National Unified Operational Prediction Capability

Building a NUOPC Model

ESMF v7.0.0

Content Standards Committee (CSC) Members

March 14, 2016

NUOPC
CMA/CSC Committee
http://www.weather.gov/nuopc

Contents

L Quervied
(L1 _DocumentRoadmiBp vt e e e e e e
iti S L e e
R.1__Specializing Generic COMPONGNtSot vv ittt e
R2 NUOPCMOEICAD o v v ot i i e e e e e e e e e e
.3 HowMuch of My Code Do INeed 10 Chanhe? v o v v v v e e e e
P4 HowDolKnowitWorks?

4 __An Example Cap
4.1 Module IMPOrIS oo e e e e
A2 SEISEIVICES v o e e e e e e
K3 Checking RetUrn COdES oo oottt e
K4 _Initialize Phase - Advertise Fields
.5 Initialize Phase -Realize Fidids
K6 Model Advance Specialization e

N

U'I.b-h_';#

1 Overview

The|/National Unified Operational Prediction Capability (§BC) is a strategic initiative to fundamentally advance
the nation’s computational weather prediction systemsmapdove forecast models used by National Weather Service,
Air Force and Navy meteorologists, mission planners, aruisa® makers. Thz NUOPC Laver is a software layer
built on top of the Earth System Modeling Framework (ESMF3ME- is a high-performance modeling framework
that provides data structures, interfaces, and operasigitesd for building coupled models from a set of components.
NUOPC refines the capabilities of ESMF by providing a more preise definition of what it means for a model

to be a component and how components should interact and shadata in a coupled systemThe NUOPC Layer
software is designed to work with typical high-performanuadels in the Earth sciences domain, most of which are
written in Fortran and are based on a distributed memory hafgearallelism (MPI).

The NUOPC Layer implements a set géneric componentthat serve as building blocks that can be assembled
together in different ways to build up a coupled modelinglaagion. In some cases, a generic component can be
used as is, and in other cases the generic component musgtelo@lized(customized) for a particular model or
application. Additionally, the NUOPC Layer defines a setemfinical rules for how components should behave and
interact with each other. These technical rules form th&lbace of componentinteroperability. NUOPC defines this
effective interoperability as the ability of a model compahto execute without code changes in a driver that provides
the fields that it requires, and to return with informativesseges if its input requirements are not met. A component
that follows the NUOPC Layer technical rules is considecelle NUOPC Layer compliant.

For brevity, throughout this document we will often use thert “NUOPC” to refer to the “NUOPC Layer software”
that is the current technical implementation of the NUOPEc#jration. Also, the term “NUOPC component” is
shorthand for a component that is NUOPC Layer compliant amcbe used in NUOPC-based systems.

1.1 Document Roadmap

This document is a starting point for model developers and tehnical managers who are new to the NUOPC
Layer software and need to understand the steps involved in aking an existing model codebase NUOPC Layer
compliant.

The document is divided into the following sections:

e Section? describes important parts of the NUOPC designatfeatritical for anyone planning to write code
using the NUOPC API.

e SectiorB describes the development steps involved in rgakinr model code NUOPC Layer compliant.

e Sectior % presents the code of a basic example cap, desgcebah part in detail.

1.2 Additional NUOPC Resources

This document is not exhaustive, but should help you nawithet process of creating a NUOPC component from your
model. As such this document is a companion to other NUOP@ress available:

e [The NUOPC websiie is the main source of information on NUOIREluding instructions for acquiring and
using the NUOPC Layer software.

e [The NUOPC Reference Manual is the primary technical refaxdéor the NUOPC API and includes a detailed
description of the NUOPC generic components.

http://www.nws.noaa.gov/nuopc/
https://www.earthsystemcog.org/projects/nuopc/
https://www.earthsystemcog.org/projects/esmf/
https://www.earthsystemcog.org/projects/nuopc
https://www.earthsystemcog.org/projects/nuopc/refmans

The NUOPC Prototype Codes page and Subversion repositandim a set of prototype applications that use
the NUOPC Layer software. These applications are architelctkeletons that represent typical configurations
of NUOPC components and provide numerous examples of ussnttOPC API.

Severa, Compliance Testing Tools are provided to help ysuyteur code to determine if it is NUOPC Layer
compliant.

Cupid is a plugin for the Eclipse Integrated Developmentiiimment that automatically generates NUOPC
Layer compliant code and checks existing source code foptiante.

A BAMS ! article entitled The Earth System Prediction Suitew@rd a Coordinated U.S. Modeling Capability
describes NUOPC and how NUOPC Layer compliant componeats&ing used in coupled modeling systems
across U.S. agencies.

https://www.earthsystemcog.org/projects/nuopc/proto_codes
https://sourceforge.net/p/esmfcontrib/svn/HEAD/tree/NUOPC/tags/ESMF_7_0_0/
https://www.earthsystemcog.org/projects/nuopc/compliance_testing
https://www.earthsystemcog.org/projects/cupid/
https://eclipse.org/
https://www2.ametsoc.org/ams/index.cfm/publications/bulletin-of-the-american-meteorological-society-bams/
http://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-14-00164.1

2 The Big Ildea

This section should help you understand key aspects of tHePLLayer design that are critical for writing the code
to make your model NUOPC Layer compliant. The NUOPC Layeluithes four kinds of generic components, each
with a different purpose in a coupled application. One kihdeneric component is tHdUOPC Modela component
that wraps a model code (such as an atmosphere, ocean, coded)rsuch that it exposes the set of interfaces defined
by the NUOPC specification. You will work primarily with thelWOPC Model generic component in order to make
your model NUOPC Layer compliant.

This documentation focuses primarily on the NUORGdel Component. However, you should be aware that there
are four kinds of generic components implemented in the NOQ&yer:

Model Wraps a model code, such as an atmosphere, ocean, or ice model

Connector Handles standard data transformations (e.qg., redisioibot regridding) between two com-
ponents in a single direction

Mediator Contains custom coupling code (e.g., flux calculations;ayiag) between Models; unlike the
Connector, a Mediator can handle data from multiple Modétls data flowing in multiple ways

Driver Coordinates execution of Models, Mediators, and Connsctor

2.1 Specializing Generic Components

A key design idea behind NUOPC is that a lot of code (and tleegbehavior) is provided for you. This code is
provided via the four generic components included with théQ¥C library, plus some additional utility routines.
The NUOPC Modelgeneric component implements most of the initializatiod am behavior for you, but you have
to supply some key parts of the implementation that are fipgoi your model. The process of supplying your
custom code that completes the generic NUOPC Model componieis called specialization.In other words, you
are specializing the generic component to work for youripaldr model. Any parts of the code that you do not
specialize arénheritedfrom the generic component.

Those familiar with object-oriented programming will rggoze the ideas of specialization and inheritance. Sinee th
NUOPC Layer is written in Fortran 90, which has limited sugijpor object-oriented programming, your specialization
code is provided in Fortran subroutines which are regidtari¢gh NUOPC using function pointers. NUOPC makes
callbacks into your code when required to execute the slzstian code.

2.2 NUOPC Model Cap

A NUOPC Model caps a Fortran module that contains your code that specialimegeneric NUOPC Model com-
ponent for your particular model. The NUOPC Model cap seasgthe interface to your model when it's used in
NUOPC-based systemslhe term “cap” is used because it is a small software layer thiasits on top of your
model, making calls into it. Typically, your model code will not make calls back into thepc Sometimes we say just
“cap” or “NUOPC cap” because it's quicker than saying “NUORIGdel cap.”

2.3 How Much of My Code Do | Need to Change?

The amount of code that your need to change depends on hownamel is structured and the degree to which it is
already an independent component. The NUOPC cap itselfrdmessually require changes to your model’s internals.
Instead, the cap primarily acts as a separate software Eygryour model otherwise operates in its usual way.

However, as detailed in the sectinl3.2, if your model is ently embedded as a subsystem in a larger application
and cannot be built independently, you must first take stepsadularize the code and remove dependencies to other
models before beginning the NUOPC implementation.

The creation of a NUOPC cap does not mean that your model musthaays be run as a NUOPC component.
Existing models can retain their native modes of operataon running your model in NUOPC mode becomes a
configuration option.

The NUOPC cap becomes a new locus of control for your modehwioer model is run in NUOPC mode. In other
words, it will make calls into your model code to initializeyr model and step it forward in time. One result of this is
that the very top level main program of your model may not tele all when your model is run in NUOPC mode.
This is because all models participating in a coupled NUOPglieation will be controlled by a separate generic
component: the NUOPC Driver.

Putting control into a separate driver enables synchrdinizaf all models participating in a coupled application,
allows NUOPC to control when each model component runs (@nkddw long), and allows NUOPC to intercept and
inject variables produced and required by your model at legtspmluring execution. Once you have a working NUOPC
cap (you only need to implement it once), you have an inteadge component that can be used in systems with other
NUOPC components.

2.4 How Do | Know it Works?

Validating your NUOPC cap is extremely important. The idedd ensure that your model’s current behavior is
reproduced exactly as before, but this time with control fiftmvfrom the cap. This is why we encourage you to
generate some baseline output by running your model in itsrfial” way before doing any implementation. You
will validate your cap by ensuring that when it controls yowdel, the same output is reproduced. In most cases the
output matches bit-for-bit so a simple file-based companigitl be sufficient.

We also provide tools to help you check whether your cap is RG@ompliant. NUOPC Compliance can be
evaluated using a combination of two tools, the Component Eptorer and the Compliance Checker, included in
the ESMF/NUOPC software distribution. More information is provided in sectiohsB.8 dnd_3.10.

3 Writing and Testing a NUOPC Cap for your Model

While there is no one right way to write tiUOPC Model capcode, the following recommended steps represent an
incremental approach to developing the cap.

Install ESMF and NUOPC on the Target Machibel(3.1)

Prepare Your Model CodET{3.2)

Choose a Configuration of Your Model for Developmé€nil(3.3)
Integrate a Cap Template into Your Codebfsé (3.4)

Modify Your Build to Generate a NUOPC Makefile Fragmé&nHj3.
Initialize Your Model from the Cafi.(3.6)

Call Your Model's Run Subroutine from the Cép{3.7)

Run the Cap with a NUOPC Drivdr (8.8)

© © N oo g M w0 NP

Split Up the Initialization Phases(B.9)

-
o

Test and Validate Your Cap(3]10)

3.1 Install ESMF and NUOPC on the Target Machine

First, you need to ensure the prerequisite software isabailon the target system.

The primary prerequisite software is the NUOPC library, athis included with the ESMF distribution, and your
model, including any of its dependencies.

Acquire ESMF version 7 from SourceForge:

$ git archive --remnte=git://git.code.sf.net/p/esnf/esnf \
--format=tar --prefix=esnf/ ESMF_7\ 0\ _0 | tar xf -

Compile and install ESMF. Full installation details can be found in the ESMF User Guile example of the basic
procedure for one particular system is outlined below.

set environment variables for build

t he actual settings depend on your platform
and the conpil ation options you sel ect
export ESMF DI R=/ pat h/t o/ esnf

export ESMF_COWPI LER=gf ortran

export ESMF_COWEopennpi

export ESMF_PI O=i nt er nal

export ESMF_NETCDF=split

export ESMF_NETCDF_| NCLUDE=/ usr/i ncl ude
export ESMF _NETCDF LI BS="-I|netcdff -Inetcdf"
export ESMF _NETCDF LI BPATH=/usr/lib

export ESMF_I NSTALL_PREFI X=/ path/to/install

LA ARAAH H HHR

http://www.earthsystemmodeling.org/esmf_releases/public/last/ESMF_usrdoc/node6.html#SECTION00064000000000000000

build

$ cd /path/to/ esnf
$ gneke

$ gmake check

$ gneke install

3.2 Prepare Your Model Code

Before starting a NUOPC cap implementation, your model ralrsady be modularized such that it can be built by
itself and does not contain hard dependencies to other noodeponents. For example, if the model targeted for
NUOPC compliance is a subsystem embedded in a larger appticéhe model will first need to be extracted such
that it can be built by itself as a library.

The model also needs to be roughly divided into several @gi@tmethods: initialize, run, and finalize. Each of these
methods may contain several phases. The run method shémidtheé model to execute a single timestep, or accept a
parameter defining the number of timesteps or a “run untitti

Your NUOPC cap code will be cleanest if your model exposes statictures for input and output variables with clear,
well-documented naming conventions. This will simplifgthrocess of hooking up fields in the NUOPC cap to your
model’'s data structures. The NUOPC Field Dictionary usesGhmate and Forecast conventions for defining field
standard names, but can support field name aliases.

Finally, the model should not use the global MPI_WORLD_COMBmMmmunicator explicitly, but should accept
a communicator at some point during startup. A global searuth replace can be used to replace all uses of
MPI_WORLD_COMM with a different communicator defined as algdl variable in your model.

3.3 Choose a Configuration of Your Model for Development

When implementing the NUOPC interfaces for your model, yan#to get into an efficient edit-compile-debug cycle.
This will require running a configuration of your model thandoe used to test the NUOPC code you will write.

You should choose a configuration of your model that is siraplé stable. Many models have regression test config-
urations that can be run quickly and have small output fildees€ configurations are typically low resolution, have
short execution times, and sometimes have idealizedlin@iaditions. Some models can also be configured with some
of the physics options turned off to reduce the total amoficbmputation. More scientifically interesting or higher
resolution configurations can be used after ensuring tleaflithOPC cap is working for the basic case.

Compile your model on the target system and generate basebroutput for the selected configuration.This will
typically be a small set of history or restart files. We'll ukese files later to ensure that your model is reproducing
the expected output when executed through the NUOPC caposheases, when your model is executed through its
NUOPC cap, the output should be bit-for-bit identical witmnANUOPC runs. (The one caveat to this is that when
your model is used in a coupled system, roundoff error mayiodaoe to slight differences introduced when grid
interpolation is used between models.)

If your model is already using ESM##ou will need to update your build to link against ESMF version 7 or later.
Instructions for checking out this version of ESMF appeasentior:311.

http://cfconventions.org/

3.4 Integrate a Cap Template into Your Codebase

An important question is where you will put your NUOPC caprseuwcode. The NUOPC cap code added to a model
is minimal and is typically contained either in a single smufile or a small set of fileswe recommend including

the NUOPC cap code in the same code repository with the rest gbur model code as this helps to ensure the
cap evolves with your code and simplifies the process of acqjinig a NUOPC-compliant version of your model.
The exact right place to put the cap code is your decisionamgly depends on your model’s directory structure.

Including the cap code in your model’s codebase amggnply that your model must always be run in NUOPC mode.
Instead, when the cap is complete, the NUOPC mode can bediasva configuration option of your model.

You need not start from scratch. Instead start with a NUORQ@aplate. To acquire a cap template you can:

e use the cap template below,
e copy code from one of tHe NUOPC Prototype Applications or

e use the Cupid plugin for Eclipse to generate code. Cupidmaatically generates NUOPC compliant code frag-
ments for specialization points and presents NUOPC APteafse documentation based on where you are in
your NUOPC cap code. Installation instructions are prodide the Cupid website, and for additional support
please email the ESMF support/list.

Put the initial cap code into your model source tree. Therdifpgour Makefile or build scripts so that the cap is
compiled with the rest of your model code. Unless your modellieady using ESMF, you'll need to add ESMF
compile and linking flags in order to build the cafghen ESMF is installed, a Makefile fragment named esmf.mk
is generated that contains variables that can be appended §@ur compile and link flags. The ESMF User Guide
explains how to use these variables in your Makefile.

3.5 Modify Your Build to Generate a NUOPC Makefile Fragment

The goal of adding a NUOPC cap to your model is so that it canseel with other NUOPC-compliant models in a
coupled system. From a technical standpoint, there arealavays that your model code can be included into a final
coupled system binary. Two common options are to link to yoadel statically and to link it in dynamically from a
shared library.

In either case, to simplify the process of compiling and itigkagainst your modelyour model’'s build process
should produce a Makefile fragment file that defines the follovwng six variables:

ESMF_DEP_FRONT The name of the Fortran module to be used in a USE statemefit jtognds in
".h") the name of the header file to be used in an #includesta, or (if it ends in ”.s0”) the name
of the shared object to be loaded at run-time.

ESMF_DEP_INCPATH The include path to find module or header files during comipitatMust be
specified as absolute path.

ESMF_DEP_CMPL_OBJS Obiject files that need to be considered as compile deperegerdust be
specified with absolute path.

ESMF_DEP_LINK_OBJS Obiject files that need to be considered as link dependeriMigst. be speci-
fied with absolute path.

ESMF_DEP_SHRD_PATH The path to find shared libraries during link-time (and dgnian-time un-
less overridden by LD_LIBRARY_PATH). Must be specified asahte path.

https://sourceforge.net/p/esmfcontrib/svn/HEAD/tree/NUOPC/tags/ESMF_7_0_0
https://www.earthsystemcog.org/projects/cupid/
mailto:esmf_support@list.woc.noaa.gov
http://www.earthsystemmodeling.org/esmf_releases/public/last/ESMF_usrdoc/node7.html

ESMF_DEP_SHRD_LIBS Shared libraries that need to be specified during link-temée,must be avail-
able during run-time. Must be specified with absolute path.

An example makefile fragment useful for statically linkingginst your model looks like this:

#file: abc.nk

ESMF\ _DEP\ _ FRONT = ABC

ESMF\ _DEP\ | NCPATH = <absolute path to associ ated ABC nodule file>
ESMF\ _DEP\ CMPL\ _OBJS <absol ut e pat h>/ abc. o

ESMF\ _DEP\ _LINK_OBJS <absol ut e pat h>/ abc. o <absol ute path>/xyz.o
ESMF\ _DEP\ _SHRD\ _PATH
ESMF\ _DEP\ _SHRD\ _LI BS

The variables in the makefile fragment expose a set of deperetethat the higher-level build system can use to
compile and link against your model. An easy way to genettaentakefile fragment is to modify your model’s
Makefile to include a new target:

.PRECIOUS: %0

%nk: %o

@cho "# ESMF sel f-describing build dependency nakefile fragnent" > $@
@cho >> $@

@cho "ESMF\ _DEP\ _FRONT = ABC' >> $@
@cho "ESMF\ _DEP\ _| NCPATH = ‘pwd" " >> $@
@cho "ESMF\ _DEP\ _CWVPL\ _OBJS = ‘pwd' /" $< > $@
@cho "ESMF\ _DEP\ _LINK_OBJS = "$(addprefix ‘pwd'/, $(0BIS)) >> $@
@cho "ESMF\ _DEP\ _SHRD\ _PATH = " >> $@
@cho "ESMF\ _DEP\ _SHRD\ _LIBS =" >> $@

abc. mk: $(0BJIS)

The Standardized Component Dependeicies section of thélUR2ference Manual contains more details on setting
up NUOPC makefile fragments.

Finally, if your build procedure typically produces an exeaitable, it is recommended that you add a Makefile
target (or similar build option) that produces a library ins tead of an executableWhen used in a NUOPC system,
your model's main program will not be used—insteatlluoPC Dr i ver will be linked to your cap and it will be the
locus of control (i.e., the main program).

Makefile Target Conventions

If your model is built using Make, a common convention is tal &do special targets that build your model and also
compile the NUOPC code you will write.

this target builds your nodel and your NUOPC cap

$ make nuopc

this target installs your NUOPC-conpliant nodel to a particular directory
$ make nuopcinstall DESTDI R=/path/to/install

http://www.earthsystemmodeling.org/esmf_releases/last_built/NUOPC_refdoc/node5.html

3.6 Initialize Your Model from the Cap

The cap template you placed in your source tree is not yetexiad to your model. You now need to add a call into
your model’s existing initialization subroutine(s).

NUOPC defines a precise initialization sequence—i.e.,iasef steps that all NUOPC components are expected to
take when starting up. Some of the steps are optional and asemequired. This initialization sequence is encoded
in thelnitialize Phase DefinitioflPD), which includes several different versions in oraealiow for extension of the
initialization sequence for future releases of NUOPC arnslifuport backward compatibility.

Instead of tackling the full NUOPC initialization sequeratethis point in developing your cap, we recommend that
you start by adding calls in your cap’s first initializatiohgse to your model’s existing initialization subroutine(s

A good place to do this is within the Advertise Fields initzation phase. This is the phase where each component
“advertises” the fields it requires and can potentially jev

You will need to adduse statements at the top if your cap to import the relevantaliation subroutines from your
model into the NUOPC cap module. The example code in selciiih shows where to add the call to your model’s
initialization subroutine(s).

In the next section you will add another call into your modsde before attempting to execute your NUOPC cap.

3.7 Call Your Model's Run Subroutine from the Cap

The Advance specialization point provided by the NUOPC Mg@eeric component is the place where you will call
your model’s timestep subroutine. You should add this aalv.nRefer to the example code in section8.11 below to
see where to add this call.

This call should only move the model forward a single timpsteot the full run length. If the subroutine requires
a parameter such as the timestep length or the time to step,thlese parameters can be retrieved from the cap’s
ESMF_d ock object.

If your model does not have a subroutine that takes a singlestep, you will need to create one now.

3.8 Run the Cap with a NUOPC Driver

Now you should test the basic cap you have implemented., Biudid your model along with the cap code using
your model’s build script or Makefile. If you followed the medure in sectioh3.5, your build process should have
produced a NUOPC Makefile fragment file in addition to the cdadoobject files (or library).

One option for testing the cap is to run it using the NUOPC Congmt Explorer, a specializedJOPC Dri ver
designed to execute alUOPC _Model . /[Complete instructions for acquiring the Component Exgland linking it
to your NUOPC cap are available.

The instructions above also describe how to turn on the NUGB@pliance Checker while running the Component
Explorer. The Compliance Checker produces additionaludutpthe ESMF log files that is useful for debugging.
It also produces WARNINGS in the logs if a compliance issuiléntified. When running with the basic cap, you
should not necessarily expect to have all compliance issessdved.

10

https://www.earthsystemcog.org/projects/nuopc/compliance_testing
https://www.earthsystemcog.org/projects/nuopc/compliance_test
https://www.earthsystemcog.org/projects/nuopc/compliance_testing

3.9 Split Up the Initialization Phases

Once the basic cap described above can be executed usingtigo@ent Explorer, you should modify the cap to
implement the required initialization sequence as deedriiy the NUOPC reference manual. This includes advertising
fields with standard names and realizing fields by credf8F _Fi el d objects to wrap your model variables. As
part of this process, you will need to describe your modefid gtructure using the ESMF geometric classes, e.g.,
ESMF_G'i d andESMF_Mesh.

3.10 Test and Validate Your Cap

After splitting up the initilization phases, rebuild youogtel and execute it again using the Component Explorer with
the Compliance Checker turned on. Ideally, you should sesmpliance WARNINGS in the generated log files.

To validate that the NUOPC cap is faithfully reproducing your model’'s behavior when run in non-NUOPC
mode, you should compare your model’s output when run with te NUOPC cap against a baseline runThis is

the best test to ensure that the cap is working correctlirelNUOPC cap reproduces your baseline run, you are ready
to integrate your NUOPC Model cap into a coupled system wiitleloNUOPC components.

3.11 Example NUOPC Model cap
The following code is a starting point for creating a basicORC Model cap.

nodul e MYMODEL

I Basi ¢ NUOPC Mbdel cap

use ESMF
use NUOPC
use NUOPC Model, &
nodel routine_SS => Set Services, &

nodel | abel Advance => | abel _Advance

I add use statements for your nodel’s initialization
I and run subroutines

inmplicit none
private

public :: SetServices

subrouti ne Set Servi ces(nodel, rc)
type(ESM-_Gi dConp) :: nodel
i nteger, intent(out) :: rc

rc = ESMF_SUCCESS

11

I the NUOPC nodel conponent will register the generic methods
call NUOPC ConmpDerive(nodel, nodel _routine_SS, rc=rc)
i f (ESM-_LogFoundError (rcToCheck=rc, nmsg=ESMF_LOGERR PASSTHRU, &
line=_LINE , &
file=__FILE_)) &
return ! bail out

I set entry point for methods that require specific inplenmentation
cal | NUOPC ConpSet EntryPoi nt (nodel , ESM-_METHOD | NI TI ALI ZE, &
phaselLabel Li st =(/"1PDv04pl1"/), userRouti ne=AdvertiseFields, rc=rc)
i f (ESM-_LogFoundError (rcToCheck=rc, msg=ESMF_LOGERR PASSTHRU, &
line=_ LINE_ , &
file=__FILE_)) &
return | bail out
cal |l NUOPC ConpSet EntryPoi nt (nodel , ESM-_METHOD | NI TI ALI ZE, &
phaselLabel Li st =(/"1PDv04p3"/), userRouti ne=RealizeFields, rc=rc)
i f (ESM-_LogFoundError (rcToCheck=rc, msg=ESMF_LOGERR PASSTHRU, &
line=_ LINE_, &
file=__FILE_)) &
return | bail out

I attach specializing method(s)

cal | NUOPC CompSpeci al i ze(nodel , specLabel =nbdel _| abel _Advance, &
specRout i ne=Model Advance, rc=rc)

i f (ESM-_LogFoundError (rcToCheck=rc, msg=ESMF_LOGERR PASSTHRU, &
line=_ LINE_ , &
file=__FILE)) &
return ! bail out

end subroutine

subrouti ne Adverti seFi el ds(nmodel, inportState, exportState, clock, rc)
type(ESM-_Gri dConp) :: nodel
type(ESM-_St at e) ;. inportState, exportState
t ype(ESM-_O ock) :: clock
i nteger, intent(out) :: rc

rc = ESMF_SUCCESS

I Eventually, you will advertise your nodel’s inport and
I export fields in this phase. For now, however, cal

I your nodel’s initialization routine(s).

I call ny_nodel _init()

end subroutine

subroutine RealizeFields(nodel, inportState, exportState, clock, rc)
type(ESM-_Gri dConp) :: nodel
type(ESM-_St at e) ;. inportState, exportState

12

t ype(ESM-_d ock) .. clock
integer, intent(out) :: rc

rc = ESMF_SUCCESS

I Eventually, you will realize your nodel’s fields here,
I but | eave enpty for now.

end subroutine

subrouti ne Model Advance(nodel, rc)
type(ESM-_Gi dConp) :: nodel
integer, intent(out) :: rc

I local variables
t ype(ESM-_O ock) :: clock
type(ESM-_St at e) ;. inmportState, exportState

rc = ESMF_SUCCESS

I query the Conponent for its clock, inportState and exportState

cal | NUOPC Model Get (npdel, nodel O ock=cl ock, inportState=inportState, &
export St at e=export State, rc=rc)

i f (ESM-_LogFoundError (rcToCheck=rc, msg=ESMF_LOGERR PASSTHRU, &
line=_ LINE_ , &
file=__FILE_)) &
return ! bail out

| HERE THE MODEL ADVANCES: currTine -> currTime + tineStep

I Because of the way that the internal C ock was set by default,

Il its tineStep is equal to the parent tineStep. As a consequence the
I currTine + timeStep is equal to the stopTine of the internal C ock
I for this call of the Mdel Advance() routi ne.

call ESMF_C ockPrint(clock, options="currTine", &
preString="------ >Advanci ng MODEL from ", rc=rc)

i f (ESM-_LogFoundError (rcToCheck=rc, nmsg=ESMF_LOGERR PASSTHRU, &
line=__LINE , &
file=_FILE)) &
return ! bail out

call ESMF_C ockPrint(clock, options="stopTi ne", &
prestring="--------c-m e >to: ", rc=rc)

i f (ESM-_LogFoundError (rcToCheck=rc, msg=ESMF_LOGERR PASSTHRU, &
line=_ LINE_ , &
file=__FILE)) &
return ! bail out

I Call your nopdel’s tinestep routine here

I call my_nodel update()

13

end subroutine

end nodul e

14

4 An Example Cap

In this section we'll look at code for an example NUOPC Modabc The example shows the basic structure of a
NUOPC Model cap for a fictitious atmosphere model called ATiMs slightly simpler than a “real” cap, but has
enough detail to show the basic coding structures. Eaclosett the example cap code will be broken down and
described separately.

Finding More NUOPC Code Examples

In addition to the example code in this section, the NUOPQGd#¥ypes Subversion repository contains many small
example applications that are helpful for understandiegitchitecture of NUOPC applications and showing example
uses of the NUOPC API. These example applications can beitsgnd executed on your system.

A good starting point is th2 SingleModelProto applicatiarhich includes a single Model with a Driver and the
AtmOcnProto application which includes two Models, a Cartoge and a Driver.

4.1 Module Imports

The required NUOPC subroutines in the cap are grouped intatealR module, here called ATM. All NUOPC Model
caps will import theESMF, NUOPC, andNUOPC_Model modules. Typically, otheuse statements will appear as
well to import subroutines and variables from your modelecothe module exposes only a single public entry point
(subroutine) calle@®et Ser vi ces. This should be true for all NUOPC Model caps.

nodul e ATM

I Basi ¢ NUOPC Mbdel cap for ATM conponent (a fictitious atnmosphere nodel).

use ESMF
use NUOPC
use NUOPC Model, &
nodel _routine_SS => Set Services, &

nodel | abel Advance => | abel Advance
inmplicit none
private

public :: SetServices

4.2 SetServices

Every NUOPC Component must includéat Ser vi ces subroutine similar to the one shown below. All NUOPC
Set Ser vi ces routines have the same parameter list and should do sekiargt

¢ indicate the generic component being specialized,

15

https://sourceforge.net/p/esmfcontrib/svn/HEAD/tree/NUOPC/tags/ESMF_7_0_0/
https://sourceforge.net/p/esmfcontrib/svn/HEAD/tree/NUOPC/tags/ESMF_7_0_0/SingleModelProto
https://sourceforge.net/p/esmfcontrib/svn/HEAD/tree/NUOPC/tags/ESMF_7_0_0/AtmOcnProto

e register entry points for execution phases, and

e register any specialization points.

In the example code, the call MJOPC_ConpDer i ve indicates that this component derives from (and specllize
the generidNUOPC_Mbdel component. In other words, this isN&JOPC_Mbdel component customized for a specific
model.

The calls toNUOPC_ConpSet Ent r yPoi nt register subroutines that are implemented in the cap. Taesai-
tialization phases that are not provided by the generic NO®fdel. ThephaseLabel Li st parameter lists a
NUOPC-defined label from thimitialize Phase DefinitionNUOPC defines explicitly what happens in each phase of
model initialization and these labels uniquely define eathsp. For examplé,l PDv03pl" stands for “Initialize
Phase Definition version 03 phase 1". The value for the patmeer Rout i ne is the name of the subroutine that
should be executed for the phase (el.gni ti al i zeP1). This subroutine appears later on in the cap and the name
of the registered subroutine is entirely up to you.

At this point, don’t worry too much about what happens durgagh phase, just know that some phases are not
provided by NUOPC and so must be written by you. In the exarmombke:

e phase IPDv03pl maps to subrouting ti al i zeP1, and

e phase IPDv03p3 maps to subrouting ti al i zeP2.

In addition to providing subroutines for entire phases, stimespart of a phase can be specialized. The call to
NUOPC_ConpSpeci al i ze shows how to register a subroutine for a particular “sp&atibn point.” In this case
the name of the specialization point is held in the variatdedel | abel _Advance and the subroutine providing
the implementation ivbdel Advance.

The Advance specialization point is called by NUOPC whenigveeeds your model to take a single timestep forward.
Basically, this means you'll need to add a call inside thecseation subroutine to your model's timestepping
subroutine.

subrouti ne Set Servi ces(nodel, rc)
type(ESM-_G i dConp) :: nodel
integer, intent(out) :: rc

rc = ESMF_SUCCESS

I the NUOPC nodel conponent will register the generic nethods
call NUOPC CompDerive(nodel, nodel _routine_SS, rc=rc)
i f (ESM-_LogFoundError (rcToCheck=rc, nmsg=ESMF_LOGERR PASSTHRU, &
line=_ LINE_ , &
file=_ FILE)) &
return ! bail out

I set entry point for methods that require specific inplementation
cal | NUOPC ConpSet EntryPoi nt (nodel , ESM-_METHOD | NI TI ALI ZE, &
phaselLabel Li st =(/"1PDv03pl1"/), userRoutine=InitializePl, rc=rc)
i f (ESM-_LogFoundError (rcToCheck=rc, msg=ESMF_LOGERR PASSTHRU, &
line=_ LINE_ , &
file=_FILE)) &
return ! bail out
cal |l NUOPC CompSet EntryPoi nt (nodel , ESM-_METHOD | NI TI ALI ZE, &
phaselLabel Li st =(/"1PDv0O3p3"/), userRoutine=InitializeP2, rc=rc)
i f (ESM-_LogFoundError (rcToCheck=rc, msg=ESMF_LOGERR PASSTHRU, &
line=__LINE__, &

16

file=__FILE)) &
return ! bail out

I attach specializing nmethod(s)

cal |l NUOPC CompSpeci al i ze(nodel , speclLabel =nbdel _| abel _Advance, &
specRout i ne=Model Advance, rc=rc)

i f (ESM-_LogFoundError (rcToCheck=rc, nmsg=ESMF_LOGERR PASSTHRU, &
line=_LINE _, &
file=__FILE_)) &
return ! bail out

end subroutine

4.3 Checking Return Codes

Essentially all ESMF and NUOPC methods have an optionajérteeturn code parameter. You are highly encouraged
to call ESM-_LogFoundEr r or after every ESMF/NUOPC call in order to check the return cade record any
errors in the log files that ESMF generates during the runluthieg thel i ne andf i | e parameters will help to
located where errors occur in the code. These parameters/ahe typically filled in by the pre-processor.

4.4 Initialize Phase - Advertise Fields

In this section we see the implementation of tha ti al i zeP1 subroutine, which is registered for the initialize
phase with label IPDv0O3p1. The full list of initializatiotnpses, how they are ordered, and what happens during each
phase is described in the NUOPC Reterence Manual.

For now you should notice a few things:

e All phase subroutines are standard ESMF methods with the gamameter list:

— nodel - areference to the component itsdiSM-_Gr i dConp)
— i nport St at e - a containerESM-_St at e) for input fields
export St at e - a containerESMF_St at e) for output fields
cl ock - keeps track of model tim&aSM-_Cl ock)

— rc -ani nt eger return code

o If the subroutine succeeds, it should ret&$M- SUCCESS in the return code. Otherwise it should return an
error code. The list of pre-defined ESMF error codes is peid the ESMF Reference Manual.

The purpose of this phase is for your modehtbvertise its import and export fields This means that your model
announces which model variables it is capable of exporting.{ an atmosphere might export air pressure at sea
level) and which model variables it requires (e.g., an apphese might require sea surface temperature as a boundary
condition). The reason there is an expl&itvertise phase is because NUOPC dynamically matches fields among all
the models participating in a coupled simulation duringtime. So, we need to collect the list of possible input and
output fields from all the models during their initializatio

As shown in the code below, to advertise a field you BRIDPC_Adver t i se with the following parameters:

e either the mport St at e orexport St at e object

e the standard name of the field, based or| the CF conventions

17

http://www.earthsystemmodeling.org/esmf_releases/non_public/ESMF_7_0_0/NUOPC_refdoc/node3.html#IPD
http://www.earthsystemmodeling.org/esmf_releases/public/last/ESMF_refdoc/node9.html#SECTION09030000000000000000
http://cfconventions.org/standard-names.html

e an optional name for the field, which can be used to retrielagtétr from itsESM-_St at e; if ommited the
standard name will be used as the field name

e areturn code

The example code below advertises one import field with thedstrd namé& sea_sur f ace_t enper at ure",
and two export fields with standard names"ai r_pressure_at_sea |l evel" and
"surface_net downward_shortwave fl ux".

Advertising a Field does NOT allocate memory

Note that NUOPC does not allocate memory for fields duringgitieertise phase or wheMUOPC_Adverti se is
called. Instead, this is simply a way for models to commueithe standard names of fields. During a later phase,
only those fields that areonnectede.g., a field exported from one model that is imported by lag)tneed to have
memory allocated. Also, since ESMF will accept pointers te-allocated memory, it is usually not necessary to
change how memory is allocated for your model’s variables.

subroutine InitializePl(nodel, inportState, exportState, clock, rc)
type(ESM-_G i dConp) :: nodel
type(ESM-_St at e) ;. inportState, exportState
t ype(ESM-_O ock) :: clock
integer, intent(out) :: rc

rc = ESMF_SUCCESS

I inportable field: sea_surface_tenperature

call NUOPC Advertise(inportState, &
St andar dNane="sea_surface_t enperature", name="sst", &
Transfer O f er GeomObj ect ="wi | | provide", rc=rc)

i f (ESM-_LogFoundError (rcToCheck=rc, msg=ESMF_LOGERR PASSTHRU, &
line=__LINE , &
file=_FILE)) &
return ! bail out

I exportable field: air_pressure_at_sea_ | evel

call NUOPC Advertise(exportState, &
St andar dNanme="ai r _pressure_at _sea_l evel ", name="pnsl", &
Transfer O f er GeomObj ect ="wi | | provide", rc=rc)

i f (ESM-_LogFoundError (rcToCheck=rc, msg=ESMF_LOGERR PASSTHRU, &
line=_ LINE_, &
file=_FILE)) &
return ! bail out

I exportable field: surface net_ downward_shortwave fl ux

call NUOPC Advertise(exportState, &
St andar dName="sur f ace_net _downward_shortwave_fl ux", name="rsns", &
Transfer O f er GeomObj ect ="wi | | provide", rc=rc)

i f (ESM-_LogFoundError (rcToCheck=rc, msg=ESMF_LOGERR PASSTHRU, &
line=_ LINE_ , &
file=_FILE)) &
return ! bail out

end subroutine

18

4.5 Initialize Phase - Realize Fields

The following code fragment shows theni ti al i zeP2 subroutine, which was registered for phase IPDv03p3.
During this phase, fields that were previously advertisemikhnow berealized. Realizing a field means that an
ESMF_Fi el d objectis created and it is added to the appropiz8kF_St at e, either import or export.

In order to create aESMF_Fi el d, you'll first need to create one of the ESMF geometric tyfeS\VF_Gri d,
ESMF_Mesh, or ESM-_Loc St r eam For 2D and 3D logically rectangular grids (such as a latgad), the typical
choice isESM-_Gri d. For unstructured grids, use &M-_Mesh.

Describing your model’s grid (physical discretization}ive ESMF representation is one of the most important parts
of creating a NUOPC cap. The ESMF geometric types are destiibdetail in the ESMF Reference Manual:

e ESMF Grid - logically rectangular grids
e ESMF Mesh - unstructured grids

e ESMF LocStreain - a set of observational points

For the sake a simplicity, a 10x100 Cartesian grid is creitélte code below and assigned to the variagléd! n.

An ESMF_Fi el d is created by by passing in the field name (should be the saadvastised), the grid, and the data
type of the field tdESM-_Fi el dCr eat e.

Fields are put into import or export States by callllgOPC_Real i ze. The example code realizes three fields in
total, one import and two export, and all three share the spide

subroutine InitializeP2(nmodel, inportState, exportState, clock, rc)
type(ESM-_Gi dConp) :: nodel
type(ESM-_St at e) ;. inmportState, exportState
t ype(ESM-_O ock) :: clock
integer, intent(out) :: rc

I local variables

t ype(ESM-_Fi el d) :: field
type(ESM-_Gri d) ;o ogridln
type(ESM-_Gri d) ©ogridaut

rc = ESMF_SUCCESS

I create a Gid object for Fields

gridln = ESM-_Gri dCr eat eNoPer i Di mJf r n{ max| ndex=(/10, 100/), &
m nCor ner Coord=(/ 10. ESMF_KIND_R8, 20. ESMF_KIND R8/), &
max Cor ner Coor d=(/100. ESM-_KI ND_R8, 200. ESMF KIND R8/), &
coor dSys=ESMF_COORDSYS_CART, staggerLocLi st=(/ESM-_STAGGERLOC CENTER/), &
rc=rc)

i f (ESM-_LogFoundError (rcToCheck=rc, nmsg=ESMF_LOGERR PASSTHRU, &
line=_ LINE_ , &
file=_ FILE_)) &
return ! bail out

gridQut = gridln ! for now out sane as in

I inportable field: sea_surface_tenperature

19

http://www.earthsystemmodeling.org/esmf_releases/public/last/ESMF_refdoc/node5.html#SECTION05080000000000000000
http://www.earthsystemmodeling.org/esmf_releases/public/last/ESMF_refdoc/node5.html#SECTION050100000000000000000
http://www.earthsystemmodeling.org/esmf_releases/public/last/ESMF_refdoc/node5.html#SECTION05090000000000000000

field = ESM-_Fi el dCreat e(name="sst", grid=gridin, &
t ypeki nd=ESMF_TYPEKI ND_R8, rc=rc)
i f (ESM-_LogFoundError (rcToCheck=rc, msg=ESMF_LOGERR PASSTHRU, &
line=_ LINE_, &
file=_ FILE)) &
return ! bail out
call NUOPC Realize(inportState, field=field, rc=rc)
i f (ESM-_LogFoundError (rcToCheck=rc, msg=ESMF_LOGERR PASSTHRU, &
line=__LINE_ , &
file=__FILE)) &
return ! bail out

I exportable field: air_pressure_at_sea_ | evel
field = ESM-_Fi el dCreat e(name="pmnsl ", grid=gridQut, &
t ypeki nd=ESMF_TYPEKI ND_R8, rc=rc)
i f (ESM-_LogFoundError (rcToCheck=rc, nmsg=ESMF_LOGERR PASSTHRU, &
line=_LINE , &
file=__FILE_)) &
return ! bail out
call NUOPC Realize(exportState, field=field, rc=rc)
i f (ESM-_LogFoundError (rcToCheck=rc, msg=ESMF_LOGERR PASSTHRU, &
line=_ LINE_, &
file=__FILE_)) &
return ! bail out

I exportable field: surface_net_downward_shortwave_fl ux
field = ESM-_Fi el dCreat e(name="rsns", grid=gridQut, &
t ypeki nd=ESM-_TYPEKI ND_R8, rc=rc)
i f (ESM-_LogFoundError (rcToCheck=rc, msg=ESMF_LOGERR PASSTHRU, &
line=_ LINE_ , &
file=_FILE)) &
return ! bail out
call NUOPC Realize(exportState, field=field, rc=rc)
i f (ESM-_LogFoundError (rcToCheck=rc, nmsg=ESMF_LOGERR PASSTHRU, &
line=__LINE , &
file=__FILE)) &
return ! bail out

end subroutine

4.6 Model Advance Specialization

As described in thE_SefServites section, the subroliriel Advance (shown below) has been registered to the
specialization pointvith the labelnodel _| abel _Advance intheSet Ser vi ces subroutine. This specialization
point subroutine is called within the geneftJOPC_Mbdel run phase in order to request that your model take a
timestep forward. The code to do this is model dependent,dseis not appear in the subroutine below.

Each NUOPC component maintains its own clockanESMF_Cl ock object). The clock is used here to indicate the
current model time and the timestep size. When the submfitirshes, your model should be moved ahead in time
from the current time by one timestep. NUOPC will automatycadvance the clock for you, so there is no explicit
call to do that here.

Since there is no actual model for us to advance in this exantipé code below simply prints the current time and
stop time (current time + timestep) to standard out.

20

With respect to specialization point subroutines in gelhecde that:

o All specialization point subroutines rely on the ESMF attatcle methods capability, and therefore all share the
same parameter list:

— a pointer to the componerESM-_Gr i dConp)
— ani nt eger return code

e Because the import/export states and the clock do not cothedngh the parameter list, they must be accessed
via a call toNUOPC_Mbdel Get as shown in the code below.

subrouti ne Model Advance(nodel, rc)
type(ESM-_Gri dConp) :: nodel
i nteger, intent(out) :: rc

I ocal variables
t ype(ESM-_O ock) ;1 clock
type(ESM-_St at e) ©: inmportState, exportState

rc = ESMF_SUCCESS

I query the Conponent for its clock, inportState and exportState

cal | NUOPC Model Get (nodel, nodel ock=cl ock, inportState=inportState, &
export St at e=export State, rc=rc)

i f (ESM-_LogFoundError (rcToCheck=rc, nmsg=ESMF_LOGERR PASSTHRU, &
line=__LINE , &
file=_ FILE_)) &
return ! bail out

I HERE THE MODEL ADVANCES: currTinme -> currTime + tineStep

I Because of the way that the internal C ock was set by default,

I its tineStep is equal to the parent tinmeStep. As a consequence the
I currTine + tinmeStep is equal to the stopTine of the internal Cock
I for this call of the Mdel Advance() routi ne.

call ESMF_C ockPrint(clock, options="currTine", &
preString="------ >Advanci ng ATM from ", rc=rc)

i f (ESM-_LogFoundError (rcToCheck=rc, msg=ESMF_LOGERR PASSTHRU, &
line=_ LINE_ , &

file=_ FILE_)) &
return ! bail out

call ESMF_C ockPrint(clock, options="stopTi ne", &
preString="-------------mm oo >to: ", rc=rc)

i f (ESM-_LogFoundError (rcToCheck=rc, nmsg=ESMF_LOGERR PASSTHRU, &
line=_LINE , &
file=__FILE_)) &
return ! bail out

end subroutine

end nodul e

21

	Overview
	Document Roadmap
	Additional NUOPC Resources

	The Big Idea
	Specializing Generic Components
	NUOPC Model Cap
	How Much of My Code Do I Need to Change?
	How Do I Know it Works?

	Writing and Testing a NUOPC Cap for your Model
	Install ESMF and NUOPC on the Target Machine
	Prepare Your Model Code
	Choose a Configuration of Your Model for Development
	Integrate a Cap Template into Your Codebase
	Modify Your Build to Generate a NUOPC Makefile Fragment
	Initialize Your Model from the Cap
	Call Your Model's Run Subroutine from the Cap
	Run the Cap with a NUOPC Driver
	Split Up the Initialization Phases
	Test and Validate Your Cap
	Example NUOPC Model cap

	An Example Cap
	Module Imports
	SetServices
	Checking Return Codes
	Initialize Phase - Advertise Fields
	Initialize Phase - Realize Fields
	Model Advance Specialization

