and "YYY" provides the following:

ESMF_DEP_FRONT = YYY
ESMF_DEP_INCPATH = <absolute path to the associated XXX module file>
ESMF_DEP_CMPL_OBJS =
ESMF_DEP_LINK_OBJS =
ESMF_DEP_SHRD_PATH = <absolute path to libYYY.so>
ESMF_DEP_SHRD_LIBS = libYYY.so

Then the.mk file provided by "ABC" needs to contain the following information:

ESMF_DEP_FRONT = ABC
ESMF_DEP_INCPATH = <absolute path to the associated ABC module file>
ESMF_DEP_CMPL_OBJS = <absolute path>/abc.o
ESMF_DEP_LINK_OBJS = <absolute path>/abc.o <absolute path>/xxx.o
ESMF_DEP_SHRD_PATH = <absolute path to libYYY.so>
ESMF_DEP_SHRD_LIBS = libYYY.so

Hints for an intermediate component that is consumer and provider: For the consumer side it is convenient to
collect the information provided by multiple component dependencies into one set of internal variables. However,
the details on how some of the imported information is processed into the internal variables depends on whether the
intermediate component is going to make itself available for static or dynamic access.

In the static case all link and shared library dependencies must be passed to the next higher level, and these dependen-
cies should simply be collected and passed on to the next level:

include xxx.mk
DEP_FRONTS := $(DEP_FRONTS) -DFRONT_XXX=$(ESMF_DEP_FRONT)
DEP_INCS := $(DEP_INCS) $(addprefix -I, $(ESMF_DEP_INCPATH))
DEP_CMPL_OBJS := $(DEP_CMPL_OBJS) $(ESMF_DEP_CMPL_OBJS)
DEP_LINK_OBJS := $(DEP_LINK_OBJS) $(ESMF_DEP_LINK_OBJS)
DEP_SHRD_PATH := $(DEP_SHRD_PATH) $(ESMF_DEP_SHRD_PATH)
DEP_SHRD_LIBS := $(DEP_SHRD_LIBS) $(ESMF_DEP_SHRD_LIBS)

include yyy.mk
DEP_FRONTS := $(DEP_FRONTS) -DFRONT_YYY=$(ESMF_DEP_FRONT)
DEP_INCS := $(DEP_INCS) $(addprefix -I, $(ESMF_DEP_INCPATH))
DEP_CMPL_OBJS := $(DEP_CMPL_OBJS) $(ESMF_DEP_CMPL_OBJS)
DEP_LINK_OBJS := $(DEP_LINK_OBJS) $(ESMF_DEP_LINK_OBJS)
DEP_SHRD_PATH := $(DEP_SHRD_PATH) $(ESMF_DEP_SHRD_PATH)
DEP_SHRD_LIBS := $(DEP_SHRD_LIBS) $(ESMF_DEP_SHRD_LIBS)

.PRECIOUS: %.o

59

%.mk : %.o
@echo "# ESMF self-describing build dependency makefile fragment" > $@
@echo >> $@
@echo "ESMF_DEP_FRONT = ABC" >> $@
@echo "ESMF_DEP_INCPATH = ‘pwd‘" >> $@
@echo "ESMF_DEP_CMPL_OBJS = ‘pwd‘/"$< >> $@
@echo "ESMF_DEP_LINK_OBJS = ‘pwd‘/"$< $(DEP_LINK_OBJS) >> $@
@echo "ESMF_DEP_SHRD_PATH = " $(DEP_SHRD_PATH) >> $@
@echo "ESMF_DEP_SHRD_LIBS = " $(DEP_SHRD_LIBS) >> $@

In the case where the intermediate component is linked into adynamic library, or a dynamic object, all of its object
and shared library dependencies can be linked in. In this case it is more useful to do some processing on the shared
library dependencies, and not to include them in the produced.mk file.

include xxx.mk
DEP_FRONTS := $(DEP_FRONTS) -DFRONT_XXX=$(ESMF_DEP_FRONT)
DEP_INCS := $(DEP_INCS) $(addprefix -I, $(ESMF_DEP_INCPATH))
DEP_CMPL_OBJS := $(DEP_CMPL_OBJS) $(ESMF_DEP_CMPL_OBJS)
DEP_LINK_OBJS := $(DEP_LINK_OBJS) $(ESMF_DEP_LINK_OBJS)
DEP_SHRD_PATH := $(DEP_SHRD_PATH) $(addprefix -L, $(ESMF_DEP_SHRD_PATH)) \
$(addprefix -Wl$(COMMA)-rpath$(COMMA), $(ESMF_DEP_SHRD_PATH))

DEP_SHRD_LIBS := $(DEP_SHRD_LIBS) $(addprefix -l, $(ESMF_DEP_SHRD_LIBS))

include yyy.mk
DEP_FRONTS := $(DEP_FRONTS) -DFRONT_YYY=$(ESMF_DEP_FRONT)
DEP_INCS := $(DEP_INCS) $(addprefix -I, $(ESMF_DEP_INCPATH))
DEP_CMPL_OBJS := $(DEP_CMPL_OBJS) $(ESMF_DEP_CMPL_OBJS)
DEP_LINK_OBJS := $(DEP_LINK_OBJS) $(ESMF_DEP_LINK_OBJS)
DEP_SHRD_PATH := $(DEP_SHRD_PATH) $(addprefix -L, $(ESMF_DEP_SHRD_PATH)) \
$(addprefix -Wl$(COMMA)-rpath$(COMMA), $(ESMF_DEP_SHRD_PATH))

DEP_SHRD_LIBS := $(DEP_SHRD_LIBS) $(addprefix -l, $(ESMF_DEP_SHRD_LIBS))

.PRECIOUS: %.o
%.mk : %.o
@echo "# ESMF self-describing build dependency makefile fragment" > $@
@echo >> $@
@echo "ESMF_DEP_FRONT = ABC" >> $@
@echo "ESMF_DEP_INCPATH = ‘pwd‘" >> $@
@echo "ESMF_DEP_CMPL_OBJS = ‘pwd‘/"$< >> $@
@echo "ESMF_DEP_LINK_OBJS = ‘pwd‘/"$< >> $@
@echo "ESMF_DEP_SHRD_PATH = " >> $@
@echo "ESMF_DEP_SHRD_LIBS = " >> $@

4.5 Components written in C/C++

ESMF provides a basic C API that supports writing componentsin C or C++. There is currently no C version of
the NUOPC Layer API available, making it harder, but not impossible to write NUOPC Layer compliant ESMF
components in C/C++. For the sake of completeness, the NUOPCcomponent dependency standardization does cover
the case of components being written in C/C++.

The issue of whether a component is written in Fortran or C/C++ only matters when the dependent software layer has a
compile dependency on the component. In other words, components that are accessed through a shared object have no
compile dependency, and the language is of no effect (see 4.3). However, components that are statically linked or made
available through shared libraries do introduce compile dependencies. These compile dependencies become language

60

dependent: a Fortran component must be accessed via theUSE statement, while a component with a C interface must
be accessed via#include.

The decision between the three cases: compile dependency ona Fortran component, compile dependency on a C/C++
component, or no compile dependency can be made on theESMF_DEP_FRONT variable. By default it is assumed
to contain the name of the Fortran module that provides the public entry point into a component written in Fortran.
However, if the contents of theESMF_DEP_FRONT variable ends in.h, it is interpreted as the header file of a
component with a C interface. Finally, if it ends in.so, there is no compile dependency, and the component is
accessible through a shared object.

A NUOPC compliant component written in C/C++ that defines itspublic access point in "abc.h", where all component
code is contained in a single object file called "abc.o", makes itself available by providing the following.mk file:

ESMF_DEP_FRONT = abc.h
ESMF_DEP_INCPATH = <absolute path to abc.h>
ESMF_DEP_CMPL_OBJS = <absolute path>/abc.o
ESMF_DEP_LINK_OBJS = <absolute path>/abc.o
ESMF_DEP_SHRD_PATH =
ESMF_DEP_SHRD_LIBS =

Hints for the implementor:

There are a few subtle complications to cover for the case where a component with C interface comes in as a compile
dependency. First there is Fortran name mangling of symbolswhich includes underscores, but also changes to lower
or upper case letters. The ESMF C interface provides a macro (FTN_X) that deals with the underscore issue on the
C component side, but it cannot address the lower/upper caseissue. The ESMF convention for using C in Fortran
assumes all external symbols lower case. The NUOPC Layer follows this convention in accessing components with C
interface from Fortran.

Secondly, there is no namespace protection of the public entry points. For this reason, the public entry point cannot
just besetservices for all components written in C. Instead, for components with C interface, the public entry
point must besetservices_name, where "name" is the same as the root name of the header file specified in
ESMF_DEP_FRONT. (The absence of namespace protection is still an issue where multiple C components with the
same name are specified. This case requires that components are renamed to something more unique.)

Finally there is the issue of providing an explicit Fortran interface for the public entry point. One way of handling
this is to provide the explicit Fortran interface as part of the components header file. This is essentially a few lines
of Fortran code that can be used by the upper software layer toimplement the explicit interface. As such it must be
protected from being processed by the C/C++ compiler:

#if (defined __STDC__ || defined __cplusplus)

// ---------- C/C++ block ------------

#include "ESMC.h"
extern "C" {
void FTN_X(setservices_abc)(ESMC_GridComp gcomp, int *rc);

}

#else

!! ---------- Fortran block ----------

interface
subroutine setservices_abc(gcomp, rc)

use ESMF

61

type(ESMF_GridComp) :: gcomp
integer, intent(out) :: rc

end subroutine
end interface

#endif

An upper level software layer that intends to use a componentthat comes with such a header file can then use it
directly on the Fortran side to make the component availablewith an explicit interface. For example, assuming the
macroFRONT_H_ATMF holds the name of the associated header file:

#ifdef FRONT_H_ATMF
module ABC
#include FRONT_H_ATMF
end module
#endif

This puts the explicit interface of thesetservices_abc entry point into a module named "ABC". Except for this
small block of code, the C/C++ component becomes indistinguishable from a component implemented in Fortran.

Hints for the provider side: Adding a build rule for creating a compliant self-describing.mk file into the component’s
makefile is straight forward. For the case that the componentin "abc.h" is implemented in object files listed in variable
"OBJS", a build rule that produces "abc.mk" could look like this:

.PRECIOUS: %.o
%.mk : %.o
@echo "# ESMF self-describing build dependency makefile fragment" > $@
@echo >> $@
@echo "ESMF_DEP_FRONT = abc.h" >> $@
@echo "ESMF_DEP_INCPATH = ‘pwd‘" >> $@
@echo "ESMF_DEP_CMPL_OBJS = ‘pwd‘/"$< >> $@
@echo "ESMF_DEP_LINK_OBJS = ‘pwd‘/"$< >> $@
@echo "ESMF_DEP_SHRD_PATH = " >> $@
@echo "ESMF_DEP_SHRD_LIBS = " >> $@

abc.mk:

abc.o: abc.h

Hints for the consumer side:The format of the NUOPC compliant.mk files still allows the consumer side to collect
the information provided by multiple components into one set of internal variables. This still holds even when any of
the provided components could come in as a Fortran componentfor static linking, as a C/C++ component for static
linking, or as a shared object. All of the component sectionsin the consumer makefile can be made capable of handling
all three cases. However, if it is clear that a certain component is for sure supplied as one of these flavors, it may be
clearer to hard-code support for only one mechanism for thiscomponent.

Notice that in the makefile code below it is critical to use the:= style assignment instead of a simple= in order to
have the assignment be based on thecurrentvalue of the right hand variables.

This example shows how the section for a specific component can be made compatible with all component dependency
modes:

include abc.mk

62

ifneq (,$(findstring .h,$(ESMF_DEP_FRONT)))
DEP_FRONTS := $(DEP_FRONTS) -DFRONT_H_ABC=\"$(ESMF_DEP_FRONT)\"
else ifneq (,$(findstring .so,$(ESMF_DEP_FRONT)))
DEP_FRONTS := $(DEP_FRONTS) -DFRONT_SO_ABC=\"$(ESMF_DEP_FRONT)\"
else
DEP_FRONTS := $(DEP_FRONTS) -DFRONT_ABC=$(ESMF_DEP_FRONT)
endif
DEP_FRONTS := $(DEP_FRONTS) -DFRONT_ABC=$(ESMF_DEP_FRONT)
DEP_INCS := $(DEP_INCS) $(addprefix -I, $(ESMF_DEP_INCPATH))
DEP_CMPL_OBJS := $(DEP_CMPL_OBJS) $(ESMF_DEP_CMPL_OBJS)
DEP_LINK_OBJS := $(DEP_LINK_OBJS) $(ESMF_DEP_LINK_OBJS)
DEP_SHRD_PATH := $(DEP_SHRD_PATH) $(addprefix -L, $(ESMF_DEP_SHRD_PATH)) \
$(addprefix -Wl$(COMMA)-rpath$(COMMA), $(ESMF_DEP_SHRD_PATH))

DEP_SHRD_LIBS := $(DEP_SHRD_LIBS) $(addprefix -l, $(ESMF_DEP_SHRD_LIBS))

The above makefile segment will end up setting macroFRONT_H_ABC to the header file name, if the component
described in "abc.mk" is a C/C++ component. It will instead set macroFRONT_SO_ABC to the shared object if this is
how the component is made available, or set macroFRONT_ABC to the Fortran module name if that is the mechanism
for gaining access to the component code. The calling code can use these macros to activate the corresponding code,
as well as has access to the required name string in each case

The internal variables set by the above makefile code can be used by the same makefile rules shown for the statically
linked case. This usage implements the correct dependency rules, and passes the macros through the compiler flags.

5 NUOPC Layer Compliance

The NUOPC Layer introduces a modeling system architecture based on Models, Mediators, Connectors, and Drivers.
The Layer defines the rules of engagement between these components. Many of these rules are formulated on the basis
of metadata. This metadata can be expected for compliance.

One of the challenges when inspecting a component for NUOPC Layer compliance is that many of the rules of
engagement are run-time rules. This means that they addressthe dynamical behavior of a component during run-time.
For this reason, comprehensive compliance testing cannot be done statically but requires the execution of code.

Currently there are two sets of tools available to address the issue of NUOPC Layer compliance testing. TheCom-
pliance Checkeris a runtime analysis tool that can be enabled by setting an ESMF environment variable at runtime.
When active, the Compliance Checker intercepts all interactions between components that go throught the ESMF
component interface, and analyses them with respect to the NUOPC Layer rules of engagement. Warnings are printed
to the log files when issues or non-compliances are detected.

TheComponent Exploreris another compliance testing tool. It focuses on interacting with a single component, and
analyzing it during the early initialization phases. The Component Explorer and Compliance Checker are compatible
with each other and it is often useful to use them both at the same time.

5.1 The Compliance Checker

The NUOPC Compliance Checker is a run-time analysis tool that can be turned on for any ESMF application. The
Compliance Checker is turned off by default, as to not negatively affect performance critical runs. The Compliance
Checker is enabled by setting the following ESMF runtime environment variable:

ESMF_RUNTIME_COMPLIANCECHECK=ON

63

As a run-time variable, setting it does not require recompilation of the ESMF library or the user application. The same
executable and library will start to generate Compliance Checker output when the above variable is found set during
execution.

The function of the Compliance Checker is to intercept all interactions between the components of an ESMF applica-
tion, and to analyze them according to the NUOPC Layer rules of engagement. The following aspects are currently
reported on:

• Presence of the standard ESMF Initialize, Run, and Finalizemethods and the number of phases in each.

• Timekeeping and whether it conforms with the NUOPC Layer rules.

• Fields or FieldBundles (not Arrays/ArrayBundles) being passed between Components.

• Details about the Fields being passed through import and export States.

• Component and Field metadata.

Besides the above aspects, the output of the Compliance Checker also provides a means to easily get an idea of the
exact dynamical control flow between the components of an application.

The Compliance Checker uses the ESMF Log facility to producethe compliance report during the execution of an
ESMF application. The output is located in the default ESMF Log files. There are advantages of using the existing
Log facility to generate the compliance report. First, the ESMF Log facility offers time stamping of messages, and
deals with all of the file access and multi-PET issues. Second, going through the ESMF Log guarantees that all the
output appears in the correct chronological order. This applies to all of the output, including entries from other ESMF
system levels or from the user level.

A sample output of the Compliance Checker output in action:

20131108 172844.458 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM:>START register compliance check.
20131108 172844.458 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM: phase Zero for Initialize registered.
20131108 172844.458 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM: 5 phase(s) of Initialize registered.
20131108 172844.458 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM: 1 phase(s) of Run registered.
20131108 172844.458 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM: 1 phase(s) of Finalize registered.
20131108 172844.458 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM:>STOP register compliance check.
20131108 172844.458 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM2MED:>START register compliance check.
20131108 172844.458 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM2MED: phase Zero for Initialize registered.
20131108 172844.458 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM2MED: 3 phase(s) of Initialize registered.
20131108 172844.458 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM2MED: 1 phase(s) of Run registered.
20131108 172844.458 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM2MED: 1 phase(s) of Finalize registered.
20131108 172844.458 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM2MED:>STOP register compliance check.
20131108 172844.458 INFO PET0 COMPLIANCECHECKER:|->|->|->:MED2ATM:>START register compliance check.
20131108 172844.458 INFO PET0 COMPLIANCECHECKER:|->|->|->:MED2ATM: phase Zero for Initialize registered.
20131108 172844.458 INFO PET0 COMPLIANCECHECKER:|->|->|->:MED2ATM: 3 phase(s) of Initialize registered.
20131108 172844.458 INFO PET0 COMPLIANCECHECKER:|->|->|->:MED2ATM: 1 phase(s) of Run registered.
20131108 172844.458 INFO PET0 COMPLIANCECHECKER:|->|->|->:MED2ATM: 1 phase(s) of Finalize registered.
20131108 172844.458 INFO PET0 COMPLIANCECHECKER:|->|->|->:MED2ATM:>STOP register compliance check.
20131108 172844.459 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM: >START InitializePrologue for phase= 0
20131108 172844.459 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM: importState name: modelComp 1 Import State
20131108 172844.459 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM: importState stateintent: ESMF_STATEINTENT_IMPORT
20131108 172844.459 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM: importState itemCount: 0
20131108 172844.459 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM: exportState name: modelComp 1 Export State
20131108 172844.459 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM: exportState stateintent: ESMF_STATEINTENT_EXPORT
20131108 172844.459 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM: exportState itemCount: 0
20131108 172844.459 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM:ESMF Stats: the virtual memory used by this PET (in KB): 974868
20131108 172844.459 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM:ESMF Stats: the physical memory used by this PET (in KB): 49440
20131108 172844.459 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM:ESMF Stats: ESMF Fortran objects referenced by the ESMF garbage collection: 0
20131108 172844.459 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM:ESMF Stats: ESMF objects (F & C++) referenced by the ESMF garbage collection: 0
20131108 172844.459 INFO PET0 COMPLIANCECHECKER:|->|->|->:ATM: >STOP InitializePrologue for phase= 0
20131108 172844.459 INFO PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: >START InitializeEpilogue for phase= 0
20131108 172844.459 INFO PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM:ESMF Stats: the virtual memory used by this PET (in KB): 974868
20131108 172844.459 INFO PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM:ESMF Stats: the physical memory used by this PET (in KB): 49448
20131108 172844.459 INFO PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM:ESMF Stats: ESMF Fortran objects referenced by the ESMF garbage collection: 0
20131108 172844.459 INFO PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM:ESMF Stats: ESMF objects (F & C++) referenced by the ESMF garbage collection: 0
20131108 172844.459 INFO PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: GridComp level attribute check: convention: ’NUOPC’, purpose: ’General’.
20131108 172844.459 WARNING PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: ==> Component level attribute: <ShortName> present but NOT set!
20131108 172844.459 WARNING PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: ==> Component level attribute: <LongName> present but NOT set!
20131108 172844.459 WARNING PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: ==> Component level attribute: <Description> present but NOT set!
20131108 172844.459 WARNING PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: ==> Component level attribute: <ModelType> present but NOT set!
20131108 172844.459 WARNING PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: ==> Component level attribute: <ReleaseDate> present but NOT set!
20131108 172844.459 WARNING PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: ==> Component level attribute: <PreviousVersion> present but NOT set!
20131108 172844.459 WARNING PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: ==> Component level attribute: <ResponsiblePartyRole> present but NOT set!
20131108 172844.459 WARNING PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: ==> Component level attribute: <Name> present but NOT set!
20131108 172844.459 WARNING PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: ==> Component level attribute: <EmailAddress> present but NOT set!
20131108 172844.459 WARNING PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: ==> Component level attribute: <PhysicalAddress> present but NOT set!
20131108 172844.459 WARNING PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: ==> Component level attribute: <URL> present but NOT set!
20131108 172844.459 INFO PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: Component level attribute: <Verbosity> present and set: high
20131108 172844.459 INFO PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: Component level attribute: <InitializePhaseMap>[1] present and set: IPDv02p1=1
20131108 172844.460 INFO PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: Component level attribute: <InitializePhaseMap>[2] present and set: IPDv02p3=2

64

20131108 172844.460 INFO PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: Component level attribute: <InitializePhaseMap>[3] present and set: IPDv02p4=3
20131108 172844.460 INFO PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: Component level attribute: <InitializePhaseMap>[4] present and set: IPDv02p5=5
20131108 172844.460 INFO PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: Component level attribute: <NestingGeneration> present and set: 0
20131108 172844.460 INFO PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: Component level attribute: <Nestling> present and set: 0
20131108 172844.460 INFO PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: importState name: modelComp 1 Import State
20131108 172844.460 INFO PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: importState stateintent: ESMF_STATEINTENT_IMPORT
20131108 172844.460 INFO PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: importState itemCount: 0
20131108 172844.460 INFO PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: exportState name: modelComp 1 Export State
20131108 172844.460 INFO PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: exportState stateintent: ESMF_STATEINTENT_EXPORT
20131108 172844.460 INFO PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: exportState itemCount: 0
20131108 172844.460 INFO PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: The incoming Clock was not modified.
20131108 172844.460 WARNING PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: ==> The internal Clock is not present!
20131108 172844.460 INFO PET0 COMPLIANCECHECKER:|<-|<-|<-:ATM: >STOP InitializeEpilogue for phase= 0

All of the output generated by the Compliance Checker contains the stringCOMPLIANCECHECK, which can be used
to grep on. The checker currently generates two types of messages,INFO for general analysis output, andWARNING
for when issues with respect to the NUOPC Layer rules are detected.

In practice, when dealing with applications that have been componentized down to a very low level of the model,
the output generated by the Compliance Checker can become overwhelming. For this reason adepth parameter is
available that can be specified for the Compliance Checker environment variable:

ESMF_RUNTIME_COMPLIANCECHECK=ON:depth=4

This will limit the number of component levels that the Compliance Checker parses (here 4 levels), starting from the
top level application.

5.2 The Component Explorer

The NUOPC Component Explorer is a run-time tool that can be used to gain insight into a NUOPC Layer compli-
ant component, or to test a component’s compliance. The Component Explorer is currently available as a separate
download from the prototype repository:

https://sourceforge.net/p/esmfcontrib/svn/HEAD/tree/NUOPC/trunk/ComponentExplorer/

There are two parts to the Component Explorer. First a scriptis available that can be used to compile and link the
explorer application specifically against a specified component. This part of the explorer leverages the standardized
component dependencies discussed in section 4. This step isexecuted by providing the component’s mk-file to the
explorer script:

./nuopcExplorerScript <component-mk-file>

Any issues found during this step are reported. The successful completion of this step will produce an executable
callednuopcExplorerApp.

The second part of the Component Explorer is the explorer application. It can either be built using the explorer script
as outlined above, or by using the makefile directly:

make nuopcExplorerApp

In the second case, the resultingnuopcExplorerApp will not be tied to a specific component, but expects a com-
ponent in form of a shared object to be specified when executing nuopcExplorerApp. In either case the explorer
application needs to be started according to the execution requirements of the component it attempts to explore. This
may mean that input files must be present, and a sufficient number of processes need to be specified. In terms of the
commonmpirun tool launchingnuopcExplorerAppmay look like this

mpirun -np X ./nuopcExplorerApp

65

for an executable that was built against a specific component. Or like this

mpirun -np X ./nuopcExplorerApp <component-shared-object-file>

for an executable that expects a the component in form of a shared object. In both cases the output of the
nuopcExplorerApp will report what it finds during the interaction with the component. The output will look
similar to this:

NUOPC Component Explorer App

Exploring a component with a Fortran module front...
Model component # 1 InitializePhaseMap:
IPDv00p1=1
IPDv00p2=2
IPDv00p3=3
IPDv00p4=4

Model component # 1 // name = ocnA
ocnA: <LongName> : Attribute is present but NOT set!
ocnA: <ShortName> : Attribute is present but NOT set!
ocnA: <Description> : Attribute is present but NOT set!

ocnA: importState // itemCount = 2
ocnA: importState // item # 001 // [FIELD] name = pmsl

<StandardName> = air_pressure_at_sea_level
<Units> = Pa

<LongName> = Air Pressure at Sea Level
<ShortName> = pmsl

ocnA: importState // item # 002 // [FIELD] name = rsns
<StandardName> = surface_net_downward_shortwave_flux

<Units> = W m-2
<LongName> = Surface Net Downward Shortwave Flux

<ShortName> = rsns

ocnA: exportState // itemCount = 1
ocnA: exportState // item # 001 // [FIELD] name = sst

<StandardName> = sea_surface_temperature
<Units> = K

<LongName> = Sea Surface Temperature
<ShortName> = sst

Turning on the Compliance Checker (see section 5.1) will result in additional information in the log files.

66

	Description
	Design and Implementation Notes
	Generic Components
	Field Dictionary
	Metadata
	Model and Mediator Component Metadata
	Connector Component Metadata
	Field Metadata

	Initialization
	Initialize Phase Definitions
	Data-Dependencies during Initialize
	Transfer of Grid/Mesh Objects between Components

	API
	Generic Component: NUOPC_Driver
	Generic Component: NUOPC_DriverAtmOcn
	Generic Component: NUOPC_DriverAtmOcnMed
	Generic Component: NUOPC_ModelBase
	Generic Component: NUOPC_Model
	Generic Component: NUOPC_Mediator
	Generic Component: NUOPC_Connector
	Utility Class: NUOPC_RunSequence
	NUOPC_RunElementAdd
	NUOPC_RunElementAddComp
	NUOPC_RunElementAddLink
	NUOPC_RunElementPrint
	NUOPC_RunSequenceAdd
	NUOPC_RunSequenceDeallocate
	NUOPC_RunSequenceDeallocate
	NUOPC_RunSequenceIterate
	NUOPC_RunSequencePrint
	NUOPC_RunSequencePrint
	NUOPC_RunSequenceSet

	Utility Routines
	NUOPC_ClockCheckSetClock
	NUOPC_ClockInitialize
	NUOPC_ClockPrintCurrTime
	NUOPC_ClockPrintStartTime
	NUOPC_ClockPrintStopTime
	NUOPC_CplCompAreServicesSet
	NUOPC_CplCompAttributeAdd
	NUOPC_CplCompAttributeGet
	NUOPC_CplCompAttributeSet
	NUOPC_FieldAttributeAdd
	NUOPC_FieldAttributeGet
	NUOPC_FieldAttributeSet
	NUOPC_FieldBundleUpdateTime
	NUOPC_FieldDictionaryAddEntry
	NUOPC_FieldDictionaryGetEntry
	NUOPC_FieldDictionaryHasEntry
	NUOPC_FieldDictionarySetup
	NUOPC_FieldIsAtTime
	NUOPC_FillCplList
	NUOPC_GridCompAreServicesSet
	NUOPC_GridCompAttributeAdd
	NUOPC_GridCompCheckSetClock
	NUOPC_GridCompSetClock
	NUOPC_GridCompSetServices
	NUOPC_GridCreateSimpleXY
	NUOPC_IsCreated
	NUOPC_StateAdvertiseField
	NUOPC_StateAdvertiseFields
	NUOPC_StateBuildStdList
	NUOPC_StateIsAllConnected
	NUOPC_StateIsAtTime
	NUOPC_StateIsFieldConnected
	NUOPC_StateIsUpdated
	NUOPC_StateRealizeField
	NUOPC_StateSetTimestamp
	NUOPC_StateUpdateTimestamp
	NUOPC_TimePrint

	Standardized Component Dependencies
	Fortran components that are statically built into the executable
	Fortran components that are provided as shared libraries
	Components that are loaded during run-time as shared objects
	Components that depend on components
	Components written in C/C++

	NUOPC Layer Compliance
	The Compliance Checker
	The Component Explorer

