
Earth System Modeling Framework

ESMF Reference Manual for Fortran

Version 8.1.0

ESMF Joint Specification Team: V. Balaji, Byron Boville, Samson Cheung, Tom Clune, Nancy
Collins, Tony Craig, Carlos Cruz, Arlindo da Silva, Cecelia DeLuca, Rosalinda de Fainchtein,
Rocky Dunlap, Brian Eaton, Steve Goldhaber, Bob Hallberg, Tom Henderson, Chris Hill, Mark

Iredell, Joseph Jacob, Rob Jacob, Phil Jones, Brian Kauffman, Erik Kluzek, Ben Koziol, Jay
Larson, Peggy Li, Fei Liu, John Michalakes, Raffaele Montuoro, Sylvia Murphy, David Neckels,

Ryan O Kuinghttons, Bob Oehmke, Chuck Panaccione, Daniel Rosen, Jim Rosinski, Mathew
Rothstein, Kathy Saint, Will Sawyer, Earl Schwab, Shepard Smithline, Walter Spector, Don Stark,

Max Suarez, Spencer Swift, Gerhard Theurich, Atanas Trayanov, Silverio Vasquez, Jon Wolfe,
Weiyu Yang, Mike Young, Leonid Zaslavsky

March 23, 2021

http://www.earthsystemmodeling.org

2

Acknowledgements

The ESMF software is based on the contributions of a broad community. Below are the software packages that are

included in ESMF or strongly influenced our design. We’d like to express our gratitude to the developers of these

codes for access to their software as well as their ideas and advice.

• Parallel I/O (PIO) developers at NCAR and DOE Laboratories for their excellent work on this package and their

help in making it work with ESMF

• The Spherical Coordinate Remapping and Interpolation Package (SCRIP) from Los Alamos, which informed

the design of our regridding functionality

• The Model Coupling Toolkit (MCT) from Argonne National Laboratory, on which we based our sparse matrix

multiply approach to general regridding

• The Inpack configuration attributes package from NASA Goddard, which was adapted for use in ESMF by

members of NASA Global Modeling and Assimilation group

• The Flexible Modeling System (FMS) package from GFDL and the Goddard Earth Modeling System (GEMS)

from NASA Goddard, both of which provided inspiration for the overall ESMF architecture

• The Common Component Architecture (CCA) effort within the Department of Energy, from which we drew

many ideas about how to design components

• The Vector Signal Image Processing Library (VSIPL) and its predecessors, which informed many aspects of our

design, and the radar system software design group at Lincoln Laboratory

• The Portable, Extensible Toolkit for Scientific Computation (PETSc) package from Argonne National Labora-

tories, on which we based our initial makefile system

• The Community Climate System Model (CCSM) and Weather Research and Forecasting (WRF) modeling

groups at NCAR, who have provided valuable feedback on the design and implementation of the framework

1

Contents

I ESMF Overview 31

1 What is the Earth System Modeling Framework? 32

2 The ESMF Reference Manual for Fortran 32

3 How to Contact User Support and Find Additional Information 33

4 How to Submit Comments, Bug Reports, and Feature Requests 33

5 Conventions 34

5.1 Typeface and Diagram Conventions . 34

5.2 Method Name and Argument Conventions . 34

6 The ESMF Application Programming Interface 35

6.1 Standard Methods and Interface Rules . 35

6.2 Deep and Shallow Classes . 35

6.3 Special Methods . 36

6.4 The ESMF Data Hierarchy . 36

6.5 ESMF Spatial Classes . 37

6.6 ESMF Maps . 38

6.7 ESMF Specification Classes . 38

6.8 ESMF Utility Classes . 38

7 Integrating ESMF into Applications 38

7.1 Using the ESMF Superstructure . 39

8 Overall Rules and Behavior 39

8.1 Return Code Handling . 39

8.2 Local and Global Views and Associated Conventions . 40

8.3 Allocation Rules . 40

8.4 Assignment, Equality, Copying and Comparing Objects . 40

8.5 Attributes . 41

8.6 Constants . 41

9 Overall Design and Implementation Notes 41

10 Overall Restrictions and Future Work 41

II Command Line Tools 43

11 ESMF_PrintInfo 43

11.1 Description . 43

12 ESMF_RegridWeightGen 43

12.1 Description . 43

12.2 Regridding Options . 45

12.2.1 Poles . 45

12.2.2 Masking . 45

2

12.2.3 Extrapolation . 46

12.2.4 Unmapped destination points . 46

12.2.5 Line type . 46

12.3 Regridding Methods . 46

12.3.1 Bilinear . 46

12.3.2 Patch . 47

12.3.3 Nearest neighbor . 47

12.3.4 First-order conservative . 47

12.3.5 Second-order conservative . 48

12.4 Conservation . 48

12.5 The effect of normalization options on integrals and values produced by conservative methods 49

12.6 Usage . 50

12.7 Examples . 56

12.8 Grid File Formats . 56

12.8.1 SCRIP Grid File Format . 57

12.8.2 ESMF Unstructured Grid File Format . 58

12.8.3 CF Convention Single Tile File Format . 62

12.8.4 CF Convention UGRID File Format . 63

12.8.5 GRIDSPEC Mosaic File Format . 66

12.9 Regrid Weight File Format . 69

12.9.1 Source Grid Description . 71

12.9.2 Destination Grid Description . 71

12.9.3 Regrid Calculation Output . 72

12.9.4 Weight File Description Attributes . 73

12.9.5 Weight Only Weight File . 73

12.10ESMF_RegridWeightGenCheck . 73

13 ESMF_Regrid 73

13.1 Description . 73

13.2 Usage . 77

13.3 Examples . 81

14 ESMF_Scrip2Unstruct 82

14.1 Description . 82

III Superstructure 83

15 Overview of Superstructure 84

15.1 Superstructure Classes . 84

15.2 Hierarchical Creation of Components . 85

15.3 Sequential and Concurrent Execution of Components . 86

15.4 Intra-Component Communication . 87

15.5 Data Distribution and Scoping in Components . 87

15.6 Performance . 87

15.7 Object Model . 91

16 Application Driver and Required ESMF Methods 91

16.1 Description . 91

16.2 Constants . 92

16.2.1 ESMF_END . 92

16.3 Use and Examples . 93

3

16.4 Required ESMF Methods . 97

16.4.1 ESMF_Initialize . 98

16.4.2 ESMF_InitializePreMPI . 100

16.4.3 ESMF_IsInitialized . 101

16.4.4 ESMF_IsFinalized . 101

16.4.5 ESMF_Finalize . 102

16.4.6 User-code SetServices method . 102

16.4.7 User-code Initialize, Run, and Finalize methods 104

16.4.8 User-code SetVM method . 104

16.4.9 Use of internal procedures as user-provided procedures 105

17 GridComp Class 106

17.1 Description . 106

17.2 Use and Examples . 107

17.2.1 Implement a user-code SetServices routine . 107

17.2.2 Implement a user-code Initialize routine . 108

17.2.3 Implement a user-code Run routine . 108

17.2.4 Implement a user-code Finalize routine . 109

17.2.5 Implement a user-code SetVM routine . 110

17.2.6 Set and Get the Internal State . 110

17.3 Restrictions and Future Work . 114

17.4 Class API . 115

17.4.1 ESMF_GridCompAssignment(=) . 115

17.4.2 ESMF_GridCompOperator(==) . 115

17.4.3 ESMF_GridCompOperator(/=) . 116

17.4.4 ESMF_GridCompCreate . 117

17.4.5 ESMF_GridCompDestroy . 119

17.4.6 ESMF_GridCompFinalize . 120

17.4.7 ESMF_GridCompGet . 122

17.4.8 ESMF_GridCompGetInternalState . 125

17.4.9 ESMF_GridCompInitialize . 125

17.4.10 ESMF_GridCompIsCreated . 127

17.4.11 ESMF_GridCompIsPetLocal . 128

17.4.12 ESMF_GridCompPrint . 128

17.4.13 ESMF_GridCompReadRestart . 129

17.4.14 ESMF_GridCompRun . 130

17.4.15 ESMF_GridCompServiceLoop . 132

17.4.16 ESMF_GridCompSet . 133

17.4.17 ESMF_GridCompSetEntryPoint . 135

17.4.18 ESMF_GridCompSetInternalState . 136

17.4.19 ESMF_GridCompSetServices . 137

17.4.20 ESMF_GridCompSetServices . 138

17.4.21 ESMF_GridCompSetServices . 140

17.4.22 ESMF_GridCompSetServices . 140

17.4.23 ESMF_GridCompSetVM . 141

17.4.24 ESMF_GridCompSetVM . 142

17.4.25 ESMF_GridCompSetVMMaxPEs . 143

17.4.26 ESMF_GridCompSetVMMaxThreads . 145

17.4.27 ESMF_GridCompSetVMMinThreads . 146

17.4.28 ESMF_GridCompValidate . 147

17.4.29 ESMF_GridCompWait . 148

4

17.4.30 ESMF_GridCompWriteRestart . 149

18 CplComp Class 150

18.1 Description . 150

18.2 Use and Examples . 151

18.2.1 Implement a user-code SetServices routine . 151

18.2.2 Implement a user-code Initialize routine . 152

18.2.3 Implement a user-code Run routine . 152

18.2.4 Implement a user-code Finalize routine . 153

18.2.5 Implement a user-code SetVM routine . 153

18.3 Restrictions and Future Work . 154

18.4 Class API . 154

18.4.1 ESMF_CplCompAssignment(=) . 154

18.4.2 ESMF_CplCompOperator(==) . 155

18.4.3 ESMF_CplCompOperator(/=) . 156

18.4.4 ESMF_CplCompCreate . 157

18.4.5 ESMF_CplCompDestroy . 158

18.4.6 ESMF_CplCompFinalize . 159

18.4.7 ESMF_CplCompGet . 160

18.4.8 ESMF_CplCompGetInternalState . 162

18.4.9 ESMF_CplCompInitialize . 162

18.4.10 ESMF_CplCompIsCreated . 164

18.4.11 ESMF_CplCompIsPetLocal . 165

18.4.12 ESMF_CplCompPrint . 165

18.4.13 ESMF_CplCompReadRestart . 166

18.4.14 ESMF_CplCompRun . 167

18.4.15 ESMF_CplCompServiceLoop . 169

18.4.16 ESMF_CplCompSet . 170

18.4.17 ESMF_CplCompSetEntryPoint . 171

18.4.18 ESMF_CplCompSetInternalState . 172

18.4.19 ESMF_CplCompSetServices . 173

18.4.20 ESMF_CplCompSetServices . 174

18.4.21 ESMF_CplCompSetServices . 175

18.4.22 ESMF_CplCompSetServices . 176

18.4.23 ESMF_CplCompSetVM . 177

18.4.24 ESMF_CplCompSetVM . 178

18.4.25 ESMF_CplCompSetVMMaxPEs . 179

18.4.26 ESMF_CplCompSetVMMaxThreads . 180

18.4.27 ESMF_CplCompSetVMMinThreads . 181

18.4.28 ESMF_CplCompValidate . 182

18.4.29 ESMF_CplCompWait . 183

18.4.30 ESMF_CplCompWriteRestart . 184

19 SciComp Class 185

19.1 Description . 185

19.2 Use and Examples . 186

19.2.1 Use ESMF_SciComp and Attach Attributes . 186

19.3 Restrictions and Future Work . 190

19.4 Class API . 190

19.4.1 ESMF_SciCompAssignment(=) . 190

19.4.2 ESMF_SciCompOperator(==) . 191

5

19.4.3 ESMF_SciCompOperator(/=) . 191

19.4.4 ESMF_SciCompCreate . 192

19.4.5 ESMF_SciCompDestroy . 192

19.4.6 ESMF_SciCompGet . 193

19.4.7 ESMF_SciCompIsCreated . 193

19.4.8 ESMF_SciCompPrint . 194

19.4.9 ESMF_SciCompSet . 195

19.4.10 ESMF_SciCompValidate . 195

20 Fault-tolerant Component Tunnel 196

20.1 Description . 196

20.2 Use and Examples . 196

20.2.1 Creating an actual Component . 196

20.2.2 Creating a dual Component . 196

20.2.3 Setting up the actual side of a Component Tunnel . 197

20.2.4 Setting up the dual side of a Component Tunnel . 198

20.2.5 Invoking standard Component methods through a Component Tunnel 198

20.2.6 The non-blocking option to invoke standard Component methods through a Component Tunnel 199

20.2.7 Destroying a connected dual Component . 200

20.2.8 Destroying a connected actual Component . 200

20.3 Restrictions and Future Work . 200

21 State Class 201

21.1 Description . 201

21.2 Constants . 201

21.2.1 ESMF_STATEINTENT . 201

21.2.2 ESMF_STATEITEM . 201

21.3 Use and Examples . 202

21.3.1 State create and destroy . 203

21.3.2 Add items to a State . 203

21.3.3 Add placeholders to a State . 203

21.3.4 Mark an item NEEDED . 204

21.3.5 Create a NEEDED item . 204

21.3.6 ESMF_StateReconcile() usage . 205

21.3.7 Read Arrays from a NetCDF file and add to a State . 208

21.3.8 Print Array data from a State . 208

21.3.9 Write Array data within a State to a NetCDF file . 209

21.4 Restrictions and Future Work . 209

21.5 Design and Implementation Notes . 209

21.6 Object Model . 213

21.7 Class API . 213

21.7.1 ESMF_StateAssignment(=) . 213

21.7.2 ESMF_StateOperator(==) . 214

21.7.3 ESMF_StateOperator(/=) . 214

21.7.4 ESMF_StateAdd . 215

21.7.5 ESMF_StateAddReplace . 216

21.7.6 ESMF_StateCreate . 217

21.7.7 ESMF_StateDestroy . 218

21.7.8 ESMF_StateGet . 219

21.7.9 ESMF_StateGet . 221

21.7.10 ESMF_StateGet . 222

6

21.7.11 ESMF_StateIsCreated . 223

21.7.12 ESMF_StatePrint . 223

21.7.13 ESMF_StateRead . 224

21.7.14 ESMF_StateReconcile . 224

21.7.15 ESMF_StateRemove . 225

21.7.16 ESMF_StateRemove . 226

21.7.17 ESMF_StateReplace . 227

21.7.18 ESMF_StateSet . 228

21.7.19 ESMF_StateValidate . 228

21.7.20 ESMF_StateWrite . 229

22 Attachable Methods 230

22.1 Description . 230

22.2 Use and Examples . 230

22.2.1 Producer Component attaches user defined method . 230

22.2.2 Producer Component implements user defined method . 230

22.2.3 Consumer Component executes user defined method . 231

22.3 Restrictions and Future Work . 231

22.4 Class API . 232

22.4.1 ESMF_MethodAdd . 232

22.4.2 ESMF_MethodAdd . 232

22.4.3 ESMF_MethodAdd . 233

22.4.4 ESMF_MethodAdd . 234

22.4.5 ESMF_MethodAdd . 235

22.4.6 ESMF_MethodAdd . 236

22.4.7 ESMF_MethodAddReplace . 237

22.4.8 ESMF_MethodAddReplace . 238

22.4.9 ESMF_MethodAddReplace . 239

22.4.10 ESMF_MethodAddReplace . 239

22.4.11 ESMF_MethodAddReplace . 240

22.4.12 ESMF_MethodAddReplace . 241

22.4.13 ESMF_MethodExecute . 242

22.4.14 ESMF_MethodExecute . 243

22.4.15 ESMF_MethodExecute . 244

22.4.16 ESMF_MethodGet . 244

22.4.17 ESMF_MethodGet . 245

22.4.18 ESMF_MethodGet . 246

22.4.19 ESMF_MethodRemove . 246

22.4.20 ESMF_MethodRemove . 247

22.4.21 ESMF_MethodRemove . 247

23 Web Services 248

23.1 Description . 248

23.1.1 Creating a Service around a Component . 248

23.1.2 Code Modifications . 248

23.1.3 Accessing the Service . 250

23.1.4 Client Application via C++ API . 250

23.1.5 Process Controller . 251

23.1.6 Tomcat/Axis2 . 251

23.2 Use and Examples . 251

23.2.1 Making a Component available through ESMF Web Services 251

7

23.3 Restrictions and Future Work . 254

23.4 Class API . 254

23.4.1 ESMF_WebServicesLoop . 255

23.4.2 ESMF_WebServicesCplCompLoop . 255

IV Infrastructure: Fields and Grids 257

24 Overview of Data Classes 258

24.1 Bit-for-Bit Considerations . 259

24.2 Regrid . 259

24.2.1 Interpolation methods: bilinear . 260

24.2.2 Interpolation methods: higher-order patch . 261

24.2.3 Interpolation methods: nearest source to destination . 262

24.2.4 Interpolation methods: nearest destination to source . 262

24.2.5 Interpolation methods: first-order conservative . 263

24.2.6 Interpolation methods: second-order conservative . 264

24.2.7 Conservation . 265

24.2.8 The effect of normalization options on integrals and values produced by conservative methods 265

24.2.9 Great circle cells . 267

24.2.10 Masking . 267

24.2.11 Extrapolation methods: overview . 267

24.2.12 Extrapolation methods: nearest source to destination . 268

24.2.13 Extrapolation methods: inverse distance weighted average 268

24.2.14 Extrapolation methods: creep fill . 268

24.2.15 Unmapped destination points . 268

24.2.16 Spherical grids and poles . 269

24.2.17 Troubleshooting guide . 270

24.2.18 Design and implementation notes . 271

24.3 File-based Regrid API . 271

24.3.1 ESMF_RegridWeightGen . 272

24.3.2 ESMF_RegridWeightGen . 275

24.3.3 ESMF_FileRegrid . 278

24.4 Restrictions and Future Work . 279

25 FieldBundle Class 280

25.1 Description . 280

25.2 Use and Examples . 280

25.2.1 Creating a FieldBundle from a list of Fields . 280

25.2.2 Creating an empty FieldBundle then add one Field to it . 281

25.2.3 Creating an empty FieldBundle then add a list of Fields to it 281

25.2.4 Query a Field stored in the FieldBundle by name or index 282

25.2.5 Query FieldBundle for Fields list either alphabetical or in order of addition 282

25.2.6 Create a packed FieldBundle on a Grid . 283

25.2.7 Create a packed FieldBundle on a Mesh . 283

25.2.8 Destroy a FieldBundle . 284

25.2.9 Redistribute data from a source FieldBundle to a destination FieldBundle 284

25.2.10 Redistribute data from a packed source FieldBundle to a packed destination FieldBundle . . . 284

25.2.11 Perform sparse matrix multiplication from a source FieldBundle to a destination FieldBundle . 285

25.2.12 Perform FieldBundle halo update . 286

25.3 Restrictions and Future Work . 289

8

25.4 Design and Implementation Notes . 289

25.5 Class API: Basic FieldBundle Methods . 290

25.5.1 ESMF_FieldBundleAssignment(=) . 290

25.5.2 ESMF_FieldBundleOperator(==) . 290

25.5.3 ESMF_FieldBundleOperator(/=) . 291

25.5.4 ESMF_FieldBundleAdd . 292

25.5.5 ESMF_FieldBundleAddReplace . 293

25.5.6 ESMF_FieldBundleCreate . 293

25.5.7 ESMF_FieldBundleCreate . 294

25.5.8 ESMF_FieldBundleCreate . 296

25.5.9 ESMF_FieldBundleDestroy . 297

25.5.10 ESMF_FieldBundleGet . 298

25.5.11 ESMF_FieldBundleGet . 299

25.5.12 ESMF_FieldBundleGet . 300

25.5.13 ESMF_FieldBundleGet . 301

25.5.14 ESMF_FieldBundleHalo . 302

25.5.15 ESMF_FieldBundleHaloRelease . 303

25.5.16 ESMF_FieldBundleHaloStore . 304

25.5.17 ESMF_FieldBundleIsCreated . 304

25.5.18 ESMF_FieldBundlePrint . 305

25.5.19 ESMF_FieldBundleRead . 306

25.5.20 ESMF_FieldBundleRedist . 306

25.5.21 ESMF_FieldBundleRedistRelease . 308

25.5.22 ESMF_FieldBundleRedistStore . 309

25.5.23 ESMF_FieldBundleRedistStore . 310

25.5.24 ESMF_FieldBundleRegrid . 312

25.5.25 ESMF_FieldBundleRegridRelease . 313

25.5.26 ESMF_FieldBundleRegridStore . 314

25.5.27 ESMF_FieldBundleRemove . 317

25.5.28 ESMF_FieldBundleReplace . 318

25.5.29 ESMF_FieldBundleSet . 319

25.5.30 ESMF_FieldBundleSet . 319

25.5.31 ESMF_FieldBundleSet . 320

25.5.32 ESMF_FieldBundleSet . 321

25.5.33 ESMF_FieldBundleSMM . 321

25.5.34 ESMF_FieldBundleSMMRelease . 323

25.5.35 ESMF_FieldBundleSMMStore . 324

25.5.36 ESMF_FieldBundleSMMStore . 326

25.5.37 ESMF_FieldBundleSMMStore . 328

25.5.38 ESMF_FieldBundleValidate . 329

25.5.39 ESMF_FieldBundleWrite . 329

26 Field Class 331

26.1 Description . 331

26.1.1 Operations . 331

26.2 Constants . 331

26.2.1 ESMF_FIELDSTATUS . 331

26.3 Use and Examples . 332

26.3.1 Field create and destroy . 332

26.3.2 Get Fortran data pointer, bounds, and counts information from a Field 333

26.3.3 Get Grid, Array, and other information from a Field . 334

9

26.3.4 Create a Field with a Grid, typekind, and rank . 334

26.3.5 Create a Field with a Grid and Arrayspec . 335

26.3.6 Create a Field with a Grid and Array . 336

26.3.7 Create an empty Field and complete it with FieldEmptySet and FieldEmptyComplete 337

26.3.8 Create an empty Field and complete it with FieldEmptyComplete 338

26.3.9 Create a 7D Field with a 5D Grid and 2D ungridded bounds from a Fortran data array 339

26.3.10 Shared memory features: DE pinning, sharing, and migration 340

26.3.11 Create a 2D Field with a 2D Grid and a Fortran data array 342

26.3.12 Create a 2D Field with a 2D Grid and a Fortran data pointer 343

26.3.13 Create a 3D Field with a 2D Grid and a 3D Fortran data array 343

26.3.14 Create a 3D Field with a 2D Grid and a 3D Fortran data array with gridToFieldMap argument 345

26.3.15 Create a 3D Field with a 2D Grid and a 3D Fortran data array with halos 345

26.3.16 Create a Field from a LocStream, typekind, and rank . 349

26.3.17 Create a Field from a LocStream and arrayspec . 349

26.3.18 Create a Field from a Mesh, typekind, and rank . 349

26.3.19 Create a Field from a Mesh and arrayspec . 350

26.3.20 Create a Field from a Mesh and an Array . 351

26.3.21 Create a Field from a Mesh and an ArraySpec with optional features 351

26.3.22 Create a Field with replicated dimensions . 351

26.3.23 Create a Field on an arbitrarily distributed Grid . 354

26.3.24 Create a Field on an arbitrarily distributed Grid with replicated dimensions & ungridded bounds355

26.3.25 Field regridding . 355

26.3.26 Field regrid with masking . 356

26.3.27 Field regrid example: Mesh to Mesh . 357

26.3.28 Gather Field data onto root PET . 360

26.3.29 Scatter Field data from root PET onto its set of joint PETs 362

26.3.30 Redistribute data from source Field to destination Field . 363

26.3.31 FieldRedist as a form of scatter involving arbitrary distribution 365

26.3.32 FieldRedist as a form of gather involving arbitrary distribution 367

26.3.33 Sparse matrix multiplication from source Field to destination Field 367

26.3.34 Field Halo solving a domain decomposed heat transfer problem 372

26.4 Restrictions and Future Work . 373

26.5 Design and Implementation Notes . 374

26.6 Class API . 374

26.6.1 ESMF_FieldAssignment(=) . 374

26.6.2 ESMF_FieldOperator(==) . 375

26.6.3 ESMF_FieldOperator(/=) . 376

26.6.4 ESMF_FieldCopy . 376

26.6.5 ESMF_FieldCreate . 377

26.6.6 ESMF_FieldCreate . 379

26.6.7 ESMF_FieldCreate . 381

26.6.8 ESMF_FieldCreate . 383

26.6.9 ESMF_FieldCreate . 385

26.6.10 ESMF_FieldCreate . 386

26.6.11 ESMF_FieldCreate . 387

26.6.12 ESMF_FieldCreate . 389

26.6.13 ESMF_FieldCreate . 390

26.6.14 ESMF_FieldCreate . 391

26.6.15 ESMF_FieldCreate . 393

26.6.16 ESMF_FieldCreate . 394

26.6.17 ESMF_FieldCreate . 395

10

26.6.18 ESMF_FieldCreate . 397

26.6.19 ESMF_FieldCreate . 398

26.6.20 ESMF_FieldCreate . 399

26.6.21 ESMF_FieldCreate . 401

26.6.22 ESMF_FieldCreate . 402

26.6.23 ESMF_FieldCreate . 404

26.6.24 ESMF_FieldCreate . 405

26.6.25 ESMF_FieldDestroy . 406

26.6.26 ESMF_FieldEmptyComplete . 407

26.6.27 ESMF_FieldEmptyComplete . 409

26.6.28 ESMF_FieldEmptyComplete . 411

26.6.29 ESMF_FieldEmptyComplete . 413

26.6.30 ESMF_FieldEmptyComplete . 414

26.6.31 ESMF_FieldEmptyComplete . 416

26.6.32 ESMF_FieldEmptyComplete . 417

26.6.33 ESMF_FieldEmptyComplete . 419

26.6.34 ESMF_FieldEmptyComplete . 420

26.6.35 ESMF_FieldEmptyComplete . 421

26.6.36 ESMF_FieldEmptyComplete . 422

26.6.37 ESMF_FieldEmptyComplete . 423

26.6.38 ESMF_FieldEmptyCreate . 425

26.6.39 ESMF_FieldEmptySet . 425

26.6.40 ESMF_FieldEmptySet . 427

26.6.41 ESMF_FieldEmptySet . 427

26.6.42 ESMF_FieldEmptySet . 428

26.6.43 ESMF_FieldFill . 429

26.6.44 ESMF_FieldGather . 430

26.6.45 ESMF_FieldGet . 431

26.6.46 ESMF_FieldGet . 435

26.6.47 ESMF_FieldGetBounds . 436

26.6.48 ESMF_FieldHalo . 438

26.6.49 ESMF_FieldHaloRelease . 439

26.6.50 ESMF_FieldHaloStore . 440

26.6.51 ESMF_FieldIsCreated . 441

26.6.52 ESMF_FieldPrint . 442

26.6.53 ESMF_FieldRead . 442

26.6.54 ESMF_FieldRedist . 443

26.6.55 ESMF_FieldRedistRelease . 444

26.6.56 ESMF_FieldRedistStore . 445

26.6.57 ESMF_FieldRedistStore . 447

26.6.58 ESMF_FieldRegrid . 448

26.6.59 ESMF_FieldRegridRelease . 450

26.6.60 ESMF_FieldRegridStore . 451

26.6.61 ESMF_FieldRegridStore . 456

26.6.62 ESMF_FieldRegridGetArea . 457

26.6.63 ESMF_FieldScatter . 458

26.6.64 ESMF_FieldSet . 459

26.6.65 ESMF_FieldSync . 460

26.6.66 ESMF_FieldSMM . 460

26.6.67 ESMF_FieldSMMRelease . 462

26.6.68 ESMF_FieldSMMStore . 463

11

26.6.69 ESMF_FieldSMMStore . 465

26.6.70 ESMF_FieldSMMStore . 468

26.6.71 ESMF_FieldSMMStore . 470

26.6.72 ESMF_FieldSMMStore . 472

26.6.73 ESMF_FieldSMMStore . 473

26.6.74 ESMF_FieldValidate . 475

26.6.75 ESMF_FieldWrite . 475

26.7 Class API: Field Utilities . 477

26.7.1 ESMF_GridGetFieldBounds . 477

26.7.2 ESMF_LocStreamGetFieldBounds . 479

26.7.3 ESMF_MeshGetFieldBounds . 480

26.7.4 ESMF_XGridGetFieldBounds . 481

27 ArrayBundle Class 483

27.1 Description . 483

27.2 Use and Examples . 483

27.2.1 Creating an ArrayBundle from a list of Arrays . 483

27.2.2 Adding, removing, replacing Arrays in the ArrayBundle . 484

27.2.3 Accessing Arrays inside the ArrayBundle . 485

27.2.4 Destroying an ArrayBundle and its constituents . 485

27.2.5 Halo communication . 486

27.3 Restrictions and Future Work . 486

27.4 Design and Implementation Notes . 487

27.5 Class API . 487

27.5.1 ESMF_ArrayBundleAssignment(=) . 487

27.5.2 ESMF_ArrayBundleOperator(==) . 487

27.5.3 ESMF_ArrayBundleOperator(/=) . 488

27.5.4 ESMF_ArrayBundleAdd . 489

27.5.5 ESMF_ArrayBundleAddReplace . 490

27.5.6 ESMF_ArrayBundleCreate . 490

27.5.7 ESMF_ArrayBundleDestroy . 491

27.5.8 ESMF_ArrayBundleGet . 492

27.5.9 ESMF_ArrayBundleGet . 493

27.5.10 ESMF_ArrayBundleGet . 494

27.5.11 ESMF_ArrayBundleHalo . 495

27.5.12 ESMF_ArrayBundleHaloRelease . 496

27.5.13 ESMF_ArrayBundleHaloStore . 497

27.5.14 ESMF_ArrayBundleIsCreated . 498

27.5.15 ESMF_ArrayBundlePrint . 498

27.5.16 ESMF_ArrayBundleRead . 499

27.5.17 ESMF_ArrayBundleRedist . 500

27.5.18 ESMF_ArrayBundleRedistRelease . 501

27.5.19 ESMF_ArrayBundleRedistStore . 502

27.5.20 ESMF_ArrayBundleRedistStore . 503

27.5.21 ESMF_ArrayBundleRemove . 505

27.5.22 ESMF_ArrayBundleReplace . 506

27.5.23 ESMF_ArrayBundleSMM . 506

27.5.24 ESMF_ArrayBundleSMMRelease . 508

27.5.25 ESMF_ArrayBundleSMMStore . 509

27.5.26 ESMF_ArrayBundleSMMStore . 511

27.5.27 ESMF_ArrayBundleWrite . 513

12

28 Array Class 514

28.1 Description . 514

28.2 Use and Examples . 515

28.2.1 Array from native Fortran array with 1 DE per PET . 515

28.2.2 Array from native Fortran array with extra elements for halo or padding 519

28.2.3 Array from ESMF_LocalArray . 520

28.2.4 Create Array with automatic memory allocation . 525

28.2.5 Native language memory access . 526

28.2.6 Regions and default bounds . 528

28.2.7 Array bounds . 530

28.2.8 Computational region and extra elements for halo or padding 531

28.2.9 Create 1D and 3D Arrays . 533

28.2.10 Working with Arrays of different rank . 534

28.2.11 Array and DistGrid rank – 2D+1 Arrays . 535

28.2.12 Arrays with replicated dimensions . 538

28.2.13 Shared memory features: DE pinning, sharing, and migration 541

28.2.14 Communication – Scatter and Gather . 544

28.2.15 Communication – Halo . 548

28.2.16 Communication – Halo for arbitrary distribution . 553

28.2.17 Communication – Redist . 562

28.2.18 Communication – SparseMatMul . 567

28.2.19 Communication – Scatter and Gather, revisited . 575

28.2.20 Non-blocking Communications . 578

28.3 Restrictions and Future Work . 580

28.4 Design and Implementation Notes . 580

28.5 Class API . 580

28.5.1 ESMF_ArrayAssignment(=) . 580

28.5.2 ESMF_ArrayOperator(==) . 581

28.5.3 ESMF_ArrayOperator(/=) . 582

28.5.4 ESMF_ArrayCopy . 582

28.5.5 ESMF_ArrayCreate . 583

28.5.6 ESMF_ArrayCreate . 585

28.5.7 ESMF_ArrayCreate . 587

28.5.8 ESMF_ArrayCreate . 589

28.5.9 ESMF_ArrayCreate . 591

28.5.10 ESMF_ArrayCreate . 593

28.5.11 ESMF_ArrayCreate . 596

28.5.12 ESMF_ArrayCreate . 598

28.5.13 ESMF_ArrayCreate . 599

28.5.14 ESMF_ArrayCreate . 601

28.5.15 ESMF_ArrayCreate . 603

28.5.16 ESMF_ArrayDestroy . 604

28.5.17 ESMF_ArrayGather . 605

28.5.18 ESMF_ArrayGet . 606

28.5.19 ESMF_ArrayGet . 609

28.5.20 ESMF_ArrayGet . 610

28.5.21 ESMF_ArrayGet . 611

28.5.22 ESMF_ArrayHalo . 612

28.5.23 ESMF_ArrayHaloRelease . 613

28.5.24 ESMF_ArrayHaloStore . 614

28.5.25 ESMF_ArrayIsCreated . 615

13

28.5.26 ESMF_ArrayPrint . 616

28.5.27 ESMF_ArrayRead . 617

28.5.28 ESMF_ArrayRedist . 618

28.5.29 ESMF_ArrayRedistRelease . 619

28.5.30 ESMF_ArrayRedistStore . 620

28.5.31 ESMF_ArrayRedistStore . 622

28.5.32 ESMF_ArrayRedistStore . 624

28.5.33 ESMF_ArrayRedistStore . 626

28.5.34 ESMF_ArrayScatter . 628

28.5.35 ESMF_ArraySet . 629

28.5.36 ESMF_ArraySet . 629

28.5.37 ESMF_ArraySMM . 630

28.5.38 ESMF_ArraySMMRelease . 632

28.5.39 ESMF_ArraySMMStore . 633

28.5.40 ESMF_ArraySMMStore . 636

28.5.41 ESMF_ArraySMMStore . 638

28.5.42 ESMF_ArraySMMStore . 640

28.5.43 ESMF_ArraySMMStore . 642

28.5.44 ESMF_ArraySMMStore . 643

28.5.45 ESMF_ArraySync . 645

28.5.46 ESMF_ArrayValidate . 645

28.5.47 ESMF_ArrayWrite . 646

28.5.48 ESMF_SparseMatrixWrite . 648

28.6 Class API: DynamicMask Methods . 648

28.6.1 ESMF_DynamicMaskSetR8R8R8 . 648

28.6.2 ESMF_DynamicMaskSetR8R8R8V . 649

28.6.3 ESMF_DynamicMaskSetR4R8R4 . 650

28.6.4 ESMF_DynamicMaskSetR4R8R4V . 651

28.6.5 ESMF_DynamicMaskSetR4R4R4 . 652

28.6.6 ESMF_DynamicMaskSetR4R4R4V . 653

29 LocalArray Class 654

29.1 Description . 654

29.2 Restrictions and Future Work . 654

29.3 Class API . 654

29.3.1 ESMF_LocalArrayAssignment(=) . 654

29.3.2 ESMF_LocalArrayOperator(==) . 655

29.3.3 ESMF_LocalArrayOperator(/=) . 656

29.3.4 ESMF_LocalArrayCreate . 657

29.3.5 ESMF_LocalArrayCreate . 658

29.3.6 ESMF_LocalArrayCreate . 658

29.3.7 ESMF_LocalArrayCreate . 659

29.3.8 ESMF_LocalArrayDestroy . 660

29.3.9 ESMF_LocalArrayGet . 661

29.3.10 ESMF_LocalArrayGet . 662

29.3.11 ESMF_LocalArrayIsCreated . 663

30 ArraySpec Class 663

30.1 Description . 663

30.2 Use and Examples . 663

30.2.1 Set ArraySpec values . 664

14

30.2.2 Get ArraySpec values . 664

30.3 Restrictions and Future Work . 665

30.4 Design and Implementation Notes . 665

30.5 Class API . 665

30.5.1 ESMF_ArraySpecAssignment(=) . 665

30.5.2 ESMF_ArraySpecOperator(==) . 666

30.5.3 ESMF_ArraySpecOperator(/=) . 666

30.5.4 ESMF_ArraySpecGet . 667

30.5.5 ESMF_ArraySpecPrint . 668

30.5.6 ESMF_ArraySpecSet . 668

30.5.7 ESMF_ArraySpecValidate . 669

31 Grid Class 670

31.1 Description . 670

31.1.1 Grid Representation in ESMF . 670

31.1.2 Supported Grids . 671

31.1.3 Grid Topologies and Periodicity . 671

31.1.4 Grid Distribution . 672

31.1.5 Grid Coordinates . 672

31.1.6 Coordinate Specification and Generation . 673

31.1.7 Staggering . 673

31.1.8 Masking . 673

31.2 Constants . 674

31.2.1 ESMF_GRIDCONN . 674

31.2.2 ESMF_GRIDITEM . 674

31.2.3 ESMF_GRIDMATCH . 675

31.2.4 ESMF_GRIDSTATUS . 675

31.2.5 ESMF_POLEKIND . 675

31.2.6 ESMF_STAGGERLOC . 676

31.3 Use and Examples . 677

31.3.1 Create single-tile Grid shortcut method . 678

31.3.2 Create a 2D regularly distributed rectilinear Grid with uniformly spaced coordinates 680

31.3.3 Create a periodic 2D regularly distributed rectilinear Grid 681

31.3.4 Create a 2D irregularly distributed rectilinear Grid with uniformly spaced coordinates 683

31.3.5 Create a 2D irregularly distributed Grid with curvilinear coordinates 684

31.3.6 Create an irregularly distributed rectilinear Grid with a non-distributed vertical dimension . . 686

31.3.7 Create an arbitrarily distributed rectilinear Grid with a non-distributed vertical dimension . . . 690

31.3.8 Create a curvilinear Grid using the coordinates defined in a SCRIP file 692

31.3.9 Create an empty Grid in a parent Component for completion in a child Component 693

31.3.10 Create a six-tile cubed sphere Grid . 694

31.3.11 Create a six-tile cubed sphere Grid and apply Schmidt transform 694

31.3.12 Create a six-tile cubed sphere Grid from a GRIDSPEC Mosaic file 695

31.3.13 Grid stagger locations . 698

31.3.14 Associate coordinates with stagger locations . 699

31.3.15 Specify the relationship of coordinate Arrays to index space dimensions 699

31.3.16 Access coordinates . 700

31.3.17 Associate items with stagger locations . 701

31.3.18 Access items . 701

31.3.19 Grid regions and bounds . 702

31.3.20 Get Grid coordinate bounds . 704

31.3.21 Get Grid stagger location bounds . 704

15

31.3.22 Get Grid stagger location information . 704

31.3.23 Create an Array at a stagger location . 705

31.3.24 Create more complex Grids using DistGrid . 706

31.3.25 Specify custom stagger locations . 707

31.3.26 Specify custom stagger padding . 708

31.4 Restrictions and Future Work . 710

31.5 Design and Implementation Notes . 711

31.5.1 Grid Topology . 711

31.6 Class API: General Grid Methods . 711

31.6.1 ESMF_GridAssignment(=) . 711

31.6.2 ESMF_GridOperator(==) . 712

31.6.3 ESMF_GridOperator(/=) . 712

31.6.4 ESMF_GridAddCoord . 713

31.6.5 ESMF_GridAddItem . 714

31.6.6 ESMF_GridCreate . 715

31.6.7 ESMF_GridCreate . 716

31.6.8 ESMF_GridCreate . 718

31.6.9 ESMF_GridCreate . 720

31.6.10 ESMF_GridCreate . 722

31.6.11 ESMF_GridCreate . 724

31.6.12 ESMF_GridCreate . 726

31.6.13 ESMF_GridCreate . 727

31.6.14 ESMF_GridCreate . 729

31.6.15 ESMF_GridCreate1PeriDim . 731

31.6.16 ESMF_GridCreate1PeriDim . 733

31.6.17 ESMF_GridCreate1PeriDim . 735

31.6.18 ESMF_GridCreate2PeriDim . 737

31.6.19 ESMF_GridCreate2PeriDim . 739

31.6.20 ESMF_GridCreate2PeriDim . 741

31.6.21 ESMF_GridCreateNoPeriDim . 743

31.6.22 ESMF_GridCreateNoPeriDim . 745

31.6.23 ESMF_GridCreateNoPeriDim . 747

31.6.24 ESMF_GridCreate1PeriDimUfrm . 748

31.6.25 ESMF_GridCreate1PeriDimUfrm . 750

31.6.26 ESMF_GridCreateNoPeriDimUfrm . 752

31.6.27 ESMF_GridCreateCubedSphere . 754

31.6.28 ESMF_GridCreateCubedSphere . 755

31.6.29 ESMF_GridCreateMosaic . 757

31.6.30 ESMF_GridCreateMosaic . 758

31.6.31 ESMF_GridDestroy . 760

31.6.32 ESMF_GridEmptyComplete . 761

31.6.33 ESMF_GridEmptyComplete . 763

31.6.34 ESMF_GridEmptyComplete . 765

31.6.35 ESMF_GridEmptyCreate . 767

31.6.36 ESMF_GridGet . 768

31.6.37 ESMF_GridGet . 770

31.6.38 ESMF_GridGet . 771

31.6.39 ESMF_GridGet . 773

31.6.40 ESMF_GridGet . 774

31.6.41 ESMF_GridGetCoord . 775

31.6.42 ESMF_GridGetCoord . 777

16

31.6.43 ESMF_GridGetCoord . 778

31.6.44 ESMF_GridGetCoord . 779

31.6.45 ESMF_GridGetCoord . 779

31.6.46 ESMF_GridGetCoordBounds . 780

31.6.47 ESMF_GridGetItem . 782

31.6.48 ESMF_GridGetItem . 784

31.6.49 ESMF_GridGetItem . 785

31.6.50 ESMF_GridGetItemBounds . 785

31.6.51 ESMF_GridIsCreated . 787

31.6.52 ESMF_GridMatch . 788

31.6.53 ESMF_GridSetCoord . 788

31.6.54 ESMF_GridSetItem . 789

31.6.55 ESMF_GridValidate . 790

31.7 Class API: StaggerLoc Methods . 791

31.7.1 ESMF_StaggerLocGet . 791

31.7.2 ESMF_StaggerLocSet . 792

31.7.3 ESMF_StaggerLocSet . 792

31.7.4 ESMF_StaggerLocString . 793

31.7.5 ESMF_StaggerLocPrint . 794

32 LocStream Class 794

32.1 Description . 794

32.2 Constants . 795

32.2.1 Coordinate keyNames . 795

32.2.2 Masking keyName . 795

32.3 Use and Examples . 796

32.3.1 Create a LocStream with user allocated memory . 796

32.3.2 Create a LocStream with internally allocated memory . 797

32.3.3 Create a LocStream with a distribution based on a Grid . 799

32.3.4 Regridding from a Grid to a LocStream . 802

32.4 Class API . 806

32.4.1 ESMF_LocStreamAssignment(=) . 806

32.4.2 ESMF_LocStreamOperator(==) . 806

32.4.3 ESMF_LocStreamOperator(/=) . 807

32.4.4 ESMF_LocStreamAddKey . 808

32.4.5 ESMF_LocStreamAddKey . 809

32.4.6 ESMF_LocStreamAddKey . 809

32.4.7 ESMF_LocStreamCreate . 810

32.4.8 ESMF_LocStreamCreate . 811

32.4.9 ESMF_LocStreamCreate . 812

32.4.10 ESMF_LocStreamCreate . 813

32.4.11 ESMF_LocStreamCreate . 814

32.4.12 ESMF_LocStreamCreate . 815

32.4.13 ESMF_LocStreamCreate . 816

32.4.14 ESMF_LocStreamCreate . 817

32.4.15 ESMF_LocStreamDestroy . 818

32.4.16 ESMF_LocStreamGet . 819

32.4.17 ESMF_LocStreamGetBounds . 820

32.4.18 ESMF_LocStreamGetKey . 821

32.4.19 ESMF_LocStreamGetKey . 821

32.4.20 ESMF_LocStreamGetKey . 822

17

32.4.21 ESMF_LocStreamIsCreated . 824

32.4.22 ESMF_LocStreamPrint . 824

32.4.23 ESMF_LocStreamValidate . 825

33 Mesh Class 825

33.1 Description . 825

33.1.1 Mesh representation in ESMF . 826

33.1.2 Supported Meshes . 826

33.2 Constants . 826

33.2.1 ESMF_MESHELEMTYPE . 826

33.3 Use and Examples . 828

33.3.1 Mesh creation . 828

33.3.2 Create a small single PET Mesh in one step . 829

33.3.3 Create a small single PET Mesh in three steps . 831

33.3.4 Create a small Mesh on 4 PETs in one step . 834

33.3.5 Create a copy of a Mesh with a new distribution . 838

33.3.6 Create a small Mesh of all one element type on 4 PETs using easy element method 840

33.3.7 Create a small Mesh of multiple element types on 4 PETs using easy element method 842

33.3.8 Create a Mesh from an unstructured grid file . 845

33.3.9 Create a Mesh representation of a cubed sphere grid . 845

33.3.10 Remove Mesh memory . 846

33.3.11 Mesh Masking . 846

33.3.12 Mesh Halo Communication . 847

33.4 Class API . 849

33.4.1 ESMF_MeshAssignment(=) . 849

33.4.2 ESMF_MeshOperator(==) . 850

33.4.3 ESMF_MeshOperator(/=) . 850

33.4.4 ESMF_MeshAddElements . 851

33.4.5 ESMF_MeshAddNodes . 853

33.4.6 ESMF_MeshCreate . 854

33.4.7 ESMF_MeshCreate . 855

33.4.8 ESMF_MeshCreate . 857

33.4.9 ESMF_MeshCreate . 858

33.4.10 ESMF_MeshCreate . 859

33.4.11 ESMF_MeshCreate . 860

33.4.12 ESMF_MeshCreate . 862

33.4.13 ESMF_MeshCreateCubedSphere . 863

33.4.14 ESMF_MeshDestroy . 864

33.4.15 ESMF_MeshEmptyCreate . 865

33.4.16 ESMF_MeshFreeMemory . 866

33.4.17 ESMF_MeshGet . 867

33.4.18 ESMF_MeshIsCreated . 870

33.4.19 ESMF_MeshSet . 870

33.4.20 ESMF_MeshSetMOAB . 871

33.4.21 ESMF_MeshGetMOAB . 872

34 XGrid Class 872

34.1 Description . 872

34.2 Constants . 873

34.2.1 ESMF_XGRIDSIDE . 873

34.3 Use and Examples . 874

18

34.3.1 Create an XGrid from Grids then use it for regridding . 874

34.3.2 Using XGrid in Earth System modeling . 878

34.3.3 Create an XGrid from user input data then use it for regridding 879

34.3.4 Query the XGrid for its internal information . 885

34.3.5 Destroying the XGrid and other resources . 886

34.4 Restrictions and Future Work . 887

34.4.1 Restrictions and Future Work . 887

34.5 Design and Implementation Notes . 887

34.6 Class API . 887

34.6.1 ESMF_XGridAssignment(=) . 887

34.6.2 ESMF_XGridOperator(==) . 888

34.6.3 ESMF_XGridOperator(/=) . 888

34.6.4 ESMF_XGridCreate . 889

34.6.5 ESMF_XGridCreateFromSparseMat . 891

34.6.6 ESMF_XGridIsCreated . 893

34.6.7 ESMF_XGridDestroy . 893

34.6.8 ESMF_XGridGet . 894

35 DistGrid Class 896

35.1 Description . 896

35.2 Constants . 896

35.2.1 ESMF_DISTGRIDMATCH . 896

35.3 Use and Examples . 897

35.3.1 Single tile DistGrid with regular decomposition . 897

35.3.2 DistGrid and DELayout . 900

35.3.3 Single tile DistGrid with decomposition by DE blocks . 902

35.3.4 2D multi-tile DistGrid with regular decomposition . 903

35.3.5 Arbitrary DistGrids with user-supplied sequence indices . 905

35.3.6 DistGrid Connections - Definition . 906

35.3.7 DistGrid Connections - Single tile periodic and pole connections 910

35.3.8 DistGrid Connections - Multi tile connections . 916

35.4 Restrictions and Future Work . 924

35.5 Design and Implementation Notes . 924

35.6 Class API . 924

35.6.1 ESMF_DistGridAssignment(=) . 924

35.6.2 ESMF_DistGridOperator(==) . 925

35.6.3 ESMF_DistGridOperator(/=) . 926

35.6.4 ESMF_DistGridCreate . 927

35.6.5 ESMF_DistGridCreate . 928

35.6.6 ESMF_DistGridCreate . 930

35.6.7 ESMF_DistGridCreate . 932

35.6.8 ESMF_DistGridCreate . 934

35.6.9 ESMF_DistGridCreate . 935

35.6.10 ESMF_DistGridCreate . 937

35.6.11 ESMF_DistGridCreate . 938

35.6.12 ESMF_DistGridCreate . 939

35.6.13 ESMF_DistGridCreate . 939

35.6.14 ESMF_DistGridDestroy . 940

35.6.15 ESMF_DistGridGet . 941

35.6.16 ESMF_DistGridGet . 944

35.6.17 ESMF_DistGridGet . 945

19

35.6.18 ESMF_DistGridIsCreated . 946

35.6.19 ESMF_DistGridMatch . 947

35.6.20 ESMF_DistGridPrint . 947

35.6.21 ESMF_DistGridSet . 948

35.6.22 ESMF_DistGridValidate . 949

35.7 Class API: DistGridConnection Methods . 949

35.7.1 ESMF_DistGridConnectionGet . 949

35.7.2 ESMF_DistGridConnectionSet . 950

35.8 Class API: DistGridRegDecomp Methods . 951

35.8.1 ESMF_DistGridRegDecompSetCubic . 951

36 RouteHandle Class 952

36.1 Description . 952

36.2 Use and Examples . 952

36.2.1 Bit-for-bit reproducibility . 952

36.2.2 Creating a RouteHandle from an existing RouteHandle – Transfer to a different set of PETs . 965

36.2.3 Write a RouteHandle to file and creating a RouteHandle from file 967

36.2.4 Reusablity of RouteHandles and interleaved distributed and undistributed dimensions 968

36.2.5 Dynamic Masking . 972

36.3 Restrictions and Future Work . 979

36.4 Design and Implementation Notes . 979

36.5 Class API . 980

36.5.1 ESMF_RouteHandleCreate . 980

36.5.2 ESMF_RouteHandleCreate . 980

36.5.3 ESMF_RouteHandleDestroy . 981

36.5.4 ESMF_RouteHandleGet . 982

36.5.5 ESMF_RouteHandleIsCreated . 982

36.5.6 ESMF_RouteHandlePrint . 983

36.5.7 ESMF_RouteHandleSet . 984

36.5.8 ESMF_RouteHandleWrite . 984

37 I/O Capability 985

37.1 Description . 985

37.2 Data I/O . 985

37.3 Data formats . 985

37.4 Restrictions and Future Work . 986

37.5 Design and Implementation Notes . 986

V Infrastructure: Utilities 987

38 Overview of Infrastructure Utility Classes 988

39 Info Class (Object Attributes) 989

39.1 Migrating from Attribute . 989

39.1.1 Setting an Attribute . 990

39.1.2 Getting an Attribute . 990

39.2 Key Format Overview . 991

39.3 Usage and Examples . 991

39.3.1 Retrieve an Info Handle . 991

39.3.2 General Usage Examples . 992

39.4 Class API . 996

20

39.4.1 ESMF_InfoAssignment(=) . 996

39.4.2 ESMF_InfoOperator(==) . 996

39.4.3 ESMF_InfoOperator(/=) . 997

39.4.4 ESMF_InfoBroadcast . 997

39.4.5 ESMF_InfoCreate . 998

39.4.6 ESMF_InfoCreate . 999

39.4.7 ESMF_InfoCreate . 999

39.4.8 ESMF_InfoCreate . 1000

39.4.9 ESMF_InfoDestroy . 1000

39.4.10 ESMF_InfoDump . 1001

39.4.11 ESMF_InfoGet . 1002

39.4.12 ESMF_InfoGetCharAlloc . 1003

39.4.13 ESMF_InfoGet . 1003

39.4.14 ESMF_InfoGetAlloc . 1004

39.4.15 ESMF_InfoGet . 1005

39.4.16 ESMF_InfoGetFromHost . 1007

39.4.17 ESMF_InfoGetTK . 1007

39.4.18 ESMF_InfoGetArrayMeta . 1008

39.4.19 ESMF_InfoIsPresent . 1009

39.4.20 ESMF_InfoIsSet . 1010

39.4.21 ESMF_InfoPrint . 1010

39.4.22 ESMF_InfoReadJSON . 1011

39.4.23 ESMF_InfoRemove . 1011

39.4.24 ESMF_InfoSet . 1012

39.4.25 ESMF_InfoSet . 1013

39.4.26 ESMF_InfoSet . 1014

39.4.27 ESMF_InfoSetNULL . 1015

39.4.28 ESMF_InfoSync . 1015

39.4.29 ESMF_InfoUpdate . 1016

39.4.30 ESMF_InfoWriteJSON . 1017

40 Time Manager Utility 1017

40.1 Time Manager Classes . 1018

40.2 Calendar . 1019

40.3 Time Instants and TimeIntervals . 1019

40.4 Clocks and Alarms . 1019

40.5 Design and Implementation Notes . 1020

40.6 Object Model . 1022

41 Calendar Class 1023

41.1 Description . 1023

41.2 Constants . 1023

41.2.1 ESMF_CALKIND . 1023

41.3 Use and Examples . 1024

41.3.1 Calendar creation . 1024

41.3.2 Calendar comparison . 1025

41.3.3 Time conversion between Calendars . 1025

41.3.4 Add a time interval to a time on a Calendar . 1026

41.3.5 Calendar destruction . 1026

41.4 Restrictions and Future Work . 1026

41.5 Class API . 1027

21

41.5.1 ESMF_CalendarAssignment(=) . 1027

41.5.2 ESMF_CalendarOperator(==) . 1027

41.5.3 ESMF_CalendarOperator(/=) . 1029

41.5.4 ESMF_CalendarCreate . 1030

41.5.5 ESMF_CalendarCreate . 1031

41.5.6 ESMF_CalendarCreate . 1031

41.5.7 ESMF_CalendarDestroy . 1032

41.5.8 ESMF_CalendarGet . 1033

41.5.9 ESMF_CalendarIsCreated . 1034

41.5.10 ESMF_CalendarIsLeapYear . 1035

41.5.11 ESMF_CalendarPrint . 1035

41.5.12 ESMF_CalendarSet . 1036

41.5.13 ESMF_CalendarSet . 1037

41.5.14 ESMF_CalendarSetDefault . 1038

41.5.15 ESMF_CalendarSetDefault . 1039

41.5.16 ESMF_CalendarValidate . 1039

42 Time Class 1041

42.1 Description . 1041

42.2 Use and Examples . 1041

42.2.1 Time initialization . 1042

42.2.2 Time increment . 1042

42.2.3 Time comparison . 1042

42.3 Restrictions and Future Work . 1043

42.4 Class API . 1043

42.4.1 ESMF_TimeAssignment(=) . 1043

42.4.2 ESMF_TimeOperator(+) . 1044

42.4.3 ESMF_TimeOperator(-) . 1044

42.4.4 ESMF_TimeOperator(-) . 1045

42.4.5 ESMF_TimeOperator(==) . 1046

42.4.6 ESMF_TimeOperator(/=) . 1047

42.4.7 ESMF_TimeOperator(<) . 1047

42.4.8 ESMF_TimeOperator(<=) . 1048

42.4.9 ESMF_TimeOperator(>) . 1049

42.4.10 ESMF_TimeOperator(>=) . 1049

42.4.11 ESMF_TimeGet . 1050

42.4.12 ESMF_TimeIsLeapYear . 1054

42.4.13 ESMF_TimeIsSameCalendar . 1054

42.4.14 ESMF_TimePrint . 1055

42.4.15 ESMF_TimeSet . 1056

42.4.16 ESMF_TimeSet . 1059

42.4.17 ESMF_TimeSyncToRealTime . 1059

42.4.18 ESMF_TimeValidate . 1060

43 TimeInterval Class 1061

43.1 Description . 1061

43.2 Use and Examples . 1061

43.2.1 TimeInterval initialization . 1062

43.2.2 TimeInterval conversion . 1062

43.2.3 TimeInterval difference . 1062

43.2.4 TimeInterval multiplication . 1063

22

43.2.5 TimeInterval comparison . 1063

43.3 Restrictions and Future Work . 1063

43.4 Class API . 1063

43.4.1 ESMF_TimeIntervalAssignment(=) . 1063

43.4.2 ESMF_TimeIntervalOperator(+) . 1064

43.4.3 ESMF_TimeIntervalOperator(-) . 1065

43.4.4 ESMF_TimeIntervalOperator(-) . 1066

43.4.5 ESMF_TimeIntervalOperator(/) . 1066

43.4.6 ESMF_TimeIntervalOperator(/) . 1067

43.4.7 ESMF_TimeIntervalFunction(MOD) . 1068

43.4.8 ESMF_TimeIntervalOperator(*) . 1068

43.4.9 ESMF_TimeIntervalOperator(==) . 1069

43.4.10 ESMF_TimeIntervalOperator(/=) . 1070

43.4.11 ESMF_TimeIntervalOperator(<) . 1070

43.4.12 ESMF_TimeIntervalOperator(<=) . 1071

43.4.13 ESMF_TimeIntervalOperator(>) . 1072

43.4.14 ESMF_TimeIntervalOperator(>=) . 1073

43.4.15 ESMF_TimeIntervalAbsValue . 1073

43.4.16 ESMF_TimeIntervalGet . 1074

43.4.17 ESMF_TimeIntervalGet . 1077

43.4.18 ESMF_TimeIntervalGet . 1079

43.4.19 ESMF_TimeIntervalGet . 1082

43.4.20 ESMF_TimeIntervalNegAbsValue . 1085

43.4.21 ESMF_TimeIntervalPrint . 1085

43.4.22 ESMF_TimeIntervalSet . 1086

43.4.23 ESMF_TimeIntervalSet . 1088

43.4.24 ESMF_TimeIntervalSet . 1090

43.4.25 ESMF_TimeIntervalSet . 1093

43.4.26 ESMF_TimeIntervalValidate . 1095

44 Clock Class 1096

44.1 Description . 1096

44.2 Constants . 1096

44.2.1 ESMF_DIRECTION . 1096

44.3 Use and Examples . 1097

44.3.1 Clock creation . 1098

44.3.2 Clock advance . 1098

44.3.3 Clock examination . 1099

44.3.4 Clock reversal . 1099

44.3.5 Clock destruction . 1099

44.4 Restrictions and Future Work . 1100

44.5 Class API . 1100

44.5.1 ESMF_ClockAssignment(=) . 1100

44.5.2 ESMF_ClockOperator(==) . 1101

44.5.3 ESMF_ClockOperator(/=) . 1101

44.5.4 ESMF_ClockAdvance . 1102

44.5.5 ESMF_ClockCreate . 1103

44.5.6 ESMF_ClockCreate . 1104

44.5.7 ESMF_ClockDestroy . 1105

44.5.8 ESMF_ClockGet . 1106

44.5.9 ESMF_ClockGetAlarm . 1107

23

44.5.10 ESMF_ClockGetAlarmList . 1108

44.5.11 ESMF_ClockGetNextTime . 1109

44.5.12 ESMF_ClockIsCreated . 1110

44.5.13 ESMF_ClockIsDone . 1110

44.5.14 ESMF_ClockIsReverse . 1111

44.5.15 ESMF_ClockIsStopTime . 1112

44.5.16 ESMF_ClockIsStopTimeEnabled . 1113

44.5.17 ESMF_ClockPrint . 1113

44.5.18 ESMF_ClockSet . 1114

44.5.19 ESMF_ClockStopTimeDisable . 1116

44.5.20 ESMF_ClockStopTimeEnable . 1116

44.5.21 ESMF_ClockSyncToRealTime . 1117

44.5.22 ESMF_ClockValidate . 1118

45 Alarm Class 1119

45.1 Description . 1119

45.2 Constants . 1119

45.2.1 ESMF_ALARMLIST . 1119

45.3 Use and Examples . 1119

45.3.1 Clock initialization . 1120

45.3.2 Alarm initialization . 1121

45.3.3 Clock advance and Alarm processing . 1121

45.3.4 Alarm and Clock destruction . 1122

45.4 Restrictions and Future Work . 1122

45.5 Design and Implementation Notes . 1123

45.6 Class API . 1123

45.6.1 ESMF_AlarmAssignment(=) . 1123

45.6.2 ESMF_AlarmOperator(==) . 1124

45.6.3 ESMF_AlarmOperator(/=) . 1124

45.6.4 ESMF_AlarmCreate . 1125

45.6.5 ESMF_AlarmCreate . 1127

45.6.6 ESMF_AlarmDestroy . 1127

45.6.7 ESMF_AlarmDisable . 1128

45.6.8 ESMF_AlarmEnable . 1129

45.6.9 ESMF_AlarmGet . 1129

45.6.10 ESMF_AlarmIsCreated . 1131

45.6.11 ESMF_AlarmIsEnabled . 1131

45.6.12 ESMF_AlarmIsRinging . 1132

45.6.13 ESMF_AlarmIsSticky . 1133

45.6.14 ESMF_AlarmNotSticky . 1134

45.6.15 ESMF_AlarmPrint . 1134

45.6.16 ESMF_AlarmRingerOff . 1135

45.6.17 ESMF_AlarmRingerOn . 1136

45.6.18 ESMF_AlarmSet . 1137

45.6.19 ESMF_AlarmSticky . 1138

45.6.20 ESMF_AlarmValidate . 1139

45.6.21 ESMF_AlarmWasPrevRinging . 1139

45.6.22 ESMF_AlarmWillRingNext . 1140

46 Config Class 1141

46.1 Description . 1141

24

46.1.1 Package history . 1141

46.1.2 Resource files . 1141

46.2 Use and Examples . 1142

46.2.1 Variable declarations . 1142

46.2.2 Creation of a Config . 1143

46.2.3 How to retrieve a label with a single value . 1143

46.2.4 How to retrieve a label with multiple values . 1144

46.2.5 How to retrieve a table . 1144

46.2.6 Destruction of a Config . 1145

46.3 Class API . 1145

46.3.1 ESMF_ConfigAssignment(=) . 1145

46.3.2 ESMF_ConfigOperator(==) . 1145

46.3.3 ESMF_ConfigOperator(/=) . 1146

46.3.4 ESMF_ConfigCreate . 1147

46.3.5 ESMF_ConfigCreate . 1147

46.3.6 ESMF_ConfigDestroy . 1148

46.3.7 ESMF_ConfigFindLabel . 1149

46.3.8 ESMF_ConfigFindNextLabel . 1150

46.3.9 ESMF_ConfigGetAttribute . 1150

46.3.10 ESMF_ConfigGetAttribute . 1151

46.3.11 ESMF_ConfigGetChar . 1152

46.3.12 ESMF_ConfigGetDim . 1153

46.3.13 ESMF_ConfigGetLen . 1154

46.3.14 ESMF_ConfigIsCreated . 1154

46.3.15 ESMF_ConfigLoadFile . 1155

46.3.16 ESMF_ConfigNextLine . 1156

46.3.17 ESMF_ConfigPrint . 1156

46.3.18 ESMF_ConfigSetAttribute . 1157

46.3.19 ESMF_ConfigValidate . 1158

47 Log Class 1159

47.1 Description . 1159

47.2 Constants . 1159

47.2.1 ESMF_LOGERR . 1159

47.2.2 ESMF_LOGKIND . 1159

47.2.3 ESMF_LOGMSG . 1160

47.3 Use and Examples . 1161

47.3.1 Default Log . 1162

47.3.2 User created Log . 1163

47.3.3 Get and Set . 1163

47.4 Restrictions and Future Work . 1164

47.5 Design and Implementation Notes . 1164

47.6 Object Model . 1165

47.7 Class API . 1166

47.7.1 ESMF_LogAssignment(=) . 1166

47.7.2 ESMF_LogOperator(==) . 1166

47.7.3 ESMF_LogOperator(/=) . 1167

47.7.4 ESMF_LogClose . 1167

47.7.5 ESMF_LogFlush . 1168

47.7.6 ESMF_LogFoundAllocError . 1169

47.7.7 ESMF_LogFoundDeallocError . 1170

25

47.7.8 ESMF_LogFoundError . 1171

47.7.9 ESMF_LogFoundNetCDFError . 1172

47.7.10 ESMF_LogGet . 1173

47.7.11 ESMF_LogOpen . 1174

47.7.12 ESMF_LogOpen . 1175

47.7.13 ESMF_LogSet . 1175

47.7.14 ESMF_LogSetError . 1177

47.7.15 ESMF_LogWrite . 1178

48 DELayout Class 1179

48.1 Description . 1179

48.2 Constants . 1179

48.2.1 ESMF_PIN . 1179

48.2.2 ESMF_SERVICEREPLY . 1180

48.3 Use and Examples . 1180

48.3.1 Default DELayout . 1180

48.3.2 DELayout with specified number of DEs . 1181

48.3.3 DELayout with computational and communication weights 1182

48.3.4 DELayout from petMap . 1182

48.3.5 DELayout from petMap with multiple DEs per PET . 1182

48.3.6 Working with a DELayout - simple 1-to-1 DE-to-PET mapping 1183

48.3.7 Working with a DELayout - general DE-to-PET mapping . 1183

48.3.8 Work queue dynamic load balancing . 1184

48.4 Restrictions and Future Work . 1185

48.5 Design and Implementation Notes . 1185

48.6 Class API . 1185

48.6.1 ESMF_DELayoutAssignment(=) . 1185

48.6.2 ESMF_DELayoutOperator(==) . 1185

48.6.3 ESMF_DELayoutOperator(/=) . 1186

48.6.4 ESMF_DELayoutCreate . 1187

48.6.5 ESMF_DELayoutCreate . 1188

48.6.6 ESMF_DELayoutDestroy . 1189

48.6.7 ESMF_DELayoutGet . 1190

48.6.8 ESMF_DELayoutIsCreated . 1192

48.6.9 ESMF_DELayoutPrint . 1192

48.6.10 ESMF_DELayoutServiceComplete . 1193

48.6.11 ESMF_DELayoutServiceOffer . 1193

48.6.12 ESMF_DELayoutValidate . 1194

49 VM Class 1195

49.1 Description . 1195

49.2 Constants . 1196

49.2.1 ESMF_VMEPOCH . 1196

49.3 Use and Examples . 1196

49.3.1 Global VM . 1196

49.3.2 VM and Components . 1197

49.3.3 Getting the MPI Communicator from an VM object . 1199

49.3.4 Nesting ESMF inside a user MPI application . 1200

49.3.5 Nesting ESMF inside a user MPI application on a subset of MPI ranks 1201

49.3.6 Multiple concurrent instances of ESMF under separate MPI communicators 1202

49.3.7 Communication - Send and Recv . 1203

26

49.3.8 Communication - Scatter and Gather . 1204

49.3.9 Communication - AllReduce and AllFullReduce . 1204

49.3.10 Communication - Non-blocking option and VMEpochs . 1205

49.3.11 Using VM communication methods with data of rank greater than one 1210

49.4 Restrictions and Future Work . 1211

49.5 Design and Implementation Notes . 1211

49.6 Class API . 1214

49.6.1 ESMF_VMAssignment(=) . 1214

49.6.2 ESMF_VMOperator(==) . 1215

49.6.3 ESMF_VMOperator(/=) . 1216

49.6.4 ESMF_VMAllFullReduce . 1216

49.6.5 ESMF_VMAllGather . 1218

49.6.6 ESMF_VMAllGatherV . 1219

49.6.7 ESMF_VMAllReduce . 1220

49.6.8 ESMF_VMAllToAll . 1221

49.6.9 ESMF_VMAllToAllV . 1222

49.6.10 ESMF_VMBarrier . 1223

49.6.11 ESMF_VMBroadcast . 1224

49.6.12 ESMF_VMCommWait . 1225

49.6.13 ESMF_VMCommWaitAll . 1226

49.6.14 ESMF_VMEpochEnter . 1226

49.6.15 ESMF_VMEpochExit . 1227

49.6.16 ESMF_VMGather . 1227

49.6.17 ESMF_VMGatherV . 1229

49.6.18 ESMF_VMGet . 1230

49.6.19 ESMF_VMGet . 1232

49.6.20 ESMF_VMGetGlobal . 1233

49.6.21 ESMF_VMGetCurrent . 1233

49.6.22 ESMF_VMIsCreated . 1234

49.6.23 ESMF_VMLog . 1235

49.6.24 ESMF_VMLogSystem . 1236

49.6.25 ESMF_VMPrint . 1236

49.6.26 ESMF_VMRecv . 1237

49.6.27 ESMF_VMReduce . 1238

49.6.28 ESMF_VMScatter . 1239

49.6.29 ESMF_VMScatterV . 1240

49.6.30 ESMF_VMSend . 1241

49.6.31 ESMF_VMSendRecv . 1242

49.6.32 ESMF_VMValidate . 1243

49.6.33 ESMF_VMWtime . 1244

49.6.34 ESMF_VMWtimeDelay . 1244

49.6.35 ESMF_VMWtimePrec . 1245

50 Profiling and Tracing 1246

50.1 Description . 1246

50.1.1 Profiling . 1246

50.1.2 Tracing . 1246

50.2 Use and Examples . 1247

50.2.1 Output a Timing Profile to Text . 1247

50.2.2 Summarize Timings across Multiple PETs . 1248

50.2.3 Limit the Set of Profiled PETs . 1250

27

50.2.4 Include MPI Communication in the Profile . 1250

50.2.5 Output a Detailed Trace for Analysis . 1252

50.2.6 Set the Clock used for Profiling/Tracing . 1253

50.2.7 Tracing a simple ESMF application . 1253

50.2.8 Profiling/Tracing User-defined Code Regions . 1256

50.3 Restrictions and Future Work . 1257

50.4 Class API . 1257

50.4.1 ESMF_TraceRegionEnter . 1257

50.4.2 ESMF_TraceRegionExit . 1257

51 Fortran I/O and System Utilities 1258

51.1 Description . 1258

51.2 Use and Examples . 1258

51.2.1 Fortran unit number management . 1258

51.2.2 Flushing output . 1259

51.3 Design and Implementation Notes . 1260

51.3.1 Fortran unit number management . 1260

51.3.2 Flushing output . 1260

51.3.3 Sorting algorithms . 1260

51.4 Utility API . 1260

51.4.1 ESMF_UtilGetArg . 1261

51.4.2 ESMF_UtilGetArgC . 1261

51.4.3 ESMF_UtilGetArgIndex . 1262

51.4.4 ESMF_UtilIOGetCWD . 1263

51.4.5 ESMF_UtilIOMkDir . 1263

51.4.6 ESMF_UtilIORmDir . 1264

51.4.7 ESMF_UtilString2Double . 1265

51.4.8 ESMF_UtilString2Int . 1265

51.4.9 ESMF_UtilString2Real . 1266

51.4.10 ESMF_UtilStringInt2String . 1267

51.4.11 ESMF_UtilStringLowerCase . 1268

51.4.12 ESMF_UtilStringUpperCase . 1268

51.4.13 ESMF_UtilIOUnitFlush . 1269

51.4.14 ESMF_UtilIOUnitGet . 1269

51.4.15 ESMF_UtilSort . 1270

VI References 1272

VII Appendices 1274

52 Appendix A: Master List of Constants 1274

52.1 ESMF_ALARMLIST . 1274

52.2 ESMF_DIM_ARB . 1274

52.3 ESMF_ATTCOPY . 1274

52.4 ESMF_ATTGETCOUNT . 1274

52.5 ESMF_ATTNEST . 1274

52.6 ESMF_ATTRECONCILE . 1274

52.7 ESMF_ATTWRITE . 1275

52.8 ESMF_CALKIND . 1275

28

52.9 ESMF_COMPTYPE . 1275

52.10ESMF_CONTEXT . 1275

52.11ESMF_COORDSYS . 1276

52.12ESMF_DATACOPY . 1276

52.13ESMF_DECOMP . 1276

52.14ESMF_DIRECTION . 1277

52.15ESMF_DISTGRIDMATCH . 1277

52.16ESMF_END . 1277

52.17ESMF_EXTRAPMETHOD . 1277

52.18ESMF_FIELDSTATUS . 1278

52.19ESMF_FILEFORMAT . 1278

52.20ESMF_FILEMODE . 1279

52.21ESMF_FILESTATUS . 1279

52.22ESMF_GEOMTYPE . 1279

52.23ESMF_GRIDCONN . 1280

52.24ESMF_GRIDITEM . 1280

52.25ESMF_GRIDMATCH . 1280

52.26ESMF_GRIDSTATUS . 1280

52.27ESMF_INDEX . 1280

52.28ESMF_IOFMT . 1280

52.29ESMF_IO_NETCDF_PRESENT . 1281

52.30ESMF_IO_PIO_PRESENT . 1281

52.31ESMF_IO_PNETCDF_PRESENT . 1281

52.32ESMF_ITEMORDER . 1281

52.33ESMF_KIND . 1282

52.34ESMF_LINETYPE . 1282

52.35ESMF_LOGERR . 1283

52.36ESMF_LOGKIND . 1283

52.37ESMF_LOGMSG . 1283

52.38ESMF_MESHELEMTYPE . 1283

52.39ESMF_MESHLOC . 1283

52.40ESMF_MESHOP . 1283

52.41ESMF_MESHSTATUS . 1284

52.42ESMF_METHOD . 1284

52.43ESMF_NORMTYPE . 1285

52.44ESMF_PIN . 1285

52.45ESMF_POLEKIND . 1285

52.46ESMF_POLEMETHOD . 1285

52.47ESMF_REDUCE . 1286

52.48ESMF_REGION . 1286

52.49ESMF_REGRIDMETHOD . 1286

52.50ESMF_REGRIDSTATUS . 1287

52.51ESMF_ROUTESYNC . 1288

52.52ESMF_SERVICEREPLY . 1289

52.53ESMF_STAGGERLOC . 1289

52.54ESMF_STARTREGION . 1289

52.55ESMF_STATEINTENT . 1289

52.56ESMF_STATEITEM . 1289

52.57ESMF_SYNC . 1290

52.58ESMF_TERMORDER . 1291

52.59ESMF_TYPEKIND . 1291

29

52.60ESMF_UNMAPPEDACTION . 1292

52.61ESMF_VERSION . 1292

52.62ESMF_VMEPOCH . 1293

52.63ESMF_XGRIDSIDE . 1293

53 Appendix B: A Brief Introduction to UML 1293

54 Appendix C: ESMF Error Return Codes 1294

55 Appendix D: Attribute Class Legacy API 1297

55.0.1 ESMF_ATTCOPY . 1298

55.0.2 ESMF_ATTGETCOUNT . 1298

55.0.3 ESMF_ATTWRITE . 1298

55.0.4 ESMF_AttributeAdd . 1298

55.0.5 ESMF_AttributeAdd . 1299

55.0.6 ESMF_AttributeCopy . 1301

55.0.7 ESMF_AttributeGet . 1302

55.0.8 ESMF_AttributeGet . 1303

55.0.9 ESMF_AttributeGet . 1305

55.0.10 ESMF_AttributeGet . 1306

55.0.11 ESMF_AttributeGet . 1308

55.0.12 ESMF_AttributeGet . 1309

55.0.13 ESMF_AttributeGet . 1310

55.0.14 ESMF_AttributeGet . 1312

55.0.15 ESMF_AttributeGet . 1313

55.0.16 ESMF_AttributeGetAttPack . 1314

55.0.17 ESMF_AttributeRemove . 1316

55.0.18 ESMF_AttributeRemove . 1317

55.0.19 ESMF_AttributeSet . 1318

55.0.20 ESMF_AttributeSet . 1320

55.0.21 ESMF_AttributeSet . 1321

55.0.22 ESMF_AttributeSet . 1323

55.0.23 ESMF_AttributeUpdate . 1324

30

Part I

ESMF Overview

31

1 What is the Earth System Modeling Framework?

The Earth System Modeling Framework (ESMF) is a suite of software tools for developing high-performance, multi-

component Earth science modeling applications. Such applications may include a few or dozens of components

representing atmospheric, oceanic, terrestrial, or other physical domains, and their constituent processes (dynamical,

chemical, biological, etc.). Often these components are developed by different groups independently, and must be

“coupled” together using software that transfers and transforms data among the components in order to form functional

simulations.

ESMF supports the development of these complex applications in a number of ways. It introduces a set of simple,

consistent component interfaces that apply to all types of components, including couplers themselves. These interfaces

expose in an obvious way the inputs and outputs of each component. It offers a variety of data structures for transferring

data between components, and libraries for regridding, time advancement, and other common modeling functions.

Finally, it provides a growing set of tools for using metadata to describe components and their input and output

fields. This capability is important because components that are self-describing can be integrated more easily into

automated workflows, model and dataset distribution and analysis portals, and other emerging “semantically enabled”

computational environments.

ESMF is not a single Earth system model into which all components must fit, and its distribution doesn’t contain

any scientific code. Rather it provides a way of structuring components so that they can be used in many differ-

ent user-written applications and contexts with minimal code modification, and so they can be coupled together in

new configurations with relative ease. The idea is to create many components across a broad community, and so to

encourage new collaborations and combinations.

ESMF offers the flexibility needed by this diverse user base. It is tested nightly on more than two dozen plat-

form/compiler combinations; can be run on one processor or thousands; supports shared and distributed memory

programming models and a hybrid model; can run components sequentially (on all the same processors) or concur-

rently (on mutually exclusive processors); and supports single executable or multiple executable modes.

ESMF’s generality and breadth of function can make it daunting for the novice user. To help users navigate the

software, we try to apply consistent names and behavior throughout and to provide many examples. The large-scale

structure of the software is straightforward. The utilities and data structures for building modeling components are

called the ESMF infrastructure. The coupling interfaces and drivers are called the superstructure. User code sits

between these two layers, making calls to the infrastructure libraries underneath and being scheduled and synchronized

by the superstructure above. The configuration resembles a sandwich, as shown in Figure 1.

ESMF users may choose to extensively rewrite their codes to take advantage of the ESMF infrastructure, or they may

decide to simply wrap their components in the ESMF superstructure in order to utilize framework coupling services.

Either way, we encourage users to contact our support team if questions arise about how to best use the software, or

how to structure their application. ESMF is more than software; it’s a group of people dedicated to realizing the vision

of a collaborative model development community that spans institutional and national bounds.

2 The ESMF Reference Manual for Fortran

ESMF has a complete set of Fortran interfaces and some C interfaces. This ESMF Reference Manual is a listing of

ESMF interfaces for Fortran.1

Interfaces are grouped by class. A class is comprised of the data and methods for a specific concept like a physical

field. Superstructure classes are listed first in this Manual, followed by infrastructure classes.

1Since the customer base for it is small, we have not yet prepared a comprehensive reference manual for C.

32

mailto:esmf_support@ucar.edu

Figure 1: Schematic of the ESMF “sandwich” architecture. The framework consists of two parts, an upper level

superstructure layer and a lower level infrastructure layer. User code is sandwiched between these two layers.

Time

ESMF Superstructure

AppDriver

Component Classes: GridComp, CplComp, State

Time

ESMF Infrastructure

Data Classes: Bundle, Field, Grid, Array

Utility Classes: Clock, LogErr, DELayout, VM, Config

Time
U
ser Code

The major classes in the ESMF superstructure are Components, which usually represent large pieces of functional-

ity such as atmosphere and ocean models, and States, which are the data structures used to transfer data between

Components. There are both data structures and utilities in the ESMF infrastructure. Data structures include multi-

dimensional Arrays, Fields that are comprised of an Array and a Grid, and collections of Arrays and Fields called

ArrayBundles and FieldBundles, respectively. There are utility libraries for data decomposition and communications,

time management, logging and error handling, and application configuration.

3 How to Contact User Support and Find Additional Information

The ESMF team can answer questions about the interfaces presented in this document. For user support, please contact

esmf_support@ucar.edu.

The website, http://www.earthsystemmodeling.org, provide more information of the ESMF project as a whole. The

website includes release notes and known bugs for each version of the framework, supported platforms, project history,

values, and metrics, related projects, the ESMF management structure, and more. The ESMF User’s Guide contains

build and installation instructions, an overview of the ESMF system and a description of how its classes interrelate

(this version of the document corresponds to the last public version of the framework). Also available on the ESMF

website is the ESMF Developer’s Guide that details ESMF procedures and conventions.

4 How to Submit Comments, Bug Reports, and Feature Requests

We welcome input on any aspect of the ESMF project. Send questions and comments to esmf_support@ucar.edu.

33

mailto:esmf_support@ucar.edu
http://www.earthsystemmodeling.org
http://www.earthsystemmodeling.org/esmf_releases/public/last/ESMF_usrdoc/
http://www.earthsystemmodeling.org/documents/dev_guide/
mailto:esmf_support@ucar.edu

5 Conventions

5.1 Typeface and Diagram Conventions

The following conventions for fonts and capitalization are used in this and other ESMF documents.

Style Meaning Example

italics documents ESMF Reference Manual

courier code fragments ESMF_TRUE

courier() ESMF method name ESMF_FieldGet()

boldface first definitions An address space is ...

boldface web links and tabs Developers tab on the website

Capitals ESMF class name DataMap

ESMF class names frequently coincide with words commonly used within the Earth system domain (field, grid, com-

ponent, array, etc.) The convention we adopt in this manual is that if a word is used in the context of an ESMF class

name it is capitalized, and if the word is used in a more general context it remains in lower case. We would write, for

example, that an ESMF Field class represents a physical field.

Diagrams are drawn using the Unified Modeling Language (UML). UML is a visual tool that can illustrate the structure

of classes, define relationships between classes, and describe sequences of actions. A reader interested in more detail

can refer to a text such as The Unified Modeling Language Reference Manual. [32]

5.2 Method Name and Argument Conventions

Method names begin with ESMF_, followed by the class name, followed by the name of the operation being performed.

Each new word is capitalized. Although Fortran interfaces are not case-sensitive, we use case to help parse multi-word

names.

For method arguments that are multi-word, the first word is lower case and subsequent words begin with upper case.

ESMF class names (including typed flags) are an exception. When multi-word class names appear in argument lists,

all letters after the first are lower case. The first letter is lower case if the class is the first word in the argument

and upper case otherwise. For example, in an argument list the DELayout class name may appear as delayout or

srcDelayout.

Most Fortran calls in the ESMF are subroutines, with any returned values passed through the interface. For the sake

of convenience, some ESMF calls are written as functions.

A typical ESMF call looks like this:

call ESMF_<ClassName><Operation>(classname, firstArgument,

secondArgument, ..., rc)

where

<ClassName> is the class name,

<Operation> is the name of the action to be performed,

classname is a variable of the derived type associated with the class,

the arg* arguments are whatever other variables are required for the operation,

and rc is a return code.

34

6 The ESMF Application Programming Interface

The ESMF Application Programming Interface (API) is based on the object-oriented programming concept of a class.

A class is a software construct that is used for grouping a set of related variables together with the subroutines and

functions that operate on them. We use classes in ESMF because they help to organize the code, and often make it

easier to maintain and understand. A particular instance of a class is called an object. For example, Field is an ESMF

class. An actual Field called temperature is an object. That is about as far as we will go into software engineering

terminology.

The Fortran interface is implemented so that the variables associated with a class are stored in a derived type. For ex-

ample, an ESMF_Field derived type stores the data array, grid information, and metadata associated with a physical

field. The derived type for each class is stored in a Fortran module, and the operations associated with each class are

defined as module procedures. We use the Fortran features of generic functions and optional arguments extensively to

simplify our interfaces.

The modules for ESMF are bundled together and can be accessed with a single USE statement, USE ESMF.

6.1 Standard Methods and Interface Rules

ESMF defines a set of standard methods and interface rules that hold across the entire API. These are:

• ESMF_<Class>Create() and ESMF_<Class>Destroy(), for creating and destroying objects

of ESMF classes that require internal memory management (- called ESMF deep classes). The

ESMF_<Class>Create() method allocates memory for the object itself and for internal variables, and ini-

tializes variables where appropriate. It is always written as a Fortran function that returns a derived type instance

of the class, i.e. an object.

• ESMF_<Class>Set() and ESMF_<Class>Get(), for setting and retrieving a particular item or flag.

In general, these methods are overloaded for all cases where the item can be manipulated as a name/value

pair. If identifying the item requires more than a name, or if the class is of sufficient complexity

that overloading in this way would result in an overwhelming number of options, we define specific

ESMF_<Class>Set<Something>() and ESMF_<Class>Get<Something>() interfaces.

• ESMF_<Class>Add(), ESMF_<Class>AddReplace(), ESMF_<Class>Remove(), and

ESMF_<Class>Replace(), for manipulating objects of ESMF container classes - such as ESMF_State

and ESMF_FieldBundle. For example, the ESMF_FieldBundleAdd() method adds another Field to an

existing FieldBundle object.

• ESMF_<Class>Print(), for printing the contents of an object to standard out. This method is mainly

intended for debugging.

• ESMF_<Class>ReadRestart() and ESMF_<Class>WriteRestart(), for saving the contents of a

class and restoring it exactly. Read and write restart methods have not yet been implemented for most ESMF

classes, so where necessary the user needs to write restart values themselves.

• ESMF_<Class>Validate(), for determining whether a class is internally consistent. For example,

ESMF_FieldValidate() validates the internal consistency of a Field object.

6.2 Deep and Shallow Classes

The ESMF contains two types of classes.

35

Deep classes require ESMF_<Class>Create() and ESMF_<Class>Destroy() calls. They involve memory

allocation, take significant time to set up (due to memory management) and should not be created in a time-critical

portion of code. Deep objects persist even after the method in which they were created has returned. Most classes

in ESMF, including GridComp, CplComp, State, Fields, FieldBundles, Arrays, ArrayBundles, Grids, and Clocks, fall

into this category.

Shallow classes do not possess ESMF_<Class>Create() and ESMF_<Class>Destroy() calls. They are

simply declared and their values set using an ESMF_<Class>Set() call. Examples of shallow classes are Time,

TimeInterval, and ArraySpec. Shallow classes do not take long to set up and can be declared and set within a time-

critical code segment. Shallow objects stop existing when the method in which they were declared has returned.

An exception to this is when a shallow object, such as a Time, is stored in a deep object such as a Clock. The Clock

then carries a copy of the Time in persistent memory. The Time is deallocated with the ESMF_ClockDestroy()

call.

See Section 9, Overall Design and Implementation Notes, for a brief discussion of deep and shallow classes from an

implementation perspective. For an in-depth look at the design and inter-language issues related to deep and shallow

classes, see the ESMF Implementation Report.

6.3 Special Methods

The following are special methods which, in one case, are required by any application using ESMF, and in the other

case must be called by any application that is using ESMF Components.

• ESMF_Initialize() and ESMF_Finalize() are required methods that must bracket the use of ESMF

within an application. They manage the resources required to run ESMF and shut it down gracefully. ESMF

does not support restarts in the same executable, i.e. ESMF_Initialize() should not be called after

ESMF_Finalize().

• ESMF_<Type>CompInitialize(), ESMF_<Type>CompRun(), and

ESMF_<Type>CompFinalize() are component methods that are used at the highest level within

ESMF. <Type> may be <Grid>, for Gridded Components such as oceans or atmospheres, or <Cpl>, for

Coupler Components that are used to connect them. The content of these methods is not part of the ESMF.

Instead the methods call into associated subroutines within user code.

6.4 The ESMF Data Hierarchy

The ESMF API is organized around a hierarchy of classes that contain model data. The operations that are performed

on model data, such as regridding, redistribution, and halo updates, are methods of these classes.

The main data classes in ESMF, in order of increasing complexity, are:

• Array An ESMF Array is a distributed, multi-dimensional array that can carry information such as its type,

kind, rank, and associated halo widths. It contains a reference to a native Fortran array.

• ArrayBundle An ArrayBundle is a collection of Arrays, not necessarily distributed in the same manner. It is

useful for performing collective data operations and communications.

• Field A Field represents a physical scalar or vector field. It contains a reference to an Array along with grid

information and metadata.

36

http://www.earthsystemmodeling.org/documents/IMPL_repdoc/

• FieldBundle A FieldBundle is a collection of Fields discretized on the same grid. The staggering of data points

may be different for different Fields within a FieldBundle. Like the ArrayBundle, it is useful for performing

collective data operations and communications.

• State A State represents the collection of data that a Component either requires to run (an Import State) or can

make available to other Components (an Export State). States may contain references to Arrays, ArrayBundles,

Fields, FieldBundles, or other States.

• Component A Component is a piece of software with a distinct function. ESMF currently recognizes two

types of Components. Components that represent a physical domain or process, such as an atmospheric model,

are called Gridded Components since they are usually discretized on an underlying grid. The Components

responsible for regridding and transferring data between Gridded Components are called Coupler Components.

Each Component is associated with an Import and an Export State. Components can be nested so that simpler

Components are contained within more complex ones.

Underlying these data classes are native language arrays. ESMF allows you to reference an existing Fortran array to

an ESMF Array or Field so that ESMF data classes can be readily introduced into existing code. You can perform

communication operations directly on Fortran arrays through the VM class, which serves as a unifying wrapper for

distributed and shared memory communication libraries.

6.5 ESMF Spatial Classes

Like the hierarchy of model data classes, ranging from the simple to the complex, ESMF is organized around a hierar-

chy of classes that represent different spaces associated with a computation. Each of these spaces can be manipulated,

in order to give the user control over how a computation is executed. For Earth system models, this hierarchy starts

with the address space associated with the computer and extends to the physical region described by the application.

The main spatial classes in ESMF, from those closest to the machine to those closest to the application, are:

• The Virtual Machine, or VM The ESMF VM is an abstraction of a parallel computing environment that en-

compasses both shared and distributed memory, single and multi-core systems. Its primary purpose is resource

allocation and management. Each Component runs in its own VM, using the resources it defines. The elements

of a VM are Persistent Execution Threads, or PETs, that are executing in Virtual Address Spaces, or VASs.

A simple case is one in which every PET is associated with a single MPI process. In this case every PET is

executing in its own private VAS. If Components are nested, the parent component allocates a subset of its PETs

to its children. The children have some flexibility, subject to the constraints of the computing environment, to

decide how they want to use the resources associated with the PETs they’ve received.

• DELayout A DELayout represents a data decomposition (we also refer to this as a distribution). Its basic

elements are Decomposition Elements, or DEs. A DELayout associates a set of DEs with the PETs in a VM.

DEs are not necessarily one-to-one with PETs. For cache blocking, or user-managed multi-threading, more DEs

than PETs may be defined. Fewer DEs than PETs may also be defined if an application requires it.

• DistGrid A DistGrid represents the index space associated with a grid. It is a useful abstraction because often

a full specification of grid coordinates is not necessary to define data communication patterns. The DistGrid

contains information about the sequence and connectivity of data points, which is sufficient information for

many operations. Arrays are defined on DistGrids.

• Array An Array defines how the index space described in the DistGrid is associated with the VAS of each PET.

This association considers the type, kind and rank of the indexed data. Fields are defined on Arrays.

• Grid A Grid is an abstraction for a logically rectangular region in physical space. It associates a coordinate

system, a set of coordinates, and a topology to a collection of grid cells. Grids in ESMF are comprised of

DistGrids plus additional coordinate information.

37

• Mesh A Mesh provides an abstraction for an unstructured grid. Coordinate information is set in nodes, which

represent vertices or corners. Together the nodes establish the boundaries of mesh elements or cells.

• LocStream A LocStream is an abstraction for a set of unstructured data points without any topological relation-

ship to each other.

• Field A Field may contain more dimensions than the Grid that it is discretized on. For example, for convenience

during integration, a user may want to define a single Field object that holds snapshots of data at multiple times.

Fields also keep track of the stagger location of a Field data point within its associated Grid cell.

6.6 ESMF Maps

In order to define how the index spaces of the spatial classes relate to each other, we require either implicit rules

(in which case the relationship between spaces is defined by default), or special Map arrays that allow the user to

specify the desired association. The form of the specification is usually that the position of the array element carries

information about the first object, and the value of the array element carries information about the second object.

ESMF includes a distGridToArrayMap, a gridToFieldMap, a distGridToGridMap, and others.

6.7 ESMF Specification Classes

It can be useful to make small packets of descriptive parameters. ESMF has one of these:

• ArraySpec, for storing the specifics, such as type/kind/rank, of an array.

6.8 ESMF Utility Classes

There are a number of utilities in ESMF that can be used independently. These are:

• Attributes, for storing metadata about Fields, FieldBundles, States, and other classes.

• TimeMgr, for calendar, time, clock and alarm functions.

• LogErr, for logging and error handling.

• Config, for creating resource files that can replace namelists as a consistent way of setting configuration param-

eters.

7 Integrating ESMF into Applications

Depending on the requirements of the application, the user may want to begin integrating ESMF in either a top-down

or bottom-up manner. In the top-down approach, tools at the superstructure level are used to help reorganize and

structure the interactions among large-scale components in the application. It is appropriate when interoperability is

a primary concern; for example, when several different versions or implementations of components are going to be

swapped in, or a particular component is going to be used in multiple contexts. Another reason for deciding on a

top-down approach is that the application contains legacy code that for some reason (e.g., intertwined functions, very

large, highly performance-tuned, resource limitations) there is little motivation to fully restructure. The superstructure

can usually be incorporated into such applications in a way that is non-intrusive.

38

In the bottom-up approach, the user selects desired utilities (data communications, calendar management, performance

profiling, logging and error handling, etc.) from the ESMF infrastructure and either writes new code using them,

introduces them into existing code, or replaces the functionality in existing code with them. This makes sense when

maximizing code reuse and minimizing maintenance costs is a goal. There may be a specific need for functionality or

the component writer may be starting from scratch. The calendar management utility is a popular place to start.

7.1 Using the ESMF Superstructure

The following is a typical set of steps involved in adopting the ESMF superstructure. The first two tasks, which occur

before an ESMF call is ever made, have the potential to be the most difficult and time-consuming. They are the work

of splitting an application into components and ensuring that each component has well-defined stages of execution.

ESMF aside, this sort of code structure helps to promote application clarity and maintainability, and the effort put into

it is likely to be a good investment.

1. Decide how to organize the application as discrete Gridded and Coupler Components. This might involve

reorganizing code so that individual components are cleanly separated and their interactions consist of a minimal

number of data exchanges.

2. Divide the code for each component into initialize, run, and finalize methods. These methods can be multi-phase,

e.g., init_1, init_2.

3. Pack any data that will be transferred between components into ESMF Import and Export State data structures.

This is done by first wrapping model data in either ESMF Arrays or Fields. Arrays are simpler to create and use

than Fields, but carry less information and have a more limited range of operations. These Arrays and Fields

are then added to Import and Export States. They may be packed into ArrayBundles or FieldBundles first, for

more efficient communications. Metadata describing the model data can also be added. At the end of this step,

the data to be transferred between components will be in a compact and largely self-describing form.

4. Pack time information into ESMF time management data structures.

5. Using code templates provided in the ESMF distribution, create ESMF Gridded and Coupler Components to

represent each component in the user code.

6. Write a set services routine that sets ESMF entry points for each user component’s initialize, run, and finalize

methods.

7. Run the application using an ESMF Application Driver.

8 Overall Rules and Behavior

8.1 Return Code Handling

All ESMF methods pass a return code back to the caller via the rc argument. If no errors are encountered during the

method execution, a value of ESMF_SUCCESS is returned. Otherwise one of the predefined error codes is returned to

the caller. See the appendix, section 54, for a full list of the ESMF error return codes.

Any code calling an ESMF method must check the return code. If rc is not equal to ESMF_SUCCESS, the calling

code is expected to break out of its execution and pass the rc to the next level up. All ESMF errors are to be handled

as fatal, i.e. the calling code must bail-on-all-errors.

39

ESMF provides a number of methods, described under section 47, that make implementation of the bail-on-all-errors

stategy more convenient. Consistent use of these methods will ensure that a full back trace is generated in the ESMF

log output whenever an error condition is triggered.

Note that in ESMF requesting not present information, e.g. via a Get() method, will trigger an error condition.

Combined with the bail-on-all-errors strategy this has the advantage of producing an error trace pointing to the earliest

location in the code that attempts to access unavailable information. In cases where the calling side is able to handle

the presence or absence of certain pieces of of information, the code first must query for the resepctive isPresent

argument. If this argument comes back as .true. it is safe to query for the actual information.

8.2 Local and Global Views and Associated Conventions

ESMF data objects such as Fields are distributed over DEs, with each DE getting a portion of the data. Depending on

the task, a local or global view of the object may be preferable. In a local view, data indices start with the first element

on the DE and end with the last element on the same DE. In a global view, there is an assumed or specified order to the

set of DEs over which the object is distributed. Data indices start with the first element on the first DE, and continue

across all the elements in the sequence of DEs. The last data index represents the number of elements in the entire

object. The DistGrid provides the mapping between local and global data indices.

The convention in ESMF is that entities with a global view have no prefix. Entities with a DE-local (and in some

cases, PET-local) view have the prefix “local.”

Just as data is distributed over DEs, DEs themselves can be distributed over PETs. This is an advanced feature for

users who would like to create multiple local chunks of data, for algorithmic or performance reasons. Local DEs are

those DEs that are located on the local PET. Local DE labeling always starts at 0 and goes to localDeCount-1, where

localDeCount is the number of DEs on the local PET. Global DE numbers also start at 0 and go to deCount-1. The

DELayout class provides the mapping between local and global DE numbers.

8.3 Allocation Rules

The basic rule of allocation and deallocation for the ESMF is: whoever allocates it is responsible for deallocating it.

ESMF methods that allocate their own space for data will deallocate that space when the object is de-

stroyed. Methods which accept a user-allocated buffer, for example ESMF_FieldCreate() with the

ESMF_DATACOPY_REFERENCE flag, will not deallocate that buffer at the time the object is destroyed. The user

must deallocate the buffer when all use of it is complete.

Classes such as Fields, FieldBundles, and States may have Arrays, Fields, Grids and FieldBundles created externally

and associated with them. These associated items are not destroyed along with the rest of the data object since it is

possible for the items to be added to more than one data object at a time (e.g. the same Grid could be part of many

Fields). It is the user’s responsibility to delete these items when the last use of them is done.

8.4 Assignment, Equality, Copying and Comparing Objects

The equal sign assignment has not been overloaded in ESMF, thus resulting in the standard Fortran behavior. This

behavior has been documented as the first entry in the API documentation section for each ESMF class. For deep

ESMF objects the assignment results in setting an alias the the same ESMF object in memory. For shallow ESMF

objects the assignment is essentially a equivalent to a copy of the object. For deep classes the equality operators have

been overloaded to test for the alias condition as a counter part to the assignment behavior. This and the not equal

operator are documented following the assignment in the class API documentation sections.

40

Deep object copies are implemented as a special variant of the ESMF_<Class>Create() methods. It

takes an existing deep object as one of the required arguments. At this point not all deep classes have

ESMF_<Class>Create() methods that allow object copy.

Due to the complexity of deep classes there are many aspects when comparing two objects of the same class. ESMF

provide ESMF_<Class>Match() methods, which are functions that return a class specific match flag. At this point

not all deep classes have ESMF_<Class>Match() methods that allow deep object comparison.

8.5 Attributes

Attributes are (name, value) pairs, where the name is a character string and the value can be either a single value or list

of integer, real, double precision, logical, or character values. Attributes can be associated with

Fields, FieldBundles, and States. Mixed types are not allowed in a single attribute, and all attribute names must be

unique within a single object. Attributes are set by name, and can be retrieved either directly by name or by querying

for a count of attributes and retrieving names and values by index number.

8.6 Constants

Named constants are used throughout ESMF to specify the values of many arguments with multiple well defined

values in a consistent way. These constants are defined by a derived type that follows this pattern:

ESMF_<CONSTANT_NAME>_Flag

The values of the constant are then specified by this pattern:

ESMF_<CONSTANT_NAME>_<VALUE1>

ESMF_<CONSTANT_NAME>_<VALUE2>

ESMF_<CONSTANT_NAME>_<VALUE3>

...

A master list of all available constants can be found in section 52.

9 Overall Design and Implementation Notes

1. Deep and shallow classes. The deep and shallow classes described in Section 6.2 differ in how and where they

are allocated within a multi-language implementation environment. We distinguish between the implementation

language, which is the language a method is written in, and the calling language, which is the language that the

user application is written in. Deep classes are allocated off the process heap by the implementation language.

Shallow classes are allocated off the stack by the calling language.

2. Base class. All ESMF classes are built upon a Base class, which holds a small set of system-wide capabilities.

10 Overall Restrictions and Future Work

1. 32-bit integer limitations. In general, Fortran array bounds should be limited to 2**31-1 elements or less.

41

This is due to the Fortran-95 limitation of returning default sized (e.g., 32 bit) integers for array bound and size

inquiries, and consequent ESMF use of default sized integers for holding these values.

42

Part II

Command Line Tools

The main product delivered by ESMF is the ESMF library that allows application developers to write programs based

on the ESMF API. In addition to the programming library, ESMF distributions come with a small set of command line

tools (CLT) that are of general interest to the community. These CLTs utilize the ESMF library to implement features

such as printing general information about the ESMF installation, or generating regrid weight files. The provided

ESMF CLTs are intended to be used as standard command line tools.

The bundled ESMF CLTs are built and installed during the usual ESMF installation process, which is described in

detail in the ESMF User’s Guide section "Building and Installing the ESMF". After installation, the CLTs will be

located in the ESMF_APPSDIR directory, which can be found as a Makefile variable in the esmf.mk file. The

esmf.mk file can be found in the ESMF_INSTALL_LIBDIR directory after a successful installation. The ESMF

User’s Guide discusses the esmf.mkmechanism to access the bundled CLTs in more detail in section "Using Bundled

ESMF Command Line Tools".

The following sections provide in-depth documentation of the bundled ESMF CLTs. In addition, each tool supports

the standard --help command line argument, providing a brief description of how to invoke the program.

11 ESMF_PrintInfo

11.1 Description

The ESMF_PrintInfo command line tool that prints basic information about the ESMF installation to stdout.

The command line tool usage is as follows:

ESMF_PrintInfo [--help]

where

--help prints a brief usage message

‘

12 ESMF_RegridWeightGen

12.1 Description

This section describes the offline regrid weight generation application provided by ESMF (for a description of ESMF

regridding in general see Section 24.2). Regridding, also called remapping or interpolation, is the process of changing

the grid that underlies data values while preserving qualities of the original data. Different kinds of transformations are

appropriate for different problems. Regridding may be needed when communicating data between Earth system model

components such as land and atmosphere, or between different data sets to support operations such as visualization.

43

Regridding can be broken into two stages. The first stage is generation of an interpolation weight matrix that describes

how points in the source grid contribute to points in the destination grid. The second stage is the multiplication

of values on the source grid by the interpolation weight matrix to produce values on the destination grid. This is

implemented as a parallel sparse matrix multiplication.

There are two options for accessing ESMF regridding functionality: integrated and offline. Integrated regridding is

a process whereby interpolation weights are generated via subroutine calls during the execution of the user’s code.

The integrated regridding can also perform the parallel sparse matrix multiplication. In other words, ESMF integrated

regridding allows a user to perform the whole process of interpolation within their code. For a further description

of ESMF integrated regridding please see Section 26.3.25. In contrast to integrated regridding, offline regridding is

a process whereby interpolation weights are generated by a separate ESMF command line tool, not within the user

code. The ESMF offline regridding tool also only generates the interpolation matrix, the user is responsible for reading

in this matrix and doing the actual interpolation (multiplication by the sparse matrix) in their code. The rest of this

section further describes ESMF offline regridding.

For a discussion of installing and accessing ESMF command line tools such as this one please see the beginning of

this part of the reference manual (Section II) or for the quickest approach to just building and accessing the command

line tools please refer to the "Building and using bundled ESMF Command Line Tools" Section in the ESMF User’s

Guide.

This application requires the NetCDF library to read the grid files and to write out the weight files in NetCDF format.

To compile ESMF with the NetCDF library, please refer to the "Third Party Libraries" Section in the ESMF User’s

Guide for more information.

As described above, this tool reads in two grid files and outputs weights for interpolation between the two grids.

The input and output files are all in NetCDF format. The grid files can be defined in five different formats: the

SCRIP format 12.8.1 as is used as an input to SCRIP [13], the CF convension single-tile grid file 12.8.3 following the

CF metadata conventions, the GRIDSPEC Mosaic file 12.8.5 following the proposed GRIDSPEC standard, the ESMF

unstructured grid format 12.8.2 or the proposed CF unstructured grid data model (UGRID) 12.8.4. GRIDSPEC is

a proposed CF extension for the annotation of complex Earth system grids. In the latest ESMF library, we added

support for multi-tile GRIDSPEC Mosaic file with non-overlapping tiles. For UGRID, we support the 2D flexible

mesh topology with mixed triangles and quadrilaterals and fully 3D unstructured mesh topology with hexahedrons

and tetrahedrons.

In the latest ESMF implementation, the ESMF_RegridWeightGen command line toll can detect the type of the

input grid files automatically. The user doesn’t need to provide the source and destination grid file type arguments

anymore. The following arguments -t, -src_type, -dst_type, -src_meshname, and -dst_meshname are

no longer needed. If provided, the application will simply ingore them.

This command line tool can do regrid weight generation from a global or regional source grid to a global or regional

destination grid. As is true with many global models, this application currently assumes the latitude and longitude

values refer to positions on a perfect sphere, as opposed to a more complex and accurate representation of the Earth’s

true shape such as would be used in a GIS system. (ESMF’s current user base doesn’t require this level of detail in

representing the Earth’s shape, but it could be added in the future if necessary.)

The interpolation weights generated by this application are output to a NetCDF file (specified by the "-w" or

"--weight" keywords). Two type of weight files are supported: the SCRIP format is the same as that generated

by SCRIP, see Section 12.9 for a description of the format; and a simple weight file containing only the weights

and the source and destination grid indices (In ESMF term, these are the factorList and factorIndexList

generated by the ESMF weight calculation function ESMF_FieldRegridStore(). Note that the sequence of the

weights in the file can vary with the number of processors used to run the application. This means that two weight

files generated by using different numbers of processors can contain exactly the same interpolation matrix, but can

appear different in a direct line by line comparison (such as would be done by ncdiff). The interpolation weights can

be generated with the bilinear, patch, nearest neighbor, first-order conservative, or second-order conservative methods

44

http://cfconventions.org
http://extranet.gfdl.noaa.gov/~vb/gridstd/gridstd.html

described in Section 12.3.

Internally this application uses the ESMF public API to generate the interpolation weights. If a source or des-

tination grid is a single tile logically rectangular grid, then ESMF_GridCreate() 31.3.8 is used to create

an ESMF_Grid object. The cell center coordinates of the input grid are put into the center stagger location

(ESMF_STAGGERLOC_CENTER). In addition, the corner coordinates are also put into the corner stagger loca-

tion (ESMF_STAGGERLOC_CORNER) for conservative regridding. If a grid contains multiple logically rectangular

tiles connected with each other by edges, such as a Cubed Sphere grid, the grid can be represented as a multi-tile

ESMF_Grid object created using ESMF_GridCreateMosaic() 31.3.12. Such a grid is stored in the GRIDSPEC

Mosaic and tile file format. 12.8.5 The method ESMF_MeshCreate() 33.3.8 is used to create an ESMF_Mesh

object, if the source or destination grid is an unstructured grid. When making this call, the flag convert3D is set

to TRUE to convert the 2D coordinates into 3D Cartesian coordinates. Internally ESMF_FieldRegridStore() is

used to generate the weight table and indices table representing the interpolation matrix.

12.2 Regridding Options

The offline regrid weight generation application supports most of the options available in the rest of the ESMF regrid

system. The following is a description of these options as relevant to the application. For a more in-depth description

see Section 24.2.

12.2.1 Poles

The regridding occurs in 3D to avoid problems with periodicity and with the pole singularity. This application supports

four options for handling the pole region (i.e. the empty area above the top row of the source grid or below the bottom

row of the source grid). Note that all of these pole options currently only work for logically rectangular grids (i.e.

SCRIP format grids with grid_rank=2 or GRIDSPEC single-tile format grids). The first option is to leave the pole

region empty ("-p none"), in this case if a destination point lies above or below the top row of the source grid, it

will fail to map, yielding an error (unless "-i" is specified). With the next two options, the pole region is handled by

constructing an artificial pole in the center of the top and bottom row of grid points and then filling in the region from

this pole to the edges of the source grid with triangles. The pole is located at the average of the position of the points

surrounding it, but moved outward to be at the same radius as the rest of the points in the grid. The difference between

these two artificial pole options is what value is used at the pole. The default pole option ("-p all") sets the value at

the pole to be the average of the values of all of the grid points surrounding the pole. For the other option ("-p N"),

the user chooses a number N from 1 to the number of source grid points around the pole. For each destination point,

the value at the pole is then the average of the N source points surrounding that destination point. For the last pole

option ("-p teeth") no artificial pole is constructed, instead the pole region is covered by connecting points across the

top and bottom row of the source Grid into triangles. As this makes the top and bottom of the source sphere flat, for

a big enough difference between the size of the source and destination pole regions, this can still result in unmapped

destination points. Only pole option "none" is currently supported with the conservative interpolation methods (e.g.

"-m conserve") and with the nearest neighbor interpolation methods ("-m nearestdtos" and "-m neareststod").

12.2.2 Masking

Masking is supported for both the logically rectangular grids and the unstructured grids. If the grid file is in the

SCRIP format, the variable "grid_imask" is used as the mask. If the value is set to 0 for a grid point, then that point

is considered masked out and won’t be used in the weights generated by the application. If the grid file is in the

ESMF format, the variable "element Mask" is used as the mask. For a grid defined in the GRIDSPEC single-tile or

multi-tile grid or in the UGRID convention, there is no mask variable defined. However, a GRIDSPEC single-tile file

or a UGRID file may contain both the grid definition and the data. The grid mask is usually constructed using the

45

missing values defined in the data variable. The regridding application provides the argument "--src_missingvalue"

or "--dst_missingvalue" for users to specify the variable name from where the mask can be constructed.

12.2.3 Extrapolation

The ESMF_RegridWeightGen application supports a number of kinds of extrapolation to fill in points not mapped

by the regrid method. Please see the sections starting with section 24.2.11 for a description of these methods.

When using the application an extrapolation method is specified by using the "--extrap_method" flag. For the

inverse distance weighted average method (nearestidavg), the number of source locations is specified using the

"--extrap_num_src_pnts" flag, and the distance exponent is specified using the "--extrap_dist_exponent" flag. For

the creep fill method (creep), the number of creep levels is specified using the "--extrap_num_levels" flag.

12.2.4 Unmapped destination points

If a destination point can’t be mapped, then the default behavior of the application is to stop with an error. By speci-

fying "-i" or the equivalent "--ignore_unmapped " the user can cause the application to ignore unmapped destination

points. In this case, the output matrix won’t contain entries for the unmapped destination points. Note that the un-

mapped point detection doesn’t currently work for nearest destination to source method ("-m nearestdtos"), so when

using that method it is as if “-i” is always on.

12.2.5 Line type

Another variation in the regridding supported with spherical grids is line type. This is controlled by the "--line_type"

or “-l” flag. This switch allows the user to select the path of the line which connects two points on a sphere surface.

This in turn controls the path along which distances are calculated and the shape of the edges that make up a cell. Both

of these quantities can influence how interpolation weights are calculated, for example in bilinear interpolation the

distances are used to calculate the weights and the cell edges are used to determine to which source cell a destination

point should be mapped.

ESMF currently supports two line types: “cartesian” and “greatcircle”. The “cartesian” option specifies that the line

between two points follows a straight path through the 3D Cartesian space in which the sphere is embedded. Distances

are measured along this 3D Cartesian line. Under this option cells are approximated by planes in 3D space, and their

boundaries are 3D Cartesian lines between their corner points. The “greatcircle” option specifies that the line between

two points follows a great circle path along the sphere surface. (A great circle is the shortest path between two points

on a sphere.) Distances are measured along the great circle path. Under this option cells are on the sphere surface, and

their boundaries are great circle paths between their corner points.

12.3 Regridding Methods

This regridding application can be used to generate bilinear, patch, nearest neighbor, first-order conservative, or

second-order conservative interpolation weights. The following is a description of these interpolation methods as

relevant to the offline weight generation application. For a more in-depth description see Section 24.2.

12.3.1 Bilinear

The default interpolation method for the weight generation application is bilinear. The algorithm used by this applica-

tion to generate the bilinear weights is the standard one found in many textbooks. Each destination point is mapped

46

to a location in the source Mesh, the position of the destination point relative to the source points surrounding it

is used to calculate the interpolation weights. A restriction on bilinear interpolation is that ESMF doesn’t support

self-intersecting cells (e.g. a cell twisted into a bow tie) in the source grid.

12.3.2 Patch

This application can also be used to generate patch interpolation weights. Patch interpolation is the ESMF version

of a technique called "patch recovery" commonly used in finite element modeling [28] [24]. It typically results in

better approximations to values and derivatives when compared to bilinear interpolation. Patch interpolation works by

constructing multiple polynomial patches to represent the data in a source element. For 2D grids, these polynomials

are currently 2nd degree 2D polynomials. The interpolated value at the destination point is the weighted average of

the values of the patches at that point.

The patch interpolation process works as follows. For each source element containing a destination point we construct

a patch for each corner node that makes up the element (e.g. 4 patches for quadrilateral elements, 3 for triangular

elements). To construct a polynomial patch for a corner node we gather all the elements around that node. (Note that

this means that the patch interpolation weights depends on the source element’s nodes, and the nodes of all elements

neighboring the source element.) We then use a least squares fitting algorithm to choose the set of coefficients for the

polynomial that produces the best fit for the data in the elements. This polynomial will give a value at the destination

point that fits the source data in the elements surrounding the corner node. We then repeat this process for each

corner node of the source element generating a new polynomial for each set of elements. To calculate the value at the

destination point we do a weighted average of the values of each of the corner polynomials evaluated at that point. The

weight for a corner’s polynomial is the bilinear weight of the destination point with regard to that corner.

The patch method has a larger stencil than the bilinear, for this reason the patch weight matrix can be correspondingly

larger than the bilinear matrix (e.g. for a quadrilateral grid the patch matrix is around 4x the size of the bilinear matrix).

This can be an issue when performing a regrid weight generation operation close to the memory limit on a machine.

The patch method does not guarantee that after regridding the range of values in the destination field is within the

range of values in the source field. For example, if the mininum value in the source field is 0.0, then it’s possible that

after regridding with the patch method, the destination field will contain values less than 0.0.

This method currently doesn’t support self-intersecting cells (e.g. a cell twisted into a bow tie) in the source grid.

12.3.3 Nearest neighbor

The nearest neighbor interpolation options work by associating a point in one set with the closest point in another set.

If two points are equally close then the point with the smallest index is arbitrarily used (i.e. the point with that would

have the smallest index in the weight matrix). There are two versions of this type of interpolation available in the

regrid weight generation application. One of these is the nearest source to destination method ("-m neareststod"). In

this method each destination point is mapped to the closest source point. The other of these is the nearest destination

to source method ("-m nearestdtos"). In this method each source point is mapped to the closest destination point. Note

that with this method the unmapped destination point detection doesn’t work, so no error will be returned even if there

are destination points which don’t map to any source point.

12.3.4 First-order conservative

The main purpose of this method is to preserve the integral of the field across the interpolation from source to desti-

nation. (For a more in-depth description of what this preservation of the integral (i.e. conservation) means please see

section 12.4.) In this method the value across each source cell is treated as a constant, so it will typically have a larger

47

interpolation error than the bilinear or patch methods. The first-order method used here is similar to that described in

the following paper [31].

By default (or if "--norm_type dstarea"), the weight wij for a particular source cell i and destination cell j are

calculated as wij = fij ∗ Asi/Adj . In this equation fij is the fraction of the source cell i contributing to destination

cell j, and Asi and Adj are the areas of the source and destination cells. If "--norm_type fracarea", then the weights

are further divided by the destination fraction. In other words, in that case wij = fij ∗ Asi/(Adj ∗Dj) where Dj is

fraction of the destination cell that intersects the unmasked source grid.

To see a description of how the different normalization options affect the values and integrals produced by the conser-

vative methods see section 12.5. For a grid on a sphere this method uses great circle cells, for a description of potential

problems with these see 24.2.9.

12.3.5 Second-order conservative

Like the first-order conservative method, this method’s main purpose is to preserve the integral of the field across the

interpolation from source to destination. (For a more in-depth description of what this preservation of the integral (i.e.

conservation) means please see section 12.4.) The difference between the first and second-order conservative methods

is that the second-order takes the source gradient into account, so it yields a smoother destination field that typically

better matches the source field. This difference between the first and second-order methods is particularly apparent

when going from a coarse source grid to a finer destination grid. Another difference is that the second-order method

does not guarantee that after regridding the range of values in the destination field is within the range of values in the

source field. For example, if the mininum value in the source field is 0.0, then it’s possible that after regridding with

the second-order method, the destination field will contain values less than 0.0. The implementation of this method is

based on the one described in this paper [19].

The weights for second-order are calculated in a similar manner to first-order 12.3.4 with additional weights that take

into account the gradient across the source cell.

To see a description of how the different normalization options affect the values and integrals produced by the conser-

vative methods see section 12.5. For a grid on a sphere this method uses great circle cells, for a description of potential

problems with these see 24.2.9.

12.4 Conservation

Conservation means that the following equation will hold:
∑all−source−cells

(Vsi ∗ A′

si) =
∑all−destination−cells

(Vdj ∗ A′

dj), where V is the variable being regridded and A is the area of a cell. The

subscripts s and d refer to source and destination values, and the i and j are the source and destination grid cell indices

(flattening the arrays to 1 dimension).

There are a couple of options for how the areas (A) in the proceding equation can be calculated. By default, ESMF

calculates the areas. For a grid on a sphere, areas are calculated by connecting the corner coordinates of each grid

cell (obtained from the grid file) with great circles. For a Cartesian grid, areas are calculated in the typcial manner for

2D polygons. If the user specifies the user area’s option ("--user_areas"), then weights will be adjusted so that the

equation above will hold for the areas provided in the grid files. In either case, the areas output to the weight file are

the ones for which the weights have been adjusted to conserve.

48

12.5 The effect of normalization options on integrals and values produced by conservative

methods

It is important to note that by default (i.e. using destination area normalization) conservative regridding doesn’t

normalize the interpolation weights by the destination fraction. This means that for a destination grid which only

partially overlaps the source grid the destination field which is output from the regrid operation should be divided by

the corresponding destination fraction to yield the true interpolated values for cells which are only partially covered

by the source grid. The fraction also needs to be included when computing the total source and destination integrals.

To include the fraction in the conservative weights, the user can specify the fraction area normalization type. This can

be done by specifying "--norm_type fracarea” on the command line.

For weights generated using destination area normalization (either by not specifying any normalization type or by

specifying "--norm_type dstarea"), the following pseudo-code shows how to adjust a destination field (dst_field)

by the destination fraction (dst_frac) called frac_b in the weight file:

for each destination element i

if (dst_frac(i) not equal to 0.0) then

dst_field(i)=dst_field(i)/dst_frac(i)

end if

end for

For weights generated using destination area normalization (either by not specifying any normalization type or by

specifying "--norm_type dstarea"), the following pseudo-code shows how to compute the total destination integral

(dst_total) given the destination field values (dst_field) resulting from the sparse matrix multiplication of

the weights in the weight file by the source field, the destination area (dst_area) called area_b in the weight

file, and the destination fraction (dst_frac) called frac_b in the weight file. As in the previous paragraph, it also

shows how to adjust the destination field (dst_field) resulting from the sparse matrix multiplication by the fraction

(dst_frac) called frac_b in the weight file:

dst_total=0.0

for each destination element i

if (dst_frac(i) not equal to 0.0) then

dst_total=dst_total+dst_field(i)*dst_area(i)

dst_field(i)=dst_field(i)/dst_frac(i)

! If mass computed here after dst_field adjust, would need to be:

! dst_total=dst_total+dst_field(i)*dst_area(i)*dst_frac(i)

end if

end for

For weights generated using fraction area normalization (set by specifying "--norm_type fracarea"), no adjustment of

the destination field (dst_field) by the destination fraction is necessary. The following pseudo-code shows how to

compute the total destination integral (dst_total) given the destination field values (dst_field) resulting from

the sparse matrix multiplication of the weights in the weight file by the source field, the destination area (dst_area)

called area_b in the weight file, and the destination fraction (dst_frac) called frac_b in the weight file:

dst_total=0.0

for each destination element i

dst_total=dst_total+dst_field(i)*dst_area(i)*dst_frac(i)

end for

49

For either normalization type, the following pseudo-code shows how to compute the total source integral

(src_total) given the source field values (src_field), the source area (src_area) called area_a in the

weight file, and the source fraction (src_frac) called frac_a in the weight file:

src_total=0.0

for each source element i

src_total=src_total+src_field(i)*src_area(i)*src_frac(i)

end for

12.6 Usage

The command line arguments are all keyword based. Both the long keyword prefixed with ’--’ or the one

character short keyword prefixed with ’-’ are supported. The format to run the application is as follows:

ESMF_RegridWeightGen

--source|-s src_grid_filename

--destination|-d dst_grid_filename

--weight|-w out_weight_file

[--method|-m bilinear|patch|nearestdtos|neareststod|conserve|conserve2nd]

[--pole|-p none|all|teeth|1|2|..]

[--line_type|-l cartesian|greatcircle]

[--norm_type dstarea|fracarea]

[--extrap_method none|neareststod|nearestidavg|nearestd|creep|creepnrstd]

[--extrap_num_src_pnts <N>]

[--extrap_dist_exponent <P>]

[--extrap_num_levels <L>]

[--ignore_unmapped|-i]

[--ignore_degenerate]

[-r]

[--src_regional]

[--dst_regional]

[--64bit_offset]

[--netcdf4]

[--src_missingvalue var_name]

[--dst_missingvalue var_name]

[--src_coordinates lon_name,lat_name]

[--dst_coordinates lon_name,var_name]

[--tilefile_path filepath]

[--src_loc center|corner]

[--dst_loc center|corner]

[--user_areas]

[--weight_only]

[--check]

[--no_log]

[--help]

[--version]

[-V]

where:

50

--source or -s - a required argument specifying the source grid

file name

--destination or -d - a required argument specifying the destination

grid file name

--weight or -w - a required argument specifying the output regridding

weight file name

--method or -m - an optional argument specifying which interpolation

method is used. The value can be one of the following:

bilinear - for bilinear interpolation, also the

default method if not specified.

patch - for patch recovery interpolation

neareststod - for nearest source to destination interpolation

nearestdtos - for nearest destination to source interpolation

conserve - for first-order conservative interpolation

conserve2nd - for second-order conservative interpolation

--pole or -p - an optional argument indicating how to extrapolate

in the pole region.

The value can be one of the following:

none - No pole, the source grid ends at the top

(and bottom) row of nodes specified in

<source grid>.

all - Construct an artificial pole placed in the

center of the top (or bottom) row of nodes,

but projected onto the sphere formed by the

rest of the grid. The value at this pole is

the average of all the pole values. This

is the default option.

teeth - No new pole point is constructed, instead

the holes at the poles are filled by

constructing triangles across the top and

bottom row of the source Grid. This can be

useful because no averaging occurs, however,

because the top and bottom of the sphere are

now flat, for a big enough mismatch between

the size of the destination and source pole

regions, some destination points may still

not be able to be mapped to the source Grid.

<N> - Construct an artificial pole placed in the

center of the top (or bottom) row of nodes,

but projected onto the sphere formed by the

rest of the grid. The value at this pole is

the average of the N source nodes next to

the pole and surrounding the destination

51

point (i.e. the value may differ for each

destination point. Here N ranges from 1 to

the number of nodes around the pole.

--line_type

or

-l - an optional argument indicating the type of path

lines (e.g. cell edges) follow on a spherical

surface. The default value depends on the regrid

method. For non-conservative methods the default is

cartesian. For conservative methods the default is

greatcircle.

--norm_type - an optional argument indicating the type of normal-

ization to do when generating conservative weights.

The default value is dstarea.

--extrap_method - an optional argument specifying which extrapolation

method is used to handle unmapped destination locations.

The value can be one of the following:

none - no extrapolation method should be used.

This is the default.

neareststod - nearest source to destination. Each

unmapped destination location is mapped

to the closest source location. This

extrapolation method is not supported with

conservative regrid methods (e.g. conserve).

nearestidavg - inverse distance weighted average.

The value of each unmapped destination location

is the weighted average of the closest N

source locations. The weight is the reciprocal

of the distance of the source from the destination

raised to a power P. All the weights contributing

to one destination point are normalized so that

they sum to 1.0. The user can choose N and P by

using --extrap_num_src_pnts and

--extrap_dist_exponent, but defaults are

also provided. This extrapolation method is not

supported with conservative regrid methods

(e.g. conserve).

nearestd - nearest mapped destination to

unmapped destination. Each

unmapped destination location is mapped

to the closest mapped destination location. This

extrapolation method is not supported with

conservative regrid methods (e.g. conserve).

52

creep - creep fill.

Here unmapped destination points are filled by

moving values from mapped locations to neighboring

unmapped locations. The value filled into a

new location is the average of its already filled

neighbors’ values. This process is repeated for

the number of levels indicated by the

--extrap_num_levels flag. This extrapolation

method is not supported with conservative

regrid methods (e.g. conserve).

creepnrstd - creep fill with nearest destination.

Here unmapped destination points are filled by

first doing a creep fill, and then filling the

remaining unmapped points by using

the nearest destination method (both of these

methods are described in the entries above).

This extrapolation method is not supported

with conservative regrid methods (e.g. conserve).

--extrap_num_src_pnts - an optional argument specifying how many source points

should be used when the extrapolation method is

nearestidavg. If not specified, the default is 8.

--extrap_dist_exponent - an optional argument specifying the exponent that

the distance should be raised to when the

extrapolation method is nearestidavg. If not specified,

the default is 2.0.

--extrap_num_levels - an optional argument specifying how many levels should

be filled for level based extrapolation methods (e.g. creep).

--ignore_unmapped

or

-i - ignore unmapped destination points. If not specified

the default is to stop with an error if an unmapped

point is found.

--ignore_degenerate - ignore degenerate cells in the input grids. If not specified

the default is to stop with an error if an degenerate

cell is found.

-r - an optional argument specifying that the source and

destination grids are regional grids. If the argument

is not given, the grids are assumed to be global.

--src_regional - an optional argument specifying that the source is

a regional grid and the destination is a global grid.

--dst_regional - an optional argument specifying that the destination

53

is a regional grid and the source is a global grid.

--64bit_offset - an optional argument specifying that the weight file

will be created in the NetCDF 64-bit offset format

to allow variables larger than 2GB. Note the 64-bit

offset format is not supported in the NetCDF version

earlier than 3.6.0. An error message will be generated

if this flag is specified while the application is

linked with a NetCDF library earlier than 3.6.0.

--netcdf4 - an optional argument specifying that the output weight

will be created in the NetCDF4 format. This option

only works with NetCDF library version 4.1 and above

that was compiled with the NetCDF4 file format enabled

(with HDF5 compression). An error message will be

generated if these conditions are not met.

--src_missingvalue - an optional argument that defines the variable name

in the source grid file if the file type is either CF Convension

single-tile or UGRID. The regridder will generate a mask using

the missing values of the data variable. The missing

value is defined using an attribute called "_FillValue"

or "missing_value".

--dst_missingvalue - an optional argument that defines the variable name

in the destination grid file if the file type is

CF Convension single-tile or UGRID. The regridder will generate a

the missing values of the data variable. The missing

value is defined using an attribute called "_FillValue"

or "missing_value"

--src_coordinates - an optional argument that defines the longitude and

latitude variable names in the source grid file if

the file type is CF Convension single-tile. The variable names are

separated by comma. This argument is required in case

there are multiple sets of coordinate variables defined

in the file. Without this argument, the offline regrid

application will terminate with an error message when

multiple coordinate variables are found in the file.

--dst_coordinates - an optional argument that defines the longitude and

latitude variable names in the destination grid file

if the file type is CF Convension single-tile. The variable names

separated by comma. This argument is required in case

there are multiple sets of coordinate variables defined

in the file. Without this argument, the offline regrid

application will terminate with an error message when

multiple coordinate variables are found in the file.

--tilefile_path - the alternative file path for the tile files when either the source

or the destination grid is a GRIDSPEC Mosaic grid. The path can

be either relative or absolute. If it is relative, it is relative

54

to the working directory. When specified, the gridlocation variable

defined in the Mosaic file will be ignored.

--src_loc - an optional argument indicating which part of a source

grid cell to use for regridding. Currently, this flag is

only required for non-conservative regridding when the

source grid is an unstructured grid in ESMF or UGRID format.

For all other cases, only the center location is supported.

The value can be one of the following:

center - Regrid using the center location of each grid cell.

corner - Regrid using the corner location of each grid cell.

--dst_loc - an optional argument indicating which part of a destination

grid cell to use for regridding. Currently, this flag is

only required for non-conservative regridding when the

destination grid is an unstructured grid in ESMF or UGRID format.

For all other cases, only the center location is supported.

The value can be one of the following:

center - Regrid using the center location of each grid cell.

corner - Regrid using the corner location of each grid cell.

--user_areas - an optional argument specifying that the conservation

is adjusted to hold for the user areas provided in

the grid files. If not specified, then the

conservation will hold for the ESMF calculated

(great circle) areas.

Whichever areas the conservation holds for are output

to the weight file.

--weight_only - an optional argument specifying that the output weight file only

contains the weights and the source and destination grid’s indices.

--check - Check that the generated weights produce reasonable

regridded fields. This is done by calling ESMF_Regrid()

on an analytic source field using the weights generated

by this application. The mean relative error between

the destination and analytic field is computed, as well

as the relative error between the mass of the source and

destination fields in the conservative case.

--no_log - Turn off the ESMF Log files. By default, ESMF creates

multiple log files, one per PET.

--help - Print the usage message and exit.

--version - Print ESMF version and license information and exit.

55

-V - Print ESMF version number and exit.

12.7 Examples

The example below shows the command to generate a set of conservative interpolation weights between a global

SCRIP format source grid file (src.nc) and a global SCRIP format destination grid file (dst.nc). The weights are written

into file w.nc. In this case the ESMF library and applications have been compiled using an MPI parallel communication

library (e.g. setting ESMF_COMM to openmpi) to enable it to run in parallel. To demonstrate running in parallel the

mpirun script is used to run the application in parallel on 4 processors.

mpirun -np 4 ./ESMF_RegridWeightGen -s src.nc -d dst.nc -m conserve -w w.nc

The next example below shows the command to do the same thing as the previous example except for three changes.

The first change is this time the source grid is regional ("--src_regional"). The second change is that for this

example bilinear interpolation ("-m bilinear") is being used. Because bilinear is the default, we could also omit

the "-m bilinear". The third change is that in this example some of the destination points are expected to not be

found in the source grid, but the user is ok with that and just wants those points to not appear in the weight file instead

of causing an error ("-i").

mpirun -np 4 ./ESMF_RegridWeightGen -i --src_regional -s src.nc -d dst.nc \

-m bilinear -w w.nc

The last example shows how to use the missing values of a data variable to generate the grid mask for a CF Convension

single-tile file, how to specify the coordinate variable names using "--src_coordinates" and use user defined

area for the conservative regridding.

mpirun -np 4 ./ESMF_RegridWeightGen -s src.nc -d dst.nc -m conserve \

-w w.nc --src_missingvalue datavar \

--src_coordinates lon,lat --user_areas

In the above example, "datavar" is the variable name defined in the source grid that will be used to construct the mask

using its missing values. In addition, "lon" and "lat" are the variable names for the longitude and latitude values,

respectively.

12.8 Grid File Formats

This section describes the grid file formats supported by ESMF. These are typically used either to describe grids to

ESMF_RegridWeightGen or to create grids within ESMF. The following table summarizes the features supported by

each of the grid file formats.

56

Feature SCRIP ESMF Unstruct. CF TILE UGRID GRIDSPEC Mosaic

Unstructured Grids YES YES NO YES NO

Logically-Rectangular Grids YES NO YES NO YES

Multi-tile lat-lon Grids NO NO NO NO YES

2D Grids YES YES YES YES YES

3D Grids NO YES NO YES NO

Spherical Coordinates YES YES YES YES YES

Cartesian Coordinates NO YES NO NO NO

Non-Conserv Regrid on Corners NO YES NO YES YES

The rest of this section contains a detailed descriptions of each grid file format along with a simple example of the

format.

12.8.1 SCRIP Grid File Format

A SCRIP format grid file is a NetCDF file for describing grids. This format is the same as is used by the SCRIP [13]

package, and so grid files which work with that package should also work here. When using the ESMF API, the file

format flag ESMF_FILEFORMAT_SCRIP can be used to indicate a file in this format.

SCRIP format files are capable of storing either 2D logically rectangular grids or 2D unstructured grids. The basic

format for both of these grids is the same and they are distinguished by the value of the grid_rank variable.

Logically rectangular grids have grid_rank set to 2, whereas unstructured grids have this variable set to 1.

The following is a sample header of a logically rectangular grid file:

netcdf remap_grid_T42 {

dimensions:

grid_size = 8192 ;

grid_corners = 4 ;

grid_rank = 2 ;

variables:

int grid_dims(grid_rank) ;

double grid_center_lat(grid_size) ;

grid_center_lat:units = "radians";

double grid_center_lon(grid_size) ;

grid_center_lon:units = "radians" ;

int grid_imask(grid_size) ;

grid_imask:units = "unitless" ;

double grid_corner_lat(grid_size, grid_corners) ;

grid_corner_lat:units = "radians" ;

double grid_corner_lon(grid_size, grid_corners) ;

grid_corner_lon:units ="radians" ;

// global attributes:

:title = "T42 Gaussian Grid" ;

}

The grid_size dimension is the total number of cells in the grid; grid_rank refers to the number of dimensions.

In this case grid_rank is 2 for a 2D logically rectangular grid. The integer array grid_dims gives the number of

57

grid cells along each dimension. The number of corners (vertices) in each grid cell is given by grid_corners. The

grid corner coordinates need to be listed in an order such that the corners are in counterclockwise order. Also, note

that if your grid has a variable number of corners on grid cells, then you should set grid_corners to be the highest

value and use redundant points on cells with fewer corners.

The integer array grid_imask is used to mask out grid cells which should not participate in the regridding. The array

values should be zero for any points that do not participate in the regridding and one for all other points. Coordinate

arrays provide the latitudes and longitudes of cell centers and cell corners. The unit of the coordinates can be either

"radians" or "degrees".

Here is a sample header from a SCRIP unstructured grid file:

netcdf ne4np4-pentagons {

dimensions:

grid_size = 866 ;

grid_corners = 5 ;

grid_rank = 1 ;

variables:

int grid_dims(grid_rank) ;

double grid_center_lat(grid_size) ;

grid_center_lat:units = "degrees" ;

double grid_center_lon(grid_size) ;

grid_center_lon:units = "degrees" ;

double grid_corner_lon(grid_size, grid_corners) ;

grid_corner_lon:units = "degrees";

grid_corner_lon:_FillValue = -9999. ;

double grid_corner_lat(grid_size, grid_corners) ;

grid_corner_lat:units = "degrees" ;

grid_corner_lat:_FillValue = -9999. ;

int grid_imask(grid_size) ;

grid_imask:_FillValue = -9999. ;

double grid_area(grid_size) ;

grid_area:units = "radians^2" ;

grid_area:long_name = "area weights" ;

}

The variables are the same as described above, however, here grid_rank = 1. In this format there is no notion

of which cells are next to which, so to construct the unstructured mesh the connection between cells is defined by

searching for cells with the same corner coordinates. (e.g. the same grid_corner_lat and grid_corner_lon

values).

Both the SCRIP grid file format and the SCRIP weight file format work with the SCRIP 1.4 tools.

12.8.2 ESMF Unstructured Grid File Format

ESMF supports a custom unstructured grid file format for describing meshes. This format is more com-

patible than the SCRIP format with the methods used to create an ESMF Mesh object, so less conversion

needs to be done to create a Mesh. The ESMF format is thus more efficient than SCRIP when used with

ESMF codes (e.g. the ESMF_RegridWeightGen application). When using the ESMF API, the file format flag

ESMF_FILEFORMAT_ESMFMESH can be used to indicate a file in this format.

The following is a sample header in the ESMF format followed by a description:

58

netcdf mesh-esmf {

dimensions:

nodeCount = 9 ;

elementCount = 5 ;

maxNodePElement = 4 ;

coordDim = 2 ;

variables:

double nodeCoords(nodeCount, coordDim);

nodeCoords:units = "degrees" ;

int elementConn(elementCount, maxNodePElement) ;

elementConn:long_name = "Node Indices that define the element /

connectivity";

elementConn:_FillValue = -1 ;

elementConn:start_index = 1 ;

byte numElementConn(elementCount) ;

numElementConn:long_name = "Number of nodes per element" ;

double centerCoords(elementCount, coordDim) ;

centerCoords:units = "degrees" ;

double elementArea(elementCount) ;

elementArea:units = "radians^2" ;

elementArea:long_name = "area weights" ;

int elementMask(elementCount) ;

elementMask:_FillValue = -9999. ;

// global attributes:

:gridType="unstructured";

:version = "0.9" ;

In the ESMF format the NetCDF dimensions have the following meanings. The nodeCount dimension is the

number of nodes in the mesh. The elementCount dimension is the number of elements in the mesh. The

maxNodePElement dimension is the maximum number of nodes in any element in the mesh. For example, in

a mesh containing just triangles, then maxNodePElement would be 3. However, if the mesh contained one quadri-

lateral then maxNodePElement would need to be 4. The coordDim dimension is the number of dimensions of

the points making up the mesh (i.e. the spatial dimension of the mesh). For example, a 2D planar mesh would have

coordDim equal to 2.

In the ESMF format the NetCDF variables have the following meanings. The nodeCoords variable contains the

coordinates for each node. nodeCoords is a two-dimensional array of dimension (nodeCount,coordDim). For

a 2D Grid, coordDim is 2 and the grid can be either spherical or Cartesian. If the units attribute is either degrees

or radians, it is spherical. nodeCoords(:,1) contains the longitude coordinates and nodeCoords(:,2)

contains the latitude coordinates. If the value of the units attribute is km, kilometers or meters, the grid is in

2D Cartesian coordinates. nodeCoords(:,1) contains the x coordinates and nodeCoords(:,2) contains the

y coordinates. The same order applies to centerCoords. For a 3D Grid, coordDim is 3 and the grid is assumed

to be Cartesian. nodeCoords(:,1) contains the x coordinates, nodeCoords(:,2) contains the y coordinates,

and nodeCoords(:,3) contains the z coordinates. The same order applies to centerCoords. A 2D grid in the

Cartesian coordinate can only be regridded into another 2D grid in the Cartesian coordinate.

The elementConn variable describes how the nodes are connected together to form each element. For each element,

this variable contains a list of indices into the nodeCoords variable pointing to the nodes which make up that

element. By default, the index is 1-based. It can be changed to 0-based by adding an attribute start_index of value

0 to the elementConn variable. The order of the indices describing the element is important. The proper order for

elements available in an ESMF mesh can be found in Section 33.2.1. The file format does support 2D polygons with

more corners than those in that section, but internally these are broken into triangles. For these polygons, the corners

59

should be listed such that they are in counterclockwise order around the element. elementConn can be either a 2D

array or a 1D array. If it is a 2D array, the second dimension of the elementConn variable has to be the size of the

largest number of nodes in any element (i.e. maxNodePElement), the actual number of nodes in an element is given

by the numElementConn variable. For a given dimension (i.e. coordDim) the number of nodes in the element

indicates the element shape. For example in 2D, if numElementConn is 4 then the element is a quadrilateral. In 3D,

if numElementConn is 8 then the element is a hexahedron.

If the grid contains some elements with large number of edges, using a 2D array for elementConn could take a

lot of space. In that case, elementConn can be represented as a 1D array that stores the edges of all the elements

continuously. When elementConn is a 1D array, the dimension maxNodePElement is no longer needed, instead,

a new dimension variable connectionCount is required to define the size of elementConn. The value of

connectionCount is the sum of all the values in numElementConn.

The following is an example grid file using 1D array for elementConn:

netcdf catchments_esmf1 {

dimensions:

nodeCount = 1824345 ;

elementCount = 68127 ;

connectionCount = 18567179 ;

coordDim = 2 ;

variables:

double nodeCoords(nodeCount, coordDim) ;

nodeCoords:units = ‘‘degrees’’ ;

double centerCoords(elementCount, coordDim) ;

centerCoords:units = ‘‘degrees’’ ;

int elementConn(connectionCount) ;

elementConn:polygon_break_value = -8 ;

elementConn:start_index = 0. ;

int numElementConn(elementCount) ;

}

In some cases, one mesh element may contain multiple polygons and these polygons are separated by a special value

defined in the attribute polygon_break_value.

The rest of the variables in the format are optional. The centerCoords variable gives the coordinates of the center of

the corresponding element. This variable is used by ESMF for non-conservative interpolation on the data field residing

at the center of the elements. The elementArea variable gives the area (or volume in 3D) of the corresponding

element. This area is used by ESMF during conservative interpolation. If not specified, ESMF calculates the area

(or volume) based on the coordinates of the nodes making up the element. The final variable is the elementMask

variable. This variable allows the user to specify a mask value for the corresponding element. If the value is 1, then

the element is unmasked and if the value is 0 the element is masked. If not specified, ESMF assumes that no elements

are masked.

The following is a picture of a small example mesh and a sample ESMF format header using non-optional variables

describing that mesh:

2.0 7 ------- 8 ------- 9

| | |

| 4 | 5 |

| | |

1.0 4 ------- 5 ------- 6

60

| | \ 3 |

| 1 | \ |

| | 2 \ |

0.0 1 ------- 2 ------- 3

0.0 1.0 2.0

Node indices at corners

Element indices in centers

netcdf mesh-esmf {

dimensions:

nodeCount = 9 ;

elementCount = 5 ;

maxNodePElement = 4 ;

coordDim = 2 ;

variables:

double nodeCoords(nodeCount, coordDim);

nodeCoords:units = "degrees" ;

int elementConn(elementCount, maxNodePElement) ;

elementConn:long_name = "Node Indices that define the element /

connectivity";

elementConn:_FillValue = -1 ;

byte numElementConn(elementCount) ;

numElementConn:long_name = "Number of nodes per element" ;

// global attributes:

:gridType="unstructured";

:version = "0.9" ;

data:

nodeCoords=

0.0, 0.0,

1.0, 0.0,

2.0, 0.0,

0.0, 1.0,

1.0, 1.0,

2.0, 1.0,

0.0, 2.0,

1.0, 2.0,

2.0, 2.0 ;

elementConn=

1, 2, 5, 4,

2, 3, 5, -1,

3, 6, 5, -1,

4, 5, 8, 7,

5, 6, 9, 8 ;

numElementConn= 4, 3, 3, 4, 4 ;

}

61

12.8.3 CF Convention Single Tile File Format

ESMF_RegridWeightGen supports single tile logically rectangular lat/lon grid files that follow the NETCDF

CF convention based on CF Metadata Conventions V1.6. When using the ESMF API, the file format flag

ESMF_FILEFORMAT_CFGRID (or its equivalent ESMF_FILEFORMAT_GRIDSPEC) can be used to indicate a file

in this format.

An example grid file is shown below. The cell center coordinate variables are determined by the value of its attribute

units. The longitude variable has the attribute value set to either degrees_east, degree_east, degrees_E,

degree_E, degreesE or degreeE. The latitude variable has the attribute value set to degrees_north,

degree_north, degrees_N, degree_N, degreesN or degreeN. The latitude and the longitude variables

are one-dimensional arrays if the grid is a regular lat/lon grid, two-dimensional arrays if the grid is curvilinear. The

bound coordinate variables define the bound or the corner coordinates of a cell. The bound variable name is specified

in the bounds attribute of the latitude and longitude variables. In the following example, the latitude bound variable

is lat_bnds and the longitude bound variable is lon_bnds. The bound variables are 2D arrays for a regular lat/lon

grid and a 3D array for a curvilinear grid. The first dimension of the bound array is 2 for a regular lat/lon grid and 4 for

a curvilinear grid. The bound coordinates for a curvilinear grid are defined in counterclockwise order. Since the grid

is a regular lat/lon grid, the coordinate variables are 1D and the bound variables are 2D with the first dimension equal

to 2. The bound coordinates will be read in and stored in a ESMF Grid object as the corner stagger coordinates when

doing a conservative regrid. In case there are multiple sets of coordinate variables defined in a grid file, the offline

regrid application will return an error for duplicate latitude or longitude variables unless "--src_coordinates"

or "--src_coordinates" options are used to specify the coordinate variable names to be used in the regrid.

netcdf single_tile_grid {

dimensions:

time = 1 ;

bound = 2 ;

lat = 181 ;

lon = 360 ;

variables:

double lat(lat) ;

lat:bounds = "lat_bnds" ;

lat:units = "degrees_north" ;

lat:long_name = "latitude" ;

lat:standard_name = "latitude" ;

double lat_bnds(lat, bound) ;

double lon(lon) ;

lon:bounds = "lon_bnds" ;

lon:long_name = "longitude" ;

lon:standard_name = "longitude" ;

lon:units = "degrees_east" ;

double lon_bnds(lon, bound) ;

float so(time, lat, lon) ;

so:standard_name = "sea_water_salinity" ;

so:units = "psu" ;

so:missing_value = 1.e+20f ;

}

2D Cartesian coordinates can be supplied in additional to the required longitude/latitude coordinates. They can be used

in ESMF to create a grid and used in ESMF_RegridWeightGen. The Cartesian coordinate variables have to include

an "axis" attribute with value "X" or "Y". The "units" attribute can be either "m" or "meters" for meters or "km"

62

http://cfconventions.org/cf-conventions/v1.6.0/cf-conventions.html

or "kilometers" for kilometers. When a grid with 2D Cartesian coordinates are used in ESMF_RegridWeightGen, the

optional arguments "--src_coordinates" or "--src_coordinates" have to be used to specify the coordi-

nate variable names. A grid with 2D Cartesian coordinates can only be regridded with another grid in 2D Cartesian

coordinates. Internally in ESMF, the Cartesian coordinates are all converted into kilometers. Here is an example of

the 2D Cartesian coordinates:

double xc(xc) ;

xc:long_name = "x-coordinate in Cartesian system" ;

xc:standard_name = "projection_x_coordinate" ;

xc:axis = "X" ;

xc:units = "m" ;

double yc(yc) ;

yc:long_name = "y-coordinate in Cartesian system" ;

yc:standard_name = "projection_y_coordinate" ;

yc:axis = "Y" ;

yc:units = "m" ;

Since a CF convension tile file does not have a way to specify the grid mask, the mask is usually derived by the missing

values stored in a data variable. ESMF_RegridWeightGen provides an option for users to derive the grid mask from a

data variable’s missing values. The value of the missing value is defined by the variable attribute missing_value or

_FillValue. If the value of the data point is equal to the missing value, the grid mask for that grid point is set to 0,

otherwise, it is set to 1. In the following grid, the variable so can be used to derive the grid mask. A data variable could

be a 2D, 3D or 4D. For example, it may have additional depth and time dimensions. It is assumed that the first and the

second dimensions of the data variable should be the longitude and the latitude dimension. ESMF_RegridWeightGen

will use the first 2D data values to derive the grid mask.

12.8.4 CF Convention UGRID File Format

ESMF_RegridWeightGen supports NetCDF files that follow the UGRID conventions for unstructured grids.

The UGRID file format is a proposed extension to the CF metadata conventions for the unstructured grid data

model. The latest proposal can be found at https://github.com/ugrid-conventions/ugrid-conventions. The pro-

posal is still evolving, the Mesh creation API and ESMF_RegridWeightGen in the current ESMF release is based

on UGRID Version 0.9.0 published on October 29, 2013. When using the ESMF API, the file format flag

ESMF_FILEFORMAT_UGRID can be used to indicate a file in this format.

In the UGRID proposal, a 1D, 2D, or 3D mesh topology can be defined for an unstructured grid. Currently, ESMF

supports two types of meshes: (1) the 2D flexible mesh topology where each cell (a.k.a. "face" as defined in the

UGRID document) in the mesh is either a triangle or a quadrilateral, and (2) the fully 3D unstructured mesh topol-

ogy where each cell (a.k.a. "volume" as defined in the UGRID document) in the mesh is either a tetrahedron or a

hexahedron. Pyramids and wedges are not currently supported in ESMF, but they can be defined as degenerate hexa-

hedrons. ESMF_RegridWeightGen also supports UGRID 1D network mesh topology in a limited way: A 1D mesh in

UGRID can be used as the source grid for nearest neighbor regridding, and as the destination grid for non-conservative

regridding.

The main addition of the UGRID extension is a dummy variable that defines the mesh topology. This ad-

ditional variable has a required attribute cf_role with value "mesh_topology". In addition, it has

two more required attributes: topology_dimension and node_coordinates. If it is a 1D mesh,

topology_dimension is set to 1. If it is a 2D mesh (i.e., topology_dimension equals to 2), an ad-

ditional attribute face_node_connectivity is required. If it is a 3D mesh (i.e., topology_dimension

equals to 3), two additional attributes volume_node_connectivity and volume_shape_type are re-

63

https://github.com/ugrid-conventions/ugrid-conventions

quired. The value of attribute node_coordinates is a list of the names of the node longitude and latitude

variables, plus the elevation variable if it is a 3D mesh. The value of attribute face_node_connectivity or

volume_node_connectivity is the variable name that defines the corner node indices for each mesh cell. The

additional attribute volume_shape_type for the 3D mesh points to a flag variable that specifies the shape type of

each cell in the mesh.

Below is a sample 2D mesh called FVCOM_grid2d. The dummy mesh topology variable is fvcom_mesh. As

described above, its cf_role attribute has to be mesh_topology and the topology_dimension attribute has

to be 2 for a 2D mesh. It defines the node coordinate variable names to be lon and lat. It also specifies the face/node

connectivity variable name as nv.

The variable nv is a two-dimensional array that defines the node indices of each face. The first dimension defines

the maximal number of nodes for each face. In this example, it is a triangle mesh so the number of nodes per face

is 3. Since each face may have a different number of corner nodes, some of the cells may have fewer nodes than

the specified dimension. In that case, it is filled with the missing values defined by the attribute _FillValue. If

_FillValue is not defined, the default value is -1. The nodes are in counterclockwise order. An optional attribute

start_index defines whether the node index is 1-based or 0-based. If start_index is not defined, the default

node index is 0-based.

The coordinate variables follows the CF metadata convention for coordinates. They are 1D array with attribute

standard_name being either latitude or longitude. The units of the coordinates can be either degrees or

radians.

The UGRID files may also contain data variables. The data may be located at the nodes or at the faces. Two additional

attributes are introduced in the UGRID extension for the data variables: location and mesh. The location

attribute defines where the data is located, it can be either face or node. The mesh attribute defines which mesh

topology this variable belongs to since multiple mesh topologies may be defined in one file. The coordinates

attribute defined in the CF conventions can also be used to associate the variables to their locations. ESMF checks

both location and coordinates attributes to determine where the data variable is defined upon. If both attributes

are present, the location attribute takes the precedence. ESMF_RegridWeightGen uses the data variable on the face

to derive the element masks for the mesh cell and variable on the node to derive the node masks for the mesh.

When creating a ESMF Mesh from a UGRID file, the user has to provide the mesh topology variable name to

ESMF_MeshCreate().

netcdf FVCOM_grid2d {

dimensions:

node = 417642 ;

nele = 826866 ;

three = 3 ;

time = 1 ;

variables:

// Mesh topology

int fvcom_mesh;

fvcom_mesh:cf_role = "mesh_topology" ;

fvcom_mesh:topology_dimension = 2. ;

fvcom_mesh:node_coordinates = "lon lat" ;

fvcom_mesh:face_node_connectivity = "nv" ;

int nv(nele, three) ;

nv:standard_name = "face_node_connectivity" ;

nv:start_index = 1. ;

64

// Mesh node coordinates

float lon(node) ;

lon:standard_name = "longitude" ;

lon:units = "degrees_east" ;

float lat(node) ;

lat:standard_name = "latitude" ;

lat:units = "degrees_north" ;

// Data variable

float ua(time, nele) ;

ua:standard_name = "barotropic_eastward_sea_water_velocity" ;

ua:missing_value = -999. ;

ua:location = "face" ;

ua:mesh = "fvcom_mesh" ;

float va(time, nele) ;

va:standard_name = "barotropic_northward_sea_water_velocity" ;

va:missing_value = -999. ;

va:location = "face" ;

va:mesh = "fvcom_mesh" ;

}

Following is a sample 3D UGRID file containing hexahedron cells. The dummy mesh topology variable is

fvcom_mesh. Its cf_role attribute has to be mesh_topology and topology_dimension attribute has

to be 3 for a 3D mesh. There are two additional required attributes: volume_node_connectivity specifies a

variable name that defines the corner indices of the mesh cells and volume_shape_type specifies a variable name

that defines the type of the mesh cells.

The node coordinates are defined by variables nodelon, nodelat and height. Currently, the units attribute for the

height variable is either kilometers, km or meters. The variable vertids is a two-dimensional array that de-

fines the corner node indices of each mesh cell. The first dimension defines the maximal number of nodes for each cell.

There is only one type of cells in the sample grid, i.e. hexahedrons, so the maximal number of nodes is 8. The node

order is defined in 33.2.1. The index can be either 1-based or 0-based and the default is 0-based. Setting an optional

attribute start_index to 1 changed it to 1-based index scheme. The variable meshtype is a one-dimensional in-

teger array that defines the shape type of each cell. Currently, ESMF only supports tetrahedron and hexahedron shapes.

There are three attributes in meshtype: flag_range, flag_values, and flag_meanings representing the

range of the flag values, all the possible flag values, and the meaning of each flag value, respectively. flag_range

and flag_values are either a scalar or an array of integers. flag_meanings is a text string containing a list of

shape types separated by space. In this example, there is only one shape type, thus, the values of meshtype are all 1.

netcdf wam_ugrid100_110 {

dimensions:

nnodes = 78432 ;

ncells = 66030 ;

eight = 8 ;

variables:

int mesh ;

mesh:cf_role = "mesh_topology" ;

mesh:topology_dimension = 3. ;

mesh:node_coordinates = "nodelon nodelat height" ;

mesh:volume_node_connectivity = "vertids" ;

mesh:volume_shape_type = "meshtype" ;

65

double nodelon(nnodes) ;

nodelon:standard_name = "longitude" ;

nodelon:units = "degrees_east" ;

double nodelat(nnodes) ;

nodelat:standard_name = "latitude" ;

nodelat:units = "degrees_north" ;

double height(nnodes) ;

height:standard_name = "elevation" ;

height:units = "kilometers" ;

int vertids(ncells, eight) ;

vertids:cf_role = "volume_node_connectivity" ;

vertids:start_index = 1. ;

int meshtype(ncells) ;

meshtype:cf_role = "volume_shape_type" ;

meshtype:flag_range = 1. ;

meshtype:flag_values = 1. ;

meshtype:flag_meanings = "hexahedron" ;

}

12.8.5 GRIDSPEC Mosaic File Format

GRIDSPEC is a draft proposal to extend the Climate and Forecast (CF) metadata conventions for the representation of

gridded data for Earth System Models. The original GRIDSPEC standard was proposed by V. Balaji and Z. Liang of

GFDL (see ref). GRIDSPEC extends the current CF convention to support grid mosaics, i.e., a grid consisting of mul-

tiple logically rectangular grid tiles. It also provides a mechanism for storing a grid dataset in multiple files. Therefore,

it introduces different types of files, such as a mosaic file that defines the multiple tiles and their connectivity, and a

tile file for a single tile grid definition on a so-called "Supergrid" format. When using the ESMF API, the file format

flag ESMF_FILEFORMAT_MOSAIC can be used to indicate a file in this format.

Following is an example of a mosaic file that defines a 6 tile Cubed Sphere grid:

netcdf C48_mosaic {

dimensions:

ntiles = 6 ;

ncontact = 12 ;

string = 255 ;

variables:

char mosaic(string) ;

mosaic:standard_name = "grid_mosaic_spec" ;

mosaic:children = "gridtiles" ;

mosaic:contact_regions = "contacts" ;

mosaic:grid_descriptor = "" ;

char gridlocation(string) ;

char gridfiles(ntiles, string) ;

char gridtiles(ntiles, string) ;

char contacts(ncontact, string) ;

contacts:standard_name = "grid_contact_spec" ;

contacts:contact_type = "boundary" ;

contacts:alignment = "true" ;

contacts:contact_index = "contact_index" ;

66

http://www.gfdl.noaa.gov/~vb/gridstd/gridstd.html

contacts:orientation = "orient" ;

char contact_index(ncontact, string) ;

contact_index:standard_name = "starting_ending_point_index_of_contact" ;

data:

mosaic = "C48_mosaic" ;

gridlocation = "./data/" ;

gridfiles =

"horizontal_grid.tile1.nc",

"horizontal_grid.tile2.nc",

"horizontal_grid.tile3.nc",

"horizontal_grid.tile4.nc",

"horizontal_grid.tile5.nc",

"horizontal_grid.tile6.nc" ;

gridtiles =

"tile1",

"tile2",

"tile3",

"tile4",

"tile5",

"tile6" ;

contacts =

"C48_mosaic:tile1::C48_mosaic:tile2",

"C48_mosaic:tile1::C48_mosaic:tile3",

"C48_mosaic:tile1::C48_mosaic:tile5",

"C48_mosaic:tile1::C48_mosaic:tile6",

"C48_mosaic:tile2::C48_mosaic:tile3",

"C48_mosaic:tile2::C48_mosaic:tile4",

"C48_mosaic:tile2::C48_mosaic:tile6",

"C48_mosaic:tile3::C48_mosaic:tile4",

"C48_mosaic:tile3::C48_mosaic:tile5",

"C48_mosaic:tile4::C48_mosaic:tile5",

"C48_mosaic:tile4::C48_mosaic:tile6",

"C48_mosaic:tile5::C48_mosaic:tile6" ;

contact_index =

"96:96,1:96::1:1,1:96",

"1:96,96:96::1:1,96:1",

"1:1,1:96::96:1,96:96",

"1:96,1:1::1:96,96:96",

"1:96,96:96::1:96,1:1",

"96:96,1:96::96:1,1:1",

"1:96,1:1::96:96,96:1",

"96:96,1:96::1:1,1:96",

"1:96,96:96::1:1,96:1",

"1:96,96:96::1:96,1:1",

67

"96:96,1:96::96:1,1:1",

"96:96,1:96::1:1,1:96" ;

}

A GRIDSPEC Mosaic file is identified by a dummy variable with its standard_name attribute set to

grid_mosaic_spec. The children attribute of this dummy variable provides the variable name that contains

the tile names and the contact_region attribute points to the variable name that defines a list of tile pairs that

are connected to each other. For a Cubed Sphere grid, there are six tiles and 12 connections. The contacts vari-

able, the variable that defines the contact_region has three required attributes: standard_name, contact_type,

and contact_index. startand_name has to be set to grid_contact_spec. contact_type can be

either boundary or overlap. Currently, ESMF only supports non-overlapping tiles connected by boundary.

contact_index defines the variable name that contains the information defining how the two adjacent tiles are

connected to each other. In the above example, the contact_index variable contains 12 entries. Each entry con-

tains the index of four points that defines the two edges that contact to each other from the two neighboring tiles.

Assuming the four points are A, B, C, and D. A and B defines the edge of tile 1 and C and D defines the edge of tile

2. A is the same point as C and B is the same as D. (Ai, Aj) is the index for point A. The entry looks like this:

Ai:Bi,Aj:Bj::Ci:Di,Cj:Dj

There are two fixed-name variables required in the mosaic file: variable gridfiles defines the associated tile

file names and variable gridlocation defines the directory path of the tile files. The gridlocation can be

overwritten with an command line argument -tilefile_path in ESMF_RegridWeightGen application.

It is possible to define a single-tile Mosaic file. If there is only one tile in the Mosaic, the contact_region attribute

in the grid_mosaic_spec varilable will be ignored.

Each tile in the Mosaic is a logically rectangular lat/lon grid and is defined in a separate file. The tile file used in

the GRIDSPEC Mosaic file defines the coordinates of a so-called supergrid. A supergrid contains all the stagger

locations in one grid. It contains the corner, edge and center coordinates all in one 2D array. In this example, there are

48 elements in each side of a tile, therefore, the size of the supergrid is 48*2+1=97, i.e. 97x97.

Here is the header of one of the tile files:

netcdf horizontal_grid.tile1 {

dimensions:

string = 255 ;

nx = 96 ;

ny = 96 ;

nxp = 97 ;

nyp = 97 ;

variables:

char tile(string) ;

tile:standard_name = "grid_tile_spec" ;

tile:geometry = "spherical" ;

tile:north_pole = "0.0 90.0" ;

tile:projection = "cube_gnomonic" ;

tile:discretization = "logically_rectangular" ;

tile:conformal = "FALSE" ;

double x(nyp, nxp) ;

x:standard_name = "geographic_longitude" ;

x:units = "degree_east" ;

double y(nyp, nxp) ;

68

y:standard_name = "geographic_latitude" ;

y:units = "degree_north" ;

double dx(nyp, nx) ;

dx:standard_name = "grid_edge_x_distance" ;

dx:units = "meters" ;

double dy(ny, nxp) ;

dy:standard_name = "grid_edge_y_distance" ;

dy:units = "meters" ;

double area(ny, nx) ;

area:standard_name = "grid_cell_area" ;

area:units = "m2" ;

double angle_dx(nyp, nxp) ;

angle_dx:standard_name = "grid_vertex_x_angle_WRT_geographic_east" ;

angle_dx:units = "degrees_east" ;

double angle_dy(nyp, nxp) ;

angle_dy:standard_name = "grid_vertex_y_angle_WRT_geographic_north" ;

angle_dy:units = "degrees_north" ;

char arcx(string) ;

arcx:standard_name = "grid_edge_x_arc_type" ;

arcx:north_pole = "0.0 90.0" ;

// global attributes:

:grid_version = "0.2" ;

:history = "/home/z1l/bin/tools_20091028/make_hgrid --grid_type gnomonic_ed --nlon 96" ;

}

The tile file not only defines the coordinates at all staggers, it also has a complete specification of distances, angles,

and areas. In ESMF, we only use the geographic_longitude and geographic_latitude variables and its

subsets on the center and corner staggers. ESMF currently supports the Mosaic containing tiles of the same size. A

tile can be square or rectangular. For a cubed sphere grid, each tile is a square, i.e. the x and y dimensions are the

same.

12.9 Regrid Weight File Format

A regrid weight file is a NetCDF format file containing the information necessary to perform a regridding between

two grids. It also optionally contains information about the grids used to compute the regridding. This information

is provided to allow applications (e.g. ESMF_RegridWeightGenCheck) to independently compute the accuracy

of the regridding weights. In some cases, ESMF_RegridWeightGen doesn’t output the full grid information (e.g.

when it’s costly to compute, or when the current grid format doesn’t support the type of grids used to generate the

weights). In that case, the weight file can still be used for regridding, but applications which depend on the grid

information may not work.

The following is the header of a sample regridding weight file that describes a bilinear regridding from a logically

rectangular 2D grid to a triangular unstructured grid:

netcdf t42mpas-bilinear {

dimensions:

n_a = 8192 ;

n_b = 20480 ;

n_s = 42456 ;

69

nv_a = 4 ;

nv_b = 3 ;

num_wgts = 1 ;

src_grid_rank = 2 ;

dst_grid_rank = 1 ;

variables:

int src_grid_dims(src_grid_rank) ;

int dst_grid_dims(dst_grid_rank) ;

double yc_a(n_a) ;

yc_a:units = "degrees" ;

double yc_b(n_b) ;

yc_b:units = "radians" ;

double xc_a(n_a) ;

xc_a:units = "degrees" ;

double xc_b(n_b) ;

xc_b:units = "radians" ;

double yv_a(n_a, nv_a) ;

yv_a:units = "degrees" ;

double xv_a(n_a, nv_a) ;

xv_a:units = "degrees" ;

double yv_b(n_b, nv_b) ;

yv_b:units = "radians" ;

double xv_b(n_b, nv_b) ;

xv_b:units = "radians" ;

int mask_a(n_a) ;

mask_a:units = "unitless" ;

int mask_b(n_b) ;

mask_b:units = "unitless" ;

double area_a(n_a) ;

area_a:units = "square radians" ;

double area_b(n_b) ;

area_b:units = "square radians" ;

double frac_a(n_a) ;

frac_a:units = "unitless" ;

double frac_b(n_b) ;

frac_b:units = "unitless" ;

int col(n_s) ;

int row(n_s) ;

double S(n_s) ;

// global attributes:

:title = "ESMF Offline Regridding Weight Generator" ;

:normalization = "destarea" ;

:map_method = "Bilinear remapping" ;

:ESMF_regrid_method = "Bilinear" ;

:conventions = "NCAR-CSM" ;

:domain_a = "T42_grid.nc" ;

:domain_b = "grid-dual.nc" ;

:grid_file_src = "T42_grid.nc" ;

:grid_file_dst = "grid-dual.nc" ;

:CVS_revision = "5.3.0 beta snapshot" ;

70

}

The weight file contains four types of information: a description of the source grid, a description of the destination

grid, the output of the regrid weight calculation, and global attributes describing the weight file.

12.9.1 Source Grid Description

The variables describing the source grid in the weight file end with the suffix "_a". To be consistent with the original

use of this weight file format the grid information is written to the file such that the location being regridded is always

the cell center. This means that the grid structure described here may not be identical to that in the source grid file.

The full set of these variables may not always be present in the weight file. The following is an explanation of each

variable:

n_a The number of source cells.

nv_a The maximum number of corners (i.e. vertices) around a source cell. If a cell has less than the maximum number

of corners, then the remaining corner coordinates are repeats of the last valid corner’s coordinates.

xc_a The longitude coordinates of the centers of each source cell.

yc_a The latitude coordinates of the centers of each source cell.

xv_a The longitude coordinates of the corners of each source cell.

yv_a The latitude coordinates of the corners of each source cell.

mask_a The mask for each source cell. A value of 0, indicates that the cell is masked.

area_a The area of each source cell. This quantity is either from the source grid file or calculated by

ESMF_RegridWeightGen. When a non-conservative regridding method (e.g. bilinear) is used, the area

is set to 0.0.

src_grid_rank The number of dimensions of the source grid. Currently this can only be 1 or 2. Where 1 indicates an

unstructured grid and 2 indicates a 2D logically rectangular grid.

src_grid_dims The number of cells along each dimension of the source grid. For unstructured grids this is equal to

the number of cells in the grid.

12.9.2 Destination Grid Description

The variables describing the destination grid in the weight file end with the suffix "_b". To be consistent with the

original use of this weight file format the grid information is written to the file such that the location being regridded is

always the cell center. This means that the grid structure described here may not be identical to that in the destination

grid file. The full set of these variables may not always be present in the weight file. The following is an explanation

of each variable:

n_b The number of destination cells.

nv_b The maximum number of corners (i.e. vertices) around a destination cell. If a cell has less than the maximum

number of corners, then the remaining corner coordinates are repeats of the last valid corner’s coordinates.

xc_b The longitude coordinates of the centers of each destination cell.

yc_b The latitude coordinates of the centers of each destination cell.

xv_b The longitude coordinates of the corners of each destination cell.

yv_b The latitude coordinates of the corners of each destination cell.

71

mask_b The mask for each destination cell. A value of 0, indicates that the cell is masked.

area_b The area of each destination cell. This quantity is either from the destination grid file or calculated by

ESMF_RegridWeightGen. When a non-conservative regridding method (e.g. bilinear) is used, the area

is set to 0.0.

dst_grid_rank The number of dimensions of the destination grid. Currently this can only be 1 or 2. Where 1 indicates

an unstructured grid and 2 indicates a 2D logically rectangular grid.

dst_grid_dims The number of cells along each dimension of the destination grid. For unstructured grids this is equal

to the number of cells in the grid.

12.9.3 Regrid Calculation Output

The following is an explanation of the variables containing the output of the regridding calculation:

n_s The number of entries in the regridding matrix.

col The position in the source grid for each entry in the regridding matrix.

row The position in the destination grid for each entry in the weight matrix.

S The weight for each entry in the regridding matrix.

frac_a When a conservative regridding method is used, this contains the fraction of each source cell that participated

in the regridding. When a non-conservative regridding method is used, this array is set to 0.0.

frac_b When a conservative regridding method is used, this contains the fraction of each destination cell that partic-

ipated in the regridding. When a non-conservative regridding method is used, this array is set to 1.0 where the

point participated in the regridding (i.e. was within the unmasked source grid), and 0.0 otherwise.

The following code shows how to apply the weights in the weight file to interpolate a source field (src_field)

defined over the source grid to a destination field (dst_field) defined over the destination grid. The variables n_s,

n_b, row, col, and S are from the weight file.

! Initialize destination field to 0.0

do i=1, n_b

dst_field(i)=0.0

enddo

! Apply weights

do i=1, n_s

dst_field(row(i))=dst_field(row(i))+S(i)*src_field(col(i))

enddo

If the first-order conservative interpolation method is specified ("-m conserve") then the destination field may need to

be adjusted by the destination fraction (frac_b). This should be done if the normalization type is "dstarea" and if

the destination grid extends outside the unmasked source grid. If it isn’t known if the destination extends outside the

source, then it doesn’t hurt to apply the destination fraction. (If it doesn’t extend outside, then the fraction will be 1.0

everywhere anyway.) The following code shows how to adjust an already interpolated destination field (dst_field)

by the destination fraction. The variables n_b, and frac_b are from the weight file:

! Adjust destination field by fraction

do i=1, n_b

72

if (frac_b(i) .ne. 0.0) then

dst_field(i)=dst_field(i)/frac_b(i)

endif

enddo

12.9.4 Weight File Description Attributes

The following is an explanation of the global attributes describing the weight file:

title Always set to "ESMF Offline Regridding Weight Generator" when generated by ESMF_RegridWeightGen.

normalization The normalization type used to compute conservative regridding weights. The options for this are

described in section 12.3.4 which contains a description of the conservative regridding method.

map_method An indication of the mapping method which is constrained by the original use of this format. In

some cases the method specified here will differ from the actual regridding method used, for example weights

generated with the "patch" method will have this attribute set to "Bilinear remapping".

ESMF_regrid_method The ESMF regridding method used to generate the weight file.

conventions The set of conventions that the weight file follows. Currently only "NCAR-CSM" is supported.

domain_a The source grid file name.

domain_b The destination grid file name.

grid_file_src The source grid file name.

grid_file_dst The destination grid file name.

CVS_revision The version of ESMF used to generate the weight file.

12.9.5 Weight Only Weight File

In the current ESMF distribution, a new simplified weight file option -weight_only is added to

ESMF_RegridWeightGen. The simple weight file contains only a subset of the Regrid Calculation Output de-

fined in 12.9.3, i.e. the weights S, the source grid indices col and destination grid indices row. The dimension of

these three variables is n_s.

12.10 ESMF_RegridWeightGenCheck

The ESMF_RegridWeightGen application is used in the ESMF_RegridWeightGenCheck external demo to generate

interpolation weights. These weights are then tested by using them for a regridding operation and then comparing

them against an analytic function on the destination grid. This external demo is also used to regression test ESMF

regridding, and it is run nightly on over 150 combinations of structured and unstructured, regional and global grids,

and regridding methods.

13 ESMF_Regrid

13.1 Description

This section describes the file-based regridding command line tool provided by ESMF (for a description of ESMF

regridding in general see Section 24.2). Regridding, also called remapping or interpolation, is the process of changing

73

http://www.earthsystemmodeling.org/users/code_examples/external_demos/external_demos.shtml

the grid that underlies data values while preserving qualities of the original data. Different kinds of transformations are

appropriate for different problems. Regridding may be needed when communicating data between Earth system model

components such as land and atmosphere, or between different data sets to support operations such as visualization.

Regridding can be broken into two stages. The first stage is generation of an interpolation weight matrix that describes

how points in the source grid contribute to points in the destination grid. The second stage is the multiplication

of values on the source grid by the interpolation weight matrix to produce values on the destination grid. This is

implemented as a parallel sparse matrix multiplication.

The ESMF_RegridWeightGen command line tool described in Section 12 performs the first stage of the regridding

process - generate the interpolation weight matrix. This tool not only calculates the interpolation weights, it also

applies the weights to a list of variables stored in the source grid file and produces the interpolated values on the

destination grid. The interpolated output variable is written out to the destination grid file. This tool supports three

CF compliant file formats: the CF Single Tile grid file format(12.8.3) for a logically rectangular grid, the UGRID file

format(12.8.4) for unstructured grid and the GRIDSPEC Mosaic file format(12.8.5) for cubed-sphere grid. For the

GRIDSPEC Mosaic file format, the data are stored in seperate data files, one file per tile. The SCRIP format(12.8.1)

and the ESMF unstructured grid format(12.8.2) are not supported because there is no way to define a variable field

using these two formats. Currently, the tool only works with 2D grids, the support for the 3D grid will be made

available in the future release. The variable array can be up to four dimensions. The variable type is currently limited

to single or double precision real numbers. The support for other data types, such as integer or short will be added in

the future release.

The user interface of this tool is greatly simplified from ESMF_RegridWeightGen. User only needs to provide two

input file names, the source and the destination variable names and the regrid method. The tool will figure out the type

of the grid file automatically based on the attributes of the variable. If the variable has a coordinates attribute, the

grid file is a GRIDSPEC file and the value of the coordinates defines the longitude and latitude variable’s names.

For example, following is a simple GRIDSPEC file with a variable named PSL and coordinate variables named lon

and lat.

netcdf simple_gridspec {

dimensions:

lat = 192 ;

lon = 288 ;

variables:

float PSL(lat, lon) ;

PSL:time = 50. ;

PSL:units = "Pa" ;

PSL:long_name = "Sea level pressure" ;

PSL:cell_method = "time: mean" ;

PSL:coordinates = "lon lat" ;

double lat(lat) ;

lat:long_name = "latitude" ;

lat:units = "degrees_north" ;

double lon(lon) ;

lon:long_name = "longitude" ;

lon:units = "degrees_east" ;

}

If the variable has a mesh attribute and a location attribute, the grid file is in UGRID format(12.8.4). The value

of mesh attribute is the name of a dummy variable that defines the mesh topology. If the application performs a

conservative regridding, the value of the location attribute has to be face, otherwise, it has to be node. This is

because ESMF only supports non-conservative regridding on the data stored at the nodes of a ESMF_Mesh object,

74

and conservative regridding on the data stored at the cells of a ESMF_Mesh object.

Here is an example 2D UGRID file:

netcdf simple_ugrid {

dimensions:

node = 4176 ;

nele = 8268 ;

three = 3 ;

time = 2 ;

variables:

float lon(node) ;

lon:units = "degrees_east" ;

float lat(node) ;

lat:units = "degrees_north" ;

float lonc(nele) ;

lonc:units = "degrees_east" ;

float latc(nele) ;

latc:units = "degrees_north" ;

int nv(nele, three) ;

nv:standard_name = "face_node_connectivity" ;

nv:start_index = 1. ;

float zeta(time, node) ;

zeta:standard_name = "sea_surface_height_above_geoid" ;

zeta:_FillValue = -999. ;

zeta:location = "node" ;

zeta:mesh = "fvcom_mesh" ;

float ua(time, nele) ;

ua:standard_name = "barotropic_eastward_sea_water_velocity" ;

ua:_FillValue = -999. ;

ua:location = "face" ;

ua:mesh = "fvcom_mesh" ;

float va(time, nele) ;

va:standard_name = "barotropic_northward_sea_water_velocity" ;

va:_FillValue = -999. ;

va:location = "face" ;

va:mesh = "fvcom_mesh" ;

int fvcom_mesh(node) ;

fvcom_mesh:cf_role = "mesh_topology" ;

fvcom_mesh:dimension = 2. ;

fvcom_mesh:locations = "face node" ;

fvcom_mesh:node_coordinates = "lon lat" ;

fvcom_mesh:face_coordinates = "lonc latc" ;

fvcom_mesh:face_node_connectivity = "nv" ;

}

There are three variables defined in the above UGRID file - zeta on the node of the mesh, ua and va on the face of

the mesh. All three variables have one extra time dimension.

The GRIDSPEC MOSAIC file(12.8.5) can be identified by a dummy variable with standard_name attribute set

to grid_mosaic_spec. The data for a GRIDSPEC Mosaic file are stored in seperate files, one tile per file. The

name of the data file is not specified in the mosaic file. Therefore, additional optional argument -srcdatafile

75

or -dstdatafile is required to provide the prefix of the datafile. The datafile is also a CF compliant NetCDF

file. The complete name of the datafile is constructed by appending the tilename (defined in the Mosaic file in a

variable specified by the children attribute of the dummy variable). For instance, if the prefix of the datafile is

mosaicdata, then the datafile names are mosaicdata.tile1.nc, mosaicdata.tile2.nc, etc... using the

mosaic file example in 12.8.5. The path of the datafile is defined by gridlocation variable, similar to the tile files.

To overwrite it, an optional argument tilefile_path can be specified.

Following is an example GRIDSPEC MOSAIC datafile:

netcdf mosaictest.tile1 {

dimensions:

grid_yt = 48 ;

grid_xt = 48 ;

time = UNLIMITED ; // (12 currently)

variables:

float area_land(grid_yt, grid_xt) ;

area_land:long_name = "area in the grid cell" ;

area_land:units = "m2" ;

float evap_land(time, grid_yt, grid_xt) ;

evap_land:long_name = "vapor flux up from land" ;

evap_land:units = "kg/(m2 s)" ;

evap_land:coordinates = "geolon_t geolat_t" ;

double geolat_t(grid_yt, grid_xt) ;

geolat_t:long_name = "latitude of grid cell centers" ;

geolat_t:units = "degrees_N" ;

double geolon_t(grid_yt, grid_xt) ;

geolon_t:long_name = "longitude of grid cell centers" ;

geolon_t:units = "degrees_E" ;

double time(time) ;

time:long_name = "time" ;

time:units = "days since 1900-01-01 00:00:00" ;

}

This is a database for the C48 Cubed Sphere grid defined in 12.8.5. Note currently we assume that the data are located

at the center stagger of the grid. The coordinate variables geolon_t and geolat_t should be identical to the center

coordinates defined in the corresponding tile files. They are not used to create the multi-tile grid. For this application,

they are only used to construct the analytic field to check the correctness of the regridding results if -check argument

is given.

If the variable specified for the destination file does not already exist in the file, the file type is determined as follows:

First search for a variable that has a cf_role attribute of value mesh_topology. If successful, the file is a

UGRID file. The destination variable will be created on the nodes if the regrid method is non-conservative and an

optional argument dst_loc is set to corner. Otherwise, the destination variable will be created on the face. If the

destination file is not a UGRID file, check if there is a variable with its units attribute set to degrees_east and

another variable with it’s units attribute set to degrees_west. If such a pair is found, the file is a GRIDSPEC file

and the above two variables will be used as the coordinate variables for the variable to be created. If more than one

pair of coordinate variables are found in the file, the application will fail with an error message.

If the destination variable exists in the destination grid file, it has to have the same number of dimensions and the same

type as the source variable. Except for the latitude and longitude dimensions, the size of the destination variable’s

extra dimensions (e.g., time and vertical layers) has to match with the source variable. If the destination varialbe does

not exist in the destination grid file, a new variable will be created with the same type and matching dimensions as

76

the source variable. All the attributes of the source variable will be copied to the destination variable except those

related to the grid definition (i.e. coordinates attribute if the destination file is in GRIDSPEC or MOSAIC format

or mesh and location attributes if the destination file is in UGRID format.

Additional rules beyond the CF convention are adopted to determine whether there is a time dimension defined in the

source and destination files. In this application, only a dimension with a name time is considered as a time dimension.

If the source variable has a time dimension and the destination variable is not already defined, the application first

checks if there is a time dimension defined in the destination file. If so, the values of the time dimension in both

files have to be identical. If the time dimension values don’t match, the application terminates with an error message.

The application does not check the existence of a time variable or if the units attribute of the time variable match

in two input files. If the destination file does not have a time dimension, it will be created. UNLIMITED time

dimension is allowed in the source file, but the time dimension created in the destination file is not UNLIMITED.

This application requires the NetCDF library to read the grid files and write out the interpolated variables. To compile

ESMF with the NetCDF library, please refer to the "Third Party Libraries" Section in the ESMF User’s Guide for more

information.

Internally this application uses the ESMF public API to perform regridding. If a source or destination grid is logically

rectangular, then ESMF_GridCreate()(31.6.13) is used to create an ESMF_Grid object from the file. The coordi-

nate variables are stored at the center stagger location (ESMF_STAGGERLOC_CENTER). If the application performs

a conservative regridding, the addCornerStager argument is set to TRUE and the bound variables in the grid

file will be read in and stored at the corner stagger location (ESMF_STAGGERLOC_CORNER). If the variable has an

_FillValue attribute defined, a mask will be generated using the missing values of the variable. The data variable

is defined as a ESMF_Field object at the center stagger location (ESMF_STAGGERLOC_CENTER) of the grid.

If the source grid is an unstructured grid and the the regrid method is nearest neighbor, or if the destination grid is

unstructured and the regrid method is non-conservative, ESMF_LocStreamCreate()(32.4.14 is used to create

an ESMF_LocStream object. Otherwise, ESMF_MeshCreate()(33.4.8) is used to create an ESMF_Mesh object

for the unstructured input grids. Currently, only the 2D unstructured grid is supported. If the application performs a

conservative regridding, the variable has to be defined on the face of the mesh cells, i.e., its location attribute has

to be set to face. Otherwise, the variable has to be defined on the node and its (location attribute is set to node).

If a source or a destination grid is a Cubed Sphere grid defined in GRIDSPEC MOSAIC file format,

ESMF_GridCreateMosaic()(31.6.28) will be used to create a multi-tile ESMF_Grid object from the file. The

coordinates at the center and the corner stagger in the tile files will be stored in the grid. The data has to be located at

the center stagger of the grid.

Similar to the ESMF_RegridWeightGen command line tool (Section 12), this application supports bilinear, patch,

nearest neighbor, first-order and second-order conservative interpolation. The descriptions of different interpolation

methods can be found at Section 24.2 and Section 12. It also supports different pole methods for non-conservative

interpolation and allows user to choose to ignore the errors when some of the destination points cannot be mapped by

any source points.

If the optional argument -check is given, the interpolated fields will be checked agaist a synthetic field defined as

follows:

13.2 Usage

The command line arguments are all keyword based. Both the long keyword prefixed with ’--’ or the one

character short keyword prefixed with ’-’ are supported. The format to run the command line tool is as follows:

77

ESMF_Regrid

--source|-s src_grid_filename

--destination|-d dst_grid_filename

--src_var var_name[,var_name,..]

--dst_var var_name[,var_name,..]

[--srcdatafile]

[--dstdatafile]

[--tilefile_path filepath]

[--dst_loc center|corner]

[--method|-m bilinear|patch|nearestdtos|neareststod|conserve|conserve2nd]

[--pole|-p none|all|teeth|1|2|..]

[--ignore_unmapped|-i]

[--ignore_degenerate]

[-r]

[--src_regional]

[--dst_regional]

[--check]

[--no_log]

[--help]

[--version]

[-V]

where

--source or -s - a required argument specifying the source grid

file name

--destination or -d - a required argument specifying the destination

grid file name

--src_var - a required argument specifying the variable names

in the src grid file to be interpolated from. If more

than one, separated them with comma.

--dst_var - a required argument specifying the variable names

to be interpolated to. If more than one, separated

them with comma. The variable may or may not

exist in the destination grid file.

--srcdatafile - If the source grid is a GRIDSPEC MOSAIC grid, the data

is stored in separate files, one per tile. srcdatafile

is the prefix of the source data file. The filename

is srcdatafile.tilename.nc, where tilename is the tile

name defined in the MOSAIC file.

--srcdatafile - If the destination grid is a GRIDSPEC MOSAIC grid, the data

is stored in separate files, one per tile. dstdatafile

is the prefix of the destination data file. The filename

is dstdatafile.tilename.nc, where tilename is the tile

name defined in the MOSAIC file.

--tilefile_path - the alternative file path for the tile files and the

data files when either the source or the destination grid

78

is a GRIDSPEC MOSAIC grid. The path can be either relative

or absolute. If it is relative, it is relative to the

working directory. When specified, the gridlocation variable

defined in the Mosaic file will be ignored.

--dst_loc - an optional argument that specifies whether the destination

variable is located at the center or the corner of the grid

if the destination variable does not exist in the destination

grid file. This flag is only required for non-conservative

regridding when the destination grid is in UGRID format.

For all other cases, only the center location is supported

that is also the default value if this argument is not specified.

--method or -m - an optional argument specifying which interpolation

method is used. The value can be one of the following:

bilinear - for bilinear interpolation, also the

default method if not specified.

patch - for patch recovery interpolation

nearstdtos - for nearest destination to source interpolation

nearststod - for nearest source to destination interpolation

conserve - for first-order conservative interpolation

--pole or -p - an optional argument indicating what to do with

the pole.

The value can be one of the following:

none - No pole, the source grid ends at the top

(and bottom) row of nodes specified in

<source grid>.

all - Construct an artificial pole placed in the

center of the top (or bottom) row of nodes,

but projected onto the sphere formed by the

rest of the grid. The value at this pole is

the average of all the pole values. This

is the default option.

teeth - No new pole point is constructed, instead

the holes at the poles are filled by

constructing triangles across the top and

bottom row of the source Grid. This can be

useful because no averaging occurs, however,

because the top and bottom of the sphere are

now flat, for a big enough mismatch between

the size of the destination and source pole

regions, some destination points may still

not be able to be mapped to the source Grid.

<N> - Construct an artificial pole placed in the

center of the top (or bottom) row of nodes,

but projected onto the sphere formed by the

79

rest of the grid. The value at this pole is

the average of the N source nodes next to

the pole and surrounding the destination

point (i.e. the value may differ for each

destination point. Here N ranges from 1 to

the number of nodes around the pole.

--ignore_unmapped

or

-i - ignore unmapped destination points. If not specified

the default is to stop with an error if an unmapped

point is found.

--ignore_degenerate - ignore degenerate cells in the input grids. If not specified

the default is to stop with an error if an degenerate

cell is found.

-r - an optional argument specifying that the source and

destination grids are regional grids. If the argument

is not given, the grids are assumed to be global.

--src_regional - an optional argument specifying that the source is

a regional grid and the destination is a global grid.

--dst_regional - an optional argument specifying that the destination

is a regional grid and the source is a global grid.

--check - Check the correctness of the interpolated destination

variables against an analytic field. The source variable

has to be synthetically constructed using the same analytic

method in order to perform meaningful comparison.

The analytic field is calculated based on the coordinate

of the data point. The formular is as follows:

data(i,j,k,l)=2.0+cos(lat(i,j))**2*cos(2.0*lon(i,j))+(k-1)+2*(l-1)

The data field can be up to four dimensional with the

first two dimension been longitude and latitude.

The mean relative error between the destination and

analytic field is computed.

--no_log - Turn off the ESMF error log.

--help - Print the usage message and exit.

--version - Print ESMF version and license information and exit.

-V - Print ESMF version number and exit.

80

13.3 Examples

The example below regrids the node variable zeta defined in the sample UGRID file(13.1) to the destination grid

defined in the sample GRIDSPEC file(13.1) using bilinear regridding method and write the interpolated data into a

variable named zeta.

mpirun -np 4 ESMF_Regrid -s simple_ugrid.nc -d simple_gridspec.nc \

--src_var zeta --dst_var zeta

In this case, the destination variable does not exist in simple_ugrid.nc and the time dimension is not defined in

the destination file. The resulting output file has a new time dimension and a new variable zeta. The attributes from

the source variable zeta are copied to the destination variable except for mesh and location. A new attribute

coordinates is created for the destination variable to specify the names of the coordinate variables. The header of

the output file looks like:

netcdf simple_gridspec {

dimensions:

lat = 192 ;

lon = 288 ;

time = 2 ;

variables:

float PSL(lat, lon) ;

PSL:time = 50. ;

PSL:units = "Pa" ;

PSL:long_name = "Sea level pressure" ;

PSL:cell_method = "time: mean" ;

PSL:coordinates = "lon lat" ;

double lat(lat) ;

lat:long_name = "latitude" ;

lat:units = "degrees_north" ;

double lon(lon) ;

lon:long_name = "longitude" ;

lon:units = "degrees_east" ;

float zeta(time, lat, lon) ;

zeta:standard_name = "sea_surface_height_above_geoid" ;

zeta:_FillValue = -999. ;

zeta:coordinates = "lon lat" ;

}

The next example shows the command to do the same thing as the previous example but for a different variable ua.

Since ua is defined on the face, we can only do a conservative regridding.

mpirun -np 4 ESMF_Regrid -s simple_ugrid.nc -d simple_gridspec.nc \

--src_var ua --dst_var ua -m conserve

81

14 ESMF_Scrip2Unstruct

14.1 Description

The ESMF_Scrip2Unstruct application is a parallel program that converts a SCRIP format grid file 12.8.1 into an

unstructured grid file in the ESMF unstructured file format 12.8.2 or in the UGRID file format 12.8.4. This application

program can be used together with ESMF_RegridWeightGen 12 application for the unstructured SCRIP format

grid files. An unstructured SCRIP grid file will be converted into the ESMF unstructured file format internally in

ESMF_RegridWeightGen. The conversion subroutine used in ESMF_RegridWeightGen is sequential and

could be slow if the grid file is very big. It will be more efficient to run the ESMF_Scrip2Unstruct first and then

regrid the output ESMF or UGRID file using ESMF_RegridWeightGen. Note that a logically rectangular grid file

in the SCRIP format (i.e. the dimension grid_rank is equal to 2) can also be converted into an unstructured grid

file with this application.

The application usage is as follows:

ESMF_Scrip2Unstruct inputfile outputfile dualflag [fileformat]

where

inputfile - a SCRIP format grid file

outputfile - the output file name

dualflag - 0 for straight conversion and 1 for dual

mesh. A dual mesh is a mesh constructed

by putting the corner coordinates in the

center of the elements and using the

center coordinates to form the mesh

corner vertices.

fileformat - an optional argument for the output file

format. It could be either ESMF or UGRID.

If not specified, the output file is in

the ESMF format.

82

Part III

Superstructure

83

15 Overview of Superstructure

ESMF superstructure classes define an architecture for assembling Earth system applications from modeling compo-

nents. A component may be defined in terms of the physical domain that it represents, such as an atmosphere or sea

ice model. It may also be defined in terms of a computational function, such as a data assimilation system. Earth

system research often requires that such components be coupled together to create an application. By coupling we

mean the data transformations and, on parallel computing systems, data transfers, that are necessary to allow data from

one component to be utilized by another. ESMF offers regridding methods and other tools to simplify the organization

and execution of inter-component data exchanges.

In addition to components defined at the level of major physical domains and computational functions, components

may be defined that represent smaller computational functions within larger components, such as the transformation

of data between the physics and dynamics in a spectral atmosphere model, or the creation of nested higher resolution

regions within a coarser grid. The objective is to couple components at varying scales both flexibly and efficiently.

ESMF encourages a hierarchical application structure, in which large components branch into smaller sub-components

(see Figure 2). ESMF also makes it easier for the same component to be used in multiple contexts without changes to

its source code.

Key Features

Modular, component-based architecture.

Hierarchical assembly of components into applications.

Use of components in multiple contexts without modification.

Sequential or concurrent component execution.

Single program, multiple datastream (SPMD) applications for maximum portability and reconfigurability.

Multiple program, multiple datastream (MPMD) option for flexibility.

15.1 Superstructure Classes

There are a small number of classes in the ESMF superstructure:

• Component An ESMF component has two parts, one that is supplied by ESMF and one that is supplied by the

user. The part that is supplied by the framework is an ESMF derived type that is either a Gridded Component

(GridComp) or a Coupler Component (CplComp). A Gridded Component typically represents a physical

domain in which data is associated with one or more grids - for example, a sea ice model. A Coupler Component

arranges and executes data transformations and transfers between one or more Gridded Components. Gridded

Components and Coupler Components have standard methods, which include initialize, run, and finalize. These

methods can be multi-phase.

The second part of an ESMF Component is user code, such as a model or data assimilation system. Users set

entry points within their code so that it is callable by the framework. In practice, setting entry points means that

within user code there are calls to ESMF methods that associate the name of a Fortran subroutine with a cor-

responding standard ESMF operation. For example, a user-written initialization routine called myOceanInit

might be associated with the standard initialize routine of an ESMF Gridded Component named “myOcean”

that represents an ocean model.

• State ESMF Components exchange information with other Components only through States. A State is an

ESMF derived type that can contain Fields, FieldBundles, Arrays, ArrayBundles, and other States. A Compo-

nent is associated with two States, an Import State and an Export State. Its Import State holds the data that it

receives from other Components. Its Export State contains data that it makes available to other Components.

84

Figure 2: ESMF enables applications such as the atmospheric general circulation model GEOS-5 to be structured

hierarchically, and reconfigured and extended easily. Each box in this diagram is an ESMF Gridded Component.

GEOS-5

surface
fvcore
gravity_wave_drag

history
agcm

dynamics
 physics

chemistry
 moist_processes
 radiation
 turbulence

infrared
 solar
lake
 land_ice
 data_ocean
 land

vegetation
 catchment

An ESMF coupled application typically involves a parent Gridded Component, two or more child Gridded Components

and one or more Coupler Components.

The parent Gridded Component is responsible for creating the child Gridded Components that are exchanging data, for

creating the Coupler, for creating the necessary Import and Export States, and for setting up the desired sequencing.

The application’s “main” routine calls the parent Gridded Component’s initialize, run, and finalize methods in order

to execute the application. For each of these standard methods, the parent Gridded Component in turn calls the

corresponding methods in the child Gridded Components and the Coupler Component. For example, consider a

simple coupled ocean/atmosphere simulation. When the initialize method of the parent Gridded Component is called

by the application, it in turn calls the initialize methods of its child atmosphere and ocean Gridded Components, and

the initialize method of an ocean-to-atmosphere Coupler Component. Figure 3 shows this schematically.

15.2 Hierarchical Creation of Components

Components are allocated computational resources in the form of Persistent Execution Threads, or PETs. A list of

a Component’s PETs is contained in a structure called a Virtual Machine, or VM. The VM also contains information

about the topology and characteristics of the underlying computer. Components are created hierarchically, with parent

Components creating child Components and allocating some or all of their PETs to each one. By default ESMF creates

a new VM for each child Component, which allows Components to tailor their VM resources to match their needs. In

some cases, a child may want to share its parent’s VM - ESMF supports this, too.

85

Figure 3: A call to a standard ESMF initialize (run, finalize) method by a parent component triggers calls to initialize

(run, finalize) all of its child components.

Child
GridComp
 “Atmosphere”

Parent
GridComp
 “Hurricane Model”

Finalize

Child
GridComp
 “Ocean”

Finalize

Child
CplComp
 “Atm-Ocean Coupler”

Finalize

Call Initialize
 Call Finalize
Call Run

Initialize
 Run
 Finalize

Initialize

Initialize

Initialize

Run

Run

Run

AppDriver
 (“Main”)

Call Initialize
 Call Finalize
Call Run

A Gridded Component may exist across all the PETs in an application. A Gridded Component may also reside on

a subset of PETs in an application. These PETs may wholly coincide with, be wholly contained within, or wholly

contain another Component.

15.3 Sequential and Concurrent Execution of Components

When a set of Gridded Components and a Coupler runs in sequence on the same set of PETs the application is executing

in a sequential mode. When Gridded Components are created and run on mutually exclusive sets of PETs, and are

coupled by a Coupler Component that extends over the union of these sets, the mode of execution is concurrent.

Figure 4 illustrates a typical configuration for a simple coupled sequential application, and Figure 5 shows a possible

configuration for the same application running in a concurrent mode.

Parent Components can select if and when to wait for concurrently executing child Components, synchronizing only

when required.

86

It is possible for ESMF applications to contain some Component sets that are executing sequentially and others that

are executing concurrently. We might have, for example, atmosphere and land Components created on the same subset

of PETs, ocean and sea ice Components created on the remainder of PETs, and a Coupler created across all the PETs

in the application.

15.4 Intra-Component Communication

All data transfers within an ESMF application occur within a component. For example, a Gridded Component may

contain halo updates. Another example is that a Coupler Component may redistribute data between two Gridded

Components. As a result, the architecture of ESMF does not depend on any particular data communication mechanism,

and new communication schemes can be introduced without affecting the overall structure of the application.

Since all data communication happens within a component, a Coupler Component must be created on the union of the

PETs of all the Gridded Components that it couples.

15.5 Data Distribution and Scoping in Components

The scope of distributed objects is the VM of the currently executing Component. For this reason, all PETs in the

current VM must make the same distributed object creation calls. When a Coupler Component running on a super-

set of a Gridded Component’s PETs needs to make communication calls involving objects created by the Gridded

Component, an ESMF-supplied function called ESMF_StateReconcile() creates proxy objects for those PETs

that had no previous information about the distributed objects. Proxy objects contain no local data but can be used in

communication calls (such as regrid or redistribute) to describe the remote source for data being moved to the current

PET, or to describe the remote destination for data being moved from the local PET. Figure 6 is a simple schematic

that shows the sequence of events in a reconcile call.

15.6 Performance

The ESMF design enables the user to configure ESMF applications so that data is transferred directly from one com-

ponent to another, without requiring that it be copied or sent to a different data buffer as an interim step. This is likely

to be the most efficient way of performing inter-component coupling. However, if desired, an application can also be

configured so that data from a source component is sent to a distinct set of Coupler Component PETs for processing

before being sent to its destination.

The ability to overlap computation with communication is essential for performance. When running with ESMF the

user can initiate data sends during Gridded Component execution, as soon as the data is ready. Computations can then

proceed simultaneously with the data transfer.

87

Figure 4: Schematic of the run method of a coupled application, with an “Atmosphere” and an “Ocean” Gridded Com-

ponent running sequentially with an “Atm-Ocean Coupler.” The top-level “Hurricane Model” Gridded Component

contains the sequencing information and time advancement loop. The application driver, Coupler, and all Gridded

Components are distributed over nine PETs.

GridComp

“Atmosphere”

GridComp
 “Hurricane Model”

GridComp

“Ocean”

CplComp

“Atm-Ocean Coupler”

LOOP
Call Run

Run

Run

Run

Run

AppDriver
 (“Main”)

Call Run

1
 2
 3
 5
4
 6

PETs

T

i
m

e

7
 8
 9

88

Figure 5: Schematic of the run method of a coupled application, with an “Atmosphere” and an “Ocean” Gridded

Component running concurrently with an “Atm-Ocean Coupler.” The top-level “Hurricane Model” Gridded Compo-

nent contains the sequencing information and time advancement loop. The application driver, Coupler, and top-level

“Hurricane Model” Gridded Component are distributed over nine PETs. The “Atmosphere” Gridded Component is

distributed over three PETs and the “Ocean” Gridded Component is distributed over six PETs.

GridComp

“Atmosphere”

GridComp
 “Hurricane Model”

GridComp

“Ocean”

CplComp

“Atm-Ocean Coupler”

LOOP
Call Run

Run

Run
 Run

Run

AppDriver
 (“Main”)

Call Run

1
 2
 3
 5
4
 6

PETs

T

i
m

e

7
 8
 9

89

Figure 6: An ESMF_StateReconcile() call creates proxy objects for use in subsequent communication calls.

The reconcile call would normally be made during Coupler initialization.

CplComp

“Atm-Ocean Coupler”

1
 2
 3
 5
4
 6

PETs

T

i
m

e

7
 8
 9

OcnState

 …...

 …...

 …...

 OcnField1

 OcnField2

 OcnField3

AtmState

 AtmField1

 AtmField2

 AtmField3

 ……

 ……

 ……

call ESMF_StateReconcile()

Initialize

AtmState

 AtmField1

 AtmField2

 AtmField3

 OcnField1-proxy

 OcnField2-proxy

 OcnField3-proxy

OcnState

 AtmField1-proxy

 AtmField2-proxy

 AtmField3-proxy

 OcnField1

 OcnField2

 OcnField3

90

15.7 Object Model

The following is a simplified Unified Modeling Language (UML) diagram showing the relationships among ESMF

superstructure classes. See Appendix A, A Brief Introduction to UML, for a translation table that lists the symbols in

the diagram and their meaning.

GridComp
 CplComp

Comp

Possible extensions

DataComp
VisComp

...

16 Application Driver and Required ESMF Methods

16.1 Description

Every ESMF application needs a driver code. Typically the driver layer is implemented as the "main" of the applica-

tion, although this is not strictly an ESMF requirement. For most ESMF applications the task of the application driver

will be very generic: Initialize ESMF, create a top-level Component and call its Initialize, Run and Finalize methods,

before destroying the top-level Component again and calling ESMF Finalize.

ESMF provides a number of different application driver templates in the

$ESMF_DIR/src/Superstructure/AppDriver directory. An appropriate one can be chosen depend-

ing on how the application is to be structured:

Sequential vs. Concurrent Execution In a sequential execution model, every Component executes on all PETs, with

each Component completing execution before the next Component begins. This has the appeal of simplicity of

data consumption and production: when a Gridded Component starts, all required data is available for use,

and when a Gridded Component finishes, all data produced is ready for consumption by the next Gridded

Component. This approach also has the possibility of less data movement if the grid and data decomposition is

done such that each processor’s memory contains the data needed by the next Component.

In a concurrent execution model, subgroups of PETs run Gridded Components and multiple Gridded Compo-

nents are active at the same time. Data exchange must be coordinated between Gridded Components so that data

deadlock does not occur. This strategy has the advantage of allowing coupling to other Gridded Components

at any time during the computational process, including not having to return to the calling level of code before

making data available.

Pairwise vs. Hub and Spoke Coupler Components are responsible for taking data from one Gridded Component and

putting it into the form expected by another Gridded Component. This might include regridding, change of units,

averaging, or binning.

91

Coupler Components can be written for pairwise data exchange: the Coupler Component takes data from a

single Component and transforms it for use by another single Gridded Component. This simplifies the structure

of the Coupler Component code.

Couplers can also be written using a hub and spoke model where a single Coupler accepts data from all other

Components, can do data merging or splitting, and formats data for all other Components.

Multiple Couplers, using either of the above two models or some mixture of these approaches, are also possible.

Implementation Language The ESMF framework currently has Fortran interfaces for all public functions. Some

functions also have C interfaces, and the number of these is expected to increase over time.

Number of Executables The simplest way to run an application is to run the same executable program on all PETs.

Different Components can still be run on mutually exclusive PETs by using branching (e.g., if this is PET 1,

2, or 3, run Component A, if it is PET 4, 5, or 6 run Component B). This is a SPMD model, Single Program

Multiple Data.

The alternative is to start a different executable program on different PETs. This is a MPMD model, Multiple

Program Multiple Data. There are complications with many job control systems on multiprocessor machines

in getting the different executables started, and getting inter-process communications established. ESMF cur-

rently has some support for MPMD: different Components can run as separate executables, but the Coupler that

transfers data between the Components must still run on the union of their PETs. This means that the Coupler

Component must be linked into all of the executables.

16.2 Constants

16.2.1 ESMF_END

DESCRIPTION:

The ESMF_End_Flag determines how an ESMF application is shut down.

The type of this flag is:

type(ESMF_End_Flag)

The valid values are:

ESMF_END_ABORT Global abort of the ESMF application. There is no guarantee that all PETs will shut down

cleanly during an abort. However, all attempts are made to prevent the application from hanging and the LogErr

of at least one PET will be completely flushed during the abort. This option should only be used if a condition

is detected that prevents normal continuation or termination of the application. Typical conditions that warrant

the use of ESMF_END_ABORT are those that occur on a per PET basis where other PETs may be blocked in

communication calls, unable to reach the normal termination point. An aborted application returns to the parent

process with a system dependent indication that a failure occurred during execution.

ESMF_END_NORMAL Normal termination of the ESMF application. Wait for all PETs of the global VM

to reach ESMF_Finalize() before termination. This is the clean way of terminating an application.

MPI_Finalize() will be called in case of MPI applications.

ESMF_END_KEEPMPI Same as ESMF_END_NORMAL but MPI_Finalize() will not be called. It is the user

code’s responsibility to shut down MPI cleanly if necessary.

92

16.3 Use and Examples

ESMF encourages application organization in which there is a single top-level Gridded Component. This provides

a simple, clear sequence of operations at the highest level, and also enables the entire application to be treated as a

sub-Component of another, larger application if desired. When a simple application is organized in this fashion the

standard AppDriver can probably be used without much modification.

Examples of program organization using the AppDriver can be found in the src/Superstructure/AppDriver

directory. A set of subdirectories within the AppDriver directory follows the naming convention:

<seq|concur>_<pairwise|hub>_<f|c>driver_<spmd|mpmd>

The example that is currently implemented is seq_pairwise_fdriver_spmd, which has sequential component

execution, a pairwise coupler, a main program in Fortran, and all processors launching the same executable. It is also

copied automatically into a top-level quick_start directory at compilation time.

The user can copy the AppDriver files into their own local directory. Some of the files can be used unchanged. Others

are template files which have the rough outline of the code but need additional application-specific code added in

order to perform a meaningful function. The README file in the AppDriver subdirectory or quick_start directory

contains instructions about which files to change.

Examples of concurrent component execution can be found in the system tests that are bundled with the ESMF distri-

bution.

EXAMPLE: This is an AppDriver.F90 file for a sequential ESMF application.

The ChangeMe.F90 file that’s included below contains a number of

definitions that are used by the AppDriver, such as the name of the

application’s main configuration file and the name of the application’s

SetServices routine. This file is in the same directory as the

AppDriver.F90 file.

#include "ChangeMe.F90"

program ESMF_AppDriver

#define ESMF_METHOD "program ESMF_AppDriver"

#include "ESMF.h"

! ESMF module, defines all ESMF data types and procedures

use ESMF

! Gridded Component registration routines. Defined in "ChangeMe.F90"

use USER_APP_Mod, only : SetServices => USER_APP_SetServices

implicit none

93

Define local variables

! Components and States

type(ESMF_GridComp) :: compGridded

type(ESMF_State) :: defaultstate

! Configuration information

type(ESMF_Config) :: config

! A common Grid

type(ESMF_Grid) :: grid

! A Clock, a Calendar, and timesteps

type(ESMF_Clock) :: clock

type(ESMF_TimeInterval) :: timeStep

type(ESMF_Time) :: startTime

type(ESMF_Time) :: stopTime

! Variables related to the Grid

integer :: i_max, j_max

! Return codes for error checks

integer :: rc, localrc

Initialize ESMF. Note that an output Log is created by default.

call ESMF_Initialize(defaultCalKind=ESMF_CALKIND_GREGORIAN, rc=localrc)

if (ESMF_LogFoundError(localrc, ESMF_ERR_PASSTHRU, &

ESMF_CONTEXT, rcToReturn=rc)) &

call ESMF_Finalize(rc=localrc, endflag=ESMF_END_ABORT)

call ESMF_LogWrite("ESMF AppDriver start", ESMF_LOGMSG_INFO)

Create and load a configuration file.

The USER_CONFIG_FILE is set to sample.rc in the ChangeMe.F90 file.

The sample.rc file is also included in the directory with the

AppDriver.F90 file.

config = ESMF_ConfigCreate(rc=localrc)

if (ESMF_LogFoundError(localrc, ESMF_ERR_PASSTHRU, &

ESMF_CONTEXT, rcToReturn=rc)) &

call ESMF_Finalize(rc=localrc, endflag=ESMF_END_ABORT)

call ESMF_ConfigLoadFile(config, USER_CONFIG_FILE, rc = localrc)

if (ESMF_LogFoundError(localrc, ESMF_ERR_PASSTHRU, &

ESMF_CONTEXT, rcToReturn=rc)) &

call ESMF_Finalize(rc=localrc, endflag=ESMF_END_ABORT)

Get configuration information.

94

A configuration file like sample.rc might include:

- size and coordinate information needed to create the default Grid.

- the default start time, stop time, and running intervals

for the main time loop.

call ESMF_ConfigGetAttribute(config, i_max, label=’I Counts:’, &

default=10, rc=localrc)

if (ESMF_LogFoundError(localrc, ESMF_ERR_PASSTHRU, &

ESMF_CONTEXT, rcToReturn=rc)) &

call ESMF_Finalize(rc=localrc, endflag=ESMF_END_ABORT)

call ESMF_ConfigGetAttribute(config, j_max, label=’J Counts:’, &

default=40, rc=localrc)

if (ESMF_LogFoundError(localrc, ESMF_ERR_PASSTHRU, &

ESMF_CONTEXT, rcToReturn=rc)) &

call ESMF_Finalize(rc=localrc, endflag=ESMF_END_ABORT)

Create the top Gridded Component.

compGridded = ESMF_GridCompCreate(name="ESMF Gridded Component", &

rc=localrc)

if (ESMF_LogFoundError(localrc, ESMF_ERR_PASSTHRU, &

ESMF_CONTEXT, rcToReturn=rc)) &

call ESMF_Finalize(rc=localrc, endflag=ESMF_END_ABORT)

call ESMF_LogWrite("Component Create finished", ESMF_LOGMSG_INFO)

--

Register the set services method for the top Gridded Component.

--

call ESMF_GridCompSetServices(compGridded, userRoutine=SetServices, rc=rc)

if (ESMF_LogFoundError(rc, msg="Registration failed", rcToReturn=rc)) &

call ESMF_Finalize(rc=localrc, endflag=ESMF_END_ABORT)

--

Create and initialize a Clock.

--

call ESMF_TimeIntervalSet(timeStep, s=2, rc=localrc)

if (ESMF_LogFoundError(localrc, ESMF_ERR_PASSTHRU, &

ESMF_CONTEXT, rcToReturn=rc)) &

call ESMF_Finalize(rc=localrc, endflag=ESMF_END_ABORT)

call ESMF_TimeSet(startTime, yy=2004, mm=9, dd=25, rc=localrc)

if (ESMF_LogFoundError(localrc, ESMF_ERR_PASSTHRU, &

ESMF_CONTEXT, rcToReturn=rc)) &

call ESMF_Finalize(rc=localrc, endflag=ESMF_END_ABORT)

call ESMF_TimeSet(stopTime, yy=2004, mm=9, dd=26, rc=localrc)

if (ESMF_LogFoundError(localrc, ESMF_ERR_PASSTHRU, &

ESMF_CONTEXT, rcToReturn=rc)) &

95

call ESMF_Finalize(rc=localrc, endflag=ESMF_END_ABORT)

clock = ESMF_ClockCreate(timeStep, startTime, stopTime=stopTime, &

name="Application Clock", rc=localrc)

if (ESMF_LogFoundError(localrc, ESMF_ERR_PASSTHRU, &

ESMF_CONTEXT, rcToReturn=rc)) &

call ESMF_Finalize(rc=localrc, endflag=ESMF_END_ABORT)

--

Create and initialize a Grid.

The default lower indices for the Grid are (/1,1/).

The upper indices for the Grid are read in from the sample.rc file,

where they are set to (/10,40/). This means a Grid will be

created with 10 grid cells in the x direction and 40 grid cells in the

y direction. The Grid section in the Reference Manual shows how to set

coordinates.

--

grid = ESMF_GridCreateNoPeriDim(maxIndex=(/i_max, j_max/), &

name="source grid", rc=localrc)

if (ESMF_LogFoundError(localrc, ESMF_ERR_PASSTHRU, &

ESMF_CONTEXT, rcToReturn=rc)) &

call ESMF_Finalize(rc=localrc, endflag=ESMF_END_ABORT)

! Attach the grid to the Component

call ESMF_GridCompSet(compGridded, grid=grid, rc=localrc)

if (ESMF_LogFoundError(localrc, ESMF_ERR_PASSTHRU, &

ESMF_CONTEXT, rcToReturn=rc)) &

call ESMF_Finalize(rc=localrc, endflag=ESMF_END_ABORT)

--

Create and initialize a State to use for both import and export.

In a real code, separate import and export States would normally be

created.

--

defaultstate = ESMF_StateCreate(name="Default State", rc=localrc)

if (ESMF_LogFoundError(localrc, ESMF_ERR_PASSTHRU, &

ESMF_CONTEXT, rcToReturn=rc)) &

call ESMF_Finalize(rc=localrc, endflag=ESMF_END_ABORT)

--

Call the initialize, run, and finalize methods of the top component.

When the initialize method of the top component is called, it will in

turn call the initialize methods of all its child components, they

will initialize their children, and so on. The same is true of the

run and finalize methods.

--

call ESMF_GridCompInitialize(compGridded, importState=defaultstate, &

exportState=defaultstate, clock=clock, rc=localrc)

if (ESMF_LogFoundError(rc, msg="Initialize failed", rcToReturn=rc)) &

call ESMF_Finalize(rc=localrc, endflag=ESMF_END_ABORT)

96

call ESMF_GridCompRun(compGridded, importState=defaultstate, &

exportState=defaultstate, clock=clock, rc=localrc)

if (ESMF_LogFoundError(rc, msg="Run failed", rcToReturn=rc)) &

call ESMF_Finalize(rc=localrc, endflag=ESMF_END_ABORT)

call ESMF_GridCompFinalize(compGridded, importState=defaultstate, &

exportState=defaultstate, clock=clock, rc=localrc)

if (ESMF_LogFoundError(rc, msg="Finalize failed", rcToReturn=rc)) &

call ESMF_Finalize(rc=localrc, endflag=ESMF_END_ABORT)

--

Destroy objects.

--

call ESMF_ClockDestroy(clock, rc=localrc)

if (ESMF_LogFoundError(localrc, ESMF_ERR_PASSTHRU, &

ESMF_CONTEXT, rcToReturn=rc)) &

call ESMF_Finalize(rc=localrc, endflag=ESMF_END_ABORT)

call ESMF_StateDestroy(defaultstate, rc=localrc)

if (ESMF_LogFoundError(localrc, ESMF_ERR_PASSTHRU, &

ESMF_CONTEXT, rcToReturn=rc)) &

call ESMF_Finalize(rc=localrc, endflag=ESMF_END_ABORT)

call ESMF_GridCompDestroy(compGridded, rc=localrc)

if (ESMF_LogFoundError(localrc, ESMF_ERR_PASSTHRU, &

ESMF_CONTEXT, rcToReturn=rc)) &

call ESMF_Finalize(rc=localrc, endflag=ESMF_END_ABORT)

--

Finalize and clean up.

--

call ESMF_Finalize()

end program ESMF_AppDriver

16.4 Required ESMF Methods

There are a few methods that every ESMF application must contain. First, ESMF_Initialize() and

ESMF_Finalize() are in complete analogy to MPI_Init() and MPI_Finalize() known from MPI. All

ESMF programs, serial or parallel, must initialize the ESMF system at the beginning, and finalize it at the end of exe-

cution. The behavior of calling any ESMF method before ESMF_Initialize(), or after ESMF_Finalize() is

undefined.

Second, every ESMF Component that is accessed by an ESMF application requires that its set services routine is called

through ESMF_<Grid/Cpl>CompSetServices(). The Component must implement one public entry point, its

set services routine, that can be called through the ESMF_<Grid/Cpl>CompSetServices() library routine.

The Component set services routine is responsible for setting entry points for the standard ESMF Component methods

Initialize, Run, and Finalize.

97

Finally, the Component can optionally call ESMF_<Grid/Cpl>CompSetVM() before calling

ESMF_<Grid/Cpl>CompSetServices(). Similar to ESMF_<Grid/Cpl>CompSetServices(), the

ESMF_<Grid/Cpl>CompSetVM() call requires a public entry point into the Component. It allows the

Component to adjust certain aspects of its execution environment, i.e. its own VM, before it is started up.

The following sections discuss the above mentioned aspects in more detail.

16.4.1 ESMF_Initialize - Initialize ESMF

INTERFACE:

subroutine ESMF_Initialize(defaultConfigFileName, defaultCalKind, &

defaultLogFileName, logappendflag, logkindflag, mpiCommunicator, &

ioUnitLBound, ioUnitUBound, vm, rc)

ARGUMENTS:

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character(len=*), intent(in), optional :: defaultConfigFileName

type(ESMF_CalKind_Flag), intent(in), optional :: defaultCalKind

character(len=*), intent(in), optional :: defaultLogFileName

logical, intent(in), optional :: logappendflag

type(ESMF_LogKind_Flag), intent(in), optional :: logkindflag

integer, intent(in), optional :: mpiCommunicator

integer, intent(in), optional :: ioUnitLBound

integer, intent(in), optional :: ioUnitUBound

type(ESMF_VM), intent(out), optional :: vm

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

7.0.0 Added argument logappendflag to allow specifying that the existing log files will be overwritten.

DESCRIPTION:

This method must be called once on each PET before any other ESMF methods are used. The method contains a
barrier before returning, ensuring that all processes made it successfully through initialization.

Typically ESMF_Initialize() will call MPI_Init() internally unless MPI has been initialized by the user
code before initializing the framework. If the MPI initialization is left to ESMF_Initialize() it inherits all of the

98

MPI implementation dependent limitations of what may or may not be done before MPI_Init(). For instance, it is
unsafe for some MPI implementations, such as MPICH, to do I/O before the MPI environment is initialized. Please
consult the documentation of your MPI implementation for details.

Note that when using MPICH as the MPI library, ESMF needs to use the application command line arguments for
MPI_Init(). However, ESMF acquires these arguments internally and the user does not need to worry about
providing them. Also, note that ESMF does not alter the command line arguments, so that if the user obtains them
they will be as specified on the command line (including those which MPICH would normally strip out).

ESMF_Initialize() supports running ESMF inside a user MPI program. Details of this feature are discussed
under the VM example 49.3.4. It is not necessary that all MPI ranks are handed to ESMF. Section 49.3.5 shows how
an MPI communicator can be used to execute ESMF on a subset of MPI ranks. ESMF_Initialize() supports
running multiple concurrent instances of ESMF under the same user MPI program. This feature is discussed under
49.3.6.

In order to use any of the advanced resource management functions that ESMF provides via the
ESMF_*CompSetVM*() methods, the MPI environment must be thread-safe. ESMF_Initialize() handles
this automatically if it is in charge of initializing MPI. However, if the user code initializes MPI before calling into
ESMF_Initialize(), it must do so via MPI_Init_thread(), specifying MPI_THREAD_SERIALIZED or
above for the required level of thread support.

In cases where ESMF_*CompSetVM*() methods are used to move processing elements (PEs), i.e. CPU cores,
between persistent execution threads (PETs), ESMF uses POSIX signals between PETs. In order to do so safely, the
proper signal handlers must be installed before MPI is initialized. ESMF_Initialize() handles this automatically
if it is in charge of initializing MPI. If, however, MPI is explicitly initialized by user code, then to ensure correct signal
handling it is necessary to call ESMF_InitializePreMPI() from the user code prior to the MPI initialization.

By default, ESMF_Initialize() will open multiple error log files, one per processor. This is very useful for
debugging purpose. However, when running the application on a large number of processors, opening a large
number of log files and writing log messages from all the processors could become a performance bottleneck.
Therefore, it is recommended to turn the Error Log feature off in these situations by setting logkindflag to
ESMF_LOGKIND_NONE.

When integrating ESMF with applications where Fortran unit number conflicts exist, the optional ioUnitLBound
and ioUnitUBound arguments may be used to specify an alternate unit number range. See section 51.2.1 for more
information on how ESMF uses Fortran unit numbers.

Before exiting the application the user must call ESMF_Finalize() to release resources and clean up ESMF grace-
fully. See the ESMF_Finalize() documentation about details relating to the MPI environment.

The arguments are:

[defaultConfigFilename] Name of the default configuration file for the entire application.

[defaultCalKind] Sets the default calendar to be used by ESMF Time Manager. See section 41.2.1 for a list of valid
options. If not specified, defaults to ESMF_CALKIND_NOCALENDAR.

[defaultLogFileName] Name of the default log file for warning and error messages. If not specified, defaults to
ESMF_ErrorLog.

[logappendflag] If the default log file already exists, a value of .false. will set the file position to the beginning
of the file. A value of .true. sets the position to the end of the file. If not specified, defaults to .true..

[logkindflag] Sets the default Log Type to be used by ESMF Log Manager. See section 47.2.2 for a list of valid
options. If not specified, defaults to ESMF_LOGKIND_MULTI.

[mpiCommunicator] MPI communicator defining the group of processes on which the ESMF application is running.
See section 49.3.5 and 49.3.6 for details. If not specified, defaults to MPI_COMM_WORLD.

[ioUnitLBound] Lower bound for Fortran unit numbers used within the ESMF library. Fortran units are primarily
used for log files. Legal unit numbers are positive integers. A value higher than 10 is recommended in order to

99

avoid the compiler-specific reservations which are typically found on the first few units. If not specified, defaults
to ESMF_LOG_FORT_UNIT_NUMBER, which is distributed with a value of 50.

[ioUnitUBound] Upper bound for Fortran unit numbers used within the ESMF library. Must be set to a value at least
5 units higher than ioUnitLBound. If not specified, defaults to ESMF_LOG_UPPER, which is distributed
with a value of 99.

[vm] Returns the global ESMF_VM that was created during initialization.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

16.4.2 ESMF_InitializePreMPI - Initialize parts of ESMF that must happen before MPI is initialized

INTERFACE:

subroutine ESMF_InitializePreMPI(rc)

ARGUMENTS:

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

This method is only needed for cases where MPI is initialized explicitly by user code. In most typical cases
ESMF_Initialize() is called before MPI is initialized, and takes care of all the internal initialization, includ-
ing MPI.

There are circumstances where it is necessary or convenient to initialize MPI before calling into
ESMF_Initialize(). This option is supported by ESMF, and for most cases no special action is required on
the user side. However, for cases where ESMF_*CompSetVM*() methods are used to move processing elements
(PEs), i.e. CPU cores, between persistent execution threads (PETs), ESMF uses POSIX signals between PETs. In
order to do so safely, the proper signal handlers must be installed before MPI is initialized. This is accomplished by
calling ESMF_InitializePreMPI() from the user code prior to the MPI initialization.

Note also that in order to use any of the advanced resource management functions that ESMF provides via the
ESMF_*CompSetVM*() methods, the MPI environment must be thread-safe. ESMF_Initialize() handles
this automatically if it is in charge of initializing MPI. However, if the user code initializes MPI before calling into
ESMF_Initialize(), it must do so via MPI_Init_thread(), specifying MPI_THREAD_SERIALIZED or
above for the required level of thread support.

The arguments are:

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

100

16.4.3 ESMF_IsInitialized - Query Initialized status of ESMF

INTERFACE:

function ESMF_IsInitialized(rc)

RETURN VALUE:

logical :: ESMF_IsInitialized

ARGUMENTS:

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Returns .true. if the framework has been initialized. This means that ESMF_Initialize() has been called.
Otherwise returns .false.. If an error occurs, i.e. rc /= ESMF_SUCCESS is returned, the return value of the
function will also be .false..

The arguments are:

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

16.4.4 ESMF_IsFinalized - Query Finalized status of ESMF

INTERFACE:

function ESMF_IsFinalized(rc)

RETURN VALUE:

logical :: ESMF_IsFinalized

ARGUMENTS:

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Returns .true. if the framework has been finalized. This means that ESMF_Finalize() has been called. Other-
wise returns .false.. If an error occurs, i.e. rc /= ESMF_SUCCESS is returned, the return value of the function
will also be .false..

The arguments are:

101

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

16.4.5 ESMF_Finalize - Clean up and shut down ESMF

INTERFACE:

subroutine ESMF_Finalize(endflag, rc)

ARGUMENTS:

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_End_Flag), intent(in), optional :: endflag

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

This must be called once on each PET before the application exits to allow ESMF to flush buffers, close open con-
nections, and release internal resources cleanly. The optional argument endflag may be used to indicate the mode
of termination. Note that this call must be issued only once per PET with endflag=ESMF_END_NORMAL, and that
this call may not be followed by ESMF_Initialize(). This last restriction means that it is not possible to restart
ESMF within the same execution.

The arguments are:

[endflag] Specify mode of termination. The default is ESMF_END_NORMAL which waits for all PETs of the global
VM to reach ESMF_Finalize() before termination. See section 16.2.1 for a complete list and description
of valid flags.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

16.4.6 User-code SetServices method

Many programs call some library routines. The library documentation must explain what the routine name is, what

arguments are required and what are optional, and what the code does.

In contrast, all ESMF components must be written to be called by another part of the program; in effect, an ESMF

component takes the place of a library. The interface is prescribed by the framework, and the component writer must

provide specific subroutines which have standard argument lists and perform specific operations. For technical reasons

none of the arguments in user-provided subroutines must be declared as optional.

The only required public interface of a Component is its SetServices method. This subroutine must have an externally

accessible name (be a public symbol), take a component as the first argument, and an integer return code as the second.

102

Both arguments are required and must not be declared as optional. If an intent is specified in the interface it must be

intent(inout) for the first and intent(out) for the second argument. The subroutine name is not predefined,

it is set by the component writer, but must be provided as part of the component documentation.

The required function that the SetServices subroutine must provide is to specify the user-code entry points for the

standard ESMF Component methods. To this end the user-written SetServices routine calls the

ESMF_<Grid/Cpl>CompSetEntryPoint() method to set each Component entry point.

See sections 17.2.1 and 18.2.1 for examples of how to write a user-code SetServices routine.

Note that a component does not call its own SetServices routine; the AppDriver or parent component code, which

is creating a component, will first call ESMF_<Grid/Cpl>CompCreate() to create a component object, and

then must call into ESMF_<Grid/Cpl>CompSetServices(), supplying the user-code SetServices routine as an

argument. The framework then calls into the user-code SetServices, after the Component’s VM has been started up.

It is good practice to package the user-code implementing a component into a Fortran module, with the user-code

SetService routine being the only public module method. ESMF supports three mechanisms for accessing the user-

code SetServices routine from the calling AppDriver or parent component.

• Fortran USE association: The AppDriver or parent component utilizes the standard Fortran USE statement

on the component module to make all public entities available. The user-code SetServices routine can then be

passed directly into the ESMF_<Grid/Cpl>CompSetServices() interface documented in 17.4.19 and

18.4.19, respectively.

Pros: Standard Fortran module use: name mangling and interface checking is handled by the Fortran compiler.

Cons: Fortran 90/95 has no mechanism to implement a "smart" dependency scheme through USE association.

Any change in a lower level component module (even just adding or changing a comment!) will trigger a

complete recompilation of all of the higher level components throughout the component hierarchy. This situation

is particularly annoying for ESMF componentized code, where the prescribed ESMF component interfaces, in

principle, remove all interdependencies between components that would require recompilation.

Fortran submodules, introduced as an extension to Fortran 2003, and now part for the Fortran 2008 standard,

are designed to avoid this "false" dependency issue. A code change to an ESMF component that keeps the

actual implementation within a submodule, will not trigger a recompilation of the components further up in the

component hierarchy. Unfortunately, as of mid-2015, only two compiler vendors support submodules.

• External routine: The AppDriver or parent component provides an explicit interface block for an external

routine that implements (or calls) the user-code SetServices routine. This routine can then be passed directly into

the ESMF_<Grid/Cpl>CompSetServices() interface documented in 17.4.19 and 18.4.19, respectively.

(In practice this can be implemented by the component as an external subroutine that simply calls into the

user-code SetServices module routine.)

Pros: Avoids Fortran USE dependencies: a change to lower level component code will not trigger a complete

recompilation of all of the higher level components throughout the component hierarchy. Name mangling is

handled by the Fortran compiler.

Cons: The user-code SetServices interface is not checked by the compiler. The user must ensure uniqueness of

the external routine name across the entire application.

• Name lookup: The AppDriver or parent component specifies the user-code SetServices routine by name.

The actual lookup and code association does not occur until runtime. The name string is passed into the

ESMF_<Grid/Cpl>CompSetServices() interface documented in 17.4.20 and 18.4.20, respectively.

Pros: Avoids Fortran USE dependencies: a change to lower level component code will not trigger a complete

recompilation of all of the higher level components throughout the component hierarchy. The component code

103

does not have to be accessible until runtime and may be located in a shared object, thus avoiding relinking of

the application.

Cons: The user-code SetServices interface is not checked by the compiler. The user must explicitly deal with

all of the Fortran name mangling issues: 1) Accessing a module routine requires precise knowledge of the

name mangling rules of the specific compiler. Alternatively, the user-code SetServices routine may be imple-

mented as an external routine, avoiding the module name mangling. 2) Even then, Fortran compilers typically

append one or two underscores on a symbol name. This must be considered when passing the name into the

ESMF_<Grid/Cpl>CompSetServices() method.

16.4.7 User-code Initialize, Run, and Finalize methods

The required standard ESMF Component methods, for which user-code entry points must be set, are Initialize, Run,

and Finalize. Currently optional, a Component may also set entry points for the WriteRestart and ReadRestart methods.

Sections 17.2.1 and 18.2.1 provide examples of how the entry points for Initialize, Run, and Finalize are set during the

user-code SetServices routine, using the ESMF_<Grid/Cpl>CompSetEntryPoint() library call.

All standard user-code methods must abide exactly to the prescribed interfaces. None of the arguments must be

declared as optional.

The names of the Initialize, Run, and Finalize user-code subroutines do not need to be public; in fact it is far better for

them to be private to lower the chances of public symbol clashes between different components.

See sections 17.2.2, 17.2.3, 17.2.4, and 18.2.2, 18.2.3, 18.2.4 for examples of how to write entry points for the standard

ESMF Component methods.

16.4.8 User-code SetVM method

When the AppDriver or parent component code calls ESMF_<Grid/Cpl>CompCreate() it has the option to

specify a petList argument. All of the parent PETs contained in this list become resources of the child component.

By default, without the petList argument, all of the parent PETs are provided to the child component.

Typically each component has its own virtual machine (VM) object. However, using the optional contextflag

argument during ESMF_<Grid/Cpl>CompCreate() a child component can inherit its parent component’s VM.

Unless a child component inherits the parent VM, it has the option to set certain aspects of how its VM utilizes the

provided resources. The resources provided via the parent PETs are the associated processing elements (PEs) and

virtual address spaces (VASs).

The optional user-written SetVM routine is called from the parent for the child through the

ESMF_<Grid/Cpl>CompSetVM() method. This is the only place where the child component can set as-

pects of its own VM before it is started up. The child component’s VM must be running before the SetServices

routine can be called, and thus the parent must call the optional ESMF_<Grid/Cpl>CompSetVM() method before

ESMF_<Grid/Cpl>CompSetServices().

Inside the user-code called by the SetVM routine, the component has the option to specify how the PETs share the

provided parent PEs. Further, PETs on the same single system image (SSI) can be set to run multi-threaded within a

reduced number of virtual address spaces (VAS), allowing a component to leverage shared memory concepts.

Sections 17.2.5 and 18.2.5 provide examples for simple user-written SetVM routines.

One common use of the SetVM approach is to implement hybrid parallelism based on MPI+OpenMP. Under ESMF,

each component can use its own hybrid parallelism implementation. Different components, even if running on the

same PE resources, do not have to agree on the number of MPI processes (i.e. PETs), or the number of OpenMP

104

threads launched under each PET. Hybrid and non-hybrid components can be mixed within the same application.

Coupling between components of any flavor is supported under ESMF.

In order to obtain best performance when using SetVM based resource control for hybrid parallelism, it is strongly

recommended to set OMP_WAIT_POLICY=PASSIVE in the environment. This is one of the standard OpenMP

environment variables. The PASSIVE setting ensures that OpenMP threads relinquish the PEs as soon as they have

completed their work. Without that setting ESMF resource control threads can be delayed, and context switching

between components becomes more expensive.

16.4.9 Use of internal procedures as user-provided procedures

Internal procedures are nested within a surrounding procedure, and only local to the surrounding procedure. They are

specified by using the CONTAINS statement.

Prior to Fortran-2008 an internal procedure could not be used as a user-provided callback procedure. In Fortran-2008

this restriction was lifted. It is important to note that if ESMF is passed an internal procedure, that the surrounding

procedure be active whenever ESMF calls it. This helps ensure that local variables at the surrounding procedures

scope are properly initialized.

When internal procedures contained within a main program unit are used for callbacks, there is no problem. This is

because the main program unit is always active. However when internal procedures are used within other program

units, initialization could become a problem. The following outlines the issue:

module my_procs_mod

use ESMF

implicit none

contains

subroutine my_procs (...)

integer :: my_setting

:

call ESMF_GridCompSetEntryPoint(gridcomp, methodflag=ESMF_METHOD_INITIALIZE, &

userRoutine=my_grid_proc_init, rc=localrc)

:

my_setting = 42

contains

subroutine my_grid_proc_init (gridcomp, importState, exportState, clock, rc)

:

! my_setting is possibly uninitialized when my_grid_proc_init is used as a call-back

something = my_setting

:

end subroutine my_grid_proc_init

end subroutine my_procs

end module my_procs_mod

The Fortran standard does not specify whether variable my_setting is statically or automatically allocated, unless it is

explicitly given the SAVE attribute. Thus there is no guarantee that its value will persist after my_procs has finished.

105

The SAVE attribute is usually given to a variable via specifying a SAVE attribute in its delaration. However it can also

be inferred by initializing the variable in its declaration:

:

integer, save : my_setting

:

or,

:

integer :: my_setting = 42

:

Because of the potential initialization issues, it is recommended that internal procedures only be used as ESMF call-

backs when the surrounding procedure is also active.

17 GridComp Class

17.1 Description

In Earth system modeling, the most natural way to think about an ESMF Gridded Component, or ESMF_GridComp,

is as a piece of code representing a particular physical domain, such as an atmospheric model or an ocean model.

Gridded Components may also represent individual processes, such as radiation or chemistry. It’s up to the application

writer to decide how deeply to “componentize.”

Earth system software components tend to share a number of basic features. Most ingest and produce a variety

of physical fields, refer to a (possibly noncontiguous) spatial region and a grid that is partitioned across a set of

computational resources, and require a clock for things like stepping a governing set of PDEs forward in time. Most

can also be divided into distinct initialize, run, and finalize computational phases. These common characteristics are

used within ESMF to define a Gridded Component data structure that is tailored for Earth system modeling and yet is

still flexible enough to represent a variety of domains.

A well designed Gridded Component does not store information internally about how it couples to other Gridded

Components. That allows it to be used in different contexts without changes to source code. The idea here is to avoid

situations in which slightly different versions of the same model source are maintained for use in different contexts -

standalone vs. coupled versions, for example. Data is passed in and out of Gridded Components using an ESMF State,

this is described in Section 21.1.

An ESMF Gridded Component has two parts, one which is user-written and another which is part of the framework.

The user-written part is software that represents a physical domain or performs some other computational function. It

forms the body of the Gridded Component. It may be a piece of legacy code, or it may be developed expressly for use

with ESMF. It must contain routines with standard ESMF interfaces that can be called to initialize, run, and finalize the

Gridded Component. These routines can have separate callable phases, such as distinct first and second initialization

steps.

ESMF provides the Gridded Component derived type, ESMF_GridComp. An ESMF_GridComp must be created

for every portion of the application that will be represented as a separate component. For example, in a climate model,

there may be Gridded Components representing the land, ocean, sea ice, and atmosphere. If the application contains

an ensemble of identical Gridded Components, every one has its own associated ESMF_GridComp. Each Gridded

106

Component has its own name and is allocated a set of computational resources, in the form of an ESMF Virtual

Machine, or VM.

The user-written part of a Gridded Component is associated with an ESMF_GridComp derived type through a routine

called ESMF_SetServices(). This is a routine that the user must write, and declare public. Inside the SetServices

routine the user must call ESMF_SetEntryPoint() methods that associate a standard ESMF operation with the

name of the corresponding Fortran subroutine in their user code.

17.2 Use and Examples

A Gridded Component is a computational entity which consumes and produces data. It uses a State object to exchange

data between itself and other Components. It uses a Clock object to manage time, and a VM to describe its own and

its child components’ computational resources.

This section shows how to create Gridded Components. For demonstrations of the use of Gridded Components,

see the system tests that are bundled with the ESMF software distribution. These can be found in the directory

esmf/src/system_tests.

17.2.1 Implement a user-code SetServices routine

Every ESMF_GridComp is required to provide and document a public set services routine. It can have any name,
but must follow the declaration below: a subroutine which takes an ESMF_GridComp as the first argument, and an
integer return code as the second. Both arguments are required and must not be declared as optional. If an intent
is specified in the interface it must be intent(inout) for the first and intent(out) for the second argument.

The set services routine must call the ESMF method ESMF_GridCompSetEntryPoint() to register with the
framework what user-code subroutines should be called to initialize, run, and finalize the component. There are
additional routines which can be registered as well, for checkpoint and restart functions.

Note that the actual subroutines being registered do not have to be public to this module; only the set services routine
itself must be available to be used by other code.

! Example Gridded Component

module ESMF_GriddedCompEx

! ESMF Framework module

use ESMF

implicit none

public GComp_SetServices

public GComp_SetVM

contains

subroutine GComp_SetServices(comp, rc)

type(ESMF_GridComp) :: comp ! must not be optional

integer, intent(out) :: rc ! must not be optional

! Set the entry points for standard ESMF Component methods

call ESMF_GridCompSetEntryPoint(comp, ESMF_METHOD_INITIALIZE, &

userRoutine=GComp_Init, rc=rc)

call ESMF_GridCompSetEntryPoint(comp, ESMF_METHOD_RUN, &

userRoutine=GComp_Run, rc=rc)

call ESMF_GridCompSetEntryPoint(comp, ESMF_METHOD_FINALIZE, &

107

userRoutine=GComp_Final, rc=rc)

rc = ESMF_SUCCESS

end subroutine

17.2.2 Implement a user-code Initialize routine

When a higher level component is ready to begin using an ESMF_GridComp, it will call its initialize routine.

The component writer must supply a subroutine with the exact interface shown below. Arguments must not be declared
as optional, and the types and order must match.

At initialization time the component can allocate data space, open data files, set up initial conditions; anything it needs
to do to prepare to run.

The rc return code should be set if an error occurs, otherwise the value ESMF_SUCCESS should be returned.

subroutine GComp_Init(comp, importState, exportState, clock, rc)

type(ESMF_GridComp) :: comp ! must not be optional

type(ESMF_State) :: importState ! must not be optional

type(ESMF_State) :: exportState ! must not be optional

type(ESMF_Clock) :: clock ! must not be optional

integer, intent(out) :: rc ! must not be optional

print *, "Gridded Comp Init starting"

! This is where the model specific setup code goes.

! If the initial Export state needs to be filled, do it here.

!call ESMF_StateAdd(exportState, field, rc)

!call ESMF_StateAdd(exportState, bundle, rc)

print *, "Gridded Comp Init returning"

rc = ESMF_SUCCESS

end subroutine GComp_Init

17.2.3 Implement a user-code Run routine

During the execution loop, the run routine may be called many times. Each time it should read data from the
importState, use the clock to determine what the current time is in the calling component, compute new values
or process the data, and produce any output and place it in the exportState.

When a higher level component is ready to use the ESMF_GridComp it will call its run routine.

The component writer must supply a subroutine with the exact interface shown below. Arguments must not be declared
as optional, and the types and order must match.

108

It is expected that this is where the bulk of the model computation or data analysis will occur.

The rc return code should be set if an error occurs, otherwise the value ESMF_SUCCESS should be returned.

subroutine GComp_Run(comp, importState, exportState, clock, rc)

type(ESMF_GridComp) :: comp ! must not be optional

type(ESMF_State) :: importState ! must not be optional

type(ESMF_State) :: exportState ! must not be optional

type(ESMF_Clock) :: clock ! must not be optional

integer, intent(out) :: rc ! must not be optional

print *, "Gridded Comp Run starting"

! call ESMF_StateGet(), etc to get fields, bundles, arrays

! from import state.

! This is where the model specific computation goes.

! Fill export state here using ESMF_StateAdd(), etc

print *, "Gridded Comp Run returning"

rc = ESMF_SUCCESS

end subroutine GComp_Run

17.2.4 Implement a user-code Finalize routine

At the end of application execution, each ESMF_GridComp should deallocate data space, close open files, and flush
final results. These functions should be placed in a finalize routine.

The component writer must supply a subroutine with the exact interface shown below. Arguments must not be declared
as optional, and the types and order must match.

The rc return code should be set if an error occurs, otherwise the value ESMF_SUCCESS should be returned.

subroutine GComp_Final(comp, importState, exportState, clock, rc)

type(ESMF_GridComp) :: comp ! must not be optional

type(ESMF_State) :: importState ! must not be optional

type(ESMF_State) :: exportState ! must not be optional

type(ESMF_Clock) :: clock ! must not be optional

integer, intent(out) :: rc ! must not be optional

print *, "Gridded Comp Final starting"

! Add whatever code here needed

print *, "Gridded Comp Final returning"

rc = ESMF_SUCCESS

end subroutine GComp_Final

109

17.2.5 Implement a user-code SetVM routine

Every ESMF_GridComp can optionally provide and document a public set vm routine. It can have any name, but
must follow the declaration below: a subroutine which takes an ESMF_GridComp as the first argument, and an
integer return code as the second. Both arguments are required and must not be declared as optional. If an intent
is specified in the interface it must be intent(inout) for the first and intent(out) for the second argument.

The set vm routine is the only place where the child component can use the ESMF_GridCompSetVMMaxPEs(), or
ESMF_GridCompSetVMMaxThreads(), or ESMF_GridCompSetVMMinThreads() call to modify aspects
of its own VM.

A component’s VM is started up right before its set services routine is entered. ESMF_GridCompSetVM() is
executing in the parent VM, and must be called before ESMF_GridCompSetServices().

subroutine GComp_SetVM(comp, rc)

type(ESMF_GridComp) :: comp ! must not be optional

integer, intent(out) :: rc ! must not be optional

type(ESMF_VM) :: vm

logical :: pthreadsEnabled

! Test for Pthread support, all SetVM calls require it

call ESMF_VMGetGlobal(vm, rc=rc)

call ESMF_VMGet(vm, pthreadsEnabledFlag=pthreadsEnabled, rc=rc)

if (pthreadsEnabled) then

! run PETs single-threaded

call ESMF_GridCompSetVMMinThreads(comp, rc=rc)

endif

rc = ESMF_SUCCESS

end subroutine

end module ESMF_GriddedCompEx

17.2.6 Set and Get the Internal State

ESMF provides the concept of an Internal State that is associated with a Component. Through the Internal State API a
user can attach a private data block to a Component, and later retrieve a pointer to this memory allocation. Setting and
getting of Internal State information are supported from anywhere in the Component’s SetServices, Initialize, Run, or
Finalize code.

The code below demonstrates the basic Internal State API of ESMF_<Grid|Cpl>SetInternalState() and
ESMF_<Grid|Cpl>GetInternalState(). Notice that an extra level of indirection to the user data is neces-
sary!

! ESMF Framework module

use ESMF

use ESMF_TestMod

110

implicit none

type(ESMF_GridComp) :: comp

integer :: rc, finalrc

! Internal State Variables

type testData

sequence

integer :: testValue

real :: testScaling

end type

type dataWrapper

sequence

type(testData), pointer :: p

end type

type(dataWrapper) :: wrap1, wrap2

type(testData), target :: data

type(testData), pointer :: datap ! extra level of indirection

!---

call ESMF_Initialize(defaultlogfilename="InternalStateEx.Log", &

logkindflag=ESMF_LOGKIND_MULTI, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

!---

! Creation of a Component

comp = ESMF_GridCompCreate(name="test", rc=rc)

if (rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

!---

! This could be called, for example, during a Component’s initialize phase.

! Initialize private data block

data%testValue = 4567

data%testScaling = 0.5

! Set Internal State

wrap1%p => data

call ESMF_GridCompSetInternalState(comp, wrap1, rc)

if (rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

!---

! This could be called, for example, during a Component’s run phase.

! Get Internal State

call ESMF_GridCompGetInternalState(comp, wrap2, rc)

if (rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! Access private data block and verify data

datap => wrap2%p

111

if ((datap%testValue .ne. 4567) .or. (datap%testScaling .ne. 0.5)) then

print *, "did not get same values back"

finalrc = ESMF_FAILURE

else

print *, "got same values back from GetInternalState as original"

endif

When working with ESMF Internal States it is important to consider the applying scoping rules. The user must
ensure that the private data block that is being referenced persists for the entire access period. This is not an issue
in the previous example, where the private data block was defined on the scope of the main program. However, the
Internal State construct is often useful inside of Component modules to hold Component specific data between calls.
One option to ensure persisting private data blocks is to use the Fortran SAVE attribute either on local or module
variables. A second option, illustrated in the following example, is to use Fortran pointers and user controlled memory
management via allocate() and deallocate() calls.

One situation where the Internal State is useful is in the creation of ensembles of the same Component. In this case
it can be tricky to distinguish which data, held in saved module variables, belongs to which ensemble member -
especially if the ensemble members are executing on the same set of PETs. The Internal State solves this problem by
providing a handle to instance specific data allocations.

module user_mod

use ESMF

implicit none

! module variables

private

! Internal State Variables

type testData

sequence

integer :: testValue ! scalar data

real :: testScaling ! scalar data

real, pointer :: testArray(:) ! array data

end type

type dataWrapper

sequence

type(testData), pointer :: p

end type

contains !--

subroutine mygcomp_init(gcomp, istate, estate, clock, rc)

type(ESMF_GridComp):: gcomp

type(ESMF_State):: istate, estate

112

type(ESMF_Clock):: clock

integer, intent(out):: rc

! Local variables

type(dataWrapper) :: wrap

type(testData), pointer :: data

integer :: i

rc = ESMF_SUCCESS

! Allocate private data block

allocate(data)

! Initialize private data block

data%testValue = 4567 ! initialize scalar data

data%testScaling = 0.5 ! initialize scalar data

allocate(data%testArray(10)) ! allocate array data

do i=1, 10

data%testArray(i) = real(i) ! initialize array data

enddo

! In a real ensemble application the initial data would be set to

! something unique for this ensemble member. This could be

! accomplished for example by reading a member specific config file

! that was specified by the driver code. Alternatively, Attributes,

! set by the driver, could be used to label the Component instances

! as specific ensemble members.

! Set Internal State

wrap%p => data

call ESMF_GridCompSetInternalState(gcomp, wrap, rc)

end subroutine !---

subroutine mygcomp_run(gcomp, istate, estate, clock, rc)

type(ESMF_GridComp):: gcomp

type(ESMF_State):: istate, estate

type(ESMF_Clock):: clock

integer, intent(out):: rc

! Local variables

type(dataWrapper) :: wrap

type(testData), pointer :: data

logical :: match = .true.

integer :: i

rc = ESMF_SUCCESS

! Get Internal State

call ESMF_GridCompGetInternalState(gcomp, wrap, rc)

if (rc/=ESMF_SUCCESS) return

! Access private data block and verify data

data => wrap%p

113

if (data%testValue .ne. 4567) match = .false. ! test scalar data

if (data%testScaling .ne. 0.5) match = .false. ! test scalar data

do i=1, 10

if (data%testArray(i) .ne. real(i)) match = .false. ! test array data

enddo

if (match) then

print *, "got same values back from GetInternalState as original"

else

print *, "did not get same values back"

rc = ESMF_FAILURE

endif

end subroutine !---

subroutine mygcomp_final(gcomp, istate, estate, clock, rc)

type(ESMF_GridComp):: gcomp

type(ESMF_State):: istate, estate

type(ESMF_Clock):: clock

integer, intent(out):: rc

! Local variables

type(dataWrapper) :: wrap

type(testData), pointer :: data

rc = ESMF_SUCCESS

! Get Internal State

call ESMF_GridCompGetInternalState(gcomp, wrap, rc)

if (rc/=ESMF_SUCCESS) return

! Deallocate private data block

data => wrap%p

deallocate(data%testArray) ! deallocate array data

deallocate(data)

end subroutine !--

end module

17.3 Restrictions and Future Work

1. No optional arguments. User-written routines called by SetServices, and registered for Initialize, Run and

Finalize, must not declare any of the arguments as optional.

2. Namespace isolation. If possible, Gridded Components should attempt to make all data private, so public

names do not interfere with data in other components.

3. Single execution mode. It is not expected that a single Gridded Component be able to function in both se-

quential and concurrent modes, although Gridded Components of different types can be nested. For example, a

concurrently called Gridded Component can contain several nested sequential Gridded Components.

114

17.4 Class API

17.4.1 ESMF_GridCompAssignment(=) - GridComp assignment

INTERFACE:

interface assignment(=)

gridcomp1 = gridcomp2

ARGUMENTS:

type(ESMF_GridComp) :: gridcomp1

type(ESMF_GridComp) :: gridcomp2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Assign gridcomp1 as an alias to the same ESMF GridComp object in memory as gridcomp2. If gridcomp2 is invalid,
then gridcomp1 will be equally invalid after the assignment.

The arguments are:

gridcomp1 The ESMF_GridComp object on the left hand side of the assignment.

gridcomp2 The ESMF_GridComp object on the right hand side of the assignment.

17.4.2 ESMF_GridCompOperator(==) - GridComp equality operator

INTERFACE:

interface operator(==)

if (gridcomp1 == gridcomp2) then ... endif

OR

result = (gridcomp1 == gridcomp2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_GridComp), intent(in) :: gridcomp1

type(ESMF_GridComp), intent(in) :: gridcomp2

115

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Test whether gridcomp1 and gridcomp2 are valid aliases to the same ESMF GridComp object in memory. For a more
general comparison of two ESMF GridComps, going beyond the simple alias test, the ESMF_GridCompMatch()
function (not yet implemented) must be used.

The arguments are:

gridcomp1 The ESMF_GridComp object on the left hand side of the equality operation.

gridcomp2 The ESMF_GridComp object on the right hand side of the equality operation.

17.4.3 ESMF_GridCompOperator(/=) - GridComp not equal operator

INTERFACE:

interface operator(/=)

if (gridcomp1 /= gridcomp2) then ... endif

OR

result = (gridcomp1 /= gridcomp2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_GridComp), intent(in) :: gridcomp1

type(ESMF_GridComp), intent(in) :: gridcomp2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Test whether gridcomp1 and gridcomp2 are not valid aliases to the same ESMF GridComp object in memory. For a
more general comparison of two ESMF GridComps, going beyond the simple alias test, the ESMF_GridCompMatch()
function (not yet implemented) must be used.

The arguments are:

116

gridcomp1 The ESMF_GridComp object on the left hand side of the non-equality operation.

gridcomp2 The ESMF_GridComp object on the right hand side of the non-equality operation.

17.4.4 ESMF_GridCompCreate - Create a GridComp

INTERFACE:

recursive function ESMF_GridCompCreate(grid, gridList, &

mesh, meshList, locstream, locstreamList, xgrid, xgridList, &

config, configFile, clock, petList, contextflag, name, rc)

RETURN VALUE:

type(ESMF_GridComp) :: ESMF_GridCompCreate

ARGUMENTS:

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Grid), intent(in), optional :: grid

type(ESMF_Grid), intent(in), optional :: gridList(:)

type(ESMF_Mesh), intent(in), optional :: mesh

type(ESMF_Mesh), intent(in), optional :: meshList(:)

type(ESMF_LocStream), intent(in), optional :: locstream

type(ESMF_LocStream), intent(in), optional :: locstreamList(:)

type(ESMF_XGrid), intent(in), optional :: xgrid

type(ESMF_XGrid), intent(in), optional :: xgridList(:)

type(ESMF_Config), intent(in), optional :: config

character(len=*), intent(in), optional :: configFile

type(ESMF_Clock), intent(in), optional :: clock

integer, intent(in), optional :: petList(:)

type(ESMF_Context_Flag), intent(in), optional :: contextflag

character(len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

7.1.0r Added arguments gridList, mesh, meshList, locstream, locstreamList, xgrid, and
xgridList. These arguments add support for holding references to multiple geom objects, either of
the same type, or different type, in the same ESMF_GridComp object.

117

DESCRIPTION:

This interface creates an ESMF_GridComp object. By default, a separate VM context will be created for each
component. This implies creating a new MPI communicator and allocating additional memory to manage the VM
resources. When running on a large number of processors, creating a separate VM for each component could be both
time and memory inefficient. If the application is sequential, i.e., each component is running on all the PETs of the
global VM, it will be more efficient to use the global VM instead of creating a new one. This can be done by setting
contextflag to ESMF_CONTEXT_PARENT_VM.

The return value is the new ESMF_GridComp.

The arguments are:

[grid] Associate an ESMF_Grid object with the newly created component. This is simply a convenience feature for
the user. The ESMF library code does not access the grid object. The grid argument is mutually exclusive
with the gridList argument. If both arguments are provided, the routine will fail, and an error is returned in
rc. By default, i.e. if neither grid nor gridList are provided, no ESMF_Grid objects are associated with
the component.

[gridList] Associate a list of ESMF_Grid objects with the newly created component. This is simply a convenience
feature for the user. The ESMF library code does not access the gridList object. The gridList argument
is mutually exclusive with the grid argument. If both arguments are provided, the routine will fail, and an
error is returned in rc. By default, i.e. if neither grid nor gridList are provided, no ESMF_Grid objects
are associated with the component.

[mesh] Associate an ESMF_Mesh object with the newly created component. This is simply a convenience feature for
the user. The ESMF library code does not access the mesh object. The mesh argument is mutually exclusive
with the meshList argument. If both arguments are provided, the routine will fail, and an error is returned in
rc. By default, i.e. if neither mesh nor meshList are provided, no ESMF_Mesh objects are associated with
the component.

[meshList] Associate a list of ESMF_Mesh objects with the newly created component. This is simply a convenience
feature for the user. The ESMF library code does not access the meshList object. The meshList argument
is mutually exclusive with the mesh argument. If both arguments are provided, the routine will fail, and an
error is returned in rc. By default, i.e. if neither mesh nor meshList are provided, no ESMF_Mesh objects
are associated with the component.

[locstream] Associate an ESMF_LocStream object with the newly created component. This is simply a conve-
nience feature for the user. The ESMF library code does not access the locstream object. The locstream
argument is mutually exclusive with the locstreamList argument. If both arguments are provided, the rou-
tine will fail, and an error is returned in rc. By default, i.e. if neither locstream nor locstreamList are
provided, no ESMF_LocStream objects are associated with the component.

[locstreamList] Associate a list of ESMF_LocStream objects with the newly created component. This is simply
a convenience feature for the user. The ESMF library code does not access the locstreamList object.
The locstreamList argument is mutually exclusive with the locstream argument. If both arguments
are provided, the routine will fail, and an error is returned in rc. By default, i.e. if neither locstream nor
locstreamList are provided, no ESMF_LocStream objects are associated with the component.

[xgrid] Associate an ESMF_XGrid object with the newly created component. This is simply a convenience feature
for the user. The ESMF library code does not access the xgrid object. The xgrid argument is mutually
exclusive with the xgridList argument. If both arguments are provided, the routine will fail, and an error is
returned in rc. By default, i.e. if neither xgrid nor xgridList are provided, no ESMF_XGrid objects are
associated with the component.

[xgridList] Associate a list of ESMF_XGrid objects with the newly created component. This is simply a convenience
feature for the user. The ESMF library code does not access the xgridList object. The xgridList argu-
ment is mutually exclusive with the xgrid argument. If both arguments are provided, the routine will fail, and

118

an error is returned in rc. By default, i.e. if neither xgrid nor xgridList are provided, no ESMF_XGrid
objects are associated with the component.

[config] An already-created ESMF_Config object to be attached to the newly created component. If both config
and configFile arguments are specified, config takes priority.

[configFile] The filename of an ESMF_Config format file. If specified, a new ESMF_Config object is created and
attached to the newly created component. The configFile file is opened and associated with the new config
object. If both config and configFile arguments are specified, config takes priority.

[clock] Component-specific ESMF_Clock. This clock is available to be queried and updated by the new
ESMF_GridComp as it chooses. This should not be the parent component clock, which should be maintained
and passed down to the initialize/run/finalize routines separately.

[petList] List of parent PETs given to the created child component by the parent component. If petList is not
specified all of the parent PETs will be given to the child component. The order of PETs in petList determines
how the child local PETs refer back to the parent PETs.

[contextflag] Specify the component’s VM context. The default context is ESMF_CONTEXT_OWN_VM. See section
52.10 for a complete list of valid flags.

[name] Name of the newly-created ESMF_GridComp. This name can be altered from within the ESMF_GridComp
code once the initialization routine is called.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

17.4.5 ESMF_GridCompDestroy - Release resources associated with a GridComp

INTERFACE:

recursive subroutine ESMF_GridCompDestroy(gridcomp, &

timeout, timeoutFlag, rc)

ARGUMENTS:

type(ESMF_GridComp), intent(inout) :: gridcomp

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: timeout

logical, intent(out), optional :: timeoutFlag

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

119

5.3.0 Added argument timeout. Added argument timeoutFlag. The new arguments provide access to the
fault-tolerant component features.

DESCRIPTION:

Destroys an ESMF_GridComp, releasing the resources associated with the object.

The arguments are:

gridcomp Release all resources associated with this ESMF_GridComp and mark the object as invalid. It is an error
to pass this object into any other routines after being destroyed.

[timeout] The maximum period in seconds that this call will wait in communications with the actual component,
before returning with a timeout condition. The default is 3600, i.e. 1 hour. The timeout argument is only
supported for connected dual components.

[timeoutFlag] Returns .true. if the timeout was reached, .false. otherwise. If timeoutFlag was not
provided, a timeout condition will lead to a return code of rc \= ESMF_SUCCESS. Otherwise the return
value of timeoutFlag is the sole indicator of a timeout condition.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

17.4.6 ESMF_GridCompFinalize - Call the GridComp’s finalize routine

INTERFACE:

recursive subroutine ESMF_GridCompFinalize(gridcomp, &

importState, exportState, clock, syncflag, phase, timeout, timeoutFlag, &

userRc, rc)

ARGUMENTS:

type(ESMF_GridComp), intent(inout) :: gridcomp

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_State), intent(inout), optional :: importState

type(ESMF_State), intent(inout), optional :: exportState

type(ESMF_Clock), intent(inout), optional :: clock

type(ESMF_Sync_Flag), intent(in), optional :: syncflag

integer, intent(in), optional :: phase

integer, intent(in), optional :: timeout

logical, intent(out), optional :: timeoutFlag

integer, intent(out), optional :: userRc

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

120

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

5.3.0 Added argument timeout. Added argument timeoutFlag. The new arguments provide access to the
fault-tolerant component features.

DESCRIPTION:

Call the associated user-supplied finalization routine for an ESMF_GridComp.

The arguments are:

gridcomp The ESMF_GridComp to call finalize routine for.

[importState] ESMF_State containing import data. If not present, a dummy argument will be passed to the user-
supplied routine. The importState argument in the user code cannot be optional.

[exportState] ESMF_State containing export data. If not present, a dummy argument will be passed to the user-
supplied routine. The exportState argument in the user code cannot be optional.

[clock] External ESMF_Clock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations. If not present, a dummy argument will be passed to the user-supplied routine.
The clock argument in the user code cannot be optional.

[syncflag] Blocking behavior of this method call. See section 52.57 for a list of valid blocking options. Default option
is ESMF_SYNC_VASBLOCKING which blocks PETs and their spawned off threads across each VAS but does
not synchronize PETs that run in different VASs.

[phase] Component providers must document whether each of their routines are single-phase or multi-phase. Single-
phase routines require only one invocation to complete their work. Multi-phase routines provide multiple sub-
routines to accomplish the work, accommodating components which must complete part of their work, return to
the caller and allow other processing to occur, and then continue the original operation. For multiple-phase child
components, this is the integer phase number to be invoked. For single-phase child components this argument
is optional. The default is 1.

[timeout] The maximum period in seconds that this call will wait in communications with the actual component,
before returning with a timeout condition. The default is 3600, i.e. 1 hour. The timeout argument is only
supported for connected dual components.

[timeoutFlag] Returns .true. if the timeout was reached, .false. otherwise. If timeoutFlag was not
provided, a timeout condition will lead to a return code of rc \= ESMF_SUCCESS. Otherwise the return
value of timeoutFlag is the sole indicator of a timeout condition.

[userRc] Return code set by userRoutine before returning.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

121

17.4.7 ESMF_GridCompGet - Get GridComp information

INTERFACE:

recursive subroutine ESMF_GridCompGet(gridcomp, &

gridIsPresent, grid, gridList, meshIsPresent, mesh, meshList, &

locstreamIsPresent, locstream, locstreamList, xgridIsPresent, &

xgrid, xgridList, importStateIsPresent, importState, &

exportStateIsPresent, exportState, configIsPresent, config, &

configFileIsPresent, configFile, clockIsPresent, clock, localPet, &

petCount, contextflag, currentMethod, currentPhase, comptype, &

vmIsPresent, vm, name, rc)

ARGUMENTS:

type(ESMF_GridComp), intent(in) :: gridcomp

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(out), optional :: gridIsPresent

type(ESMF_Grid), intent(out), optional :: grid

type(ESMF_Grid), allocatable, intent(out), optional :: gridList(:)

logical, intent(out), optional :: meshIsPresent

type(ESMF_Mesh), intent(out), optional :: mesh

type(ESMF_Mesh), allocatable, intent(out), optional :: meshList(:)

logical, intent(out), optional :: locstreamIsPresent

type(ESMF_LocStream), intent(out), optional :: locstream

type(ESMF_LocStream), allocatable, intent(out), optional :: locstreamList(:)

logical, intent(out), optional :: xgridIsPresent

type(ESMF_XGrid), intent(out), optional :: xgrid

type(ESMF_XGrid), allocatable, intent(out), optional :: xgridList(:)

logical, intent(out), optional :: importStateIsPresent

type(ESMF_State), intent(out), optional :: importState

logical, intent(out), optional :: exportStateIsPresent

type(ESMF_State), intent(out), optional :: exportState

logical, intent(out), optional :: configIsPresent

type(ESMF_Config), intent(out), optional :: config

logical, intent(out), optional :: configFileIsPresent

character(len=*), intent(out), optional :: configFile

logical, intent(out), optional :: clockIsPresent

type(ESMF_Clock), intent(out), optional :: clock

integer, intent(out), optional :: localPet

integer, intent(out), optional :: petCount

type(ESMF_Context_Flag), intent(out), optional :: contextflag

type(ESMF_Method_Flag), intent(out), optional :: currentMethod

integer, intent(out), optional :: currentPhase

type(ESMF_CompType_Flag), intent(out), optional :: comptype

logical, intent(out), optional :: vmIsPresent

type(ESMF_VM), intent(out), optional :: vm

character(len=*), intent(out), optional :: name

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

122

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

7.1.0r Added arguments gridList, meshIsPresent, mesh, meshList, locstreamIsPresent,
locstream, locstreamList, xgridIsPresent, xgrid, and xgridList. These arguments
add support for accessing references to multiple geom objects, either of the same type, or different type,
associated with the same ESMF_GridComp object.

DESCRIPTION:

Get information about an ESMF_GridComp object.

The arguments are:

gridcomp The ESMF_GridComp object being queried.

[gridIsPresent] Set to .true. if at least one ESMF_Grid object is associated with the gridcomp component.
Set to .false. otherwise.

[grid] Return the ESMF_Grid object associated with the gridcomp component. If multiple ESMF_Grid objects
are associated, return the first in the list. It is an error to query for grid if no ESMF_Grid object is associated
with the gridcomp component. If unsure, query for gridIsPresent first, or use the gridList variant.

[gridList] Return a list of all ESMF_Grid objects associated with the gridcomp component. The size of the
returned gridList corresponds to the number of ESMF_Grid objects associated. If no ESMF_Grid object
is associated with the gridcomp component, the size of the returned gridList is zero.

[meshIsPresent] Set to .true. if at least one ESMF_Mesh object is associated with the gridcomp component.
Set to .false. otherwise.

[mesh] Return the ESMF_Mesh object associated with the gridcomp component. If multiple ESMF_Mesh objects
are associated, return the first in the list. It is an error to query for mesh if no ESMF_Mesh object is associated
with the gridcomp component. If unsure, query for meshIsPresent first, or use the meshList variant.

[meshList] Return a list of all ESMF_Mesh objects associated with the gridcomp component. The size of the
returned meshList corresponds to the number of ESMF_Mesh objects associated. If no ESMF_Mesh object
is associated with the gridcomp component, the size of the returned meshList is zero.

[locstreamIsPresent] Set to .true. if at least one ESMF_LocStream object is associated with the gridcomp
component. Set to .false. otherwise.

[locstream] Return the ESMF_LocStream object associated with the gridcomp component. If multiple
ESMF_LocStream objects are associated, return the first in the list. It is an error to query for
locstream if no ESMF_Grid object is associated with the gridcomp component. If unsure, query for
locstreamIsPresent first, or use the locstreamList variant.

[locstreamList] Return a list of all ESMF_LocStream objects associated with the gridcomp component. The
size of the returned locstreamList corresponds to the number of ESMF_LocStream objects associ-
ated. If no ESMF_LocStream object is associated with the gridcomp component, the size of the returned
locstreamList is zero.

[xgridIsPresent] Set to .true. if at least one ESMF_XGrid object is associated with the gridcomp component.
Set to .false. otherwise.

123

[xgrid] Return the ESMF_XGrid object associated with the gridcomp component. If multiple ESMF_XGrid

objects are associated, return the first in the list. It is an error to query for xgrid if no ESMF_XGrid ob-
ject is associated with the gridcomp component. If unsure, query for xgridIsPresent first, or use the
xgridList variant.

[xgridList] Return a list of all ESMF_XGrid objects associated with the gridcomp component. The size of the
returned xgridList corresponds to the number of ESMF_XGrid objects associated. If no ESMF_XGrid

object is associated with the gridcomp component, the size of the returned xgridList is zero.

[importStateIsPresent] .true. if importState was set in GridComp object, .false. otherwise.

[importState] Return the associated import State. It is an error to query for the import State if none is associated with
the GridComp. If unsure, get importStateIsPresent first to determine the status.

[exportStateIsPresent] .true. if exportState was set in GridComp object, .false. otherwise.

[exportState] Return the associated export State. It is an error to query for the export State if none is associated with
the GridComp. If unsure, get exportStateIsPresent first to determine the status.

[configIsPresent] .true. if config was set in GridComp object, .false. otherwise.

[config] Return the associated Config. It is an error to query for the Config if none is associated with the GridComp.
If unsure, get configIsPresent first to determine the status.

[configFileIsPresent] .true. if configFile was set in GridComp object, .false. otherwise.

[configFile] Return the associated configuration filename. It is an error to query for the configuration filename if none
is associated with the GridComp. If unsure, get configFileIsPresent first to determine the status.

[clockIsPresent] .true. if clock was set in GridComp object, .false. otherwise.

[clock] Return the associated Clock. It is an error to query for the Clock if none is associated with the GridComp. If
unsure, get clockIsPresent first to determine the status.

[localPet] Return the local PET id within the ESMF_GridComp object.

[petCount] Return the number of PETs in the the ESMF_GridComp object.

[contextflag] Return the ESMF_Context_Flag for this ESMF_GridComp. See section 52.10 for a complete list
of valid flags.

[currentMethod] Return the current ESMF_Method_Flag of the ESMF_GridComp execution. See section 52.42
for a complete list of valid options.

[currentPhase] Return the current phase of the ESMF_GridComp execution.

[comptype] Return the Component type. See section 52.9 for a complete list of valid flags.

[vmIsPresent] .true. if vm was set in GridComp object, .false. otherwise.

[vm] Return the associated VM. It is an error to query for the VM if none is associated with the GridComp. If unsure,
get vmIsPresent first to determine the status.

[name] Return the name of the ESMF_GridComp.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

124

17.4.8 ESMF_GridCompGetInternalState - Get private data block pointer

INTERFACE:

subroutine ESMF_GridCompGetInternalState(gridcomp, wrappedDataPointer, rc)

ARGUMENTS:

type(ESMF_GridComp) :: gridcomp

type(wrapper) :: wrappedDataPointer

integer, intent(out) :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Available to be called by an ESMF_GridComp at any time after ESMF_GridCompSetInternalState has been
called. Since init, run, and finalize must be separate subroutines, data that they need to share in common can either
be module global data, or can be allocated in a private data block and the address of that block can be registered with
the framework and retrieved by this call. When running multiple instantiations of an ESMF_GridComp, for example
during ensemble runs, it may be simpler to maintain private data specific to each run with private data blocks. A
corresponding ESMF_GridCompSetInternalState call sets the data pointer to this block, and this call retrieves
the data pointer. Note that the wrappedDataPointer argument needs to be a derived type which contains only a
pointer of the type of the data block defined by the user. When making this call the pointer needs to be unassociated.
When the call returns, the pointer will now reference the original data block which was set during the previous call to
ESMF_GridCompSetInternalState.

Only the last data block set via ESMF_GridCompSetInternalState will be accessible.

CAUTION: This method does not have an explicit Fortran interface. Do not specify argument keywords when calling
this method!

The arguments are:

gridcomp An ESMF_GridComp object.

wrappedDataPointer A derived type (wrapper), containing only an unassociated pointer to the private data block.
The framework will fill in the pointer. When this call returns, the pointer is set to the same address set during
the last ESMF_GridCompSetInternalState call. This level of indirection is needed to reliably set and
retrieve the data block no matter which architecture or compiler is used.

rc Return code; equals ESMF_SUCCESS if there are no errors. Note: unlike most other ESMF routines, this argument
is not optional because of implementation considerations.

17.4.9 ESMF_GridCompInitialize - Call the GridComp’s initialize routine

INTERFACE:

125

recursive subroutine ESMF_GridCompInitialize(gridcomp, &

importState, exportState, clock, syncflag, phase, timeout, timeoutFlag, &

userRc, rc)

ARGUMENTS:

type(ESMF_GridComp), intent(inout) :: gridcomp

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_State), intent(inout), optional :: importState

type(ESMF_State), intent(inout), optional :: exportState

type(ESMF_Clock), intent(inout), optional :: clock

type(ESMF_Sync_Flag), intent(in), optional :: syncflag

integer, intent(in), optional :: phase

integer, intent(in), optional :: timeout

logical, intent(out), optional :: timeoutFlag

integer, intent(out), optional :: userRc

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

5.3.0 Added argument timeout. Added argument timeoutFlag. The new arguments provide access to the
fault-tolerant component features.

DESCRIPTION:

Call the associated user initialization routine for an ESMF_GridComp.

The arguments are:

gridcomp ESMF_GridComp to call initialize routine for.

[importState] ESMF_State containing import data for coupling. If not present, a dummy argument will be passed
to the user-supplied routine. The importState argument in the user code cannot be optional.

[exportState] ESMF_State containing export data for coupling. If not present, a dummy argument will be passed
to the user-supplied routine. The exportState argument in the user code cannot be optional.

[clock] External ESMF_Clock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations. If not present, a dummy argument will be passed to the user-supplied routine.
The clock argument in the user code cannot be optional.

[syncflag] Blocking behavior of this method call. See section 52.57 for a list of valid blocking options. Default option
is ESMF_SYNC_VASBLOCKING which blocks PETs and their spawned off threads across each VAS but does
not synchronize PETs that run in different VASs.

126

[phase] Component providers must document whether each of their routines are single-phase or multi-phase. Single-
phase routines require only one invocation to complete their work. Multi-phase routines provide multiple sub-
routines to accomplish the work, accommodating components which must complete part of their work, return to
the caller and allow other processing to occur, and then continue the original operation. For multiple-phase child
components, this is the integer phase number to be invoked. For single-phase child components this argument
is optional. The default is 1.

[timeout] The maximum period in seconds that this call will wait in communications with the actual component,
before returning with a timeout condition. The default is 3600, i.e. 1 hour. The timeout argument is only
supported for connected dual components.

[timeoutFlag] Returns .true. if the timeout was reached, .false. otherwise. If timeoutFlag was not
provided, a timeout condition will lead to a return code of rc \= ESMF_SUCCESS. Otherwise the return
value of timeoutFlag is the sole indicator of a timeout condition.

[userRc] Return code set by userRoutine before returning.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

17.4.10 ESMF_GridCompIsCreated - Check whether a GridComp object has been created

INTERFACE:

function ESMF_GridCompIsCreated(gridcomp, rc)

RETURN VALUE:

logical :: ESMF_GridCompIsCreated

ARGUMENTS:

type(ESMF_GridComp), intent(in) :: gridcomp

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Return .true. if the gridcomp has been created. Otherwise return .false.. If an error occurs, i.e. rc /=

ESMF_SUCCESS is returned, the return value of the function will also be .false..

The arguments are:

gridcomp ESMF_GridComp queried.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

127

17.4.11 ESMF_GridCompIsPetLocal - Inquire if this GridComp is to execute on the calling PET

INTERFACE:

recursive function ESMF_GridCompIsPetLocal(gridcomp, rc)

RETURN VALUE:

logical :: ESMF_GridCompIsPetLocal

ARGUMENTS:

type(ESMF_GridComp), intent(in) :: gridcomp

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Inquire if this ESMF_GridComp object is to execute on the calling PET.

The return value is .true. if the component is to execute on the calling PET, .false. otherwise.

The arguments are:

gridcomp ESMF_GridComp queried.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

17.4.12 ESMF_GridCompPrint - Print GridComp information

INTERFACE:

subroutine ESMF_GridCompPrint(gridcomp, rc)

ARGUMENTS:

type(ESMF_GridComp), intent(in) :: gridcomp

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

128

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Prints information about an ESMF_GridComp to stdout.

The arguments are:

gridcomp ESMF_GridComp to print.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

17.4.13 ESMF_GridCompReadRestart - Call the GridComp’s read restart routine

INTERFACE:

recursive subroutine ESMF_GridCompReadRestart(gridcomp, &

importState, exportState, clock, syncflag, phase, timeout, timeoutFlag, &

userRc, rc)

ARGUMENTS:

type(ESMF_GridComp), intent(inout) :: gridcomp

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_State), intent(inout), optional :: importState

type(ESMF_State), intent(inout), optional :: exportState

type(ESMF_Clock), intent(inout), optional :: clock

type(ESMF_Sync_Flag), intent(in), optional :: syncflag

integer, intent(in), optional :: phase

integer, intent(in), optional :: timeout

logical, intent(out), optional :: timeoutFlag

integer, intent(out), optional :: userRc

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

5.3.0 Added argument timeout. Added argument timeoutFlag. The new arguments provide access to the
fault-tolerant component features.

129

DESCRIPTION:

Call the associated user read restart routine for an ESMF_GridComp.

The arguments are:

gridcomp ESMF_GridComp to call run routine for.

[importState] ESMF_State containing import data. If not present, a dummy argument will be passed to the user-
supplied routine. The importState argument in the user code cannot be optional.

[exportState] ESMF_State containing export data. If not present, a dummy argument will be passed to the user-
supplied routine. The exportState argument in the user code cannot be optional.

[clock] External ESMF_Clock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations. If not present, a dummy argument will be passed to the user-supplied routine.
The clock argument in the user code cannot be optional.

[syncflag] Blocking behavior of this method call. See section 52.57 for a list of valid blocking options. Default option
is ESMF_SYNC_VASBLOCKING which blocks PETs and their spawned off threads across each VAS but does
not synchronize PETs that run in different VASs.

[phase] Component providers must document whether each of their routines are single-phase or multi-phase. Single-
phase routines require only one invocation to complete their work. Multi-phase routines provide multiple sub-
routines to accomplish the work, accommodating components which must complete part of their work, return to
the caller and allow other processing to occur, and then continue the original operation. For multiple-phase child
components, this is the integer phase number to be invoked. For single-phase child components this argument
is optional. The default is 1.

[timeout] The maximum period in seconds that this call will wait in communications with the actual component,
before returning with a timeout condition. The default is 3600, i.e. 1 hour. The timeout argument is only
supported for connected dual components.

[timeoutFlag] Returns .true. if the timeout was reached, .false. otherwise. If timeoutFlag was not
provided, a timeout condition will lead to a return code of rc \= ESMF_SUCCESS. Otherwise the return
value of timeoutFlag is the sole indicator of a timeout condition.

[userRc] Return code set by userRoutine before returning.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

17.4.14 ESMF_GridCompRun - Call the GridComp’s run routine

INTERFACE:

recursive subroutine ESMF_GridCompRun(gridcomp, &

importState, exportState, clock, syncflag, phase, timeout, timeoutFlag, &

userRc, rc)

ARGUMENTS:

130

type(ESMF_GridComp), intent(inout) :: gridcomp

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_State), intent(inout), optional :: importState

type(ESMF_State), intent(inout), optional :: exportState

type(ESMF_Clock), intent(inout), optional :: clock

type(ESMF_Sync_Flag), intent(in), optional :: syncflag

integer, intent(in), optional :: phase

integer, intent(in), optional :: timeout

logical, intent(out), optional :: timeoutFlag

integer, intent(out), optional :: userRc

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

5.3.0 Added argument timeout. Added argument timeoutFlag. The new arguments provide access to the
fault-tolerant component features.

DESCRIPTION:

Call the associated user run routine for an ESMF_GridComp.

The arguments are:

gridcomp ESMF_GridComp to call run routine for.

[importState] ESMF_State containing import data. If not present, a dummy argument will be passed to the user-
supplied routine. The importState argument in the user code cannot be optional.

[exportState] ESMF_State containing export data. If not present, a dummy argument will be passed to the user-
supplied routine. The exportState argument in the user code cannot be optional.

[clock] External ESMF_Clock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations. If not present, a dummy argument will be passed to the user-supplied routine.
The clock argument in the user code cannot be optional.

[syncflag] Blocking behavior of this method call. See section 52.57 for a list of valid blocking options. Default option
is ESMF_SYNC_VASBLOCKING which blocks PETs and their spawned off threads across each VAS but does
not synchronize PETs that run in different VASs.

[phase] Component providers must document whether each of their routines are single-phase or multi-phase. Single-
phase routines require only one invocation to complete their work. Multi-phase routines provide multiple sub-
routines to accomplish the work, accommodating components which must complete part of their work, return to
the caller and allow other processing to occur, and then continue the original operation. For multiple-phase child
components, this is the integer phase number to be invoked. For single-phase child components this argument
is optional. The default is 1.

131

[timeout] The maximum period in seconds that this call will wait in communications with the actual component,
before returning with a timeout condition. The default is 3600, i.e. 1 hour. The timeout argument is only
supported for connected dual components.

[timeoutFlag] Returns .true. if the timeout was reached, .false. otherwise. If timeoutFlag was not
provided, a timeout condition will lead to a return code of rc \= ESMF_SUCCESS. Otherwise the return
value of timeoutFlag is the sole indicator of a timeout condition.

[userRc] Return code set by userRoutine before returning.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

17.4.15 ESMF_GridCompServiceLoop - Call the GridComp’s service loop routine

INTERFACE:

recursive subroutine ESMF_GridCompServiceLoop(gridcomp, &

importState, exportState, clock, syncflag, port, timeout, timeoutFlag, rc)

ARGUMENTS:

type(ESMF_GridComp), intent(inout) :: gridcomp

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_State), intent(inout), optional :: importState

type(ESMF_State), intent(inout), optional :: exportState

type(ESMF_Clock), intent(inout), optional :: clock

type(ESMF_Sync_Flag), intent(in), optional :: syncflag

integer, intent(in), optional :: port

integer, intent(in), optional :: timeout

logical, intent(out), optional :: timeoutFlag

integer, intent(out), optional :: rc

DESCRIPTION:

Call the ServiceLoop routine for an ESMF_GridComp. This tries to establish a "component tunnel" between the
actual Component (calling this routine) and a dual Component connecting to it through a matching SetServices call.

The arguments are:

gridcomp ESMF_GridComp to call service loop routine for.

[importState] ESMF_State containing import data for coupling. If not present, a dummy argument will be passed
to the user-supplied routine. The importState argument in the user code cannot be optional.

[exportState] ESMF_State containing export data for coupling. If not present, a dummy argument will be passed
to the user-supplied routine. The exportState argument in the user code cannot be optional.

[clock] External ESMF_Clock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations. If not present, a dummy argument will be passed to the user-supplied routine.
The clock argument in the user code cannot be optional.

132

[syncflag] Blocking behavior of this method call. See section 52.57 for a list of valid blocking options. Default option
is ESMF_SYNC_VASBLOCKING which blocks PETs and their spawned off threads across each VAS but does
not synchronize PETs that run in different VASs.

[port] In case a port number is provided, the "component tunnel" is established using sockets. The actual component
side, i.e. the side that calls into ESMF_GridCompServiceLoop(), starts to listen on the specified port as
the server. The valid port range is [1024, 65535]. In case the port argument is not specified, the "component
tunnel" is established within the same executable using local communication methods (e.g. MPI).

[timeout] The maximum period in seconds that this call will wait for communications with the dual component,
before returning with a timeout condition. The default is 3600, i.e. 1 hour. (NOTE: Currently this option is only
available for socket based component tunnels.)

[timeoutFlag] Returns .true. if the timeout was reached, .false. otherwise. If timeoutFlag was not
provided, a timeout condition will lead to a return code of rc \= ESMF_SUCCESS. Otherwise the return
value of timeoutFlag is the sole indicator of a timeout condition.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

17.4.16 ESMF_GridCompSet - Set or reset information about the GridComp

INTERFACE:

subroutine ESMF_GridCompSet(gridcomp, grid, gridList, &

mesh, meshList, locstream, locstreamList, xgrid, xgridList, &

config, configFile, clock, name, rc)

ARGUMENTS:

type(ESMF_GridComp), intent(inout) :: gridcomp

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Grid), intent(in), optional :: grid

type(ESMF_Grid), intent(in), optional :: gridList(:)

type(ESMF_Mesh), intent(in), optional :: mesh

type(ESMF_Mesh), intent(in), optional :: meshList(:)

type(ESMF_LocStream), intent(in), optional :: locstream

type(ESMF_LocStream), intent(in), optional :: locstreamList(:)

type(ESMF_XGrid), intent(in), optional :: xgrid

type(ESMF_XGrid), intent(in), optional :: xgridList(:)

type(ESMF_Config), intent(in), optional :: config

character(len=*), intent(in), optional :: configFile

type(ESMF_Clock), intent(in), optional :: clock

character(len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

133

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

7.1.0r Added arguments gridList, mesh, meshList, locstream, locstreamList, xgrid, and
xgridList. These arguments add support for holding references to multiple geom objects, either of
the same type, or different type, in the same ESMF_GridComp object.

DESCRIPTION:

Sets or resets information about an ESMF_GridComp.

The arguments are:

gridcomp ESMF_GridComp to change.

[grid] Associate an ESMF_Grid object with the gridcomp component. This is simply a convenience feature for
the user. The ESMF library code does not access the grid object. The grid argument is mutually exclusive
with the gridList argument. If both arguments are provided, the routine will fail, and an error is returned in
rc. By default, i.e. if neither grid nor gridList are provided, the ESMF_Grid association of the incoming
gridcomp component remains unchanged.

[gridList] Associate a list of ESMF_Grid objects with the gridcomp component. This is simply a convenience
feature for the user. The ESMF library code does not access the gridList object. The gridList argument
is mutually exclusive with the grid argument. If both arguments are provided, the routine will fail, and an error
is returned in rc. By default, i.e. if neither grid nor gridList are provided, the ESMF_Grid association
of the incoming gridcomp component remains unchanged.

[mesh] Associate an ESMF_Mesh object with the gridcomp component. This is simply a convenience feature for
the user. The ESMF library code does not access the mesh object. The mesh argument is mutually exclusive
with the meshList argument. If both arguments are provided, the routine will fail, and an error is returned in
rc. By default, i.e. if neither mesh nor meshList are provided, the ESMF_Mesh association of the incoming
gridcomp component remains unchanged.

[meshList] Associate a list of ESMF_Mesh objects with the gridcomp component. This is simply a convenience
feature for the user. The ESMF library code does not access the meshList object. The meshList argument
is mutually exclusive with the mesh argument. If both arguments are provided, the routine will fail, and an error
is returned in rc. By default, i.e. if neither mesh nor meshList are provided, the ESMF_Mesh association
of the incoming gridcomp component remains unchanged.

[locstream] Associate an ESMF_LocStream object with the gridcomp component. This is simply a convenience
feature for the user. The ESMF library code does not access the locstream object. The locstream argu-
ment is mutually exclusive with the locstreamList argument. If both arguments are provided, the routine
will fail, and an error is returned in rc. By default, i.e. if neither locstream nor locstreamList are
provided, the ESMF_LocStream association of the incoming gridcomp component remains unchanged.

[locstreamList] Associate a list of ESMF_LocStream objects with the gridcomp component. This is simply a
convenience feature for the user. The ESMF library code does not access the locstreamList object. The
locstreamList argument is mutually exclusive with the locstream argument. If both arguments are
provided, the routine will fail, and an error is returned in rc. By default, i.e. if neither locstream nor
locstreamList are provided, the ESMF_LocStream association of the incoming gridcomp component
remains unchanged.

[xgrid] Associate an ESMF_XGrid object with the gridcomp component. This is simply a convenience feature for
the user. The ESMF library code does not access the xgrid object. The xgrid argument is mutually exclusive

134

with the xgridList argument. If both arguments are provided, the routine will fail, and an error is returned
in rc. By default, i.e. if neither xgrid nor xgridList are provided, the ESMF_XGrid association of the
incoming gridcomp component remains unchanged.

[xgridList] Associate a list of ESMF_XGrid objects with the gridcomp component. This is simply a convenience
feature for the user. The ESMF library code does not access the xgridList object. The xgridList argu-
ment is mutually exclusive with the xgrid argument. If both arguments are provided, the routine will fail, and
an error is returned in rc. By default, i.e. if neither xgrid nor xgridList are provided, the ESMF_XGrid
association of the incoming gridcomp component remains unchanged.

[config] An already-created ESMF_Config object to be attached to the component. If both config and
configFile arguments are specified, config takes priority.

[configFile] The filename of an ESMF_Config format file. If specified, a new ESMF_Config object is created and
attached to the component. The configFile file is opened and associated with the new config object. If both
config and configFile arguments are specified, config takes priority.

[clock] Set the private clock for this ESMF_GridComp.

[name] Set the name of the ESMF_GridComp.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

17.4.17 ESMF_GridCompSetEntryPoint - Set user routine as entry point for standard GridComp method

INTERFACE:

recursive subroutine ESMF_GridCompSetEntryPoint(gridcomp, methodflag, &

userRoutine, phase, rc)

ARGUMENTS:

type(ESMF_GridComp), intent(inout) :: gridcomp

type(ESMF_Method_Flag), intent(in) :: methodflag

interface

subroutine userRoutine(gridcomp, importState, exportState, clock, rc)

use ESMF_CompMod

use ESMF_StateMod

use ESMF_ClockMod

implicit none

type(ESMF_GridComp) :: gridcomp ! must not be optional

type(ESMF_State) :: importState ! must not be optional

type(ESMF_State) :: exportState ! must not be optional

type(ESMF_Clock) :: clock ! must not be optional

integer, intent(out) :: rc ! must not be optional

end subroutine

end interface

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: phase

integer, intent(out), optional :: rc

135

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Registers a user-supplied userRoutine as the entry point for one of the predefined Component methodflags.
After this call the userRoutine becomes accessible via the standard Component method API.

The arguments are:

gridcomp An ESMF_GridComp object.

methodflag One of a set of predefined Component methods - e.g. ESMF_METHOD_INITIALIZE,
ESMF_METHOD_RUN, ESMF_METHOD_FINALIZE. See section 52.42 for a complete list of valid method
options.

userRoutine The user-supplied subroutine to be associated for this Component method. Argument types, intent and
order must match the interface signature, and must not have the optional attribute. Prior to Fortran-2008, the
subroutine must be either a module scope procedure, or an external procedure that has a matching interface block
specified for it. An internal procedure which is contained within another procedure must not be used. From
Fortran-2008 onwards, an internal procedure contained within either a main program or a module procedure
may be used. If the internal procedure is contained within a module procedure, it is subject to initialization
requirements. See: 16.4.9

[phase] The phase number for multi-phase methods. For single phase methods the phase argument can be omitted.
The default setting is 1.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

17.4.18 ESMF_GridCompSetInternalState - Set private data block pointer

INTERFACE:

subroutine ESMF_GridCompSetInternalState(gridcomp, wrappedDataPointer, rc)

ARGUMENTS:

type(ESMF_GridComp) :: gridcomp

type(wrapper) :: wrappedDataPointer

integer, intent(out) :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

136

DESCRIPTION:

Available to be called by an ESMF_GridComp at any time, but expected to be most useful when called during the
registration process, or initialization. Since init, run, and finalize must be separate subroutines, data that they need to
share in common can either be module global data, or can be allocated in a private data block and the address of that
block can be registered with the framework and retrieved by subsequent calls. When running multiple instantiations
of an ESMF_GridComp, for example during ensemble runs, it may be simpler to maintain private data specific to
each run with private data blocks. A corresponding ESMF_GridCompGetInternalState call retrieves the data
pointer.

Only the last data block set via ESMF_GridCompSetInternalState will be accessible.

CAUTION: This method does not have an explicit Fortran interface. Do not specify argument keywords when calling
this method!

The arguments are:

gridcomp An ESMF_GridComp object.

wrappedDataPointer A pointer to the private data block, wrapped in a derived type which contains only a pointer
to the block. This level of indirection is needed to reliably set and retrieve the data block no matter which
architecture or compiler is used.

rc Return code; equals ESMF_SUCCESS if there are no errors. Note: unlike most other ESMF routines, this argument
is not optional because of implementation considerations.

17.4.19 ESMF_GridCompSetServices - Call user routine to register GridComp methods

INTERFACE:

recursive subroutine ESMF_GridCompSetServices(gridcomp, &

userRoutine, userRc, rc)

ARGUMENTS:

type(ESMF_GridComp), intent(inout) :: gridcomp

interface

subroutine userRoutine(gridcomp, rc)

use ESMF_CompMod

implicit none

type(ESMF_GridComp) :: gridcomp ! must not be optional

integer, intent(out) :: rc ! must not be optional

end subroutine

end interface

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: userRc

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

137

DESCRIPTION:

Call into user provided userRoutinewhich is responsible for setting Component’s Initialize(), Run(), and Finalize()
services.

The arguments are:

gridcomp Gridded Component.

userRoutine The Component writer must supply a subroutine with the exact interface shown above for the
userRoutine argument. Arguments in userRoutine must not be declared as optional, and the types,
intent and order must match. Prior to Fortran-2008, the subroutine must be either a module scope procedure, or
an external procedure that has a matching interface block specified for it. An internal procedure which is con-
tained within another procedure must not be used. From Fortran-2008 onwards, an internal procedure contained
within either a main program or a module procedure may be used. If the internal procedure is contained within
a module procedure, it is subject to initialization requirements. See: 16.4.9

The userRoutine, when called by the framework, must make successive calls to
ESMF_GridCompSetEntryPoint() to preset callback routines for standard Component Initialize(),
Run(), and Finalize() methods.

[userRc] Return code set by userRoutine before returning.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

17.4.20 ESMF_GridCompSetServices - Call user routine through name lookup, to register GridComp meth-

ods

INTERFACE:

! Private name; call using ESMF_GridCompSetServices()

recursive subroutine ESMF_GridCompSetServicesShObj(gridcomp, userRoutine, &

sharedObj, userRoutineFound, userRc, rc)

ARGUMENTS:

type(ESMF_GridComp), intent(inout) :: gridcomp

character(len=*), intent(in) :: userRoutine

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character(len=*), intent(in), optional :: sharedObj

logical, intent(out), optional :: userRoutineFound

integer, intent(out), optional :: userRc

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

138

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

6.3.0r Added argument userRoutineFound. The new argument provides a way to test availability without
causing error conditions.

DESCRIPTION:

Call into a user provided routine which is responsible for setting Component’s Initialize(), Run(), and Finalize()
services. The named userRoutine must exist in the executable, or in the shared object specified by sharedObj.
In the latter case all of the platform specific details about dynamic linking and loading apply.

The arguments are:

gridcomp Gridded Component.

userRoutine Name of routine to be called, specified as a character string. The Component writer must supply a
subroutine with the exact interface shown for userRoutine below. Arguments must not be declared as
optional, and the types, intent and order must match. Prior to Fortran-2008, the subroutine must be either
a module scope procedure, or an external procedure that has a matching interface block specified for it. An
internal procedure which is contained within another procedure must not be used. From Fortran-2008 onwards,
an internal procedure contained within either a main program or a module procedure may be used. If the internal
procedure is contained within a module procedure, it is subject to initialization requirements. See: 16.4.9

INTERFACE:

interface

subroutine userRoutine(gridcomp, rc)

type(ESMF_GridComp) :: gridcomp ! must not be optional

integer, intent(out) :: rc ! must not be optional

end subroutine

end interface

DESCRIPTION:

The userRoutine, when called by the framework, must make successive calls to
ESMF_GridCompSetEntryPoint() to preset callback routines for standard Component Initialize(),
Run(), and Finalize() methods.

[sharedObj] Name of shared object that contains userRoutine. If the sharedObj argument is not provided the
executable itself will be searched for userRoutine.

[userRoutineFound] Report back whether the specified userRoutine was found and executed, or was not avail-
able. If this argument is present, not finding the userRoutine will not result in returning an error in rc. The
default is to return an error if the userRoutine cannot be found.

[userRc] Return code set by userRoutine before returning.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

139

17.4.21 ESMF_GridCompSetServices - Set to serve as Dual Component for an Actual Component

INTERFACE:

! Private name; call using ESMF_GridCompSetServices()

recursive subroutine ESMF_GridCompSetServicesComp(gridcomp, &

actualGridcomp, rc)

ARGUMENTS:

type(ESMF_GridComp), intent(inout) :: gridcomp

type(ESMF_GridComp), intent(in) :: actualGridcomp

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Set the services of a Gridded Component to serve a "dual" Component for an "actual" Component. The component
tunnel is VM based.

The arguments are:

gridcomp Dual Gridded Component.

actualGridcomp Actual Gridded Component.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

17.4.22 ESMF_GridCompSetServices - Set to serve as Dual Component for an Actual Component through

sockets

INTERFACE:

! Private name; call using ESMF_GridCompSetServices()

recursive subroutine ESMF_GridCompSetServicesSock(gridcomp, port, &

server, timeout, timeoutFlag, rc)

ARGUMENTS:

type(ESMF_GridComp), intent(inout) :: gridcomp

integer, intent(in) :: port

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character(len=*), intent(in), optional :: server

integer, intent(in), optional :: timeout

logical, intent(out), optional :: timeoutFlag

integer, intent(out), optional :: rc

140

DESCRIPTION:

Set the services of a Gridded Component to serve a "dual" Component for an "actual" Component. The component
tunnel is socket based.

The arguments are:

gridcomp Dual Gridded Component.

port Port number under which the actual component is being served. The valid port range is [1024, 65535].

[server] Server name where the actual component is being served. The default, i.e. if the server argument was not
provided, is localhost.

[timeout] The maximum period in seconds that this call will wait in communications with the actual component,
before returning with a timeout condition. The default is 3600, i.e. 1 hour.

[timeoutFlag] Returns .true. if the timeout was reached, .false. otherwise. If timeoutFlag was not
provided, a timeout condition will lead to a return code of rc \= ESMF_SUCCESS. Otherwise the return
value of timeoutFlag is the sole indicator of a timeout condition.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

17.4.23 ESMF_GridCompSetVM - Call user routine to set GridComp VM properties

INTERFACE:

recursive subroutine ESMF_GridCompSetVM(gridcomp, userRoutine, &

userRc, rc)

ARGUMENTS:

type(ESMF_GridComp), intent(inout) :: gridcomp

interface

subroutine userRoutine(gridcomp, rc)

use ESMF_CompMod

implicit none

type(ESMF_GridComp) :: gridcomp ! must not be optional

integer, intent(out) :: rc ! must not be optional

end subroutine

end interface

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: userRc

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

141

DESCRIPTION:

Optionally call into user provided userRoutine which is responsible for setting Component’s VM properties.

The arguments are:

gridcomp Gridded Component.

userRoutine The Component writer must supply a subroutine with the exact interface shown above for the
userRoutine argument. Arguments in userRoutine must not be declared as optional, and the types,
intent and order must match. Prior to Fortran-2008, the subroutine must be either a module scope procedure, or
an external procedure that has a matching interface block specified for it. An internal procedure which is con-
tained within another procedure must not be used. From Fortran-2008 onwards, an internal procedure contained
within either a main program or a module procedure may be used. If the internal procedure is contained within
a module procedure, it is subject to initialization requirements. See: 16.4.9

The subroutine, when called by the framework, is expected to use any of the ESMF_GridCompSetVMxxx()
methods to set the properties of the VM associated with the Gridded Component.

[userRc] Return code set by userRoutine before returning.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

17.4.24 ESMF_GridCompSetVM - Call user routine through name lookup, to set GridComp VM properties

INTERFACE:

! Private name; call using ESMF_GridCompSetVM()

recursive subroutine ESMF_GridCompSetVMShObj(gridcomp, userRoutine, &

sharedObj, userRc, rc)

ARGUMENTS:

type(ESMF_GridComp), intent(inout) :: gridcomp

character(len=*), intent(in) :: userRoutine

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character(len=*), intent(in), optional :: sharedObj

integer, intent(out), optional :: userRc

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Optionally call into user provided userRoutine which is responsible for setting Component’s VM properties. The
named userRoutine must exist in the executable, or in the shared object specified by sharedObj. In the latter
case all of the platform specific details about dynamic linking and loading apply.

The arguments are:

142

gridcomp Gridded Component.

userRoutine Routine to be called, specified as a character string. The Component writer must supply a subroutine
with the exact interface shown for userRoutine below. Arguments must not be declared as optional, and
the types, intent and order must match. Prior to Fortran-2008, the subroutine must be either a module scope
procedure, or an external procedure that has a matching interface block specified for it. An internal procedure
which is contained within another procedure must not be used. From Fortran-2008 onwards, an internal proce-
dure contained within either a main program or a module procedure may be used. If the internal procedure is
contained within a module procedure, it is subject to initialization requirements. See: 16.4.9

INTERFACE:

interface

subroutine userRoutine(gridcomp, rc)

type(ESMF_GridComp) :: gridcomp ! must not be optional

integer, intent(out) :: rc ! must not be optional

end subroutine

end interface

DESCRIPTION:

The subroutine, when called by the framework, is expected to use any of the ESMF_GridCompSetVMxxx()
methods to set the properties of the VM associated with the Gridded Component.

[sharedObj] Name of shared object that contains userRoutine. If the sharedObj argument is not provided the
executable itself will be searched for userRoutine.

[userRc] Return code set by userRoutine before returning.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

17.4.25 ESMF_GridCompSetVMMaxPEs - Associate PEs with PETs in GridComp VM

INTERFACE:

subroutine ESMF_GridCompSetVMMaxPEs(gridcomp, &

maxPeCountPerPet, prefIntraProcess, prefIntraSsi, prefInterSsi, &

minStackSize, openMpHandling, openMpNumThreads, rc)

ARGUMENTS:

type(ESMF_GridComp), intent(inout) :: gridcomp

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: maxPeCountPerPet

integer, intent(in), optional :: prefIntraProcess

integer, intent(in), optional :: prefIntraSsi

integer, intent(in), optional :: prefInterSsi

integer, intent(in), optional :: minStackSize

character(*), intent(in), optional :: openMpHandling

integer, intent(in), optional :: openMpNumThreads

integer, intent(out), optional :: rc

143

DESCRIPTION:

Set characteristics of the ESMF_VM for this ESMF_GridComp. Attempts to associate up to maxPeCountPerPet
PEs with each PET. Only PEs that are located on the same single system image (SSI) can be associated with the same
PET. Within this constraint the call tries to get as close as possible to the number specified by maxPeCountPerPet.

The other constraint to this call is that the number of PEs is preserved. This means that the child Component in the end
is associated with as many PEs as the parent Component provided to the child. The number of child PETs however is
adjusted according to the above rule.

The typical use of ESMF_GridCompSetVMMaxPEs() is to allocate multiple PEs per PET in a Component for
user-level threading, e.g. OpenMP.

The arguments are:

gridcomp ESMF_GridComp to set the ESMF_VM for.

[maxPeCountPerPet] Maximum number of PEs on each PET. Default for each SSI is the local number of PEs.

[prefIntraProcess] Communication preference within a single process. Currently options not documented. Use
default.

[prefIntraSsi] Communication preference within a single system image (SSI). Currently options not documented.
Use default.

[prefInterSsi] Communication preference between different single system images (SSIs). Currently options not doc-
umented. Use default.

[minStackSize] Minimum stack size in byte of any Pthread that is created in the VM with the intention of executing
user code as a PET. For cases where OpenMP threads are used by the user code, each thread allocates its own
private stack. For all threads other than the master, the stack size is set via the typical OMP_STACKSIZE
environment variable mechanism. The PET itself, however, becomes the master of the OpenMP thread team,
and is not affected by OMP_STACKSIZE. It is the master’s stack that can be sized via the minStackSize
argument, and a large enough size is often critical.

When minStackSize is absent, the default is to use the system default set by the limit or ulimit com-
mand. However, the stack of a Pthread cannot be unlimited, and a shell stacksize setting of unlimited, or any
setting below the ESMF implemented minimum, will result in setting the stack size to 20MiB (the ESMF mini-
mum). Depending on how much private data is used by the user code under the master thread, the default might
be too small, and minStackSize must be used to allocate sufficient stack space.

[openMpHandling] Handling of OpenMP threads. Supported options are:

• "none" - OpenMP handling is completely left to the user.

• "set" - ESMF uses the omp_set_num_threads() API to set the number of OpenMP threads in each
team.

• "init" - ESMF sets the number of OpenMP threads in each team, and triggers the instantiation of the
team.

• "pin" (default) - ESMF sets the number of OpenMP threads in each team, triggers the instantiation of the
team, and pins each OpenMP thread to the corresponding PE.

[openMpNumThreads] Number of OpenMP threads in each OpenMP thread team. This can be any positive number.
By default, or if openMpNumThreads is negative, each PET sets the number of OpenMP threads to its local
peCount.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

144

17.4.26 ESMF_GridCompSetVMMaxThreads - Set multi-threaded PETs in GridComp VM

INTERFACE:

subroutine ESMF_GridCompSetVMMaxThreads(gridcomp, &

maxPetCountPerVas, prefIntraProcess, prefIntraSsi, prefInterSsi, &

minStackSize, rc)

ARGUMENTS:

type(ESMF_GridComp), intent(inout) :: gridcomp

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: maxPetCountPerVas

integer, intent(in), optional :: prefIntraProcess

integer, intent(in), optional :: prefIntraSsi

integer, intent(in), optional :: prefInterSsi

integer, intent(in), optional :: minStackSize

integer, intent(out), optional :: rc

DESCRIPTION:

Set characteristics of the ESMF_VM for this ESMF_GridComp. Attempts to provide maxPetCountPerVas

threaded PETs in each virtual address space (VAS). Only as many threaded PETs as there are PEs located on the
single system image (SSI) can be associated with the VAS. Within this constraint the call tries to get as close as
possible to the number specified by maxPetCountPerVas.

The other constraint to this call is that the number of PETs is preserved. This means that the child Component in the
end is associated with as many PETs as the parent Component provided to the child. The threading level of the child
PETs however is adjusted according to the above rule.

The typical use of ESMF_GridCompSetVMMaxThreads() is to run a Component multi-threaded with groups of
PETs executing within a common virtual address space.

The arguments are:

gridcomp ESMF_GridComp to set the ESMF_VM for.

[maxPetCountPerVas] Maximum number of threaded PETs in each virtual address space (VAS). Default for each
SSI is the local number of PEs.

[prefIntraProcess] Communication preference within a single process. Currently options not documented. Use
default.

[prefIntraSsi] Communication preference within a single system image (SSI). Currently options not documented.
Use default.

[prefInterSsi] Communication preference between different single system images (SSIs). Currently options not doc-
umented. Use default.

[minStackSize] Minimum stack size in byte of any Pthread that is created in the VM with the intention of executing
user code as a PET. For cases where OpenMP threads are used by the user code, each thread allocates its own
private stack. For all threads other than the master, the stack size is set via the typical OMP_STACKSIZE
environment variable mechanism. The PET itself, however, becomes the master of the OpenMP thread team,
and is not affected by OMP_STACKSIZE. It is the master’s stack that can be sized via the minStackSize
argument, and a large enough size is often critical.

145

When minStackSize is absent, the default is to use the system default set by the limit or ulimit com-
mand. However, the stack of a Pthread cannot be unlimited, and a shell stacksize setting of unlimited, or any
setting below the ESMF implemented minimum, will result in setting the stack size to 20MiB (the ESMF mini-
mum). Depending on how much private data is used by the user code under the master thread, the default might
be too small, and minStackSize must be used to allocate sufficient stack space.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

17.4.27 ESMF_GridCompSetVMMinThreads - Set a reduced threading level in GridComp VM

INTERFACE:

subroutine ESMF_GridCompSetVMMinThreads(gridcomp, &

maxPeCountPerPet, prefIntraProcess, prefIntraSsi, prefInterSsi, &

minStackSize, rc)

ARGUMENTS:

type(ESMF_GridComp), intent(inout) :: gridcomp

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: maxPeCountPerPet

integer, intent(in), optional :: prefIntraProcess

integer, intent(in), optional :: prefIntraSsi

integer, intent(in), optional :: prefInterSsi

integer, intent(in), optional :: minStackSize

integer, intent(out), optional :: rc

DESCRIPTION:

Set characteristics of the ESMF_VM for this ESMF_GridComp. Reduces the number of threaded PETs in each VAS.
The max argument may be specified to limit the maximum number of PEs that a single PET can be associated with.

Several constraints apply: 1) the number of PEs cannot change, 2) PEs cannot migrate between single system images
(SSIs), 3) the number of PETs cannot increase, only decrease, 4) PETs cannot migrate between virtual address spaces
(VASs), nor can VASs migrate between SSIs.

The typical use of ESMF_GridCompSetVMMinThreads() is to run a Component across a set of single-threaded
PETs.

The arguments are:

gridcomp ESMF_GridComp to set the ESMF_VM for.

[maxPeCountPerPet] Maximum number of PEs on each PET. Default for each SSI is the local number of PEs.

[prefIntraProcess] Communication preference within a single process. Currently options not documented. Use
default.

[prefIntraSsi] Communication preference within a single system image (SSI). Currently options not documented.
Use default.

146

[prefInterSsi] Communication preference between different single system images (SSIs). Currently options not doc-
umented. Use default.

[minStackSize] Minimum stack size in byte of any Pthread that is created in the VM with the intention of executing
user code as a PET. For cases where OpenMP threads are used by the user code, each thread allocates its own
private stack. For all threads other than the master, the stack size is set via the typical OMP_STACKSIZE
environment variable mechanism. The PET itself, however, becomes the master of the OpenMP thread team,
and is not affected by OMP_STACKSIZE. It is the master’s stack that can be sized via the minStackSize
argument, and a large enough size is often critical.

When minStackSize is absent, the default is to use the system default set by the limit or ulimit com-
mand. However, the stack of a Pthread cannot be unlimited, and a shell stacksize setting of unlimited, or any
setting below the ESMF implemented minimum, will result in setting the stack size to 20MiB (the ESMF mini-
mum). Depending on how much private data is used by the user code under the master thread, the default might
be too small, and minStackSize must be used to allocate sufficient stack space.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

17.4.28 ESMF_GridCompValidate - Check validity of a GridComp

INTERFACE:

subroutine ESMF_GridCompValidate(gridcomp, rc)

ARGUMENTS:

type(ESMF_GridComp), intent(in) :: gridcomp

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Currently all this method does is to check that the gridcomp was created.

The arguments are:

gridcomp ESMF_GridComp to validate.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

147

17.4.29 ESMF_GridCompWait - Wait for a GridComp to return

INTERFACE:

subroutine ESMF_GridCompWait(gridcomp, syncflag, &

timeout, timeoutFlag, userRc, rc)

ARGUMENTS:

type(ESMF_GridComp), intent(inout) :: gridcomp

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Sync_Flag), intent(in), optional :: syncflag

integer, intent(in), optional :: timeout

logical, intent(out), optional :: timeoutFlag

integer, intent(out), optional :: userRc

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

5.3.0 Added argument timeout. Added argument timeoutFlag. The new arguments provide access to the
fault-tolerant component features.

DESCRIPTION:

When executing asynchronously, wait for an ESMF_GridComp to return.

The arguments are:

gridcomp ESMF_GridComp to wait for.

[syncflag] Blocking behavior of this method call. See section 52.57 for a list of valid blocking options. Default option
is ESMF_SYNC_VASBLOCKING which blocks PETs and their spawned off threads across each VAS but does
not synchronize PETs that run in different VASs.

[timeout] The maximum period in seconds the actual component is allowed to execute a previously invoked com-
ponent method before it must communicate back to the dual component. If the actual component does not
communicate back in the specified time, a timeout condition is raised on the dual side (this side). The default is
3600, i.e. 1 hour. The timeout argument is only supported for connected dual components.

[timeoutFlag] Returns .true. if the timeout was reached, .false. otherwise. If timeoutFlag was not
provided, a timeout condition will lead to a return code of rc \= ESMF_SUCCESS. Otherwise the return
value of timeoutFlag is the sole indicator of a timeout condition.

[userRc] Return code set by userRoutine before returning.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

148

17.4.30 ESMF_GridCompWriteRestart - Call the GridComp’s write restart routine

INTERFACE:

recursive subroutine ESMF_GridCompWriteRestart(gridcomp, &

importState, exportState, clock, syncflag, phase, timeout, timeoutFlag, &

userRc, rc)

ARGUMENTS:

type(ESMF_GridComp), intent(inout) :: gridcomp

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_State), intent(inout), optional :: importState

type(ESMF_State), intent(inout), optional :: exportState

type(ESMF_Clock), intent(inout), optional :: clock

type(ESMF_Sync_Flag), intent(in), optional :: syncflag

integer, intent(in), optional :: phase

integer, intent(in), optional :: timeout

logical, intent(out), optional :: timeoutFlag

integer, intent(out), optional :: userRc

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

5.3.0 Added argument timeout. Added argument timeoutFlag. The new arguments provide access to the
fault-tolerant component features.

DESCRIPTION:

Call the associated user write restart routine for an ESMF_GridComp.

The arguments are:

gridcomp ESMF_GridComp to call run routine for.

[importState] ESMF_State containing import data. If not present, a dummy argument will be passed to the user-
supplied routine. The importState argument in the user code cannot be optional.

[exportState] ESMF_State containing export data. If not present, a dummy argument will be passed to the user-
supplied routine. The exportState argument in the user code cannot be optional.

[clock] External ESMF_Clock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations. If not present, a dummy argument will be passed to the user-supplied routine.
The clock argument in the user code cannot be optional.

149

[syncflag] Blocking behavior of this method call. See section 52.57 for a list of valid blocking options. Default option
is ESMF_SYNC_VASBLOCKING which blocks PETs and their spawned off threads across each VAS but does
not synchronize PETs that run in different VASs.

[phase] Component providers must document whether each of their routines are single-phase or multi-phase. Single-
phase routines require only one invocation to complete their work. Multi-phase routines provide multiple sub-
routines to accomplish the work, accommodating components which must complete part of their work, return to
the caller and allow other processing to occur, and then continue the original operation. For multiple-phase child
components, this is the integer phase number to be invoked. For single-phase child components this argument
is optional. The default is 1.

[timeout] The maximum period in seconds that this call will wait in communications with the actual component,
before returning with a timeout condition. The default is 3600, i.e. 1 hour. The timeout argument is only
supported for connected dual components.

[timeoutFlag] Returns .true. if the timeout was reached, .false. otherwise. If timeoutFlag was not
provided, a timeout condition will lead to a return code of rc \= ESMF_SUCCESS. Otherwise the return
value of timeoutFlag is the sole indicator of a timeout condition.

[userRc] Return code set by userRoutine before returning.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

18 CplComp Class

18.1 Description

In a large, multi-component application such as a weather forecasting or climate prediction system running within

ESMF, physical domains and major system functions are represented as Gridded Components (see Section 17.1).

A Coupler Component, or ESMF_CplComp, arranges and executes the data transformations between the Gridded

Components. Ideally, Coupler Components should contain all the information about inter-component communication

for an application. This enables the Gridded Components in the application to be used in multiple contexts; that is, used

in different coupled configurations without changes to their source code. For example, the same atmosphere might

in one case be coupled to an ocean in a hurricane prediction model, and to a data assimilation system for numerical

weather prediction in another. A single Coupler Component can couple two or more Gridded Components.

Like Gridded Components, Coupler Components have two parts, one that is provided by the user and another that is

part of the framework. The user-written portion of the software is the coupling code necessary for a particular exchange

between Gridded Components. This portion of the Coupler Component code must be divided into separately callable

initialize, run, and finalize methods. The interfaces for these methods are prescribed by ESMF.

The term “user-written” is somewhat misleading here, since within a Coupler Component the user can leverage ESMF

infrastructure software for regridding, redistribution, lower-level communications, calendar management, and other

functions. However, ESMF is unlikely to offer all the software necessary to customize a data transfer between Gridded

Components. For instance, ESMF does not currently offer tools for unit tranformations or time averaging operations,

so users must manage those operations themselves.

The second part of a Coupler Component is the ESMF_CplComp derived type within ESMF. The user must create one

of these types to represent a specific coupling function, such as the regular transfer of data between a data assimilation

system and an atmospheric model. 2

The user-written part of a Coupler Component is associated with an ESMF_CplComp derived type through a rou-

tine called ESMF_SetServices(). This is a routine that the user must write and declare public. Inside the

2It is not necessary to create a Coupler Component for each individual data transfer.

150

ESMF_SetServices() routine the user must call ESMF_SetEntryPoint() methods that associate a stan-

dard ESMF operation with the name of the corresponding Fortran subroutine in their user code. For example, a user

routine called “couplerInit” might be associated with the standard initialize routine in a Coupler Component.

18.2 Use and Examples

A Coupler Component manages the transformation of data between Components. It contains a list of State objects

and the operations needed to make them compatible, including such things as regridding and unit conversion. Coupler

Components are user-written, following prescribed ESMF interfaces and, wherever desired, using ESMF infrastructure

tools.

18.2.1 Implement a user-code SetServices routine

Every ESMF_CplComp is required to provide and document a public set services routine. It can have any name,
but must follow the declaration below: a subroutine which takes an ESMF_CplComp as the first argument, and an
integer return code as the second. Both arguments are required and must not be declared as optional. If an intent
is specified in the interface it must be intent(inout) for the first and intent(out) for the second argument.

The set services routine must call the ESMF method ESMF_CplCompSetEntryPoint() to register with the
framework what user-code subroutines should be called to initialize, run, and finalize the component. There are
additional routines which can be registered as well, for checkpoint and restart functions.

Note that the actual subroutines being registered do not have to be public to this module; only the set services routine
itself must be available to be used by other code.

! Example Coupler Component

module ESMF_CouplerEx

! ESMF Framework module

use ESMF

implicit none

public CPL_SetServices

contains

subroutine CPL_SetServices(comp, rc)

type(ESMF_CplComp) :: comp ! must not be optional

integer, intent(out) :: rc ! must not be optional

! Set the entry points for standard ESMF Component methods

call ESMF_CplCompSetEntryPoint(comp, ESMF_METHOD_INITIALIZE, &

userRoutine=CPL_Init, rc=rc)

call ESMF_CplCompSetEntryPoint(comp, ESMF_METHOD_RUN, &

userRoutine=CPL_Run, rc=rc)

call ESMF_CplCompSetEntryPoint(comp, ESMF_METHOD_FINALIZE, &

userRoutine=CPL_Final, rc=rc)

rc = ESMF_SUCCESS

end subroutine

151

18.2.2 Implement a user-code Initialize routine

When a higher level component is ready to begin using an ESMF_CplComp, it will call its initialize routine.

The component writer must supply a subroutine with the exact interface shown below. Arguments must not be declared
as optional, and the types and order must match.

At initialization time the component can allocate data space, open data files, set up initial conditions; anything it needs
to do to prepare to run.

The rc return code should be set if an error occurs, otherwise the value ESMF_SUCCESS should be returned.

subroutine CPL_Init(comp, importState, exportState, clock, rc)

type(ESMF_CplComp) :: comp ! must not be optional

type(ESMF_State) :: importState ! must not be optional

type(ESMF_State) :: exportState ! must not be optional

type(ESMF_Clock) :: clock ! must not be optional

integer, intent(out) :: rc ! must not be optional

print *, "Coupler Init starting"

! Add whatever code here needed

! Precompute any needed values, fill in any inital values

! needed in Import States

rc = ESMF_SUCCESS

print *, "Coupler Init returning"

end subroutine CPL_Init

18.2.3 Implement a user-code Run routine

During the execution loop, the run routine may be called many times. Each time it should read data from the
importState, use the clock to determine what the current time is in the calling component, compute new values
or process the data, and produce any output and place it in the exportState.

When a higher level component is ready to use the ESMF_CplComp it will call its run routine.

The component writer must supply a subroutine with the exact interface shown below. Arguments must not be declared
as optional, and the types and order must match.

It is expected that this is where the bulk of the model computation or data analysis will occur.

The rc return code should be set if an error occurs, otherwise the value ESMF_SUCCESS should be returned.

subroutine CPL_Run(comp, importState, exportState, clock, rc)

type(ESMF_CplComp) :: comp ! must not be optional

type(ESMF_State) :: importState ! must not be optional

type(ESMF_State) :: exportState ! must not be optional

type(ESMF_Clock) :: clock ! must not be optional

integer, intent(out) :: rc ! must not be optional

152

print *, "Coupler Run starting"

! Add whatever code needed here to transform Export state data

! into Import states for the next timestep.

rc = ESMF_SUCCESS

print *, "Coupler Run returning"

end subroutine CPL_Run

18.2.4 Implement a user-code Finalize routine

At the end of application execution, each ESMF_CplComp should deallocate data space, close open files, and flush
final results. These functions should be placed in a finalize routine.

The component writer must supply a subroutine with the exact interface shown below. Arguments must not be declared
as optional, and the types and order must match.

The rc return code should be set if an error occurs, otherwise the value ESMF_SUCCESS should be returned.

subroutine CPL_Final(comp, importState, exportState, clock, rc)

type(ESMF_CplComp) :: comp ! must not be optional

type(ESMF_State) :: importState ! must not be optional

type(ESMF_State) :: exportState ! must not be optional

type(ESMF_Clock) :: clock ! must not be optional

integer, intent(out) :: rc ! must not be optional

print *, "Coupler Final starting"

! Add whatever code needed here to compute final values and

! finish the computation.

rc = ESMF_SUCCESS

print *, "Coupler Final returning"

end subroutine CPL_Final

18.2.5 Implement a user-code SetVM routine

Every ESMF_CplComp can optionally provide and document a public set vm routine. It can have any name, but must
follow the declaration below: a subroutine which takes an ESMF_CplComp as the first argument, and an integer return
code as the second. Both arguments are required and must not be declared as optional. If an intent is specified in
the interface it must be intent(inout) for the first and intent(out) for the second argument.

153

The set vm routine is the only place where the child component can use the ESMF_CplCompSetVMMaxPEs(), or
ESMF_CplCompSetVMMaxThreads(), or ESMF_CplCompSetVMMinThreads() call to modify aspects of
its own VM.

A component’s VM is started up right before its set services routine is entered. ESMF_CplCompSetVM() is execut-
ing in the parent VM, and must be called before ESMF_CplCompSetServices().

subroutine GComp_SetVM(comp, rc)

type(ESMF_CplComp) :: comp ! must not be optional

integer, intent(out) :: rc ! must not be optional

type(ESMF_VM) :: vm

logical :: pthreadsEnabled

! Test for Pthread support, all SetVM calls require it

call ESMF_VMGetGlobal(vm, rc=rc)

call ESMF_VMGet(vm, pthreadsEnabledFlag=pthreadsEnabled, rc=rc)

if (pthreadsEnabled) then

! run PETs single-threaded

call ESMF_CplCompSetVMMinThreads(comp, rc=rc)

endif

rc = ESMF_SUCCESS

end subroutine

end module ESMF_CouplerEx

18.3 Restrictions and Future Work

1. No optional arguments. User-written routines called by SetServices, and registered for Initialize, Run and

Finalize, must not declare any of the arguments as optional.

2. No Transforms. Components must exchange data through ESMF_State objects. The input data are available

at the time the component code is called, and data to be returned to another component are available when that

code returns.

3. No automatic unit conversions. The ESMF framework does not currently contain tools for performing unit

conversions, operations that are fairly standard within Coupler Components.

4. No accumulator. The ESMF does not have an accumulator tool, to perform time averaging of fields for cou-

pling. This is likely to be developed in the near term.

18.4 Class API

18.4.1 ESMF_CplCompAssignment(=) - CplComp assignment

INTERFACE:

154

interface assignment(=)

cplcomp1 = cplcomp2

ARGUMENTS:

type(ESMF_CplComp) :: cplcomp1

type(ESMF_CplComp) :: cplcomp2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Assign cplcomp1 as an alias to the same ESMF CplComp object in memory as cplcomp2. If cplcomp2 is invalid, then
cplcomp1 will be equally invalid after the assignment.

The arguments are:

cplcomp1 The ESMF_CplComp object on the left hand side of the assignment.

cplcomp2 The ESMF_CplComp object on the right hand side of the assignment.

18.4.2 ESMF_CplCompOperator(==) - CplComp equality operator

INTERFACE:

interface operator(==)

if (cplcomp1 == cplcomp2) then ... endif

OR

result = (cplcomp1 == cplcomp2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_CplComp), intent(in) :: cplcomp1

type(ESMF_CplComp), intent(in) :: cplcomp2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

155

DESCRIPTION:

Test whether cplcomp1 and cplcomp2 are valid aliases to the same ESMF CplComp object in memory. For a more gen-
eral comparison of two ESMF CplComps, going beyond the simple alias test, the ESMF_CplCompMatch() function
(not yet implemented) must be used.

The arguments are:

cplcomp1 The ESMF_CplComp object on the left hand side of the equality operation.

cplcomp2 The ESMF_CplComp object on the right hand side of the equality operation.

18.4.3 ESMF_CplCompOperator(/=) - CplComp not equal operator

INTERFACE:

interface operator(/=)

if (cplcomp1 /= cplcomp2) then ... endif

OR

result = (cplcomp1 /= cplcomp2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_CplComp), intent(in) :: cplcomp1

type(ESMF_CplComp), intent(in) :: cplcomp2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Test whether cplcomp1 and cplcomp2 are not valid aliases to the same ESMF CplComp object in memory. For a
more general comparison of two ESMF CplComps, going beyond the simple alias test, the ESMF_CplCompMatch()
function (not yet implemented) must be used.

The arguments are:

cplcomp1 The ESMF_CplComp object on the left hand side of the non-equality operation.

cplcomp2 The ESMF_CplComp object on the right hand side of the non-equality operation.

156

18.4.4 ESMF_CplCompCreate - Create a CplComp

INTERFACE:

recursive function ESMF_CplCompCreate(config, configFile, &

clock, petList, contextflag, name, rc)

RETURN VALUE:

type(ESMF_CplComp) :: ESMF_CplCompCreate

ARGUMENTS:

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Config), intent(in), optional :: config

character(len=*), intent(in), optional :: configFile

type(ESMF_Clock), intent(in), optional :: clock

integer, intent(in), optional :: petList(:)

type(ESMF_Context_Flag), intent(in), optional :: contextflag

character(len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

This interface creates an ESMF_CplComp object. By default, a separate VM context will be created for each compo-
nent. This implies creating a new MPI communicator and allocating additional memory to manage the VM resources.
When running on a large number of processors, creating a separate VM for each component could be both time and
memory inefficient. If the application is sequential, i.e., each component is running on all the PETs of the global VM, it
will be more efficient to use the global VM instead of creating a new one. This can be done by setting contextflag
to ESMF_CONTEXT_PARENT_VM.

The return value is the new ESMF_CplComp.

The arguments are:

[config] An already-created ESMF_Config object to be attached to the newly created component. If both config
and configFile arguments are specified, config takes priority.

[configFile] The filename of an ESMF_Config format file. If specified, a new ESMF_Config object is created and
attached to the newly created component. The configFile file is opened and associated with the new config
object. If both config and configFile arguments are specified, config takes priority.

[clock] Component-specific ESMF_Clock. This clock is available to be queried and updated by the new
ESMF_CplComp as it chooses. This should not be the parent component clock, which should be maintained
and passed down to the initialize/run/finalize routines separately.

[petList] List of parent PETs given to the created child component by the parent component. If petList is not
specified all of the parent PETs will be given to the child component. The order of PETs in petList determines
how the child local PETs refer back to the parent PETs.

157

[contextflag] Specify the component’s VM context. The default context is ESMF_CONTEXT_OWN_VM. See section
52.10 for a complete list of valid flags.

[name] Name of the newly-created ESMF_CplComp. This name can be altered from within the ESMF_CplComp
code once the initialization routine is called.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

18.4.5 ESMF_CplCompDestroy - Release resources associated with a CplComp

INTERFACE:

recursive subroutine ESMF_CplCompDestroy(cplcomp, &

timeout, timeoutFlag, rc)

ARGUMENTS:

type(ESMF_CplComp), intent(inout) :: cplcomp

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: timeout

logical, intent(out), optional :: timeoutFlag

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

5.3.0 Added argument timeout. Added argument timeoutFlag. The new arguments provide access to the
fault-tolerant component features.

DESCRIPTION:

Destroys an ESMF_CplComp, releasing the resources associated with the object.

The arguments are:

cplcomp Release all resources associated with this ESMF_CplComp and mark the object as invalid. It is an error to
pass this object into any other routines after being destroyed.

[timeout] The maximum period in seconds that this call will wait in communications with the actual component,
before returning with a timeout condition. The default is 3600, i.e. 1 hour. The timeout argument is only
supported for connected dual components.

158

[timeoutFlag] Returns .true. if the timeout was reached, .false. otherwise. If timeoutFlag was not
provided, a timeout condition will lead to a return code of rc \= ESMF_SUCCESS. Otherwise the return
value of timeoutFlag is the sole indicator of a timeout condition.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

18.4.6 ESMF_CplCompFinalize - Call the CplComp’s finalize routine

INTERFACE:

recursive subroutine ESMF_CplCompFinalize(cplcomp, &

importState, exportState, clock, syncflag, phase, timeout, timeoutFlag, &

userRc, rc)

ARGUMENTS:

type(ESMF_CplComp), intent(inout) :: cplcomp

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_State), intent(inout), optional :: importState

type(ESMF_State), intent(inout), optional :: exportState

type(ESMF_Clock), intent(inout), optional :: clock

type(ESMF_Sync_Flag), intent(in), optional :: syncflag

integer, intent(in), optional :: phase

integer, intent(in), optional :: timeout

logical, intent(out), optional :: timeoutFlag

integer, intent(out), optional :: userRc

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

5.3.0 Added argument timeout. Added argument timeoutFlag. The new arguments provide access to the
fault-tolerant component features.

DESCRIPTION:

Call the associated user-supplied finalization routine for an ESMF_CplComp.

The arguments are:

cplcomp The ESMF_CplComp to call finalize routine for.

159

[importState] ESMF_State containing import data for coupling. If not present, a dummy argument will be passed
to the user-supplied routine. The importState argument in the user code cannot be optional.

[exportState] ESMF_State containing export data for coupling. If not present, a dummy argument will be passed
to the user-supplied routine. The exportState argument in the user code cannot be optional.

[clock] External ESMF_Clock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations. If not present, a dummy argument will be passed to the user-supplied routine.
The clock argument in the user code cannot be optional.

[syncflag] Blocking behavior of this method call. See section 52.57 for a list of valid blocking options. Default option
is ESMF_SYNC_VASBLOCKING which blocks PETs and their spawned off threads across each VAS but does
not synchronize PETs that run in different VASs.

[phase] Component providers must document whether each of their routines are single-phase or multi-phase. Single-
phase routines require only one invocation to complete their work. Multi-phase routines provide multiple sub-
routines to accomplish the work, accommodating components which must complete part of their work, return to
the caller and allow other processing to occur, and then continue the original operation. For multiple-phase child
components, this is the integer phase number to be invoked. For single-phase child components this argument
is optional. The default is 1.

[timeout] The maximum period in seconds that this call will wait in communications with the actual component,
before returning with a timeout condition. The default is 3600, i.e. 1 hour. The timeout argument is only
supported for connected dual components.

[timeoutFlag] Returns .true. if the timeout was reached, .false. otherwise. If timeoutFlag was not
provided, a timeout condition will lead to a return code of rc \= ESMF_SUCCESS. Otherwise the return
value of timeoutFlag is the sole indicator of a timeout condition.

[userRc] Return code set by userRoutine before returning.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

18.4.7 ESMF_CplCompGet - Get CplComp information

INTERFACE:

subroutine ESMF_CplCompGet(cplcomp, configIsPresent, config, &

configFileIsPresent, configFile, clockIsPresent, clock, localPet, &

petCount, contextflag, currentMethod, currentPhase, vmIsPresent, &

vm, name, rc)

ARGUMENTS:

type(ESMF_CplComp), intent(in) :: cplcomp

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(out), optional :: configIsPresent

type(ESMF_Config), intent(out), optional :: config

logical, intent(out), optional :: configFileIsPresent

character(len=*), intent(out), optional :: configFile

logical, intent(out), optional :: clockIsPresent

160

type(ESMF_Clock), intent(out), optional :: clock

integer, intent(out), optional :: localPet

integer, intent(out), optional :: petCount

type(ESMF_Context_Flag), intent(out), optional :: contextflag

type(ESMF_Method_Flag), intent(out), optional :: currentMethod

integer, intent(out), optional :: currentPhase

logical, intent(out), optional :: vmIsPresent

type(ESMF_VM), intent(out), optional :: vm

character(len=*), intent(out), optional :: name

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Get information about an ESMF_CplComp object.

The arguments are:

cplcomp The ESMF_CplComp object being queried.

[configIsPresent] .true. if config was set in CplComp object, .false. otherwise.

[config] Return the associated Config. It is an error to query for the Config if none is associated with the CplComp.
If unsure, get configIsPresent first to determine the status.

[configFileIsPresent] .true. if configFile was set in CplComp object, .false. otherwise.

[configFile] Return the associated configuration filename. It is an error to query for the configuration filename if none
is associated with the CplComp. If unsure, get configFileIsPresent first to determine the status.

[clockIsPresent] .true. if clock was set in CplComp object, .false. otherwise.

[clock] Return the associated Clock. It is an error to query for the Clock if none is associated with the CplComp. If
unsure, get clockIsPresent first to determine the status.

[localPet] Return the local PET id within the ESMF_CplComp object.

[petCount] Return the number of PETs in the the ESMF_CplComp object.

[contextflag] Return the ESMF_Context_Flag for this ESMF_CplComp. See section 52.10 for a complete list of
valid flags.

[currentMethod] Return the current ESMF_Method_Flag of the ESMF_CplComp execution. See section 52.42
for a complete list of valid options.

[currentPhase] Return the current phase of the ESMF_CplComp execution.

[vmIsPresent] .true. if vm was set in CplComp object, .false. otherwise.

[vm] Return the associated VM. It is an error to query for the VM if none is associated with the CplComp. If unsure,
get vmIsPresent first to determine the status.

[name] Return the name of the ESMF_CplComp.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

161

18.4.8 ESMF_CplCompGetInternalState - Get private data block pointer

INTERFACE:

subroutine ESMF_CplCompGetInternalState(cplcomp, wrappedDataPointer, rc)

ARGUMENTS:

type(ESMF_CplComp) :: cplcomp

type(wrapper) :: wrappedDataPointer

integer, intent(out) :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Available to be called by an ESMF_CplComp at any time after ESMF_CplCompSetInternalState has been
called. Since init, run, and finalize must be separate subroutines, data that they need to share in common can either
be module global data, or can be allocated in a private data block and the address of that block can be registered with
the framework and retrieved by this call. When running multiple instantiations of an ESMF_CplComp, for example
during ensemble runs, it may be simpler to maintain private data specific to each run with private data blocks. A
corresponding ESMF_CplCompSetInternalState call sets the data pointer to this block, and this call retrieves
the data pointer. Note that the wrappedDataPointer argument needs to be a derived type which contains only a
pointer of the type of the data block defined by the user. When making this call the pointer needs to be unassociated.
When the call returns, the pointer will now reference the original data block which was set during the previous call to
ESMF_CplCompSetInternalState.

Only the last data block set via ESMF_CplCompSetInternalState will be accessible.

CAUTION: This method does not have an explicit Fortran interface. Do not specify argument keywords when calling
this method!

The arguments are:

cplcomp An ESMF_CplComp object.

wrappedDataPointer A derived type (wrapper), containing only an unassociated pointer to the private data block.
The framework will fill in the pointer. When this call returns, the pointer is set to the same address set during
the last ESMF_CplCompSetInternalState call. This level of indirection is needed to reliably set and
retrieve the data block no matter which architecture or compiler is used.

rc Return code; equals ESMF_SUCCESS if there are no errors. Note: unlike most other ESMF routines, this argument
is not optional because of implementation considerations.

18.4.9 ESMF_CplCompInitialize - Call the CplComp’s initialize routine

INTERFACE:

162

recursive subroutine ESMF_CplCompInitialize(cplcomp, &

importState, exportState, clock, syncflag, phase, timeout, timeoutFlag, &

userRc, rc)

ARGUMENTS:

type(ESMF_CplComp), intent(inout) :: cplcomp

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_State), intent(inout), optional :: importState

type(ESMF_State), intent(inout), optional :: exportState

type(ESMF_Clock), intent(inout), optional :: clock

type(ESMF_Sync_Flag), intent(in), optional :: syncflag

integer, intent(in), optional :: phase

integer, intent(in), optional :: timeout

logical, intent(out), optional :: timeoutFlag

integer, intent(out), optional :: userRc

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

5.3.0 Added argument timeout. Added argument timeoutFlag. The new arguments provide access to the
fault-tolerant component features.

DESCRIPTION:

Call the associated user initialization routine for an ESMF_CplComp.

The arguments are:

cplcomp ESMF_CplComp to call initialize routine for.

[importState] ESMF_State containing import data for coupling. If not present, a dummy argument will be passed
to the user-supplied routine. The importState argument in the user code cannot be optional.

[exportState] ESMF_State containing export data for coupling. If not present, a dummy argument will be passed
to the user-supplied routine. The exportState argument in the user code cannot be optional.

[clock] External ESMF_Clock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations. If not present, a dummy argument will be passed to the user-supplied routine.
The clock argument in the user code cannot be optional.

[syncflag] Blocking behavior of this method call. See section 52.57 for a list of valid blocking options. Default option
is ESMF_SYNC_VASBLOCKING which blocks PETs and their spawned off threads across each VAS but does
not synchronize PETs that run in different VASs.

163

[phase] Component providers must document whether each of their routines are single-phase or multi-phase. Single-
phase routines require only one invocation to complete their work. Multi-phase routines provide multiple sub-
routines to accomplish the work, accommodating components which must complete part of their work, return to
the caller and allow other processing to occur, and then continue the original operation. For multiple-phase child
components, this is the integer phase number to be invoked. For single-phase child components this argument
is optional. The default is 1.

[timeout] The maximum period in seconds that this call will wait in communications with the actual component,
before returning with a timeout condition. The default is 3600, i.e. 1 hour. The timeout argument is only
supported for connected dual components.

[timeoutFlag] Returns .true. if the timeout was reached, .false. otherwise. If timeoutFlag was not
provided, a timeout condition will lead to a return code of rc \= ESMF_SUCCESS. Otherwise the return
value of timeoutFlag is the sole indicator of a timeout condition.

[userRc] Return code set by userRoutine before returning.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

18.4.10 ESMF_CplCompIsCreated - Check whether a CplComp object has been created

INTERFACE:

function ESMF_CplCompIsCreated(cplcomp, rc)

RETURN VALUE:

logical :: ESMF_CplCompIsCreated

ARGUMENTS:

type(ESMF_CplComp), intent(in) :: cplcomp

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Return .true. if the cplcomp has been created. Otherwise return .false.. If an error occurs, i.e. rc /=

ESMF_SUCCESS is returned, the return value of the function will also be .false..

The arguments are:

cplcomp ESMF_CplComp queried.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

164

18.4.11 ESMF_CplCompIsPetLocal - Inquire if this CplComp is to execute on the calling PET

INTERFACE:

recursive function ESMF_CplCompIsPetLocal(cplcomp, rc)

RETURN VALUE:

logical :: ESMF_CplCompIsPetLocal

ARGUMENTS:

type(ESMF_CplComp), intent(in) :: cplcomp

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Inquire if this ESMF_CplComp object is to execute on the calling PET.

The return value is .true. if the component is to execute on the calling PET, .false. otherwise.

The arguments are:

cplcomp ESMF_CplComp queried.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

18.4.12 ESMF_CplCompPrint - Print CplComp information

INTERFACE:

subroutine ESMF_CplCompPrint(cplcomp, rc)

ARGUMENTS:

type(ESMF_CplComp), intent(in) :: cplcomp

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

165

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Prints information about an ESMF_CplComp to stdout.

The arguments are:

cplcomp ESMF_CplComp to print.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

18.4.13 ESMF_CplCompReadRestart – Call the CplComp’s read restart routine

INTERFACE:

recursive subroutine ESMF_CplCompReadRestart(cplcomp, &

importState, exportState, clock, syncflag, phase, timeout, timeoutFlag, &

userRc, rc)

ARGUMENTS:

type(ESMF_CplComp), intent(inout) :: cplcomp

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_State), intent(inout), optional :: importState

type(ESMF_State), intent(inout), optional :: exportState

type(ESMF_Clock), intent(inout), optional :: clock

type(ESMF_Sync_Flag), intent(in), optional :: syncflag

integer, intent(in), optional :: phase

integer, intent(in), optional :: timeout

logical, intent(out), optional :: timeoutFlag

integer, intent(out), optional :: userRc

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

5.3.0 Added argument timeout. Added argument timeoutFlag. The new arguments provide access to the
fault-tolerant component features.

166

DESCRIPTION:

Call the associated user read restart routine for an ESMF_CplComp.

The arguments are:

cplcomp ESMF_CplComp to call run routine for.

[importState] ESMF_State containing import data. If not present, a dummy argument will be passed to the user-
supplied routine. The importState argument in the user code cannot be optional.

[exportState] ESMF_State containing export data. If not present, a dummy argument will be passed to the user-
supplied routine. The exportState argument in the user code cannot be optional.

[clock] External ESMF_Clock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations. If not present, a dummy argument will be passed to the user-supplied routine.
The clock argument in the user code cannot be optional.

[syncflag] Blocking behavior of this method call. See section 52.57 for a list of valid blocking options. Default option
is ESMF_SYNC_VASBLOCKING which blocks PETs and their spawned off threads across each VAS but does
not synchronize PETs that run in different VASs.

[phase] Component providers must document whether each of their routines are single-phase or multi-phase. Single-
phase routines require only one invocation to complete their work. Multi-phase routines provide multiple sub-
routines to accomplish the work, accommodating components which must complete part of their work, return to
the caller and allow other processing to occur, and then continue the original operation. For multiple-phase child
components, this is the integer phase number to be invoked. For single-phase child components this argument
is optional. The default is 1.

[timeout] The maximum period in seconds that this call will wait in communications with the actual component,
before returning with a timeout condition. The default is 3600, i.e. 1 hour. The timeout argument is only
supported for connected dual components.

[timeoutFlag] Returns .true. if the timeout was reached, .false. otherwise. If timeoutFlag was not
provided, a timeout condition will lead to a return code of rc \= ESMF_SUCCESS. Otherwise the return
value of timeoutFlag is the sole indicator of a timeout condition.

[userRc] Return code set by userRoutine before returning.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

18.4.14 ESMF_CplCompRun - Call the CplComp’s run routine

INTERFACE:

recursive subroutine ESMF_CplCompRun(cplcomp, &

importState, exportState, clock, syncflag, phase, timeout, timeoutFlag, &

userRc, rc)

ARGUMENTS:

167

type(ESMF_CplComp), intent(inout) :: cplcomp

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_State), intent(inout), optional :: importState

type(ESMF_State), intent(inout), optional :: exportState

type(ESMF_Clock), intent(inout), optional :: clock

type(ESMF_Sync_Flag), intent(in), optional :: syncflag

integer, intent(in), optional :: phase

integer, intent(in), optional :: timeout

logical, intent(out), optional :: timeoutFlag

integer, intent(out), optional :: userRc

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

5.3.0 Added argument timeout. Added argument timeoutFlag. The new arguments provide access to the
fault-tolerant component features.

DESCRIPTION:

Call the associated user run routine for an ESMF_CplComp.

The arguments are:

cplcomp ESMF_CplComp to call run routine for.

[importState] ESMF_State containing import data for coupling. If not present, a dummy argument will be passed
to the user-supplied routine. The importState argument in the user code cannot be optional.

[exportState] ESMF_State containing export data for coupling. If not present, a dummy argument will be passed
to the user-supplied routine. The exportState argument in the user code cannot be optional.

[clock] External ESMF_Clock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations. If not present, a dummy argument will be passed to the user-supplied routine.
The clock argument in the user code cannot be optional.

[syncflag] Blocking behavior of this method call. See section 52.57 for a list of valid blocking options. Default option
is ESMF_SYNC_VASBLOCKING which blocks PETs and their spawned off threads across each VAS but does
not synchronize PETs that run in different VASs.

[phase] Component providers must document whether each of their routines are single-phase or multi-phase. Single-
phase routines require only one invocation to complete their work. Multi-phase routines provide multiple sub-
routines to accomplish the work, accommodating components which must complete part of their work, return to
the caller and allow other processing to occur, and then continue the original operation. For multiple-phase child
components, this is the integer phase number to be invoked. For single-phase child components this argument
is optional. The default is 1.

168

[timeout] The maximum period in seconds that this call will wait in communications with the actual component,
before returning with a timeout condition. The default is 3600, i.e. 1 hour. The timeout argument is only
supported for connected dual components.

[timeoutFlag] Returns .true. if the timeout was reached, .false. otherwise. If timeoutFlag was not
provided, a timeout condition will lead to a return code of rc \= ESMF_SUCCESS. Otherwise the return
value of timeoutFlag is the sole indicator of a timeout condition.

[userRc] Return code set by userRoutine before returning.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

18.4.15 ESMF_CplCompServiceLoop - Call the CplComp’s service loop routine

INTERFACE:

recursive subroutine ESMF_CplCompServiceLoop(cplcomp, &

importState, exportState, clock, syncflag, port, timeout, timeoutFlag, rc)

ARGUMENTS:

type(ESMF_CplComp), intent(inout) :: cplcomp

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_State), intent(inout), optional :: importState

type(ESMF_State), intent(inout), optional :: exportState

type(ESMF_Clock), intent(inout), optional :: clock

type(ESMF_Sync_Flag), intent(in), optional :: syncflag

integer, intent(in), optional :: port

integer, intent(in), optional :: timeout

logical, intent(out), optional :: timeoutFlag

integer, intent(out), optional :: rc

DESCRIPTION:

Call the ServiceLoop routine for an ESMF_CplComp. This tries to establish a "component tunnel" between the actual
Component (calling this routine) and a dual Component connecting to it through a matching SetServices call.

The arguments are:

cplcomp ESMF_CplComp to call service loop routine for.

[importState] ESMF_State containing import data for coupling. If not present, a dummy argument will be passed
to the user-supplied routine. The importState argument in the user code cannot be optional.

[exportState] ESMF_State containing export data for coupling. If not present, a dummy argument will be passed
to the user-supplied routine. The exportState argument in the user code cannot be optional.

[clock] External ESMF_Clock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations. If not present, a dummy argument will be passed to the user-supplied routine.
The clock argument in the user code cannot be optional.

169

[syncflag] Blocking behavior of this method call. See section 52.57 for a list of valid blocking options. Default option
is ESMF_SYNC_VASBLOCKING which blocks PETs and their spawned off threads across each VAS but does
not synchronize PETs that run in different VASs.

[port] In case a port number is provided, the "component tunnel" is established using sockets. The actual component
side, i.e. the side that calls into ESMF_CplCompServiceLoop(), starts to listen on the specified port as
the server. The valid port range is [1024, 65535]. In case the port argument is not specified, the "component
tunnel" is established within the same executable using local communication methods (e.g. MPI).

[timeout] The maximum period in seconds that this call will wait for communications with the dual component,
before returning with a timeout condition. The default is 3600, i.e. 1 hour. (NOTE: Currently this option is only
available for socket based component tunnels.)

[timeoutFlag] Returns .true. if the timeout was reached, .false. otherwise. If timeoutFlag was not
provided, a timeout condition will lead to a return code of rc \= ESMF_SUCCESS. Otherwise the return
value of timeoutFlag is the sole indicator of a timeout condition.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

18.4.16 ESMF_CplCompSet - Set or reset information about the CplComp

INTERFACE:

subroutine ESMF_CplCompSet(cplcomp, config, configFile, &

clock, name, rc)

ARGUMENTS:

type(ESMF_CplComp), intent(inout) :: cplcomp

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Config), intent(in), optional :: config

character(len=*), intent(in), optional :: configFile

type(ESMF_Clock), intent(in), optional :: clock

character(len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Sets or resets information about an ESMF_CplComp.

The arguments are:

cplcomp ESMF_CplComp to change.

[name] Set the name of the ESMF_CplComp.

170

[config] An already-created ESMF_Config object to be attached to the component. If both config and
configFile arguments are specified, config takes priority.

[configFile] The filename of an ESMF_Config format file. If specified, a new ESMF_Config object is created and
attached to the component. The configFile file is opened and associated with the new config object. If both
config and configFile arguments are specified, config takes priority.

[clock] Set the private clock for this ESMF_CplComp.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

18.4.17 ESMF_CplCompSetEntryPoint - Set user routine as entry point for standard Component method

INTERFACE:

recursive subroutine ESMF_CplCompSetEntryPoint(cplcomp, methodflag, &

userRoutine, phase, rc)

ARGUMENTS:

type(ESMF_CplComp), intent(inout) :: cplcomp

type(ESMF_Method_Flag), intent(in) :: methodflag

interface

subroutine userRoutine(cplcomp, importState, exportState, clock, rc)

use ESMF_CompMod

use ESMF_StateMod

use ESMF_ClockMod

implicit none

type(ESMF_CplComp) :: cplcomp ! must not be optional

type(ESMF_State) :: importState ! must not be optional

type(ESMF_State) :: exportState ! must not be optional

type(ESMF_Clock) :: clock ! must not be optional

integer, intent(out) :: rc ! must not be optional

end subroutine

end interface

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: phase

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Registers a user-supplied userRoutine as the entry point for one of the predefined Component methodflags.
After this call the userRoutine becomes accessible via the standard Component method API.

The arguments are:

171

cplcomp An ESMF_CplComp object.

methodflag One of a set of predefined Component methods - e.g. ESMF_METHOD_INITIALIZE,
ESMF_METHOD_RUN, ESMF_METHOD_FINALIZE. See section 52.42 for a complete list of valid method
options.

userRoutine The user-supplied subroutine to be associated for this methodflag. The Component writer must
supply a subroutine with the exact interface shown above for the userRoutine argument. Arguments in
userRoutine must not be declared as optional, and the types, intent and order must match. Prior to Fortran-
2008, the subroutine must be either a module scope procedure, or an external procedure that has a matching
interface block specified for it. An internal procedure which is contained within another procedure must not be
used. From Fortran-2008 onwards, an internal procedure contained within either a main program or a module
procedure may be used. If the internal procedure is contained within a module procedure, it is subject to
initialization requirements. See: 16.4.9

[phase] The phase number for multi-phase methods. For single phase methods the phase argument can be omitted.
The default setting is 1.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

18.4.18 ESMF_CplCompSetInternalState - Set private data block pointer

INTERFACE:

subroutine ESMF_CplCompSetInternalState(cplcomp, wrappedDataPointer, rc)

ARGUMENTS:

type(ESMF_CplComp) :: cplcomp

type(wrapper) :: wrappedDataPointer

integer, intent(out) :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Available to be called by an ESMF_CplComp at any time, but expected to be most useful when called during the
registration process, or initialization. Since init, run, and finalize must be separate subroutines data that they need to
share in common can either be module global data, or can be allocated in a private data block and the address of that
block can be registered with the framework and retrieved by subsequent calls. When running multiple instantiations
of an ESMF_CplComp, for example during ensemble runs, it may be simpler to maintain private data specific to each
run with private data blocks. A corresponding ESMF_CplCompGetInternalState call retrieves the data pointer.

Only the last data block set via ESMF_CplCompSetInternalState will be accessible.

CAUTION: This method does not have an explicit Fortran interface. Do not specify argument keywords when calling
this method!

The arguments are:

172

cplcomp An ESMF_CplComp object.

wrappedDataPointer A pointer to the private data block, wrapped in a derived type which contains only a pointer
to the block. This level of indirection is needed to reliably set and retrieve the data block no matter which
architecture or compiler is used.

rc Return code; equals ESMF_SUCCESS if there are no errors. Note: unlike most other ESMF routines, this argument
is not optional because of implementation considerations.

18.4.19 ESMF_CplCompSetServices - Call user routine to register CplComp methods

INTERFACE:

recursive subroutine ESMF_CplCompSetServices(cplcomp, userRoutine, &

userRc, rc)

ARGUMENTS:

type(ESMF_CplComp), intent(inout) :: cplcomp

interface

subroutine userRoutine(cplcomp, rc)

use ESMF_CompMod

implicit none

type(ESMF_CplComp) :: cplcomp ! must not be optional

integer, intent(out) :: rc ! must not be optional

end subroutine

end interface

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: userRc

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Call into user provided userRoutinewhich is responsible for setting Component’s Initialize(), Run(), and Finalize()
services.

The arguments are:

cplcomp Coupler Component.

userRoutine The Component writer must supply a subroutine with the exact interface shown above for the
userRoutine argument. Arguments in userRoutine must not be declared as optional, and the types,
intent and order must match. Prior to Fortran-2008, the subroutine must be either a module scope procedure, or
an external procedure that has a matching interface block specified for it. An internal procedure which is con-
tained within another procedure must not be used. From Fortran-2008 onwards, an internal procedure contained

173

within either a main program or a module procedure may be used. If the internal procedure is contained within
a module procedure, it is subject to initialization requirements. See: 16.4.9

The userRoutine, when called by the framework, must make successive calls to
ESMF_CplCompSetEntryPoint() to preset callback routines for standard Component Initialize(),
Run(), and Finalize() methods.

[userRc] Return code set by userRoutine before returning.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

18.4.20 ESMF_CplCompSetServices - Call user routine through name lookup, to register CplComp methods

INTERFACE:

! Private name; call using ESMF_CplCompSetServices()

recursive subroutine ESMF_CplCompSetServicesShObj(cplcomp, userRoutine, &

sharedObj, userRoutineFound, userRc, rc)

ARGUMENTS:

type(ESMF_CplComp), intent(inout) :: cplcomp

character(len=*), intent(in) :: userRoutine

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character(len=*), intent(in), optional :: sharedObj

logical, intent(out), optional :: userRoutineFound

integer, intent(out), optional :: userRc

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

6.3.0r Added argument userRoutineFound. The new argument provides a way to test availability without
causing error conditions.

DESCRIPTION:

Call into a user provided routine which is responsible for setting Component’s Initialize(), Run(), and Finalize()
services. The named userRoutine must exist in the executable, or in the shared object specified by sharedObj.
In the latter case all of the platform specific details about dynamic linking and loading apply.

The arguments are:

174

cplcomp Coupler Component.

userRoutine Name of routine to be called, specified as a character string. The Component writer must supply a
subroutine with the exact interface shown for userRoutine below. Arguments must not be declared as
optional, and the types, intent and order must match. Prior to Fortran-2008, the subroutine must be either
a module scope procedure, or an external procedure that has a matching interface block specified for it. An
internal procedure which is contained within another procedure must not be used. From Fortran-2008 onwards,
an internal procedure contained within either a main program or a module procedure may be used. If the internal
procedure is contained within a module procedure, it is subject to initialization requirements. See: 16.4.9

INTERFACE:

interface

subroutine userRoutine(cplcomp, rc)

type(ESMF_CplComp) :: cplcomp ! must not be optional

integer, intent(out) :: rc ! must not be optional

end subroutine

end interface

DESCRIPTION:

The userRoutine, when called by the framework, must make successive calls to
ESMF_CplCompSetEntryPoint() to preset callback routines for standard Component Initialize(),
Run(), and Finalize() methods.

[sharedObj] Name of shared object that contains userRoutine. If the sharedObj argument is not provided the
executable itself will be searched for userRoutine.

[userRoutineFound] Report back whether the specified userRoutine was found and executed, or was not avail-
able. If this argument is present, not finding the userRoutine will not result in returning an error in rc. The
default is to return an error if the userRoutine cannot be found.

[userRc] Return code set by userRoutine before returning.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

18.4.21 ESMF_CplCompSetServices - Set to serve as Dual Component for an Actual Component

INTERFACE:

! Private name; call using ESMF_CplCompSetServices()

recursive subroutine ESMF_CplCompSetServicesComp(cplcomp, &

actualCplcomp, rc)

ARGUMENTS:

type(ESMF_CplComp), intent(inout) :: cplcomp

type(ESMF_CplComp), intent(in) :: actualCplcomp

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

175

DESCRIPTION:

Set the services of a Coupler Component to serve a "dual" Component for an "actual" Component. The component
tunnel is VM based.

The arguments are:

cplcomp Dual Coupler Component.

actualCplcomp Actual Coupler Component.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

18.4.22 ESMF_CplCompSetServices - Set to serve as Dual Component for an Actual Component through

sockets

INTERFACE:

! Private name; call using ESMF_CplCompSetServices()

recursive subroutine ESMF_CplCompSetServicesSock(cplcomp, port, &

server, timeout, timeoutFlag, rc)

ARGUMENTS:

type(ESMF_CplComp), intent(inout) :: cplcomp

integer, intent(in) :: port

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character(len=*), intent(in), optional :: server

integer, intent(in), optional :: timeout

logical, intent(out), optional :: timeoutFlag

integer, intent(out), optional :: rc

DESCRIPTION:

Set the services of a Coupler Component to serve a "dual" Component for an "actual" Component. The component
tunnel is socket based.

The arguments are:

cplcomp Dual Coupler Component.

port Port number under which the actual component is being served. The valid port range is [1024, 65535].

[server] Server name where the actual component is being served. The default, i.e. if the server argument was not
provided, is localhost.

[timeout] The maximum period in seconds that this call will wait in communications with the actual component,
before returning with a timeout condition. The default is 3600, i.e. 1 hour.

[timeoutFlag] Returns .true. if the timeout was reached, .false. otherwise. If timeoutFlag was not
provided, a timeout condition will lead to a return code of rc \= ESMF_SUCCESS. Otherwise the return
value of timeoutFlag is the sole indicator of a timeout condition.

176

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

18.4.23 ESMF_CplCompSetVM - Call user routine to set CplComp VM properties

INTERFACE:

recursive subroutine ESMF_CplCompSetVM(cplcomp, userRoutine, &

userRc, rc)

ARGUMENTS:

type(ESMF_CplComp), intent(inout) :: cplcomp

interface

subroutine userRoutine(cplcomp, rc)

use ESMF_CompMod

implicit none

type(ESMF_CplComp) :: cplcomp ! must not be optional

integer, intent(out) :: rc ! must not be optional

end subroutine

end interface

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: userRc

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Optionally call into user provided userRoutine which is responsible for setting Component’s VM properties.

The arguments are:

cplcomp Coupler Component.

userRoutine The Component writer must supply a subroutine with the exact interface shown above for the
userRoutine argument. Arguments in userRoutine must not be declared as optional, and the types,
intent and order must match. Prior to Fortran-2008, the subroutine must be either a module scope procedure, or
an external procedure that has a matching interface block specified for it. An internal procedure which is con-
tained within another procedure must not be used. From Fortran-2008 onwards, an internal procedure contained
within either a main program or a module procedure may be used. If the internal procedure is contained within
a module procedure, it is subject to initialization requirements. See: 16.4.9

The subroutine, when called by the framework, is expected to use any of the ESMF_CplCompSetVMxxx()
methods to set the properties of the VM associated with the Coupler Component.

[userRc] Return code set by userRoutine before returning.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

177

18.4.24 ESMF_CplCompSetVM - Call user routine through name lookup, to set CplComp VM properties

INTERFACE:

! Private name; call using ESMF_CplCompSetVM()

recursive subroutine ESMF_CplCompSetVMShObj(cplcomp, userRoutine, &

sharedObj, userRc, rc)

ARGUMENTS:

type(ESMF_CplComp), intent(inout) :: cplcomp

character(len=*), intent(in) :: userRoutine

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character(len=*), intent(in), optional :: sharedObj

integer, intent(out), optional :: userRc

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Optionally call into user provided userRoutine which is responsible for setting Component’s VM properties. The
named userRoutine must exist in the executable, or in the shared object specified by sharedObj. In the latter
case all of the platform specific details about dynamic linking and loading apply.

The arguments are:

cplcomp Coupler Component.

userRoutine Routine to be called, specified as a character string. The Component writer must supply a subroutine
with the exact interface shown for userRoutine below. Arguments must not be declared as optional, and
the types, intent and order must match. Prior to Fortran-2008, the subroutine must be either a module scope
procedure, or an external procedure that has a matching interface block specified for it. An internal procedure
which is contained within another procedure must not be used. From Fortran-2008 onwards, an internal proce-
dure contained within either a main program or a module procedure may be used. If the internal procedure is
contained within a module procedure, it is subject to initialization requirements. See: 16.4.9

INTERFACE:

interface

subroutine userRoutine(cplcomp, rc)

type(ESMF_CplComp) :: cplcomp ! must not be optional

integer, intent(out) :: rc ! must not be optional

end subroutine

end interface

DESCRIPTION:

The subroutine, when called by the framework, is expected to use any of the ESMF_CplCompSetVMxxx()
methods to set the properties of the VM associated with the Coupler Component.

178

[sharedObj] Name of shared object that contains userRoutine. If the sharedObj argument is not provided the
executable itself will be searched for userRoutine.

[userRc] Return code set by userRoutine before returning.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

18.4.25 ESMF_CplCompSetVMMaxPEs - Associate PEs with PETs in CplComp VM

INTERFACE:

subroutine ESMF_CplCompSetVMMaxPEs(cplcomp, &

maxPeCountPerPet, prefIntraProcess, prefIntraSsi, prefInterSsi, &

minStackSize, rc)

ARGUMENTS:

type(ESMF_CplComp), intent(inout) :: cplcomp

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: maxPeCountPerPet

integer, intent(in), optional :: prefIntraProcess

integer, intent(in), optional :: prefIntraSsi

integer, intent(in), optional :: prefInterSsi

integer, intent(in), optional :: minStackSize

integer, intent(out), optional :: rc

DESCRIPTION:

Set characteristics of the ESMF_VM for this ESMF_CplComp. Attempts to associate up to maxPeCountPerPet
PEs with each PET. Only PEs that are located on the same single system image (SSI) can be associated with the same
PET. Within this constraint the call tries to get as close as possible to the number specified by maxPeCountPerPet.

The other constraint to this call is that the number of PEs is preserved. This means that the child Component in the end
is associated with as many PEs as the parent Component provided to the child. The number of child PETs however is
adjusted according to the above rule.

The typical use of ESMF_CplCompSetVMMaxPEs() is to allocate multiple PEs per PET in a Component for user-
level threading, e.g. OpenMP.

The arguments are:

cplcomp ESMF_CplComp to set the ESMF_VM for.

[maxPeCountPerPet] Maximum number of PEs on each PET. Default for each SSI is the local number of PEs.

[prefIntraProcess] Communication preference within a single process. Currently options not documented. Use
default.

[prefIntraSsi] Communication preference within a single system image (SSI). Currently options not documented.
Use default.

[prefInterSsi] Communication preference between different single system images (SSIs). Currently options not doc-
umented. Use default.

179

[minStackSize] Minimum stack size in byte of any Pthread that is created in the VM with the intention of executing
user code as a PET. For cases where OpenMP threads are used by the user code, each thread allocates its own
private stack. For all threads other than the master, the stack size is set via the typical OMP_STACKSIZE
environment variable mechanism. The PET itself, however, becomes the master of the OpenMP thread team,
and is not affected by OMP_STACKSIZE. It is the master’s stack that can be sized via the minStackSize
argument, and a large enough size is often critical.

When minStackSize is absent, the default is to use the system default set by the limit or ulimit com-
mand. However, the stack of a Pthread cannot be unlimited, and a shell stacksize setting of unlimited, or any
setting below the ESMF implemented minimum, will result in setting the stack size to 20MiB (the ESMF mini-
mum). Depending on how much private data is used by the user code under the master thread, the default might
be too small, and minStackSize must be used to allocate sufficient stack space.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

18.4.26 ESMF_CplCompSetVMMaxThreads - Set multi-threaded PETs in CplComp VM

INTERFACE:

subroutine ESMF_CplCompSetVMMaxThreads(cplcomp, &

maxPetCountPerVas, prefIntraProcess, prefIntraSsi, prefInterSsi, &

minStackSize, rc)

ARGUMENTS:

type(ESMF_CplComp), intent(inout) :: cplcomp

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: maxPetCountPerVas

integer, intent(in), optional :: prefIntraProcess

integer, intent(in), optional :: prefIntraSsi

integer, intent(in), optional :: prefInterSsi

integer, intent(in), optional :: minStackSize

integer, intent(out), optional :: rc

DESCRIPTION:

Set characteristics of the ESMF_VM for this ESMF_CplComp. Attempts to provide maxPetCountPerVas threaded
PETs in each virtual address space (VAS). Only as many threaded PETs as there are PEs located on the single system
image (SSI) can be associated with the VAS. Within this constraint the call tries to get as close as possible to the
number specified by maxPetCountPerVas.

The other constraint to this call is that the number of PETs is preserved. This means that the child Component in the
end is associated with as many PETs as the parent Component provided to the child. The threading level of the child
PETs however is adjusted according to the above rule.

The typical use of ESMF_CplCompSetVMMaxThreads() is to run a Component multi-threaded with groups of
PETs executing within a common virtual address space.

The arguments are:

cplcomp ESMF_CplComp to set the ESMF_VM for.

180

[maxPetCountPerVas] Maximum number of threaded PETs in each virtual address space (VAS). Default for each
SSI is the local number of PEs.

[prefIntraProcess] Communication preference within a single process. Currently options not documented. Use
default.

[prefIntraSsi] Communication preference within a single system image (SSI). Currently options not documented.
Use default.

[prefInterSsi] Communication preference between different single system images (SSIs). Currently options not doc-
umented. Use default.

[minStackSize] Minimum stack size in byte of any Pthread that is created in the VM with the intention of executing
user code as a PET. For cases where OpenMP threads are used by the user code, each thread allocates its own
private stack. For all threads other than the master, the stack size is set via the typical OMP_STACKSIZE
environment variable mechanism. The PET itself, however, becomes the master of the OpenMP thread team,
and is not affected by OMP_STACKSIZE. It is the master’s stack that can be sized via the minStackSize
argument, and a large enough size is often critical.

When minStackSize is absent, the default is to use the system default set by the limit or ulimit com-
mand. However, the stack of a Pthread cannot be unlimited, and a shell stacksize setting of unlimited, or any
setting below the ESMF implemented minimum, will result in setting the stack size to 20MiB (the ESMF mini-
mum). Depending on how much private data is used by the user code under the master thread, the default might
be too small, and minStackSize must be used to allocate sufficient stack space.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

18.4.27 ESMF_CplCompSetVMMinThreads - Set a reduced threading level in CplComp VM

INTERFACE:

subroutine ESMF_CplCompSetVMMinThreads(cplcomp, &

maxPeCountPerPet, prefIntraProcess, prefIntraSsi, prefInterSsi, &

minStackSize, rc)

ARGUMENTS:

type(ESMF_CplComp), intent(inout) :: cplcomp

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: maxPeCountPerPet

integer, intent(in), optional :: prefIntraProcess

integer, intent(in), optional :: prefIntraSsi

integer, intent(in), optional :: prefInterSsi

integer, intent(in), optional :: minStackSize

integer, intent(out), optional :: rc

DESCRIPTION:

Set characteristics of the ESMF_VM for this ESMF_CplComp. Reduces the number of threaded PETs in each VAS.
The max argument may be specified to limit the maximum number of PEs that a single PET can be associated with.

181

Several constraints apply: 1) the number of PEs cannot change, 2) PEs cannot migrate between single system images
(SSIs), 3) the number of PETs cannot increase, only decrease, 4) PETs cannot migrate between virtual address spaces
(VASs), nor can VASs migrate between SSIs.

The typical use of ESMF_CplCompSetVMMinThreads() is to run a Component across a set of single-threaded
PETs.

The arguments are:

cplcomp ESMF_CplComp to set the ESMF_VM for.

[maxPeCountPerPet] Maximum number of PEs on each PET. Default for each SSI is the local number of PEs.

[prefIntraProcess] Communication preference within a single process. Currently options not documented. Use
default.

[prefIntraSsi] Communication preference within a single system image (SSI). Currently options not documented.
Use default.

[prefInterSsi] Communication preference between different single system images (SSIs). Currently options not doc-
umented. Use default.

[minStackSize] Minimum stack size in byte of any Pthread that is created in the VM with the intention of executing
user code as a PET. For cases where OpenMP threads are used by the user code, each thread allocates its own
private stack. For all threads other than the master, the stack size is set via the typical OMP_STACKSIZE
environment variable mechanism. The PET itself, however, becomes the master of the OpenMP thread team,
and is not affected by OMP_STACKSIZE. It is the master’s stack that can be sized via the minStackSize
argument, and a large enough size is often critical.

When minStackSize is absent, the default is to use the system default set by the limit or ulimit com-
mand. However, the stack of a Pthread cannot be unlimited, and a shell stacksize setting of unlimited, or any
setting below the ESMF implemented minimum, will result in setting the stack size to 20MiB (the ESMF mini-
mum). Depending on how much private data is used by the user code under the master thread, the default might
be too small, and minStackSize must be used to allocate sufficient stack space.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

18.4.28 ESMF_CplCompValidate – Ensure the CplComp is internally consistent

INTERFACE:

subroutine ESMF_CplCompValidate(cplcomp, rc)

ARGUMENTS:

type(ESMF_CplComp), intent(in) :: cplcomp

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

182

DESCRIPTION:

Currently all this method does is to check that the cplcomp was created.

The arguments are:

cplcomp ESMF_CplComp to validate.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

18.4.29 ESMF_CplCompWait - Wait for a CplComp to return

INTERFACE:

subroutine ESMF_CplCompWait(cplcomp, syncflag, &

timeout, timeoutFlag, userRc, rc)

ARGUMENTS:

type(ESMF_CplComp), intent(inout) :: cplcomp

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Sync_Flag), intent(in), optional :: syncflag

integer, intent(in), optional :: timeout

logical, intent(out), optional :: timeoutFlag

integer, intent(out), optional :: userRc

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

5.3.0 Added argument timeout. Added argument timeoutFlag. The new arguments provide access to the
fault-tolerant component features.

DESCRIPTION:

When executing asynchronously, wait for an ESMF_CplComp to return.

The arguments are:

cplcomp ESMF_CplComp to wait for.

183

[syncflag] Blocking behavior of this method call. See section 52.57 for a list of valid blocking options. Default option
is ESMF_SYNC_VASBLOCKING which blocks PETs and their spawned off threads across each VAS but does
not synchronize PETs that run in different VASs.

[timeout] The maximum period in seconds the actual component is allowed to execute a previously invoked com-
ponent method before it must communicate back to the dual component. If the actual component does not
communicate back in the specified time, a timeout condition is raised on the dual side (this side). The default is
3600, i.e. 1 hour. The timeout argument is only supported for connected dual components.

[timeoutFlag] Returns .true. if the timeout was reached, .false. otherwise. If timeoutFlag was not
provided, a timeout condition will lead to a return code of rc \= ESMF_SUCCESS. Otherwise the return
value of timeoutFlag is the sole indicator of a timeout condition.

[userRc] Return code set by userRoutine before returning.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

18.4.30 ESMF_CplCompWriteRestart – Call the CplComp’s write restart routine

INTERFACE:

recursive subroutine ESMF_CplCompWriteRestart(cplcomp, &

importState, exportState, clock, syncflag, phase, timeout, timeoutFlag, &

userRc, rc)

ARGUMENTS:

type(ESMF_CplComp), intent(inout) :: cplcomp

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_State), intent(inout), optional :: importState

type(ESMF_State), intent(inout), optional :: exportState

type(ESMF_Clock), intent(inout), optional :: clock

type(ESMF_Sync_Flag), intent(in), optional :: syncflag

integer, intent(in), optional :: phase

integer, intent(in), optional :: timeout

logical, intent(out), optional :: timeoutFlag

integer, intent(out), optional :: userRc

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

5.3.0 Added argument timeout. Added argument timeoutFlag. The new arguments provide access to the
fault-tolerant component features.

184

DESCRIPTION:

Call the associated user write restart routine for an ESMF_CplComp.

The arguments are:

cplcomp ESMF_CplComp to call run routine for.

[importState] ESMF_State containing import data. If not present, a dummy argument will be passed to the user-
supplied routine. The importState argument in the user code cannot be optional.

[exportState] ESMF_State containing export data. If not present, a dummy argument will be passed to the user-
supplied routine. The exportState argument in the user code cannot be optional.

[clock] External ESMF_Clock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations. If not present, a dummy argument will be passed to the user-supplied routine.
The clock argument in the user code cannot be optional.

[syncflag] Blocking behavior of this method call. See section 52.57 for a list of valid blocking options. Default option
is ESMF_SYNC_VASBLOCKING which blocks PETs and their spawned off threads across each VAS but does
not synchronize PETs that run in different VASs.

[phase] Component providers must document whether each of their routines are single-phase or multi-phase. Single-
phase routines require only one invocation to complete their work. Multi-phase routines provide multiple sub-
routines to accomplish the work, accommodating components which must complete part of their work, return to
the caller and allow other processing to occur, and then continue the original operation. For multiple-phase child
components, this is the integer phase number to be invoked. For single-phase child components this argument
is optional. The default is 1.

[timeout] The maximum period in seconds that this call will wait in communications with the actual component,
before returning with a timeout condition. The default is 3600, i.e. 1 hour. The timeout argument is only
supported for connected dual components.

[timeoutFlag] Returns .true. if the timeout was reached, .false. otherwise. If timeoutFlag was not
provided, a timeout condition will lead to a return code of rc \= ESMF_SUCCESS. Otherwise the return
value of timeoutFlag is the sole indicator of a timeout condition.

[userRc] Return code set by userRoutine before returning.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

19 SciComp Class

19.1 Description

In Earth system modeling, a particular piece of code representing a physical domain, such as an atmospheric model or

an ocean model, is typically implemented as an ESMF Gridded Component, or ESMC_GridComp. However, there

are times when physical domains, or realms, need to be represented, but aren’t actual pieces of code, or software.

These domains can be implemented as ESMF Science Components, or ESMC_SciComp.

Unlike Gridded and Coupler Components, Science Components are not associated with software; they don’t include

execution routines such as initialize, run and finalize. The main purpose of a Science Component is to provide a

container for Attributes within a Component hierarchy.

185

19.2 Use and Examples

A Science Component is a container object intended to represent scientific domains, or realms, in an Earth Science

Model. It’s primary purpose is to provide a means for representing Component metadata within a hierarchy of Com-

ponents, and it does this by being a container for Attributes as well as other Components.

19.2.1 Use ESMF_SciComp and Attach Attributes

This example illustrates the use of the ESMF_SciComp to attach Attributes within a Component hierarchy. The
hierarchy includes Coupler, Gridded, and Science Components and Attributes are attached to the Science Components.
For demonstrable purposes, we’ll add some CIM Component attributes to the Gridded Component.

Create the top 2 levels of the Component hierarchy. This example creates a parent Coupler Component and 2 Gridded
Components as children.

! Create top-level Coupler Component

cplcomp = ESMF_CplCompCreate(name="coupler_component", rc=rc)

! Create Gridded Component for Atmosphere

atmcomp = ESMF_GridCompCreate(name="Atmosphere", rc=rc)

! Create Gridded Component for Ocean

ocncomp = ESMF_GridCompCreate(name="Ocean", rc=rc)

Now add CIM Attribute packages to the Component. Also, add a CIM Component Properties package, to contain two
custom attributes.

convCIM = ’CIM 1.5’

purpComp = ’ModelComp’

purpProp = ’CompProp’

purpField = ’Inputs’

purpPlatform = ’Platform’

convISO = ’ISO 19115’

purpRP = ’RespParty’

purpCitation = ’Citation’

! Add CIM Attribute package to the Science Component

call ESMF_AttributeAdd(atmcomp, convention=convCIM, &

purpose=purpComp, attpack=attpack, rc=rc)

The Attribute package can also be retrieved in a multi-Component setting like this:

call ESMF_AttributeGetAttPack(atmcomp, convCIM, purpComp, &

attpack=attpack, rc=rc)

Now, add some CIM Component attributes to the Atmosphere Grid Component.

186

!

! Top-level model component attributes, set on gridded component

!

call ESMF_AttributeSet(atmcomp, ’ShortName’, ’EarthSys_Atmos’, &

attpack=attpack, rc=rc)

call ESMF_AttributeSet(atmcomp, ’LongName’, &

’Earth System High Resolution Global Atmosphere Model’, &

attpack=attpack, rc=rc)

call ESMF_AttributeSet(atmcomp, ’Description’, &

’EarthSys brings together expertise from the global ’ // &

’community in a concerted effort to develop coupled ’ // &

’climate models with increased horizontal resolutions. ’ // &

’Increasing the horizontal resolution of coupled climate ’ // &

’models will allow us to capture climate processes and ’ // &

’weather systems in much greater detail.’, &

attpack=attpack, rc=rc)

call ESMF_AttributeSet(atmcomp, ’Version’, ’2.0’, &

attpack=attpack, rc=rc)

call ESMF_AttributeSet(atmcomp, ’ReleaseDate’, ’2009-01-01T00:00:00Z’, &

attpack=attpack, rc=rc)

call ESMF_AttributeSet(atmcomp, ’ModelType’, ’aerosol’, &

attpack=attpack, rc=rc)

call ESMF_AttributeSet(atmcomp, ’URL’, &

’www.earthsys.org’, attpack=attpack, rc=rc)

Now create a set of Science Components as a children of the Atmosphere Gridded Component. The hierarchy is as
follows:

• Atmosphere

– AtmosDynamicalCore

∗ AtmosAdvection

– AtmosRadiation

187

After each Component is created, we need to link it with its parent Component. We then add some standard CIM
Component properties as well as Scientific Properties to each of these components.

!

! Atmosphere Dynamical Core Science Component

!

dc_scicomp = ESMF_SciCompCreate(name="AtmosDynamicalCore", rc=rc)

call ESMF_AttributeAdd(dc_scicomp, &

convention=convCIM, purpose=purpComp, &

attpack=attpack, rc=rc)

call ESMF_AttributeSet(dc_scicomp, "ShortName", "AtmosDynamicalCore", &

attpack=attpack, rc=rc)

call ESMF_AttributeSet(dc_scicomp, "LongName", &

"Atmosphere Dynamical Core", &

attpack=attpack, rc=rc)

purpSci = ’SciProp’

dc_sciPropAtt(1) = ’TopBoundaryCondition’

dc_sciPropAtt(2) = ’HeatTreatmentAtTop’

dc_sciPropAtt(3) = ’WindTreatmentAtTop’

call ESMF_AttributeAdd(dc_scicomp, &

convention=convCIM, purpose=purpSci, &

attrList=dc_sciPropAtt, &

attpack=attpack, rc=rc)

call ESMF_AttributeSet(dc_scicomp, ’TopBoundaryCondition’, &

’radiation boundary condition’, &

attpack=attpack, rc=rc)

call ESMF_AttributeSet(dc_scicomp, ’HeatTreatmentAtTop’, &

’some heat treatment’, &

attpack=attpack, rc=rc)

call ESMF_AttributeSet(dc_scicomp, ’WindTreatmentAtTop’, &

’some wind treatment’, &

attpack=attpack, rc=rc)

!

! Atmosphere Advection Science Component

!

adv_scicomp = ESMF_SciCompCreate(name="AtmosAdvection", rc=rc)

call ESMF_AttributeAdd(adv_scicomp, &

convention=convCIM, purpose=purpComp, &

attpack=attpack, rc=rc)

call ESMF_AttributeSet(adv_scicomp, "ShortName", "AtmosAdvection", &

188

attpack=attpack, rc=rc)

call ESMF_AttributeSet(adv_scicomp, "LongName", "Atmosphere Advection", &

attpack=attpack, rc=rc)

adv_sciPropAtt(1) = ’TracersSchemeName’

adv_sciPropAtt(2) = ’TracersSchemeCharacteristics’

adv_sciPropAtt(3) = ’MomentumSchemeName’

call ESMF_AttributeAdd(adv_scicomp, &

convention=convCIM, purpose=purpSci, &

attrList=adv_sciPropAtt, &

attpack=attpack, rc=rc)

call ESMF_AttributeSet(adv_scicomp, ’TracersSchemeName’, ’Prather’, &

attpack=attpack, rc=rc)

call ESMF_AttributeSet(adv_scicomp, ’TracersSchemeCharacteristics’, &

’modified Euler’, &

attpack=attpack, rc=rc)

call ESMF_AttributeSet(adv_scicomp, ’MomentumSchemeName’, ’Van Leer’, &

attpack=attpack, rc=rc)

!

! Atmosphere Radiation Science Component

!

rad_scicomp = ESMF_SciCompCreate(name="AtmosRadiation", rc=rc)

call ESMF_AttributeAdd(rad_scicomp, &

convention=convCIM, purpose=purpComp, &

attpack=attpack, rc=rc)

call ESMF_AttributeSet(rad_scicomp, "ShortName", "AtmosRadiation", &

attpack=attpack, rc=rc)

call ESMF_AttributeSet(rad_scicomp, "LongName", &

"Atmosphere Radiation", &

attpack=attpack, rc=rc)

rad_sciPropAtt(1) = ’LongwaveSchemeType’

rad_sciPropAtt(2) = ’LongwaveSchemeMethod’

call ESMF_AttributeAdd(rad_scicomp, &

convention=convCIM, purpose=purpSci, &

attrList=rad_sciPropAtt, &

attpack=attpack, rc=rc)

call ESMF_AttributeSet(rad_scicomp, &

’LongwaveSchemeType’, &

’wide-band model’, &

attpack=attpack, rc=rc)

call ESMF_AttributeSet(rad_scicomp, &

’LongwaveSchemeMethod’, &

189

’two-stream’, &

attpack=attpack, rc=rc)

Finally, destroy all of the Components.

call ESMF_SciCompDestroy(rad_scicomp, rc=rc)

call ESMF_SciCompDestroy(adv_scicomp, rc=rc)

call ESMF_SciCompDestroy(dc_scicomp, rc=rc)

call ESMF_GridCompDestroy(atmcomp, rc=rc)

call ESMF_GridCompDestroy(ocncomp, rc=rc)

call ESMF_CplCompDestroy(cplcomp, rc=rc)

19.3 Restrictions and Future Work

1. None.

19.4 Class API

19.4.1 ESMF_SciCompAssignment(=) - SciComp assignment

INTERFACE:

interface assignment(=)

scicomp1 = scicomp2

ARGUMENTS:

type(ESMF_SciComp) :: scicomp1

type(ESMF_SciComp) :: scicomp2

DESCRIPTION:

Assign scicomp1 as an alias to the same ESMF SciComp object in memory as scicomp2. If scicomp2 is invalid, then
scicomp1 will be equally invalid after the assignment.

The arguments are:

scicomp1 The ESMF_SciComp object on the left hand side of the assignment.

scicomp2 The ESMF_SciComp object on the right hand side of the assignment.

190

19.4.2 ESMF_SciCompOperator(==) - SciComp equality operator

INTERFACE:

interface operator(==)

if (scicomp1 == scicomp2) then ... endif

OR

result = (scicomp1 == scicomp2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_SciComp), intent(in) :: scicomp1

type(ESMF_SciComp), intent(in) :: scicomp2

DESCRIPTION:

Test whether scicomp1 and scicomp2 are valid aliases to the same ESMF SciComp object in memory. For a more
general comparison of two ESMF SciComps, going beyond the simple alias test, the ESMF_SciCompMatch() function
(not yet implemented) must be used.

The arguments are:

scicomp1 The ESMF_SciComp object on the left hand side of the equality operation.

scicomp2 The ESMF_SciComp object on the right hand side of the equality operation.

19.4.3 ESMF_SciCompOperator(/=) - SciComp not equal operator

INTERFACE:

interface operator(/=)

if (scicomp1 /= scicomp2) then ... endif

OR

result = (scicomp1 /= scicomp2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_SciComp), intent(in) :: scicomp1

type(ESMF_SciComp), intent(in) :: scicomp2

191

DESCRIPTION:

Test whether scicomp1 and scicomp2 are not valid aliases to the same ESMF SciComp object in memory. For a more
general comparison of two ESMF SciComps, going beyond the simple alias test, the ESMF_SciCompMatch() function
(not yet implemented) must be used.

The arguments are:

scicomp1 The ESMF_SciComp object on the left hand side of the non-equality operation.

scicomp2 The ESMF_SciComp object on the right hand side of the non-equality operation.

19.4.4 ESMF_SciCompCreate - Create a SciComp

INTERFACE:

recursive function ESMF_SciCompCreate(name, rc)

RETURN VALUE:

type(ESMF_SciComp) :: ESMF_SciCompCreate

ARGUMENTS:

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character(len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

This interface creates an ESMF_SciComp object. The return value is the new ESMF_SciComp.

The arguments are:

[name] Name of the newly-created ESMF_SciComp. This name can be altered from within the ESMF_SciComp
code once the initialization routine is called.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

19.4.5 ESMF_SciCompDestroy - Release resources associated with a SciComp

INTERFACE:

subroutine ESMF_SciCompDestroy(scicomp, rc)

192

ARGUMENTS:

type(ESMF_SciComp), intent(inout) :: scicomp

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Destroys an ESMF_SciComp, releasing the resources associated with the object.

The arguments are:

scicomp Release all resources associated with this ESMF_SciComp and mark the object as invalid. It is an error to
pass this object into any other routines after being destroyed.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

19.4.6 ESMF_SciCompGet - Get SciComp information

INTERFACE:

subroutine ESMF_SciCompGet(scicomp, name, rc)

ARGUMENTS:

type(ESMF_SciComp), intent(in) :: scicomp

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character(len=*), intent(out), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

Get information about an ESMF_SciComp object.

The arguments are:

scicomp The ESMF_SciComp object being queried.

[name] Return the name of the ESMF_SciComp.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

19.4.7 ESMF_SciCompIsCreated - Check whether a SciComp object has been created

INTERFACE:

193

function ESMF_SciCompIsCreated(scicomp, rc)

RETURN VALUE:

logical :: ESMF_SciCompIsCreated

ARGUMENTS:

type(ESMF_SciComp), intent(in) :: scicomp

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Return .true. if the scicomp has been created. Otherwise return .false.. If an error occurs, i.e. rc /=

ESMF_SUCCESS is returned, the return value of the function will also be .false..

The arguments are:

scicomp ESMF_SciComp queried.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

19.4.8 ESMF_SciCompPrint - Print SciComp information

INTERFACE:

subroutine ESMF_SciCompPrint(scicomp, rc)

ARGUMENTS:

type(ESMF_SciComp), intent(in) :: scicomp

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Prints information about an ESMF_SciComp to stdout.

The arguments are:

scicomp ESMF_SciComp to print.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

194

19.4.9 ESMF_SciCompSet - Set or reset information about the SciComp

INTERFACE:

subroutine ESMF_SciCompSet(scicomp, name, rc)

ARGUMENTS:

type(ESMF_SciComp), intent(inout) :: scicomp

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character(len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

Sets or resets information about an ESMF_SciComp.

The arguments are:

scicomp ESMF_SciComp to change.

[name] Set the name of the ESMF_SciComp.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

19.4.10 ESMF_SciCompValidate - Check validity of a SciComp

INTERFACE:

subroutine ESMF_SciCompValidate(scicomp, rc)

ARGUMENTS:

type(ESMF_SciComp), intent(in) :: scicomp

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Currently all this method does is to check that the scicomp was created.

The arguments are:

scicomp ESMF_SciComp to validate.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

195

20 Fault-tolerant Component Tunnel

20.1 Description

For ensemble runs with many ensemble members, fault-tolerance becomes an issue of very critical practical impact.

The meaning of fault-tolerance in this context refers to the ability of an ensemble application to continue with normal

execution after one or more ensemble members have experienced catastrophic conditions, from which they cannot

recover. ESMF implements this type of fault-tolerance on the Component level via a timeout paradigm: A timeout

parameter is specified for all interactions that need to be fault-tolerant. When a connection to a component times out,

maybe because it has become inaccessible due to some catastrophic condition, the driver application can react to this

condition, for example by not further interacting with the component during the otherwise normal continuation of the

model execution.

The fault-tolerant connection between a driver application and a Component is established through a Component

Tunnel. There are two sides to a Component Tunnel: the "actual" side is where the component is actually executing,

and the "dual" side is the portal through which the Component becomes accessible on the driver side. Both the actual

and the dual side of a Component Tunnel are implemented in form of a regular ESMF Gridded or Coupler Component.

Component Tunnels between Components can be based on a number of low level implementations. The only imple-

mentation that currently provides fault-tolerance is socket based. In this case an actual Component typically runs as

a separate executable, listening to a specific port for connections from the driver application. The dual Component is

created on the driver side. It connects to the actual Component during the SetServices() call.

20.2 Use and Examples

A Component Tunnel connects a dual Component to an actual Component. This connection can be based on

a number of different low level implementations, e.g. VM-based or socket-based. VM-based Component Tun-

nels require that both dual and actual Components run within the same application (i.e. execute under the same

MPI_COMM_WORLD). Fault-tolerant Component Tunnels require that dual and actual Components run in separate

applications, under different MPI_COMM_WORLD communicators. This mode is implemented in the socket-based

Component Tunnels.

20.2.1 Creating an actual Component

The creation process of an actual Gridded Component, which will become one of the two end points of a Component
Tunnel, is identical to the creation of a regular Gridded Component. On the actual side, an actual Component is very
similar to a regular Component. Here the actual Component is created with a custom petList.

petList = (/0,1,2/)

actualComp = ESMF_GridCompCreate(petList=petList, name="actual", rc=rc)

20.2.2 Creating a dual Component

The same way an actual Component appears as a regular Component in the context of the actual side application,
a dual Component is created as a regular Component on the dual side. A dual Gridded Component with custom
petList is created using the regular create call.

petList = (/4,3,5/)

196

dualComp = ESMF_GridCompCreate(petList=petList, name="dual", rc=rc)

20.2.3 Setting up the actual side of a Component Tunnel

After creation, the regular procedure for registering the standard Component methods is followed for the actual Grid-
ded Component.

call ESMF_GridCompSetServices(actualComp, userRoutine=setservices, &

userRc=userRc, rc=rc)

So far the actualComp object is no different from a regular Gridded Component. In order to turn it into the actual
end point of a Component Tunnel the ServiceLoop() method is called. Here the socket-based implementation is
chosen.

call ESMF_GridCompServiceLoop(actualComp, port=61010, timeout=20, rc=rc)

This call opens the actual side of the Component Tunnel in form of a socket-based server, listening on port 61010.
The timeout argument specifies how long the actual side will wait for the dual side to connect, before the actual
side returns with a time out condition. The time out is set to 20 seconds.

At this point, before a dual Component connects to the other side of the Component Tunnel, it is possible to manually
connect to the waiting actual Component. This can be useful when debugging connection issues. A convenient tool for
this is the standard telnet application. Below is a transcript of such a connection. The manually typed commands
are separate from the previous responses by a blank line.

$ telnet localhost 61010

Trying 127.0.0.1...

Connected to localhost.

Escape character is ’^]’.

Hello from ESMF Actual Component server!

date

Tue Apr 3 21:53:03 2012

version

ESMF_VERSION_STRING: 5.3.0

If at any point the telnet session is manually shut down, the ServiceLoop() on the actual side will return with
an error condition. The clean way to disconnect the telnet session, and to have the ServiceLoop() wait for
a new connection, e.g. from a dual Component, is to send the reconnect command. This will automatically shut
down the telnet connection.

reconnect

Actual Component server will reconnect now!

Connection closed by foreign host.

$

197

At this point the actual Component is back in listening mode, with a time out of 20 seconds, as specified during the
ServiceLoop() call.

Before moving on to the dual side of the GridComp based Component Tunnel example, it should be pointed out
that the exact same procedure is used to set up the actual side of a CplComp based Component Tunnel. Assuming
that actualCplComp is a CplComp object for which SetServices has already been called, the actual side uses
ESMF_CplCompServiceLoop() to start listening for connections from the dual side.

call ESMF_CplCompServiceLoop(actualCplComp, port=61011, timeout=2, &

timeoutFlag=timeoutFlag, rc=rc)

Here the timeoutFlag is specified in order to prevent the expected time-out condition to be indicated through the
return code. Instead, when timeoutFlag is present, the return code is still ESMF_SUCCESS, but timeoutFlag
is set to .true. when a time-out occurs.

20.2.4 Setting up the dual side of a Component Tunnel

On the dual side, the dualComp object needs to be connected to the actual Component in order to complete the Com-
ponent Tunnel. Instead of registering standard Component methods locally, a special variant of the SetServices()
call is used to connect to the actual Component.

call ESMF_GridCompSetServices(dualComp, port=61010, server="localhost", &

timeout=10, timeoutFlag=timeoutFlag, rc=rc)

The port and server arguments are used to connect to the desired actual Component. The time out of 10 seconds
ensures that if the actual Component is not available, a time out condition is returned instead of resulting in a hang.
The timeoutFlag argument further absorbs the time out condition, either returning as .true. or .false.. In
this mode the standard rc will indicate success even when a time out condition was reached.

20.2.5 Invoking standard Component methods through a Component Tunnel

Once a Component Tunnel is established, the actual Component is fully under the control of the dual Component. A
standard Component method invoked on the dual Component is not executed by the dual Component itself, but by the
actual Component instead. In fact, it is the entry points registered with the actual Component that are executed when
standard methods are invoked on the dual Component. The connected dualComp object serves as a portal through
which the connected actualComp becomes accessible on the dual side.

Typically the first standard method called is the CompInitialize() routine.

call ESMF_GridCompInitialize(dualComp, timeout=10, timeoutFlag=timeoutFlag, &

userRc=userRc, rc=rc)

Again, the timeout argument serves to prevent the dual side from hanging if the actual Component application has
experienced a catastrophic condition and is no longer available, or takes longer than expected. The presence of the
timeoutFlag allows time out conditions to be caught gracefully, so the dual side can deal with it in an orderly
fashion, instead of triggering an application abort due to an error condition.

The CompRun() and CompFinalize() methods follow the same format.

198

call ESMF_GridCompRun(dualComp, timeout=10, timeoutFlag=timeoutFlag, &

userRc=userRc, rc=rc)

call ESMF_GridCompFinalize(dualComp, timeout=10, timeoutFlag=timeoutFlag, &

userRc=userRc, rc=rc)

20.2.6 The non-blocking option to invoke standard Component methods through a Component Tunnel

Standard Component methods called on a connected dual Component are executed on the actual side, across the
PETs of the actual Component. By default the dual Component PETs are blocked until the actual Component has
finished executing the invoked Component method, or until a time out condition has been reached. In many practical
applications a more loose synchronization between dual and actual Components is useful. Having the PETs of a
dual Component return immediately from a standard Component method allows multiple dual Component, on the
same PETs, to control multiple actual Components. If the actual Components are executing in separate executables,
or the same executable but on exclusive sets of PETs, they can execute concurrently, even with the controlling dual
Components all running on the same PETs. The non-blocking dual side regains control over the actual Component by
synchronizing through the CompWait() call.

Any of the standard Component methods can be called in non-blocking mode by setting the optional syncflag
argument to ESMF_SYNC_NONBLOCKING.

call ESMF_GridCompInitialize(dualComp, syncflag=ESMF_SYNC_NONBLOCKING, rc=rc)

If communication between the dual and the actual Component was successful, this call will return immediately on
all of the dual Component PETs, while the actual Component continues to execute the invoked Component method.
However, if the dual Component has difficulties reaching the actual Component, the call will block on all dual PETs
until successful contact was made, or the default time out (3600 seconds, i.e. 1 hour) has been reached. In most cases
a shorter time out condition is desired with the non-blocking option, as shown below.

First the dual Component must wait for the outstanding method.

call ESMF_GridCompWait(dualComp, rc=rc)

Now the same non-blocking CompInitialize() call is issued again, but this time with an explicit 10 second time out.

call ESMF_GridCompInitialize(dualComp, syncflag=ESMF_SYNC_NONBLOCKING, &

timeout=10, timeoutFlag=timeoutFlag, rc=rc)

This call is guaranteed to return within 10 seconds, or less, on the dual Component PETs, either without time out
condition, indicating that the actual Component has been contacted successfully, or with time out condition, indicating
that the actual Component was unreachable at the time. Either way, the dual Component PETs are back under user
control quickly.

Calling the CompWait() method on the dual Component causes the dual Component PETs to block until the actual
Component method has returned, or a time out condition has been reached.

call ESMF_GridCompWait(dualComp, userRc=userRc, rc=rc)

199

The default time out for CompWait() is 3600 seconds, i.e. 1 hour, just like for the other Component methods. However,
the semantics of a time out condition under CompWait() is different from the other Component methods. Typically
the timeout is simply the maximum time that any communication between dual and actual Component is allowed
to take before a time out condition is raised. For CompWait(), the timeout is the maximum time that an actual
Component is allowed to execute before reporting back to the dual Component. Here, even with the default time out,
the dual Component would return from CompWait() immediately with a time out condition if the actual Component
has already been executing for over 1 hour, and is not already waiting to report back when the dual Component
calls CompWait(). On the other hand, if it has only been 30 minutes since CompInitialize() was called on the dual
Component, then the actual Component still has 30 minutes before CompWait() returns with a time out condition.
During this time (or until the actual Component returns) the dual Component PETs are blocked.

A standard Component method is invoked in non-blocking mode.

call ESMF_GridCompRun(dualComp, syncflag=ESMF_SYNC_NONBLOCKING, &

timeout=10, timeoutFlag=timeoutFlag, rc=rc)

Once the user code on the dual side is ready to regain control over the actual Component it calls CompWait() on the
dual Component. Here a timeout of 60s is specified, meaning that the total execution time the actual Component
spends in the registered Run() routine may not exceed 60s before CompWait() returns with a time out condition.

call ESMF_GridCompWait(dualComp, timeout=60, userRc=userRc, rc=rc)

20.2.7 Destroying a connected dual Component

A dual Component that is connected to an actual Component through a Component Tunnel is destroyed the same way
a regular Component is. The only difference is that a connected dual Component may specify a timeout argument
to the CompDestroy() call.

call ESMF_GridCompDestroy(dualComp, timeout=10, rc=rc)

The timeout argument again ensures that the dual side does not hang indefinitely in case the actual Component has
become unavailable. If the actual Component is available, the destroy call will indicate to the actual Component that
it should break out of the ServiceLoop(). Either way, the local dual Component is destroyed.

20.2.8 Destroying a connected actual Component

An actual Component that is in a ServiceLoop()must first return from that call before it can be destroyed. This can
either happen when a connected dual Component calls its CompDestroy() method, or if the ServiceLoop()
reaches the specified time out condition. Either way, once control has been returned to the user code, the actual
Component is destroyed in the same way a regular Component is, by calling the destroy method.

call ESMF_GridCompDestroy(actualComp, rc=rc)

20.3 Restrictions and Future Work

1. No data flow through States. The current implementation does not support data flow (Fields, FieldBundles,

etc.) between actual and dual Components. The current work-around is to employ user controlled, file based

200

transfer methods. The next implementation phase will offer transparent data flow through the Component Tun-

nel, where the user code interacts with the States on the actual and dual side in the same way as if they were the

same Component.

21 State Class

21.1 Description

A State contains the data and metadata to be transferred between ESMF Components. It is an important class, because

it defines a standard for how data is represented in data transfers between Earth science components. The State

construct is a rational compromise between a fully prescribed interface - one that would dictate what specific fields

should be transferred between components - and an interface in which data structures are completely ad hoc.

There are two types of States, import and export. An import State contains data that is necessary for a Gridded

Component or Coupler Component to execute, and an export State contains the data that a Gridded Component or

Coupler Component can make available.

States can contain Arrays, ArrayBundles, Fields, FieldBundles, and other States. They cannot directly contain native

language arrays (i.e. Fortran or C style arrays). Objects in a State must span the VM on which they are running.

For sequentially executing components which run on the same set of PETs this happens by calling the object create

methods on each PET, creating the object in unison. For concurrently executing components which are running on

subsets of PETs, an additional method, called ESMF_StateReconcile(), is provided by ESMF to broadcast

information about objects which were created in sub-components.

State methods include creation and deletion, adding and retrieving data items, adding and retrieving attributes, and

performing queries.

21.2 Constants

21.2.1 ESMF_STATEINTENT

DESCRIPTION:

Specifies whether a ESMF_State contains data to be imported into a component or exported from a component.

The type of this flag is:

type(ESMF_StateIntent_Flag)

The valid values are:

ESMF_STATEINTENT_IMPORT Contains data to be imported into a component.

ESMF_STATEINTENT_EXPORT Contains data to be exported out of a component.

ESMF_STATEINTENT_UNSPECIFIED The intent has not been specified.

21.2.2 ESMF_STATEITEM

DESCRIPTION:

Specifies the type of object being added to or retrieved from an ESMF_State.

201

The type of this flag is:

type(ESMF_StateItem_Flag)

The valid values are:

ESMF_STATEITEM_ARRAY Refers to an ESMF_Array within an ESMF_State.

ESMF_STATEITEM_ARRAYBUNDLE Refers to an ESMF_Array within an ESMF_State.

ESMF_STATEITEM_FIELD Refers to a ESMF_Field within an ESMF_State.

ESMF_STATEITEM_FIELDBUNDLE Refers to a ESMF_FieldBundle within an ESMF_State.

ESMF_STATEITEM_ROUTEHANDLE Refers to a ESMF_RouteHandle within an ESMF_State.

ESMF_STATEITEM_STATE Refers to a ESMF_State within an ESMF_State.

21.3 Use and Examples

A Gridded Component generally has one associated import State and one export State. Generally the States associated

with a Gridded Component will be created by the Gridded Component’s parent component. In many cases, the States

will be created containing no data. Both the empty States and the newly created Gridded Component are passed by

the parent component into the Gridded Component’s initialize method. This is where the States get prepared for use

and the import State is first filled with data.

States can be filled with data items that do not yet have data allocated. Fields, FieldBundles, Arrays, and ArrayBundles

each have methods that support their creation without actual data allocation - the Grid and Attributes are set up but

no Fortran array of data values is allocated. In this approach, when a State is passed into its associated Gridded

Component’s initialize method, the incomplete Arrays, Fields, FieldBundles, and ArrayBundles within the State can

allocate or reference data inside the initialize method.

States are passed through the interfaces of the Gridded and Coupler Components’ run methods in order to carry

data between the components. While we expect a Gridded Component’s import State to be filled with data during

initialization, its export State will typically be filled over the course of its run method. At the end of a Gridded

Component’s run method, the filled export State is passed out through the argument list into a Coupler Component’s

run method. We recommend the convention that it enters the Coupler Component as the Coupler Component’s import

State. Here is it transformed into a form that another Gridded Component requires, and passed out of the Coupler

Component as its export State. It can then be passed into the run method of a recipient Gridded Component as that

component’s import State.

While the above sounds complicated, the rule is simple: a State going into a component is an import State, and a State

leaving a component is an export State.

Objects inside States are normally created in unison where each PET executing a component makes the same object

create call. If the object contains data, like a Field, each PET may have a different local chunk of the entire dataset

but each Field has the same name and is logically one part of a single distributed object. As States are passed between

components, if any object in a State was not created in unison on all the current PETs then some PETs have no object

to pass into a communication method (e.g. regrid or data redistribution). The ESMF_StateReconcile() method

must be called to broadcast information about these objects to all PETs in a component; after which all PETs have a

single uniform view of all objects and metadata.

If components are running in sequential mode on all available PETs and States are being passed between them there is

no need to call ESMF_StateReconcile since all PETs have a uniform view of the objects. However, if components

are running on a subset of the PETs, as is usually the case when running in concurrent mode, then when States

202

are passed into components which contain a superset of those PETs, for example, a Coupler Component, all PETs

must call ESMF_StateReconcile on the States before using them in any ESMF communication methods. The

reconciliation process broadcasts information about objects which exist only on a subset of the PETs. On PETs missing

those objects it creates a proxy object which contains any qualities of the original object plus enough information for

it to be a data source or destination for a regrid or data redistribution operation. There is an option to turn off metadata

reconciliation in the ESMF_StateReconcile call.

21.3.1 State create and destroy

States can be created and destroyed at any time during application execution. The ESMF_StateCreate() routine

can take many different combinations of optional arguments. Refer to the API description for all possible methods of

creating a State. An empty State can be created by providing only a name and type for the intended State:

state = ESMF_StateCreate(name, stateintent=ESMF_STATEINTENT_IMPORT, rc=rc)

When finished with an ESMF_State, the ESMF_StateDestroy method removes it. However, the objects inside

the ESMF_State created externally should be destroyed separately, since objects can be added to more than one

ESMF_State.

21.3.2 Add items to a State

Creation of an empty ESMF_State, and adding an ESMF_FieldBundle to it. Note that the
ESMF_FieldBundle does not get destroyed when the ESMF_State is destroyed; the ESMF_State only con-
tains a reference to the objects it contains. It also does not make a copy; the original objects can be updated and code
accessing them by using the ESMF_State will see the updated version.

statename = "Ocean"

state2 = ESMF_StateCreate(name=statename, &

stateintent=ESMF_STATEINTENT_EXPORT, rc=rc)

bundlename = "Temperature"

bundle1 = ESMF_FieldBundleCreate(name=bundlename, rc=rc)

print *, "FieldBundle Create returned", rc

call ESMF_StateAdd(state2, (/bundle1/), rc=rc)

print *, "StateAdd returned", rc

call ESMF_StateDestroy(state2, rc=rc)

call ESMF_FieldBundleDestroy(bundle1, rc=rc)

21.3.3 Add placeholders to a State

If a component could potentially produce a large number of optional items, one strategy is to add the names only of
those objects to the ESMF_State. Other components can call framework routines to set the ESMF_NEEDED flag

203

to indicate they require that data. The original component can query this flag and then produce only the data that is
required by another component.

statename = "Ocean"

state3 = ESMF_StateCreate(name=statename, &

stateintent=ESMF_STATEINTENT_EXPORT, rc=rc)

dataname = "Downward wind:needed"

call ESMF_AttributeSet (state3, dataname, .false., rc=rc)

dataname = "Humidity:needed"

call ESMF_AttributeSet (state3, dataname, .false., rc=rc)

21.3.4 Mark an item NEEDED

How to set the NEEDED state of an item.

dataname = "Downward wind:needed"

call ESMF_AttributeSet (state3, name=dataname, value=.true., rc=rc)

21.3.5 Create a NEEDED item

Query an item for the NEEDED status, and creating an item on demand. Similar flags exist for "Ready", "Valid", and
"Required for Restart", to mark each data item as ready, having been validated, or needed if the application is to be
checkpointed and restarted. The flags are supported to help coordinate the data exchange between components.

dataname = "Downward wind:needed"

call ESMF_AttributeGet (state3, dataname, value=neededFlag, rc=rc)

if (rc == ESMF_SUCCESS .and. neededFlag) then

bundlename = dataname

bundle2 = ESMF_FieldBundleCreate(name=bundlename, rc=rc)

call ESMF_StateAdd(state3, (/bundle2/), rc=rc)

else

print *, "Data not marked as needed", trim(dataname)

endif

204

21.3.6 ESMF_StateReconcile() usage

The set services routines are used to tell ESMF which routine hold the user code for the initialize, run, and finalize
blocks of user level Components. These are the separate subroutines called by the code below.

! Initialize routine which creates "field1" on PETs 0 and 1

subroutine comp1_init(gcomp, istate, ostate, clock, rc)

type(ESMF_GridComp) :: gcomp

type(ESMF_State) :: istate, ostate

type(ESMF_Clock) :: clock

integer, intent(out) :: rc

type(ESMF_Field) :: field1

integer :: localrc

print *, "i am comp1_init"

field1 = ESMF_FieldEmptyCreate(name="Comp1 Field", rc=localrc)

call ESMF_StateAdd(istate, (/field1/), rc=localrc)

rc = localrc

end subroutine comp1_init

! Initialize routine which creates "field2" on PETs 2 and 3

subroutine comp2_init(gcomp, istate, ostate, clock, rc)

type(ESMF_GridComp) :: gcomp

type(ESMF_State) :: istate, ostate

type(ESMF_Clock) :: clock

integer, intent(out) :: rc

type(ESMF_Field) :: field2

integer :: localrc

print *, "i am comp2_init"

field2 = ESMF_FieldEmptyCreate(name="Comp2 Field", rc=localrc)

call ESMF_StateAdd(istate, (/field2/), rc=localrc)

rc = localrc

end subroutine comp2_init

subroutine comp_dummy(gcomp, rc)

type(ESMF_GridComp) :: gcomp

integer, intent(out) :: rc

rc = ESMF_SUCCESS

end subroutine comp_dummy

! !PROGRAM: ESMF_StateReconcileEx - State reconciliation

!

205

! !DESCRIPTION:

!

! This program shows examples of using the State Reconcile function

!---

#include "ESMF.h"

! ESMF Framework module

use ESMF

use ESMF_TestMod

use ESMF_StateReconcileEx_Mod

implicit none

! Local variables

integer :: rc, petCount

type(ESMF_State) :: state1

type(ESMF_GridComp) :: comp1, comp2

type(ESMF_VM) :: vm

character(len=ESMF_MAXSTR) :: comp1name, comp2name, statename

A Component can be created which will run only on a subset of the current PET list.

! Get the global VM for this job.

call ESMF_VMGetGlobal(vm=vm, rc=rc)

comp1name = "Atmosphere"

comp1 = ESMF_GridCompCreate(name=comp1name, petList=(/ 0, 1 /), rc=rc)

print *, "GridComp Create returned, name = ", trim(comp1name)

comp2name = "Ocean"

comp2 = ESMF_GridCompCreate(name=comp2name, petList=(/ 2, 3 /), rc=rc)

print *, "GridComp Create returned, name = ", trim(comp2name)

statename = "Ocn2Atm"

state1 = ESMF_StateCreate(name=statename, rc=rc)

Here we register the subroutines which should be called for initialization. Then we call ESMF_GridCompInitialize()
on all PETs, but the code runs only on the PETs given in the petList when the Component was created.

Because this example is so short, we call the entry point code directly instead of the normal procedure of nesting it in
a separate SetServices() subroutine.

! This is where the VM for each component is initialized.

! Normally you would call SetEntryPoint inside set services,

! but to make this example very short, they are called inline below.

! This is o.k. because the SetServices routine must execute from within

! the parent component VM.

call ESMF_GridCompSetVM(comp1, comp_dummy, rc=rc)

206

call ESMF_GridCompSetVM(comp2, comp_dummy, rc=rc)

call ESMF_GridCompSetServices(comp1, userRoutine=comp_dummy, rc=rc)

call ESMF_GridCompSetServices(comp2, userRoutine=comp_dummy, rc=rc)

print *, "ready to set entry point 1"

call ESMF_GridCompSetEntryPoint(comp1, ESMF_METHOD_INITIALIZE, &

comp1_init, rc=rc)

print *, "ready to set entry point 2"

call ESMF_GridCompSetEntryPoint(comp2, ESMF_METHOD_INITIALIZE, &

comp2_init, rc=rc)

print *, "ready to call init for comp 1"

call ESMF_GridCompInitialize(comp1, exportState=state1, rc=rc)

print *, "ready to call init for comp 2"

call ESMF_GridCompInitialize(comp2, exportState=state1, rc=rc)

Now we have state1 containing field1 on PETs 0 and 1, and state1 containing field2 on PETs 2 and 3.
For the code to have a rational view of the data, we call ESMF_StateReconcile which determines which objects
are missing from any PET, and communicates information about the object. There is the option of turning metadata
reconciliation on or off with the optional parameter shown in the call below. The default behavior is for metadata
reconciliation to be off. After the call to reconcile, all ESMF_State objects now have a consistent view of the data.

print *, "State before calling StateReconcile()"

call ESMF_StatePrint(state1, rc=rc)

call ESMF_StateReconcile(state1, vm=vm, rc=rc)

207

print *, "State after calling StateReconcile()"

call ESMF_StatePrint(state1, rc=rc)

end program ESMF_StateReconcileEx

21.3.7 Read Arrays from a NetCDF file and add to a State

This program shows an example of reading and writing Arrays from a State from/to a NetCDF file.

! ESMF Framework module

use ESMF

use ESMF_TestMod

implicit none

! Local variables

type(ESMF_State) :: state

type(ESMF_Array) :: latArray, lonArray, timeArray, humidArray, &

tempArray, pArray, rhArray

type(ESMF_VM) :: vm

integer :: localPet, rc

The following line of code will read all Array data contained in a NetCDF file, place them in ESMF_Arrays and add
them to an ESMF_State. Only PET 0 reads the file; the States in the other PETs remain empty. Currently, the data
is not decomposed or distributed; each PET has only 1 DE and only PET 0 contains data after reading the file. Future
versions of ESMF will support data decomposition and distribution upon reading a file.

Note that the third party NetCDF library must be installed. For more details, see the "ESMF
Users Guide", "Building and Installing the ESMF, Third Party Libraries, NetCDF" and the website
http://www.unidata.ucar.edu/software/netcdf.

! Read the NetCDF data file into Array objects in the State on PET 0

call ESMF_StateRead(state, "io_netcdf_testdata.nc", rc=rc)

! If the NetCDF library is not present (on PET 0), cleanup and exit

if (rc == ESMF_RC_LIB_NOT_PRESENT) then

call ESMF_StateDestroy(state, rc=rc)

goto 10

endif

Only reading data into ESMF_Arrays is supported at this time; ESMF_ArrayBundles, ESMF_Fields, and
ESMF_FieldBundles will be supported in future releases of ESMF.

21.3.8 Print Array data from a State

To see that the State now contains the same data as in the file, the following shows how to print out what Arrays are
contained within the State and to print the data contained within each Array. The NetCDF utility "ncdump" can be
used to view the contents of the NetCDF file. In this example, only PET 0 will contain data.

208

if (localPet == 0) then

! Print the names and attributes of Array objects contained in the State

call ESMF_StatePrint(state, rc=rc)

! Get each Array by name from the State

call ESMF_StateGet(state, "lat", latArray, rc=rc)

call ESMF_StateGet(state, "lon", lonArray, rc=rc)

call ESMF_StateGet(state, "time", timeArray, rc=rc)

call ESMF_StateGet(state, "Q", humidArray, rc=rc)

call ESMF_StateGet(state, "TEMP", tempArray, rc=rc)

call ESMF_StateGet(state, "p", pArray, rc=rc)

call ESMF_StateGet(state, "rh", rhArray, rc=rc)

! Print out the Array data

call ESMF_ArrayPrint(latArray, rc=rc)

call ESMF_ArrayPrint(lonArray, rc=rc)

call ESMF_ArrayPrint(timeArray, rc=rc)

call ESMF_ArrayPrint(humidArray, rc=rc)

call ESMF_ArrayPrint(tempArray, rc=rc)

call ESMF_ArrayPrint(pArray, rc=rc)

call ESMF_ArrayPrint(rhArray, rc=rc)

endif

Note that the Arrays "lat", "lon", and "time" hold spatial and temporal coordinate data for the dimensions latitude,
longitude and time, respectively. These will be used in future releases of ESMF to create ESMF_Grids.

21.3.9 Write Array data within a State to a NetCDF file

All the Array data within the State on PET 0 can be written out to a NetCDF file as follows:

! Write Arrays within the State on PET 0 to a NetCDF file

call ESMF_StateWrite(state, "io_netcdf_testdata_out.nc", rc=rc)

Currently writing is limited to PET 0; future versions of ESMF will allow parallel writing, as well as parallel read-

ing.

21.4 Restrictions and Future Work

1. No synchronization of object IDs at object create time. Object IDs are used during the reconcile process to

identify objects which are unknown to some subset of the PETs in the currently running VM. Object IDs are

assigned in sequential order at object create time.

One important request by the user community during the ESMF object design was that there be no communi-

cation overhead or synchronization when creating distributed ESMF objects. As a consequence it is required to

create these objects in unison across all PETs in order to keep the ESMF object identification in sync.

21.5 Design and Implementation Notes

1. States contain the name of the associated Component, a flag for Import or Export, and a list of data objects,

which can be a combination of FieldBundles, Fields, and/or Arrays. The objects must be named and have the

209

DE 1

PET 2

DE 3

PET 0

DE 2

PET 4

DE 0

PET 6

Source Grid Decomposition

Figure 7: The mapping of PETs (processors) to DEs (data) in the source grid created by user_model1.F90 in the

FieldExcl system test.

proper attributes so they can be identified by the receiver of the data. For example, units and other detailed

information may need to be associated with the data as an Attribute.

2. Data contained in States must be created in unison on each PET of the current VM. This allows the creation

process to avoid doing communications since each PET can compute any information it needs to know about

any remote PET (for example, the grid distribute method can compute the decomposition of the grid on not only

the local PET but also the remote PETs since it knows each PET is making the identical call). For all PETs to

have a consistent view of the data this means objects must be given unique names when created, or all objects

must be created in the same order on all PETs so ESMF can generate consistent default names for the objects.

When running components on subsets of the original VM all the PETs can create consistent objects but then

when they are put into a State and passed to a component with a different VM and a different set of PETs, a

communication call (reconcile) must be made to communicate the missing information to the PETs which were

not involved in the original object creation. The reconcile call broadcasts object lists; those PETs which are

missing any objects in the total list can receive enough information to reconstruct a proxy object which contains

all necessary information about that object, with no local data, on that PET. These proxy objects can be queried

by ESMF routines to determine the amount of data and what PETs contain data which is destined to be moved

to the local PET (for receiving data) and conversely, can determine which other PETs are going to receive data

and how much (for sending data).

For example, the FieldExcl system test creates 2 Gridded Components on separate subsets of PETs. They use

the option of mapping particular, non-monotonic PETs to DEs. The following figures illustrate how the DEs are

mapped in each of the Gridded Components in that test:

In the coupler code, all PETs must make the reconcile call before accessing data in the State. On PETs which

already contain data, the objects are unchanged. On PETs which were not involved during the creation of the

FieldBundles or Fields, the reconcile call adds an object to the State which contains all the same metadata

associated with the object, but creates a slightly different Grid object, called a Proxy Grid. These PETs contain

no local data, so the Array object is empty, and the DELayout for the Grid is like this:

210

DE 2

PET 3

DE 1

PET 1

DE 0

PET 5

Destination Grid Decomposition

Figure 8: The mapping of PETs (processors) to DEs (data) in the destination grid created by user_model2.F90 in

the FieldExcl system test.

DE 1

PET 2

DE 5

PET 0

DE 4

PET 4

DE 0

PET 6

Proxy DELayout created by Framework for

Source Grid Decomposition in Coupler

DE 6

PET 5

X

PET 7

DE 3

PET 3

DE 2

PET 1

Figure 9: The mapping of PETs (processors) to DEs (data) in the source grid after the reconcile call in

user_coupler.F90 in the FieldExcl system test.

211

DE 2

PET 3

DE 1

PET 1

DE 0

PET 5

Proxy DELayout created by Framework for

Destination Grid Decomposition in Coupler

DE 3

PET 0

DE 4

PET 2

DE 5

PET 4

DE 6

PET 6

Figure 10: The mapping of PETs (processors) to DEs (data) in the destination grid after the reconcile call in

user_coupler.F90 in the FieldExcl system test.

212

21.6 Object Model

The following is a simplified UML diagram showing the structure of the State class. States can contain FieldBundles,

Fields, Arrays, or nested States. See Appendix A, A Brief Introduction to UML, for a translation table that lists the

symbols in the diagram and their meaning.

Array

0..n

Bundle
 Field

Time
State

0..n
0..n
0..n

0..n

21.7 Class API

21.7.1 ESMF_StateAssignment(=) - State assignment

INTERFACE:

interface assignment(=)

state1 = state2

ARGUMENTS:

type(ESMF_State) :: state1

type(ESMF_State) :: state2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Assign state1 as an alias to the same ESMF State object in memory as state2. If state2 is invalid, then state1 will be
equally invalid after the assignment.

The arguments are:

state1 The ESMF_State object on the left hand side of the assignment.

state2 The ESMF_State object on the right hand side of the assignment.

213

21.7.2 ESMF_StateOperator(==) - State equality operator

INTERFACE:

interface operator(==)

if (state1 == state2) then ... endif

OR

result = (state1 == state2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_State), intent(in) :: state1

type(ESMF_State), intent(in) :: state2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Test whether state1 and state2 are valid aliases to the same ESMF State object in memory. For a more general compar-
ison of two ESMF States, going beyond the simple alias test, the ESMF_StateMatch() function (not yet implemented)
must be used.

The arguments are:

state1 The ESMF_State object on the left hand side of the equality operation.

state2 The ESMF_State object on the right hand side of the equality operation.

21.7.3 ESMF_StateOperator(/=) - State not equal operator

INTERFACE:

interface operator(/=)

if (state1 /= state2) then ... endif

OR

result = (state1 /= state2)

RETURN VALUE:

logical :: result

214

ARGUMENTS:

type(ESMF_State), intent(in) :: state1

type(ESMF_State), intent(in) :: state2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Test whether state1 and state2 are not valid aliases to the same ESMF State object in memory. For a more gen-
eral comparison of two ESMF States, going beyond the simple alias test, the ESMF_StateMatch() function (not yet
implemented) must be used.

The arguments are:

state1 The ESMF_State object on the left hand side of the non-equality operation.

state2 The ESMF_State object on the right hand side of the non-equality operation.

21.7.4 ESMF_StateAdd - Add a list of items to a State

INTERFACE:

subroutine ESMF_StateAdd(state, <itemList>, relaxedFlag, rc)

ARGUMENTS:

type(ESMF_State), intent(inout) :: state

<itemList>, see below for supported values

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: relaxedFlag

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Add a list of items to a ESMF_State. It is an error if any item in <itemlist> already matches, by name, an item
already contained in state.

Supported values for <itemList> are:

215

type(ESMF_Array), intent(in) :: arrayList(:)

type(ESMF_ArrayBundle), intent(in) :: arraybundleList(:)

type(ESMF_Field), intent(in) :: fieldList(:)

type(ESMF_FieldBundle), intent(in) :: fieldbundleList(:)

type(ESMF_RouteHandle), intent(in) :: routehandleList(:)

type(ESMF_State), intent(in) :: nestedStateList(:)

The arguments are:

state An ESMF_State to which the <itemList> will be added.

<itemList> The list of items to be added. This is a reference only; when the ESMF_State is destroyed the <item-
List> items contained within it will not be destroyed. Also, the items in the <itemList> cannot be safely de-
stroyed before the ESMF_State is destroyed. Since <itemList> items can be added to multiple containers, it
remains the responsibility of the user to manage their destruction when they are no longer in use.

[relaxedflag] A setting of .true. indicates a relaxed definition of "add", where it is not an error if <itemList>
contains items with names that are found in state. The State is left unchanged for these items. For
.false. this is treated as an error condition. The default setting is .false..

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

21.7.5 ESMF_StateAddReplace - Add or replace a list of items to a State

INTERFACE:

subroutine ESMF_StateAddReplace(state, <itemList>, rc)

ARGUMENTS:

type(ESMF_State), intent(inout) :: state

<itemList>, see below for supported values

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Add or replace a list of items to an ESMF_State. If an item in <itemList> does not match any items already present
in state, it is added. Items with names already present in the state replace the existing item.

Supported values for <itemList> are:

216

type(ESMF_Array), intent(in) :: arrayList(:)

type(ESMF_ArrayBundle), intent(in) :: arraybundleList(:)

type(ESMF_Field), intent(in) :: fieldList(:)

type(ESMF_FieldBundle), intent(in) :: fieldbundleList(:)

type(ESMF_RouteHandle), intent(in) :: routehandleList(:)

type(ESMF_State), intent(in) :: nestedStateList(:)

The arguments are:

state An ESMF_State to which the <itemList> will be added or replaced.

<itemList> The list of items to be added or replaced. This is a reference only; when the ESMF_State is destroyed
the <itemList> items contained within it will not be destroyed. Also, the items in the <itemList> cannot be safely
destroyed before the ESMF_State is destroyed. Since <itemList> items can be added to multiple containers,
it remains the responsibility of the user to manage their destruction when they are no longer in use.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

21.7.6 ESMF_StateCreate - Create a new State

INTERFACE:

function ESMF_StateCreate(stateintent, &

arrayList, arraybundleList, &

fieldList, fieldbundleList, &

nestedStateList, &

routehandleList, name, vm, rc)

RETURN VALUE:

type(ESMF_State) :: ESMF_StateCreate

ARGUMENTS:

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_StateIntent_Flag), intent(in), optional :: stateintent

type(ESMF_Array), intent(in), optional :: arrayList(:)

type(ESMF_ArrayBundle), intent(in), optional :: arraybundleList(:)

type(ESMF_Field), intent(in), optional :: fieldList(:)

type(ESMF_FieldBundle), intent(in), optional :: fieldbundleList(:)

type(ESMF_State), intent(in), optional :: nestedStateList(:)

type(ESMF_RouteHandle), intent(in), optional :: routehandleList(:)

character(len=*), intent(in), optional :: name

type(ESMF_VM), intent(in), optional :: vm

integer, intent(out), optional :: rc

217

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

8.1.0 Added argument vm to support object creation on a different VM than that of the current context.

DESCRIPTION:

Create a new ESMF_State, set default characteristics for objects added to it, and optionally add initial objects to it.

The arguments are:

[stateintent] Import or Export ESMF_State. Valid values are ESMF_STATEINTENT_IMPORT,
ESMF_STATEINTENT_EXPORT, or ESMF_STATEINTENT_UNSPECIFIED The default is
ESMF_STATEINTENT_UNSPECIFIED.

[arrayList] A list (Fortran array) of ESMF_Arrays.

[arraybundleList] A list (Fortran array) of ESMF_ArrayBundles.

[fieldList] A list (Fortran array) of ESMF_Fields.

[fieldbundleList] A list (Fortran array) of ESMF_FieldBundles.

[nestedStateList] A list (Fortran array) of ESMF_States to be nested inside the outer ESMF_State.

[routehandleList] A list (Fortran array) of ESMF_RouteHandles.

[name] Name of this ESMF_State object. A default name will be generated if none is specified.

[vm] If present, the State object is created on the specified ESMF_VM object. The default is to create on the VM of
the current component context.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

21.7.7 ESMF_StateDestroy - Release resources for a State

INTERFACE:

recursive subroutine ESMF_StateDestroy(state, noGarbage, rc)

ARGUMENTS:

type(ESMF_State), intent(inout) :: state

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: noGarbage

integer, intent(out), optional :: rc

218

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

8.1.0 Added argument noGarbage. The argument provides a mechanism to override the default garbage
collection mechanism when destroying an ESMF object.

DESCRIPTION:

Releases resources associated with this ESMF_State. Actual objects added to ESMF_States will not be destroyed,
it remains the responsibility of the user to destroy these objects in the correct context.

The arguments are:

state Destroy contents of this ESMF_State.

[noGarbage] If set to .TRUE. the object will be fully destroyed and removed from the ESMF garbage collection
system. Note however that under this condition ESMF cannot protect against accessing the destroyed object
through dangling aliases – a situation which may lead to hard to debug application crashes.

It is generally recommended to leave the noGarbage argument set to .FALSE. (the default), and to take
advantage of the ESMF garbage collection system which will prevent problems with dangling aliases or incorrect
sequences of destroy calls. However this level of support requires that a small remnant of the object is kept in
memory past the destroy call. This can lead to an unexpected increase in memory consumption over the course
of execution in applications that use temporary ESMF objects. For situations where the repeated creation and
destruction of temporary objects leads to memory issues, it is recommended to call with noGarbage set to
.TRUE., fully removing the entire temporary object from memory.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

21.7.8 ESMF_StateGet - Get object-wide information from a State

INTERFACE:

! Private name; call using ESMF_StateGet()

subroutine ESMF_StateGetInfo(state, &

itemSearch, itemorderflag, nestedFlag, &

stateintent, itemCount, itemNameList, itemTypeList, name, rc)

ARGUMENTS:

type(ESMF_State), intent(in) :: state

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character (len=*), intent(in), optional :: itemSearch

219

type(ESMF_ItemOrder_Flag), intent(in), optional :: itemorderflag

logical, intent(in), optional :: nestedFlag

type(ESMF_StateIntent_Flag), intent(out), optional :: stateintent

integer, intent(out), optional :: itemCount

character (len=*), intent(out), optional :: itemNameList(:)

type(ESMF_StateItem_Flag), intent(out), optional :: itemTypeList(:)

character (len=*), intent(out), optional :: name

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

6.1.0 Added argument itemorderflag. The new argument gives the user control over the order in which
the items are returned.

DESCRIPTION:

Returns the requested information about this ESMF_State. The optional itemSearch argument may specify the
name of an individual item to search for. When used in conjunction with the nestedFlag, nested States will also be
searched.

Typically, an ESMF_StateGet() information request will be performed twice. The first time, the itemCount
argument will be used to query the size of arrays that are needed. Arrays can then be allocated to the correct size for
itemNameList and itemtypeList as needed. A second call to ESMF_StateGet() will then fill in the values.

The arguments are:

state An ESMF_State object to be queried.

[itemSearch] Query objects by name in the State. When the nestedFlag option is set to .true., all nested States
will also be searched for the specified name.

[itemorderflag] Specifies the order of the returned items in the itemNameList and itemTypeList. The default
is ESMF_ITEMORDER_ABC. See 52.32 for a full list of options.

[nestedFlag] When set to .false., returns information at the current State level only (default) When set to
.true., additionally returns information from nested States

[stateintent] Returns the type, e.g., Import or Export, of this ESMF_State. Possible values are listed in Sec-
tion 21.2.1.

[itemCount] Count of items in this ESMF_State. When the nestedFlag option is set to .true., the count will
include items present in nested States. When using itemSearch, it will count the number of items matching
the specified name.

[itemNameList] Array of item names in this ESMF_State. When the nestedFlag option is set to .true., the
list will include items present in nested States. When using itemSearch, it will return the names of items
matching the specified name. itemNameList must be at least itemCount long.

220

[itemTypeList] Array of possible item object types in this ESMF_State. When the nestedFlag option is set
to .true., the list will include items present in nested States. When using itemSearch, it will return the
types of items matching the specified name. Must be at least itemCount long. Return values are listed in
Section 21.2.2.

[name] Returns the name of this ESMF_State.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

21.7.9 ESMF_StateGet - Get information about an item in a State by item name

INTERFACE:

! Private name; call using ESMF_StateGet()

subroutine ESMF_StateGetItemInfo(state, itemName, itemType, rc)

ARGUMENTS:

type(ESMF_State), intent(in) :: state

character (len=*), intent(in) :: itemName

type(ESMF_StateItem_Flag), intent(out) :: itemType

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Returns the type for the item named name in this ESMF_State. If no item with this name exists, the value
ESMF_STATEITEM_NOTFOUND will be returned and the error code will not be set to an error. Thus this routine
can be used to safely query for the existence of items by name whether or not they are expected to be there. The error
code will be set in case of other errors, for example if the ESMF_State itself is invalid.

The arguments are:

state ESMF_State to be queried.

itemName Name of the item to return information about.

itemType Returned item types for the item with the given name, including placeholder names. Options are listed in
Section 21.2.2. If no item with the given name is found, ESMF_STATEITEM_NOTFOUND will be returned and
rc will not be set to an error.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

221

21.7.10 ESMF_StateGet - Get an item from a State by item name

INTERFACE:

subroutine ESMF_StateGet(state, itemName, <item>, rc)

ARGUMENTS:

type(ESMF_State), intent(in) :: state

character (len=*), intent(in) :: itemName

<item>, see below for supported values

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Returns an <item> from an ESMF_State by item name. If the ESMF_State contains the <item> directly, only
itemName is required.

If the state contains nested ESMF_States, the itemName argument may specify a fully qualified name to access
the desired item with a single call. This is performed using the ’/’ character to separate the names of the intermediate
State names leading to the desired item. (E.g., itemName=’state1/state12/item’).

Supported values for <item> are:

type(ESMF_Array), intent(out) :: array

type(ESMF_ArrayBundle), intent(out) :: arraybundle

type(ESMF_Field), intent(out) :: field

type(ESMF_FieldBundle), intent(out) :: fieldbundle

type(ESMF_RouteHandle), intent(out) :: routehandle

type(ESMF_State), intent(out) :: nestedState

The arguments are:

state State to query for an <item> named itemName.

itemName Name of <item> to be returned. This name may be fully qualified in order to access nested State items.

<item> Returned reference to the <item>.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

222

21.7.11 ESMF_StateIsCreated - Check whether an State object has been created

INTERFACE:

function ESMF_StateIsCreated(state, rc)

RETURN VALUE:

logical :: ESMF_StateIsCreated

ARGUMENTS:

type(ESMF_State), intent(in) :: state

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Return .true. if the state has been created. Otherwise return .false.. If an error occurs, i.e. rc /=

ESMF_SUCCESS is returned, the return value of the function will also be .false..

The arguments are:

state ESMF_State queried.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

21.7.12 ESMF_StatePrint - Print State information

INTERFACE:

subroutine ESMF_StatePrint(state, options, nestedFlag, rc)

ARGUMENTS:

type(ESMF_State), intent(in) :: state

character(len=*), intent(in), optional :: options

logical, intent(in), optional :: nestedFlag

integer, intent(out), optional :: rc

DESCRIPTION:

Prints information about the state to stdout.

The arguments are:

state The ESMF_State to print.

223

[options] Print options: " ", or "brief" - print names and types of the objects within the state (default), "long" - print
additional information, such as proxy flags

[nestedFlag] When set to .false., prints information about the current State level only (default), When set to
.true., additionally prints information from nested States

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

21.7.13 ESMF_StateRead – Read data items from a file into a State

INTERFACE:

subroutine ESMF_StateRead(state, fileName, rc)

ARGUMENTS:

type(ESMF_State), intent(inout) :: state

character (len=*), intent(in) :: fileName

integer, intent(out), optional :: rc

DESCRIPTION:

Currently limited to read in all Arrays from a NetCDF file and add them to a State object. Future releases will enable
more items of a State to be read from a file of various formats.

Only PET 0 reads the file; the States in other PETs remain empty. Currently, the data is not decomposed or distributed;
each PET has only 1 DE and only PET 0 contains data after reading the file. Future versions of ESMF will support
data decomposition and distribution upon reading a file. See Section 21.3.7 for an example.

Note that the third party NetCDF library must be installed. For more details, see the "ESMF
Users Guide", "Building and Installing the ESMF, Third Party Libraries, NetCDF" and the website
http://www.unidata.ucar.edu/software/netcdf.

The arguments are:

state The ESMF_State to add items read from file. Currently only Arrays are supported.

fileName File to be read.

[rc] Return code; equals ESMF_SUCCESS if there are no errors. Equals ESMF_RC_LIB_NOT_PRESENT if the
NetCDF library is not present.

21.7.14 ESMF_StateReconcile – Reconcile State data across all PETs in a VM

INTERFACE:

subroutine ESMF_StateReconcile(state, vm, rc)

224

ARGUMENTS:

type(ESMF_State), intent(inout) :: state

type(ESMF_VM), intent(in), optional :: vm

integer, intent(out), optional :: rc

DESCRIPTION:

Must be called for any ESMF_State which contains ESMF objects that have not been created on all the PETs of the
currently running ESMF_Component. For example, if a coupler is operating on data which was created by another
component that ran on only a subset of the couplers PETs, the coupler must make this call first before operating on
any data inside that ESMF_State. After calling ESMF_StateReconcile all PETs will have a common view of
all objects contained in this ESMF_State.

This call is collective across the specified VM.

The arguments are:

state ESMF_State to reconcile.

[vm] ESMF_VM for this ESMF_Component. By default, it is set to the current vm.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

21.7.15 ESMF_StateRemove - Remove an item from a State - (DEPRECATED METHOD)

INTERFACE:

! Private name; call using ESMF_StateRemove ()

subroutine ESMF_StateRemoveOneItem (state, itemName, &

relaxedFlag, rc)

ARGUMENTS:

type(ESMF_State), intent(inout) :: state

character(*), intent(in) :: itemName

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: relaxedFlag

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• DEPRECATED METHOD as of ESMF 5.3.1. Please use ESMF_StateRemove 21.7.16 instead. Ratio-
nale: The list version is consistent with other ESMF container operations which use lists.

DESCRIPTION:

Remove an existing reference to an item from a State.

The arguments are:

225

state The ESMF_State within which itemName will be removed.

itemName The name of the item to be removed. This is a reference only. The item itself is unchanged.

If the state contains nested ESMF_States, the itemName argument may specify a fully qualified name to
remove the desired item with a single call. This is performed using the "/" character to separate the names of the
intermediate State names leading to the desired item. (E.g., itemName="state1/state12/item".

Since an item could potentially be referenced by multiple containers, it remains the responsibility of the user to
manage its destruction when it is no longer in use.

[relaxedflag] A setting of .true. indicates a relaxed definition of "remove", where it is not an error if itemName
is not present in the state. For .false. this is treated as an error condition. The default setting is .false..

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

21.7.16 ESMF_StateRemove - Remove a list of items from a State

INTERFACE:

! Private name; call using ESMF_StateRemove ()

subroutine ESMF_StateRemoveList (state, itemNameList, relaxedFlag, rc)

ARGUMENTS:

type(ESMF_State), intent(inout) :: state

character(*), intent(in) :: itemNameList(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: relaxedFlag

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.3.1. If code using this interface compiles
with any version of ESMF starting with 5.3.1, then it will compile with the current version.

DESCRIPTION:

Remove existing references to items from a State.

The arguments are:

state The ESMF_State within which itemName will be removed.

itemNameList The name of the items to be removed. This is a reference only. The items themselves are unchanged.

If the state contains nested ESMF_States, the itemName arguments may specify fully qualified names to
remove the desired items with a single call. This is performed using the "/" character to separate the names of
the intermediate State names leading to the desired items. (E.g., itemName="state1/state12/item".

Since items could potentially be referenced by multiple containers, it remains the responsibility of the user to
manage their destruction when they are no longer in use.

226

[relaxedflag] A setting of .true. indicates a relaxed definition of "remove", where it is not an error if an item in the
itemNameList is not present in the state. For .false. this is treated as an error condition. The default
setting is .false..

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

21.7.17 ESMF_StateReplace - Replace a list of items within a State

INTERFACE:

subroutine ESMF_StateReplace(state, <itemList>, relaxedflag, rc)

ARGUMENTS:

type(ESMF_State), intent(inout) :: state

<itemList>, see below for supported values

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: relaxedflag

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Replace a list of items with a ESMF_State. If an item in <itemList> does not match any items already present in
state, an error is returned.

Supported values for <itemList> are:

type(ESMF_Array), intent(in) :: arrayList(:)

type(ESMF_ArrayBundle), intent(in) :: arraybundleList(:)

type(ESMF_Field), intent(in) :: fieldList(:)

type(ESMF_FieldBundle), intent(in) :: fieldbundleList(:)

type(ESMF_RouteHandle), intent(in) :: routehandleList(:)

type(ESMF_State), intent(in) :: nestedStateList(:)

The arguments are:

state An ESMF_State within which the <itemList> items will be replaced.

<itemList> The list of items to be replaced. This is a reference only; when the ESMF_State is destroyed the
<itemList> contained in it will not be destroyed. Also, the items in the <itemList> cannot be safely destroyed
before the ESMF_State is destroyed. Since <itemList> items can be added to multiple containers, it remains
the responsibility of the user to manage their destruction when they are no longer in use.

227

[relaxedflag] A setting of .true. indicates a relaxed definition of "replace", where it is not an error if
<itemList> contains items with names that are not found in state. The State is left unchanged for
these items. For .false. this is treated as an error condition. The default setting is .false..

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

21.7.18 ESMF_StateSet - Set State aspects

INTERFACE:

subroutine ESMF_StateSet(state, stateIntent, rc)

ARGUMENTS:

type(ESMF_State), intent(inout) :: state

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_StateIntent_Flag), intent(in), optional :: stateIntent

integer, intent(out), optional :: rc

DESCRIPTION:

Set the info in the state object.

The arguments are:

state The ESMF_State to set.

stateIntent Intent, e.g. Import or Export, of this ESMF_State. Possible values are listed in Section 21.2.1.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

21.7.19 ESMF_StateValidate - Check validity of a State

INTERFACE:

subroutine ESMF_StateValidate(state, nestedFlag, rc)

ARGUMENTS:

type(ESMF_State), intent(in) :: state

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: nestedFlag

integer, intent(out), optional :: rc

STATUS:

228

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Validates that the state is internally consistent. Currently this method determines if the State is uninitialized or
already destroyed. The method returns an error code if problems are found.

The arguments are:

state The ESMF_State to validate.

[nestedFlag] .false. - validates at the current State level only (default) .true. - recursively validates any nested
States

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

21.7.20 ESMF_StateWrite – Write items from a State to file

INTERFACE:

subroutine ESMF_StateWrite(state, fileName, rc)

ARGUMENTS:

type(ESMF_State), intent(in) :: state

character (len=*), intent(in) :: fileName

integer, intent(out), optional :: rc

DESCRIPTION:

Currently limited to write out all Arrays of a State object to a netCDF file. Future releases will enable more item types
of a State to be written to files of various formats.

Writing is currently limited to PET 0; future versions of ESMF will allow parallel writing, as well as parallel reading.

See Section 21.3.7 for an example.

Note that the third party NetCDF library must be installed. For more details, see the "ESMF
Users Guide", "Building and Installing the ESMF, Third Party Libraries, NetCDF" and the website
http://www.unidata.ucar.edu/software/netcdf.

The arguments are:

state The ESMF_State from which to write items. Currently limited to Arrays.

fileName File to be written.

[rc] Return code; equals ESMF_SUCCESS if there are no errors. Equals ESMF_RC_LIB_NOT_PRESENT if the
NetCDF library is not present.

229

22 Attachable Methods

22.1 Description

ESMF allows user methods to be attached to Components and States. Providing this capability supports a more object

oriented way of model design.

Attachable methods on Components can be used to implement the concept of generic Components where the special-

ization requires attaching methods with well defined names. This methods are then called by the generic Component

code.

Attaching methods to States can be used to supply data operations along with the data objects inside of a State object.

This can be useful where a producer Component not only supplies a data set, but also the associated processing

functionality. This can be more efficient than providing all of the possible sets of derived data.

22.2 Use and Examples

The following examples demonstrate how a producer Component attaches a user defined method to a State, and how

it implements the method. The attached method is then executed by the consumer Component.

22.2.1 Producer Component attaches user defined method

The producer Component attaches a user defined method to exportState during the Component’s initialize
method. The user defined method is attached with label finalCalculation by which it will become accessi-
ble to the consumer Component.

subroutine init(gcomp, importState, exportState, clock, rc)

! arguments

type(ESMF_GridComp):: gcomp

type(ESMF_State):: importState, exportState

type(ESMF_Clock):: clock

integer, intent(out):: rc

rc = ESMF_SUCCESS

call ESMF_MethodAdd(exportState, label="finalCalculation", &

userRoutine=finalCalc, rc=rc)

if (rc /= ESMF_SUCCESS) return

end subroutine !--

22.2.2 Producer Component implements user defined method

The producer Component implements the attached, user defined method finalCalc. Strict interface rules apply for
the user defined method.

subroutine finalCalc(state, rc)

! arguments

type(ESMF_State):: state

integer, intent(out):: rc

230

rc = ESMF_SUCCESS

! access data objects in state and perform calculation

print *, "dummy output from attached method "

end subroutine !--

22.2.3 Consumer Component executes user defined method

The consumer Component executes the user defined method on the importState.

subroutine init(gcomp, importState, exportState, clock, rc)

! arguments

type(ESMF_GridComp):: gcomp

type(ESMF_State):: importState, exportState

type(ESMF_Clock):: clock

integer, intent(out):: rc

integer:: userRc

logical:: isPresent

rc = ESMF_SUCCESS

It is possible to first check the importState if the desired method is attached. This allows the consumer code to
implement alternatives in case the method is not available.

call ESMF_MethodGet(importState, label="finalCalculation", &

isPresent=isPresent, rc=rc)

if (rc /= ESMF_SUCCESS) return

Finally call into the attached method from the consumer side.

call ESMF_MethodExecute(importState, label="finalCalculation", &

userRc=userRc, rc=rc)

if (rc /= ESMF_SUCCESS) return

rc = userRc

if (rc /= ESMF_SUCCESS) return

end subroutine !--

22.3 Restrictions and Future Work

1. Not reconciled. Attachable Methods are PET-local settings on an object. Currently Attachable Methods cannot

be reconciled (i.e. ignored during ESMF_StateReconcile()).

2. No copy nor move. Currently Attachable Methods cannot be copied or moved between objects.

231

22.4 Class API

22.4.1 ESMF_MethodAdd - Attach user method to CplComp

INTERFACE:

! Private name; call using ESMF_MethodAdd()

subroutine ESMF_MethodCplCompAdd(cplcomp, label, index, userRoutine, rc)

ARGUMENTS:

type(ESMF_CplComp) :: cplcomp

character(len=*), intent(in) :: label

integer, intent(in), optional :: index

interface

subroutine userRoutine(cplcomp, rc)

use ESMF_CompMod

implicit none

type(ESMF_CplComp) :: cplcomp ! must not be optional

integer, intent(out) :: rc ! must not be optional

end subroutine

end interface

integer, intent(out), optional :: rc

DESCRIPTION:

Attach userRoutine. Error out if there is a previous attached method under the same label and index.

The arguments are:

cplcomp The ESMF_CplComp to attach to.

label Label of method.

[index] Integer modifier to distinguish multiple entries with the same label.

userRoutine The user-supplied subroutine to be associated with the label.

The subroutine must have the exact interface shown above for the userRoutine argument. Arguments in
userRoutine must not be declared as optional, and the types, intent and order must match. Prior to Fortran-
2008, the subroutine must be either a module scope procedure, or an external procedure that has a matching
interface block specified for it. An internal procedure which is contained within another procedure must not be
used. From Fortran-2008 onwards, an internal procedure contained within either a main program or a module
procedure may be used. If the internal procedure is contained within a module procedure, it is subject to
initialization requirements. See: 16.4.9

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

22.4.2 ESMF_MethodAdd - Attach user method, located in shared object, to CplComp

INTERFACE:

232

! Private name; call using ESMF_MethodAdd()

subroutine ESMF_MethodCplCompAddShObj(cplcomp, label, index, userRoutine, &

sharedObj, rc)

ARGUMENTS:

type(ESMF_CplComp) :: cplcomp

character(len=*), intent(in) :: label

integer, intent(in), optional :: index

character(len=*), intent(in) :: userRoutine

character(len=*), intent(in), optional :: sharedObj

integer, intent(out), optional :: rc

DESCRIPTION:

Attach userRoutine. Error out if there is a previous attached method under the same label and index.

The arguments are:

cplcomp The ESMF_CplComp to attach to.

label Label of method.

[index] Integer modifier to distinguish multiple entries with the same label.

userRoutine Name of user-supplied subroutine to be associated with the label, specified as a character string.

The subroutine must have the exact interface shown in ESMF_MethodCplCompAdd for the userRoutine
argument. Arguments in userRoutine must not be declared as optional, and the types, intent and order must
match. Prior to Fortran-2008, the subroutine must be either a module scope procedure, or an external procedure
that has a matching interface block specified for it. An internal procedure which is contained within another
procedure must not be used. From Fortran-2008 onwards, an internal procedure contained within either a main
program or a module procedure may be used. If the internal procedure is contained within a module procedure,
it is subject to initialization requirements. See: 16.4.9

[sharedObj] Name of shared object that contains userRoutine. If the sharedObj argument is not provided the
executable itself will be searched for userRoutine.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

22.4.3 ESMF_MethodAdd - Attach user method to GridComp

INTERFACE:

! Private name; call using ESMF_MethodAdd()

subroutine ESMF_MethodGridCompAdd(gcomp, label, index, userRoutine, rc)

ARGUMENTS:

233

type(ESMF_GridComp) :: gcomp

character(len=*), intent(in) :: label

integer, intent(in), optional :: index

interface

subroutine userRoutine(gcomp, rc)

use ESMF_CompMod

implicit none

type(ESMF_GridComp) :: gcomp ! must not be optional

integer, intent(out) :: rc ! must not be optional

end subroutine

end interface

integer, intent(out), optional :: rc

DESCRIPTION:

Attach userRoutine. Error out if there is a previous attached method under the same label and index.

The arguments are:

gcomp The ESMF_GridComp to attach to.

label Label of method.

[index] Integer modifier to distinguish multiple entries with the same label.

userRoutine The user-supplied subroutine to be associated with the label.

The subroutine must have the exact interface shown above for the userRoutine argument. Arguments in
userRoutine must not be declared as optional, and the types, intent and order must match. Prior to Fortran-
2008, the subroutine must be either a module scope procedure, or an external procedure that has a matching
interface block specified for it. An internal procedure which is contained within another procedure must not be
used. From Fortran-2008 onwards, an internal procedure contained within either a main program or a module
procedure may be used. If the internal procedure is contained within a module procedure, it is subject to
initialization requirements. See: 16.4.9

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

22.4.4 ESMF_MethodAdd - Attach user method, located in shared object, to GridComp

INTERFACE:

! Private name; call using ESMF_MethodAdd()

subroutine ESMF_MethodGridCompAddShObj(gcomp, label, index, userRoutine, &

sharedObj, rc)

ARGUMENTS:

type(ESMF_GridComp) :: gcomp

character(len=*), intent(in) :: label

integer, intent(in), optional :: index

character(len=*), intent(in) :: userRoutine

character(len=*), intent(in), optional :: sharedObj

integer, intent(out), optional :: rc

234

DESCRIPTION:

Attach userRoutine. Error out if there is a previous attached method under the same label and index.

The arguments are:

gcomp The ESMF_GridComp to attach to.

label Label of method.

[index] Integer modifier to distinguish multiple entries with the same label.

userRoutine Name of user-supplied subroutine to be associated with the label, specified as a character string.

The subroutine must have the exact interface shown in ESMF_MethodGridCompAdd for the userRoutine
argument. Arguments in userRoutine must not be declared as optional, and the types, intent and order must
match. Prior to Fortran-2008, the subroutine must be either a module scope procedure, or an external procedure
that has a matching interface block specified for it. An internal procedure which is contained within another
procedure must not be used. From Fortran-2008 onwards, an internal procedure contained within either a main
program or a module procedure may be used. If the internal procedure is contained within a module procedure,
it is subject to initialization requirements. See: 16.4.9

[sharedObj] Name of shared object that contains userRoutine. If the sharedObj argument is not provided the
executable itself will be searched for userRoutine.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

22.4.5 ESMF_MethodAdd - Attach user method to State

INTERFACE:

! Private name; call using ESMF_MethodAdd()

subroutine ESMF_MethodStateAdd(state, label, index, userRoutine, rc)

ARGUMENTS:

type(ESMF_State) :: state

character(len=*), intent(in) :: label

integer, intent(in), optional :: index

interface

subroutine userRoutine(state, rc)

use ESMF_StateMod

implicit none

type(ESMF_State) :: state ! must not be optional

integer, intent(out) :: rc ! must not be optional

end subroutine

end interface

integer, intent(out), optional :: rc

DESCRIPTION:

Attach userRoutine. Error out if there is a previous attached method under the same label and index.

The arguments are:

235

state The ESMF_State to attach to.

label Label of method.

[index] Integer modifier to distinguish multiple entries with the same label.

userRoutine The user-supplied subroutine to be associated with the label.

The subroutine must have the exact interface shown above for the userRoutine argument. Arguments in
userRoutine must not be declared as optional, and the types, intent and order must match. Prior to Fortran-
2008, the subroutine must be either a module scope procedure, or an external procedure that has a matching
interface block specified for it. An internal procedure which is contained within another procedure must not be
used. From Fortran-2008 onwards, an internal procedure contained within either a main program or a module
procedure may be used. If the internal procedure is contained within a module procedure, it is subject to
initialization requirements. See: 16.4.9

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

22.4.6 ESMF_MethodAdd - Attach user method, located in shared object, to State

INTERFACE:

! Private name; call using ESMF_MethodAdd()

subroutine ESMF_MethodStateAddShObj(state, label, index, userRoutine, &

sharedObj, rc)

ARGUMENTS:

type(ESMF_State) :: state

character(len=*), intent(in) :: label

integer, intent(in), optional :: index

character(len=*), intent(in) :: userRoutine

character(len=*), intent(in), optional :: sharedObj

integer, intent(out), optional :: rc

DESCRIPTION:

Attach userRoutine. Error out if there is a previous attached method under the same label and index.

The arguments are:

state The ESMF_State to attach to.

label Label of method.

[index] Integer modifier to distinguish multiple entries with the same label.

userRoutine Name of user-supplied subroutine to be associated with the label, specified as a character string.

The subroutine must have the exact interface shown in ESMF_MethodStateAdd for the userRoutine
argument. Arguments in userRoutine must not be declared as optional, and the types, intent and order must
match. Prior to Fortran-2008, the subroutine must be either a module scope procedure, or an external procedure
that has a matching interface block specified for it. An internal procedure which is contained within another

236

procedure must not be used. From Fortran-2008 onwards, an internal procedure contained within either a main
program or a module procedure may be used. If the internal procedure is contained within a module procedure,
it is subject to initialization requirements. See: 16.4.9

[sharedObj] Name of shared object that contains userRoutine. If the sharedObj argument is not provided the
executable itself will be searched for userRoutine.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

22.4.7 ESMF_MethodAddReplace - Attach user method to CplComp

INTERFACE:

! Private name; call using ESMF_MethodAddReplace()

subroutine ESMF_MethodCplCompAddRep(cplcomp, label, index, userRoutine, rc)

ARGUMENTS:

type(ESMF_CplComp) :: cplcomp

character(len=*), intent(in) :: label

integer, intent(in), optional :: index

interface

subroutine userRoutine(cplcomp, rc)

use ESMF_CompMod

implicit none

type(ESMF_CplComp) :: cplcomp ! must not be optional

integer, intent(out) :: rc ! must not be optional

end subroutine

end interface

integer, intent(out), optional :: rc

DESCRIPTION:

Attach userRoutine. Replacing potential previous attached method under the same label and index.

The arguments are:

cplcomp The ESMF_CplComp to attach to.

label Label of method.

[index] Integer modifier to distinguish multiple entries with the same label.

userRoutine The user-supplied subroutine to be associated with the label.

The subroutine must have the exact interface shown above for the userRoutine argument. Arguments in
userRoutine must not be declared as optional, and the types, intent and order must match. Prior to Fortran-
2008, the subroutine must be either a module scope procedure, or an external procedure that has a matching
interface block specified for it. An internal procedure which is contained within another procedure must not be
used. From Fortran-2008 onwards, an internal procedure contained within either a main program or a module
procedure may be used. If the internal procedure is contained within a module procedure, it is subject to
initialization requirements. See: 16.4.9

237

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

22.4.8 ESMF_MethodAddReplace - Attach user method, located in shared object, to CplComp

INTERFACE:

! Private name; call using ESMF_MethodAddReplace()

subroutine ESMF_MethodCplCompAddRepShObj(cplcomp, label, index, userRoutine, &

sharedObj, rc)

ARGUMENTS:

type(ESMF_CplComp) :: cplcomp

character(len=*), intent(in) :: label

integer, intent(in), optional :: index

character(len=*), intent(in) :: userRoutine

character(len=*), intent(in), optional :: sharedObj

integer, intent(out), optional :: rc

DESCRIPTION:

Attach userRoutine. Replacing potential previous attached method under the same label and index.

The arguments are:

cplcomp The ESMF_CplComp to attach to.

label Label of method.

[index] Integer modifier to distinguish multiple entries with the same label.

userRoutine Name of user-supplied subroutine to be associated with the label, specified as a character string.

The subroutine must have the exact interface shown in ESMF_MethodCplCompAdd for the userRoutine
argument. Arguments in userRoutine must not be declared as optional, and the types, intent and order must
match. Prior to Fortran-2008, the subroutine must be either a module scope procedure, or an external procedure
that has a matching interface block specified for it. An internal procedure which is contained within another
procedure must not be used. From Fortran-2008 onwards, an internal procedure contained within either a main
program or a module procedure may be used. If the internal procedure is contained within a module procedure,
it is subject to initialization requirements. See: 16.4.9

[sharedObj] Name of shared object that contains userRoutine. If the sharedObj argument is not provided the
executable itself will be searched for userRoutine.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

238

22.4.9 ESMF_MethodAddReplace - Attach user method to GridComp

INTERFACE:

! Private name; call using ESMF_MethodAddReplace()

subroutine ESMF_MethodGridCompAddRep(gcomp, label, index, userRoutine, rc)

ARGUMENTS:

type(ESMF_GridComp) :: gcomp

character(len=*), intent(in) :: label

integer, intent(in), optional :: index

interface

subroutine userRoutine(gcomp, rc)

use ESMF_CompMod

implicit none

type(ESMF_GridComp) :: gcomp ! must not be optional

integer, intent(out) :: rc ! must not be optional

end subroutine

end interface

integer, intent(out), optional :: rc

DESCRIPTION:

Attach userRoutine. Replacing potential previous attached method under the same label and index.

The arguments are:

gcomp The ESMF_GridComp to attach to.

label Label of method.

[index] Integer modifier to distinguish multiple entries with the same label.

userRoutine The user-supplied subroutine to be associated with the label.

The subroutine must have the exact interface shown above for the userRoutine argument. Arguments in
userRoutine must not be declared as optional, and the types, intent and order must match. Prior to Fortran-
2008, the subroutine must be either a module scope procedure, or an external procedure that has a matching
interface block specified for it. An internal procedure which is contained within another procedure must not be
used. From Fortran-2008 onwards, an internal procedure contained within either a main program or a module
procedure may be used. If the internal procedure is contained within a module procedure, it is subject to
initialization requirements. See: 16.4.9

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

22.4.10 ESMF_MethodAddReplace - Attach user method, located in shared object, to GridComp

INTERFACE:

239

! Private name; call using ESMF_MethodAddReplace()

subroutine ESMF_MethodGridCompAddRepShObj(gcomp, label, index, userRoutine, &

sharedObj, rc)

ARGUMENTS:

type(ESMF_GridComp) :: gcomp

character(len=*), intent(in) :: label

integer, intent(in), optional :: index

character(len=*), intent(in) :: userRoutine

character(len=*), intent(in), optional :: sharedObj

integer, intent(out), optional :: rc

DESCRIPTION:

Attach userRoutine. Replacing potential previous attached method under the same label and index.

The arguments are:

gcomp The ESMF_GridComp to attach to.

label Label of method.

[index] Integer modifier to distinguish multiple entries with the same label.

userRoutine Name of user-supplied subroutine to be associated with the label, specified as a character string.

The subroutine must have the exact interface shown in ESMF_MethodGridCompAdd for the userRoutine
argument. Arguments in userRoutine must not be declared as optional, and the types, intent and order must
match. Prior to Fortran-2008, the subroutine must be either a module scope procedure, or an external procedure
that has a matching interface block specified for it. An internal procedure which is contained within another
procedure must not be used. From Fortran-2008 onwards, an internal procedure contained within either a main
program or a module procedure may be used. If the internal procedure is contained within a module procedure,
it is subject to initialization requirements. See: 16.4.9

[sharedObj] Name of shared object that contains userRoutine. If the sharedObj argument is not provided the
executable itself will be searched for userRoutine.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

22.4.11 ESMF_MethodAddReplace - Attach user method to State

INTERFACE:

! Private name; call using ESMF_MethodAddReplace()

subroutine ESMF_MethodStateAddRep(state, label, index, userRoutine, rc)

ARGUMENTS:

240

type(ESMF_State) :: state

character(len=*), intent(in) :: label

integer, intent(in), optional :: index

interface

subroutine userRoutine(state, rc)

use ESMF_StateMod

implicit none

type(ESMF_State) :: state ! must not be optional

integer, intent(out) :: rc ! must not be optional

end subroutine

end interface

integer, intent(out), optional :: rc

DESCRIPTION:

Attach userRoutine. Replacing potential previous attached method under the same label and index.

The arguments are:

state The ESMF_State to attach to.

label Label of method.

[index] Integer modifier to distinguish multiple entries with the same label.

userRoutine The user-supplied subroutine to be associated with the label.

The subroutine must have the exact interface shown above for the userRoutine argument. Arguments in
userRoutine must not be declared as optional, and the types, intent and order must match. Prior to Fortran-
2008, the subroutine must be either a module scope procedure, or an external procedure that has a matching
interface block specified for it. An internal procedure which is contained within another procedure must not be
used. From Fortran-2008 onwards, an internal procedure contained within either a main program or a module
procedure may be used. If the internal procedure is contained within a module procedure, it is subject to
initialization requirements. See: 16.4.9

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

22.4.12 ESMF_MethodAddReplace - Attach user method, located in shared object, to State

INTERFACE:

! Private name; call using ESMF_MethodAddReplace()

subroutine ESMF_MethodStateAddRepShObj(state, label, index, userRoutine, &

sharedObj, rc)

ARGUMENTS:

type(ESMF_State) :: state

character(len=*), intent(in) :: label

integer, intent(in), optional :: index

character(len=*), intent(in) :: userRoutine

character(len=*), intent(in), optional :: sharedObj

integer, intent(out), optional :: rc

241

DESCRIPTION:

Attach userRoutine. Replacing potential previous attached method under the same label and index.

The arguments are:

state The ESMF_State to attach to.

label Label of method.

[index] Integer modifier to distinguish multiple entries with the same label.

userRoutine Name of user-supplied subroutine to be associated with the label, specified as a character string.

The subroutine must have the exact interface shown in ESMF_MethodStateAdd for the userRoutine
argument. Arguments in userRoutine must not be declared as optional, and the types, intent and order must
match. Prior to Fortran-2008, the subroutine must be either a module scope procedure, or an external procedure
that has a matching interface block specified for it. An internal procedure which is contained within another
procedure must not be used. From Fortran-2008 onwards, an internal procedure contained within either a main
program or a module procedure may be used. If the internal procedure is contained within a module procedure,
it is subject to initialization requirements. See: 16.4.9

[sharedObj] Name of shared object that contains userRoutine. If the sharedObj argument is not provided the
executable itself will be searched for userRoutine.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

22.4.13 ESMF_MethodExecute - Execute user method attached to CplComp

INTERFACE:

! Private name; call using ESMF_MethodExecute()

recursive subroutine ESMF_MethodCplCompExecute(cplcomp, label, index, existflag, &

userRc, rc)

ARGUMENTS:

type(ESMF_CplComp) :: cplcomp

character(len=*), intent(in) :: label

integer, intent(in), optional :: index

logical, intent(out), optional :: existflag

integer, intent(out), optional :: userRc

integer, intent(out), optional :: rc

DESCRIPTION:

Execute attached method.

The arguments are:

cplcomp The ESMF_CplComp to attach to.

242

label Label of method.

[index] Integer modifier to distinguish multiple entries with the same label.

[existflag] Returned .true. indicates that the method specified by label exists and was executed. A return value
of .false. indicates that the method does not exist and consequently was not executed. By default, i.e. if
existflag was not specified, the latter condition will lead to rc not equal ESMF_SUCCESS being returned.
However, if existflag was specified, a method not existing is not an error condition.

[userRc] Return code set by attached method before returning.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

22.4.14 ESMF_MethodExecute - Execute user method attached to GridComp

INTERFACE:

! Private name; call using ESMF_MethodExecute()

recursive subroutine ESMF_MethodGridCompExecute(gcomp, label, index, existflag, &

userRc, rc)

ARGUMENTS:

type(ESMF_GridComp) :: gcomp

character(len=*), intent(in) :: label

integer, intent(in), optional :: index

logical, intent(out), optional :: existflag

integer, intent(out), optional :: userRc

integer, intent(out), optional :: rc

DESCRIPTION:

Execute attached method.

The arguments are:

gcomp The ESMF_GridComp to attach to.

label Label of method.

[index] Integer modifier to distinguish multiple entries with the same label.

[existflag] Returned .true. indicates that the method specified by label exists and was executed. A return value
of .false. indicates that the method does not exist and consequently was not executed. By default, i.e. if
existflag was not specified, the latter condition will lead to rc not equal ESMF_SUCCESS being returned.
However, if existflag was specified, a method not existing is not an error condition.

[userRc] Return code set by attached method before returning.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

243

22.4.15 ESMF_MethodExecute - Execute user method attached to State

INTERFACE:

! Private name; call using ESMF_MethodExecute()

recursive subroutine ESMF_MethodStateExecute(state, label, index, existflag, &

userRc, rc)

ARGUMENTS:

type(ESMF_State) :: state

character(len=*), intent(in) :: label

integer, intent(in), optional :: index

logical, intent(out), optional :: existflag

integer, intent(out), optional :: userRc

integer, intent(out), optional :: rc

DESCRIPTION:

Execute attached method.

The arguments are:

state The ESMF_State to attach to.

label Label of method.

[index] Integer modifier to distinguish multiple entries with the same label.

[existflag] Returned .true. indicates that the method specified by label exists and was executed. A return value
of .false. indicates that the method does not exist and consequently was not executed. By default, i.e. if
existflag was not specified, the latter condition will lead to rc not equal ESMF_SUCCESS being returned.
However, if existflag was specified, a method not existing is not an error condition.

[userRc] Return code set by attached method before returning.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

22.4.16 ESMF_MethodGet - Get info about user method attached to CplComp

INTERFACE:

! Private name; call using ESMF_MethodGet()

subroutine ESMF_MethodCplCompGet(cplcomp, label, index, isPresent, rc)

ARGUMENTS:

244

type(ESMF_CplComp) :: cplcomp

character(len=*), intent(in) :: label

integer, intent(in), optional :: index

logical, intent(out), optional :: isPresent

integer, intent(out), optional :: rc

DESCRIPTION:

Access information about attached method.

The arguments are:

cplcomp The ESMF_CplComp to attach to.

label Label of method.

[index] Integer modifier to distinguish multiple entries with the same label.

[isPresent] .true. if a method was attached for label/index. .false. otherwise.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

22.4.17 ESMF_MethodGet - Get info about user method attached to GridComp

INTERFACE:

! Private name; call using ESMF_MethodGet()

subroutine ESMF_MethodGridCompGet(gcomp, label, index, isPresent, rc)

ARGUMENTS:

type(ESMF_GridComp) :: gcomp

character(len=*), intent(in) :: label

integer, intent(in), optional :: index

logical, intent(out), optional :: isPresent

integer, intent(out), optional :: rc

DESCRIPTION:

Access information about attached method.

The arguments are:

gcomp The ESMF_GridComp to attach to.

label Label of method.

[index] Integer modifier to distinguish multiple entries with the same label.

[isPresent] .true. if a method was attached for label/index. .false. otherwise.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

245

22.4.18 ESMF_MethodGet - Get info about user method attached to State

INTERFACE:

! Private name; call using ESMF_MethodGet()

subroutine ESMF_MethodStateGet(state, label, index, isPresent, rc)

ARGUMENTS:

type(ESMF_State) :: state

character(len=*), intent(in) :: label

integer, intent(in), optional :: index

logical, intent(out), optional :: isPresent

integer, intent(out), optional :: rc

DESCRIPTION:

Access information about attached method.

The arguments are:

state The ESMF_State to attach to.

label Label of method.

[index] Integer modifier to distinguish multiple entries with the same label.

[isPresent] .true. if a method was attached for label/index. .false. otherwise.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

22.4.19 ESMF_MethodRemove - Remove user method attached to CplComp

INTERFACE:

! Private name; call using ESMF_MethodRemove()

subroutine ESMF_MethodCplCompRemove(cplcomp, label, index, rc)

ARGUMENTS:

type(ESMF_CplComp) :: cplcomp

character(len=*), intent(in) :: label

integer, intent(in), optional :: index

integer, intent(out), optional :: rc

DESCRIPTION:

Remove attached method.

The arguments are:

246

cplcomp The ESMF_CplComp to attach to.

label Label of method.

[index] Integer modifier to distinguish multiple entries with the same label.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

22.4.20 ESMF_MethodRemove - Remove user method attached to GridComp

INTERFACE:

! Private name; call using ESMF_MethodRemove()

subroutine ESMF_MethodGridCompRemove(gcomp, label, index, rc)

ARGUMENTS:

type(ESMF_GridComp) :: gcomp

character(len=*), intent(in) :: label

integer, intent(in), optional :: index

integer, intent(out), optional :: rc

DESCRIPTION:

Remove attached method.

The arguments are:

gcomp The ESMF_GridComp to attach to.

label Label of method.

[index] Integer modifier to distinguish multiple entries with the same label.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

22.4.21 ESMF_MethodRemove - Remove user method attached to State

INTERFACE:

! Private name; call using ESMF_MethodRemove()

subroutine ESMF_MethodStateRemove(state, label, index, rc)

ARGUMENTS:

247

type(ESMF_State) :: state

character(len=*), intent(in) :: label

integer, intent(in), optional :: index

integer, intent(out), optional :: rc

DESCRIPTION:

Remove attached method.

The arguments are:

state The ESMF_State to attach to.

label Label of method.

[index] Integer modifier to distinguish multiple entries with the same label.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

23 Web Services

23.1 Description

The goal of the ESMF Web Services is to provide the tools to allow ESMF Users to make their Components available

via a web service. The first step is to make the Component a service, and then make it accessible via the Web.

At the heart of this architecture is the Component Service; this is the application that does the model work. The

ESMF Web Services part provides a way to make the model accessible via a network API (Application Programming

Interface). ESMF provides the tools to turn a model component into a service as well as the tools to access the service

from the network.

The Process Controller is a stand-alone application that provides a control mechanism between the end user and the

Component Service. The Process Controller is responsible for managing client information as well as restricting client

access to a Component Service. (The role of the Process Controller is expected to expand in the future.)

The tomcat/axis2 application provides the access via the Web using standard SOAP protocols. Part of this application

includes the SOAP interface definition (using a WSDL file) as well as some java code that provides the access to the

Process Controller application.

Finally, the Registrar maintains a list of Component Services that are currently available; Component Services register

themselves with the Registrar when they startup, and unregister themselves when they shutdown. The list of available

services is maintained in an XML file and is accessible from the Registrar using its network API.

23.1.1 Creating a Service around a Component

23.1.2 Code Modifications

One of the goals in providing the tools to make Components into services was to make the process as simple and easy

as possible. Any model component that has been implemented using the ESMF Component Framework can easily be

248

Figure 11: The diagram describes the ESMF Web Services software architecture. The architecture defines a multi-

tiered set of applications that provide a flexible approach for accessing model components.

249

turned into a Component Services with just a minor change to the Application driver code. (For details on the ESMF

Framework, see the ESMF Developers Documentation.)

The primary function in ESMF Web Services is the ESMF_WebServicesLoop routine. This function registers the

Component Service with the Registrar and then sets up a network socket service that listens for requests from a

client. It starts a loop that waits for incoming requests and manages the routing of these requests to all PETs. It is

also responsible for making sure the appropriate ESMF routine (ESMF_Initialize, ESMF_Run or ESMF_Finalize) is

called based on the incoming request. When the client has completed its interaction with the Component Service, the

loop will be terminated and it will unregister the Component Service from the Registrar.

To make all of this happen, the Application Driver just needs to replace its calls to ESMF_Initialize, ESMF_Run, and

ESMF_Finalize with a single call to ESMF_WebServicesLoop.

use ESMF_WebServMod

....

call ESMF_WebServicesLoop(gridComponent, portNumber, returnCode)

That’s all there is to turning an ESMF Component into a network-accessible ESMF Component Service. For a detailed

example of an ESMF Component turned into an ESMF Component Service, see the Examples in the Web Services

section of the Developer’ Guide.

23.1.3 Accessing the Service

Now that the Component is available as a service, it can be accessed remotely by any client that can communicate via

TCP sockets. The ESMF library, in addition to providing the service tools, also provides the classes to create C++

clients to access the Component Service via the socket interface.

However, the goal of ESMF Web Services is to make an ESMF Component accessible through a standard web service,

which is accomplished through the Process Controller and the Tomcat/Axis2 applications

23.1.4 Client Application via C++ API

Interfacing to a Component service is fairly simple using the ESMF library. The following code is a simple example

of how to interface to a Component Service in C++ and request the initialize operation (the entire sample client can be

found in the Web Services examples section of the ESMF Distribution):

#include "ESMCI_WebServCompSvrClient.h"

int main(int argc, char* argv[])

{

int portNum = 27060;

int clientId = 101;

int rc = ESMF_SUCCESS;

ESMCI::ESMCI_WebServCompSvrClient

client("localhost", portNum, clientId);

250

rc = client.init();

printf("Initialize return code: %d\n", rc);

}

To see a complete description of the NetEsmfClient class, refer to the netesmf library section of the Web Services

Reference Manual.

23.1.5 Process Controller

The Process Controller is basically just a instance of a C++ client application. It manages client access to the Com-

ponent Service (only 1 client can access the service at a time), and will eventually be responsible for starting up and

shutting down instances of Component Services (planned for a future release). The Process Controller application is

built with the ESMF library and is included in the apps section of the distribution.

23.1.6 Tomcat/Axis2

The Tomcat/Axis2 "application" is essentially the Apache Tomcat server using the Apache Axis2 servlet to implement

web services using SOAP protocols. The web interface is defined by a WSDL file, and its implementation is handled

by the Component Connector java code. Tomcat and Axis2 are both open source projects that should be downloaded

from the Apache web site, but the WSDL file, the Component Connector java code, and all required software for

supporting the interface can be found next to the ESMF distribution in the web_services_server directory. This code

is not included with the ESMF distribution because they can be distributed and installed independent of each other.

23.2 Use and Examples

The following examples demonstrate how to use ESMF Web Services.

23.2.1 Making a Component available through ESMF Web Services

In this example, a standard ESMF Component is made available through the Web Services interface.

The first step is to make sure your callback routines for initialize, run and finalize are setup. This is done by creating
a register routine that sets the entry points for each of these callbacks. In this example, we’ve packaged it all up into a
separate module.

module ESMF_WebServUserModel

! ESMF Framework module

use ESMF

implicit none

public ESMF_WebServUserModelRegister

contains

251

!---

! The Registration routine

!

subroutine ESMF_WebServUserModelRegister(comp, rc)

type(ESMF_GridComp) :: comp

integer, intent(out) :: rc

! Initialize return code

rc = ESMF_SUCCESS

print *, "User Comp1 Register starting"

! Register the callback routines.

call ESMF_GridCompSetEntryPoint(comp, ESMF_METHOD_INITIALIZE, &

userRoutine=user_init, rc=rc)

if (rc/=ESMF_SUCCESS) return ! bail out

call ESMF_GridCompSetEntryPoint(comp, ESMF_METHOD_RUN, &

userRoutine=user_run, rc=rc)

if (rc/=ESMF_SUCCESS) return ! bail out

call ESMF_GridCompSetEntryPoint(comp, ESMF_METHOD_FINALIZE, &

userRoutine=user_final, rc=rc)

if (rc/=ESMF_SUCCESS) return ! bail out

print *, "Registered Initialize, Run, and Finalize routines"

print *, "User Comp1 Register returning"

end subroutine

!---

! The Initialization routine

!

subroutine user_init(comp, importState, exportState, clock, rc)

type(ESMF_GridComp) :: comp

type(ESMF_State) :: importState, exportState

type(ESMF_Clock) :: clock

integer, intent(out) :: rc

! Initialize return code

rc = ESMF_SUCCESS

print *, "User Comp1 Init"

end subroutine user_init

!---

! The Run routine

!

subroutine user_run(comp, importState, exportState, clock, rc)

type(ESMF_GridComp) :: comp

type(ESMF_State) :: importState, exportState

type(ESMF_Clock) :: clock

integer, intent(out) :: rc

252

! Initialize return code

rc = ESMF_SUCCESS

print *, "User Comp1 Run"

end subroutine user_run

!---

! The Finalization routine

!

subroutine user_final(comp, importState, exportState, clock, rc)

type(ESMF_GridComp) :: comp

type(ESMF_State) :: importState, exportState

type(ESMF_Clock) :: clock

integer, intent(out) :: rc

! Initialize return code

rc = ESMF_SUCCESS

print *, "User Comp1 Final"

end subroutine user_final

end module ESMF_WebServUserModel

The actual driver code then becomes very simple; ESMF is initialized, the component is created, the callback functions
for the component are registered, and the Web Service loop is started.

program WebServicesEx

#include "ESMF.h"

! ESMF Framework module

use ESMF

use ESMF_TestMod

use ESMF_WebServMod

use ESMF_WebServUserModel

implicit none

! Local variables

type(ESMF_GridComp) :: comp1 !! Grid Component

integer :: rc !! Return Code

integer :: finalrc !! Final return code

integer :: portNum !! The port number for the listening socket

A listening socket will be created on the local machine with the specified port number. This socket is used by the ser-
vice to wait for and receive requests from the client. Check with your system administrator to determine an appropriate
port to use for your service.

finalrc = ESMF_SUCCESS

253

call ESMF_Initialize(defaultlogfilename="WebServicesEx.Log", &

logkindflag=ESMF_LOGKIND_MULTI, rc=rc)

! create the grid component

comp1 = ESMF_GridCompCreate(name="My Component", rc=rc)

! Set up the register routine

call ESMF_GridCompSetServices(comp1, &

userRoutine=ESMF_WebServUserModelRegister, rc=rc)

portNum = 27060

! Call the Web Services Loop and wait for requests to come in

!call ESMF_WebServicesLoop(comp1, portNum, rc=rc)

The call to ESMF_WebServicesLoop will setup the listening socket for your service and will wait for requests from
a client. As requests are received, the Web Services software will process the requests and then return to the loop to
continue to wait.

The 3 main requests processed are INIT, RUN, and FINAL. These requests will then call the appropriate callback
routine as specified in your register routine (as specified in the ESMF_GridCompSetServices call). In this example,
when the INIT request is received, the user_init routine found in the ESMF_WebServUserModel module is called.

One other request is also processed by the Component Service, and that is the EXIT request. When this request is
received, the Web Services loop is terminated and the remainder of the code after the ESMF_WebServicesLoop call is
executed.

call ESMF_Finalize(rc=rc)

end program WebServicesEx

23.3 Restrictions and Future Work

1. Manual Control of Process. Currently, the Component Service must be manually started and stopped. Future

plans include having the Process Controller be responsible for controlling the Component Service processes.

2. Data Streaming. While data can be streamed from the web server to the client, it is not yet getting the data

directly from the Component Service. Instead, the Component Service exports the data to a file which the

Process Controller can read and return across the network interface. The data streaming capabilities will be a

major component of future improvements to the Web Services architecture.

23.4 Class API

254

23.4.1 ESMF_WebServicesLoop

INTERFACE:

subroutine ESMF_WebServicesLoop(comp, portNum, clientId, registrarHost, rc)

ARGUMENTS:

type(ESMF_GridComp) :: comp

integer, intent(inout), optional :: portNum

character(len=*), intent(in), optional, target :: clientId

character(len=*), intent(in), optional, target :: registrarHost

integer, intent(out), optional :: rc

DESCRIPTION:

Encapsulates all of the functionality necessary to setup a component as a component service. On the root PET, it
registers the component service and then enters into a loop that waits for requests on a socket. The loop continues
until an "exit" request is received, at which point it exits the loop and unregisters the service. On any PET other than
the root PET, it sets up a process block that waits for instructions from the root PET. Instructions will come as requests
are received from the socket.

The arguments are:

[comp] ESMF_CplComp object that represents the Grid Component for which routine is run.

[portNum] Number of the port on which the component service is listening.

[clientId] Identifier of the client responsible for this component service. If a Process Controller application manages
this component service, then the clientId is provided to the component service application in the command line.
Otherwise, the clientId is not necessary.

[registrarHost] Name of the host on which the Registrar is running. Needed so the component service can notify the
Registrar when it is ready to receive requests from clients.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

23.4.2 ESMF_WebServicesCplCompLoop

INTERFACE:

subroutine ESMF_WebServicesCplCompLoop(comp, portNum, clientId, registrarHost, rc)

ARGUMENTS:

255

type(ESMF_CplComp) :: comp

integer, intent(inout), optional :: portNum

character(len=*), intent(in), optional, target :: clientId

character(len=*), intent(in), optional, target :: registrarHost

integer, intent(out), optional :: rc

DESCRIPTION:

Encapsulates all of the functionality necessary to setup a component as a component service. On the root PET, it
registers the component service and then enters into a loop that waits for requests on a socket. The loop continues
until an "exit" request is received, at which point it exits the loop and unregisters the service. On any PET other than
the root PET, it sets up a process block that waits for instructions from the root PET. Instructions will come as requests
are received from the socket.

The arguments are:

[comp] ESMF_CplComp object that represents the Grid Component for which routine is run.

[portNum] Number of the port on which the component service is listening.

[clientId] Identifier of the client responsible for this component service. If a Process Controller application manages
this component service, then the clientId is provided to the component service application in the command line.
Otherwise, the clientId is not necessary.

[registrarHost] Name of the host on which the Registrar is running. Needed so the component service can notify the
Registrar when it is ready to receive requests from clients.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

256

Part IV

Infrastructure: Fields and Grids

257

24 Overview of Data Classes

The ESMF infrastructure data classes are part of the framework’s hierarchy of structures for handling Earth system

model data and metadata on parallel platforms. The hierarchy is in complexity; the simplest data class in the infras-

tructure represents a distributed data array and the most complex data class represents a bundle of physical fields that

are discretized on the same grid. Data class methods are called both from user-written code and from other classes

internal to the framework.

Data classes are distributed over DEs, or Decomposition Elements. A DE represents a piece of a decomposition. A

DELayout is a collection of DEs with some associated connectivity that describes a specific distribution. For example,

the distribution of a grid divided into four segments in the x-dimension would be expressed in ESMF as a DELayout

with four DEs lying along an x-axis. This abstract concept enables a data decomposition to be defined in terms of

threads, MPI processes, virtual decomposition elements, or combinations of these without changes to user code. This

is a primary strategy for ensuring optimal performance and portability for codes using ESMF for communications.

ESMF data classes provide a standard, convenient way for developers to collect together information related to model

or observational data. The information assembled in a data class includes a data pointer, a set of attributes (e.g. units,

although attributes can also be user-defined), and a description of an associated grid. The same set of information

within an ESMF data object can be used by the framework to arrange intercomponent data transfers, to perform I/O,

for communications such as gathers and scatters, for simplification of interfaces within user code, for debugging, and

for other functions. This unifies and organizes codes overall so that the user need not define different representations

of metadata for the same field for I/O and for component coupling.

Since it is critical that users be able to introduce ESMF into their codes easily and incrementally, ESMF data classes

can be created based on native Fortran pointers. Likewise, there are methods for retrieving native Fortran pointers

from within ESMF data objects. This allows the user to perform allocations using ESMF, and to retrieve Fortran

arrays later for optimized model calculations. The ESMF data classes do not have associated differential operators or

other mathematical methods.

For flexibility, it is not necessary to build an ESMF data object all at once. For example, it’s possible to create a field

but to defer allocation of the associated field data until a later time.

Key Features

Hierarchy of data structures designed specifically for the Earth system domain and high performance, parallel

computing.

Multi-use ESMF structures simplify user code overall.

Data objects support incremental construction and deferred allocation.

Native Fortran arrays can be associated with or retrieved from ESMF data objects, for ease of adoption,

convenience, and performance.

A variety of operations are provided for manipulating data in data objects such as regridding, redistribution,

halo communication, and sparse matrix multiply.

The main classes that are used for model and observational data manipulation are as follows:

• Array An ESMF Array contains a data pointer, information about its associated datatype, precision, and dimen-

sion.

Data elements in Arrays are partitioned into categories defined by the role the data element plays in distributed

halo operations. Haloing - sometimes called ghosting - is the practice of copying portions of array data to mul-

tiple memory locations to ensure that data dependencies can be satisfied quickly when performing a calculation.

ESMF Arrays contain an exclusive domain, which contains data elements updated exclusively and definitively

by a given DE; a computational domain, which contains all data elements with values that are updated by the

258

DE in computations; and a total domain, which includes both the computational domain and data elements from

other DEs which may be read but are not updated in computations.

• ArrayBundle ArrayBundles are collections of Arrays that are stored in a single object. Unlike FieldBundles,

they don’t need to be distributed the same way across PETs. The motivation for ArrayBundles is both conve-

nience and performance.

• Field A Field holds model and/or observational data together with its underlying grid or set of spatial locations.

It provides methods for configuration, initialization, setting and retrieving data values, data I/O, data regridding,

and manipulation of attributes.

• FieldBundle Groups of Fields on the same underlying physical grid can be collected into a single object called

a FieldBundle. A FieldBundle provides two major functions: it allows groups of Fields to be manipulated

using a single identifier, for example during export or import of data between Components; and it allows data

from multiple Fields to be packed together in memory for higher locality of reference and ease in subsetting

operations. Packing a set of Fields into a single FieldBundle before performing a data communication allows

the set to be transferred at once rather than as a Field at a time. This can improve performance on high-latency

platforms.

FieldBundle objects contain methods for setting and retrieving constituent fields, regridding, data I/O, and re-

ordering of data in memory.

24.1 Bit-for-Bit Considerations

Bit-for-bit reproducibility is at the core of the regression testing schemes of many scientific model codes. The bit-for-

bit requirement makes it easy to compare the numerical results of simulation runs using standard binary diff tools.

For the most part, ESMF methods do not modify user data numerically, and thus have no effect on the bit-for-bit

characteristics of the model code. The exceptions are the regrid weight generation and the sparse matrix multiplication.

In the case of the regrid weight generation, user data is used to produce interpolation weights following specific

numerical schemes. The bit-for-bit reproducibility of the generated weights depends on the implementation details.

Section 24.2 provides more details about the bit-for-bit considerations with respect to the regrid weights generated by

ESMF.

In the case of the sparse matrix multiplication, which is the typical method that is used to apply the regrid weights, user

data is directly manipulated by ESMF. In order to help users with the implementation of their bit-for-bit requirements,

while also considering the associated performance impact, the ESMF sparse matrix implementation provides three

levels of bit-for-bit support. The strictest level ensures that the numerical results are bit-for-bit identical, even when

executing across different numbers of PETs. In the relaxed level, bit-for-bit reproducibility is guaranteed when running

across an unchanged number of PETs. The lowest level makes no guarantees about bit-for-bit reproducibility, however,

it provides the greatest performance potential for those cases where numerical round-off differences are acceptable. An

in-depth discussion of bit-for-bit reproducibility, and the performance aspects of route-based communication methods,

such the sparse matrix multiplication, is given in section 36.2.1.

24.2 Regrid

This section describes the regridding methods provided by ESMF. Regridding, also called remapping or interpolation,

is the process of changing the grid that underlies data values while preserving qualities of the original data. Different

kinds of transformations are appropriate for different problems. Regridding may be needed when communicating

data between Earth system model components such as land and atmosphere, or between different data sets to support

operations such as visualization.

259

Regridding can be broken into two stages. The first stage is generation of an interpolation weight matrix that describes

how points in the source grid contribute to points in the destination grid. The second stage is the multiplication

of values on the source grid by the interpolation weight matrix to produce values on the destination grid. This is

implemented as a parallel sparse matrix multiplication.

There are two options for accessing ESMF regridding functionality: offline and integrated. Offline regridding is a

process whereby interpolation weights are generated by a separate ESMF command line tool, not within the user code.

The ESMF offline regridding tool also only generates the interpolation matrix, the user is responsible for reading in

this matrix and doing the actual interpolation (multiplication by the sparse matrix) in their code. Please see Section 12

for a description of the offline regridding command line tool and the options it supports. For user convenience, there

is also a method interface to the offline regrid tool functionality which is described in Section 24.3.1. In contrast to

offline regridding, integrated regridding is a process whereby interpolation weights are generated via subroutine calls

during the execution of the user’s code. In addition to generating the weights, integrated regridding can also produce

a RouteHandle (described in Section 36.1) which allows the user to perform the parallel sparse matrix multiplication

using ESMF methods. In other words, ESMF integrated regridding allows a user to perform the whole process of

interpolation within their code.

To see what types of grids and other options are supported in the two types of regridding and their testing status, please

see the ESMF Regridding Status webpage for this version of ESMF. Figure 24.2 shows a comparison of different regrid

interfaces and where they can be found in the documentation.

The rest of this section further describes the various options available in ESMF regridding.

Name Access via Inputs Outputs Description

Weights RouteHandle

ESMF_FieldRegridStore() Subroutine call Field object yes yes Sec. 26.6.60

ESMF_FieldBundleRegridStore() Subroutine call Fieldbundle obj. no yes Sec. 25.5.26

ESMF_RegridWeightGen() Subroutine call Grid files yes no Sec. 24.3.1

ESMF_RegridWeightGen Command Line Tool Grid files yes no Sec. 12

Table 1: Regrid Interfaces

24.2.1 Interpolation methods: bilinear

Bilinear interpolation calculates the value for the destination point as a combination of multiple linear interpolations,

one for each dimension of the Grid. Note that for ease of use, the term bilinear interpolation is used for 3D interpolation

in ESMF as well, although it should more properly be referred to as trilinear interpolation.

In 2D, ESMF supports bilinear regridding between any combination of the following:

• Structured grids (ESMF_Grid) composed of any number of logically rectangular tiles

• Unstructured meshes (ESMF_Mesh) composed of polygons with any number of sides

• A set of disconnected points (ESMF_LocStream) may be the destination of the regridding

In 3D, ESMF supports bilinear regridding between any combination of the following:

• Structured grids (ESMF_Grid) composed of a single logically rectangular tile

• Unstructured meshes (ESMF_Mesh) composed of hexahedrons

260

http://earthsystemmodeling.org/regrid/

• A set of disconnected points (ESMF_LocStream) may be the destination of the regridding

Restrictions:

• Cells which contain enough identical corners to collapse to a line or point are currently ignored

• Self-intersecting cells (e.g. a cell twisted into a bow tie) are not supported

• On a spherical grid, cells which contain an edge which extends more than half way around the sphere are not

supported

To use the bilinear method the user may create their Fields on any stagger location (e.g.

ESMF_STAGGERLOC_CENTER) for a Grid, or any Mesh location (e.g. ESMF_MESHLOC_NODE) for a Mesh.

For either a Grid or a Mesh, the location upon which the Field is built must contain coordinates.

24.2.2 Interpolation methods: higher-order patch

Patch (or higher-order) interpolation is the ESMF version of a technique called “patch recovery” commonly used in

finite element modeling [28] [24]. It typically results in better approximations to values and derivatives when compared

to bilinear interpolation. Patch interpolation works by constructing multiple polynomial patches to represent the data

in a source cell. For 2D grids, these polynomials are currently 2nd degree 2D polynomials. One patch is constructed

for each corner of the source cell, and the patch is constructed by doing a least squares fit through the data in the cells

surrounding the corner. The interpolated value at the destination point is then a weighted average of the values of the

patches at that point.

The patch method has a larger stencil than the bilinear, for this reason the patch weight matrix can be correspondingly

larger than the bilinear matrix (e.g. for a quadrilateral grid the patch matrix is around 4x the size of the bilinear matrix).

This can be an issue when performing a regrid operation close to the memory limit on a machine.

The patch method does not guarantee that after regridding the range of values in the destination field is within the

range of values in the source field. For example, if the mininum value in the source field is 0.0, then it’s possible that

after regridding with the patch method, the destination field will contain values less than 0.0.

In 2D, ESMF supports patch regridding between any combination of the following:

• Structured Grids (ESMF_Grid) composed of a single logically rectangular tile

• Unstructured meshes (ESMF_Mesh) composed of polygons with any number of sides

• A set of disconnected points (ESMF_LocStream) may be the destination of the regridding

In 3D, ESMF supports patch regridding between any combination of the following:

• NONE

Restrictions:

• Cells which contain enough identical corners to collapse to a line or point are currently ignored

• Self-intersecting cells (e.g. a cell twisted into a bow tie) are not supported

261

• On a spherical grid, cells which contain an edge which extends more than half way around the sphere are not

supported

To use the patch method the user may create their Fields on any stagger location (e.g.

ESMF_STAGGERLOC_CENTER) for a Grid, or any Mesh location (e.g. ESMF_MESHLOC_NODE) for a Mesh.

For either a Grid or a Mesh, the location upon which the Field is built must contain coordinates.

24.2.3 Interpolation methods: nearest source to destination

In nearest source to destination interpolation (ESMF_REGRIDMETHOD_NEAREST_STOD) each destination point is

mapped to the closest source point. A given source point may map to multiple destination points, but no destination

point will receive input from more than one source point. If two points are equally close, then the point with the

smallest sequence index is arbitrarily used (i.e. the point which would have the smallest index in the weight matrix).

In 2D, ESMF supports nearest source to destination regridding between any combination of the following:

• Structured Grids (ESMF_Grid) composed of any number of logically rectangular tiles

• Unstructured meshes (ESMF_Mesh) composed of polygons with any number of sides

• A set of disconnected points (ESMF_LocStream)

In 3D, ESMF supports nearest source to destination regridding between any combination of the following:

• Structured Grids (ESMF_Grid) composed of any number of logically rectangular tiles

• Unstructured Meshes (ESMF_Mesh) composed of hexahedrons (e.g. cubes) and tetrahedrons

• A set of disconnected points (ESMF_LocStream)

Restrictions:

NONE

To use the nearest source to destination method the user may create their Fields on any stagger location (e.g.

ESMF_STAGGERLOC_CENTER) for a Grid, or any Mesh location (e.g. ESMF_MESHLOC_NODE) for a Mesh. For

either a Grid or a Mesh, the location upon which the Field is built must contain coordinates.

24.2.4 Interpolation methods: nearest destination to source

In nearest destination to source interpolation (ESMF_REGRIDMETHOD_NEAREST_DTOS) each source point is

mapped to the closest destination point. A given destination point may receive input from multiple source points,

but no source point will map to more than one destination point. If two points are equally close, then the point with

the smallest sequence index is arbitrarily used (i.e. the point which would have the smallest index in the weight ma-

trix). Note that with this method the unmapped destination point detection currently doesn’t work, so no error will be

returned even if there are destination points that don’t map to any source point.

In 2D, ESMF supports nearest destination to source regridding between any combination of the following:

• Structured Grids (ESMF_Grid) composed of any number of logically rectangular tiles

262

• Unstructured meshes (ESMF_Mesh) composed of polygons with any number of sides

• A set of disconnected points (ESMF_LocStream)

In 3D, ESMF supports nearest destination to source regridding between any combination of the following:

• Structured Grids (ESMF_Grid) composed of any number of logically rectangular tiles

• Unstructured Meshes (ESMF_Mesh) composed of hexahedrons (e.g. cubes) and tetrahedrons

• A set of disconnected points (ESMF_LocStream)

Restrictions:

NONE

To use the nearest destination to source method the user may create their Fields on any stagger location (e.g.

ESMF_STAGGERLOC_CENTER) for a Grid, or any Mesh location (e.g. ESMF_MESHLOC_NODE) for a Mesh. For

either a Grid or a Mesh, the location upon which the Field is built must contain coordinates.

24.2.5 Interpolation methods: first-order conservative

The goal of this method is to preserve the integral of the field across the interpolation from source to destination. (For a

more in-depth description of what this preservation of the integral (i.e. conservation) means please see section 24.2.7.)

In this method the value across each source cell is treated as a constant, so it will typically have a larger interpolation

error than the bilinear or patch methods. The first-order method used here is similar to that described in the following

paper [31].

In the first-order method, the values for a particular destination cell are a calculated as a combination of the values of

the intersecting source cells. The weight of a given source cell’s contribution to the total being the amount that that

source cell overlaps with the destination cell. In particular, the weight is the ratio of the area of intersection of the

source and destination cells to the area of the whole destination cell.

To see a description of how the different normalization options affect the values and integrals produced by the conser-

vative methods see section 24.2.8. For Grids or Meshes on a sphere this method uses great circle cells, for a description

of potential problems with these see 24.2.9.

In 2D, ESMF supports conservative regridding between any combination of the following:

• Structured Grids (ESMF_Grid) composed of any number of logically rectangular tiles

• Unstructured meshes (ESMF_Mesh) composed of polygons with any number of sides

In 3D, ESMF supports conservative regridding between any combination of the following:

• Structured Grids (ESMF_Grid) composed of a single logically rectangular tile

• Unstructured Meshes (ESMF_Mesh) composed of hexahedrons (e.g. cubes) and tetrahedrons

Restrictions:

• Cells which contain enough identical corners to collapse to a line or point are optionally (via a flag) either

ignored or return an error

263

• Self-intersecting cells (e.g. a cell twisted into a bow tie) are not supported

• On a spherical grid, cells which contain an edge which extends more than half way around the sphere are not

supported

To use the conservative method the user should create their Fields on the center stagger location

(ESMF_STAGGERLOC_CENTER in 2D or ESMF_STAGGERLOC_CENTER_VCENTER in 3D) for Grids or

the element location (ESMF_MESHLOC_ELEMENT) for Meshes. For Grids, the corner stagger location

(ESMF_STAGGERLOC_CORNER in 2D or ESMF_STAGGERLOC_CORNER_VFACE in 3D) must contain coordinates

describing the outer perimeter of the Grid cells.

24.2.6 Interpolation methods: second-order conservative

Like the first-order conservative method, this method’s goal is to preserve the integral of the field across the inter-

polation from source to destination. (For a more in-depth description of what this preservation of the integral (i.e.

conservation) means please see section 24.2.7.) The difference between the first and second-order conservative meth-

ods is that the second-order takes the source gradient into account, so it yields a smoother destination field that typically

better matches the source field. This difference between the first and second-order methods is particularly apparent

when going from a coarse source grid to a finer destination grid. Another difference is that the second-order method

does not guarantee that after regridding the range of values in the destination field is within the range of values in the

source field. For example, if the mininum value in the source field is 0.0, then it’s possible that after regridding with

the second-order method, the destination field will contain values less than 0.0. The implementation of this method is

based on the one described in this paper [19].

Like the first-order method, the values for a particular destination cell with the second-order method are a combination

of the values of the intersecting source cells with the weight of a given source cell’s contribution to the total being

the amount that that source cell overlaps with the destination cell. However, with the second-order conservative

interpolation there are additional terms that take into account the gradient of the field across the source cell. In

particular, the value d for a given destination cell is calculated as:

d =
∑intersecting−source−cells

i (si +∇si · (csi − cd))

Where:

si is the intersecting source cell value.

∇si is the intersecting source cell gradient.

csi is the intersecting source cell centroid.

cd is the destination cell centroid.

To see a description of how the different normalization options affect the values and integrals produced by the conser-

vative methods see section 24.2.8. For Grids or Meshes on a sphere this method uses great circle cells, for a description

of potential problems with these see 24.2.9.

In 2D, ESMF supports second-order conservative regridding between any combination of the following:

• Structured Grids (ESMF_Grid) composed of any number of logically rectangular tiles

• Unstructured meshes (ESMF_Mesh) composed of polygons with any number of sides

In 3D, ESMF supports second-order conservative regridding between any combination of the following:

264

• NONE

Restrictions:

• Cells which contain enough identical corners to collapse to a line or point are optionally (via a flag) either

ignored or return an error

• Self-intersecting cells (e.g. a cell twisted into a bow tie) are not supported

• On a spherical grid, cells which contain an edge which extends more than half way around the sphere are not

supported

To use the second-order conservative method the user should create their Fields on the center stagger location

(ESMF_STAGGERLOC_CENTER for Grids or the element location (ESMF_MESHLOC_ELEMENT) for Meshes. For

Grids, the corner stagger location (ESMF_STAGGERLOC_CORNER in 2D must contain coordinates describing the

outer perimeter of the Grid cells.

24.2.7 Conservation

Conservation means that the following equation will hold:
∑all−source−cells

(Vsi ∗ Asi) =
∑all−destination−cells

(Vdj ∗ Adj), where V is the variable being regridded and A is the area of a cell. The

subscripts s and d refer to source and destination values, and the i and j are the source and destination grid cell indices

(flattening the arrays to 1 dimension).

If the user doesn’t specify a cell areas in the involved Grids or Meshes, then the areas (A) in the above equation are

calculated by ESMF. For Cartesian grids, the area of a grid cell calculated by ESMF is the typical Cartesian area. For

grids on a sphere, cell areas are calculated by connecting the corner coordinates of each grid cell with great circles.

If the user does specify the areas in the Grid or Mesh, then the conservation will be adjusted to work for the areas

provided by the user. This means that the above equation will hold, but with the areas (A) being the ones specified by

the user.

The user should be aware that because of the conservation relationship between the source and destination fields, the

more the total source area differs from the total destination area the more the values of the source field will differ from

the corresponding values of the destination field, likely giving a higher interpolation error. It is best to have the total

source and destination areas the same (this will automatically be true if no user areas are specified). For source and

destination grids that only partially overlap, the overlapping regions of the source and destination should be the same.

24.2.8 The effect of normalization options on integrals and values produced by conservative methods

It is important to note that by default (i.e. using destination area normalization) conservative regridding doesn’t

normalize the interpolation weights by the destination fraction. This means that for a destination grid which only

partially overlaps the source grid the destination field that is output from the regrid operation should be divided by the

corresponding destination fraction to yield the true interpolated values for cells which are only partially covered by

the source grid. The fraction also needs to be included when computing the total source and destination integrals. (To

include the fraction in the conservative weights, the user can specify the fraction area normalization type. This can be

done by specifying normType=ESMF_NORMTYPE_FRACAREAwhen invoking ESMF_FieldRegridStore().)

For weights generated using destination area normalization (either by not specifying any normalization type or

by specifying normType=ESMF_NORMTYPE_DSTAREA), if a destination field extends outside the unmasked

265

source field, then the values of the cells which extend partway outside the unmasked source field are de-

creased by the fraction they extend outside. To correct these values, the destination field (dst_field) re-

sulting from the ESMF_FieldRegrid() call can be divided by the destination fraction dst_frac from the

ESMF_FieldRegridStore() call. The following pseudocode demonstrates how to do this:

for each destination element i

if (dst_frac(i) not equal to 0.0) then

dst_field(i)=dst_field(i)/dst_frac(i)

end if

end for

For weights generated using destination area normalization (either by not specifying any normalization type or

by specifying normType=ESMF_NORMTYPE_DSTAREA), the following pseudo-code shows how to compute

the total destination integral (dst_total) given the destination field values (dst_field) resulting from the

ESMF_FieldRegrid() call, the destination area (dst_area) from the ESMF_FieldRegridGetArea()

call, and the destination fraction (dst_frac) from the ESMF_FieldRegridStore() call. As shown in

the previous paragraph, it also shows how to adjust the destination field (dst_field) resulting from the

ESMF_FieldRegrid() call by the fraction (dst_frac) from the ESMF_FieldRegridStore() call:

dst_total=0.0

for each destination element i

if (dst_frac(i) not equal to 0.0) then

dst_total=dst_total+dst_field(i)*dst_area(i)

dst_field(i)=dst_field(i)/dst_frac(i)

! If mass computed here after dst_field adjust, would need to be:

! dst_total=dst_total+dst_field(i)*dst_area(i)*dst_frac(i)

end if

end for

For weights generated using fraction area normalization (by specifying normType=ESMF_NORMTYPE_FRACAREA),

no adjustment of the destination field is necessary. The following pseudo-code shows how to compute the

total destination integral (dst_total) given the destination field values (dst_field) resulting from the

ESMF_FieldRegrid() call, the destination area (dst_area) from the ESMF_FieldRegridGetArea()

call, and the destination fraction (dst_frac) from the ESMF_FieldRegridStore() call:

dst_total=0.0

for each destination element i

dst_total=dst_total+dst_field(i)*dst_area(i)*dst_frac(i)

end for

For both normalization types, the following pseudo-code shows how to compute the total source in-

tegral (src_total) given the source field values (src_field), the source area (src_area)

from the ESMF_FieldRegridGetArea() call, and the source fraction (src_frac) from the

ESMF_FieldRegridStore() call:

src_total=0.0

for each source element i

src_total=src_total+src_field(i)*src_area(i)*src_frac(i)

end for

266

24.2.9 Great circle cells

For Grids and Meshes on a sphere some combinations of interpolation options (e.g. first and second-order conservative

methods) use cells whose edges are great circles. This section describes some behavior that the user may not expect

from these cells and some potential solutions.

A great circle edge isn’t necessarily the same as a straight line in latitude longitude space. For small edges, this

difference will be small, but for long edges it could be significant. This means if the user expects cell edges as straight

lines in latitude longitude space, they should avoid using one large cell with long edges to compute an average over a

region (e.g. over an ocean basin).

Also, the user should also avoid using cells that contain one edge that runs half way or more around the earth, because

the regrid weight calculation assumes the edge follows the shorter great circle path. There isn’t a unique great circle

edge defined between points on the exact opposite side of the earth from one another (antipodal points). However, the

user can work around both of these problem by breaking the long edge into two smaller edges by inserting an extra

node, or by breaking the large target grid cells into two or more smaller grid cells. This allows the application to

resolve the ambiguity in edge direction.

24.2.10 Masking

Masking is the process whereby parts of a Grid, Mesh or LocStream can be marked to be ignored during an operation,

such as when they are used in regridding. Masking can be used on a Field created from a regridding source to indicate

that certain portions should not be used to generate regridded data. This is useful, for example, if a portion of the

source contains unusable values. Masking can also be used on a Field created from a regridding destination to indicate

that a certain portion should not receive regridded data. This is useful, for example, when part of the destination isn’t

being used (e.g. the land portion of an ocean grid).

The user may mask out points in the source Field or destination Field or both. To do masking the user sets mask

information in the Grid (see 31.3.17), Mesh (see 33.3.11), or LocStream (see 32.2.2) upon which the Fields passed

into the ESMF_FieldRegridStore() call are built. The srcMaskValues and dstMaskValues arguments

to that call can then be used to specify which values in that mask information indicate that a location should be masked

out. For example, if dstMaskValues is set to (/1,2/), then any location that has a value of 1 or 2 in the mask

information of the Grid, Mesh or LocStream upon which the destination Field is built will be masked out.

Masking behavior differs slightly between regridding methods. For non-conservative regridding methods (e.g. bi-

linear or high-order patch), masking is done on points. For these methods, masking a destination point means that

that point won’t participate in regridding (e.g. won’t be interpolated to). For these methods, masking a source point

means that the entire source cell using that point is masked out. In other words, if any corner point making up

a source cell is masked then the cell is masked. For conservative regridding methods (e.g. first-order conserva-

tive) masking is done on cells. Masking a destination cell means that the cell won’t participate in regridding (e.g.

won’t be interpolated to). Similarly, masking a source cell means that the cell won’t participate in regridding (e.g.

won’t be interpolated from). For any type of interpolation method (conservative or non-conservative) the masking is

set on the location upon which the Fields passed into the regridding call are built. For example, if Fields built on

ESMF_STAGGERLOC_CENTER are passed into the ESMF_FieldRegridStore() call then the masking should

also be set on ESMF_STAGGERLOC_CENTER.

24.2.11 Extrapolation methods: overview

Extrapolation in the ESMF regridding system is a way to automatically fill some or all of the destination points left

unmapped by a regridding method. Weights generated by the extrapolation method are merged into the regridding

267

weights to yield one set of weights or routehandle. Currently extrapolation is not supported with conservative regrid-

ding methods, because doing so would result in non-conservative weights.

24.2.12 Extrapolation methods: nearest source to destination

In nearest source to destination extrapolation (ESMF_EXTRAPMETHOD_NEAREST_STOD) each unmapped destina-

tion point is mapped to the closest source point. A given source point may map to multiple destination points, but no

destination point will receive input from more than one source point. If two points are equally close, then the point

with the smallest sequence index is arbitrarily used (i.e. the point which would have the smallest index in the weight

matrix).

If there is at least one unmasked source point, then this method is expected to fill all unmapped points.

24.2.13 Extrapolation methods: inverse distance weighted average

In inverse distance weighted average extrapolation (ESMF_EXTRAPMETHOD_NEAREST_IDAVG) each unmapped

destination point is the weighted average of the closest N source points. The weight is the reciprocal of the distance

of the source point from the destination point raised to a power P. All the weights contributing to one destination

point are normalized so that they sum to 1.0. The user can choose N and P when using this method, but defaults

are also provided. For example, when calling ESMF_FieldRegridStore() N is specified via the argument

extrapNumSrcPnts and P is specified via the argument extrapDistExponent.

If there is at least one unmasked source point, then this method is expected to fill all unmapped points.

24.2.14 Extrapolation methods: creep fill

In creep fill extrapolation (ESMF_EXTRAPMETHOD_CREEP) unmapped destination points are filled by repeatedly

moving data from mapped locations to neighboring unmapped locations for a user specified number of levels. More

precisely, for each creeped point, its value is the average of the values of the point’s immediate neighbors in the

previous level. For the first level, the values are the average of the point’s immediate neighbors in the destination

points mapped by the regridding method. The number of creep levels is specified by the user. For example, in

ESMF_FieldRegridStore() this number of levels is specified via the extrapNumLevels argument.

Unlike some extrapolation methods, creep fill does not necessarily fill all unmapped destination points. Unfilled

destination points are still unmapped with the usual consequences (e.g. they won’t be in the resulting regridding

matrix, and won’t be set by the application of the regridding weights).

Because it depends on the connections in the destination grid, creep fill extrapolation is not supported when the

destination Field is built on a Location Stream (ESMF_LocStream). Also, creep fill is currently only supported for 2D

Grids or Meshes.

24.2.15 Unmapped destination points

If a destination point can’t be mapped to a location in the source grid by the combination of regrid method and op-

tional follow on extrapolation method, then the user has two choices. The user may ignore those destination points

that can’t be mapped by setting the unmappedaction argument to ESMF_UNMAPPEDACTION_IGNORE (Ig-

nored points won’t be included in the sparse matrix or routeHandle). If the user needs the unmapped points, the

ESMF_FieldRegridStore() method has the capability to return a list of them using the unmappedDstList

argument. In addition to ignoring them, the user also has the option to return an error if unmapped destination points

268

exist. This is the default behavior, so the user can either not set the unmappedaction argument or the user can set

it to ESMF_UNMAPPEDACTION_ERROR. Currently, the unmapped destination error detection doesn’t work with the

nearest destination to source regrid method (ESMF_REGRIDMETHOD_NEAREST_DTOS), so with this method the

regridding behaves as if ESMF_UNMAPPEDACTION_IGNORE is always on.

24.2.16 Spherical grids and poles

In the case that the Grid is on a sphere (coordSys=ESMF_COORDSYS_SPH_DEG or

ESMF_COORDSYS_SPH_RAD) then the coordinates given in the Grid are interpreted as latitude and longitude

values. The coordinates can either be in degrees or radians as indicated by the coordSys flag set during Grid

creation. As is true with many global models, this application currently assumes the latitude and longitude refer to

positions on a perfect sphere, as opposed to a more complex and accurate representation of the Earth’s true shape such

as would be used in a GIS system. (ESMF’s current user base doesn’t require this level of detail in representing the

Earth’s shape, but it could be added in the future if necessary.)

For Grids on a sphere, the regridding occurs in 3D Cartesian to avoid problems with periodicity and with the pole

singularity. This library supports four options for handling the pole region (i.e. the empty area above the top row of

the source grid or below the bottom row of the source grid). Note that all of these pole options currently only work for

the Fields build on the Grid class and not for those built on the Mesh class.

The first option is to leave the pole region empty (polemethod=ESMF_POLEMETHOD_NONE), in this case if a

destination point lies above or below the top row of the source grid, it will fail to map, yielding an error (unless

unmappedaction=ESMF_UNMAPPEDACTION_IGNORE is specified).

With the next two options (ESMF_POLEMETHOD_ALLAVG and ESMF_POLEMETHOD_NPNTAVG), the pole region

is handled by constructing an artificial pole in the center of the top and bottom row of grid points and then fill-

ing in the region from this pole to the edges of the source grid with triangles. The pole is located at the average

of the position of the points surrounding it, but moved outward to be at the same radius as the rest of the points

in the grid. The difference between the two artificial pole options is what value is used at the pole. The option

(polemethod=ESMF_POLEMETHOD_ALLAVG) sets the value at the pole to be the average of the values of all of

the grid points surrounding the pole. The option (polemethod=ESMF_POLEMETHOD_NPNTAVG) allows the user

to choose a number N from 1 to the number of source grid points around the pole. The value N is set via the argument

regridPoleNPnts. For each destination point, the value at the pole is then the average of the N source points

surrounding that destination point.

The last option (polemethod=ESMF_POLEMETHOD_TEETH) does not construct an artificial pole, instead the

pole region is covered by connecting points across the top and bottom row of the source Grid into trian-

gles. As this makes the top and bottom of the source sphere flat, for a big enough difference between the

size of the source and destination pole regions, this can still result in unmapped destination points. Only

pole option ESMF_POLEMETHOD_NONE is currently supported with the conservative interpolation methods (e.g.

regridmethod=ESMF_REGRIDMETHOD_CONSERVE) and with the nearest neighbor interpolation options (e.g.

regridmethod=ESMF_REGRIDMETHOD_NEAREST_STOD).

Another variation in the regridding supported with spherical grids is line type. This is controlled in the

ESMF_FieldRegridStore() method by the lineType argument. This argument allows the user to select

the path of the line which connects two points on a sphere surface. This in turn controls the path along which distances

are calculated and the shape of the edges that make up a cell. Both of these quantities can influence how interpolation

weights are calculated, for example in bilinear interpolation the distances are used to calculate the weights and the cell

edges are used to determine to which source cell a destination point should be mapped.

ESMF currently supports two line types: ESMF_LINETYPE_CART and ESMF_LINETYPE_GREAT_CIRCLE. The

ESMF_LINETYPE_CART option specifies that the line between two points follows a straight path through the 3D

Cartesian space in which the sphere is embedded. Distances are measured along this 3D Cartesian line. Under this

269

Regrid Method Line Type

ESMF_LINETYPE_CART ESMF_LINETYPE_GREAT_CIRCLE

ESMF_REGRIDMETHOD_BILINEAR Y* Y

ESMF_REGRIDMETHOD_PATCH Y* Y

ESMF_REGRIDMETHOD_NEAREST_STOD Y* N

ESMF_REGRIDMETHOD_NEAREST_DTOS Y* N

ESMF_REGRIDMETHOD_CONSERVE N/A Y*

ESMF_REGRIDMETHOD_CONSERVE_2ND N/A Y*

Table 2: Line Type Support by Regrid Method (* indicates the default)

option cells are approximated by planes in 3D space, and their boundaries are 3D Cartesian lines between their corner

points. The ESMF_LINETYPE_GREAT_CIRCLE option specifies that the line between two points follows a great

circle path along the sphere surface. (A great circle is the shortest path between two points on a sphere.) Distances are

measured along the great circle path. Under this option cells are on the sphere surface, and their boundaries are great

circle paths between their corner points.

Figure 24.2.16 shows which line types are supported for each regrid method as well as the defaults (indicated by *).

24.2.17 Troubleshooting guide

The below is a list of problems users commonly encounter with regridding and potential solutions. This is by no means

an exhaustive list, so if none of these problems fit your case, or if the solutions don’t fix your problem, please feel free

to email esmf support (esmf_support@ucar.edu).

Problem: Regridding is too slow.

Possible Cause: The ESMF_FieldRegridStore() method is called more than is necessary.

The ESMF_FieldRegridStore() operation is a complex one and can be relatively slow for some cases (large

Grids, 3D grids, etc.)

Solution: Reduce the number of ESMF_FieldRegridStore() calls to the minimum necessary. The routeHandle

generated by the ESMF_FieldRegridStore() call depends on only four factors: the stagger locations that the

input Fields are created on, the coordinates in the Grids the input Fields are built on at those stagger locations, the

padding of the input Fields (specified by the totalWidth arguments in FieldCreate) and the size of the tensor

dimensions in the input Fields (specified by the ungridded arguments in FieldCreate). For any pair of Fields

which share these attributes with the Fields used in the ESMF_FieldRegridStore call the same routeHandle can

be used. Note that the data in the Fields does NOT matter, the same routeHandle can be used no matter how the data

in the Fields changes.

In particular:

• If Grid coordinates do not change during a run, then the ESMF_FieldRegridStore() call can be done

once between a pair of Fields at the beginning and the resulting routeHandle used for each timestep during the

run.

• If a pair of Fields was created with exactly the same arguments to ESMF_FieldCreate() as the pair of

Fields used during an ESMF_FieldRegridStore() call, then the resulting routeHandle can also be used

between that pair of Fields.

270

Problem: Distortions in destination Field at periodic boundary.

Possible Cause: The Grid overlaps itself. With a periodic Grid, the regrid system expects the first point to not be a

repeat of the last point. In other words, regrid constructs its own connection and overlap between the first and last

points of the periodic dimension and so the Grid doesn’t need to contain these. If the Grid does, then this can cause

problems.

Solution: Define the Grid so that it doesn’t contain the overlap point. This typically means simply making the Grid

one point smaller in the periodic dimension. If a Field constructed on the Grid needs to contain these overlap points

then the user can use the totalWidth arguments to include this extra padding in the Field. Note, however, that the

regrid won’t update these extra points, so the user will have to do a copy to fill the points in the overlap region in the

Field.

24.2.18 Design and implementation notes

The ESMF regrid weight calculation functionality has been designed to enable it to support a wide range of grid and

interpolation types without needing to support each individual combination of source grid type, destination grid type,

and interpolation method. To avoid the quadratic growth of the number of pairs of grid types, all grids are converted

to a common internal format and the regrid weight calculation is performed on that format. This vastly reduces the

variety of grids that need to be supported in the weight calculations for each interpolation method. It also has the

added benefit of making it straightforward to add new grid types and to allow them to work with all the existing grid

types. To hook into the existing weight calculation code, the new type just needs to be converted to the internal format.

The internal grid format used by the ESMF regrid weight calculation is a finite element unstructured mesh. This was

chosen because it was the most general format and all the others could be converted to it. The ESMF finite element

unstructured mesh (ESMF FEM) is similar in some respects to the SIERRA [20] package developed at Sandia National

Laboratory. The ESMF code relies on some of the same underlying toolkits (e.g. Zoltan [18] library for calculating

mesh partitions) and adds a layer on top that allows the calculation of regrid weights and some mesh operations (e.g.

mesh redistribution) that ESMF needs. The ESMF FEM has similar notions to SIERRA about the basic structure of

the mesh entities, fields, iteration and a similar notion of parallel distribution.

Currently we use the ESMF FEM internal mesh to hold the structure of our Mesh class and in our regrid weight

calculation. The parts of the internal FEM code that are used/tested by ESMF are the following:

• The creation of a mesh composed of triangles and quadrilaterals or hexahedrons and tetrahedrons.

• The object relations data base to store the connections between objects (e.g. which element contains which

nodes).

• The fields to hold data (e.g. coordinates). We currently only build fields on nodes and elements (2D and 3D).

• Iteration to move through mesh entities.

• The parallel code to maintain information about the distribution of the mesh across processors and to communi-

cate data between parts of the mesh on different processors (i.e. halos).

24.3 File-based Regrid API

271

24.3.1 ESMF_RegridWeightGen - Generate regrid weight file from grid files

INTERFACE:

! Private name; call using ESMF_RegridWeightGen()

subroutine ESMF_RegridWeightGenFile(srcFile, dstFile, &

weightFile, rhFile, regridmethod, polemethod, regridPoleNPnts, lineType, normType, &

extrapMethod, extrapNumSrcPnts, extrapDistExponent, extrapNumLevels, &

unmappedaction, ignoreDegenerate, srcFileType, dstFileType, &

srcRegionalFlag, dstRegionalFlag, srcMeshname, dstMeshname, &

srcMissingvalueFlag, srcMissingvalueVar, &

dstMissingvalueFlag, dstMissingvalueVar, &

useSrcCoordFlag, srcCoordinateVars, &

useDstCoordFlag, dstCoordinateVars, &

useSrcCornerFlag, useDstCornerFlag, &

useUserAreaFlag, largefileFlag, &

netcdf4fileFlag, weightOnlyFlag, &

tileFilePath, &

verboseFlag, rc)

ARGUMENTS:

character(len=*), intent(in) :: srcFile

character(len=*), intent(in) :: dstFile

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character(len=*), intent(in), optional :: weightFile

character(len=*), intent(in), optional :: rhFile

type(ESMF_RegridMethod_Flag), intent(in), optional :: regridmethod

type(ESMF_PoleMethod_Flag), intent(in), optional :: polemethod

integer, intent(in), optional :: regridPoleNPnts

type(ESMF_LineType_Flag), intent(in), optional :: lineType

type(ESMF_NormType_Flag), intent(in), optional :: normType

type(ESMF_ExtrapMethod_Flag), intent(in), optional :: extrapMethod

integer, intent(in), optional :: extrapNumSrcPnts

real, intent(in), optional :: extrapDistExponent

integer, intent(in), optional :: extrapNumLevels

type(ESMF_UnmappedAction_Flag),intent(in), optional :: unmappedaction

logical, intent(in), optional :: ignoreDegenerate

type(ESMF_FileFormat_Flag), intent(in), optional :: srcFileType

type(ESMF_FileFormat_Flag), intent(in), optional :: dstFileType

logical, intent(in), optional :: srcRegionalFlag

logical, intent(in), optional :: dstRegionalFlag

character(len=*), intent(in), optional :: srcMeshname

character(len=*), intent(in), optional :: dstMeshname

logical, intent(in), optional :: srcMissingValueFlag

character(len=*), intent(in), optional :: srcMissingValueVar

logical, intent(in), optional :: dstMissingValueFlag

character(len=*), intent(in), optional :: dstMissingValueVar

logical, intent(in), optional :: useSrcCoordFlag

character(len=*), intent(in), optional :: srcCoordinateVars(:)

logical, intent(in), optional :: useDstCoordFlag

character(len=*), intent(in), optional :: dstCoordinateVars(:)

logical, intent(in), optional :: useSrcCornerFlag

272

logical, intent(in), optional :: useDstCornerFlag

logical, intent(in), optional :: useUserAreaFlag

logical, intent(in), optional :: largefileFlag

logical, intent(in), optional :: netcdf4fileFlag

logical, intent(in), optional :: weightOnlyFlag

logical, intent(in), optional :: verboseFlag

character(len=*), intent(in), optional :: tileFilePath

integer, intent(out), optional :: rc

DESCRIPTION:

This subroutine provides the same function as the ESMF_RegridWeightGen application described in Section 12. It
takes two grid files in NetCDF format and writes out an interpolation weight file also in NetCDF format. The interpola-
tion weights can be generated with the bilinear (24.2.1), higher-order patch (24.2.2), or first order conservative (24.2.5)
methods. The grid files can be in one of the following four formats:

• The SCRIP format (12.8.1)

• The native ESMF format for an unstructured grid (12.8.2)

• The CF Convention Single Tile File format (12.8.3)

• The proposed CF Unstructured grid (UGRID) format (12.8.4)

• The GRIDSPEC Mosaic File format (12.8.5)

The weight file is created in SCRIP format (12.9). The optional arguments allow users to specify various options to
control the regrid operation, such as which pole option to use, whether to use user-specified area in the conservative
regridding, or whether ESMF should generate masks using a given variable’s missing value. There are also optional
arguments specific to a certain type of the grid file. All the optional arguments are similar to the command line
arguments for the ESMF_RegridWeightGen application (12.6). The acceptable values and the default value for
the optional arguments are listed below.

The arguments are:

srcFile The source grid file name.

dstFile The destination grid file name.

weightFile The interpolation weight file name.

[rhFile] The RouteHandle file name.

[regridmethod] The type of interpolation. Please see Section 52.49 for a list of valid options. If not specified, defaults
to ESMF_REGRIDMETHOD_BILINEAR.

[polemethod] A flag to indicate which type of artificial pole to construct on the source Grid for regridding. Please
see Section 52.46 for a list of valid options. The default value varies depending on the regridding method and
the grid type and format.

[regridPoleNPnts] If polemethod is set to ESMF_POLEMETHOD_NPNTAVG, this argument is required to specify
how many points should be averaged over at the pole.

[lineType] This argument controls the path of the line which connects two points on a sphere surface. This in turn
controls the path along which distances are calculated and the shape of the edges that make up a cell. Both of
these quantities can influence how interpolation weights are calculated. As would be expected, this argument

273

is only applicable when srcField and dstField are built on grids which lie on the surface of a sphere.
Section 52.34 shows a list of valid options for this argument. If not specified, the default depends on the regrid
method. Section 52.34 has the defaults by line type. Figure 24.2.16 shows which line types are supported for
each regrid method as well as showing the default line type by regrid method.

[normType] This argument controls the type of normalization used when generating conservative weights. This
option only applies to weights generated with regridmethod=ESMF_REGRIDMETHOD_CONSERVE.
Please see Section 52.43 for a list of valid options. If not specified normType defaults to
ESMF_NORMTYPE_DSTAREA.

[extrapMethod] The type of extrapolation. Please see Section 52.17 for a list of valid options. If not specified,
defaults to ESMF_EXTRAPMETHOD_NONE.

[extrapNumSrcPnts] The number of source points to use for the extrapolation methods that use more than one source
point (e.g. ESMF_EXTRAPMETHOD_NEAREST_IDAVG). If not specified, defaults to 8.

[extrapDistExponent] The exponent to raise the distance to when calculating weights for the
ESMF_EXTRAPMETHOD_NEAREST_IDAVG extrapolation method. A higher value reduces the influence of
more distant points. If not specified, defaults to 2.0.

[unmappedaction] Specifies what should happen if there are destination points that can’t be mapped to a source
cell. Please see Section 52.60 for a list of valid options. If not specified, unmappedaction defaults to
ESMF_UNMAPPEDACTION_ERROR.

[ignoreDegenerate] Ignore degenerate cells when checking the input Grids or Meshes for errors. If this is set to true,
then the regridding proceeds, but degenerate cells will be skipped. If set to false, a degenerate cell produces an
error. If not specified, ignoreDegenerate defaults to false.

[srcFileType] The file format of the source grid. Please see Section 52.19 for a list of valid options. If not specifed,
the program will determine the file format automatically.

[dstFileType] The file format of the destination grid. Please see Section 52.19 for a list of valid options. If not
specifed, the program will determine the file format automatically.

[srcRegionalFlag] If .TRUE., the source grid is a regional grid, otherwise, it is a global grid. The default value is
.FALSE.

[dstRegionalFlag] If .TRUE., the destination grid is a regional grid, otherwise, it is a global grid. The default value
is .FALSE.

[srcMeshname] If the source file is in UGRID format, this argument is required to define the dummy variable name
in the grid file that contains the mesh topology info.

[dstMeshname] If the destination file is in UGRID format, this argument is required to define the dummy variable
name in the grid file that contains the mesh topology info.

[srcMissingValueFlag] If .TRUE., the source grid mask will be constructed using the missing values of the variable
defined in srcMissingValueVar. This flag is only used for the grid defined in the GRIDSPEC or the
UGRID file formats. The default value is .FALSE..

[srcMissingValueVar] If srcMissingValueFlag is .TRUE., the argument is required to define the variable name
whose missing values will be used to construct the grid mask. It is only used for the grid defined in the GRID-
SPEC or the UGRID file formats.

[dstMissingValueFlag] If .TRUE., the destination grid mask will be constructed using the missing values of the
variable defined in dstMissingValueVar. This flag is only used for the grid defined in the GRIDSPEC or
the UGRID file formats. The default value is .FALSE..

[dstMissingValueVar] If dstMissingValueFlag is .TRUE., the argument is required to define the variable name
whose missing values will be used to construct the grid mask. It is only used for the grid defined in the GRID-
SPEC or the UGRID file formats.

274

[useSrcCoordFlag] If .TRUE., the coordinate variables defined in srcCoordinateVars will be used as the lon-
gitude and latitude variables for the source grid. This flag is only used for the GRIDSPEC file format. The
default is .FALSE.

[srcCoordinateVars] If useSrcCoordFlag is .TRUE., this argument defines the longitude and ! latitude variables
in the source grid file to be used for the regrid. This argument is only used when the grid file is in GRIDSPEC
format. srcCoordinateVars should be a array of 2 elements.

[useDstCoordFlag] If .TRUE., the coordinate variables defined in dstCoordinateVars will be used as the lon-
gitude and latitude variables for the destination grid. This flag is only used for the GRIDSPEC file format. The
default is .FALSE.

[dstCoordinateVars] If useDstCoordFlag is .TRUE., this argument defines the longitude and latitude variables
in the destination grid file to be used for the regrid. This argument is only used when the grid file is in GRID-
SPEC format. dstCoordinateVars should be a array of 2 elements.

[useSrcCornerFlag] If useSrcCornerFlag is .TRUE., the corner coordinates of the source file will be used for
regridding. Otherwise, the center coordinates will be us ed. The default is .FALSE. The corner stagger is not
supported for the SCRIP formatted input grid or multi-tile GRIDSPEC MOSAIC input grid.

[useDstCornerFlag] If useDstCornerFlag is .TRUE., the corner coordinates of the destination file will be used
for regridding. Otherwise, the center coordinates will be used. The default is .FALSE. The corner stagger is not
supported for the SCRIP formatted input grid or multi-tile GRIDSPEC MOSAIC input grid.

[useUserAreaFlag] If .TRUE., the element area values defined in the grid files are used. Only the SCRIP and ESMF
format grid files have user specified areas. This flag is only used for conservative regridding. The default is
.FALSE..

[largefileFlag] If .TRUE., the output weight file is in NetCDF 64bit offset format. The default is .FALSE..

[netcdf4fileFlag] If .TRUE., the output weight file is in NetCDF4 file format. The default is .FALSE..

[weightOnlyFlag] If .TRUE., the output weight file only contains factorList and factorIndexList. The default is
.FALSE..

[verboseFlag] If .TRUE., it will print summary information about the regrid parameters, default to .FALSE..

[tileFilePath] Optional argument to define the path where the tile files reside. If it is given, it overwrites the path
defined in gridlocation variable in the mosaic file.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

24.3.2 ESMF_RegridWeightGen - Generate regrid routeHandle and an optional weight file from grid files

with user-specified distribution

INTERFACE:

! Private name; call using ESMF_RegridWeightGen()

subroutine ESMF_RegridWeightGenDG(srcFile, dstFile, regridRouteHandle, &

srcElementDistgrid, dstElementDistgrid, &

srcNodalDistgrid, dstNodalDistgrid, &

weightFile, regridmethod, lineType, normType, &

extrapMethod, extrapNumSrcPnts, extrapDistExponent, extrapNumLevels,&

unmappedaction, ignoreDegenerate, useUserAreaFlag, &

275

largefileFlag, netcdf4fileFlag, &

weightOnlyFlag, verboseFlag, rc)

ARGUMENTS:

character(len=*), intent(in) :: srcFile

character(len=*), intent(in) :: dstFile

type(ESMF_RouteHandle), intent(out) :: regridRouteHandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_DistGrid), intent(in), optional :: srcElementDistgrid

type(ESMF_DistGrid), intent(in), optional :: dstElementDistgrid

character(len=*), intent(in), optional :: weightFile

type(ESMF_DistGrid), intent(in), optional :: srcNodalDistgrid

type(ESMF_DistGrid), intent(in), optional :: dstNodalDistgrid

type(ESMF_RegridMethod_Flag), intent(in), optional :: regridmethod

type(ESMF_LineType_Flag), intent(in), optional :: lineType

type(ESMF_NormType_Flag), intent(in), optional :: normType

type(ESMF_ExtrapMethod_Flag), intent(in), optional :: extrapMethod

integer, intent(in), optional :: extrapNumSrcPnts

real, intent(in), optional :: extrapDistExponent

integer, intent(in), optional :: extrapNumLevels

type(ESMF_UnmappedAction_Flag),intent(in), optional :: unmappedaction

logical, intent(in), optional :: ignoreDegenerate

logical, intent(in), optional :: useUserAreaFlag

logical, intent(in), optional :: largefileFlag

logical, intent(in), optional :: netcdf4fileFlag

logical, intent(in), optional :: weightOnlyFlag

logical, intent(in), optional :: verboseFlag

integer, intent(out), optional :: rc

DESCRIPTION:

This subroutine does online regridding weight generation from files with user specified distribution. The main differ-
ences between this API and the one in 24.3.1 are listed below:

• The input grids are always represented as ESMF_Mesh whether they are logically rectangular or unstructured.

• The input grids will be decomposed using a user-specified distribution instead of a fixed decomposition in the
other subroutine if srcElementDistgrid and dstElementDistgrid are specified.

• The source and destination grid files have to be in the SCRIP grid file format.

• This subroutine has one additional required argument regridRouteHandle and four additional
optional arguments: srcElementDistgrid, dstElementDistgrid, srcNodelDistgrid and
dstNodalDistgrid. These four arguments are of type ESMF_DistGrid, they are used to define the
distribution of the source and destination grid elements and nodes. The output regridRouteHandle allows
users to regrid the field values later in the application.

• The weightFile argument is optional. When it is given, a weightfile will be generated as well.

The arguments are:

srcFile The source grid file name in SCRIP grid file format

276

dstFile The destination grid file name in SCRIP grid file format

regridRouteHandle The regrid RouteHandle returned by ESMF_FieldRegridStore()

srcElementDistgrid An optional distGrid that specifies the distribution of the source grid’s elements. If not specified,
a system-defined block decomposition is used.

dstElementDistgrid An optional distGrid that specifies the distribution of the destination grid’s elements. If not
specified, a system-defined block decomposition is used.

weightFile The interpolation weight file name. If present, an output weight file will be generated.

srcNodalDistgrid An optional distGrid that specifies the distribution of the source grid’s nodes

dstNodalDistgrid An optional distGrid that specifies the distribution of the destination grid’s nodes

[regridmethod] The type of interpolation. Please see Section 52.49 for a list of valid options. If not specified, defaults
to ESMF_REGRIDMETHOD_BILINEAR.

[lineType] This argument controls the path of the line which connects two points on a sphere surface. This in turn
controls the path along which distances are calculated and the shape of the edges that make up a cell. Both of
these quantities can influence how interpolation weights are calculated. As would be expected, this argument
is only applicable when srcField and dstField are built on grids which lie on the surface of a sphere.
Section 52.34 shows a list of valid options for this argument. If not specified, the default depends on the regrid
method. Section 52.34 has the defaults by line type. Figure 24.2.16 shows which line types are supported for
each regrid method as well as showing the default line type by regrid method.

[normType] This argument controls the type of normalization used when generating conservative weights. This
option only applies to weights generated with regridmethod=ESMF_REGRIDMETHOD_CONSERVE.
Please see Section 52.43 for a list of valid options. If not specified normType defaults to
ESMF_NORMTYPE_DSTAREA.

[extrapMethod] The type of extrapolation. Please see Section 52.17 for a list of valid options. If not specified,
defaults to ESMF_EXTRAPMETHOD_NONE.

[extrapNumSrcPnts] The number of source points to use for the extrapolation methods that use more than one source
point (e.g. ESMF_EXTRAPMETHOD_NEAREST_IDAVG). If not specified, defaults to 8..

[extrapDistExponent] The exponent to raise the distance to when calculating weights for the
ESMF_EXTRAPMETHOD_NEAREST_IDAVG extrapolation method. A higher value reduces the influence of
more distant points. If not specified, defaults to 2.0.

[unmappedaction] Specifies what should happen if there are destination points that can’t be mapped to a source
cell. Please see Section 52.60 for a list of valid options. If not specified, unmappedaction defaults to
ESMF_UNMAPPEDACTION_ERROR.

[ignoreDegenerate] Ignore degenerate cells when checking the input Grids or Meshes for errors. If this is set to true,
then the regridding proceeds, but degenerate cells will be skipped. If set to false, a degenerate cell produces an
error. If not specified, ignoreDegenerate defaults to false.

[useUserAreaFlag] If .TRUE., the element area values defined in the grid files are used. Only the SCRIP and ESMF
format grid files have user specified areas. This flag is only used for conservative regridding. The default is
.FALSE.

[largefileFlag] If .TRUE., the output weight file is in NetCDF 64bit offset format. The default is .FALSE.

[netcdf4fileFlag] If .TRUE., the output weight file is in NetCDF4 file format. The default is .FALSE.

[weightOnlyFlag] If .TRUE., the output weight file only contains factorList and factorIndexList. The default is
.FALSE.

[verboseFlag] If .TRUE., it will print summary information about the regrid parameters, default to .FALSE.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

277

24.3.3 ESMF_FileRegrid - Regrid variables defined in the grid files

INTERFACE:

subroutine ESMF_FileRegrid(srcFile, dstFile, srcVarName, dstVarName, &

dstLoc, srcDataFile, dstDataFile, tileFilePath, &

dstCoordVars, regridmethod, polemethod, regridPoleNPnts, &

unmappedaction, ignoreDegenerate, srcRegionalFlag, dstRegionalFlag, &

verboseFlag, rc)

ARGUMENTS:

character(len=*), intent(in) :: srcFile

character(len=*), intent(in) :: dstFile

character(len=*), intent(in) :: srcVarName

character(len=*), intent(in) :: dstVarName

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character(len=*), intent(in), optional :: dstLoc

character(len=*), intent(in), optional :: srcDataFile

character(len=*), intent(in), optional :: dstDataFile

character(len=*), intent(in), optional :: tileFilePath

character(len=*), intent(in), optional :: dstCoordVars

type(ESMF_RegridMethod_Flag), intent(in), optional :: regridmethod

type(ESMF_PoleMethod_Flag), intent(in), optional :: polemethod

integer, intent(in), optional :: regridPoleNPnts

type(ESMF_UnmappedAction_Flag),intent(in), optional :: unmappedaction

logical, intent(in), optional :: ignoreDegenerate

logical, intent(in), optional :: srcRegionalFlag

logical, intent(in), optional :: dstRegionalFlag

logical, intent(in), optional :: verboseFlag

integer, intent(out), optional :: rc

DESCRIPTION:

This subroutine provides the same function as the ESMF_Regrid application described in Section 13. It takes two
grid files in NetCDF format and interpolate the variable defined in the source grid file to the destination variable
using one of the ESMF supported regrid methods – bilinear (24.2.1), higher-order patch (24.2.2), first order conserva-
tive (24.2.5) or nearest neighbor methods. The grid files can be in one of the following two formats:

• The GRIDSPEC Tile grid file following the CF metadata convention (12.8.3) for logically rectangular grids

• The proposed CF Unstructured grid (UGRID) format (12.8.4) for unstructured grids.

The optional arguments allow users to specify various options to control the regrid operation, such as which pole
option to use, or whether to use user-specified area in the conservative regridding. The acceptable values and the
default value for the optional arguments are listed below.

The arguments are:

srcFile The source grid file name.

278

dstFile The destination grid file name.

srcVarName The source variable names to be regridded. If more than one, separate them by comma.

dstVarName The destination variable names to be regridded to. If more than one, separate them by comma.

[dstLoc] The destination variable’s location, either ’node’ or ’face’. This argument is only used when the destination
grid file is UGRID, the regridding method is non-conservative and the destination variable does not exist in the
destination grid file. If not specified, default is ’face’.

[srcDataFile] The input data file prefix if the srcFile is in GRIDSPEC MOSAIC fileformat. The tilename and the file
extension (.nc) will be added to the prefix. The tilename is defined in the MOSAIC file using variable "gridtiles".

[dstDataFile] The output data file prefix if the dstFile is in GRIDSPEC MOSAIC fileformat. The tilename and the
file extension (.nc) will be added to the prefix. The tilename is defined in the MOSAIC file using variable
"gridtiles".

[tileFilePath] The alternative file path for the tile files and mosaic data files when either srcFile or dstFile is a GRID-
SPEC MOSAIC grid. The path can be either relative or absolute. If it is relative, it is relative to the working
directory. When specified, the gridlocation variable defined in the Mosaic file will be ignored.

[dstCoordVars] The destination coordinate variable names if the dstVarName does not exist in the dstFile

[regridmethod] The type of interpolation. Please see Section 52.49 for a list of valid options. If not specified, defaults
to ESMF_REGRIDMETHOD_BILINEAR.

[polemethod] A flag to indicate which type of artificial pole to construct on the source Grid for regridding. Please
see Section 52.46 for a list of valid options. The default value varies depending on the regridding method and
the grid type and format.

[regridPoleNPnts] If polemethod is set to ESMF_POLEMETHOD_NPNTAVG, this argument is required to specify
how many points should be averaged over at the pole.

[unmappedaction] Specifies what should happen if there are destination points that can’t be mapped to a source
cell. Please see Section 52.60 for a list of valid options. If not specified, unmappedaction defaults to
ESMF_UNMAPPEDACTION_ERROR.

[ignoreDegenerate] Ignore degenerate cells when checking the input Grids or Meshes for errors. If this is set to true,
then the regridding proceeds, but degenerate cells will be skipped. If set to false, a degenerate cell produces an
error. If not specified, ignoreDegenerate defaults to false.

[srcRegionalFlag] If .TRUE., the source grid is a regional grid, otherwise, it is a global grid. The default value is
.FALSE.

[dstRegionalFlag] If .TRUE., the destination grid is a regional grid, otherwise, it is a global grid. The default value
is .FALSE.

[verboseFlag] If .TRUE., it will print summary information about the regrid parameters, default to .FALSE.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

24.4 Restrictions and Future Work

1. 32-bit index limitation: Currently all index space dimensions in an ESMF object are represented by signed

32-bit integers. This limits the number of elements in one-dimensional objects to the 32-bit limit. This limit can

be crossed by higher dimensional objects, where the product space is only limited by the 64-bit sequence index

representation.

279

25 FieldBundle Class

25.1 Description

A FieldBundle functions mainly as a convenient container for storing similar Fields. It represents “bundles” of Fields

that are discretized on the same Grid, Mesh, LocStream, or XGrid and distributed in the same manner. The FieldBundle

is an important data structure because it can be added to a State, which is used for sending and receiving data between

Components.

In the common case where FieldBundle is built on top of a Grid, Fields within a FieldBundle may be located at different

locations relative to the vertices of their common Grid. The Fields in a FieldBundle may be of different dimensions,

as long as the Grid dimensions that are distributed are the same. For example, a surface Field on a distributed lat/lon

Grid and a 3D Field with an added vertical dimension on the same distributed lat/lon Grid can be included in the same

FieldBundle.

FieldBundles can be created and destroyed, can have Attributes added or retrieved, and can have Fields added, re-

moved, replaced, or retrieved. Methods include queries that return information about the FieldBundle itself and about

the Fields that it contains. The Fortran data pointer of a Field within a FieldBundle can be obtained by first retrieving

the Field with a call to ESMF_FieldBundleGet(), and then using ESMF_FieldGet() to get the data.

In the future FieldBundles will serve as a mechanism for performance optimization. ESMF will take advantage of the

similarities of the Fields within a FieldBundle to optimize collective communication, I/O, and regridding. See Section

25.3 for a description of features that are scheduled for future work.

25.2 Use and Examples

Examples of creating, accessing and destroying FieldBundles and their constituent Fields are provided in this section,

along with some notes on FieldBundle methods.

25.2.1 Creating a FieldBundle from a list of Fields

A user can create a FieldBundle from a predefined list of Fields. In the following example, we first create an
ESMF_Grid, then build 3 different ESMF_Fields with different names. The ESMF_FieldBundle is created
from the list of 3 Fields.

!---

! ! Create several Fields and add them to a new FieldBundle.

grid = ESMF_GridCreateNoPeriDim(minIndex=(/1,1/), maxIndex=(/100,200/), &

regDecomp=(/2,2/), name="atmgrid", rc=rc)

call ESMF_ArraySpecSet(arrayspec, 2, ESMF_TYPEKIND_R8, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

field(1) = ESMF_FieldCreate(grid, arrayspec, &

staggerloc=ESMF_STAGGERLOC_CENTER, &

name="temperature", rc=rc)

280

field(2) = ESMF_FieldCreate(grid, arrayspec, &

staggerloc=ESMF_STAGGERLOC_CENTER, &

name="pressure", rc=rc)

field(3) = ESMF_FieldCreate(grid, arrayspec, &

staggerloc=ESMF_STAGGERLOC_CENTER, &

name="heat flux", rc=rc)

bundle1 = ESMF_FieldBundleCreate(fieldList=field(1:3), &

name="atmosphere data", rc=rc)

print *, "FieldBundle example 1 returned"

25.2.2 Creating an empty FieldBundle then add one Field to it

A user can create an empty FieldBundle then add Fields to the empty FieldBundle. In the following example, we use
the previously defined ESMF_Grid to build an ESMF_Field. An empty ESMF_FieldBundle is created, then
the Field is added to the FieldBundle.

!---

! ! Create an empty FieldBundle and then add a single field to it.

simplefield = ESMF_FieldCreate(grid, arrayspec, &

staggerloc=ESMF_STAGGERLOC_CENTER, name="rh", rc=rc)

bundle2 = ESMF_FieldBundleCreate(name="time step 1", rc=rc)

call ESMF_FieldBundleAdd(bundle2, (/simplefield/), rc=rc)

call ESMF_FieldBundleGet(bundle2, fieldCount=fieldcount, rc=rc)

print *, "FieldBundle example 2 returned, fieldcount =", fieldcount

25.2.3 Creating an empty FieldBundle then add a list of Fields to it

A user can create an empty FieldBundle then add multiple Fields to the empty FieldBundle. In the following example,
we use the previously defined ESMF_Grid and ESMF_Fields. An empty ESMF_FieldBundle is created, then
three Fields are added to the FieldBundle.

!---

! ! Create an empty FieldBundle and then add multiple fields to it.

bundle3 = ESMF_FieldBundleCreate(name="southern hemisphere", rc=rc)

281

call ESMF_FieldBundleAdd(bundle3, field(1:3), rc=rc)

call ESMF_FieldBundleGet(bundle3, fieldCount=fieldcount, rc=rc)

print *, "FieldBundle example 3 returned, fieldcount =", fieldcount

25.2.4 Query a Field stored in the FieldBundle by name or index

Users can query a Field stored in a FieldBundle by the Field’s name or index. In the following example, the pressure
Field stored in FieldBundle is queried by its name then by its index through ESMF_FieldBundleGet() method.

!---

! ! Get a Field back from a FieldBundle, first by name and then by index.

! ! Also get the FieldBundle name.

call ESMF_FieldBundleGet(bundle1, "pressure", field=returnedfield1, rc=rc)

call ESMF_FieldGet(returnedfield1, name=fname1, rc=rc)

call ESMF_FieldBundleGet(bundle1, 2, returnedfield2, rc=rc)

call ESMF_FieldGet(returnedfield2, name=fname2, rc=rc)

call ESMF_FieldBundleGet(bundle1, name=bname1, rc=rc)

print *, "FieldBundle example 4 returned, field names = ", &

trim(fname1), ", ", trim(fname2)

print *, "FieldBundle name = ", trim(bname1)

25.2.5 Query FieldBundle for Fields list either alphabetical or in order of addition

Users can query the list of Fields stored in a FieldBundle. By default the returned list of Fields are ordered alphabeti-
cally by the Field names. Users can also retrieve the list of Fields in the order by which the Fields were added to the
FieldBundle.

call ESMF_FieldBundleGet(bundle1, fieldList=r_fields, rc=rc)

do i = 1, 3

call ESMF_FieldGet(r_fields(i), name=fname1, rc=rc)

282

print *, fname1

enddo

call ESMF_FieldBundleGet(bundle1, fieldList=r_fields, &

itemorderflag=ESMF_ITEMORDER_ADDORDER, rc=rc)

do i = 1, 3

call ESMF_FieldGet(r_fields(i), name=fname1, rc=rc)

print *, fname1

enddo

25.2.6 Create a packed FieldBundle on a Grid

Create a packed fieldbundle from user supplied field names and a packed Fortran array pointer that contains the data
of the packed fields on a Grid.

Create a 2D grid of 4x1 regular decomposition on 4 PETs, each PET has 10x50 elements. The index space of the
entire Grid is 40x50.

gridxy = ESMF_GridCreateNoPeriDim(maxIndex=(/40,50/), regDecomp=(/4,1/), rc=rc)

Allocate a packed Fortran array pointer containing 10 packed fields, each field has 3 time slices and uses the 2D grid
created. Note that gridToFieldMap uses the position of the grid dimension as elements, 3rd element of the packedPtr
is 10, 4th element of the packedPtr is 50.

allocate(packedPtr(10, 3, 10, 50)) ! fieldDim, time, y, x

fieldDim = 1

packedFB = ESMF_FieldBundleCreate(fieldNameList, packedPtr, gridxy, fieldDim, &

gridToFieldMap=(/3,4/), staggerloc=ESMF_Staggerloc_Center, rc=rc)

25.2.7 Create a packed FieldBundle on a Mesh

Similarly we could create a packed fieldbundle from user supplied field names and a packed Fortran array pointer that
contains the data of the packed fields on a Mesh.

Due to the verbosity of the MeshCreate process, the code for MeshCreate is not shown below, user can either refer to
the MeshCreate section 33.3.1 or examine the FieldBundleCreate example source code contained in the ESMF source
distribution directly. A ESMF Mesh on 4 PETs with one mesh element on each PET is created.

Allocate the packed Fortran array pointer, the first dimension is fieldDim; second dimension is the data associated
with mesh element, since there is only one mesh element on each processor in this example, the allocation is 1; last
dimension is the time dimension which contains 3 time slices.

allocate(packedPtr3D(10, 1, 3))

283

fieldDim = 1

packedFB = ESMF_FieldBundleCreate(fieldNameList, packedPtr3D, meshEx, fieldDim, &

gridToFieldMap=(/2/), meshloc=ESMF_MESHLOC_ELEMENT, rc=rc)

25.2.8 Destroy a FieldBundle

The user must call ESMF_FieldBundleDestroy() before deleting any of the Fields it contains. Because Fields
can be shared by multiple FieldBundles and States, they are not deleted by this call.

!---

call ESMF_FieldBundleDestroy(bundle1, rc=rc)

25.2.9 Redistribute data from a source FieldBundle to a destination FieldBundle

The ESMF_FieldBundleRedist interface can be used to redistribute data from source FieldBundle to destination
FieldBundle. This interface is overloaded by type and kind; In the version of ESMF_FieldBundleRedist without
factor argument, a default value of factor 1 is used.

In this example, we first create two FieldBundles, a source FieldBundle and a destination FieldBundle. Then we use
ESMF_FieldBundleRedist to redistribute data from source FieldBundle to destination FieldBundle.

! perform redist

call ESMF_FieldBundleRedistStore(srcFieldBundle, dstFieldBundle, &

routehandle, rc=rc)

call ESMF_FieldBundleRedist(srcFieldBundle, dstFieldBundle, &

routehandle, rc=rc)

25.2.10 Redistribute data from a packed source FieldBundle to a packed destination FieldBundle

The ESMF_FieldBundleRedist interface can be used to redistribute data from source FieldBundle to destination
FieldBundle when both Bundles are packed with same number of fields.

In this example, we first create two packed FieldBundles, a source FieldBundle and a destination FieldBundle. Then
we use ESMF_FieldBundleRedist to redistribute data from source FieldBundle to destination FieldBundle.

The same Grid is used where the source and destination packed FieldBundle are built upon. Source and destination
Bundle have different memory layout.

allocate(srcfptr(3,5,10), dstfptr(10,5,3))

srcfptr = lpe

srcFieldBundle = ESMF_FieldBundleCreate((/’field01’, ’field02’, ’field03’/), &

srcfptr, grid, 1, gridToFieldMap=(/2,3/), rc=rc)

284

dstFieldBundle = ESMF_FieldBundleCreate((/’field01’, ’field02’, ’field03’/), &

dstfptr, grid, 3, gridToFieldMap=(/2,1/), rc=rc)

! perform redist

call ESMF_FieldBundleRedistStore(srcFieldBundle, dstFieldBundle, &

routehandle, rc=rc)

call ESMF_FieldBundleRedist(srcFieldBundle, dstFieldBundle, &

routehandle, rc=rc)

25.2.11 Perform sparse matrix multiplication from a source FieldBundle to a destination FieldBundle

The ESMF_FieldBundleSMM interface can be used to perform SMM from source FieldBundle to destination Field-
Bundle. This interface is overloaded by type and kind;

In this example, we first create two FieldBundles, a source FieldBundle and a destination FieldBundle. Then we use
ESMF_FieldBundleSMM to perform sparse matrix multiplication from source FieldBundle to destination Field-
Bundle.

The operation performed in this example is better illustrated in section 26.3.33.

Section 28.2.18 provides a detailed discussion of the sparse matrix multiplication operation implemented in ESMF.

call ESMF_VMGetCurrent(vm, rc=rc)

call ESMF_VMGet(vm, localPet=lpe, rc=rc)

! create distgrid and grid

distgrid = ESMF_DistGridCreate(minIndex=(/1/), maxIndex=(/16/), &

regDecomp=(/4/), &

rc=rc)

grid = ESMF_GridCreate(distgrid=distgrid, &

gridEdgeLWidth=(/0/), gridEdgeUWidth=(/0/), &

name="grid", rc=rc)

call ESMF_ArraySpecSet(arrayspec, 1, ESMF_TYPEKIND_I4, rc=rc)

! create field bundles and fields

srcFieldBundle = ESMF_FieldBundleCreate(rc=rc)

dstFieldBundle = ESMF_FieldBundleCreate(rc=rc)

285

do i = 1, 3

srcField(i) = ESMF_FieldCreate(grid, arrayspec, &

totalLWidth=(/1/), totalUWidth=(/2/), &

rc=rc)

call ESMF_FieldGet(srcField(i), localDe=0, farrayPtr=srcfptr, rc=rc)

srcfptr = 1

call ESMF_FieldBundleAdd(srcFieldBundle, (/srcField(i)/), rc=rc)

dstField(i) = ESMF_FieldCreate(grid, arrayspec, &

totalLWidth=(/1/), totalUWidth=(/2/), &

rc=rc)

call ESMF_FieldGet(dstField(i), localDe=0, farrayPtr=dstfptr, rc=rc)

dstfptr = 0

call ESMF_FieldBundleAdd(dstFieldBundle, (/dstField(i)/), rc=rc)

enddo

! initialize factorList and factorIndexList

allocate(factorList(4))

allocate(factorIndexList(2,4))

factorList = (/1,2,3,4/)

factorIndexList(1,:) = (/lpe*4+1,lpe*4+2,lpe*4+3,lpe*4+4/)

factorIndexList(2,:) = (/lpe*4+1,lpe*4+2,lpe*4+3,lpe*4+4/)

call ESMF_FieldBundleSMMStore(srcFieldBundle, dstFieldBundle, &

routehandle, factorList, factorIndexList, rc=rc)

! perform smm

call ESMF_FieldBundleSMM(srcFieldBundle, dstFieldBundle, routehandle, &

rc=rc)

! release SMM route handle

call ESMF_FieldBundleSMMRelease(routehandle, rc=rc)

25.2.12 Perform FieldBundle halo update

ESMF_FieldBundleHalo interface can be used to perform halo updates for all the Fields contained in the
ESMF_FieldBundle.

286

In this example, we will set up a FieldBundle for a 2D inviscid and compressible flow problem. We will illustrate the
FieldBundle halo update operation but we will not solve the non-linear PDEs. The emphasis here is to demonstrate how
to set up halo regions, how a numerical scheme updates the exclusive regions, and how a halo update communicates
data in the halo regions. Here are the governing equations:

ut + uux + vuy +
1

ρ
px = 0 (conservation of momentum in x-direction)

vt + uvx + vvy +
1

ρ
py = 0 (conservation of momentum in y-direction)

ρt + ρux + ρvy = 0 (conservation of mass)

ρ
ργ + u(p

ργ)
x
+ v(p

ργ)
y
= 0 (conservation of energy)

The four unknowns are pressure p, density ρ, velocity (u, v). The grids are set up using Arakawa D stagger (p on
corner, ρ at center, u and v on edges). p, ρ, u, and v are bounded by necessary boundary conditions and initial
conditions.

Section 28.2.15 provides a detailed discussion of the halo operation implemented in ESMF.

! create distgrid and grid according to the following decomposition

! and stagger pattern, r is density.

!

! p--------u-------+p+-------u--------p

! ! | |

! ! | |

! ! | |

! v r v r v

! ! PET 0 | PET 1 |

! ! | |

! ! | |

! p--------u-------+p+-------u--------p

! ! | |

! ! | |

! ! | |

! v r v r v

! ! PET 2 | PET 3 |

! ! | |

! ! | |

! p--------u-------+p+-------u--------p

!

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIndex=(/256,256/), &

regDecomp=(/2,2/), &

rc=rc)

grid = ESMF_GridCreate(distgrid=distgrid, name="grid", rc=rc)

call ESMF_ArraySpecSet(arrayspec, 2, ESMF_TYPEKIND_R4, rc=rc)

! create field bundles and fields

fieldBundle = ESMF_FieldBundleCreate(rc=rc)

! set up exclusive/total region for the fields

287

!

! halo: L/U, nDim, nField, nPet

! halo configuration for pressure, and similarly for density, u, and v

halo(1,1,1,1) = 0

halo(2,1,1,1) = 0

halo(1,2,1,1) = 0

halo(2,2,1,1) = 0

halo(1,1,1,2) = 1 ! halo in x direction on left hand side of pet 1

halo(2,1,1,2) = 0

halo(1,2,1,2) = 0

halo(2,2,1,2) = 0

halo(1,1,1,3) = 0

halo(2,1,1,3) = 1 ! halo in y direction on upper side of pet 2

halo(1,2,1,3) = 0

halo(2,2,1,3) = 0

halo(1,1,1,4) = 1 ! halo in x direction on left hand side of pet 3

halo(2,1,1,4) = 1 ! halo in y direction on upper side of pet 3

halo(1,2,1,4) = 0

halo(2,2,1,4) = 0

! names and staggers of the 4 unknown fields

names(1) = "pressure"

names(2) = "density"

names(3) = "u"

names(4) = "v"

staggers(1) = ESMF_STAGGERLOC_CORNER

staggers(2) = ESMF_STAGGERLOC_CENTER

staggers(3) = ESMF_STAGGERLOC_EDGE2

staggers(4) = ESMF_STAGGERLOC_EDGE1

! create a FieldBundle

lpe = lpe + 1

do i = 1, 4

field(i) = ESMF_FieldCreate(grid, arrayspec, &

totalLWidth=(/halo(1,1,i,lpe), halo(1,2,i,lpe)/), &

totalUWidth=(/halo(2,1,i,lpe), halo(2,2,i,lpe)/), &

staggerloc=staggers(i), name=names(i), &

rc=rc)

call ESMF_FieldBundleAdd(fieldBundle, (/field(i)/), rc=rc)

enddo

! compute the routehandle

call ESMF_FieldBundleHaloStore(fieldBundle, routehandle=routehandle, &

rc=rc)

do iter = 1, 10

do i = 1, 4

call ESMF_FieldGet(field(i), farrayPtr=fptr, &

288

exclusiveLBound=excllb, exclusiveUBound=exclub, rc=rc)

sizes = exclub - excllb

! fill the total region with 0.

fptr = 0.

! only update the exclusive region on local PET

do j = excllb(1), exclub(1)

do k = excllb(2), exclub(2)

fptr(j,k) = iter * cos(2.*PI*j/sizes(1))*sin(2.*PI*k/sizes(2))

enddo

enddo

enddo

! call halo execution to update the data in the halo region,

! it can be verified that the halo regions change from 0.

! to non zero values.

call ESMF_FieldBundleHalo(fieldbundle, routehandle=routehandle, rc=rc)

enddo

! release halo route handle

call ESMF_FieldBundleHaloRelease(routehandle, rc=rc)

25.3 Restrictions and Future Work

1. No mathematical operators. The FieldBundle class does not support differential or other mathematical opera-

tors. We do not anticipate providing this functionality in the near future.

2. Limited validation and print options. We are planning to increase the number of validity checks available for

FieldBundles as soon as possible. We also will be working on print options.

3. Packed data has limited supported. One of the options that we are currently working on for FieldBundles

is packing. Packing means that the data from all the Fields that comprise the FieldBundle are manipulated

collectively. This operation can be done without destroying the original Field data. Packing is being designed to

facilitate optimized regridding, data communication, and I/O operations. This will reduce the latency overhead

of the communication.

CAUTION: For communication methods, the undistributed dimension representing the number of fields must

have identical size between source and destination packed data. Communication methods do not permute the

order of fields in the source and destination packed FieldBundle.

4. Interleaving Fields within a FieldBundle. Data locality is important for performance on some computing

platforms. An interleave option will be added to allow the user to create a packed FieldBundle in which Fields

are either concatenated in memory or in which Field elements are interleaved.

25.4 Design and Implementation Notes

1. Fields in a FieldBundle reference the same Grid, Mesh, LocStream, or XGrid. In order to reduce mem-

ory requirements and ensure consistency, the Fields within a FieldBundle all reference the same Grid, Mesh,

LocStream, or XGrid object. This restriction may be relaxed in the future.

289

25.5 Class API: Basic FieldBundle Methods

25.5.1 ESMF_FieldBundleAssignment(=) - FieldBundle assignment

INTERFACE:

interface assignment(=)

fieldbundle1 = fieldbundle2

ARGUMENTS:

type(ESMF_FieldBundle) :: fieldbundle1

type(ESMF_FieldBundle) :: fieldbundle2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Assign fieldbundle1 as an alias to the same ESMF fieldbundle object in memory as fieldbundle2. If fieldbundle2 is
invalid, then fieldbundle1 will be equally invalid after the assignment.

The arguments are:

fieldbundle1 The ESMF_FieldBundle object on the left hand side of the assignment.

fieldbundle2 The ESMF_FieldBundle object on the right hand side of the assignment.

25.5.2 ESMF_FieldBundleOperator(==) - FieldBundle equality operator

INTERFACE:

interface operator(==)

if (fieldbundle1 == fieldbundle2) then ... endif

OR

result = (fieldbundle1 == fieldbundle2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_FieldBundle), intent(in) :: fieldbundle1

type(ESMF_FieldBundle), intent(in) :: fieldbundle2

290

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Test whether fieldbundle1 and fieldbundle2 are valid aliases to the same ESMF fieldbundle object in mem-
ory. For a more general comparison of two ESMF FieldBundles, going beyond the simple alias test, the
ESMF_FieldBundleMatch() function (not yet implemented) must be used.

The arguments are:

fieldbundle1 The ESMF_FieldBundle object on the left hand side of the equality operation.

fieldbundle2 The ESMF_FieldBundle object on the right hand side of the equality operation.

25.5.3 ESMF_FieldBundleOperator(/=) - FieldBundle not equal operator

INTERFACE:

interface operator(/=)

if (fieldbundle1 /= fieldbundle2) then ... endif

OR

result = (fieldbundle1 /= fieldbundle2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_FieldBundle), intent(in) :: fieldbundle1

type(ESMF_FieldBundle), intent(in) :: fieldbundle2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Test whether fieldbundle1 and fieldbundle2 are not valid aliases to the same ESMF fieldbundle object in mem-
ory. For a more general comparison of two ESMF FieldBundles, going beyond the simple alias test, the
ESMF_FieldBundleMatch() function (not yet implemented) must be used.

The arguments are:

291

fieldbundle1 The ESMF_FieldBundle object on the left hand side of the non-equality operation.

fieldbundle2 The ESMF_FieldBundle object on the right hand side of the non-equality operation.

25.5.4 ESMF_FieldBundleAdd - Add Fields to a FieldBundle

INTERFACE:

! Private name; call using ESMF_FieldBundleAdd()

subroutine ESMF_FieldBundleAddList(fieldbundle, fieldList, &

multiflag, relaxedflag, rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(inout) :: fieldbundle

type(ESMF_Field), intent(in) :: fieldList(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: multiflag

logical, intent(in), optional :: relaxedflag

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Add Field(s) to a FieldBundle. It is an error if fieldList contains Fields that match by name Fields already
contained in fieldbundle when multiflag is set to .false. and relaxedflag is set to .false..

fieldbundle ESMF_FieldBundle to be added to.

fieldList List of ESMF_Field objects to be added.

[multiflag] A setting of .true. allows multiple items with the same name to be added to ESMF_FieldBundle.
For .false. added items must have unique names. The default setting is .false..

[relaxedflag] A setting of .true. indicates a relaxed definition of "add" under multiflag=.false. mode,
where it is not an error if fieldList contains items with names that are also found in ESMF_FieldBundle.
The ESMF_FieldBundle is left unchanged for these items. For .false. this is treated as an error condi-
tion. The default setting is .false..

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

292

25.5.5 ESMF_FieldBundleAddReplace - Conditionally add or replace Fields in a FieldBundle

INTERFACE:

subroutine ESMF_FieldBundleAddReplace(fieldbundle, fieldList, rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(inout) :: fieldbundle

type(ESMF_Field), intent(in) :: fieldList(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Fields in fieldList that do not match any Fields by name in fieldbundle are added to the FieldBundle. Fields
in fieldList that match any Fields by name in fieldbundle replace those Fields.

fieldbundle ESMF_FieldBundle to be manipulated.

fieldList List of ESMF_Field objects to be added or used as replacement.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

25.5.6 ESMF_FieldBundleCreate - Create a non packed FieldBundle from a list of Fields

INTERFACE:

! Private name; call using ESMF_FieldBundleCreate()

function ESMF_FieldBundleCreateDefault(fieldList, &

multiflag, relaxedflag, name, rc)

RETURN VALUE:

type(ESMF_FieldBundle) :: ESMF_FieldBundleCreateDefault

ARGUMENTS:

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Field), intent(in), optional :: fieldList(:)

logical, intent(in), optional :: multiflag

logical, intent(in), optional :: relaxedflag

character (len=*),intent(in), optional :: name

integer, intent(out), optional :: rc

293

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Create an ESMF_FieldBundle object from a list of existing Fields.

The creation of a FieldBundle leaves the bundled Fields unchanged, they remain valid individual objects. a FieldBun-
dle is a light weight container of Field references. The actual data remains in place, there are no data movements or
duplications associated with the creation of an FieldBundle.

[fieldList] List of ESMF_Field objects to be bundled.

[multiflag] A setting of .true. allows multiple items with the same name to be added to fieldbundle. For
.false. added items must have unique names. The default setting is .false..

[relaxedflag] A setting of .true. indicates a relaxed definition of "add" under multiflag=.false. mode,
where it is not an error if fieldList contains items with names that are also found in fieldbundle. The
fieldbundle is left unchanged for these items. For .false. this is treated as an error condition. The
default setting is .false..

[name] Name of the created ESMF_FieldBundle. A default name is generated if not specified.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

25.5.7 ESMF_FieldBundleCreate - Create a packed FieldBundle from Fortran array pointer and Grid

INTERFACE:

! Private name; call using ESMF_FieldBundleCreate()

function ESMF_FieldBundleCreateGrid<rank><type><kind>(fieldNameList, &

farrayPtr, grid, fieldDim, &

indexflag, staggerLoc, &

gridToFieldMap, &

totalLWidth, totalUWidth, name, rc)

RETURN VALUE:

type(ESMF_FieldBundle) :: ESMF_FieldBundleCreateGridDataPtr<rank><type><kind>

ARGUMENTS:

character(len=*), intent(in) :: fieldNameList(:)

<type> (ESMF_KIND_<kind>), dimension(<rank>), pointer :: farrayPtr

type(ESMF_Grid), intent(in) :: grid

294

integer, intent(in) :: fieldDim

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Index_Flag), intent(in), optional :: indexflag

type(ESMF_StaggerLoc), intent(in), optional :: staggerloc

integer, intent(in), optional :: gridToFieldMap(:)

integer, intent(in), optional :: totalLWidth(:)

integer, intent(in), optional :: totalUWidth(:)

integer, intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

Create a packed FieldBundle from user supplied list of field names, pre-allocated Fortran array pointer, and
ESMF_Grid object.

The arguments are:

fieldNameList A list of field names for the Fields held by the packed FieldBundle.

farrayPtr Pre-allocated Fortran array pointer holding the memory of the list of Fields.

grid The ESMF_Grid object on which the Fields in the packed FieldBundle are built.

fieldDim The dimension in the farrayPtr that contains the indices of Fields to be packed.

[indexflag] Indicate how DE-local indices are defined. See section 52.27 for a list of valid indexflag options. All
Fields in packed FieldBundle use identical indexflag setting.

[staggerloc] Stagger location of data in grid cells. For valid predefined values see section 31.2.6. To create a custom
stagger location see section 31.3.25. The default value is ESMF_STAGGERLOC_CENTER. All Fields in packed
FieldBundle use identical staggerloc setting.

[gridToFieldMap] List with number of elements equal to the grid’s dimCount. The list elements map each dimen-
sion of the grid to a dimension in the farrayPtr by specifying the appropriate farrayPtr dimension
index. The default is to map all of the grid’s dimensions against the lowest dimensions of the farrayPtr
in sequence, i.e. gridToFieldMap = (/1,2,3,.../). The values of all gridToFieldMap entries must be
greater than or equal to one and smaller than or equal to the farrayPtr rank. It is erroneous to specify the
same gridToFieldMap entry multiple times. The total ungridded dimensions in the field are the total
farrayPtr dimensions less the total (distributed + undistributed) dimensions in the grid. Ungridded dimen-

sions must be in the same order they are stored in the ⁀farrayPtr. Permutations of the order of dimensions are
handled via individual communication methods. For example, an undistributed dimension can be remapped to a
distributed dimension as part of the ESMF_ArrayRedist() operation. All Fields in packed FieldBundle use
identical gridToFieldMap setting.

[totalLWidth] Lower bound of halo region. The size of this array is the number of gridded dimensions in the Field.
However, ordering of the elements needs to be the same as they appear in the farrayPtr. Values default
to 0. If values for totalLWidth are specified they must be reflected in the size of the farrayPtr. That
is, for each gridded dimension the farrayPtr size should be max(totalLWidth + totalUWidth +
computationalCount, exclusiveCount). All Fields in packed FieldBundle use identical totalLWidth
setting.

[totalUWidth] Upper bound of halo region. The size of this array is the number of gridded dimensions in the
Field. However, ordering of the elements needs to be the same as they appear in the farrayPtr. Values
default to 0. If values for totalUWidth are specified they must be reflected in the size of the farrayPtr.
That is, for each gridded dimension the farrayPtr size should max(totalLWidth + totalUWidth +
computationalCount, exclusiveCount). All Fields in packed FieldBundle use identical totalUWidth
setting.

295

[name] FieldBundle name.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

25.5.8 ESMF_FieldBundleCreate - Create a packed FieldBundle from Fortran array pointer and Mesh

INTERFACE:

! Private name; call using ESMF_FieldBundleCreate()

function ESMF_FieldBundleCreateMesh<rank><type><kind>(fieldNameList, &

farrayPtr, Mesh, fieldDim, &

meshLoc, gridToFieldMap, name, rc)

RETURN VALUE:

type(ESMF_FieldBundle) :: ESMF_FieldBundleCreateMeshDataPtr<rank><type><kind>

ARGUMENTS:

character(len=*), intent(in) :: fieldNameList(:)

<type> (ESMF_KIND_<kind>), dimension(<rank>), pointer :: farrayPtr

type(ESMF_Mesh), intent(in) :: mesh

integer, intent(in) :: fieldDim

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_MeshLoc), intent(in), optional:: meshloc

integer, intent(in), optional :: gridToFieldMap(:)

integer, intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

Create a packed FieldBundle from user supplied list of field names, pre-allocated Fortran array pointer, and
ESMF_Mesh object.

The arguments are:

fieldNameList A list of field names for the Fields held by the packed FieldBundle.

farrayPtr Pre-allocated Fortran array pointer holding the memory of the list of Fields.

mesh The ESMF_Mesh object on which the Fields in the packed FieldBundle are built.

fieldDim The dimension in the farrayPtr that contains the indices of Fields to be packed.

[meshloc] The part of the Mesh on which to build the Field. For valid predefined values see Section 52.39. If not set,
defaults to ESMF_MESHLOC_NODE.

296

[gridToFieldMap] List with number of elements equal to the mesh’s dimCount. The list elements map each dimen-
sion of the mesh to a dimension in the farrayPtr by specifying the appropriate farrayPtr dimension
index. The default is to map all of the mesh’s dimensions against the lowest dimensions of the farrayPtr
in sequence, i.e. gridToFieldMap = (/1,2,3,.../). The values of all gridToFieldMap entries must be
greater than or equal to one and smaller than or equal to the farrayPtr rank. It is erroneous to specify the
same gridToFieldMap entry multiple times. The total ungridded dimensions in the field are the total
farrayPtr dimensions less the total (distributed + undistributed) dimensions in the mesh. Ungridded dimen-

sions must be in the same order they are stored in the ⁀farrayPtr. Permutations of the order of dimensions are
handled via individual communication methods. For example, an undistributed dimension can be remapped to a
distributed dimension as part of the ESMF_ArrayRedist() operation. All Fields in packed FieldBundle use
identical gridToFieldMap setting.

[name] FieldBundle name.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

25.5.9 ESMF_FieldBundleDestroy - Release resources associated with a FieldBundle

INTERFACE:

subroutine ESMF_FieldBundleDestroy(fieldbundle, noGarbage, rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(inout) :: fieldbundle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: noGarbage

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

7.0.0 Added argument noGarbage. The argument provides a mechanism to override the default garbage
collection mechanism when destroying an ESMF object.

DESCRIPTION:

Destroy an ESMF_FieldBundle object. The member Fields are not touched by this operation and remain valid
objects that need to be destroyed individually if necessary.

The arguments are:

297

fieldbundle ESMF_FieldBundle object to be destroyed.

[noGarbage] If set to .TRUE. the object will be fully destroyed and removed from the ESMF garbage collection
system. Note however that under this condition ESMF cannot protect against accessing the destroyed object
through dangling aliases – a situation which may lead to hard to debug application crashes.

It is generally recommended to leave the noGarbage argument set to .FALSE. (the default), and to take
advantage of the ESMF garbage collection system which will prevent problems with dangling aliases or incorrect
sequences of destroy calls. However this level of support requires that a small remnant of the object is kept in
memory past the destroy call. This can lead to an unexpected increase in memory consumption over the course
of execution in applications that use temporary ESMF objects. For situations where the repeated creation and
destruction of temporary objects leads to memory issues, it is recommended to call with noGarbage set to
.TRUE., fully removing the entire temporary object from memory.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

25.5.10 ESMF_FieldBundleGet - Get object-wide information from a FieldBundle

INTERFACE:

! Private name; call using ESMF_FieldBundleGet()

subroutine ESMF_FieldBundleGetListAll(fieldbundle, &

itemorderflag, geomtype, grid, locstream, mesh, xgrid, &

fieldCount, fieldList, fieldNameList, isPacked, name, rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(in) :: fieldbundle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_ItemOrder_Flag), intent(in), optional :: itemorderflag

type(ESMF_GeomType_Flag), intent(out), optional :: geomtype

type(ESMF_Grid), intent(out), optional :: grid

type(ESMF_LocStream), intent(out), optional :: locstream

type(ESMF_Mesh), intent(out), optional :: mesh

type(ESMF_XGrid), intent(out), optional :: xgrid

integer, intent(out), optional :: fieldCount

type(ESMF_Field), intent(out), optional :: fieldList(:)

character(len=*), intent(out), optional :: fieldNameList(:)

logical, intent(out), optional :: isPacked

character(len=*), intent(out), optional :: name

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

298

6.1.0 Added argument itemorderflag. The new argument gives the user control over the order in which
the items are returned.

8.0.0 Added argument isPacked. The new argument allows the user to query if this is a packed FieldBundle.

DESCRIPTION:

Get the list of all Fields and field names bundled in a FieldBundle.

fieldbundle ESMF_FieldBundle to be queried.

[itemorderflag] Specifies the order of the returned items in the fieldList or the fieldNameList. The default
is ESMF_ITEMORDER_ABC. See 52.32 for a full list of options.

[geomtype] Flag that indicates what type of geometry this FieldBundle object holds. Can
be ESMF_GEOMTYPE_GRID, ESMF_GEOMTYPE_MESH, ESMF_GEOMTYPE_LOCSTREAM,
ESMF_GEOMTYPE_XGRID

[grid] The Grid object that this FieldBundle object holds.

[locstream] The LocStream object that this FieldBundle object holds.

[mesh] The Mesh object that this FieldBundle object holds.

[xgrid] The XGrid object that this FieldBundle object holds.

[fieldCount] Upon return holds the number of Fields bundled in the fieldbundle.

[fieldList] Upon return holds a list of Fields bundled in ESMF_FieldBundle. The argument must be allocated to
be at least of size fieldCount.

[fieldNameList] Upon return holds a list of the names of the fields bundled in ESMF_FieldBundle. The argument
must be allocated to be at least of size fieldCount.

[isPacked] Upon return holds the information if this FieldBundle is packed.

[name] Name of the fieldbundle object.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

25.5.11 ESMF_FieldBundleGet - Get information about a Field by name and optionally return a Field

INTERFACE:

! Private name; call using ESMF_FieldBundleGet()

subroutine ESMF_FieldBundleGetItem(fieldbundle, fieldName, &

field, fieldCount, isPresent, rc)

ARGUMENTS:

299

type(ESMF_FieldBundle), intent(in) :: fieldbundle

character(len=*), intent(in) :: fieldName

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Field), intent(out), optional :: field

integer, intent(out), optional :: fieldCount

logical, intent(out), optional :: isPresent

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Get information about items that match fieldName in FieldBundle.

fieldbundle ESMF_FieldBundle to be queried.

fieldName Specified name.

[field] Upon return holds the requested field item. It is an error if this argument was specified and there is not exactly
one field item in ESMF_FieldBundle that matches fieldName.

[fieldCount] Number of Fields with fieldName in ESMF_FieldBundle.

[isPresent] Upon return indicates whether field(s) with fieldName exist in ESMF_FieldBundle.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

25.5.12 ESMF_FieldBundleGet - Get a list of Fields by name

INTERFACE:

! Private name; call using ESMF_FieldBundleGet()

subroutine ESMF_FieldBundleGetList(fieldbundle, fieldName, fieldList, &

itemorderflag, rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(in) :: fieldbundle

character(len=*), intent(in) :: fieldName

type(ESMF_Field), intent(out) :: fieldList(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_ItemOrder_Flag), intent(in), optional :: itemorderflag

integer, intent(out), optional :: rc

STATUS:

300

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

6.1.0 Added argument itemorderflag. The new argument gives the user control over the order in which
the items are returned.

DESCRIPTION:

Get the list of Fields from fieldbundle that match fieldName.

fieldbundle ESMF_FieldBundle to be queried.

fieldName Specified name.

fieldList List of Fields in ESMF_FieldBundle that match fieldName. The argument must be allocated to be at
least of size fieldCount returned for this fieldName.

[itemorderflag] Specifies the order of the returned items in the fieldList. The default is
ESMF_ITEMORDER_ABC. See 52.32 for a full list of options.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

25.5.13 ESMF_FieldBundleGet - Get Fortran array pointer from a packed FieldBundle

INTERFACE:

! Private name; call using ESMF_FieldBundleGet()

function ESMF_FieldBundleGetDataPtr<rank><type><kind>(fieldBundle, &

localDe, farrayPtr, &

rc)

RETURN VALUE:

type(ESMF_FieldBundle) :: ESMF_FieldBundleGetDataPtr<rank><type><kind>

ARGUMENTS:

type(ESMF_FieldBundle), intent(in) :: fieldBundle

integer, intent(in), optional :: localDe

<type> (ESMF_KIND_<kind>), dimension(<rank>), pointer :: farrayPtr

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

301

DESCRIPTION:

Get a Fortran pointer to DE-local memory allocation within packed FieldBundle. It’s erroneous to perform this call on
a FieldBundle that’s not packed.

The arguments are:

fieldBundle ESMF_FieldBundle object.

[localDe] Local DE for which information is requested. [0,..,localDeCount-1]. For localDeCount==1 the localDe
argument may be omitted, in which case it will default to localDe=0. In the case where packed FieldBundle is
created on a Grid, the number of localDes can be queried from the Grid attached to the FieldBundle. In the case
where packed FieldBundle is created on a Mesh, the number of localDes is 1.

farrayPtr Fortran array pointer which will be pointed at DE-local memory allocation in packed FieldBundle.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

25.5.14 ESMF_FieldBundleHalo - Execute a FieldBundle halo operation

INTERFACE:

subroutine ESMF_FieldBundleHalo(fieldbundle, routehandle, &

checkflag, rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(inout) :: fieldbundle

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: checkflag

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Execute a precomputed halo operation for the Fields in fieldbundle. The FieldBundle must match the respective
FieldBundle used during ESMF_FieldBundleHaloStore() in type, kind, and memory layout of the gridded
dimensions. However, the size, number, and index order of ungridded dimensions may be different. See section
36.2.4 for a more detailed discussion of RouteHandle reusability.

See ESMF_FieldBundleHaloStore() on how to precompute routehandle.

fieldbundle ESMF_FieldBundle with source data. The data in this FieldBundle may be destroyed by this call.

routehandle Handle to the precomputed Route.

302

[checkflag] If set to .TRUE. the input FieldBundle pair will be checked for consistency with the precomputed opera-
tion provided by routehandle. If set to .FALSE. (default) only a very basic input check will be performed,
leaving many inconsistencies undetected. Set checkflag to .FALSE. to achieve highest performance.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

25.5.15 ESMF_FieldBundleHaloRelease - Release resources associated with a FieldBundle halo operation

INTERFACE:

subroutine ESMF_FieldBundleHaloRelease(routehandle, &

noGarbage, rc)

ARGUMENTS:

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: noGarbage

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

8.0.0 Added argument noGarbage. The argument provides a mechanism to override the default garbage
collection mechanism when destroying an ESMF object.

DESCRIPTION:

Release resources associated with a FieldBundle halo operation. After this call routehandle becomes invalid.

routehandle Handle to the precomputed Route.

[noGarbage] If set to .TRUE. the object will be fully destroyed and removed from the ESMF garbage collection
system. Note however that under this condition ESMF cannot protect against accessing the destroyed object
through dangling aliases – a situation which may lead to hard to debug application crashes.

It is generally recommended to leave the noGarbage argument set to .FALSE. (the default), and to take
advantage of the ESMF garbage collection system which will prevent problems with dangling aliases or incorrect
sequences of destroy calls. However this level of support requires that a small remnant of the object is kept in
memory past the destroy call. This can lead to an unexpected increase in memory consumption over the course
of execution in applications that use temporary ESMF objects. For situations where the repeated creation and
destruction of temporary objects leads to memory issues, it is recommended to call with noGarbage set to
.TRUE., fully removing the entire temporary object from memory.

303

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

25.5.16 ESMF_FieldBundleHaloStore - Precompute a FieldBundle halo operation

INTERFACE:

subroutine ESMF_FieldBundleHaloStore(fieldbundle, routehandle, &

rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(inout) :: fieldbundle

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Store a FieldBundle halo operation over the data in fieldbundle. By definition, all elements in the total Field
regions that lie outside the exclusive regions will be considered potential destination elements for the halo operation.
However, only those elements that have a corresponding halo source element, i.e. an exclusive element on one of the
DEs, will be updated under the halo operation. Elements that have no associated source remain unchanged under halo.

The routine returns an ESMF_RouteHandle that can be used to call ESMF_FieldBundleHalo() on any pair
of FieldBundles that matches srcFieldBundle and dstFieldBundle in type, kind, and memory layout of the
gridded dimensions. However, the size, number, and index order of ungridded dimensions may be different. See
section 36.2.4 for a more detailed discussion of RouteHandle reusability.

This call is collective across the current VM.

fieldbundle ESMF_FieldBundle containing data to be haloed. The data in this FieldBundle may be destroyed by
this call.

routehandle Handle to the precomputed Route.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

25.5.17 ESMF_FieldBundleIsCreated - Check whether a FieldBundle object has been created

INTERFACE:

304

function ESMF_FieldBundleIsCreated(fieldbundle, rc)

RETURN VALUE:

logical :: ESMF_FieldBundleIsCreated

ARGUMENTS:

type(ESMF_FieldBundle), intent(in) :: fieldbundle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Return .true. if the fieldbundle has been created. Otherwise return .false.. If an error occurs, i.e. rc /=

ESMF_SUCCESS is returned, the return value of the function will also be .false..

The arguments are:

fieldbundle ESMF_FieldBundle queried.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

25.5.18 ESMF_FieldBundlePrint - Print FieldBundle information

INTERFACE:

subroutine ESMF_FieldBundlePrint(fieldbundle, rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(in) :: fieldbundle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Print internal information of the specified fieldbundle object.

The arguments are:

fieldbundle ESMF_FieldBundle object.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

305

25.5.19 ESMF_FieldBundleRead - Read Fields to a FieldBundle from file(s)

INTERFACE:

subroutine ESMF_FieldBundleRead(fieldbundle, fileName, &

singleFile, timeslice, iofmt, rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(inout) :: fieldbundle

character(*), intent(in) :: fileName

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: singleFile

integer, intent(in), optional :: timeslice

type(ESMF_IOFmt_Flag), intent(in), optional :: iofmt

integer, intent(out), optional :: rc

DESCRIPTION:

Read field data to a FieldBundle object from file(s). For this API to be functional, the environment variable ESMF_PIO
should be set to "internal" when the ESMF library is built. Please see the section on Data I/O, 37.2.

Limitations:

• Only single tile Arrays within Fields are supported.

• Not supported in ESMF_COMM=mpiuni mode.

The arguments are:

fieldbundle An ESMF_FieldBundle object.

fileName The name of the file from which fieldbundle data is read.

[singleFile] A logical flag, the default is .true., i.e., all Fields in the bundle are stored in one single file. If .false., each
field is stored in separate files; these files are numbered with the name based on the argument "file". That is, a
set of files are named: [file_name]001, [file_name]002, [file_name]003,...

[timeslice] The time-slice number of the variable read from file.

[iofmt] The I/O format. Please see Section 52.28 for the list of options. If not present, file names with a .bin
extension will use ESMF_IOFMT_BIN, and file names with a .nc extension will use ESMF_IOFMT_NETCDF.
Other files default to ESMF_IOFMT_NETCDF.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

25.5.20 ESMF_FieldBundleRedist - Execute a FieldBundle redistribution

INTERFACE:

306

subroutine ESMF_FieldBundleRedist(srcFieldBundle, dstFieldBundle, &

routehandle, checkflag, rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(in), optional :: srcFieldBundle

type(ESMF_FieldBundle), intent(inout), optional :: dstFieldBundle

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: checkflag

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Execute a precomputed redistribution from srcFieldBundle to dstFieldBundle. Both
srcFieldBundle and dstFieldBundle must match the respective FieldBundles used during
ESMF_FieldBundleRedistStore() in type, kind, and memory layout of the gridded dimensions. How-
ever, the size, number, and index order of ungridded dimensions may be different. See section 36.2.4 for a more
detailed discussion of RouteHandle reusability.

The srcFieldBundle and dstFieldBundle arguments are optional in support of the situation where
srcFieldBundle and/or dstFieldBundle are not defined on all PETs. The srcFieldBundle and
dstFieldBundle must be specified on those PETs that hold source or destination DEs, respectively, but may
be omitted on all other PETs. PETs that hold neither source nor destination DEs may omit both arguments.

It is erroneous to specify the identical FieldBundle object for srcFieldBundle and dstFieldBundle argu-
ments.

See ESMF_FieldBundleRedistStore() on how to precompute routehandle.

This call is collective across the current VM.

For examples and associated documentation regarding this method see Section 25.2.9.

[srcFieldBundle] ESMF_FieldBundle with source data.

[dstFieldBundle] ESMF_FieldBundle with destination data.

routehandle Handle to the precomputed Route.

[checkflag] If set to .TRUE. the input FieldBundle pair will be checked for consistency with the precomputed opera-
tion provided by routehandle. If set to .FALSE. (default) only a very basic input check will be performed,
leaving many inconsistencies undetected. Set checkflag to .FALSE. to achieve highest performance.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

307

25.5.21 ESMF_FieldBundleRedistRelease - Release resources associated with a FieldBundle redistribution

INTERFACE:

subroutine ESMF_FieldBundleRedistRelease(routehandle, &

noGarbage, rc)

ARGUMENTS:

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: noGarbage

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

8.0.0 Added argument noGarbage. The argument provides a mechanism to override the default garbage
collection mechanism when destroying an ESMF object.

DESCRIPTION:

Release resources associated with a FieldBundle redistribution. After this call routehandle becomes invalid.

routehandle Handle to the precomputed Route.

[noGarbage] If set to .TRUE. the object will be fully destroyed and removed from the ESMF garbage collection
system. Note however that under this condition ESMF cannot protect against accessing the destroyed object
through dangling aliases – a situation which may lead to hard to debug application crashes.

It is generally recommended to leave the noGarbage argument set to .FALSE. (the default), and to take
advantage of the ESMF garbage collection system which will prevent problems with dangling aliases or incorrect
sequences of destroy calls. However this level of support requires that a small remnant of the object is kept in
memory past the destroy call. This can lead to an unexpected increase in memory consumption over the course
of execution in applications that use temporary ESMF objects. For situations where the repeated creation and
destruction of temporary objects leads to memory issues, it is recommended to call with noGarbage set to
.TRUE., fully removing the entire temporary object from memory.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

308

25.5.22 ESMF_FieldBundleRedistStore - Precompute a FieldBundle redistribution with local factor argument

INTERFACE:

! Private name; call using ESMF_FieldBundleRedistStore()

subroutine ESMF_FieldBundleRedistStore<type><kind>(srcFieldBundle, &

dstFieldBundle, routehandle, factor, &

ignoreUnmatchedIndicesFlag, srcToDstTransposeMap, rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(in) :: srcFieldBundle

type(ESMF_FieldBundle), intent(inout) :: dstFieldBundle

type(ESMF_RouteHandle), intent(inout) :: routehandle

<type>(ESMF_KIND_<kind>), intent(in) :: factor

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: ignoreUnmatchedIndicesFlag(:)

integer, intent(in), optional :: srcToDstTransposeMap(:)

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

8.1.0 Added argument ignoreUnmatchedIndicesFlag to support cases where source and destination
side do not cover the exact same index space.

DESCRIPTION:

Store a FieldBundle redistribution operation from srcFieldBundle to dstFieldBundle. PETs that specify
a factor argument must use the <type><kind> overloaded interface. Other PETs call into the interface without
factor argument. If multiple PETs specify the factor argument its type and kind as well as its value must match
across all PETs. If none of the PETs specifies a factor argument the default will be a factor of 1.

Both srcFieldBundle and dstFieldBundle are interpreted as sequentialized vectors. The sequence is defined
by the order of DistGrid dimensions and the order of tiles within the DistGrid or by user-supplied arbitrary sequence
indices. See section 28.2.18 for details on the definition of sequence indices. Redistribution corresponds to an identity
mapping of the source FieldBundle vector to the destination FieldBundle vector.

Source and destination FieldBundles may be of different <type><kind>. Further source and destination FieldBundles
may differ in shape, however, the number of elements must match.

It is erroneous to specify the identical FieldBundle object for srcFieldBundle and dstFieldBundle arguments.

The routine returns an ESMF_RouteHandle that can be used to call ESMF_FieldBundleRedist() on any
pair of FieldBundles that matches srcFieldBundle and dstFieldBundle in type, kind, and memory layout of
the gridded dimensions. However, the size, number, and index order of ungridded dimensions may be different. See
section 36.2.4 for a more detailed discussion of RouteHandle reusability.

309

This method is overloaded for:
ESMF_TYPEKIND_I4, ESMF_TYPEKIND_I8,
ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8.

This call is collective across the current VM.

For examples and associated documentation regarding this method see Section 25.2.9.

The arguments are:

srcFieldBundle ESMF_FieldBundle with source data.

dstFieldBundle ESMF_FieldBundle with destination data. The data in this FieldBundle may be destroyed by this
call.

routehandle Handle to the precomputed Route.

factor Factor by which to multiply source data.

[ignoreUnmatchedIndicesFlag] If set to .false., the default, source and destination side must cover the identical
index space, using precisely matching sequence indices. If set to .true., mismatching sequence indices between
source and destination side are silently ignored. The size of this array argument must either be 1 or equal
the number of Fields in the srcFieldBundle and dstFieldBundle arguments. In the latter case, the
handling of unmatched indices is specified for each Field pair separately. If only one element is specified, it is
used for all Field pairs.

[srcToDstTransposeMap] List with as many entries as there are dimensions in srcFieldBundle. Each entry
maps the corresponding srcFieldBundle dimension against the specified dstFieldBundle dimension.
Mixing of distributed and undistributed dimensions is supported.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

25.5.23 ESMF_FieldBundleRedistStore - Precompute a FieldBundle redistribution without local factor argu-

ment

INTERFACE:

! Private name; call using ESMF_FieldBundleRedistStore()

subroutine ESMF_FieldBundleRedistStoreNF(srcFieldBundle, dstFieldBundle, &

routehandle, ignoreUnmatchedIndicesFlag, &

srcToDstTransposeMap, rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(in) :: srcFieldBundle

type(ESMF_FieldBundle), intent(inout) :: dstFieldBundle

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: ignoreUnmatchedIndicesFlag(:)

integer, intent(in), optional :: srcToDstTransposeMap(:)

integer, intent(out), optional :: rc

310

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

8.1.0 Added argument ignoreUnmatchedIndicesFlag to support cases where source and destination
side do not cover the exact same index space.

DESCRIPTION:

Store a FieldBundle redistribution operation from srcFieldBundle to dstFieldBundle. PETs that spec-
ify non-zero matrix coefficients must use the <type><kind> overloaded interface and provide the factorList

and factorIndexList arguments. Providing factorList and factorIndexList arguments with
size(factorList) = (/0/) and size(factorIndexList) = (/2,0/) or (/4,0/) indicates that a
PET does not provide matrix elements. Alternatively, PETs that do not provide matrix elements may also call into the
overloaded interface without factorList and factorIndexList arguments.

Both srcFieldBundle and dstFieldBundle are interpreted as sequentialized vectors. The sequence is defined
by the order of DistGrid dimensions and the order of tiles within the DistGrid or by user-supplied arbitrary sequence
indices. See section 28.2.18 for details on the definition of sequence indices. Redistribution corresponds to an identity
mapping of the source FieldBundle vector to the destination FieldBundle vector.

Source and destination Fields may be of different <type><kind>. Further source and destination Fields may differ in
shape, however, the number of elements must match.

It is erroneous to specify the identical FieldBundle object for srcFieldBundle and dstFieldBundle arguments.

The routine returns an ESMF_RouteHandle that can be used to call ESMF_FieldBundleRedist() on any
pair of FieldBundles that matches srcFieldBundle and dstFieldBundle in type, kind, and memory layout of
the gridded dimensions. However, the size, number, and index order of ungridded dimensions may be different. See
section 36.2.4 for a more detailed discussion of RouteHandle reusability.

This call is collective across the current VM.

For examples and associated documentation regarding this method see Section 25.2.9.

The arguments are:

srcFieldBundle ESMF_FieldBundle with source data.

dstFieldBundle ESMF_FieldBundle with destination data. The data in this FieldBundle may be destroyed by this
call.

routehandle Handle to the precomputed Route.

[ignoreUnmatchedIndicesFlag] If set to .false., the default, source and destination side must cover the identical
index space, using precisely matching sequence indices. If set to .true., mismatching sequence indices between
source and destination side are silently ignored. The size of this array argument must either be 1 or equal
the number of Fields in the srcFieldBundle and dstFieldBundle arguments. In the latter case, the
handling of unmatched indices is specified for each Field pair separately. If only one element is specified, it is
used for all Field pairs.

311

[srcToDstTransposeMap] List with as many entries as there are dimensions in srcFieldBundle. Each entry
maps the corresponding srcFieldBundle dimension against the specified dstFieldBundle dimension.
Mixing of distributed and undistributed dimensions is supported.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

25.5.24 ESMF_FieldBundleRegrid - Execute a FieldBundle regrid operation

INTERFACE:

subroutine ESMF_FieldBundleRegrid(srcFieldBundle, dstFieldBundle, &

routehandle, zeroregion, termorderflag, checkflag, rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(in), optional :: srcFieldBundle

type(ESMF_FieldBundle), intent(inout), optional :: dstFieldBundle

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Region_Flag), intent(in), optional :: zeroregion

type(ESMF_TermOrder_Flag), intent(in), optional :: termorderflag(:)

logical, intent(in), optional :: checkflag

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

7.0.0 Added argument termorderflag. The new argument gives the user control over the order in which
the src terms are summed up.

DESCRIPTION:

Execute a precomputed regrid from srcFieldBundle to dstFieldBundle. Both srcFieldBundle and
dstFieldBundle must match the respective FieldBundles used during ESMF_FieldBundleRedistStore()
in type, kind, and memory layout of the gridded dimensions. However, the size, number, and index order of ungridded
dimensions may be different. See section 36.2.4 for a more detailed discussion of RouteHandle reusability.

The srcFieldBundle and dstFieldBundle arguments are optional in support of the situation where
srcFieldBundle and/or dstFieldBundle are not defined on all PETs. The srcFieldBundle and
dstFieldBundle must be specified on those PETs that hold source or destination DEs, respectively, but may
be omitted on all other PETs. PETs that hold neither source nor destination DEs may omit both arguments.

312

It is erroneous to specify the identical FieldBundle object for srcFieldBundle and dstFieldBundle argu-
ments.

See ESMF_FieldBundleRegridStore() on how to precompute routehandle.

This call is collective across the current VM.

[srcFieldBundle] ESMF_FieldBundle with source data.

[dstFieldBundle] ESMF_FieldBundle with destination data.

routehandle Handle to the precomputed Route.

[zeroregion] If set to ESMF_REGION_TOTAL (default) the total regions of all DEs in dstFieldBundle will
be initialized to zero before updating the elements with the results of the sparse matrix multiplication. If
set to ESMF_REGION_EMPTY the elements in dstFieldBundle will not be modified prior to the sparse
matrix multiplication and results will be added to the incoming element values. Setting zeroregion to
ESMF_REGION_SELECT will only zero out those elements in the destination FieldBundle that will be up-
dated by the sparse matrix multiplication. See section 52.48 for a complete list of valid settings.

[termorderflag] Specifies the order of the source side terms in all of the destination sums. The termorderflag
only affects the order of terms during the execution of the RouteHandle. See the 36.2.1 section for an in-depth
discussion of all bit-for-bit reproducibility aspects related to route-based communication methods. See 52.58
for a full list of options. The size of this array argument must either be 1 or equal the number of Fields in
the srcFieldBundle and dstFieldBundle arguments. In the latter case, the term order for each Field
Regrid operation is indicated separately. If only one term order element is specified, it is used for all Field
pairs. The default is (/ESMF_TERMORDER_FREE/), allowing maximum flexibility in the order of terms for
optimum performance.

[checkflag] If set to .TRUE. the input FieldBundle pair will be checked for consistency with the precomputed opera-
tion provided by routehandle. If set to .FALSE. (default) only a very basic input check will be performed,
leaving many inconsistencies undetected. Set checkflag to .FALSE. to achieve highest performance.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

25.5.25 ESMF_FieldBundleRegridRelease - Release resources associated with a FieldBundle regrid operation

INTERFACE:

subroutine ESMF_FieldBundleRegridRelease(routehandle, &

noGarbage, rc)

ARGUMENTS:

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: noGarbage

integer, intent(out), optional :: rc

STATUS:

313

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

8.0.0 Added argument noGarbage. The argument provides a mechanism to override the default garbage
collection mechanism when destroying an ESMF object.

DESCRIPTION:

Release resources associated with a FieldBundle regrid operation. After this call routehandle becomes invalid.

routehandle Handle to the precomputed Route.

[noGarbage] If set to .TRUE. the object will be fully destroyed and removed from the ESMF garbage collection
system. Note however that under this condition ESMF cannot protect against accessing the destroyed object
through dangling aliases – a situation which may lead to hard to debug application crashes.

It is generally recommended to leave the noGarbage argument set to .FALSE. (the default), and to take
advantage of the ESMF garbage collection system which will prevent problems with dangling aliases or incorrect
sequences of destroy calls. However this level of support requires that a small remnant of the object is kept in
memory past the destroy call. This can lead to an unexpected increase in memory consumption over the course
of execution in applications that use temporary ESMF objects. For situations where the repeated creation and
destruction of temporary objects leads to memory issues, it is recommended to call with noGarbage set to
.TRUE., fully removing the entire temporary object from memory.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

25.5.26 ESMF_FieldBundleRegridStore - Precompute a FieldBundle regrid operation

INTERFACE:

subroutine ESMF_FieldBundleRegridStore(srcFieldBundle, dstFieldBundle, &

srcMaskValues, dstMaskValues, regridmethod, polemethod, regridPoleNPnts, &

lineType, normType, extrapMethod, extrapNumSrcPnts, extrapDistExponent, &

extrapNumLevels, unmappedaction, ignoreDegenerate, srcTermProcessing, &

pipelineDepth, routehandle, rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(in) :: srcFieldBundle

type(ESMF_FieldBundle), intent(inout) :: dstFieldBundle

integer(ESMF_KIND_I4), intent(in), optional :: srcMaskValues(:)

integer(ESMF_KIND_I4), intent(in), optional :: dstMaskValues(:)

type(ESMF_RegridMethod_Flag), intent(in), optional :: regridmethod

type(ESMF_PoleMethod_Flag), intent(in), optional :: polemethod

314

integer, intent(in), optional :: regridPoleNPnts

type(ESMF_LineType_Flag), intent(in), optional :: lineType

type(ESMF_NormType_Flag), intent(in), optional :: normType

type(ESMF_ExtrapMethod_Flag), intent(in), optional :: extrapMethod

integer, intent(in), optional :: extrapNumSrcPnts

real, intent(in), optional :: extrapDistExponent

integer, intent(in), optional :: extrapNumLevels

type(ESMF_UnmappedAction_Flag),intent(in), optional :: unmappedaction

logical, intent(in), optional :: ignoreDegenerate

integer, intent(inout), optional :: srcTermProcessing

integer, intent(inout), optional :: pipelineDepth

type(ESMF_RouteHandle), intent(inout), optional :: routehandle

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

7.0.0 Added arguments ignoreDegenerate, lineType, and normType. The argument
ignoreDegenerate allows the user to skip degenerate cells in the regridding instead of stop-
ping with an error. The argument lineType allows the user to control the path of the line between two
points on a sphere surface. This allows the user to use their preferred line path for the calculation of
distances and the shape of cells during regrid weight calculation on a sphere. The argument normType
allows the user to control the type of normalization done during conservative weight generation.

7.1.0r Added argument srcTermProcessing. Added argument pipelineDepth. The new arguments
provide access to the tuning parameters affecting the performance and bit-for-bit behavior when applying
the regridding weights.

Added arguments extrapMethod, extrapNumSrcPnts, and extrapDistExponent. These
three new extrapolation arguments allow the user to extrapolate destination points not mapped by the regrid
method. extrapMethod allows the user to choose the extrapolation method. extrapNumSrcPnts
and extrapDistExponent are parameters that allow the user to tune the behavior of the
ESMF_EXTRAPMETHOD_NEAREST_IDAVG method.

8.0.0 Added argument extrapNumLevels. For level based extrapolation methods (e.g.
ESMF_EXTRAPMETHOD_CREEP) this argument allows the user to set how many levels to extrap-
olate. !

DESCRIPTION:

Store a FieldBundle regrid operation over the data in srcFieldBundle and dstFieldBundle pair.

The routine returns an ESMF_RouteHandle that can be used to call ESMF_FieldBundleRegrid() on any
pair of FieldBundles that matches srcFieldBundle and dstFieldBundle in type, kind, and memory layout of
the gridded dimensions. However, the size, number, and index order of ungridded dimensions may be different. See
section 36.2.4 for a more detailed discussion of RouteHandle reusability.

This call is collective across the current VM.

srcFieldbundle Source ESMF_FieldBundle containing data to be regridded.

315

dstFieldbundle Destination ESMF_FieldBundle. The data in this FieldBundle may be overwritten by this call.

[srcMaskValues] Mask information can be set in the Grids (see 31.3.17) or Meshes (see 33.3.11) upon which the
Fields in the srcFieldbundle are built. The srcMaskValues argument specifies the values in that mask
information which indicate a source point should be masked out. In other words, a location is masked if and only
if the value for that location in the mask information matches one of the values listed in srcMaskValues. If
srcMaskValues is not specified, no masking will occur.

[dstMaskValues] Mask information can be set in the Grids (see 31.3.17) or Meshes (see 33.3.11) upon which the
Fields in the dstFieldbundle are built. The dstMaskValues argument specifies the values in that mask
information which indicate a destination point should be masked out. In other words, a location is masked if and
only if the value for that location in the mask information matches one of the values listed in dstMaskValues.
If dstMaskValues is not specified, no masking will occur.

[regridmethod] The type of interpolation. Please see Section 52.49 for a list of valid options. If not specified, defaults
to ESMF_REGRIDMETHOD_BILINEAR.

[polemethod] Which type of artificial pole to construct on the source Grid for regridding. Please see Section 52.46
for a list of valid options. If not specified, defaults to ESMF_POLEMETHOD_ALLAVG.

[regridPoleNPnts] If polemethod is ESMF_POLEMETHOD_NPNTAVG. This parameter indicates how many
points should be averaged over. Must be specified if polemethod is ESMF_POLEMETHOD_NPNTAVG.

[lineType] This argument controls the path of the line which connects two points on a sphere surface. This in turn
controls the path along which distances are calculated and the shape of the edges that make up a cell. Both of
these quantities can influence how interpolation weights are calculated. As would be expected, this argument
is only applicable when srcField and dstField are built on grids which lie on the surface of a sphere.
Section 52.34 shows a list of valid options for this argument. If not specified, the default depends on the regrid
method. Section 52.34 has the defaults by line type. Figure 24.2.16 shows which line types are supported for
each regrid method as well as showing the default line type by regrid method.

[normType] This argument controls the type of normalization used when generating conservative weights. This
option only applies to weights generated with regridmethod=ESMF_REGRIDMETHOD_CONSERVE.
Please see Section 52.43 for a list of valid options. If not specified normType defaults to
ESMF_NORMTYPE_DSTAREA.

[extrapMethod] The type of extrapolation. Please see Section 52.17 for a list of valid options. If not specified,
defaults to ESMF_EXTRAPMETHOD_NONE.

[extrapNumSrcPnts] The number of source points to use for the extrapolation methods that use more than one source
point (e.g. ESMF_EXTRAPMETHOD_NEAREST_IDAVG). If not specified, defaults to 8.

[extrapDistExponent] The exponent to raise the distance to when calculating weights for the
ESMF_EXTRAPMETHOD_NEAREST_IDAVG extrapolation method. A higher value reduces the influence of
more distant points. If not specified, defaults to 2.0.

[extrapNumLevels] The number of levels to output for the extrapolation methods that fill levels (e.g.
ESMF_EXTRAPMETHOD_CREEP). When a method is used that requires this, then an error will be returned,
if it is not specified.

[unmappedaction] Specifies what should happen if there are destination points that can not be mapped to a source
cell. Please see Section 52.60 for a list of valid options. If not specified, unmappedaction defaults to
ESMF_UNMAPPEDACTION_ERROR.

[ignoreDegenerate] Ignore degenerate cells when checking the input Grids or Meshes for errors. If this is set to true,
then the regridding proceeds, but degenerate cells will be skipped. If set to false, a degenerate cell produces an
error. If not specified, ignoreDegenerate defaults to false.

316

[srcTermProcessing] The srcTermProcessing parameter controls how many source terms, located on the same
PET and summing into the same destination element, are summed into partial sums on the source PET before
being transferred to the destination PET. A value of 0 indicates that the entire arithmetic is done on the destina-
tion PET; source elements are neither multiplied by their factors nor added into partial sums before being sent
off by the source PET. A value of 1 indicates that source elements are multiplied by their factors on the source
side before being sent to the destination PET. Larger values of srcTermProcessing indicate the maximum
number of terms in the partial sums on the source side.

Note that partial sums may lead to bit-for-bit differences in the results. See section 36.2.1 for an in-depth
discussion of all bit-for-bit reproducibility aspects related to route-based communication methods.

The ESMF_FieldRegridStore() method implements an auto-tuning scheme for the
srcTermProcessing parameter. The intent on the srcTermProcessing argument is "inout"
in order to support both overriding and accessing the auto-tuning parameter. If an argument >= 0 is specified,
it is used for the srcTermProcessing parameter, and the auto-tuning phase is skipped. In this case
the srcTermProcessing argument is not modified on return. If the provided argument is < 0, the
srcTermProcessing parameter is determined internally using the auto-tuning scheme. In this case the
srcTermProcessing argument is re-set to the internally determined value on return. Auto-tuning is also
used if the optional srcTermProcessing argument is omitted.

[pipelineDepth] The pipelineDepth parameter controls how many messages a PET may have outstanding during
a sparse matrix exchange. Larger values of pipelineDepth typically lead to better performance. However,
on some systems too large a value may lead to performance degradation, or runtime errors.

Note that the pipeline depth has no effect on the bit-for-bit reproducibility of the results. However, it may affect
the performance reproducibility of the exchange.

The ESMF_FieldRegridStore() method implements an auto-tuning scheme for the pipelineDepth
parameter. The intent on the pipelineDepth argument is "inout" in order to support both overriding and
accessing the auto-tuning parameter. If an argument >= 0 is specified, it is used for the pipelineDepth
parameter, and the auto-tuning phase is skipped. In this case the pipelineDepth argument is not modified
on return. If the provided argument is < 0, the pipelineDepth parameter is determined internally using the
auto-tuning scheme. In this case the pipelineDepth argument is re-set to the internally determined value on
return. Auto-tuning is also used if the optional pipelineDepth argument is omitted.

[routehandle] Handle to the precomputed Route.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

25.5.27 ESMF_FieldBundleRemove - Remove Fields from FieldBundle

INTERFACE:

subroutine ESMF_FieldBundleRemove(fieldbundle, fieldNameList, &

multiflag, relaxedflag, rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(inout) :: fieldbundle

character(len=*), intent(in) :: fieldNameList(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: multiflag

logical, intent(in), optional :: relaxedflag

integer, intent(out), optional :: rc

317

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Remove field(s) by name from FieldBundle. In the relaxed setting it is not an error if fieldNameList contains
names that are not found in fieldbundle.

fieldbundle ESMF_FieldBundle from which to remove items.

fieldNameList List of items to remove.

[multiflag] A setting of .true. allows multiple Fields with the same name to be removed from fieldbundle.
For .false., items to be removed must have unique names. The default setting is .false..

[relaxedflag] A setting of .true. indicates a relaxed definition of "remove" where it is not an error if
fieldNameList contains item names that are not found in fieldbundle. For .false. this is treated as
an error condition. Further, in multiflag=.false. mode, the relaxed definition of "remove" also covers
the case where there are multiple items in fieldbundle that match a single entry in fieldNameList. For
relaxedflag=.false. this is treated as an error condition. The default setting is .false..

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

25.5.28 ESMF_FieldBundleReplace - Replace Fields in FieldBundle

INTERFACE:

subroutine ESMF_FieldBundleReplace(fieldbundle, fieldList, &

multiflag, relaxedflag, rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(inout) :: fieldbundle

type(ESMF_Field), intent(in) :: fieldList(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: multiflag

logical, intent(in), optional :: relaxedflag

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Replace field(s) by name in FieldBundle. In the relaxed setting it is not an error if fieldList contains Fields that
do not match by name any item in fieldbundle. These Fields are simply ignored in this case.

318

fieldbundle ESMF_FieldBundle in which to replace items.

fieldList List of items to replace.

[multiflag] A setting of .true. allows multiple items with the same name to be replaced in fieldbundle. For
.false., items to be replaced must have unique names. The default setting is .false..

[relaxedflag] A setting of .true. indicates a relaxed definition of "replace" where it is not an error if fieldList
contains items with names that are not found in fieldbundle. These items in fieldList are ignored in
the relaxed mode. For .false. this is treated as an error condition. Further, in multiflag=.false.

mode, the relaxed definition of "replace" also covers the case where there are multiple items in fieldbundle
that match a single entry by name in fieldList. For relaxedflag=.false. this is treated as an error
condition. The default setting is .false..

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

25.5.29 ESMF_FieldBundleSet - Associate a Grid with an empty FieldBundle

INTERFACE:

! Private name; call using ESMF_FieldBundleSet()

subroutine ESMF_FieldBundleSetGrid(fieldbundle, grid, rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(inout) :: fieldbundle

type(ESMF_Grid), intent(in) :: grid

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Sets the grid for a fieldbundle.

The arguments are:

fieldbundle An ESMF_FieldBundle object.

grid The ESMF_Grid which all ESMF_Fields added to this ESMF_FieldBundle must have.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

25.5.30 ESMF_FieldBundleSet - Associate a Mesh with an empty FieldBundle

INTERFACE:

319

! Private name; call using ESMF_FieldBundleSet()

subroutine ESMF_FieldBundleSetMesh(fieldbundle, mesh, rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(inout) :: fieldbundle

type(ESMF_Mesh), intent(in) :: mesh

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Sets the mesh for a fieldbundle.

The arguments are:

fieldbundle An ESMF_FieldBundle object.

mesh The ESMF_Mesh which all ESMF_Fields added to this ESMF_FieldBundle must have.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

25.5.31 ESMF_FieldBundleSet - Associate a LocStream with an empty FieldBundle

INTERFACE:

! Private name; call using ESMF_FieldBundleSet()

subroutine ESMF_FieldBundleSetLS(fieldbundle, locstream, &

rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(inout) :: fieldbundle

type(ESMF_LocStream), intent(in) :: locstream

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Sets the locstream for a fieldbundle.

The arguments are:

fieldbundle An ESMF_FieldBundle object.

locstream The ESMF_LocStream which all ESMF_Fields added to this ESMF_FieldBundle must have.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

320

25.5.32 ESMF_FieldBundleSet - Associate a XGrid with an empty FieldBundle

INTERFACE:

! Private name; call using ESMF_FieldBundleSet()

subroutine ESMF_FieldBundleSetXGrid(fieldbundle, xgrid, &

rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(inout) :: fieldbundle

type(ESMF_XGrid), intent(in) :: xgrid

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Sets the xgrid for a fieldbundle

The arguments are:

fieldbundle An ESMF_FieldBundle object.

xgrid The ESMF_XGrid which all ESMF_Fields added to this ESMF_FieldBundle must have.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

25.5.33 ESMF_FieldBundleSMM - Execute a FieldBundle sparse matrix multiplication

INTERFACE:

subroutine ESMF_FieldBundleSMM(srcFieldBundle, dstFieldBundle, &

routehandle, &

zeroregion, & ! DEPRECATED ARGUMENT

zeroregionflag, termorderflag, checkflag, rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(in), optional :: srcFieldBundle

type(ESMF_FieldBundle), intent(inout), optional :: dstFieldBundle

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Region_Flag), intent(in), optional :: zeroregion ! DEPRECATED ARGUMENT

type(ESMF_Region_Flag), intent(in), target, optional :: zeroregionflag(:)

type(ESMF_TermOrder_Flag), intent(in), optional :: termorderflag(:)

logical, intent(in), optional :: checkflag

integer, intent(out), optional :: rc

321

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

7.0.0 Added argument termorderflag. The new argument gives the user control over the order in which
the src terms are summed up.

8.1.0 Added argument zeroregionflag, and deprecated zeroregion. The new argument allows greater
flexibility in setting the zero region for individual FieldBundle members.

DESCRIPTION:

Execute a precomputed sparse matrix multiplication from srcFieldBundle to dstFieldBundle.
Both srcFieldBundle and dstFieldBundle must match the respective FieldBundles used during
ESMF_FieldBundleRedistStore() in type, kind, and memory layout of the gridded dimensions. However,
the size, number, and index order of ungridded dimensions may be different. See section 36.2.4 for a more detailed
discussion of RouteHandle reusability.

The srcFieldBundle and dstFieldBundle arguments are optional in support of the situation where
srcFieldBundle and/or dstFieldBundle are not defined on all PETs. The srcFieldBundle and
dstFieldBundle must be specified on those PETs that hold source or destination DEs, respectively, but may
be omitted on all other PETs. PETs that hold neither source nor destination DEs may omit both arguments.

It is erroneous to specify the identical FieldBundle object for srcFieldBundle and dstFieldBundle argu-
ments.

See ESMF_FieldBundleSMMStore() on how to precompute routehandle.

This call is collective across the current VM.

For examples and associated documentation regarding this method see Section 25.2.11.

[srcFieldBundle] ESMF_FieldBundle with source data.

[dstFieldBundle] ESMF_FieldBundle with destination data.

routehandle Handle to the precomputed Route.

[zeroregion] If set to ESMF_REGION_TOTAL (default) the total regions of all DEs in all Fields in
dstFieldBundle will be initialized to zero before updating the elements with the results of the sparse matrix
multiplication. If set to ESMF_REGION_EMPTY the elements in the Fields in dstFieldBundle will not be
modified prior to the sparse matrix multiplication and results will be added to the incoming element values.
Setting zeroregion to ESMF_REGION_SELECT will only zero out those elements in the destination Fields
that will be updated by the sparse matrix multiplication. See section 52.48

[zeroregionflag] If set to ESMF_REGION_TOTAL (default) the total regions of all DEs in the destination Field will
be initialized to zero before updating the elements with the results of the sparse matrix multiplication. If set to
ESMF_REGION_EMPTY the elements in the destination Field will not be modified prior to the sparse matrix
multiplication and results will be added to the incoming element values. A setting of ESMF_REGION_SELECT
will only zero out those elements in the destination Field that will be updated by the sparse matrix multiplication.
See section 52.48 for a complete list of valid settings. The size of this array argument must either be 1 or equal

322

the number of Fields in the srcFieldBundle and dstFieldBundle arguments. In the latter case, the
zero region for each Field SMM operation is indicated separately. If only one zero region element is specified,
it is used for all Field pairs.

[termorderflag] Specifies the order of the source side terms in all of the destination sums. The termorderflag
only affects the order of terms during the execution of the RouteHandle. See the 36.2.1 section for an in-depth
discussion of all bit-for-bit reproducibility aspects related to route-based communication methods. See 52.58
for a full list of options. The size of this array argument must either be 1 or equal the number of Fields in the
srcFieldBundle and dstFieldBundle arguments. In the latter case, the term order for each Field SMM
operation is indicated separately. If only one term order element is specified, it is used for all Field pairs. The
default is (/ESMF_TERMORDER_FREE/), allowing maximum flexibility in the order of terms for optimum
performance.

[checkflag] If set to .TRUE. the input FieldBundle pair will be checked for consistency with the precomputed opera-
tion provided by routehandle. If set to .FALSE. (default) only a very basic input check will be performed,
leaving many inconsistencies undetected. Set checkflag to .FALSE. to achieve highest performance.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

25.5.34 ESMF_FieldBundleSMMRelease - Release resources associated with a FieldBundle sparse matrix

multiplication

INTERFACE:

subroutine ESMF_FieldBundleSMMRelease(routehandle, &

noGarbage, rc)

ARGUMENTS:

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: noGarbage

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

8.0.0 Added argument noGarbage. The argument provides a mechanism to override the default garbage
collection mechanism when destroying an ESMF object.

DESCRIPTION:

Release resources associated with a FieldBundle sparse matrix multiplication. After this call routehandle becomes
invalid.

323

routehandle Handle to the precomputed Route.

[noGarbage] If set to .TRUE. the object will be fully destroyed and removed from the ESMF garbage collection
system. Note however that under this condition ESMF cannot protect against accessing the destroyed object
through dangling aliases – a situation which may lead to hard to debug application crashes.

It is generally recommended to leave the noGarbage argument set to .FALSE. (the default), and to take
advantage of the ESMF garbage collection system which will prevent problems with dangling aliases or incorrect
sequences of destroy calls. However this level of support requires that a small remnant of the object is kept in
memory past the destroy call. This can lead to an unexpected increase in memory consumption over the course
of execution in applications that use temporary ESMF objects. For situations where the repeated creation and
destruction of temporary objects leads to memory issues, it is recommended to call with noGarbage set to
.TRUE., fully removing the entire temporary object from memory.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

25.5.35 ESMF_FieldBundleSMMStore - Precompute a FieldBundle sparse matrix multiplication with local

factors

INTERFACE:

! Private name; call using ESMF_FieldBundleSMMStore()

subroutine ESMF_FieldBundleSMMStore<type><kind>(srcFieldBundle, &

dstFieldBundle, routehandle, factorList, factorIndexList, &

ignoreUnmatchedIndicesFlag, srcTermProcessing, rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(in) :: srcFieldBundle

type(ESMF_FieldBundle), intent(inout) :: dstFieldBundle

type(ESMF_RouteHandle), intent(inout) :: routehandle

<type>(ESMF_KIND_<kind>), intent(in) :: factorList(:)

integer, intent(in), :: factorIndexList(:,:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: ignoreUnmatchedIndicesFlag(:)

integer, intent(inout), optional :: srcTermProcessing(:)

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

7.1.0r Added argument srcTermProcessing. The new argument gives the user access to the tuning pa-
rameter affecting the sparse matrix execution and bit-wise reproducibility.

324

8.1.0 Added argument ignoreUnmatchedIndicesFlag to support cases where the sparse matrix includes
terms with source or destination sequence indices not present in the source or destination field.

DESCRIPTION:

Store a FieldBundle sparse matrix multiplication operation from srcFieldBundle to dstFieldBundle.
PETs that specify non-zero matrix coefficients must use the <type><kind> overloaded interface and provide the
factorList and factorIndexList arguments. Providing factorList and factorIndexList argu-
ments with size(factorList) = (/0/) and size(factorIndexList) = (/2,0/) or (/4,0/) in-
dicates that a PET does not provide matrix elements. Alternatively, PETs that do not provide matrix elements may
also call into the overloaded interface without factorList and factorIndexList arguments.

Both srcFieldBundle and dstFieldBundle are interpreted as sequentialized vectors. The sequence is defined
by the order of DistGrid dimensions and the order of tiles within the DistGrid or by user-supplied arbitrary sequence
indices. See section 28.2.18 for details on the definition of sequence indices. SMM corresponds to an identity mapping
of the source FieldBundle vector to the destination FieldBundle vector.

Source and destination Fields may be of different <type><kind>. Further source and destination Fields may differ in
shape, however, the number of elements must match.

It is erroneous to specify the identical FieldBundle object for srcFieldBundle and dstFieldBundle arguments.

The routine returns an ESMF_RouteHandle that can be used to call ESMF_FieldBundleSMM() on any pair
of FieldBundles that matches srcFieldBundle and dstFieldBundle in type, kind, and memory layout of the
gridded dimensions. However, the size, number, and index order of ungridded dimensions may be different. See
section 36.2.4 for a more detailed discussion of RouteHandle reusability.

This method is overloaded for:
ESMF_TYPEKIND_I4, ESMF_TYPEKIND_I8,
ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8.

This call is collective across the current VM.

For examples and associated documentation regarding this method see Section 25.2.11.

The arguments are:

srcFieldBundle ESMF_FieldBundle with source data.

dstFieldBundle ESMF_FieldBundle with destination data. The data in this FieldBundle may be destroyed by this
call.

routehandle Handle to the precomputed Route.

factorList List of non-zero coefficients.

factorIndexList Pairs of sequence indices for the factors stored in factorList.

The second dimension of factorIndexList steps through the list of pairs, i.e.
size(factorIndexList,2) == size(factorList). The first dimension of factorIndexList
is either of size 2 or size 4.

In the size 2 format factorIndexList(1,:) specifies the sequence index of the source element in the
srcFieldBundle while factorIndexList(2,:) specifies the sequence index of the destination ele-
ment in dstFieldBundle. For this format to be a valid option source and destination FieldBundles must
have matching number of tensor elements (the product of the sizes of all Field tensor dimensions). Under this
condition an identity matrix can be applied within the space of tensor elements for each sparse matrix factor.

The size 4 format is more general and does not require a matching tensor element count. Here the

325

factorIndexList(1,:) specifies the sequence index while factorIndexList(2,:) specifies the
tensor sequence index of the source element in the srcFieldBundle. Further factorIndexList(3,:)
specifies the sequence index and factorIndexList(4,:) specifies the tensor sequence index of the desti-
nation element in the dstFieldBundle.

See section 28.2.18 for details on the definition of sequence indices and tensor sequence indices.

[ignoreUnmatchedIndicesFlag] If set to .false., the default, source and destination side must cover all of the squence
indices defined in the sparse matrix. An error will be returned if a sequence index in the sparse matrix does not
match on either the source or destination side. If set to .true., mismatching sequence indices are silently ignored.
The size of this array argument must either be 1 or equal the number of Fieldss in the srcFieldBundle and
dstFieldBundle arguments. In the latter case, the handling of unmatched indices is specified for each Field
pair separately. If only one element is specified, it is used for all Field pairs.

[srcTermProcessing] Source term summing options for route handle creation. See ESMF_FieldRegridStore
documentation for a full parameter description. Two forms may be provided. If a single element list is provided,
this integer value is applied across all bundle members. Otherwise, the list must contain as many elements as
there are bundle members. For the special case of accessing the auto-tuned parameter (providing a negative
integer value), the list length must equal the bundle member count.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

25.5.36 ESMF_FieldBundleSMMStore - Precompute a FieldBundle sparse matrix multiplication

INTERFACE:

! Private name; call using ESMF_FieldBundleSMMStore()

subroutine ESMF_FieldBundleSMMStoreNF(srcFieldBundle, dstFieldBundle, &

routehandle, ignoreUnmatchedIndicesFlag, &

srcTermProcessing, rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(in) :: srcFieldBundle

type(ESMF_FieldBundle), intent(inout) :: dstFieldBundle

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: ignoreUnmatchedIndicesFlag(:)

integer, intent(inout), optional :: srcTermProcessing(:)

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

326

7.1.0r Added argument srcTermProcessing. The new argument gives the user access to the tuning pa-
rameter affecting the sparse matrix execution and bit-wise reproducibility.

8.1.0 Added argument ignoreUnmatchedIndicesFlag to support cases where the sparse matrix includes
terms with source or destination sequence indices not present in the source or destination field.

DESCRIPTION:

Store a FieldBundle sparse matrix multiplication operation from srcFieldBundle to dstFieldBundle.
PETs that specify non-zero matrix coefficients must use the <type><kind> overloaded interface and provide the
factorList and factorIndexList arguments. Providing factorList and factorIndexList argu-
ments with size(factorList) = (/0/) and size(factorIndexList) = (/2,0/) or (/4,0/) in-
dicates that a PET does not provide matrix elements. Alternatively, PETs that do not provide matrix elements may
also call into the overloaded interface without factorList and factorIndexList arguments.

Both srcFieldBundle and dstFieldBundle are interpreted as sequentialized vectors. The sequence is defined
by the order of DistGrid dimensions and the order of tiles within the DistGrid or by user-supplied arbitrary sequence
indices. See section 28.2.18 for details on the definition of sequence indices. SMM corresponds to an identity mapping
of the source FieldBundle vector to the destination FieldBundle vector.

Source and destination Fields may be of different <type><kind>. Further source and destination Fields may differ in
shape, however, the number of elements must match.

It is erroneous to specify the identical FieldBundle object for srcFieldBundle and dstFieldBundle arguments.

The routine returns an ESMF_RouteHandle that can be used to call ESMF_FieldBundleSMM() on any pair
of FieldBundles that matches srcFieldBundle and dstFieldBundle in type, kind, and memory layout of the
gridded dimensions. However, the size, number, and index order of ungridded dimensions may be different. See
section 36.2.4 for a more detailed discussion of RouteHandle reusability.

This method is overloaded for ESMF_TYPEKIND_I4, ESMF_TYPEKIND_I8, ESMF_TYPEKIND_R4,
ESMF_TYPEKIND_R8.

This call is collective across the current VM.

For examples and associated documentation regarding this method see Section 25.2.11.

The arguments are:

srcFieldBundle ESMF_FieldBundle with source data.

dstFieldBundle ESMF_FieldBundle with destination data. The data in this FieldBundle may be destroyed by this
call.

routehandle Handle to the precomputed Route.

[ignoreUnmatchedIndicesFlag] If set to .false., the default, source and destination side must cover all of the squence
indices defined in the sparse matrix. An error will be returned if a sequence index in the sparse matrix does not
match on either the source or destination side. If set to .true., mismatching sequence indices are silently ignored.
The size of this array argument must either be 1 or equal the number of Fieldss in the srcFieldBundle and
dstFieldBundle arguments. In the latter case, the handling of unmatched indices is specified for each Field
pair separately. If only one element is specified, it is used for all Field pairs.

[srcTermProcessing] Source term summing options for route handle creation. See ESMF_FieldRegridStore
documentation for a full parameter description. Two forms may be provided. If a single element list is provided,
this integer value is applied across all bundle members. Otherwise, the list must contain as many elements as
there are bundle members. For the special case of accessing the auto-tuned parameter (providing a negative
integer value), the list length must equal the bundle member count.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

327

25.5.37 ESMF_FieldBundleSMMStore - Precompute field bundle sparse matrix multiplication using factors

read from file

INTERFACE:

! Private name; call using ESMF_FieldBundleSMMStore()

subroutine ESMF_FieldBundleSMMStoreFromFile(srcFieldBundle, dstFieldBundle, &

filename, routehandle, ignoreUnmatchedIndicesFlag, &

srcTermProcessing, rc)

! ARGUMENTS:

type(ESMF_FieldBundle), intent(in) :: srcFieldBundle

type(ESMF_FieldBundle), intent(inout) :: dstFieldBundle

character(len=*), intent(in) :: filename

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: ignoreUnmatchedIndicesFlag(:)

integer, intent(inout), optional :: srcTermProcessing(:)

integer, intent(out), optional :: rc

DESCRIPTION:

Compute an ESMF_RouteHandle using factors read from file.

The arguments are:

srcFieldBundle ESMF_FieldBundle with source data.

dstFieldBundle ESMF_FieldBundle with destination data. The data in this field bundle may be destroyed by this
call.

filename Path to the file containing weights for creating an ESMF_RouteHandle. See (12.9) for a description of
the SCRIP weight file format. Only "row", "col", and "S" variables are required. They must be one-dimensionsal
with dimension "n_s".

routehandle Handle to the ESMF_RouteHandle.

[ignoreUnmatchedIndicesFlag] If set to .false., the default, source and destination side must cover all of the squence
indices defined in the sparse matrix. An error will be returned if a sequence index in the sparse matrix does not
match on either the source or destination side. If set to .true., mismatching sequence indices are silently ignored.
The size of this array argument must either be 1 or equal the number of Fieldss in the srcFieldBundle and
dstFieldBundle arguments. In the latter case, the handling of unmatched indices is specified for each Field
pair separately. If only one element is specified, it is used for all Field pairs.

[srcTermProcessing] Source term summing options for route handle creation. See ESMF_FieldRegridStore
documentation for a full parameter description. Two forms may be provided. If a single element list is provided,
this integer value is applied across all bundle members. Otherwise, the list must contain as many elements as
there are bundle members. For the special case of accessing the auto-tuned parameter (providing a negative
integer value), the list length must equal the bundle member count.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

328

25.5.38 ESMF_FieldBundleValidate - Validate fieldbundle internals

INTERFACE:

subroutine ESMF_FieldBundleValidate(fieldbundle, rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(in) :: fieldbundle

integer, intent(out), optional :: rc

DESCRIPTION:

Validates that the fieldbundle is internally consistent. The method returns an error code if problems are found.

The arguments are:

fieldbundle Specified ESMF_FieldBundle object.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

25.5.39 ESMF_FieldBundleWrite - Write the Fields into a file

INTERFACE:

subroutine ESMF_FieldBundleWrite(fieldbundle, fileName, &

convention, purpose, singleFile, overwrite, status, timeslice, iofmt, rc)

ARGUMENTS:

type(ESMF_FieldBundle), intent(in) :: fieldbundle

character(*), intent(in) :: fileName

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character(*), intent(in), optional :: convention

character(*), intent(in), optional :: purpose

logical, intent(in), optional :: singleFile

logical , intent(in), optional :: overwrite

type(ESMF_FileStatus_Flag), intent(in), optional :: status

integer, intent(in), optional :: timeslice

type(ESMF_IOFmt_Flag), intent(in), optional :: iofmt

integer, intent(out), optional :: rc

DESCRIPTION:

Write the Fields into a file. For this API to be functional, the environment variable ESMF_PIO should be set to
"internal" when the ESMF library is built. Please see the section on Data I/O, 37.2.

329

When convention and purpose arguments are specified, NetCDF dimension labels and variable attributes are
written from each Field in the FieldBundle from the corresponding Attribute package. Additionally, Attributes may
be set on the FieldBundle level under the same Attribute package. This allows the specification of global attributes
within the file. As with individual Fields, the value associated with each name may be either a scalar character string,
or a scalar or array of type integer, real, or double precision.

Limitations:

• Only single tile Fields are supported.

• Not supported in ESMF_COMM=mpiuni mode.

The arguments are:

fieldbundle An ESMF_FieldBundle object.

fileName The name of the output file to which field bundle data is written.

[convention] Specifies an Attribute package associated with the FieldBundle, and the contained Fields, used to create
NetCDF dimension labels and attributes in the file. When this argument is present, the purpose argument
must also be present. Use this argument only with a NetCDF I/O format. If binary format is used, ESMF will
return an error code.

[purpose] Specifies an Attribute package associated with the FieldBundle, and the contained Fields, used to create
NetCDF dimension labels and attributes in the file. When this argument is present, the convention argument
must also be present. Use this argument only with a NetCDF I/O format. If binary format is used, ESMF will
return an error code.

[singleFile] A logical flag, the default is .true., i.e., all fields in the bundle are written in one single file. If .false., each
field will be written in separate files; these files are numbered with the name based on the argument "file". That
is, a set of files are named: [file_name]001, [file_name]002, [file_name]003,...

[overwrite] A logical flag, the default is .false., i.e., existing field data may not be overwritten. If .true., the overwrite
behavior depends on the value of iofmt as shown below:

iofmt = ESMF_IOFMT_BIN: All data in the file will be overwritten with each fields data.

iofmt = ESMF_IOFMT_NETCDF, ESMF_IOFMT_NETCDF_64BIT_OFFSET: Only the data corre-
sponding to each fields name will be be overwritten. If the timeslice option is given, only data for
the given timeslice may be overwritten. Note that it is always an error to attempt to overwrite a NetCDF
variable with data which has a different shape.

[status] The file status. Please see Section 52.21 for the list of options. If not present, defaults to
ESMF_FILESTATUS_UNKNOWN.

[timeslice] Some I/O formats (e.g. NetCDF) support the output of data in form of time slices. The timeslice
argument provides access to this capability. timeslice must be positive. The behavior of this option may
depend on the setting of the overwrite flag:

overwrite = .false.: If the timeslice value is less than the maximum time already in the file, the write
will fail.

overwrite = .true.: Any positive timeslice value is valid.

By default, i.e. by omitting the timeslice argument, no provisions for time slicing are made in the output
file, however, if the file already contains a time axis for the variable, a timeslice one greater than the maximum
will be written.

[iofmt] The I/O format. Please see Section 52.28 for the list of options. If not present, file names with a .bin
extension will use ESMF_IOFMT_BIN, and file names with a .nc extension will use ESMF_IOFMT_NETCDF.
Other files default to ESMF_IOFMT_NETCDF.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

330

26 Field Class

26.1 Description

An ESMF Field represents a physical field, such as temperature. The motivation for including Fields in ESMF is that

bundles of Fields are the entities that are normally exchanged when coupling Components.

The ESMF Field class contains distributed and discretized field data, a reference to its associated grid, and metadata.

The Field class stores the grid staggering for that physical field. This is the relationship of how the data array of a field

maps onto a grid (e.g. one item per cell located at the cell center, one item per cell located at the NW corner, one item

per cell vertex, etc.). This means that different Fields which are on the same underlying ESMF Grid but have different

staggerings can share the same Grid object without needing to replicate it multiple times.

Fields can be added to States for use in inter-Component data communications. Fields can also be added to FieldBun-

dles, which are groups of Fields on the same underlying Grid. One motivation for packing Fields into FieldBundles is

convenience; another is the ability to perform optimized collective data transfers.

Field communication capabilities include: data redistribution, regridding, scatter, gather, sparse-matrix multiplication,

and halo update. These are discussed in more detail in the documentation for the specific method calls. ESMF does

not currently support vector fields, so the components of a vector field must be stored as separate Field objects.

26.1.1 Operations

The Field class allows the user to easily perform a number of operations on the data stored in a Field. This section

gives a brief summary of the different types of operations and the range of their capabilities. The operations covered

here are: redistribution (ESMF_FieldRedistStore()), sparse matrix multiply (ESMF_FieldSMMStore()),

and regridding (ESMF_FieldRegridStore()).

The redistribution operation (ESMF_FieldRedistStore()) allows the user to move data between two Fields with

the same size, but different distribution. This operation is useful, for example, to move data between two components

with different distributions. Please see Section 26.3.30 for an example of the redistribution capability.

The sparse matrix multiplication operation (ESMF_FieldSMMStore()) allows the user to multiply the data in a

Field by a sparse matrix. This operation is useful, for example, if the user has an interpolation matrix and wants to

apply it to the data in a Field. Please see Section 26.3.33 for an example of the sparse matrix multiply capability.

The regridding operation (ESMF_FieldRegridStore()) allows the user to move data from one grid to another

while maintaining certain properties of the data. Regridding is also called interpolation or remapping. In the Field

regridding operation the grids the data is being moved between are the grids associated with the Fields storing the

data. The regridding operation works on Fields built on Meshes, Grids, or Location Streams. There are six regridding

methods available: bilinear, higher-order patch, two types of nearest neighbor, first-order conservative, and second-

order conservative. Please see section 24.2 for a more indepth description of regridding including in which situations

each method is supported. Please see section 26.3.25 for a description of the regridding capability as it applies to

Fields. Several sections following section 26.3.25 contain examples of using regridding.

26.2 Constants

26.2.1 ESMF_FIELDSTATUS

DESCRIPTION:

331

An ESMF_Field can be in different status after initialization. Field status can be queried using ESMF_FieldGet()

method.

The type of this flag is:

type(ESMF_FieldStatus_Flag)

The valid values are:

ESMF_FIELDSTATUS_EMPTY Field is empty without geombase or data storage. Such a Field can be added to a

ESMF_State and participate ESMF_StateReconcile().

ESMF_FIELDSTATUS_GRIDSET Field is partially created. It has a geombase object internally created and

the geombase object associates with either a ESMF_Grid, or a ESMF_Mesh, or an ESMF_XGrid, or a

ESMF_LocStream. It’s an error to set another geombase object in such a Field. It can also be added to a

ESMF_State and participate ESMF_StateReconcile().

ESMF_FIELDSTATUS_COMPLETE Field is completely created with geombase and data storage internally allo-

cated.

26.3 Use and Examples

A Field serves as an annotator of data, since it carries a description of the grid it is associated with and metadata

such as name and units. Fields can be used in this capacity alone, as convenient, descriptive containers into which

arrays can be placed and retrieved. However, for most codes the primary use of Fields is in the context of import

and export States, which are the objects that carry coupling information between Components. Fields enable data

to be self-describing, and a State holding ESMF Fields contains data in a standard format that can be queried and

manipulated.

The sections below go into more detail about Field usage.

26.3.1 Field create and destroy

Fields can be created and destroyed at any time during application execution. However, these Field methods require

some time to complete. We do not recommend that the user create or destroy Fields inside performance-critical

computational loops.

All versions of the ESMF_FieldCreate() routines require a Grid object as input, or require a Grid be added

before most operations involving Fields can be performed. The Grid contains the information needed to know which

Decomposition Elements (DEs) are participating in the processing of this Field, and which subsets of the data are local

to a particular DE.

The details of how the create process happens depend on which of the variants of the ESMF_FieldCreate() call

is used. Some of the variants are discussed below.

There are versions of the ESMF_FieldCreate() interface which create the Field based on the input Grid. The

ESMF can allocate the proper amount of space but not assign initial values. The user code can then get the pointer to

the uninitialized buffer and set the initial data values.

Other versions of the ESMF_FieldCreate() interface allow user code to attach arrays that have already been

allocated by the user. Empty Fields can also be created in which case the data can be added at some later time.

For versions of Create which do not specify data values, user code can create an ArraySpec object, which contains

information about the typekind and rank of the data values in the array. Then at Field create time, the appropriate

332

amount of memory is allocated to contain the data which is local to each DE.

When finished with a ESMF_Field, the ESMF_FieldDestroy method removes it. However, the objects inside

the ESMF_Field created externally should be destroyed separately, since objects can be added to more than one

ESMF_Field. For example, the same ESMF_Grid can be referenced by multiple ESMF_Fields. In this case the

internal Grid is not deleted by the ESMF_FieldDestroy call.

26.3.2 Get Fortran data pointer, bounds, and counts information from a Field

A user can get bounds and counts information from an ESMF_Field through the ESMF_FieldGet() interface.
Also available through this interface is the intrinsic Fortran data pointer contained in the internal ESMF_Array object
of an ESMF_Field. The bounds and counts information are DE specific for the associated Fortran data pointer.

For a better discussion of the terminologies, bounds and widths in ESMF e.g. exclusive, computational, total bounds
for the lower and upper corner of data region, etc.., user can refer to the explanation of these concepts for Grid and
Array in their respective sections in the Reference Manual, e.g. Section 28.2.6 on Array and Section 31.3.19 on Grid.

In this example, we first create a 3D Field based on a 3D Grid and Array. Then we use the ESMF_FieldGet()
interface to retrieve the data pointer, potentially updating or verifying its values. We also retrieve the bounds and
counts information of the 3D Field to assist in data element iteration.

xdim = 180

ydim = 90

zdim = 50

! create a 3D data Field from a Grid and Array.

! first create a Grid

grid3d = ESMF_GridCreateNoPeriDim(minIndex=(/1,1,1/), &

maxIndex=(/xdim,ydim,zdim/), &

regDecomp=(/2,2,1/), name="grid", rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

call ESMF_GridGet(grid=grid3d, staggerloc=ESMF_STAGGERLOC_CENTER, &

distgrid=distgrid3d, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

call ESMF_GridGetFieldBounds(grid=grid3d, localDe=0, &

staggerloc=ESMF_STAGGERLOC_CENTER, totalCount=fa_shape, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

allocate(farray(fa_shape(1), fa_shape(2), fa_shape(3)))

! create an Array

array3d = ESMF_ArrayCreate(distgrid3d, farray, &

indexflag=ESMF_INDEX_DELOCAL, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! create a Field

field = ESMF_FieldCreate(grid=grid3d, array=array3d, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! retrieve the Fortran data pointer from the Field

call ESMF_FieldGet(field=field, localDe=0, farrayPtr=farray1, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

333

! retrieve the Fortran data pointer from the Field and bounds

call ESMF_FieldGet(field=field, localDe=0, farrayPtr=farray1, &

computationalLBound=compLBnd, computationalUBound=compUBnd, &

exclusiveLBound=exclLBnd, exclusiveUBound=exclUBnd, &

totalLBound=totalLBnd, totalUBound=totalUBnd, &

computationalCount=comp_count, &

exclusiveCount=excl_count, &

totalCount=total_count, &

rc=rc)

! iterate through the total bounds of the field data pointer

do k = totalLBnd(3), totalUBnd(3)

do j = totalLBnd(2), totalUBnd(2)

do i = totalLBnd(1), totalUBnd(1)

farray1(i, j, k) = sin(2*i/total_count(1)*PI) + &

sin(4*j/total_count(2)*PI) + &

sin(8*k/total_count(2)*PI)

enddo

enddo

enddo

26.3.3 Get Grid, Array, and other information from a Field

A user can get the internal ESMF_Grid and ESMF_Array from a ESMF_Field. Note that the user should not issue
any destroy command on the retrieved grid or array object since they are referenced from within the ESMF_Field.
The retrieved objects should be used in a read-only fashion to query additional information not directly available
through the ESMF_FieldGet() interface.

call ESMF_FieldGet(field, grid=grid, array=array, &

typekind=typekind, dimCount=dimCount, staggerloc=staggerloc, &

gridToFieldMap=gridToFieldMap, &

ungriddedLBound=ungriddedLBound, ungriddedUBound=ungriddedUBound, &

totalLWidth=totalLWidth, totalUWidth=totalUWidth, &

name=name, &

rc=rc)

26.3.4 Create a Field with a Grid, typekind, and rank

A user can create an ESMF_Field from an ESMF_Grid and typekind/rank. This create method associates the two
objects.

We first create a Grid with a regular distribution that is 10x20 index in 2x2 DEs. This version of Field create simply
associates the data with the Grid. The data is referenced explicitly on a regular 2x2 uniform grid. Finally we create a
Field from the Grid, typekind, rank, and a user specified StaggerLoc.

This example also illustrates a typical use of this Field creation method. By creating a Field from a Grid and
typekind/rank, the user allows the ESMF library to create a internal Array in the Field. Then the user can use
ESMF_FieldGet() to retrieve the Fortran data array and necessary bounds information to assign initial values
to it.

! create a grid

334

grid = ESMF_GridCreateNoPeriDim(minIndex=(/1,1/), maxIndex=(/10,20/), &

regDecomp=(/2,2/), name="atmgrid", rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! create a Field from the Grid and arrayspec

field1 = ESMF_FieldCreate(grid, typekind=ESMF_TYPEKIND_R4, &

indexflag=ESMF_INDEX_DELOCAL, &

staggerloc=ESMF_STAGGERLOC_CENTER, name="pressure", rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

call ESMF_FieldGet(field1, localDe=0, farrayPtr=farray2dd, &

totalLBound=ftlb, totalUBound=ftub, totalCount=ftc, rc=rc)

do i = ftlb(1), ftub(1)

do j = ftlb(2), ftub(2)

farray2dd(i, j) = sin(i/ftc(1)*PI) * cos(j/ftc(2)*PI)

enddo

enddo

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

26.3.5 Create a Field with a Grid and Arrayspec

A user can create an ESMF_Field from an ESMF_Grid and a ESMF_Arrayspec with corresponding rank and
type. This create method associates the two objects.

We first create a Grid with a regular distribution that is 10x20 index in 2x2 DEs. This version of Field create simply
associates the data with the Grid. The data is referenced explicitly on a regular 2x2 uniform grid. Then we create an
ArraySpec. Finally we create a Field from the Grid, ArraySpec, and a user specified StaggerLoc.

This example also illustrates a typical use of this Field creation method. By creating a Field from a Grid and
an ArraySpec, the user allows the ESMF library to create a internal Array in the Field. Then the user can use
ESMF_FieldGet() to retrieve the Fortran data array and necessary bounds information to assign initial values
to it.

! create a grid

grid = ESMF_GridCreateNoPeriDim(minIndex=(/1,1/), maxIndex=(/10,20/), &

regDecomp=(/2,2/), name="atmgrid", rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! setup arrayspec

call ESMF_ArraySpecSet(arrayspec, 2, ESMF_TYPEKIND_R4, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! create a Field from the Grid and arrayspec

field1 = ESMF_FieldCreate(grid, arrayspec, &

indexflag=ESMF_INDEX_DELOCAL, &

staggerloc=ESMF_STAGGERLOC_CENTER, name="pressure", rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

call ESMF_FieldGet(field1, localDe=0, farrayPtr=farray2dd, &

totalLBound=ftlb, totalUBound=ftub, totalCount=ftc, rc=rc)

do i = ftlb(1), ftub(1)

335

do j = ftlb(2), ftub(2)

farray2dd(i, j) = sin(i/ftc(1)*PI) * cos(j/ftc(2)*PI)

enddo

enddo

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

A user can also create an ArraySpec that has a different rank from the Grid, For example, the following code shows
creation of of 3D Field from a 2D Grid using a 3D ArraySpec.

This example also demonstrates the technique to create a typical 3D data Field that has 2 gridded dimensions and 1
ungridded dimension.

First we create a 2D grid with an index space of 180x360 equivalent to 180x360 Grid cells (note that for a distributed
memory computer, this means each grid cell will be on a separate PE!). In the FieldCreate call, we use gridToFieldMap
to indicate the mapping between Grid dimension and Field dimension. For the ungridded dimension (typically the
altitude), we use ungriddedLBound and ungriddedUBound to describe its bounds. Internally the ungridded dimension
has a stride of 1, so the number of elements of the ungridded dimension is ungriddedUBound - ungriddedLBound + 1.

Note that gridToFieldMap in this specific example is (/1,2/) which is the default value so the user can neglect this
argument for the FieldCreate call.

grid2d = ESMF_GridCreateNoPeriDim(minIndex=(/1,1/), &

maxIndex=(/180,360/), regDecomp=(/2,2/), name="atmgrid", rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

call ESMF_ArraySpecSet(arrayspec, 3, ESMF_TYPEKIND_R4, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

field1 = ESMF_FieldCreate(grid2d, arrayspec, &

indexflag=ESMF_INDEX_DELOCAL, &

staggerloc=ESMF_STAGGERLOC_CENTER, &

gridToFieldMap=(/1,2/), &

ungriddedLBound=(/1/), ungriddedUBound=(/50/), &

name="pressure", rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

26.3.6 Create a Field with a Grid and Array

A user can create an ESMF_Field from an ESMF_Grid and a ESMF_Array. The Grid was created in the previous
example.

This example creates a 2D ESMF_Field from a 2D ESMF_Grid and a 2D ESMF_Array.

! Get necessary information from the Grid

call ESMF_GridGet(grid, staggerloc=ESMF_STAGGERLOC_CENTER, &

distgrid=distgrid, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! Create a 2D ESMF_TYPEKIND_R4 arrayspec

call ESMF_ArraySpecSet(arrayspec, 2, ESMF_TYPEKIND_R4, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

336

! Create a ESMF_Array from the arrayspec and distgrid

array2d = ESMF_ArrayCreate(arrayspec=arrayspec, &

distgrid=distgrid, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! Create a ESMF_Field from the grid and array

field4 = ESMF_FieldCreate(grid, array2d, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

26.3.7 Create an empty Field and complete it with FieldEmptySet and FieldEmptyComplete

A user can create an ESMF_Field in three steps: first create an empty ESMF_Field; then set a ESMF_Grid on
the empty ESMF_Field; and finally complete the ESMF_Field by calling ESMF_FieldEmptyComplete.

! create an empty Field

field3 = ESMF_FieldEmptyCreate(name="precip", rc=rc)

! use FieldGet to retrieve the Field Status

call ESMF_FieldGet(field3, status=fstatus, rc=rc)

Once the Field is created, we can verify that the status of the Field is ESMF_FIELDSTATUS_EMPTY.

! Test the status of the Field

if (fstatus /= ESMF_FIELDSTATUS_EMPTY) then

call ESMF_Finalize(endflag=ESMF_END_ABORT)

endif

Next we set a Grid on the empty Field. We use the 2D grid created in a previous example simply to demonstrate the
method. The Field data points will be on east edge of the Grid cells with the specified ESMF_STAGGERLOC_EDGE1.

! Set a grid on the Field

call ESMF_FieldEmptySet(field3, grid2d, &

staggerloc=ESMF_STAGGERLOC_EDGE1, rc=rc)

! use FieldGet to retrieve the Field Status again

call ESMF_FieldGet(field3, status=fstatus, rc=rc)

! Test the status of the Field

if (fstatus /= ESMF_FIELDSTATUS_GRIDSET) then

call ESMF_Finalize(endflag=ESMF_END_ABORT)

endif

The partially created Field is completed by specifying the typekind of its data storage. This method is overloaded
with one of the following parameters, arrayspec, typekind, Fortran array, or Fortran array pointer. Additional optional
arguments can be used to specify ungridded dimensions and halo regions similar to the other Field creation methods.

337

! Complete the Field by specifying the data typekind

! to be allocated internally.

call ESMF_FieldEmptyComplete(field3, typekind=ESMF_TYPEKIND_R8, &

ungriddedLBound=(/1/), ungriddedUBound=(/5/), rc=rc)

! use FieldGet to retrieve the Field Status again

call ESMF_FieldGet(field3, status=fstatus, rc=rc)

! Test the status of the Field

if (fstatus /= ESMF_FIELDSTATUS_COMPLETE) then

call ESMF_Finalize(endflag=ESMF_END_ABORT)

endif

26.3.8 Create an empty Field and complete it with FieldEmptyComplete

A user can create an empty ESMF_Field. Then the user can finalize the empty ESMF_Field from a ESMF_Grid
and an intrinsic Fortran data array. This interface is overloaded for typekind and rank of the Fortran data array.

In this example, both the grid and the Fortran array pointer are 2 dimensional and each dimension of the grid is mapped
to the corresponding dimension of the Fortran array pointer, i.e. 1st dimension of grid maps to 1st dimension of Fortran
array pointer, 2nd dimension of grid maps to 2nd dimension of Fortran array pointer, so on and so forth.

In order to create or complete a Field from a Grid and a Fortran array pointer, certain rules of the Fortran array bounds
must be obeyed. We will discuss these rules as we progress in Field creation examples. We will make frequent
reference to the terminologies for bounds and widths in ESMF. For a better discussion of these terminologies and
concepts behind them, e.g. exclusive, computational, total bounds for the lower and upper corner of data region, etc..,
users can refer to the explanation of these concepts for Grid and Array in their respective sections in the Reference
Manual, e.g. Section 28.2.6 on Array and Section 31.3.19 on Grid. The examples here are designed to help a user to
get up to speed with creating Fields for typical use.

This example introduces a helper method, the ESMF_GridGetFieldBounds interface that facilitates the compu-
tation of Fortran data array bounds and shape to assist ESMF_FieldEmptyComplete finalizing a Field from an
intrinsic Fortran data array and a Grid.

! create an empty Field

field3 = ESMF_FieldEmptyCreate(name="precip", rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! use FieldGet to retrieve total counts

call ESMF_GridGetFieldBounds(grid2d, localDe=0, &

staggerloc=ESMF_STAGGERLOC_CENTER, totalCount=ftc, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! allocate the 2d Fortran array based on retrieved total counts

allocate(farray2d(ftc(1), ftc(2)))

! finalize the Field

call ESMF_FieldEmptyComplete(field3, grid2d, farray2d, rc=rc)

338

26.3.9 Create a 7D Field with a 5D Grid and 2D ungridded bounds from a Fortran data array

In this example, we will show how to create a 7D Field from a 5D ESMF_Grid and 2D ungridded bounds with
arbitrary halo widths and gridToFieldMap.

We first create a 5D DistGrid and a 5D Grid based on the DistGrid; then ESMF_GridGetFieldBounds computes
the shape of a 7D array in fsize. We can then create a 7D Field from the 5D Grid and the 7D Fortran data array with
other assimilating parameters.

! create a 5d distgrid

distgrid5d = ESMF_DistGridCreate(minIndex=(/1,1,1,1,1/), &

maxIndex=(/10,4,10,4,6/), regDecomp=(/2,1,2,1,1/), rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! Create a 5d Grid

grid5d = ESMF_GridCreate(distgrid=distgrid5d, name="grid", rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! use FieldGet to retrieve total counts

call ESMF_GridGetFieldBounds(grid5d, localDe=0, ungriddedLBound=(/1,2/), &

ungriddedUBound=(/4,5/), &

totalLWidth=(/1,1,1,2,2/), totalUWidth=(/1,2,3,4,5/), &

gridToFieldMap=(/3,2,5,4,1/), &

totalCount=fsize, &

rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! allocate the 7d Fortran array based on retrieved total counts

allocate(farray7d(fsize(1), fsize(2), fsize(3), fsize(4), fsize(5), &

fsize(6), fsize(7)))

! create the Field

field7d = ESMF_FieldCreate(grid5d, farray7d, ESMF_INDEX_DELOCAL, &

ungriddedLBound=(/1,2/), ungriddedUBound=(/4,5/), &

totalLWidth=(/1,1,1,2,2/), totalUWidth=(/1,2,3,4,5/), &

gridToFieldMap=(/3,2,5,4,1/), &

rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

A user can allocate the Fortran array in a different manner using the lower and upper bounds returned from FieldGet
through the optional totalLBound and totalUBound arguments. In the following example, we create another 7D Field
by retrieving the bounds and allocate the Fortran array with this approach. In this scheme, indexing the Fortran array
is sometimes more convenient than using the shape directly.

call ESMF_GridGetFieldBounds(grid5d, localDe=0, ungriddedLBound=(/1,2/), &

ungriddedUBound=(/4,5/), &

totalLWidth=(/1,1,1,2,2/), totalUWidth=(/1,2,3,4,5/), &

gridToFieldMap=(/3,2,5,4,1/), &

totalLBound=flbound, totalUBound=fubound, &

rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

allocate(farray7d2(flbound(1):fubound(1), flbound(2):fubound(2), &

flbound(3):fubound(3), flbound(4):fubound(4), &

339

flbound(5):fubound(5), flbound(6):fubound(6), &

flbound(7):fubound(7)))

field7d2 = ESMF_FieldCreate(grid5d, farray7d2, ESMF_INDEX_DELOCAL, &

ungriddedLBound=(/1,2/), ungriddedUBound=(/4,5/), &

totalLWidth=(/1,1,1,2,2/), totalUWidth=(/1,2,3,4,5/), &

gridToFieldMap=(/3,2,5,4,1/), &

rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

26.3.10 Shared memory features: DE pinning, sharing, and migration

See 28.2.13 for a introduction of the DE pinning feature. Here we focus on demonstrating the use of the DE pinning
feature in the context of ESMF Field.

When an ESMF Field object is created, the specified underlying DistGrid indicates how many Decomposition Ele-
ments (DEs) are created. Each DE has its own memory allocation to hold user data. The DELayout, referenced by
the DistGrid, determines which PET is considered the owner of each of the DEs. Queried for the local DEs, the Field
object returns the list of DEs that are owned by the local PET making the query.

By default DEs are pinned to the PETs under which they were created. The memory allocation associated with a
specific DE is only defined in the VAS of the PET to which the DE is pinned. As a consequence, only the PET owning
a DE has access to its memory allocation.

On shared memory systems, however, ESMF allows DEs to be pinned to SSIs instead of PETs. In this case the PET
under which a DE was created is still consider the owner, but now all PETs under the same SSI have access to the DE.
For this the memory allocation associated with the DE is mapped into the VAS of all the PETs under the SSI.

To create an Field with each DE pinned to SSI instead of PET, first query the VM for the available level of support.

call ESMF_VMGet(vm, ssiSharedMemoryEnabledFlag=ssiSharedMemoryEnabled, rc=rc)

if (ssiSharedMemoryEnabled) then

Knowing that the SSI shared memory feature is available, it is now possible to create an Field object with DE to SSI
pinning.

grid = ESMF_GridCreateNoPeriDim(maxIndex=(/40,10/), regDecomp=(/4,1/), &

coordSys = ESMF_COORDSYS_CART, &

rc=rc)

field = ESMF_FieldCreate(typekind=ESMF_TYPEKIND_R8, grid=grid, &

pinflag=ESMF_PIN_DE_TO_SSI, rc=rc)

Just as in the cases discussed before, where the same Grid was used, a default DELayout with as many DEs as PETs
in the VM is constructed. Setting the pinflag to ESMF_PIN_DE_TO_SSI does not change the fact that each PET
owns exactly one of the DEs. However, assuming that this code is run on a set of PETs that are all located under
the same SSI, every PET now has access to all of the DEs. The situation can be observed by querying for both the
localDeCount, and the ssiLocalDeCount.

340

call ESMF_FieldGet(field, localDeCount=localDeCount, &

ssiLocalDeCount=ssiLocalDeCount, rc=rc)

Assuming execution on 4 PETs, all located on the same SSI, the values of the returned variable are
localDeCount==1 and ssiLocalDeCount==4 on all of the PETs. The mapping between each PET’s lo-
cal DE, and the global DE index is provided through the localDeToDeMap array argument. The amount of
mapping information returned is dependent on how large localDeToDeMap has been sized by the user. For
size(localDeToDeMap)==localDeCount, only mapping information for those DEs owned by the local PET
is filled in. However for size(localDeToDeMap)==ssiLocalDeCount, mapping information for all locally
accessible DEs is returned, including those owned by other PETs on the same SSI.

allocate(localDeToDeMap(0:ssiLocalDeCount-1))

call ESMF_FieldGet(field, localDeToDeMap=localDeToDeMap, rc=rc)

The first localDeCount entries of localDeToDeMap are always the global DE indices of the DEs owned by the
local PET. The remaining ssiLocalDeCount-localDeCount entries are the global DE indices of DEs shared
by other PETs. The ordering of the shared DEs is from smallest to greatest, excluding the locally owned DEs, which
were already listed at the beginning of localDeToDeMap. For the current case, again assuming execution on 4
PETs all located on the same SSI, we expect the following situation:

PET 0: localDeToDeMap==(/0,1,2,3/)
PET 1: localDeToDeMap==(/1,0,2,3/)
PET 2: localDeToDeMap==(/2,0,1,3/)
PET 3: localDeToDeMap==(/3,0,1,2/)

Each PET can access the memory allocations associated with all of the DEs listed in the localDeToDeMap returned
by the Field object. Direct access to the Fortran array pointer of a specific memory allocation is available through
ESMF_FieldGet(). Here each PET queries for the farrayPtr of localDe==2, i.e. the 2nd shared DE.

call ESMF_FieldGet(field, farrayPtr=myFarray, localDe=2, rc=rc)

Now variable myFarray on PETs 0 and 1 both point to the same memory allocation for global DE 2. Both PETs
have access to the same piece of shared memory! The same is true for PETs 2 and 3, pointing to the shared memory
allocation of global DE 1.

It is important to note that all of the typical considerations surrounding shared memory programming apply when
accessing shared DEs! Proper synchronization between PETs accessing shared DEs is critical to avoid race conditions.
Also performance issues like false sharing need to be considered for optimal use.

For a simple demonstration, PETs 0 and 2 fill the entire memory allocation of DE 2 and 1, respectively, to a unique
value.

if (localPet==0) then

myFarray = 12345.6789d0

else if (localPet==2) then

myFarray = 6789.12345d0

endif

Here synchronization is needed before any PETs that share access to the same DEs can safely access the data without
race condition. The Field class provides a simple synchronization method that can be used.

341

call ESMF_FieldSync(field, rc=rc) ! prevent race condition

Now it is safe for PETs 1 and 3 to access the shared DEs. We expect to find the data that was set above. For simplicity
of the code only the first array element is inspected here.

if (localPet==1) then

if (abs(myFarray(1,1)-12345.6789d0)>1.d10) print *, "bad data detected"

else if (localPet==3) then

if (abs(myFarray(1,1)-6789.12345d0)>1.d10) print *, "bad data detected"

endif

endif ! ending the ssiSharedMemoryEnabled conditional

26.3.11 Create a 2D Field with a 2D Grid and a Fortran data array

A user can create an ESMF_Field directly from an ESMF_Grid and an intrinsic Fortran data array. This interface
is overloaded for typekind and rank of the Fortran data array.

In the following example, each dimension size of the Fortran array is equal to the exclusive bounds of its corresponding
Grid dimension queried from the Grid through ESMF_GridGet() public interface.

Formally let fa_shape(i) be the shape of i-th dimension of user supplied Fortran array, then rule 1 states:

(1) fa_shape(i) = exclusiveCount(i)

i = 1...GridDimCount

fa_shape(i) defines the shape of i-th dimension of the Fortran array. ExclusiveCount are the number of data elements
of i-th dimension in the exclusive region queried from ESMF_GridGet interface. Rule 1 assumes that the Grid and
the Fortran intrinsic array have same number of dimensions; and optional arguments of FieldCreate from Fortran
array are left unspecified using default setup. These assumptions are true for most typical uses of FieldCreate from
Fortran data array. This is the easiest way to create a Field from a Grid and a Fortran intrinsic data array.

Fortran array dimension sizes (called shape in most Fortran language books) are equivalent to the bounds and counts
used in this manual. The following equation holds:

fa_shape(i) = shape(i) = counts(i) = upper_bound(i) - lower_bound(i) + 1

These typically mean the same concept unless specifically explained to mean something else. For example, ESMF
uses DimCount very often to mean number of dimensions instead of its meaning implied in the above equation. We’ll
clarify the meaning of a word when ambiguity could occur.

Rule 1 is most useful for a user working with Field creation from a Grid and a Fortran data array in most scenarios. It
extends to higher dimension count, 3D, 4D, etc... Typically, as the code example demonstrates, a user first creates a

342

Grid, then uses ESMF_GridGet() to retrieve the exclusive counts. Next the user calculates the shape of each Fortran
array dimension according to rule 1. The Fortran data array is allocated and initialized based on the computed shape.
A Field can either be created in one shot or created empty and finished using ESMF_FieldEmptyComplete.

There are important details that can be skipped but are good to know for ESMF_FieldEmptyComplete and
ESMF_FieldCreate from a Fortran data array. 1) these methods require each PET contains exactly one DE.
This implies that a code using FieldCreate from a data array or FieldEmptyComplete must have the same number of
DEs and PETs, formally nDE = nPET . Violation of this condition will cause run time failures. 2) the bounds and
counts retrieved from GridGet are DE specific or equivalently PET specific, which means that the Fortran array shape
could be different from one PET to another.

grid = ESMF_GridCreateNoPeriDim(minIndex=(/1,1/), maxIndex=(/10,20/), &

regDecomp=(/2,2/), name="atmgrid", rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

call ESMF_GridGet(grid, localDE=0, staggerloc=ESMF_STAGGERLOC_CENTER, &

exclusiveCount=gec, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

allocate(farray(gec(1), gec(2)))

field = ESMF_FieldCreate(grid, farray, ESMF_INDEX_DELOCAL, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

26.3.12 Create a 2D Field with a 2D Grid and a Fortran data pointer

The setup of this example is similar to the previous section except that the Field is created from a data pointer instead
of a data array. We highlight the ability to deallocate the internal Fortran data pointer queried from the Field. This
gives a user more flexibility with memory management.

allocate(farrayPtr(gec(1), gec(2)))

field = ESMF_FieldCreate(grid, farrayPtr, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

call ESMF_FieldGet(field, farrayPtr=farrayPtr2, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! deallocate the retrieved Fortran array pointer

deallocate(farrayPtr2)

26.3.13 Create a 3D Field with a 2D Grid and a 3D Fortran data array

This example demonstrates a typical use of ESMF_Field combining a 2D grid and a 3D Fortran native data array.
One immediate problem follows: how does one define the bounds of the ungridded dimension? This is solved by
the optional arguments ungriddedLBound and ungriddedUBound of the ESMF_FieldCreate interface. By
definition, ungriddedLBound and ungriddedUBound are both 1 dimensional integer Fortran arrays.

Formally, let fa_shape(j=1...FieldDimCount-GridDimCount) be the shape of the ungridded dimensions of a Field
relative to the Grid used in Field creation. The Field dimension count is equal to the number of dimensions of
the Fortran array, which equals the number of dimensions of the resultant Field. GridDimCount is the number of
dimensions of the Grid.

fa_shape(j) is computed as:

343

fa_shape(j) = ungriddedUBound(j) - ungriddedLBound(j) + 1

fa_shape is easy to compute when the gridded and ungridded dimensions do not mix. However, it’s conceivable that
at higher dimension count, gridded and ungridded dimensions can interleave. To aid the computation of ungridded
dimension shape we formally introduce the mapping concept.

Let mapA,B(i = 1...nA) = iB , and iB ∈ [φ, 1...nB]. nA is the number of elements in set A, nB is the number of
elements in set B. mapA,B(i) defines a mapping from i-th element of set A to iB-th element in set B. iB = φ indicates
there does not exist a mapping from i-th element of set A to set B.

Suppose we have a mapping from dimension index of ungriddedLBound (or ungriddedUBound) to Fortran array
dimension index, called ugb2fa. By definition, nA equals to the dimension count of ungriddedLBound (or ungrid-
dedUBound), nB equals to the dimension count of the Fortran array. We can now formulate the computation of
ungridded dimension shape as rule 2:

(2) fa_shape(ugb2fa(j)) = ungriddedUBound(j) - ungriddedLBound(j) + 1

j = 1..FortranArrayDimCount - GridDimCount

The mapping can be computed in linear time proportional to the Fortran array dimension count (or rank) using the
following algorithm in pseudocode:

map_index = 1

do i = 1, farray_rank

if i-th dimension of farray is ungridded

ugb2fa(map_index) = i

map_index = map_index + 1

endif

enddo

Here we use rank and dimension count interchangeably. These 2 terminologies are typically equivalent. But there are
subtle differences under certain conditions. Rank is the total number of dimensions of a tensor object. Dimension
count allows a finer description of the heterogeneous dimensions in that object. For example, a Field of rank 5 can
have 3 gridded dimensions and 2 ungridded dimensions. Rank is precisely the summation of dimension count of all
types of dimensions.

For example, if a 5D array is used with a 3D Grid, there are 2 ungridded dimensions: ungriddedLBound=(/1,2/) and
ungriddedUBound=(/5,7/). Suppose the distribution of dimensions looks like (O, X, O, X, O), O means gridded, X
means ungridded. Then the mapping from ungridded bounds to Fortran array is ugb2fa=(/2, 4/). The shape of 2nd and
4th dimension of Fortran array should equal (5, 8).

Back to our 3D Field created from a 2D Grid and 3D Fortran array example, suppose the 3rd Field dimension is
ungridded, ungriddedLBound=(/3/), ungriddedUBound=(/9/). First we use rule 1 to compute shapes of the gridded
Fortran array dimension, then we use rule 2 to compute shapes of the ungridded Fortran array dimension. In this
example, we used the exclusive bounds obtained in the previous example.

fa_shape(1) = gec(1) ! rule 1

fa_shape(2) = gec(2)

344

fa_shape(3) = 7 ! rule 2 9-3+1

allocate(farray3d(fa_shape(1), fa_shape(2), fa_shape(3)))

field = ESMF_FieldCreate(grid, farray3d, ESMF_INDEX_DELOCAL, &

ungriddedLBound=(/3/), ungriddedUBound=(/9/), &

rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

26.3.14 Create a 3D Field with a 2D Grid and a 3D Fortran data array with gridToFieldMap argument

Building upon the previous example, we will create a 3D Field from a 2D grid and 3D array but with a slight twist.
In this example, we introduce the gridToFieldMap argument that allows a user to map Grid dimension index to Field
dimension index.

In this example, both dimensions of the Grid are distributed and the mapping from DistGrid to Grid is (/1,2/). We
will introduce rule 3 assuming distgridToGridMap=(/1,2,3...gridDimCount/), and distgridDimCount equals to grid-
DimCount. This is a reasonable assumption in typical Field use.

We apply the mapping gridToFieldMap on rule 1 to create rule 3:

(3) fa_shape(gridToFieldMap(i)) = exclusiveCount(i)

i = 1,..GridDimCount.

Back to our example, suppose the 2nd Field dimension is ungridded, ungriddedLBound=(/3/), ungridde-
dUBound=(/9/). gridToFieldMap=(/3,1/), meaning the 1st Grid dimension maps to 3rd Field dimension, and 2nd
Grid dimension maps to 1st Field dimension.

First we use rule 3 to compute shapes of the gridded Fortran array dimension, then we use rule 2 to compute shapes
of the ungridded Fortran array dimension. In this example, we use the exclusive bounds obtained in the previous
example.

gridToFieldMap2d(1) = 3

gridToFieldMap2d(2) = 1

do i = 1, 2

fa_shape(gridToFieldMap2d(i)) = gec(i)

end do

fa_shape(2) = 7

allocate(farray3d(fa_shape(1), fa_shape(2), fa_shape(3)))

field = ESMF_FieldCreate(grid, farray3d, ESMF_INDEX_DELOCAL, &

ungriddedLBound=(/3/), ungriddedUBound=(/9/), &

gridToFieldMap=gridToFieldMap2d, &

rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

26.3.15 Create a 3D Field with a 2D Grid and a 3D Fortran data array with halos

This example is similar to example 26.3.14. In addition, here we will show how a user can associate different halo
widths to a Fortran array to create a Field through the totalLWidth and totalUWidth optional arguments. A diagram of
the dimension configuration from Grid, halos, and Fortran data array is shown here.

345

Figure 12: Field dimension configuration from Grid, halos, and Fortran data array.

346

The ESMF_FieldCreate() interface supports creating a Field from a Grid and a Fortran array padded with halos
on the distributed dimensions of the Fortran array. Using this technique one can avoid passing non-contiguous Fortran
array slice to FieldCreate. It guarantees the same exclusive region, and by using halos, it also defines a bigger total
region to contain the entire contiguous memory block of the Fortran array.

The elements of totalLWidth and totalUWidth are applied in the order distributed dimensions appear in the Fortran
array. By definition, totalLWidth and totalUWidth are 1 dimensional arrays of non-negative integer values. The size
of haloWidth arrays is equal to the number of distributed dimensions of the Fortran array, which is also equal to the
number of distributed dimensions of the Grid used in the Field creation.

Because the order of totalWidth (representing both totalLWidth and totalUWidth) element is applied to the order
distributed dimensions appear in the Fortran array dimensions, it’s quite simple to compute the shape of distributed
dimensions of the Fortran array. They are done in a similar manner when applying ungriddedLBound and ungridde-
dUBound to ungridded dimensions of the Fortran array defined by rule 2.

Assume we have the mapping from the dimension index of totalWidth to the dimension index of Fortran array, called
mhw2fa; and we also have the mapping from dimension index of Fortran array to dimension index of the Grid, called
fa2g. The shape of distributed dimensions of a Fortran array can be computed by rule 4:

(4) fa_shape(mhw2fa(k)) = exclusiveCount(fa2g(mhw2fa(k)) +

totalUWidth(k) + totalLWidth(k)

k = 1...size(totalWidth)

This rule may seem confusing but algorithmically the computation can be done by the following pseudocode:

fa_index = 1

do i = 1, farray_rank

if i-th dimension of Fortran array is distributed

fa_shape(i) = exclusiveCount(fa2g(i)) +

totalUWidth(fa_index) + totalLWidth(fa_index)

fa_index = fa_index + 1

endif

enddo

The only complication then is to figure out the mapping from Fortran array dimension index to Grid dimension index.
This process can be done by computing the reverse mapping from Field to Grid.

Typically, we don’t have to consider these complications if the following conditions are met: 1) All Grid dimensions
are distributed. 2) DistGrid in the Grid has a dimension index mapping to the Grid in the form of natural order
(/1,2,3,.../). This natural order mapping is the default mapping between various objects throughout ESMF. 3) Grid to
Field mapping is in the form of natural order, i.e. default mapping. These seem like a lot of conditions but they are
the default case in the interaction among DistGrid, Grid, and Field. When these conditions are met, which is typically
true, the shape of distributed dimensions of Fortran array follows rule 5 in a simple form:

(5) fa_shape(k) = exclusiveCount(k) +

totalUWidth(k) + totalLWidth(k)

347

k = 1...size(totalWidth)

Let’s examine an example on how to apply rule 5. Suppose we have a 5D array and a 3D Grid that has its first 3
dimensions mapped to the first 3 dimensions of the Fortran array. totalLWidth=(/1,2,3/), totalUWidth=(/7,9,10/), then
by rule 5, the following pseudo code can be used to compute the shape of the first 3 dimensions of the Fortran array.
The shape of the remaining two ungridded dimensions can be computed according to rule 2.

do k = 1, 3

fa_shape(k) = exclusiveCount(k) +

totalUWidth(k) + totalLWidth(k))

enddo

Suppose now gridToFieldMap=(/2,3,4/) instead which says the first dimension of Grid maps to the 2nd dimension
of Field (or Fortran array) and so on and so forth, we can obtain a more general form of rule 5 by introducing
first_distdim_index shift when Grid to Field map (gridToFieldMap) is in the form of (/a,a+1,a+2.../).

(6) fa_shape(k+first_distdim_index-1) = exclusiveCount(k) +

totalUWidth(k) + totalLWidth(k)

k = 1...size(totalWidth)

It’s obvious that first_distdim_index=a. If the first dimension of the Fortran array is distributed, then rule 6 degenerates
into rule 5, which is the typical case.

Back to our example creating a 3D Field from a 2D Grid and a 3D intrinsic Fortran array, we will use the Grid created
from previous example that satisfies condition 1 and 2. We’ll also use a simple gridToFieldMap (1,2) which is the
default mapping that satisfies condition 3. First we use rule 5 to compute the shape of distributed dimensions then we
use rule 2 to compute the shape of the ungridded dimensions.

gridToFieldMap2d(1) = 1

gridToFieldMap2d(2) = 2

totalLWidth2d(1) = 3

totalLWidth2d(2) = 4

totalUWidth2d(1) = 3

totalUWidth2d(2) = 5

do k = 1, 2

fa_shape(k) = gec(k) + totalLWidth2d(k) + totalUWidth2d(k)

end do

fa_shape(3) = 7 ! 9-3+1

allocate(farray3d(fa_shape(1), fa_shape(2), fa_shape(3)))

field = ESMF_FieldCreate(grid, farray3d, ESMF_INDEX_DELOCAL, &

ungriddedLBound=(/3/), ungriddedUBound=(/9/), &

totalLWidth=totalLWidth2d, totalUWidth=totalUWidth2d, &

gridToFieldMap=gridToFieldMap2d, &

rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

348

26.3.16 Create a Field from a LocStream, typekind, and rank

In this example, an ESMF_Field is created from an ESMF_LocStream and typekind/rank. The location stream
object is uniformly distributed in a 1 dimensional space on 4 DEs. The rank is 1 dimensional. Please refer to LocStream
examples section for more information on LocStream creation.

locs = ESMF_LocStreamCreate(minIndex=1, maxIndex=16, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

field = ESMF_FieldCreate(locs, typekind=ESMF_TYPEKIND_I4, &

rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

26.3.17 Create a Field from a LocStream and arrayspec

In this example, an ESMF_Field is created from an ESMF_LocStream and an ESMF_Arrayspec. The location
stream object is uniformly distributed in a 1 dimensional space on 4 DEs. The arrayspec is 1 dimensional. Please refer
to LocStream examples section for more information on LocStream creation.

locs = ESMF_LocStreamCreate(minIndex=1, maxIndex=16, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

call ESMF_ArraySpecSet(arrayspec, 1, ESMF_TYPEKIND_I4, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

field = ESMF_FieldCreate(locs, arrayspec, &

rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

26.3.18 Create a Field from a Mesh, typekind, and rank

In this example, an ESMF_Field is created from an ESMF_Mesh and typekind/rank. The mesh object is on a
Euclidean surface that is partitioned to a 2x2 rectangular space with 4 elements and 9 nodes. The nodal space is
represented by a distgrid with 9 indices. A Field is created on locally owned nodes on each PET. Therefore, the created
Field has 9 data points globally. The mesh object can be represented by the picture below. For more information on
Mesh creation, please see Section 33.3.1.

Mesh Ids

2.0 7 ------- 8 -------- 9

| | |

| 3 | 4 |

| | |

1.0 4 ------- 5 -------- 6

| | |

| 1 | 2 |

349

| | |

0.0 1 ------- 2 -------- 3

0.0 1.0 2.0

Node Ids at corners

Element Ids in centers

Mesh Owners

2.0 2 ------- 2 -------- 3

| | |

| 2 | 3 |

| | |

1.0 0 ------- 0 -------- 1

| | |

| 0 | 1 |

| | |

0.0 0 ------- 0 -------- 1

0.0 1.0 2.0

Node Owners at corners

Element Owners in centers

! Create Mesh structure in 1 step

mesh=ESMF_MeshCreate(parametricDim=2,spatialDim=2, &

nodeIds=nodeIds, nodeCoords=nodeCoords, &

nodeOwners=nodeOwners, elementIds=elemIds,&

elementTypes=elemTypes, elementConn=elemConn, &

rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! Field is created on the 1 dimensional nodal distgrid. On

! each PET, Field is created on the locally owned nodes.

field = ESMF_FieldCreate(mesh, typekind=ESMF_TYPEKIND_I4, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

26.3.19 Create a Field from a Mesh and arrayspec

In this example, an ESMF_Field is created from an ESMF_Mesh and an ESMF_Arrayspec. The mesh object is
on a Euclidean surface that is partitioned to a 2x2 rectangular space with 4 elements and 9 nodes. The nodal space is
represented by a distgrid with 9 indices. Field is created on locally owned nodes on each PET. Therefore, the created
Field has 9 data points globally. The mesh object can be represented by the picture below. For more information on
Mesh creation, please see Section 33.3.1.

! Create Mesh structure in 1 step

mesh=ESMF_MeshCreate(parametricDim=2,spatialDim=2, &

nodeIds=nodeIds, nodeCoords=nodeCoords, &

nodeOwners=nodeOwners, elementIds=elemIds,&

elementTypes=elemTypes, elementConn=elemConn, &

350

rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

call ESMF_ArraySpecSet(arrayspec, 1, ESMF_TYPEKIND_I4, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! Field is created on the 1 dimensional nodal distgrid. On

! each PET, Field is created on the locally owned nodes.

field = ESMF_FieldCreate(mesh, arrayspec, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

26.3.20 Create a Field from a Mesh and an Array

In this example, an ESMF_Field is created from an ESMF_Mesh and an ESMF_Array. The mesh object is created
in the previous example and the array object is retrieved from the field created in the previous example too.

call ESMF_MeshGet(mesh, nodalDistgrid=distgrid, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

array = ESMF_ArrayCreate(distgrid=distgrid, arrayspec=arrayspec, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! query the array from the previous example

call ESMF_FieldGet(field, array=array, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! create a Field from a mesh and an array

field1 = ESMF_FieldCreate(mesh, array, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

26.3.21 Create a Field from a Mesh and an ArraySpec with optional features

In this example, an ESMF_Field is created from an ESMF_Mesh and an ESMF_ArraySpec. The mesh object is
created in the previous example. The Field is also created with optional arguments such as ungridded dimensions and
dimension mapping.

In this example, the mesh is mapped to the 2nd dimension of the ESMF_Field, with its first dimension being the
ungridded dimension with bounds 1,3.

call ESMF_ArraySpecSet(arrayspec, 2, ESMF_TYPEKIND_I4, rc=rc)

field = ESMF_FieldCreate(mesh, arrayspec=arrayspec, gridToFieldMap=(/2/), &

ungriddedLBound=(/1/), ungriddedUBound=(/3/), rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

26.3.22 Create a Field with replicated dimensions

In this example an ESMF_Field with replicated dimension is created from an ESMF_Grid and an
ESMF_Arrayspec. A user can also use other ESMF_FieldCreate() methods to create replicated dimension
Field, this example illustrates the key concepts and use of a replicated dimension Field.

Normally gridToFieldMap argument in ESMF_FieldCreate() should not contain 0 value entries. However, for a
Field with replicated dimension, a 0 entry in gridToFieldMap indicates the corresponding Grid dimension is replicated

351

in the Field. In such a Field, the rank of the Field is no longer necessarily greater than its Grid rank. An example will
make this clear. We will start by creating Distgrid and Grid.

! create 4D distgrid

distgrid = ESMF_DistGridCreate(minIndex=(/1,1,1,1/), &

maxIndex=(/6,4,6,4/), regDecomp=(/2,1,2,1/), rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! create 4D grid on top of the 4D distgrid

grid = ESMF_GridCreate(distgrid=distgrid, name="grid", rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! create 3D arrayspec

call ESMF_ArraySpecSet(arrayspec, 3, ESMF_TYPEKIND_R8, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

In this example, a user creates a 3D Field with replicated dimension replicated along the 2nd and 4th dimension of its
underlying 4D Grid. In addition, the 2nd dimension of the Field is ungridded (why?). The 1st and 3rd dimensions of
the Field have halos.

! create field, 2nd and 4th dimensions of the Grid are replicated

field = ESMF_FieldCreate(grid, arrayspec, indexflag=ESMF_INDEX_DELOCAL, &

gridToFieldMap=(/1,0,2,0/), &

ungriddedLBound=(/1/), ungriddedUBound=(/4/), &

totalLWidth=(/1,1/), totalUWidth=(/4,5/), &

staggerloc=ESMF_STAGGERLOC_CORNER, &

rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! get basic information from the field

call ESMF_FieldGet(field, grid=grid1, array=array, typekind=typekind, &

dimCount=dimCount, staggerloc=lstaggerloc, &

gridToFieldMap=lgridToFieldMap, ungriddedLBound=lungriddedLBound, &

ungriddedUBound=lungriddedUBound, totalLWidth=ltotalLWidth, &

totalUWidth=ltotalUWidth, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! get bounds information from the field

call ESMF_FieldGet(field, localDe=0, farrayPtr=farray, &

exclusiveLBound=felb, exclusiveUBound=feub, exclusiveCount=fec, &

computationalLBound=fclb, computationalUBound=fcub, &

computationalCount=fcc, totalLBound=ftlb, totalUBound=ftub, &

totalCount=ftc, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

Next we verify that the field and array bounds agree with each other

call ESMF_ArrayGet(array, rank=arank, dimCount=adimCount, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

352

gridrank_repdim = 0

do i = 1, size(gridToFieldMap)

if(gridToFieldMap(i) == 0) gridrank_repdim = gridrank_repdim + 1

enddo

Number of undistributed dimension of the array X is computed from total rank of the array A, the dimension count of
its underlying distgrid B and number of replicated dimension in the distgrid C. We have the following formula: X = A
- (B - C)

allocate(audlb(arank-adimCount+gridrank_repdim), &

audub(arank-adimCount+gridrank_repdim))

call ESMF_ArrayGet(array, exclusiveLBound=aelb, exclusiveUBound=aeub, &

computationalLBound=aclb, computationalUBound=acub, &

totalLBound=atlb, totalUBound=atub, &

undistLBound=audlb, undistUBound=audub, &

rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! verify the ungridded bounds from field match

! undistributed bounds from its underlying array

do i = 1, arank-adimCount

if(lungriddedLBound(i) .ne. audlb(i)) &

rc = ESMF_FAILURE

enddo

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

do i = 1, arank-adimCount

if(lungriddedUBound(i) .ne. audub(i)) &

rc = ESMF_FAILURE

enddo

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

We then verify the data in the replicated dimension Field can be updated and accessed.

do ik = ftlb(3), ftub(3)

do ij = ftlb(2), ftub(2)

do ii = ftlb(1), ftub(1)

farray(ii,ij,ik) = ii+ij*2+ik

enddo

enddo

enddo

! access and verify

call ESMF_FieldGet(field, localDe=0, farrayPtr=farray1, &

rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

do ik = ftlb(3), ftub(3)

do ij = ftlb(2), ftub(2)

do ii = ftlb(1), ftub(1)

n = ii+ij*2+ik

if(farray1(ii,ij,ik) .ne. n) rc = ESMF_FAILURE

enddo

enddo

353

enddo

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! release resources

call ESMF_FieldDestroy(field)

call ESMF_GridDestroy(grid)

call ESMF_DistGridDestroy(distgrid)

26.3.23 Create a Field on an arbitrarily distributed Grid

With the introduction of Field on arbitrarily distributed Grid, Field has two kinds of dimension count: one associated
geometrical (or physical) dimensionality, the other one associated with its memory index space representation. Field
and Grid dimCount reflect the physical index space of the objects. A new type of dimCount rank should be added to
both of these entities. The rank gives the number of dimensions of the memory index space of the objects. This would
be the dimension of the pointer pulled out of Field and the size of the bounds vector, for example.

For non-arbitrary Grids rank=dimCount, but for grids and fields with arbitrary dimensions rank = dimCount - (number
of Arb dims) + 1 (Internally Field can use the Arb info from the grid to create the mapping from the Field Array to the
DistGrid)

When creating a Field size(GridToFieldMap)=dimCount for both Arb and Non-arb grids This array specifies the
mapping of Field to Grid identically for both Arb and Nonarb grids If a zero occurs in an entry corresponding to any
arbitrary dimension, then a zero must occur in every entry corresponding to an arbitrary dimension (i.e. all arbitrary
dimensions must either be all replicated or all not replicated, they can’t be broken apart).

In this example an ESMF_Field is created from an arbitrarily distributed ESMF_Grid and an ESMF_Arrayspec.
A user can also use other ESMF_FieldCreate() methods to create such a Field, this example illustrates the key
concepts and use of Field on arbitrary distributed Grid.

The Grid is 3 dimensional in physics index space but the first two dimension are collapsed into a single memory index
space. Thus the resulting Field is 3D in physics index space and 2D in memory index space. This is made obvious
with the 2D arrayspec used to create this Field.

! create a 3D grid with the first 2 dimensions collapsed

! and arbitrarily distributed

grid3d = ESMF_GridCreateNoPeriDim(coordTypeKind=ESMF_TYPEKIND_R8, &

minIndex=(/1,1,1/), maxIndex=(/xdim, ydim,zdim/), &

arbIndexList=localArbIndex,arbIndexCount=localArbIndexCount, &

name="arb3dgrid", rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! create a 2D arrayspec

call ESMF_ArraySpecSet(arrayspec2D, rank=2, typekind=ESMF_TYPEKIND_R4, &

rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! create a 2D Field using the Grid and the arrayspec

field = ESMF_FieldCreate(grid3d, arrayspec2D, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

call ESMF_FieldGet(field, rank=rank, dimCount=dimCount, &

rc=rc)

if (myPet .eq. 0) print *, ’Field rank, dimCount’, &

rank, dimCount

354

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! verify that the dimension counts are correct

if (rank .ne. 2) correct = .false.

if (dimCount .ne. 3) correct = .false.

26.3.24 Create a Field on an arbitrarily distributed Grid with replicated dimensions & ungridded bounds

The next example is slightly more complicated in that the Field also contains one ungridded dimension and its gridded
dimension is replicated on the arbitrarily distributed dimension of the Grid.

The same 3D Grid and 2D arrayspec in the previous example are used but a gridToFieldMap argument is supplied to
the ESMF_FieldCreate() call. The first 2 entries of the map are 0, the last (3rd) entry is 1. The 3rd dimension of
the Grid is mapped to the first dimension of the Field, this dimension is then replicated on the arbitrarily distributed
dimensions of the Grid. In addition, the Field also has one ungridded dimension. Thus the final dimension count of
the Field is 2 in both physics and memory index space.

field = ESMF_FieldCreate(grid3d, arrayspec2D,gridToFieldMap=(/0,0,1/), &

ungriddedLBound=(/1/), ungriddedUBound=(/10/),rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

call ESMF_FieldGet(field, rank=rank, dimCount=dimCount, &

rc=rc)

if (myPet .eq. 0) print *, ’Field rank, dimCount’, &

rank, dimCount

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

if (rank .ne. 2) correct = .false.

if (dimCount .ne. 2) correct = .false.

26.3.25 Field regridding

This section describes the Field regrid methods. For an in depth description of ESMF regridding and the options
available please see Section 24.2.

The basic flow of ESMF Field regridding is as follows. First a source and destination geometry object are created,
depending on the regrid method they can be either a Grid, a Mesh, or a LocStream. Next Fields are built on the
source and destination grid objects. These Fields are then passed into ESMF_FieldRegridStore(). The user
can either get a sparse matrix from this call and/or a routeHandle. If the user gets the sparse matrix then they
are responsible for deallocating it, but other than that can use it as they wish. The routeHandle can be used in
the ESMF_FieldRegrid() call to perform the actual interpolation of data from the source to the destination field.
This interpolation can be repeated for the same set of Fields as long as the coordinates at the staggerloc involved in
the regridding in the associated grid object don’t change. The same routeHandle can also be used between any
pair of Fields that matches the original pari in type, kind, and memory layout of the gridded dimensions. However,
the size, number, and index order of ungridded dimensions may be different. See section 36.2.4 for a more detailed
discussion of RouteHandle reusability. However, if you want the routehandle to be the same interpolation between
the grid objects upon which the Fields are built as was calculated with the original ESMF_FieldRegridStore()
call, then there are additional constraints on the grid objects. To be the same interpolation, the grid objects upon
which the Fields are build must contain the same coordinates at the stagger locations involved in the regridding as the
original source and destination Fields used in the ESMF_FieldRegridStore() call. The routehandle represents
the interpolation between the grid objects as they were during the ESMF_FieldRegridStore() call. So if the

355

coordinates at the stagger location in the grid objects change, a new call to ESMF_FieldRegridStore() is
necessary to compute the interpolation between that new set of coordinates. When finished with the routeHandle
ESMF_FieldRegridRelease() should be used to free the associated memory.

The following example demonstrates doing a regrid operation between two Fields.

! (Create source Grid, Mesh, or LocStream.)

! (Create srcField on the above.)

! (Create destination Grid, Mesh, or LocStream.)

! (Create dstField on the above.)

! Create the routeHandle which encodes the communication and

! information necessary for the regrid sparse matrix multiply.

call ESMF_FieldRegridStore(srcField=srcField, dstField=dstField, &

routeHandle=routeHandle, rc=localrc)

! Can loop here regridding from srcField to dstField

! do i=1,....

! (Put data into srcField)

! Use the routeHandle to regrid data from srcField to dstField.

! As described above, the same routeHandle can be used to

! regrid a large class of different source and destination Fields.

call ESMF_FieldRegrid(srcField, dstField, routeHandle, rc=localrc)

! (Use data in dstField)

! enddo

! Free the buffers and data associated with the routeHandle.

call ESMF_FieldRegridRelease(routeHandle, rc=localrc)

26.3.26 Field regrid with masking

As before, to create the sparse matrix regrid operator we call the ESMF_FieldRegridStore() routine. However,
in this case we apply masking to the regrid operation. The mask value for each index location in the Grids may
be set using the ESMF_GridAddItem() call (see Section 31.3.17 and Section 31.3.18). Mask values may be set
independently for the source and destination Grids. If no mask values have been set in a Grid, then it is assumed no
masking should be used for that Grid. The srcMaskValues parameter allows the user to set the list of values which
indicate that a source location should be masked out. The dstMaskValues parameter allows the user to set the list
of values which indicate that a destination location should be masked out. The absence of one of these parameters
indicates that no masking should be used for that Field (e.g no srcMaskValue parameter indicates that source
masking shouldn’t occur). The unmappedaction flag may be used with or without masking and indicates what

356

should occur if destination points can not be mapped to a source cell. Here the ESMF_UNMAPPEDACTION_IGNORE
value indicates that unmapped destination points are to be ignored and no sparse matrix entries should be generated
for them.

call ESMF_FieldRegridStore(srcField=srcField, srcMaskValues=(/1/), &

dstField=dstField, dstMaskValues=(/1/), &

unmappedaction=ESMF_UNMAPPEDACTION_IGNORE, &

routeHandle=routeHandle, &

regridmethod=ESMF_REGRIDMETHOD_BILINEAR, &

rc=localrc)

The ESMF_FieldRegrid and ESMF_FieldRegridRelease calls may then be applied as in the previous ex-

ample.

26.3.27 Field regrid example: Mesh to Mesh

This example demonstrates the regridding process between Fields created on Meshes. First the Meshes are created.
This example omits the setup of the arrays describing the Mesh, but please see Section 33.3.1 for examples of this.
After creation Fields are constructed on the Meshes, and then ESMF_FieldRegridStore() is called to construct a Route-
Handle implementing the regrid operation. Finally, ESMF_FieldRegrid() is called with the Fields and the RouteHandle
to do the interpolation between the source Field and destination Field. Note the coordinates of the source and destina-
tion Mesh should be in degrees.

!!!

! Create Source Mesh

!!!

! Create the Mesh structure.

! For brevity’s sake, the code to fill the Mesh creation

! arrays is omitted from this example. However, here

! is a brief description of the arrays:

! srcNodeIds - the global ids for the src nodes

! srcNodeCoords - the coordinates for the src nodes

! srcNodeOwners - which PET owns each src node

! srcElemIds - the global ids of the src elements

! srcElemTypes - the topological shape of each src element

! srcElemConn - how to connect the nodes to form the elements

! in the source mesh

! Several examples of setting up these arrays can be seen in

! the Mesh Section "Mesh Creation".

srcMesh=ESMF_MeshCreate(parametricDim=2,spatialDim=2, &

nodeIds=srcNodeIds, nodeCoords=srcNodeCoords, &

nodeOwners=srcNodeOwners, elementIds=srcElemIds,&

elementTypes=srcElemTypes, elementConn=srcElemConn, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

!!!

! Create and Fill Source Field

357

!!!

! Set description of source Field

call ESMF_ArraySpecSet(arrayspec, 1, ESMF_TYPEKIND_R8, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! Create source Field

srcField = ESMF_FieldCreate(srcMesh, arrayspec, &

name="source", rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! Get source Field data pointer to put data into

call ESMF_FieldGet(srcField, 0, fptr1D, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! Get number of local nodes to allocate space

! to hold local node coordinates

call ESMF_MeshGet(srcMesh, &

numOwnedNodes=numOwnedNodes, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! Allocate space to hold local node coordinates

! (spatial dimension of Mesh*number of local nodes)

allocate(ownedNodeCoords(2*numOwnedNodes))

! Get local node coordinates

call ESMF_MeshGet(srcMesh, &

ownedNodeCoords=ownedNodeCoords, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! Set the source Field to the function 20.0+x+y

do i=1,numOwnedNodes

! Get coordinates

x=ownedNodeCoords(2*i-1)

y=ownedNodeCoords(2*i)

! Set source function

fptr1D(i) = 20.0+x+y

enddo

! Deallocate local node coordinates

deallocate(ownedNodeCoords)

!!!

! Create Destination Mesh

!!!

! Create the Mesh structure.

! For brevity’s sake, the code to fill the Mesh creation

358

! arrays is omitted from this example. However, here

! is a brief description of the arrays:

! dstNodeIds - the global ids for the dst nodes

! dstNodeCoords - the coordinates for the dst nodes

! dstNodeOwners - which PET owns each dst node

! dstElemIds - the global ids of the dst elements

! dstElemTypes - the topological shape of each dst element

! dstElemConn - how to connect the nodes to form the elements

! in the destination mesh

! Several examples of setting up these arrays can be seen in

! the Mesh Section "Mesh Creation".

dstMesh=ESMF_MeshCreate(parametricDim=2,spatialDim=2, &

nodeIds=dstNodeIds, nodeCoords=dstNodeCoords, &

nodeOwners=dstNodeOwners, elementIds=dstElemIds,&

elementTypes=dstElemTypes, elementConn=dstElemConn, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

!!!

! Create Destination Field

!!!

! Set description of source Field

call ESMF_ArraySpecSet(arrayspec, 1, ESMF_TYPEKIND_R8, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! Create destination Field

dstField = ESMF_FieldCreate(dstMesh, arrayspec, &

name="destination", rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

!!!

! Do Regrid

!!!

! Compute RouteHandle which contains the regrid operation

call ESMF_FieldRegridStore(&

srcField, &

dstField=dstField, &

routeHandle=routeHandle, &

regridmethod=ESMF_REGRIDMETHOD_BILINEAR, &

rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! Perform Regrid operation moving data from srcField to dstField

call ESMF_FieldRegrid(srcField, dstField, routeHandle, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

!!!

359

! dstField now contains the interpolated data.

! If the Meshes don’t change, then routeHandle

! may be used repeatedly to interpolate from

! srcField to dstField.

!!!

! User code to use the routeHandle, Fields, and

! Meshes goes here before they are freed below.

!!!

! Free the objects created in the example.

!!!

! Free the RouteHandle

call ESMF_FieldRegridRelease(routeHandle, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! Free the Fields

call ESMF_FieldDestroy(srcField, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

call ESMF_FieldDestroy(dstField, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! Free the Meshes

call ESMF_MeshDestroy(dstMesh, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

call ESMF_MeshDestroy(srcMesh, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

26.3.28 Gather Field data onto root PET

User can use ESMF_FieldGather interface to gather Field data from multiple PETs onto a single root PET. This
interface is overloaded by type, kind, and rank.

Note that the implementation of Scatter and Gather is not sequence index based. If the Field is built on arbitrarily
distributed Grid, Mesh, LocStream or XGrid, Gather will not gather data to rootPet from source data points corre-
sponding to the sequence index on the rootPet. Instead Gather will gather a contiguous memory range from source
PET to rootPet. The size of the memory range is equal to the number of data elements on the source PET. Vice versa
for the Scatter operation. In this case, the user should use ESMF_FieldRedist to achieve the same data operation
result. For examples how to use ESMF_FieldRedist to perform Gather and Scatter, please refer to 26.3.32 and
26.3.31.

In this example, we first create a 2D Field, then use ESMF_FieldGather to collect all the data in this Field into a
data pointer on PET 0.

360

! Get current VM and pet number

call ESMF_VMGetCurrent(vm, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

call ESMF_VMGet(vm, localPet=lpe, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! Create a 2D Grid and use this grid to create a Field

! farray is the Fortran data array that contains data on each PET.

grid = ESMF_GridCreateNoPeriDim(minIndex=(/1,1/), maxIndex=(/10,20/), &

regDecomp=(/2,2/), &

name="grid", rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

field = ESMF_FieldCreate(grid, typekind=ESMF_TYPEKIND_I4, rc=localrc)

if (localrc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

call ESMF_FieldGet(field, farrayPtr=fptr, rc=localrc)

if (localrc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

!---------Initialize pet specific field data----------------

! 1 5 10

! 1 +--------+---------+

! | | |

! | 0 | 1 |

! | | |

! 10 +--------+---------+

! | | |

! | 2 | 3 |

! | | |

! 20 +--------+---------+

fptr = lpe

! allocate the Fortran data array on PET 0 to store gathered data

if(lpe .eq. 0) then

allocate (farrayDst(10,20))

else

allocate (farrayDst(0,0))

end if

call ESMF_FieldGather(field, farrayDst, rootPet=0, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! check that the values gathered on rootPet are correct

if(lpe .eq. 0) then

do i = 1, 5

do j = 1, 10

if(farrayDst(i, j) .ne. 0) localrc=ESMF_FAILURE

enddo

enddo

if (localrc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

do i = 6, 10

do j = 1, 10

if(farrayDst(i, j) .ne. 1) localrc=ESMF_FAILURE

enddo

enddo

361

if (localrc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

do i = 1, 5

do j = 11, 20

if(farrayDst(i, j) .ne. 2) localrc=ESMF_FAILURE

enddo

enddo

if (localrc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

do i = 6, 10

do j = 11, 20

if(farrayDst(i, j) .ne. 3) localrc=ESMF_FAILURE

enddo

enddo

if (localrc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

endif

! destroy all objects created in this example to prevent memory leak

call ESMF_FieldDestroy(field, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

call ESMF_GridDestroy(grid, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

if(lpe .eq. 0) deallocate(farrayDst)

26.3.29 Scatter Field data from root PET onto its set of joint PETs

User can use ESMF_FieldScatter interface to scatter Field data from root PET onto its set of joint PETs. This
interface is overloaded by type, kind, and rank.

In this example, we first create a 2D Field, then use ESMF_FieldScatter to scatter the data from a data array
located on PET 0 onto this Field.

! Create a 2D Grid and use this grid to create a Field

! farray is the Fortran data array that contains data on each PET.

grid = ESMF_GridCreateNoPeriDim(minIndex=(/1,1/), maxIndex=(/10,20/), &

regDecomp=(/2,2/), &

name="grid", rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

field = ESMF_FieldCreate(grid, typekind=ESMF_TYPEKIND_I4, rc=localrc)

if (localrc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! initialize values to be scattered

! 1 5 10

! 1 +--------+---------+

! | | |

! | 0 | 1 |

! | | |

! 10 +--------+---------+

! | | |

! | 2 | 3 |

! | | |

! 20 +--------+---------+

if(lpe .eq. 0) then

allocate(farraySrc(10,20))

362

farraySrc(1:5,1:10) = 0

farraySrc(6:10,1:10) = 1

farraySrc(1:5,11:20) = 2

farraySrc(6:10,11:20) = 3

else

allocate (farraySrc(0,0))

endif

! scatter the data onto individual PETs of the Field

call ESMF_FieldScatter(field, farraySrc, rootPet=0, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

call ESMF_FieldGet(field, localDe=0, farrayPtr=fptr, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! verify that the scattered data is properly distributed

do i = lbound(fptr, 1), ubound(fptr, 1)

do j = lbound(fptr, 2), ubound(fptr, 2)

if(fptr(i, j) .ne. lpe) localrc = ESMF_FAILURE

enddo

if (localrc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

enddo

! destroy all objects created in this example to prevent memory leak

call ESMF_FieldDestroy(field, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

call ESMF_GridDestroy(grid, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

if(lpe .eq. 0) deallocate(farraySrc)

26.3.30 Redistribute data from source Field to destination Field

User can use ESMF_FieldRedist interface to redistribute data from source Field to destination Field. This interface
is overloaded by type and kind; In the version of ESMF_FieldRedist without factor argument, a default value of
1 is used.

In this example, we first create two 1D Fields, a source Field and a destination Field. Then we use
ESMF_FieldRedist to redistribute data from source Field to destination Field.

! Get current VM and pet number

call ESMF_VMGetCurrent(vm, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

call ESMF_VMGet(vm, localPet=localPet, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! create grid

distgrid = ESMF_DistGridCreate(minIndex=(/1/), maxIndex=(/16/), &

regDecomp=(/4/), &

rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

363

grid = ESMF_GridCreate(distgrid=distgrid, &

name="grid", rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! create srcField

! +--------+--------+--------+--------+

! 0 1 2 3 ! value

! 1 4 8 12 16 ! bounds

srcField = ESMF_FieldCreate(grid, typekind=ESMF_TYPEKIND_I4, &

indexflag=ESMF_INDEX_DELOCAL, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

call ESMF_FieldGet(srcField, farrayPtr=srcfptr, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

srcfptr(:) = localPet

! create dstField

! +--------+--------+--------+--------+

! 0 0 0 0 ! value

! 1 4 8 12 16 ! bounds

dstField = ESMF_FieldCreate(grid, typekind=ESMF_TYPEKIND_I4, &

indexflag=ESMF_INDEX_DELOCAL, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

call ESMF_FieldGet(dstField, farrayPtr=dstfptr, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

dstfptr(:) = 0

! perform redist

! 1. setup routehandle from source Field to destination Field

call ESMF_FieldRedistStore(srcField, dstField, routehandle, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! 2. use precomputed routehandle to redistribute data

call ESMF_FieldRedist(srcfield, dstField, routehandle, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! verify redist

call ESMF_FieldGet(dstField, localDe=0, farrayPtr=fptr, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! Verify that the redistributed data in dstField is correct.

! Before the redist op, the dst Field contains all 0.

! The redist op reset the values to the PE value, verify this is the case.

do i = lbound(fptr, 1), ubound(fptr, 1)

if(fptr(i) .ne. localPet) localrc = ESMF_FAILURE

enddo

if (localrc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

Field redistribution can also be performed between different Field pairs that match the original Fields in type, kind,
and memory layout of the gridded dimensions. However, the size, number, and index order of ungridded dimensions
may be different. See section 36.2.4 for a more detailed discussion of RouteHandle reusability.

364

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEKIND_I4, rank=2, rc=rc)

Create two fields with ungridded dimensions using the Grid created previously. The new Field pair has matching
number of elements. The ungridded dimension is mapped to the first dimension of either Field.

srcFieldA = ESMF_FieldCreate(grid, arrayspec, gridToFieldMap=(/2/), &

ungriddedLBound=(/1/), ungriddedUBound=(/10/), rc=rc)

dstFieldA = ESMF_FieldCreate(grid, arrayspec, gridToFieldMap=(/2/), &

ungriddedLBound=(/1/), ungriddedUBound=(/10/), rc=rc)

Using the previously computed routehandle, the Fields can be redistributed.

call ESMF_FieldRedist(srcfieldA, dstFieldA, routehandle, rc=rc)

call ESMF_FieldRedistRelease(routehandle, rc=rc)

26.3.31 FieldRedist as a form of scatter involving arbitrary distribution

User can use ESMF_FieldRedist interface to redistribute data from source Field to destination Field, where the
destination Field is built on an arbitrarily distributed structure, e.g. ESMF_Mesh. The underlying mechanism is
explained in section 28.2.19.

In this example, we will create 2 one dimensional Fields, the src Field has a regular decomposition and holds all its
data on a single PET, in this case PET 0. The destination Field is built on a Mesh which is itself built on an arbitrarily
distributed distgrid. Then we use ESMF_FieldRedist to redistribute data from source Field to destination Field,
similar to a traditional scatter operation.

The src Field only has data on PET 0 where it is sequentially initialized, i.e. 1,2,3...This data will be redistributed (or
scattered) from PET 0 to the destination Field arbitrarily distributed on all the PETs.

! a one dimensional grid whose elements are all located on PET 0

distgrid = ESMF_DistGridCreate(minIndex=(/1/), maxIndex=(/9/), &

regDecomp=(/1/), &

rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

grid = ESMF_GridCreate(distgrid=distgrid, &

indexflag=ESMF_INDEX_DELOCAL, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

srcField = ESMF_FieldCreate(grid, typekind=ESMF_TYPEKIND_I4, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! initialize the source data

if (localPet == 0) then

call ESMF_FieldGet(srcField, farrayPtr=srcfptr, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

365

do i = 1, 9

srcfptr(i) = i

enddo

endif

For more information on Mesh creation, user can refer to Mesh examples section or Field creation on Mesh example
for more details.

! Create Mesh structure

mesh=ESMF_MeshCreate(parametricDim=2,spatialDim=2, &

nodeIds=nodeIds, nodeCoords=nodeCoords, &

nodeOwners=nodeOwners, elementIds=elemIds,&

elementTypes=elemTypes, elementConn=elemConn, &

rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

Create the destination Field on the Mesh that is arbitrarily distributed on all the PETs.

dstField = ESMF_FieldCreate(mesh, typekind=ESMF_TYPEKIND_I4, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

Perform the redistribution from source Field to destination Field.

call ESMF_FieldRedistStore(srcField, dstField, &

routehandle=routehandle, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

call ESMF_FieldRedist(srcField, dstField, routehandle=routehandle, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

We can now verify that the sequentially initialized source data is scattered on to the destination Field. The data has
been scattered onto the destination Field with the following distribution.

4 elements on PET 0: 1 2 4 5

2 elements on PET 1: 3 6

2 elements on PET 2: 7 8

1 element on PET 3: 9

Because the redistribution is index based, the elements also corresponds to the index space of Mesh in the destination
Field.

call ESMF_FieldGet(dstField, farrayPtr=dstfptr, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

366

The scatter operation is successful. Since the routehandle computed with ESMF_FieldRedistStore can be
reused, user can use the same routehandle to scatter multiple source Fields from a single PET to multiple destination
Fields distributed on all PETs. The gathering operation is just the opposite of the demonstrated scattering

operation, where a user would redist from a source Field distributed on multiple PETs to a destination Field that only
has data storage on a single PET.

Now it’s time to release all the resources.

call ESMF_FieldRedistRelease(routehandle=routehandle, rc=rc)

26.3.32 FieldRedist as a form of gather involving arbitrary distribution

Similarly, one can use the same approach to gather the data from an arbitrary distribution to a non-arbitrary distribution.
This concept is demonstrated by using the previous Fields but the data operation is reversed. This time data is gathered
from the Field built on the mesh to the Field that has only data allocation on rootPet.

First a FieldRedist routehandle is created from the Field built on Mesh to the Field that has only data allocation on
rootPet.

call ESMF_FieldRedistStore(dstField, srcField, routehandle=routehandle, &

rc=rc)

Perform FieldRedist, this will gather the data points from the Field built on mesh to the data pointer on the rootPet
(default to 0) stored in the srcField.

call ESMF_FieldRedist(dstField, srcField, routehandle=routehandle, rc=rc)

Release the routehandle used for the gather operation.

call ESMF_FieldRedistRelease(routehandle=routehandle, rc=rc)

26.3.33 Sparse matrix multiplication from source Field to destination Field

The ESMF_FieldSMM() interface can be used to perform sparse matrix multiplication from source Field to destina-
tion Field. This interface is overloaded by type and kind;

In this example, we first create two 1D Fields, a source Field and a destination Field. Then we use ESMF_FieldSMM
to perform sparse matrix multiplication from source Field to destination Field.

The source and destination Field data are arranged such that each of the 4 PETs has 4 data elements. Moreover, the
source Field has all its data elements initialized to a linear function based on local PET number. Then collectively on
each PET, a SMM according to the following formula is preformed:
dstF ield(i) = i ∗ srcF ield(i), i = 1...4

Because source Field data are initialized to a linear function based on local PET number, the formula predicts that the
result destination Field data on each PET is 1,2,3,4. This is verified in the example.

Section 28.2.18 provides a detailed discussion of the sparse matrix multiplication operation implemented in ESMF.

367

! Get current VM and pet number

call ESMF_VMGetCurrent(vm, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

call ESMF_VMGet(vm, localPet=lpe, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! create distgrid and grid

distgrid = ESMF_DistGridCreate(minIndex=(/1/), maxIndex=(/16/), &

regDecomp=(/4/), &

rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

grid = ESMF_GridCreate(distgrid=distgrid, &

name="grid", rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

call ESMF_GridGetFieldBounds(grid, localDe=0, totalCount=fa_shape, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! create src_farray, srcArray, and srcField

! +--------+--------+--------+--------+

! 1 2 3 4 ! value

! 1 4 8 12 16 ! bounds

allocate(src_farray(fa_shape(1)))

src_farray = lpe+1

srcArray = ESMF_ArrayCreate(distgrid, src_farray, &

indexflag=ESMF_INDEX_DELOCAL, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

srcField = ESMF_FieldCreate(grid, srcArray, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! create dst_farray, dstArray, and dstField

! +--------+--------+--------+--------+

! 0 0 0 0 ! value

! 1 4 8 12 16 ! bounds

allocate(dst_farray(fa_shape(1)))

dst_farray = 0

dstArray = ESMF_ArrayCreate(distgrid, dst_farray, &

indexflag=ESMF_INDEX_DELOCAL, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

dstField = ESMF_FieldCreate(grid, dstArray, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! perform sparse matrix multiplication

! 1. setup routehandle from source Field to destination Field

! initialize factorList and factorIndexList

allocate(factorList(4))

allocate(factorIndexList(2,4))

factorList = (/1,2,3,4/)

factorIndexList(1,:) = (/lpe*4+1,lpe*4+2,lpe*4+3,lpe*4+4/)

factorIndexList(2,:) = (/lpe*4+1,lpe*4+2,lpe*4+3,lpe*4+4/)

368

call ESMF_FieldSMMStore(srcField, dstField, routehandle, &

factorList, factorIndexList, rc=localrc)

if (localrc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! 2. use precomputed routehandle to perform SMM

call ESMF_FieldSMM(srcfield, dstField, routehandle, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! verify sparse matrix multiplication

call ESMF_FieldGet(dstField, localDe=0, farrayPtr=fptr, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! Verify that the result data in dstField is correct.

! Before the SMM op, the dst Field contains all 0.

! The SMM op reset the values to the index value, verify this is the case.

! +--------+--------+--------+--------+

! 1 2 3 4 2 4 6 8 3 6 9 12 4 8 12 16 ! value

! 1 4 8 12 16 ! bounds

do i = lbound(fptr, 1), ubound(fptr, 1)

if(fptr(i) /= i*(lpe+1)) rc = ESMF_FAILURE

enddo

Field sparse matrix multiplication can also be applied between Fields that matche the original Fields in type, kind, and
memory layout of the gridded dimensions. However, the size, number, and index order of ungridded dimensions may
be different. See section 36.2.4 for a more detailed discussion of RouteHandle reusability

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEKIND_I4, rank=2, rc=rc)

Create two fields with ungridded dimensions using the Grid created previously. The new Field pair has matching
number of elements. The ungridded dimension is mapped to the first dimension of either Field.

srcFieldA = ESMF_FieldCreate(grid, arrayspec, gridToFieldMap=(/2/), &

ungriddedLBound=(/1/), ungriddedUBound=(/10/), rc=rc)

dstFieldA = ESMF_FieldCreate(grid, arrayspec, gridToFieldMap=(/2/), &

ungriddedLBound=(/1/), ungriddedUBound=(/10/), rc=rc)

Using the previously computed routehandle, the sparse matrix multiplication can be performed between the Fields.

call ESMF_FieldSMM(srcfieldA, dstFieldA, routehandle, rc=rc)

! release route handle

call ESMF_FieldSMMRelease(routehandle, rc=rc)

369

In the following discussion, we demonstrate how to set up a SMM routehandle between a pair of Fields that are
different in number of gridded dimensions and the size of those gridded dimensions. The source Field has a 1D
decomposition with 16 total elements; the destination Field has a 2D decomposition with 12 total elements. For ease
of understanding of the actual matrix calculation, a global indexing scheme is used.

distgrid = ESMF_DistGridCreate(minIndex=(/1/), maxIndex=(/16/), &

indexflag=ESMF_INDEX_GLOBAL, &

regDecomp=(/4/), &

rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

grid = ESMF_GridCreate(distgrid=distgrid, &

indexflag=ESMF_INDEX_GLOBAL, &

name="grid", rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

call ESMF_GridGetFieldBounds(grid, localDe=0, totalLBound=tlb, &

totalUBound=tub, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

create 1D src_farray, srcArray, and srcField

+ PET0 + PET1 + PET2 + PET3 +

+--------+--------+--------+--------+

1 2 3 4 ! value

1 4 8 12 16 ! bounds of seq indices

allocate(src_farray2(tlb(1):tub(1)))

src_farray2 = lpe+1

srcArray = ESMF_ArrayCreate(distgrid, src_farray2, &

indexflag=ESMF_INDEX_GLOBAL, &

rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

!print *, lpe, ’+’, tlb, tub, ’+’, src_farray2

srcField = ESMF_FieldCreate(grid, srcArray, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

Create 2D dstField on the following distribution (numbers are the sequence indices):

+ PET0 + PET1 + PET2 + PET3 +

+--------+--------+--------+--------+

| | | | |

| 1 | 4 | 7 | 10 |

| | | | |

+--------+--------+--------+--------+

| | | | |

| 2 | 5 | 8 | 11 |

| | | | |

370

+--------+--------+--------+--------+

| | | | |

| 3 | 6 | 9 | 12 |

| | | | |

+--------+--------+--------+--------+

! Create the destination Grid

dstGrid = ESMF_GridCreateNoPeriDim(minIndex=(/1,1/), maxIndex=(/3,4/), &

indexflag = ESMF_INDEX_GLOBAL, &

regDecomp = (/1,4/), &

rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

dstField = ESMF_FieldCreate(dstGrid, typekind=ESMF_TYPEKIND_R4, &

indexflag=ESMF_INDEX_GLOBAL, &

rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

Perform sparse matrix multiplication dsti = Mi,j * srcj First setup routehandle from source Field to destination Field
with prescribed factorList and factorIndexList.

The sparse matrix is of size 12x16, however only the following entries are filled:

M(3,1) = 0.1

M(3,10) = 0.4

M(8,2) = 0.25

M(8,16) = 0.5

M(12,1) = 0.3

M(12,16) = 0.7

By the definition of matrix calculation, the 8th element on PET2 in the dstField equals to 0.25*srcField(2) + 0.5*sr-
cField(16) = 0.25*1+0.5*4=2.25 For simplicity, we will load the factorList and factorIndexList on PET 0 and 1, the
SMMStore engine will load balance the parameters on all 4 PETs internally for optimal performance.

if(lpe == 0) then

allocate(factorList(3), factorIndexList(2,3))

factorList=(/0.1,0.4,0.25/)

factorIndexList(1,:)=(/1,10,2/)

factorIndexList(2,:)=(/3,3,8/)

call ESMF_FieldSMMStore(srcField, dstField, routehandle=routehandle, &

factorList=factorList, factorIndexList=factorIndexList, rc=localrc)

if (localrc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

else if(lpe == 1) then

allocate(factorList(3), factorIndexList(2,3))

factorList=(/0.5,0.3,0.7/)

factorIndexList(1,:)=(/16,1,16/)

factorIndexList(2,:)=(/8,12,12/)

call ESMF_FieldSMMStore(srcField, dstField, routehandle=routehandle, &

factorList=factorList, factorIndexList=factorIndexList, rc=localrc)

if (localrc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

371

else

call ESMF_FieldSMMStore(srcField, dstField, routehandle=routehandle, &

rc=localrc)

if (localrc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

endif

! 2. use precomputed routehandle to perform SMM

call ESMF_FieldSMM(srcfield, dstField, routehandle=routehandle, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

26.3.34 Field Halo solving a domain decomposed heat transfer problem

The ESMF_FieldHalo() interface can be used to perform halo updates for a Field. This eases communication
programming from a user perspective. By definition, the user program only needs to update locally owned exclusive
region in each domain, then call FieldHalo to communicate the values in the halo region from/to neighboring domain
elements. In this example, we solve a 1D heat transfer problem: ut = α2uxx with the initial condition u(0, x) = 20
and boundary conditions u(t, 0) = 10, u(t, 1) = 40. The temperature field u is represented by a ESMF_Field.
A finite difference explicit time stepping scheme is employed. During each time step, FieldHalo update is called to
communicate values in the halo region to neighboring domain elements. The steady state (as t → ∞) solution is a
linear temperature profile along x. The numerical solution is an approximation of the steady state solution. It can be
verified to represent a linear temperature profile.

Section 28.2.15 provides a discussion of the halo operation implemented in ESMF_Array.

! create 1D distgrid and grid decomposed according to the following diagram:

! +------------+ +----------------+ +---------------+ +--------------+

! | DE 0 | | | | DE 1 | | | | DE 2 | | | | DE 3 |

! | 1 x 16 | | | | 1 x 16 | | | | 1 x 16 | | | | 1 x 16 |

! | | 1|<->|1 | | 1|<->|1 | | 1|<->|1 | |

! | | | | | | | | | | | | | |

! +------------+ +----------------+ +---------------+ +--------------+

distgrid = ESMF_DistGridCreate(minIndex=(/1/), maxIndex=(/npx/), &

regDecomp=(/4/), rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

grid = ESMF_GridCreate(distgrid=distgrid, name="grid", rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

! set up initial condition and boundary conditions of the

! temperature Field

if(lpe == 0) then

allocate(fptr(17), tmp_farray(17))

fptr = 20.

fptr(1) = 10.

tmp_farray(1) = 10.

startx = 2

endx = 16

field = ESMF_FieldCreate(grid, fptr, totalUWidth=(/1/), &

name="temperature", rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

else if(lpe == 3) then

allocate(fptr(17), tmp_farray(17))

372

fptr = 20.

fptr(17) = 40.

tmp_farray(17) = 40.

startx = 2

endx = 16

field = ESMF_FieldCreate(grid, fptr, totalLWidth=(/1/), &

name="temperature", rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

else

allocate(fptr(18), tmp_farray(18))

fptr = 20.

startx = 2

endx = 17

field = ESMF_FieldCreate(grid, fptr, &

totalLWidth=(/1/), totalUWidth=(/1/), name="temperature", rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

endif

! compute the halo update routehandle of the decomposed temperature Field

call ESMF_FieldHaloStore(field, routehandle=routehandle, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

dt = 0.01

dx = 1./npx

alpha = 0.1

! Employ explicit time stepping

! Solution converges after about 9000 steps based on apriori knowledge.

! The result is a linear temperature profile stored in field.

do iter = 1, 9000

! only elements in the exclusive region are updated locally

! in each domain

do i = startx, endx

tmp_farray(i) = &

fptr(i)+alpha*alpha*dt/dx/dx*(fptr(i+1)-2.*fptr(i)+fptr(i-1))

enddo

fptr = tmp_farray

! call halo update to communicate the values in the halo region to

! neighboring domains

call ESMF_FieldHalo(field, routehandle=routehandle, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

enddo

! release the halo routehandle

call ESMF_FieldHaloRelease(routehandle, rc=rc)

26.4 Restrictions and Future Work

1. CAUTION: It depends on the specific entry point of ESMF_FieldCreate() used during Field cre-

ation, which Fortran operations are supported on the Fortran array pointer farrayPtr, returned by

ESMF_FieldGet(). Only if the ESMF_FieldCreate() from pointer variant was used, will the returned

373

farrayPtr variable contain the original bounds information, and be suitable for the Fortran deallocate()

call. This limitation is a direct consequence of the Fortran 95 standard relating to the passing of array arguments.

2. No mathematical operators. The Fields class does not currently support advanced operations on fields, such

as differential or other mathematical operators.

3. No vector Fields. ESMF does not currently support storage of multiple vector Field components in the same

Field component, although that support is planned. At this time users need to create a separate Field object to

represent each vector component.

26.5 Design and Implementation Notes

1. Some methods which have a Field interface are actually implemented at the underlying Grid or Array level;

they are inherited by the Field class. This allows the user API (Application Programming Interface) to present

functions at the level which is most consistent to the application without restricting where inside the ESMF the

actual implementation is done.

2. The Field class is implemented in Fortran, and as such is defined inside the framework by a Field derived type

and a set of subprograms (functions and subroutines) which operate on that derived type. The Field class itself

is very thin; it is a container class which groups a Grid and an Array object together.

3. Fields follow the framework-wide convention of the unison creation and operation rule: All PETs which are

part of the currently executing VM must create the same Fields at the same point in their execution. Since an

early user request was that global object creation not impose the overhead of a barrier or synchronization point,

Field creation does no inter-PET communication. For this to work, each PET must query the total number of

PETs in this VM, and which local PET number it is. It can then compute which DE(s) are part of the local

decomposition, and any global information can be computed in unison by all PETs independently of the others.

In this way the overhead of communication is avoided, at the cost of more difficulty in diagnosing program bugs

which result from not all PETs executing the same create calls.

4. Related to the item above, the user request to not impose inter-PET communication at object creation time

means that requirement FLD 1.5.1, that all Fields will have unique names, and if not specified, the framework

will generate a unique name for it, is difficult or impossible to support. A part of this requirement has been

implemented; a unique object counter is maintained in the Base object class, and if a name is not given at create

time a name such as "Field003" is generated which is guaranteed to not be repeated by the framework. However,

it is impossible to error check that the user has not replicated a name, and it is possible under certain conditions

that if not all PETs have created the same number of objects, that the counters on different PETs may not stay

synchronized. This remains an open issue.

26.6 Class API

26.6.1 ESMF_FieldAssignment(=) - Field assignment

INTERFACE:

interface assignment(=)

field1 = field2

ARGUMENTS:

374

type(ESMF_Field) :: field1

type(ESMF_Field) :: field2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Assign field1 as an alias to the same ESMF Field object in memory as field2. If field2 is invalid, then field1 will be
equally invalid after the assignment.

The arguments are:

field1 The ESMF_Field object on the left hand side of the assignment.

field2 The ESMF_Field object on the right hand side of the assignment.

26.6.2 ESMF_FieldOperator(==) - Field equality operator

INTERFACE:

interface operator(==)

if (field1 == field2) then ... endif

OR

result = (field1 == field2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_Field), intent(in) :: field1

type(ESMF_Field), intent(in) :: field2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Test whether field1 and field2 are valid aliases to the same ESMF Field object in memory. For a more general compar-
ison of two ESMF Fields, going beyond the simple alias test, the ESMF_FieldMatch() function (not yet implemented)
must be used.

The arguments are:

375

field1 The ESMF_Field object on the left hand side of the equality operation.

field2 The ESMF_Field object on the right hand side of the equality operation.

26.6.3 ESMF_FieldOperator(/=) - Field not equal operator

INTERFACE:

interface operator(/=)

if (field1 /= field2) then ... endif

OR

result = (field1 /= field2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_Field), intent(in) :: field1

type(ESMF_Field), intent(in) :: field2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Test whether field1 and field2 are not valid aliases to the same ESMF Field object in memory. For a more gen-
eral comparison of two ESMF Fields, going beyond the simple alias test, the ESMF_FieldMatch() function (not yet
implemented) must be used.

The arguments are:

field1 The ESMF_Field object on the left hand side of the non-equality operation.

field2 The ESMF_Field object on the right hand side of the non-equality operation.

26.6.4 ESMF_FieldCopy - Copy data from one Field object to another

INTERFACE:

subroutine ESMF_FieldCopy(fieldOut, fieldIn, rc)

376

ARGUMENTS:

type(ESMF_Field), intent(inout) :: fieldOut

type(ESMF_Field), intent(in) :: fieldIn

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Copy data from one ESMF_Field object to another.

The arguments are:

fieldOut ESMF_Field object into which to copy the data. The incoming fieldOut must already references a
matching memory allocation.

fieldIn ESMF_Field object that holds the data to be copied.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.5 ESMF_FieldCreate - Create a Field from Grid and typekind

INTERFACE:

! Private name; call using ESMF_FieldCreate()

function ESMF_FieldCreateGridTKR(grid, typekind, &

indexflag, staggerloc, gridToFieldMap, ungriddedLBound, ungriddedUBound, &

totalLWidth, totalUWidth, pinflag, name, rc)

RETURN VALUE:

type(ESMF_Field) :: ESMF_FieldCreateGridTKR

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid

type(ESMF_TypeKind_Flag),intent(in) :: typekind

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Index_Flag), intent(in), optional :: indexflag

type(ESMF_StaggerLoc), intent(in), optional :: staggerloc

integer, intent(in), optional :: gridToFieldMap(:)

integer, intent(in), optional :: ungriddedLBound(:)

integer, intent(in), optional :: ungriddedUBound(:)

integer, intent(in), optional :: totalLWidth(:)

integer, intent(in), optional :: totalUWidth(:)

type(ESMF_Pin_Flag), intent(in), optional :: pinflag

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

377

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

8.1.0 Added argument pinflag to provide access to DE sharing between PETs.

DESCRIPTION:

Create an ESMF_Field and allocate space internally for an ESMF_Array. Return a new ESMF_Field. For an
example and associated documentation using this method see section 26.3.4.

The arguments are:

grid ESMF_Grid object.

typekind The typekind of the Field. See section 52.59 for a list of valid typekind options.

[indexflag] Indicate how DE-local indices are defined. By default each DE’s exclusive region is placed to start at
the local index space origin, i.e. (1, 1, ..., 1). Alternatively the DE-local index space can be aligned with the
global index space, if a global index space is well defined by the associated Grid. See section 52.27 for a list of
valid indexflag options. The default indexflag value is the one stored in then ESMF_Grid object. Currently it
is erroneous to specify an indexflag different from the one stored in the ESMF_Grid object. The default value
is ESMF_INDEX_DELOCAL

[staggerloc] Stagger location of data in grid cells. For valid predefined values see section 31.2.6. To create a custom
stagger location see section 31.3.25. The default value is ESMF_STAGGERLOC_CENTER.

[gridToFieldMap] List with number of elements equal to the grid’s dimCount. The list elements map each dimen-
sion of the grid to a dimension in the field by specifying the appropriate field dimension index. The
default is to map all of the grid’s dimensions against the lowest dimensions of the field in sequence, i.e.
gridToFieldMap = (/1,2,3,.../). The values of all gridToFieldMap entries must be greater than or equal
to one and smaller than or equal to the field rank. It is erroneous to specify the same gridToFieldMap
entry multiple times. The total ungridded dimensions in the field are the total field dimensions less the di-

mensions in the grid. Ungridded dimensions must be in the same order they are stored in the ⁀field. If the Field
dimCount is less than the Grid dimCount then the default gridToFieldMap will contain zeros for the rightmost
entries. A zero entry in the gridToFieldMap indicates that the particular Grid dimension will be replicating
the Field across the DEs along this direction.

[ungriddedLBound] Lower bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the field.

[ungriddedUBound] Upper bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the field.

378

[totalLWidth] Lower bound of halo region. The size of this array is the number of gridded dimensions in the Field.
However, ordering of the elements needs to be the same as they appear in the field. Values default to 0. If
values for totalLWidth are specified they must be reflected in the size of the field. That is, for each gridded
dimension the field size should be max(totalLWidth + totalUWidth + computationalCount,
exclusiveCount).

[totalUWidth] Upper bound of halo region. The size of this array is the number of gridded dimensions in the Field.
However, ordering of the elements needs to be the same as they appear in the field. Values default to 0. If
values for totalUWidth are specified they must be reflected in the size of the field. That is, for each grid-
ded dimension the field size should max(totalLWidth + totalUWidth + computationalCount,
exclusiveCount).

[pinflag] Specify which type of resource DEs are pinned to. See section 48.2.1 for a list of valid pinning options. The
default is to pin DEs to PETs, i.e. only the PET on which a DE was created considers the DE as local.

[name] Field name.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.6 ESMF_FieldCreate - Create a Field from Grid and ArraySpec

INTERFACE:

! Private name; call using ESMF_FieldCreate()

function ESMF_FieldCreateGridArraySpec(grid, arrayspec, &

indexflag, staggerloc, gridToFieldMap, ungriddedLBound, &

ungriddedUBound, totalLWidth, totalUWidth, pinflag, name, rc)

RETURN VALUE:

type(ESMF_Field) :: ESMF_FieldCreateGridArraySpec

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid

type(ESMF_ArraySpec), intent(in) :: arrayspec

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Index_Flag), intent(in), optional :: indexflag

type(ESMF_StaggerLoc), intent(in), optional :: staggerloc

integer, intent(in), optional :: gridToFieldMap(:)

integer, intent(in), optional :: ungriddedLBound(:)

integer, intent(in), optional :: ungriddedUBound(:)

integer, intent(in), optional :: totalLWidth(:)

integer, intent(in), optional :: totalUWidth(:)

type(ESMF_Pin_Flag), intent(in), optional :: pinflag

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

STATUS:

379

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

8.1.0 Added argument pinflag to provide access to DE sharing between PETs.

DESCRIPTION:

Create an ESMF_Field and allocate space internally for an ESMF_Array. Return a new ESMF_Field. For an
example and associated documentation using this method see section 26.3.5.

The arguments are:

grid ESMF_Grid object.

arrayspec Data type and kind specification.

[indexflag] Indicate how DE-local indices are defined. By default each DE’s exclusive region is placed to start at
the local index space origin, i.e. (1, 1, ..., 1). Alternatively the DE-local index space can be aligned with the
global index space, if a global index space is well defined by the associated Grid. See section 52.27 for a list of
valid indexflag options. The default indexflag value is the one stored in then ESMF_Grid object. Currently it
is erroneous to specify an indexflag different from the one stored in the ESMF_Grid object.The default value
is ESMF_INDEX_DELOCAL

[staggerloc] Stagger location of data in grid cells. For valid predefined values see section 31.2.6. To create a custom
stagger location see section 31.3.25. The default value is ESMF_STAGGERLOC_CENTER.

[gridToFieldMap] List with number of elements equal to the grid’s dimCount. The list elements map each dimen-
sion of the grid to a dimension in the field by specifying the appropriate field dimension index. The
default is to map all of the grid’s dimensions against the lowest dimensions of the field in sequence, i.e.
gridToFieldMap = (/1,2,3,.../). The values of all gridToFieldMap entries must be greater than or equal
to one and smaller than or equal to the field rank. It is erroneous to specify the same gridToFieldMap
entry multiple times. The total ungridded dimensions in the field are the total field dimensions less the di-

mensions in the grid. Ungridded dimensions must be in the same order they are stored in the ⁀field. If the Field
dimCount is less than the Grid dimCount then the default gridToFieldMap will contain zeros for the rightmost
entries. A zero entry in the gridToFieldMap indicates that the particular Grid dimension will be replicating
the Field across the DEs along this direction.

[ungriddedLBound] Lower bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the field.

[ungriddedUBound] Upper bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the field.

[totalLWidth] Lower bound of halo region. The size of this array is the number of gridded dimensions in the Field.
However, ordering of the elements needs to be the same as they appear in the field. Values default to 0. If

380

values for totalLWidth are specified they must be reflected in the size of the field. That is, for each gridded
dimension the field size should be max(totalLWidth + totalUWidth + computationalCount,
exclusiveCount).

[totalUWidth] Upper bound of halo region. The size of this array is the number of gridded dimensions in the Field.
However, ordering of the elements needs to be the same as they appear in the field. Values default to 0. If
values for totalUWidth are specified they must be reflected in the size of the field. That is, for each grid-
ded dimension the field size should max(totalLWidth + totalUWidth + computationalCount,
exclusiveCount).

[pinflag] Specify which type of resource DEs are pinned to. See section 48.2.1 for a list of valid pinning options. The
default is to pin DEs to PETs, i.e. only the PET on which a DE was created considers the DE as local.

[name] Field name.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.7 ESMF_FieldCreate - Create a Field from Grid and Array

INTERFACE:

! Private name; call using ESMF_FieldCreate()

function ESMF_FieldCreateGridArray(grid, array, datacopyflag, &

staggerloc, gridToFieldMap, ungriddedLBound, ungriddedUBound, &

totalLWidth, totalUWidth, name, vm, rc)

RETURN VALUE:

type(ESMF_Field) :: ESMF_FieldCreateGridArray

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid

type(ESMF_Array), intent(in) :: array

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_DataCopy_Flag), intent(in), optional :: datacopyflag

type(ESMF_StaggerLoc), intent(in), optional :: staggerloc

integer, intent(in), optional :: gridToFieldMap(:)

integer, intent(in), optional :: ungriddedLBound(:)

integer, intent(in), optional :: ungriddedUBound(:)

integer, intent(in), optional :: totalLWidth(:)

integer, intent(in), optional :: totalUWidth(:)

character (len = *), intent(in), optional :: name

type(ESMF_VM), intent(in), optional :: vm

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

381

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

8.0.0 Added argument vm to support object creation on a different VM than that of the current context.

DESCRIPTION:

Create an ESMF_Field. This version of creation assumes the data exists already and is being passed in through an
ESMF_Array. For an example and associated documentation using this method see section 26.3.6.

The arguments are:

grid ESMF_Grid object.

array ESMF_Array object.

[datacopyflag] Indicates whether to copy the contents of the array or reference it directly. For valid values see
52.12. The default is ESMF_DATACOPY_REFERENCE.

[staggerloc] Stagger location of data in grid cells. For valid predefined values see section 31.2.6. To create a custom
stagger location see section 31.3.25. The default value is ESMF_STAGGERLOC_CENTER.

[gridToFieldMap] List with number of elements equal to the grid’s dimCount. The list elements map each dimen-
sion of the grid to a dimension in the field by specifying the appropriate field dimension index. The
default is to map all of the grid’s dimensions against the lowest dimensions of the field in sequence, i.e.
gridToFieldMap = (/1,2,3,.../). The values of all gridToFieldMap entries must be greater than or equal
to one and smaller than or equal to the field rank. It is erroneous to specify the same gridToFieldMap
entry multiple times. The total ungridded dimensions in the field are the total field dimensions less the di-

mensions in the grid. Ungridded dimensions must be in the same order they are stored in the ⁀field. If the Field
dimCount is less than the Grid dimCount then the default gridToFieldMap will contain zeros for the rightmost
entries. A zero entry in the gridToFieldMap indicates that the particular Grid dimension will be replicating
the Field across the DEs along this direction.

[ungriddedLBound] Lower bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the field.

[ungriddedUBound] Upper bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the field.

[totalLWidth] Lower bound of halo region. The size of this array is the number of gridded dimensions in the Field.
However, ordering of the elements needs to be the same as they appear in the field. Values default to 0. If
values for totalLWidth are specified they must be reflected in the size of the field. That is, for each gridded
dimension the field size should be max(totalLWidth + totalUWidth + computationalCount,
exclusiveCount).

[totalUWidth] Upper bound of halo region. The size of this array is the number of gridded dimensions in the Field.
However, ordering of the elements needs to be the same as they appear in the field. Values default to 0. If
values for totalUWidth are specified they must be reflected in the size of the field. That is, for each grid-
ded dimension the field size should max(totalLWidth + totalUWidth + computationalCount,
exclusiveCount).

382

[name] Field name.

[vm] If present, the Field object is constructed on the specified ESMF_VM object. The default is to construct on the
VM of the current component context.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.8 ESMF_FieldCreate - Create a Field from Grid and Fortran array

INTERFACE:

! Private name; call using ESMF_FieldCreate()

function ESMF_FieldCreateGridData<rank><type><kind>(grid, &

farray, indexflag, datacopyflag, staggerloc, &

gridToFieldMap, ungriddedLBound, ungriddedUBound, &

totalLWidth, totalUWidth, name, rc)

RETURN VALUE:

type(ESMF_Field) :: ESMF_FieldCreateGridData<rank><type><kind>

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid

<type> (ESMF_KIND_<kind>),intent(in), target :: farray(<rank>)

type(ESMF_Index_Flag), intent(in) :: indexflag

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_DataCopy_Flag), intent(in), optional :: datacopyflag

type(ESMF_StaggerLoc), intent(in), optional :: staggerloc

integer, intent(in), optional :: gridToFieldMap(:)

integer, intent(in), optional :: ungriddedLBound(:)

integer, intent(in), optional :: ungriddedUBound(:)

integer, intent(in), optional :: totalLWidth(:)

integer, intent(in), optional :: totalUWidth(:)

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Create an ESMF_Field from a Fortran data array and ESMF_Grid. The Fortran data pointer inside ESMF_Field
can be queried but deallocating the retrieved data pointer is not allowed. For examples and associated documentation
regarding this method see section 26.3.11, 26.3.13, 26.3.14, 26.3.15, and 26.3.9.

The arguments are:

383

grid ESMF_Grid object.

farray Native Fortran data array to be copied/referenced in the Field The Field dimension (dimCount) will be the
same as the dimCount for the farray.

indexflag Indicate how DE-local indices are defined. See section 52.27 for a list of valid indexflag options. Currently
it is erroneous to specify an indexflag different from the one stored in the ESMF_Grid object.

[datacopyflag] Whether to copy the contents of the farray or reference it directly. For valid values see 52.12. The
default is ESMF_DATACOPY_REFERENCE.

[staggerloc] Stagger location of data in grid cells. For valid predefined values see section 31.2.6. To create a custom
stagger location see section 31.3.25. The default value is ESMF_STAGGERLOC_CENTER.

[gridToFieldMap] List with number of elements equal to the grid’s dimCount. The list elements map each dimen-
sion of the grid to a dimension in the farray by specifying the appropriate farray dimension index. The
default is to map all of the grid’s dimensions against the lowest dimensions of the farray in sequence, i.e.
gridToFieldMap = (/1,2,3,.../). The values of all gridToFieldMap entries must be greater than or equal
to one and smaller than or equal to the farray rank. It is erroneous to specify the same gridToFieldMap
entry multiple times. The total ungridded dimensions in the field are the total farray dimensions less the
total (distributed + undistributed) dimensions in the grid. Ungridded dimensions must be in the same order

they are stored in the ⁀farray. Permutations of the order of dimensions are handled via individual communication
methods. For example, an undistributed dimension can be remapped to a distributed dimension as part of the
ESMF_ArrayRedist() operation. If the Field dimCount is less than the Grid dimCount then the default
gridToFieldMap will contain zeros for the rightmost entries. A zero entry in the gridToFieldMap indicates
that the particular Grid dimension will be replicating the Field across the DEs along this direction.

[ungriddedLBound] Lower bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the farray.

[ungriddedUBound] Upper bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the farray.

[totalLWidth] Lower bound of halo region. The size of this array is the number of gridded dimensions in the Field.
However, ordering of the elements needs to be the same as they appear in the farray. Values default to 0. If
values for totalLWidth are specified they must be reflected in the size of the farray. That is, for each gridded
dimension the farray size should be max(totalLWidth + totalUWidth + computationalCount,
exclusiveCount).

[totalUWidth] Upper bound of halo region. The size of this array is the number of gridded dimensions in the Field.
However, ordering of the elements needs to be the same as they appear in the farray. Values default to 0. If
values for totalUWidth are specified they must be reflected in the size of the farray. That is, for each gridded
dimension the farray size should max(totalLWidth + totalUWidth + computationalCount,
exclusiveCount).

[name] Field name.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

384

26.6.9 ESMF_FieldCreate - Create a Field from Grid and Fortran array pointer

INTERFACE:

! Private name; call using ESMF_FieldCreate()

function ESMF_FieldCreateGridDataPtr<rank><type><kind>(grid, &

farrayPtr, datacopyflag, staggerloc, gridToFieldMap, &

totalLWidth, totalUWidth, name, rc)

RETURN VALUE:

type(ESMF_Field) :: ESMF_FieldCreateGridDataPtr<rank><type><kind>

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid

<type> (ESMF_KIND_<kind>), pointer :: farrayPtr(<rank>)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_DataCopy_Flag), intent(in), optional :: datacopyflag

type(ESMF_StaggerLoc), intent(in), optional :: staggerloc

integer, intent(in), optional :: gridToFieldMap(:)

integer, intent(in), optional :: totalLWidth(:)

integer, intent(in), optional :: totalUWidth(:)

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Create an ESMF_Field from a Fortran data pointer and ESMF_Grid. The Fortran data pointer inside
ESMF_Field can be queried and deallocated when datacopyflag is ESMF_DATACOPY_REFERENCE. Note that the
ESMF_FieldDestroy call does not deallocate the Fortran data pointer in this case. This gives user more flexibility
over memory management.

For examples and associated documentation regarding this method see section 26.3.12, 26.3.13, 26.3.14, 26.3.15, and
26.3.9.

The arguments are:

grid ESMF_Grid object.

farrayPtr Native Fortran data pointer to be copied/referenced in the Field The Field dimension (dimCount) will be
the same as the dimCount for the farrayPtr.

[datacopyflag] Whether to copy the contents of the farrayPtr or reference it directly. For valid values see 52.12.
The default is ESMF_DATACOPY_REFERENCE.

385

[staggerloc] Stagger location of data in grid cells. For valid predefined values see section 31.2.6. To create a custom
stagger location see section 31.3.25. The default value is ESMF_STAGGERLOC_CENTER.

[gridToFieldMap] List with number of elements equal to the grid’s dimCount. The list elements map each dimen-
sion of the grid to a dimension in the farrayPtr by specifying the appropriate farrayPtr dimension
index. The default is to map all of the grid’s dimensions against the lowest dimensions of the farrayPtr
in sequence, i.e. gridToFieldMap = (/1,2,3,.../). The values of all gridToFieldMap entries must be
greater than or equal to one and smaller than or equal to the farrayPtr rank. It is erroneous to specify the
same gridToFieldMap entry multiple times. The total ungridded dimensions in the field are the total
farrayPtr dimensions less the total (distributed + undistributed) dimensions in the grid. Ungridded dimen-

sions must be in the same order they are stored in the ⁀farrayPtr. Permutations of the order of dimensions are
handled via individual communication methods. For example, an undistributed dimension can be remapped to
a distributed dimension as part of the ESMF_ArrayRedist() operation. If the Field dimCount is less than
the Grid dimCount then the default gridToFieldMap will contain zeros for the rightmost entries. A zero entry
in the gridToFieldMap indicates that the particular Grid dimension will be replicating the Field across the
DEs along this direction.

[totalLWidth] Lower bound of halo region. The size of this array is the number of gridded dimensions in the Field.
However, ordering of the elements needs to be the same as they appear in the farrayPtr. Values default
to 0. If values for totalLWidth are specified they must be reflected in the size of the farrayPtr. That
is, for each gridded dimension the farrayPtr size should be max(totalLWidth + totalUWidth +
computationalCount, exclusiveCount).

[totalUWidth] Upper bound of halo region. The size of this array is the number of gridded dimensions in the
Field. However, ordering of the elements needs to be the same as they appear in the farrayPtr. Values
default to 0. If values for totalUWidth are specified they must be reflected in the size of the farrayPtr.
That is, for each gridded dimension the farrayPtr size should max(totalLWidth + totalUWidth +
computationalCount, exclusiveCount).

[name] Field name.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.10 ESMF_FieldCreate - Create a Field from LocStream and typekind

INTERFACE:

! Private name; call using ESMF_FieldCreate()

function ESMF_FieldCreateLSTKR(locstream, typekind, &

gridToFieldMap, ungriddedLBound, ungriddedUBound, pinflag, name, rc)

RETURN VALUE:

type(ESMF_Field) :: ESMF_FieldCreateLSTKR

ARGUMENTS:

type(ESMF_LocStream), intent(in) :: locstream

type(ESMF_TypeKind_Flag),intent(in) :: typekind

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: gridToFieldMap(:)

386

integer, intent(in), optional :: ungriddedLBound(:)

integer, intent(in), optional :: ungriddedUBound(:)

type(ESMF_Pin_Flag), intent(in), optional :: pinflag

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

Create an ESMF_Field and allocate space internally for an ESMF_Array. Return a new ESMF_Field. For an
example and associated documentation using this method see section 26.3.16.

The arguments are:

locstream ESMF_LocStream object.

typekind The typekind of the Field. See section 52.59 for a list of valid typekind options.

[gridToFieldMap] List with number of elements equal to the grid’s dimCount. The list elements map each dimen-
sion of the grid to a dimension in the field by specifying the appropriate field dimension index. The
default is to map all of the grid’s dimensions against the lowest dimensions of the field in sequence, i.e.
gridToFieldMap = (/1,2,3,.../). The values of all gridToFieldMap entries must be greater than or equal
to one and smaller than or equal to the field rank. It is erroneous to specify the same gridToFieldMap
entry multiple times. The total ungridded dimensions in the field are the total field dimensions less the

dimensions in the grid. Ungridded dimensions must be in the same order they are stored in the ⁀field. If the
Field dimCount is less than the LocStream dimCount then the default gridToFieldMap will contain zeros for the
rightmost entries. A zero entry in the gridToFieldMap indicates that the particular LocStream dimension
will be replicating the Field across the DEs along this direction.

[ungriddedLBound] Lower bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the field.

[ungriddedUBound] Upper bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the field.

[pinflag] Specify which type of resource DEs are pinned to. See section 48.2.1 for a list of valid pinning options. The
default is to pin DEs to PETs, i.e. only the PET on which a DE was created considers the DE as local.

[name] Field name.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.11 ESMF_FieldCreate - Create a Field from LocStream and ArraySpec

INTERFACE:

387

! Private name; call using ESMF_FieldCreate()

function ESMF_FieldCreateLSArraySpec(locstream, arrayspec, &

gridToFieldMap, ungriddedLBound, ungriddedUBound, pinflag, name, rc)

RETURN VALUE:

type(ESMF_Field) :: ESMF_FieldCreateLSArraySpec

ARGUMENTS:

type(ESMF_LocStream), intent(in) :: locstream

type(ESMF_ArraySpec), intent(in) :: arrayspec

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: gridToFieldMap(:)

integer, intent(in), optional :: ungriddedLBound(:)

integer, intent(in), optional :: ungriddedUBound(:)

type(ESMF_Pin_Flag), intent(in), optional :: pinflag

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

Create an ESMF_Field and allocate space internally for an ESMF_Array. Return a new ESMF_Field. For an
example and associated documentation using this method see section 26.3.17.

The arguments are:

locstream ESMF_LocStream object.

arrayspec Data type and kind specification.

[gridToFieldMap] List with number of elements equal to the grid’s dimCount. The list elements map each dimen-
sion of the grid to a dimension in the field by specifying the appropriate field dimension index. The
default is to map all of the grid’s dimensions against the lowest dimensions of the field in sequence, i.e.
gridToFieldMap = (/1,2,3,.../). The values of all gridToFieldMap entries must be greater than or equal
to one and smaller than or equal to the field rank. It is erroneous to specify the same gridToFieldMap
entry multiple times. The total ungridded dimensions in the field are the total field dimensions less the

dimensions in the grid. Ungridded dimensions must be in the same order they are stored in the ⁀field. If the
Field dimCount is less than the LocStream dimCount then the default gridToFieldMap will contain zeros for the
rightmost entries. A zero entry in the gridToFieldMap indicates that the particular LocStream dimension
will be replicating the Field across the DEs along this direction.

[ungriddedLBound] Lower bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the field.

[ungriddedUBound] Upper bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the field.

[pinflag] Specify which type of resource DEs are pinned to. See section 48.2.1 for a list of valid pinning options. The
default is to pin DEs to PETs, i.e. only the PET on which a DE was created considers the DE as local.

388

[name] Field name.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.12 ESMF_FieldCreate - Create a Field from LocStream and Array

INTERFACE:

! Private name; call using ESMF_FieldCreate()

function ESMF_FieldCreateLSArray(locstream, array, &

datacopyflag, gridToFieldMap, ungriddedLBound, ungriddedUBound, &

name, rc)

RETURN VALUE:

type(ESMF_Field) :: ESMF_FieldCreateLSArray

ARGUMENTS:

type(ESMF_LocStream), intent(in) :: locstream

type(ESMF_Array), intent(in) :: array

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_DataCopy_Flag), intent(in), optional :: datacopyflag

integer, intent(in), optional :: gridToFieldMap(:)

integer, intent(in), optional :: ungriddedLBound(:)

integer, intent(in), optional :: ungriddedUBound(:)

character (len = *), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

Create an ESMF_Field. This version of creation assumes the data exists already and is being passed in through an
ESMF_Array. For an example and associated documentation using this method see section 26.3.6.

The arguments are:

locstream ESMF_LocStream object.

array ESMF_Array object.

[datacopyflag] Indicates whether to copy the contents of the array or reference it directly. For valid values see
52.12. The default is ESMF_DATACOPY_REFERENCE.

[gridToFieldMap] List with number of elements equal to the grid’s dimCount. The list elements map each dimen-
sion of the grid to a dimension in the field by specifying the appropriate field dimension index. The
default is to map all of the grid’s dimensions against the lowest dimensions of the field in sequence, i.e.
gridToFieldMap = (/1,2,3,.../). The values of all gridToFieldMap entries must be greater than or equal
to one and smaller than or equal to the field rank. It is erroneous to specify the same gridToFieldMap
entry multiple times. The total ungridded dimensions in the field are the total field dimensions less the

dimensions in the grid. Ungridded dimensions must be in the same order they are stored in the ⁀field. If the

389

Field dimCount is less than the LocStream dimCount then the default gridToFieldMap will contain zeros for the
rightmost entries. A zero entry in the gridToFieldMap indicates that the particular LocStream dimension
will be replicating the Field across the DEs along this direction.

[ungriddedLBound] Lower bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the field.

[ungriddedUBound] Upper bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the field.

[name] Field name.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.13 ESMF_FieldCreate - Create a Field from LocStream and Fortran array

INTERFACE:

! Private name; call using ESMF_FieldCreate()

function ESMF_FieldCreateLSData<rank><type><kind>(locstream, farray, &

indexflag, datacopyflag, gridToFieldMap, ungriddedLBound, &

ungriddedUBound, name, rc)

RETURN VALUE:

type(ESMF_Field) :: ESMF_FieldCreateLSData<rank><type><kind>

ARGUMENTS:

type(ESMF_LocStream), intent(in) :: locstream

<type> (ESMF_KIND_<kind>),intent(in), target :: farray(<rank>)

type(ESMF_Index_Flag), intent(in) :: indexflag

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_DataCopy_Flag), intent(in), optional :: datacopyflag

integer, intent(in), optional :: gridToFieldMap(:)

integer, intent(in), optional :: ungriddedLBound(:)

integer, intent(in), optional :: ungriddedUBound(:)

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

390

DESCRIPTION:

Create an ESMF_Field from a Fortran data array and ESMF_LocStream. The Fortran data pointer inside
ESMF_Field can be queried but deallocating the retrieved data pointer is not allowed.

The arguments are:

locstream ESMF_LocStream object.

farray Native Fortran data array to be copied/referenced in the Field The Field dimension (dimCount) will be the
same as the dimCount for the farray.

indexflag Indicate how DE-local indices are defined. See section 52.27 for a list of valid indexflag options.

[datacopyflag] Whether to copy the contents of the farray or reference directly. For valid values see 52.12. The
default is ESMF_DATACOPY_REFERENCE.

[gridToFieldMap] List with number of elements equal to the locstream’s dimCount. The list elements map
each dimension of the locstream to a dimension in the farray by specifying the appropriate farray
dimension index. The default is to map all of the locstream’s dimensions against the lowest dimensions
of the farray in sequence, i.e. gridToFieldMap = (/1,2,3,.../). The values of all gridToFieldMap
entries must be greater than or equal to one and smaller than or equal to the farray rank. It is erroneous
to specify the same gridToFieldMap entry multiple times. The total ungridded dimensions in the field
are the total farray dimensions less the total (distributed + undistributed) dimensions in the locstream.

Unlocstreamded dimensions must be in the same order they are stored in the ⁀farray. Permutations of the order
of dimensions are handled via individual communication methods. For example, an undistributed dimension
can be remapped to a distributed dimension as part of the ESMF_ArrayRedist() operation. If the Field
dimCount is less than the LocStream dimCount then the default gridToFieldMap will contain zeros for the
rightmost entries. A zero entry in the gridToFieldMap indicates that the particular LocStream dimension
will be replicating the Field across the DEs along this direction.

[ungriddedLBound] Lower bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in the field. All ungridded dimen-
sions of the field are also undistributed. When field dimension count is greater than locstream dimension
count, both ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are
checked for consistency. Note that the the ordering of these ungridded dimensions is the same as their order in
the farray.

[ungriddedUBound] Upper bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in the field. All ungridded dimen-
sions of the field are also undistributed. When field dimension count is greater than locstream dimension
count, both ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are
checked for consistency. Note that the the ordering of these ungridded dimensions is the same as their order in
the farray.

[name] Field name.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.14 ESMF_FieldCreate - Create a Field from LocStream and Fortran array pointer

INTERFACE:

391

! Private name; call using ESMF_FieldCreate()

function ESMF_FieldCreateLSDataPtr<rank><type><kind>(locstream, &

farrayPtr, datacopyflag, gridToFieldMap, &

name, rc)

RETURN VALUE:

type(ESMF_Field) :: ESMF_FieldCreateLSDataPtr<rank><type><kind>

ARGUMENTS:

type(ESMF_LocStream), intent(in) :: locstream

<type> (ESMF_KIND_<kind>),pointer :: farrayPtr(<rank>)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_DataCopy_Flag), intent(in), optional :: datacopyflag

integer, intent(in), optional :: gridToFieldMap(:)

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

Create an ESMF_Field from a Fortran data pointer and ESMF_LocStream. The Fortran data pointer inside
ESMF_Field can be queried and deallocated when datacopyflag is ESMF_DATACOPY_REFERENCE. Note that the
ESMF_FieldDestroy call does not deallocate the Fortran data pointer in this case. This gives user more flexibility
over memory management.

The arguments are:

locstream ESMF_LocStream object.

farrayPtr Native Fortran data pointer to be copied/referenced in the Field The Field dimension (dimCount) will be
the same as the dimCount for the farrayPtr.

[datacopyflag] Whether to copy the contents of the farrayPtr or reference it directly. For valid values see 52.12.
The default is ESMF_DATACOPY_REFERENCE.

[gridToFieldMap] List with number of elements equal to the locstream’s dimCount. The list elements map each
dimension of the locstream to a dimension in the farrayPtr by specifying the appropriate farrayPtr
dimension index. The default is to map all of the locstream’s dimensions against the lowest dimensions of
the farrayPtr in sequence, i.e. gridToFieldMap = (/1,2,3,.../). The values of all gridToFieldMap
entries must be greater than or equal to one and smaller than or equal to the farrayPtr rank. It is erroneous to
specify the same gridToFieldMap entry multiple times. The total ungridded dimensions in the field are
the total farrayPtr dimensions less the total (distributed + undistributed) dimensions in the locstream.

Unlocstreamded dimensions must be in the same order they are stored in the ⁀farrayPtr. Permutations of the order
of dimensions are handled via individual communication methods. For example, an undistributed dimension
can be remapped to a distributed dimension as part of the ESMF_ArrayRedist() operation. If the Field
dimCount is less than the LocStream dimCount then the default gridToFieldMap will contain zeros for the
rightmost entries. A zero entry in the gridToFieldMap indicates that the particular LocStream dimension
will be replicating the Field across the DEs along this direction.

[name] Field name.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

392

26.6.15 ESMF_FieldCreate - Create a Field from Mesh and typekind

INTERFACE:

! Private name; call using ESMF_FieldCreate()

function ESMF_FieldCreateMeshTKR(mesh, typekind, indexflag, &

meshloc, gridToFieldMap, ungriddedLBound, ungriddedUBound, &

pinflag, name, rc)

RETURN VALUE:

type(ESMF_Field) :: ESMF_FieldCreateMeshTKR

ARGUMENTS:

type(ESMF_Mesh), intent(in) :: mesh

type(ESMF_TypeKind_Flag), intent(in) :: typekind

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Index_Flag), intent(in), optional :: indexflag

type(ESMF_MeshLoc), intent(in), optional :: meshloc

integer, intent(in), optional :: gridToFieldMap(:)

integer, intent(in), optional :: ungriddedLBound(:)

integer, intent(in), optional :: ungriddedUBound(:)

type(ESMF_Pin_Flag), intent(in), optional :: pinflag

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

Create an ESMF_Field and allocate space internally for an ESMF_Array. Return a new ESMF_Field. For an
example and associated documentation using this method see section 26.3.18.

The arguments are:

mesh ESMF_Mesh object.

typekind The typekind of the Field. See section 52.59 for a list of valid typekind options.

[indexflag] Indicate how DE-local indices are defined. See section 52.27 for a list of valid indexflag options.

[meshloc] The part of the Mesh on which to build the Field. For valid predefined values see Section 52.39. If not set,
defaults to ESMF_MESHLOC_NODE.

[gridToFieldMap] List with number of elements equal to the grid’s dimCount. The list elements map each dimen-
sion of the grid to a dimension in the field by specifying the appropriate field dimension index. The
default is to map all of the grid’s dimensions against the lowest dimensions of the field in sequence, i.e.
gridToFieldMap = (/1,2,3,.../). The values of all gridToFieldMap entries must be greater than or equal
to one and smaller than or equal to the field rank. It is erroneous to specify the same gridToFieldMap
entry multiple times. The total ungridded dimensions in the field are the total field dimensions less the di-

mensions in the grid. Ungridded dimensions must be in the same order they are stored in the ⁀field. If the Field
dimCount is less than the Mesh dimCount then the default gridToFieldMap will contain zeros for the rightmost
entries. A zero entry in the gridToFieldMap indicates that the particular Mesh dimension will be replicating
the Field across the DEs along this direction.

393

[ungriddedLBound] Lower bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the field.

[ungriddedUBound] Upper bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the field.

[pinflag] Specify which type of resource DEs are pinned to. See section 48.2.1 for a list of valid pinning options. The
default is to pin DEs to PETs, i.e. only the PET on which a DE was created considers the DE as local.

[name] Field name.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.16 ESMF_FieldCreate - Create a Field from Mesh and ArraySpec

INTERFACE:

! Private name; call using ESMF_FieldCreate()

function ESMF_FieldCreateMeshArraySpec(mesh, arrayspec, &

indexflag, meshloc, gridToFieldMap, ungriddedLBound, ungriddedUBound, &

pinflag, name, rc)

RETURN VALUE:

type(ESMF_Field) :: ESMF_FieldCreateMeshArraySpec

ARGUMENTS:

type(ESMF_Mesh), intent(in) :: mesh

type(ESMF_ArraySpec), intent(in) :: arrayspec

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Index_Flag),intent(in), optional :: indexflag

type(ESMF_MeshLoc), intent(in), optional :: meshloc

integer, intent(in), optional :: gridToFieldMap(:)

integer, intent(in), optional :: ungriddedLBound(:)

integer, intent(in), optional :: ungriddedUBound(:)

type(ESMF_Pin_Flag), intent(in), optional :: pinflag

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

Create an ESMF_Field and allocate space internally for an ESMF_Array. Return a new ESMF_Field. For an
example and associated documentation using this method see section 26.3.19 and 26.3.21.

The arguments are:

394

mesh ESMF_Mesh object.

arrayspec Data type and kind specification.

[indexflag] Indicate how DE-local indices are defined. See section 52.27 for a list of valid indexflag options.

[meshloc] The part of the Mesh on which to build the Field. For valid predefined values see Section 52.39. If not set,
defaults to ESMF_MESHLOC_NODE.

[gridToFieldMap] List with number of elements equal to the grid’s dimCount. The list elements map each dimen-
sion of the grid to a dimension in the field by specifying the appropriate field dimension index. The
default is to map all of the grid’s dimensions against the lowest dimensions of the field in sequence, i.e.
gridToFieldMap = (/1,2,3,.../). The values of all gridToFieldMap entries must be greater than or equal
to one and smaller than or equal to the field rank. It is erroneous to specify the same gridToFieldMap
entry multiple times. The total ungridded dimensions in the field are the total field dimensions less the di-

mensions in the grid. Ungridded dimensions must be in the same order they are stored in the ⁀field. If the Field
dimCount is less than the Mesh dimCount then the default gridToFieldMap will contain zeros for the rightmost
entries. A zero entry in the gridToFieldMap indicates that the particular Mesh dimension will be replicating
the Field across the DEs along this direction.

[ungriddedLBound] Lower bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the field.

[ungriddedUBound] Upper bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the field.

[pinflag] Specify which type of resource DEs are pinned to. See section 48.2.1 for a list of valid pinning options. The
default is to pin DEs to PETs, i.e. only the PET on which a DE was created considers the DE as local.

[name] Field name.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.17 ESMF_FieldCreate - Create a Field from Mesh and Array

INTERFACE:

! Private name; call using ESMF_FieldCreate()

function ESMF_FieldCreateMeshArray(mesh, array, &

datacopyflag, meshloc, &

gridToFieldMap, ungriddedLBound, ungriddedUBound, &

name, vm, rc)

RETURN VALUE:

type(ESMF_Field) :: ESMF_FieldCreateMeshArray

395

ARGUMENTS:

type(ESMF_Mesh), intent(in) :: mesh

type(ESMF_Array), intent(in) :: array

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_DataCopy_Flag), intent(in), optional :: datacopyflag

type(ESMF_MeshLoc), intent(in), optional :: meshloc

integer, intent(in), optional :: gridToFieldMap(:)

integer, intent(in), optional :: ungriddedLBound(:)

integer, intent(in), optional :: ungriddedUBound(:)

character (len = *), intent(in), optional :: name

type(ESMF_VM), intent(in), optional :: vm

integer, intent(out), optional :: rc

DESCRIPTION:

Create an ESMF_Field. This version of creation assumes the data exists already and is being passed in through an
ESMF_Array. For an example and associated documentation using this method see section 26.3.20.

The arguments are:

mesh ESMF_Mesh object.

array ESMF_Array object.

[datacopyflag] Indicates whether to copy the contents of the array or reference it directly. For valid values see
52.12. The default is ESMF_DATACOPY_REFERENCE.

[meshloc] The part of the Mesh on which to build the Field. For valid predefined values see Section 52.39. If not set,
defaults to ESMF_MESHLOC_NODE.

[gridToFieldMap] List with number of elements equal to the grid’s dimCount. The list elements map each dimen-
sion of the grid to a dimension in the field by specifying the appropriate field dimension index. The
default is to map all of the grid’s dimensions against the lowest dimensions of the field in sequence, i.e.
gridToFieldMap = (/1,2,3,.../). The values of all gridToFieldMap entries must be greater than or equal
to one and smaller than or equal to the field rank. It is erroneous to specify the same gridToFieldMap
entry multiple times. The total ungridded dimensions in the field are the total field dimensions less the di-

mensions in the grid. Ungridded dimensions must be in the same order they are stored in the ⁀field. If the Field
dimCount is less than the Mesh dimCount then the default gridToFieldMap will contain zeros for the rightmost
entries. A zero entry in the gridToFieldMap indicates that the particular Mesh dimension will be replicating
the Field across the DEs along this direction.

[ungriddedLBound] Lower bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the field.

[ungriddedUBound] Upper bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the field.

[name] Field name.

396

[vm] If present, the Field object is constructed on the specified ESMF_VM object. The default is to construct on the
VM of the current component context.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.18 ESMF_FieldCreate - Create a Field from Mesh and Fortran array

INTERFACE:

! Private name; call using ESMF_FieldCreate()

function ESMF_FieldCreateMeshData<rank><type><kind>(mesh, &

farray, indexflag, datacopyflag, meshloc, &

gridToFieldMap, ungriddedLBound, ungriddedUBound, name, rc)

RETURN VALUE:

type(ESMF_Field) :: ESMF_FieldCreateMeshData<rank><type><kind>

ARGUMENTS:

type(ESMF_Mesh), intent(in) :: mesh

<type> (ESMF_KIND_<kind>),intent(in), target :: farray(<rank>)

type(ESMF_Index_Flag), intent(in) :: indexflag

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_DataCopy_Flag), intent(in), optional :: datacopyflag

type(ESMF_MeshLoc), intent(in), optional :: meshloc

integer, intent(in), optional :: gridToFieldMap(:)

integer, intent(in), optional :: ungriddedLBound(:)

integer, intent(in), optional :: ungriddedUBound(:)

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

Create an ESMF_Field from a Fortran data array and ESMF_Mesh. The Fortran data pointer inside ESMF_Field
can be queried but deallocating the retrieved data pointer is not allowed.

The arguments are:

mesh ESMF_Mesh object.

farray Native Fortran data array to be copied/referenced in the Field The Field dimension (dimCount) will be the
same as the dimCount for the farray.

indexflag Indicate how DE-local indices are defined. See section 52.27 for a list of valid indexflag options.

[datacopyflag] Whether to copy the contents of the farray or reference it directly. For valid values see 52.12. The
default is ESMF_DATACOPY_REFERENCE.

397

[meshloc] The part of the Mesh on which to build the Field. For valid predefined values see Section 52.39. If not set,
defaults to ESMF_MESHLOC_NODE.

[gridToFieldMap] List with number of elements equal to the mesh’s dimCount. The list elements map each dimen-
sion of the mesh to a dimension in the farray by specifying the appropriate farray dimension index. The
default is to map all of the mesh’s dimensions against the lowest dimensions of the farray in sequence, i.e.
gridToFieldMap = (/1,2,3,.../). The values of all gridToFieldMap entries must be greater than or equal
to one and smaller than or equal to the farray rank. It is erroneous to specify the same gridToFieldMap
entry multiple times. The total ungridded dimensions in the field are the total farray dimensions less the
total (distributed + undistributed) dimensions in the mesh. Unmeshded dimensions must be in the same order

they are stored in the ⁀farray. Permutations of the order of dimensions are handled via individual communication
methods. For example, an undistributed dimension can be remapped to a distributed dimension as part of the
ESMF_ArrayRedist() operation. If the Field dimCount is less than the Mesh dimCount then the default
gridToFieldMap will contain zeros for the rightmost entries. A zero entry in the gridToFieldMap indicates
that the particular Mesh dimension will be replicating the Field across the DEs along this direction.

[ungriddedLBound] Lower bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than mesh dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the farray.

[ungriddedUBound] Upper bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than mesh dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the farray.

[name] Field name.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.19 ESMF_FieldCreate - Create a Field from Mesh and Fortran array pointer

INTERFACE:

! Private name; call using ESMF_FieldCreate()

function ESMF_FieldCreateMeshDataPtr<rank><type><kind>(mesh, &

farrayPtr, datacopyflag, meshloc, gridToFieldMap, &

name, rc)

RETURN VALUE:

type(ESMF_Field) :: ESMF_FieldCreateMeshDataPtr<rank><type><kind>

ARGUMENTS:

type(ESMF_Mesh), intent(in) :: mesh

<type> (ESMF_KIND_<kind>),pointer :: farrayPtr(<rank>)

398

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_DataCopy_Flag), intent(in), optional :: datacopyflag

type(ESMF_MeshLoc), intent(in), optional :: meshloc

integer, intent(in), optional :: gridToFieldMap(:)

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

Create an ESMF_Field from a Fortran data pointer and ESMF_Mesh. The Fortran data pointer inside
ESMF_Field can be queried and deallocated when datacopyflag is ESMF_DATACOPY_REFERENCE. Note that the
ESMF_FieldDestroy call does not deallocate the Fortran data pointer in this case. This gives user more flexibility
over memory management.

The arguments are:

mesh ESMF_Mesh object.

farrayPtr Native Fortran data pointer to be copied/referenced in the Field The Field dimension (dimCount) will be
the same as the dimCount for the farrayPtr.

[datacopyflag] Whether to copy the contents of the farrayPtr or reference it directly. For valid values see 52.12.
The default is ESMF_DATACOPY_REFERENCE.

[meshloc] The part of the Mesh on which to build the Field. For valid predefined values see Section 52.39. If not set,
defaults to ESMF_MESHLOC_NODE.

[gridToFieldMap] List with number of elements equal to the mesh’s dimCount. The list elements map each dimen-
sion of the mesh to a dimension in the farrayPtr by specifying the appropriate farrayPtr dimension
index. The default is to map all of the mesh’s dimensions against the lowest dimensions of the farrayPtr
in sequence, i.e. gridToFieldMap = (/1,2,3,.../). The values of all gridToFieldMap entries must be
greater than or equal to one and smaller than or equal to the farrayPtr rank. It is erroneous to specify the
same gridToFieldMap entry multiple times. The total ungridded dimensions in the field are the total
farrayPtr dimensions less the total (distributed + undistributed) dimensions in the mesh. Unmeshded di-

mensions must be in the same order they are stored in the ⁀farrayPtr. Permutations of the order of dimensions are
handled via individual communication methods. For example, an undistributed dimension can be remapped to
a distributed dimension as part of the ESMF_ArrayRedist() operation. If the Field dimCount is less than
the Mesh dimCount then the default gridToFieldMap will contain zeros for the rightmost entries. A zero entry
in the gridToFieldMap indicates that the particular Mesh dimension will be replicating the Field across the
DEs along this direction.

[name] Field name.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.20 ESMF_FieldCreate - Create a Field from XGrid and typekind

INTERFACE:

! Private name; call using ESMF_FieldCreate()

function ESMF_FieldCreateXGTKR(xgrid, typekind, xgridside, &

399

gridindex, gridToFieldMap, ungriddedLBound, ungriddedUBound, &

pinflag, name, rc)

RETURN VALUE:

type(ESMF_Field) :: ESMF_FieldCreateXGTKR

ARGUMENTS:

type(ESMF_XGrid), intent(in) :: xgrid

type(ESMF_TypeKind_Flag), intent(in) :: typekind

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_XGridSide_Flag), intent(in), optional :: xgridside

integer, intent(in), optional :: gridindex

integer, intent(in), optional :: gridToFieldMap(:)

integer, intent(in), optional :: ungriddedLBound(:)

integer, intent(in), optional :: ungriddedUBound(:)

type(ESMF_Pin_Flag), intent(in), optional :: pinflag

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

Create an ESMF_Field and allocate space internally for an ESMF_Array. Return a new ESMF_Field. For an
example and associated documentation using this method see section 26.3.16.

The arguments are:

xgrid ESMF_XGrid object.

typekind The typekind of the Field. See section 52.59 for a list of valid typekind options.

[xgridside] Which side of the XGrid to create the Field on (either ESMF_XGRIDSIDE_A, ESMF_XGRIDSIDE_B,
or ESMF_XGRIDSIDE_BALANCED). If not passed in then defaults to ESMF_XGRIDSIDE_BALANCED.

[gridindex] If xgridSide is ESMF_XGRIDSIDE_A or ESMF_XGRIDSIDE_B then this index tells which Grid on
that side to create the Field on. If not provided, defaults to 1.

[gridToFieldMap] List with number of elements equal to the grid’s dimCount. The list elements map each dimen-
sion of the grid to a dimension in the field by specifying the appropriate field dimension index. The
default is to map all of the grid’s dimensions against the lowest dimensions of the field in sequence, i.e.
gridToFieldMap = (/1,2,3,.../). The values of all gridToFieldMap entries must be greater than or equal
to one and smaller than or equal to the field rank. It is erroneous to specify the same gridToFieldMap
entry multiple times. The total ungridded dimensions in the field are the total field dimensions less the

dimensions in the grid. Ungridded dimensions must be in the same order they are stored in the ⁀field. If the
Field dimCount is less than the XGrid dimCount then the default gridToFieldMap will contain zeros for the
rightmost entries. A zero entry in the gridToFieldMap indicates that the particular XGrid dimension will be
replicating the Field across the DEs along this direction.

[ungriddedLBound] Lower bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the field.

400

[ungriddedUBound] Upper bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the field.

[pinflag] Specify which type of resource DEs are pinned to. See section 48.2.1 for a list of valid pinning options. The
default is to pin DEs to PETs, i.e. only the PET on which a DE was created considers the DE as local.

[name] Field name.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.21 ESMF_FieldCreate - Create a Field from XGrid and ArraySpec

INTERFACE:

! Private name; call using ESMF_FieldCreate()

function ESMF_FieldCreateXGArraySpec(xgrid, arrayspec, &

xgridside, gridindex, gridToFieldMap, ungriddedLBound, ungriddedUBound, &

pinflag, name, rc)

RETURN VALUE:

type(ESMF_Field) :: ESMF_FieldCreateXGArraySpec

ARGUMENTS:

type(ESMF_XGrid), intent(in) :: xgrid

type(ESMF_ArraySpec), intent(in) :: arrayspec

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_XGridSide_Flag), intent(in), optional :: xgridSide

integer, intent(in), optional :: gridIndex

integer, intent(in), optional :: gridToFieldMap(:)

integer, intent(in), optional :: ungriddedLBound(:)

integer, intent(in), optional :: ungriddedUBound(:)

type(ESMF_Pin_Flag), intent(in), optional :: pinflag

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

Create an ESMF_Field and allocate space internally for an ESMF_Array. Return a new ESMF_Field. For an
example and associated documentation using this method see section 26.3.17.

The arguments are:

xgrid ESMF_XGrid object.

arrayspec Data type and kind specification.

401

[xgridside] Which side of the XGrid to create the Field on (either ESMF_XGRIDSIDE_A, ESMF_XGRIDSIDE_B,
or ESMF_XGRIDSIDE_BALANCED). If not passed in then defaults to ESMF_XGRIDSIDE_BALANCED.

[gridindex] If xgridside is ESMF_XGRIDSIDE_A or ESMF_XGRIDSIDE_B then this index tells which Grid on
that side to create the Field on. If not provided, defaults to 1.

[gridToFieldMap] List with number of elements equal to the grid’s dimCount. The list elements map each dimen-
sion of the grid to a dimension in the field by specifying the appropriate field dimension index. The
default is to map all of the grid’s dimensions against the lowest dimensions of the field in sequence, i.e.
gridToFieldMap = (/1,2,3,.../). The values of all gridToFieldMap entries must be greater than or equal
to one and smaller than or equal to the field rank. It is erroneous to specify the same gridToFieldMap
entry multiple times. The total ungridded dimensions in the field are the total field dimensions less the

dimensions in the grid. Ungridded dimensions must be in the same order they are stored in the ⁀field. If the
Field dimCount is less than the XGrid dimCount then the default gridToFieldMap will contain zeros for the
rightmost entries. A zero entry in the gridToFieldMap indicates that the particular XGrid dimension will be
replicating the Field across the DEs along this direction.

[ungriddedLBound] Lower bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the field.

[ungriddedUBound] Upper bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the field.

[pinflag] Specify which type of resource DEs are pinned to. See section 48.2.1 for a list of valid pinning options. The
default is to pin DEs to PETs, i.e. only the PET on which a DE was created considers the DE as local.

[name] Field name.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.22 ESMF_FieldCreate - Create a Field from XGrid and Array

INTERFACE:

! Private name; call using ESMF_FieldCreate()

function ESMF_FieldCreateXGArray(xgrid, array, &

datacopyflag, xgridside, gridindex, &

gridToFieldMap, ungriddedLBound, ungriddedUBound, &

name, rc)

RETURN VALUE:

type(ESMF_Field) :: ESMF_FieldCreateXGArray

ARGUMENTS:

402

type(ESMF_XGrid), intent(in) :: xgrid

type(ESMF_Array), intent(in) :: array

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_DataCopy_Flag), intent(in), optional :: datacopyflag

type(ESMF_XGridSide_Flag), intent(in), optional :: xgridside

integer, intent(in), optional :: gridindex

integer, intent(in), optional :: gridToFieldMap(:)

integer, intent(in), optional :: ungriddedLBound(:)

integer, intent(in), optional :: ungriddedUBound(:)

character (len = *), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

Create an ESMF_Field. This version of creation assumes the data exists already and is being passed in through an
ESMF_Array. For an example and associated documentation using this method see section 26.3.6.

The arguments are:

xgrid ESMF_XGrid object.

array ESMF_Array object.

[datacopyflag] Indicates whether to copy the contents of the array or reference it directly. For valid values see
52.12. The default is ESMF_DATACOPY_REFERENCE.

[xgridside] Which side of the XGrid to create the Field on (either ESMF_XGRIDSIDE_A, ESMF_XGRIDSIDE_B,
or ESMF_XGRIDSIDE_BALANCED). If not passed in then defaults to ESMF_XGRIDSIDE_BALANCED.

[gridindex] If xgridSide is ESMF_XGRIDSIDE_A or ESMF_XGRIDSIDE_B then this index tells which Grid on
that side to create the Field on. If not provided, defaults to 1.

[gridToFieldMap] List with number of elements equal to the grid’s dimCount. The list elements map each dimen-
sion of the grid to a dimension in the field by specifying the appropriate field dimension index. The
default is to map all of the grid’s dimensions against the lowest dimensions of the field in sequence, i.e.
gridToFieldMap = (/1,2,3,.../). The values of all gridToFieldMap entries must be greater than or equal
to one and smaller than or equal to the field rank. It is erroneous to specify the same gridToFieldMap
entry multiple times. The total ungridded dimensions in the field are the total field dimensions less the

dimensions in the grid. Ungridded dimensions must be in the same order they are stored in the ⁀field. If the
Field dimCount is less than the XGrid dimCount then the default gridToFieldMap will contain zeros for the
rightmost entries. A zero entry in the gridToFieldMap indicates that the particular XGrid dimension will be
replicating the Field across the DEs along this direction.

[ungriddedLBound] Lower bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the field.

[ungriddedUBound] Upper bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the field.

[name] Field name.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

403

26.6.23 ESMF_FieldCreate - Create a Field from XGrid and Fortran array

INTERFACE:

! Private name; call using ESMF_FieldCreate()

function ESMF_FieldCreateXGData<rank><type><kind>(xgrid, &

farray, indexflag, datacopyflag, xgridside, gridindex, &

gridToFieldMap, ungriddedLBound, ungriddedUBound, name,&

rc)

RETURN VALUE:

type(ESMF_Field) :: ESMF_FieldCreateXGData<rank><type><kind>

ARGUMENTS:

type(ESMF_XGrid), intent(in) :: xgrid

<type> (ESMF_KIND_<kind>), intent(in), target :: farray(<rank>)

type(ESMF_Index_Flag), intent(in) :: indexflag

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_DataCopy_Flag), intent(in), optional :: datacopyflag

type(ESMF_XGridSide_Flag), intent(in), optional :: xgridside

integer, intent(in), optional :: gridindex

integer, intent(in), optional :: gridToFieldMap(:)

integer, intent(in), optional :: ungriddedLBound(:)

integer, intent(in), optional :: ungriddedUBound(:)

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

Create an ESMF_Field from a Fortran data array and ESMF_Xgrid. The Fortran data pointer inside ESMF_Field
can be queried but deallocating the retrieved data pointer is not allowed.

The arguments are:

xgrid ESMF_XGrid object.

farray Native Fortran data array to be copied/referenced in the Field The Field dimension (dimCount) will be the
same as the dimCount for the farray.

indexflag Indicate how DE-local indices are defined. See section 52.27 for a list of valid indexflag options.

[datacopyflag] Whether to copy the contents of the farray or reference directly. For valid values see 52.12. The
default is ESMF_DATACOPY_REFERENCE.

[xgridside] Which side of the XGrid to create the Field on (either ESMF_XGRIDSIDE_A, ESMF_XGRIDSIDE_B,
or ESMF_XGRIDSIDE_BALANCED). If not passed in then defaults to ESMF_XGRIDSIDE_BALANCED.

404

[gridindex] If xgridside is ESMF_XGRIDSIDE_A or ESMF_XGRIDSIDE_B then this index tells which Grid on
that side to create the Field on. If not provided, defaults to 1.

[gridToFieldMap] List with number of elements equal to the xgrid’s dimCount. The list elements map each dimen-
sion of the xgrid to a dimension in the farray by specifying the appropriate farray dimension index. The
default is to map all of the xgrid’s dimensions against the lowest dimensions of the farray in sequence, i.e.
gridToFieldMap = (/1,2,3,.../). The values of all gridToFieldMap entries must be greater than or equal
to one and smaller than or equal to the farray rank. It is erroneous to specify the same gridToFieldMap
entry multiple times. The total ungridded dimensions in the field are the total farray dimensions less the
total (distributed + undistributed) dimensions in the xgrid. Unxgridded dimensions must be in the same order

they are stored in the ⁀farray. Permutations of the order of dimensions are handled via individual communication
methods. For example, an undistributed dimension can be remapped to a distributed dimension as part of the
ESMF_ArrayRedist() operation. If the Field dimCount is less than the Xgrid dimCount then the default
gridToFieldMap will contain zeros for the rightmost entries. A zero entry in the gridToFieldMap indicates
that the particular Xgrid dimension will be replicating the Field across the DEs along this direction.

[ungriddedLBound] Lower bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than xgrid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the farray.

[ungriddedUBound] Upper bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than xgrid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the farray.

[name] Field name.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.24 ESMF_FieldCreate - Create a Field from XGrid and Fortran array pointer

INTERFACE:

! Private name; call using ESMF_FieldCreate()

function ESMF_FieldCreateXGDataPtr<rank><type><kind>(xgrid, farrayPtr, &

datacopyflag, xgridside, &

gridindex, gridToFieldMap, name, rc)

RETURN VALUE:

type(ESMF_Field) :: ESMF_FieldCreateXGDataPtr<rank><type><kind>

ARGUMENTS:

type(ESMF_XGrid), intent(in) :: xgrid

<type> (ESMF_KIND_<kind>), pointer :: farrayPtr(<rank>)

405

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_DataCopy_Flag), intent(in), optional :: datacopyflag

type(ESMF_XGridSide_Flag), intent(in), optional :: xgridside

integer, intent(in), optional :: gridindex

integer, intent(in), optional :: gridToFieldMap(:)

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

Create an ESMF_Field from a Fortran data pointer and ESMF_Xgrid. The Fortran data pointer inside
ESMF_Field can be queried and deallocated when datacopyflag is ESMF_DATACOPY_REFERENCE. Note that the
ESMF_FieldDestroy call does not deallocate the Fortran data pointer in this case. This gives user more flexibility
over memory management.

The arguments are:

xgrid ESMF_XGrid object.

farrayPtr Native Fortran data pointer to be copied/referenced in the Field The Field dimension (dimCount) will be
the same as the dimCount for the farrayPtr.

[datacopyflag] Whether to copy the contents of the farrayPtr or reference it directly. For valid values see 52.12.
The default is ESMF_DATACOPY_REFERENCE.

[xgridside] Which side of the XGrid to create the Field on (either ESMF_XGRIDSIDE_A, ESMF_XGRIDSIDE_B,
or ESMF_XGRIDSIDE_BALANCED). If not passed in then defaults to ESMF_XGRIDSIDE_BALANCED.

[gridindex] If xgridside is ESMF_XGRIDSIDE_A or ESMF_XGRIDSIDE_B then this index tells which Grid on
that side to create the Field on. If not provided, defaults to 1.

[gridToFieldMap] List with number of elements equal to the xgrid’s dimCount. The list elements map each dimen-
sion of the xgrid to a dimension in the farrayPtr by specifying the appropriate farrayPtr dimension
index. The default is to map all of the xgrid’s dimensions against the lowest dimensions of the farrayPtr
in sequence, i.e. gridToFieldMap = (/1,2,3,.../). The values of all gridToFieldMap entries must be
greater than or equal to one and smaller than or equal to the farrayPtr rank. It is erroneous to specify the
same gridToFieldMap entry multiple times. The total ungridded dimensions in the field are the total
farrayPtr dimensions less the total (distributed + undistributed) dimensions in the xgrid. Unxgridded di-

mensions must be in the same order they are stored in the ⁀farrayPtr. Permutations of the order of dimensions are
handled via individual communication methods. For example, an undistributed dimension can be remapped to
a distributed dimension as part of the ESMF_ArrayRedist() operation. If the Field dimCount is less than
the Xgrid dimCount then the default gridToFieldMap will contain zeros for the rightmost entries. A zero entry
in the gridToFieldMap indicates that the particular Xgrid dimension will be replicating the Field across the
DEs along this direction.

[name] Field name.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.25 ESMF_FieldDestroy - Release resources associated with a Field

INTERFACE:

406

subroutine ESMF_FieldDestroy(field, noGarbage, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: field

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: noGarbage

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

7.0.0 Added argument noGarbage. The argument provides a mechanism to override the default garbage
collection mechanism when destroying an ESMF object.

DESCRIPTION:

Destroys the ESMF_Field, releasing the resources associated with the object.

If an ESMF_Grid is associated with field, it will not be released.

By default a small remnant of the object is kept in memory in order to prevent problems with dangling aliases. The
default garbage collection mechanism can be overridden with the noGarbage argument.

The arguments are:

field ESMF_Field object.

[noGarbage] If set to .TRUE. the object will be fully destroyed and removed from the ESMF garbage collection
system. Note however that under this condition ESMF cannot protect against accessing the destroyed object
through dangling aliases – a situation which may lead to hard to debug application crashes.

It is generally recommended to leave the noGarbage argument set to .FALSE. (the default), and to take
advantage of the ESMF garbage collection system which will prevent problems with dangling aliases or incorrect
sequences of destroy calls. However this level of support requires that a small remnant of the object is kept in
memory past the destroy call. This can lead to an unexpected increase in memory consumption over the course
of execution in applications that use temporary ESMF objects. For situations where the repeated creation and
destruction of temporary objects leads to memory issues, it is recommended to call with noGarbage set to
.TRUE., fully removing the entire temporary object from memory.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.26 ESMF_FieldEmptyComplete - Complete a Field from arrayspec

INTERFACE:

407

! Private name; call using ESMF_FieldEmptyComplete()

subroutine ESMF_FieldEmptyCompAS(field, arrayspec, indexflag, &

gridToFieldMap, ungriddedLBound, ungriddedUBound, totalLWidth, totalUWidth, &

pinflag, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: field

type(ESMF_ArraySpec), intent(in) :: arrayspec

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Index_Flag), intent(in), optional :: indexflag

integer, intent(in), optional :: gridToFieldMap(:)

integer, intent(in), optional :: ungriddedLBound(:)

integer, intent(in), optional :: ungriddedUBound(:)

integer, intent(in), optional :: totalLWidth(:)

integer, intent(in), optional :: totalUWidth(:)

type(ESMF_Pin_Flag), intent(in), optional :: pinflag

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

8.1.0 Added argument pinflag to provide access to DE sharing between PETs.

DESCRIPTION:

Complete an ESMF_Field and allocate space internally for an ESMF_Array based on arrayspec. The input
ESMF_Field must have a status of ESMF_FIELDSTATUS_GRIDSET. After this call the completed ESMF_Field
has a status of ESMF_FIELDSTATUS_COMPLETE.

The arguments are:

field The input ESMF_Field with a status of ESMF_FIELDSTATUS_GRIDSET.

arrayspec Data type and kind specification.

[indexflag] Indicate how DE-local indices are defined. By default each DE’s exclusive region is placed to start at the
local index space origin, i.e. (1, 1, ..., 1). Alternatively the DE-local index space can be aligned with the global
index space, if a global index space is well defined by the associated Grid. See section 52.27 for a list of valid
indexflag options.

[gridToFieldMap] List with number of elements equal to the grid’s dimCount. The list elements map each dimen-
sion of the grid to a dimension in the field by specifying the appropriate field dimension index. The
default is to map all of the grid’s dimensions against the lowest dimensions of the field in sequence, i.e.
gridToFieldMap = (/1,2,3,.../). The values of all gridToFieldMap entries must be greater than or equal
to one and smaller than or equal to the field rank. It is erroneous to specify the same gridToFieldMap

408

entry multiple times. The total ungridded dimensions in the field are the total field dimensions less the di-

mensions in the grid. Ungridded dimensions must be in the same order they are stored in the ⁀field. If the Field
dimCount is less than the Grid dimCount then the default gridToFieldMap will contain zeros for the rightmost
entries. A zero entry in the gridToFieldMap indicates that the particular Grid dimension will be replicating
the Field across the DEs along this direction.

[ungriddedLBound] Lower bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the field.

[ungriddedUBound] Upper bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the field.

[totalLWidth] Lower bound of halo region. The size of this array is the number of gridded dimensions in the Field.
However, ordering of the elements needs to be the same as they appear in the field. Values default to 0. If
values for totalLWidth are specified they must be reflected in the size of the field. That is, for each gridded
dimension the field size should be max(totalLWidth + totalUWidth + computationalCount,
exclusiveCount).

[totalUWidth] Upper bound of halo region. The size of this array is the number of gridded dimensions in the Field.
However, ordering of the elements needs to be the same as they appear in the field. Values default to 0. If
values for totalUWidth are specified they must be reflected in the size of the field. That is, for each grid-
ded dimension the field size should max(totalLWidth + totalUWidth + computationalCount,
exclusiveCount).

[pinflag] Specify which type of resource DEs are pinned to. See section 48.2.1 for a list of valid pinning options. The
default is to pin DEs to PETs, i.e. only the PET on which a DE was created considers the DE as local.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.27 ESMF_FieldEmptyComplete - Complete a Field from typekind

INTERFACE:

! Private name; call using ESMF_FieldEmptyComplete()

subroutine ESMF_FieldEmptyCompTK(field, typekind, indexflag, &

gridToFieldMap, ungriddedLBound, ungriddedUBound, totalLWidth, totalUWidth, &

pinflag, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: field

type(ESMF_TypeKind_Flag), intent(in) :: typekind

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Index_Flag), intent(in), optional :: indexflag

integer, intent(in), optional :: gridToFieldMap(:)

integer, intent(in), optional :: ungriddedLBound(:)

409

integer, intent(in), optional :: ungriddedUBound(:)

integer, intent(in), optional :: totalLWidth(:)

integer, intent(in), optional :: totalUWidth(:)

type(ESMF_Pin_Flag), intent(in), optional :: pinflag

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

8.1.0 Added argument pinflag to provide access to DE sharing between PETs.

DESCRIPTION:

Complete an ESMF_Field and allocate space internally for an ESMF_Array based on typekind. The input
ESMF_Field must have a status of ESMF_FIELDSTATUS_GRIDSET. After this call the completed ESMF_Field
has a status of ESMF_FIELDSTATUS_COMPLETE.

For an example and associated documentation using this method see section 26.3.7.

The arguments are:

field The input ESMF_Field with a status of ESMF_FIELDSTATUS_GRIDSET.

typekind Data type and kind specification.

[indexflag] Indicate how DE-local indices are defined. By default each DE’s exclusive region is placed to start at the
local index space origin, i.e. (1, 1, ..., 1). Alternatively the DE-local index space can be aligned with the global
index space, if a global index space is well defined by the associated Grid. See section 52.27 for a list of valid
indexflag options.

[gridToFieldMap] List with number of elements equal to the grid’s dimCount. The list elements map each dimen-
sion of the grid to a dimension in the field by specifying the appropriate field dimension index. The
default is to map all of the grid’s dimensions against the lowest dimensions of the field in sequence, i.e.
gridToFieldMap = (/1,2,3,.../). The values of all gridToFieldMap entries must be greater than or equal
to one and smaller than or equal to the field rank. It is erroneous to specify the same gridToFieldMap
entry multiple times. The total ungridded dimensions in the field are the total field dimensions less the di-

mensions in the grid. Ungridded dimensions must be in the same order they are stored in the ⁀field. If the Field
dimCount is less than the Grid dimCount then the default gridToFieldMap will contain zeros for the rightmost
entries. A zero entry in the gridToFieldMap indicates that the particular Grid dimension will be replicating
the Field across the DEs along this direction.

[ungriddedLBound] Lower bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the field.

410

[ungriddedUBound] Upper bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the field.

[totalLWidth] Lower bound of halo region. The size of this array is the number of gridded dimensions in the Field.
However, ordering of the elements needs to be the same as they appear in the field. Values default to 0. If
values for totalLWidth are specified they must be reflected in the size of the field. That is, for each gridded
dimension the field size should be max(totalLWidth + totalUWidth + computationalCount,
exclusiveCount).

[totalUWidth] Upper bound of halo region. The size of this array is the number of gridded dimensions in the Field.
However, ordering of the elements needs to be the same as they appear in the field. Values default to 0. If
values for totalUWidth are specified they must be reflected in the size of the field. That is, for each grid-
ded dimension the field size should max(totalLWidth + totalUWidth + computationalCount,
exclusiveCount).

[pinflag] Specify which type of resource DEs are pinned to. See section 48.2.1 for a list of valid pinning options. The
default is to pin DEs to PETs, i.e. only the PET on which a DE was created considers the DE as local.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.28 ESMF_FieldEmptyComplete - Complete a Field from Fortran array

INTERFACE:

! Private name; call using ESMF_FieldEmptyComplete()

subroutine ESMF_FieldEmptyComp<rank><type><kind>(field, &

farray, indexflag, datacopyflag, gridToFieldMap, &

ungriddedLBound, ungriddedUBound, totalLWidth, totalUWidth, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: field

<type> (ESMF_KIND_<kind>),intent(in), target :: farray(<rank>)

type(ESMF_Index_Flag), intent(in) :: indexflag

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_DataCopy_Flag), intent(in), optional :: datacopyflag

integer, intent(in), optional :: gridToFieldMap(:)

integer, intent(in), optional :: ungriddedLBound(:)

integer, intent(in), optional :: ungriddedUBound(:)

integer, intent(in), optional :: totalLWidth(:)

integer, intent(in), optional :: totalUWidth(:)

integer, intent(out), optional :: rc

STATUS:

411

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Complete an ESMF_Field and allocate space internally for an ESMF_Array based on typekind. The input
ESMF_Field must have a status of ESMF_FIELDSTATUS_GRIDSET. After this call the completed ESMF_Field
has a status of ESMF_FIELDSTATUS_COMPLETE.

The Fortran data pointer inside ESMF_Field can be queried but deallocating the retrieved data pointer is not allowed.

For an example and associated documentation using this method see section 26.3.8.

The arguments are:

field The input ESMF_Field with a status of ESMF_FIELDSTATUS_GRIDSET. The ESMF_Field will have the
same dimension (dimCount) as the rank of the farray.

farray Native Fortran data array to be copied/referenced in the field. The field dimension (dimCount) will be
the same as the dimCount for the farray.

indexflag Indicate how DE-local indices are defined. See section 52.27 for a list of valid indexflag options.

[datacopyflag] Indicates whether to copy the farray or reference it directly. For valid values see 52.12. The default
is ESMF_DATACOPY_REFERENCE.

[gridToFieldMap] List with number of elements equal to the grid’s dimCount. The list elements map each dimen-
sion of the grid to a dimension in the farray by specifying the appropriate farray dimension index. The
default is to map all of the grid’s dimensions against the lowest dimensions of the farray in sequence, i.e.
gridToFieldMap = (/1,2,3,.../). Unmapped farray dimensions are undistributed Field dimensions. All
gridToFieldMap entries must be greater than or equal to zero and smaller than or equal to the Field dim-
Count. It is erroneous to specify the same entry multiple times unless it is zero. If the Field dimCount is less
than the Grid dimCount then the default gridToFieldMap will contain zeros for the rightmost entries. A zero
entry in the gridToFieldMap indicates that the particular Grid dimension will be replicating the Field across
the DEs along this direction.

[ungriddedLBound] Lower bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the field.

[ungriddedUBound] Upper bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the field.

[totalLWidth] Lower bound of halo region. The size of this array is the number of gridded dimensions in the field.
However, ordering of the elements needs to be the same as they appear in the field. Values default to 0. If
values for totalLWidth are specified they must be reflected in the size of the field. That is, for each gridded
dimension the field size should be max(totalLWidth + totalUWidth + computationalCount,
exclusiveCount).

[totalUWidth] Upper bound of halo region. The size of this array is the number of gridded dimensions in the field.
However, ordering of the elements needs to be the same as they appear in the field. Values default to 0. If
values for totalUWidth are specified they must be reflected in the size of the field. That is, for each grid-
ded dimension the field size should max(totalLWidth + totalUWidth + computationalCount,
exclusiveCount).

412

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.29 ESMF_FieldEmptyComplete - Complete a Field from Fortran array pointer

INTERFACE:

! Private name; call using ESMF_FieldEmptyComplete()

subroutine ESMF_FieldEmptyCompPtr<rank><type><kind>(field, &

farrayPtr, datacopyflag, gridToFieldMap, &

totalLWidth, totalUWidth, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: field

<type> (ESMF_KIND_<kind>), pointer :: farrayPtr(<rank>)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_DataCopy_Flag), intent(in), optional :: datacopyflag

integer, intent(in), optional :: gridToFieldMap(:)

integer, intent(in), optional :: totalLWidth(:)

integer, intent(in), optional :: totalUWidth(:)

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Complete an ESMF_Field and allocate space internally for an ESMF_Array based on typekind. The input
ESMF_Field must have a status of ESMF_FIELDSTATUS_GRIDSET. After this call the completed ESMF_Field
has a status of ESMF_FIELDSTATUS_COMPLETE.

The Fortran data pointer inside ESMF_Field can be queried and deallocated when datacopyflag is
ESMF_DATACOPY_REFERENCE. Note that the ESMF_FieldDestroy call does not deallocate the Fortran data
pointer in this case. This gives user more flexibility over memory management.

The arguments are:

field The input ESMF_Field with a status of ESMF_FIELDSTATUS_GRIDSET. The ESMF_Field will have the
same dimension (dimCount) as the rank of the farrayPtr.

farrayPtr Native Fortran data pointer to be copied/referenced in the field. The field dimension (dimCount) will
be the same as the dimCount for the farrayPtr.

[datacopyflag] Indicates whether to copy the farrayPtr or reference it directly. For valid values see 52.12. The
default is ESMF_DATACOPY_REFERENCE.

413

[gridToFieldMap] List with number of elements equal to the grid’s dimCount. The list elements map each dimen-
sion of the grid to a dimension in the farrayPtr by specifying the appropriate farrayPtr dimension
index. The default is to map all of the grid’s dimensions against the lowest dimensions of the farrayPtr in
sequence, i.e. gridToFieldMap = (/1,2,3,.../). Unmapped farrayPtr dimensions are undistributed Field
dimensions. All gridToFieldMap entries must be greater than or equal to zero and smaller than or equal
to the Field dimCount. It is erroneous to specify the same entry multiple times unless it is zero. If the Field
dimCount is less than the Grid dimCount then the default gridToFieldMap will contain zeros for the rightmost
entries. A zero entry in the gridToFieldMap indicates that the particular Grid dimension will be replicating
the Field across the DEs along this direction.

[totalLWidth] Lower bound of halo region. The size of this array is the number of gridded dimensions in the field.
However, ordering of the elements needs to be the same as they appear in the field. Values default to 0. If
values for totalLWidth are specified they must be reflected in the size of the field. That is, for each gridded
dimension the field size should be max(totalLWidth + totalUWidth + computationalCount,
exclusiveCount).

[totalUWidth] Upper bound of halo region. The size of this array is the number of gridded dimensions in the field.
However, ordering of the elements needs to be the same as they appear in the field. Values default to 0. If
values for totalUWidth are specified they must be reflected in the size of the field. That is, for each grid-
ded dimension the field size should max(totalLWidth + totalUWidth + computationalCount,
exclusiveCount).

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.30 ESMF_FieldEmptyComplete - Complete a Field from Grid started with FieldEmptyCreate

INTERFACE:

! Private name; call using ESMF_FieldEmptyComplete()

subroutine ESMF_FieldEmptyCompGrid<rank><type><kind>(field, grid, &

farray, indexflag, datacopyflag, staggerloc, gridToFieldMap, &

ungriddedLBound, ungriddedUBound, totalLWidth, totalUWidth, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: field

type(ESMF_Grid), intent(in) :: grid

<type> (ESMF_KIND_<kind>),intent(in), target :: farray(<rank>)

type(ESMF_Index_Flag), intent(in) :: indexflag

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_DataCopy_Flag), intent(in), optional :: datacopyflag

type(ESMF_STAGGERLOC), intent(in), optional :: staggerloc

integer, intent(in), optional :: gridToFieldMap(:)

integer, intent(in), optional :: ungriddedLBound(:)

integer, intent(in), optional :: ungriddedUBound(:)

integer, intent(in), optional :: totalLWidth(:)

integer, intent(in), optional :: totalUWidth(:)

integer, intent(out), optional :: rc

414

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

This call completes an ESMF_Field allocated with the ESMF_FieldEmptyCreate() call.

The Fortran data pointer inside ESMF_Field can be queried but deallocating the retrieved data pointer is not allowed.

The arguments are:

field The ESMF_Field object to be completed and committed in this call. The field will have the same dimension
(dimCount) as the rank of the farray.

grid The ESMF_Grid object to complete the Field.

farray Native Fortran data array to be copied/referenced in the field. The field dimension (dimCount) will be
the same as the dimCount for the farray.

indexflag Indicate how DE-local indices are defined. See section 52.27 for a list of valid indexflag options.

[datacopyflag] Indicates whether to copy the farray or reference it directly. For valid values see 52.12. The default
is ESMF_DATACOPY_REFERENCE.

[staggerloc] Stagger location of data in grid cells. For valid predefined values see section 31.2.6. To create a custom
stagger location see section 31.3.25. The default value is ESMF_STAGGERLOC_CENTER.

[gridToFieldMap] List with number of elements equal to the grid’s dimCount. The list elements map each dimen-
sion of the grid to a dimension in the farray by specifying the appropriate farray dimension index. The
default is to map all of the grid’s dimensions against the lowest dimensions of the farray in sequence, i.e.
gridToFieldMap = (/1,2,3,.../). Unmapped farray dimensions are undistributed Field dimensions. All
gridToFieldMap entries must be greater than or equal to zero and smaller than or equal to the Field dim-
Count. It is erroneous to specify the same entry multiple times unless it is zero. If the Field dimCount is less
than the Grid dimCount then the default gridToFieldMap will contain zeros for the rightmost entries. A zero
entry in the gridToFieldMap indicates that the particular Grid dimension will be replicating the Field across
the DEs along this direction.

[ungriddedLBound] Lower bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the field.

[ungriddedUBound] Upper bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the field.

[totalLWidth] Lower bound of halo region. The size of this array is the number of gridded dimensions in the field.
However, ordering of the elements needs to be the same as they appear in the field. Values default to 0. If
values for totalLWidth are specified they must be reflected in the size of the field. That is, for each gridded
dimension the field size should be max(totalLWidth + totalUWidth + computationalCount,
exclusiveCount).

415

[totalUWidth] Upper bound of halo region. The size of this array is the number of gridded dimensions in the field.
However, ordering of the elements needs to be the same as they appear in the field. Values default to 0. If
values for totalUWidth are specified they must be reflected in the size of the field. That is, for each grid-
ded dimension the field size should max(totalLWidth + totalUWidth + computationalCount,
exclusiveCount).

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.31 ESMF_FieldEmptyComplete - Complete a Field from Grid started with FieldEmptyCreate

INTERFACE:

! Private name; call using ESMF_FieldEmptyComplete()

subroutine ESMF_FieldEmptyCompGridPtr<rank><type><kind>(field, grid, &

farrayPtr, datacopyflag, staggerloc, gridToFieldMap, &

totalLWidth, totalUWidth, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: field

type(ESMF_Grid), intent(in) :: grid

<type> (ESMF_KIND_<kind>), pointer :: farrayPtr(<rank>)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_DataCopy_Flag), intent(in), optional :: datacopyflag

type(ESMF_STAGGERLOC), intent(in), optional :: staggerloc

integer, intent(in), optional :: gridToFieldMap(:)

integer, intent(in), optional :: totalLWidth(:)

integer, intent(in), optional :: totalUWidth(:)

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

This call completes an ESMF_Field allocated with the ESMF_FieldEmptyCreate() call.

The Fortran data pointer inside ESMF_Field can be queried and deallocated when datacopyflag is
ESMF_DATACOPY_REFERENCE. Note that the ESMF_FieldDestroy call does not deallocate the Fortran data
pointer in this case. This gives user more flexibility over memory management.

The Fortran data pointer inside ESMF_Field can be queried and deallocated when

The arguments are:

field The ESMF_Field object to be completed and committed in this call. The field will have the same dimension
(dimCount) as the rank of the farrayPtr.

416

grid The ESMF_Grid object to complete the Field.

farrayPtr Native Fortran data pointer to be copied/referenced in the field. The field dimension (dimCount) will
be the same as the dimCount for the farrayPtr.

[datacopyflag] Indicates whether to copy the farrayPtr or reference it directly. For valid values see 52.12. The
default is ESMF_DATACOPY_REFERENCE.

[staggerloc] Stagger location of data in grid cells. For valid predefined values see section 31.2.6. To create a custom
stagger location see section 31.3.25. The default value is ESMF_STAGGERLOC_CENTER.

[gridToFieldMap] List with number of elements equal to the grid’s dimCount. The list elements map each dimen-
sion of the grid to a dimension in the farrayPtr by specifying the appropriate farrayPtr dimension
index. The default is to map all of the grid’s dimensions against the lowest dimensions of the farrayPtr in
sequence, i.e. gridToFieldMap = (/1,2,3,.../). Unmapped farrayPtr dimensions are undistributed Field
dimensions. All gridToFieldMap entries must be greater than or equal to zero and smaller than or equal
to the Field dimCount. It is erroneous to specify the same entry multiple times unless it is zero. If the Field
dimCount is less than the Grid dimCount then the default gridToFieldMap will contain zeros for the rightmost
entries. A zero entry in the gridToFieldMap indicates that the particular Grid dimension will be replicating
the Field across the DEs along this direction.

[totalLWidth] Lower bound of halo region. The size of this array is the number of gridded dimensions in the field.
However, ordering of the elements needs to be the same as they appear in the field. Values default to 0. If
values for totalLWidth are specified they must be reflected in the size of the field. That is, for each gridded
dimension the field size should be max(totalLWidth + totalUWidth + computationalCount,
exclusiveCount).

[totalUWidth] Upper bound of halo region. The size of this array is the number of gridded dimensions in the field.
However, ordering of the elements needs to be the same as they appear in the field. Values default to 0. If
values for totalUWidth are specified they must be reflected in the size of the field. That is, for each grid-
ded dimension the field size should max(totalLWidth + totalUWidth + computationalCount,
exclusiveCount).

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.32 ESMF_FieldEmptyComplete - Complete a Field from LocStream started with FieldEmptyCreate

INTERFACE:

! Private name; call using ESMF_FieldEmptyComplete()

subroutine ESMF_FieldEmptyCompLS<rank><type><kind>(field, locstream, &

farray, indexflag, datacopyflag, gridToFieldMap, &

ungriddedLBound, ungriddedUBound, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: field

type(ESMF_LocStream), intent(in) :: locstream

<type> (ESMF_KIND_<kind>), intent(in), target :: farray(<rank>)

type(ESMF_Index_Flag), intent(in) :: indexflag

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

417

type(ESMF_DataCopy_Flag), intent(in), optional :: datacopyflag

integer, intent(in), optional :: gridToFieldMap(:)

integer, intent(in), optional :: ungriddedLBound(:)

integer, intent(in), optional :: ungriddedUBound(:)

integer, intent(out), optional :: rc

DESCRIPTION:

This call completes an ESMF_Field allocated with the ESMF_FieldEmptyCreate() call.

The Fortran data pointer inside ESMF_Field can be queried but deallocating the retrieved data pointer is not allowed.

The arguments are:

field The ESMF_Field object to be completed and committed in this call. The field will have the same dimension
(dimCount) as the rank of the farray.

locstream The ESMF_LocStream object to complete the Field.

farray Native Fortran data array to be copied/referenced in the field. The field dimension (dimCount) will be
the same as the dimCount for the farray.

indexflag Indicate how DE-local indices are defined. See section 52.27 for a list of valid indexflag options.

[datacopyflag] Indicates whether to copy the farray or reference it directly. For valid values see 52.12. The default
is ESMF_DATACOPY_REFERENCE.

[gridToFieldMap] List with number of elements equal to the locstream’s dimCount. The list elements map each
dimension of the locstream to a dimension in the farray by specifying the appropriate farray dimension
index. The default is to map all of the locstream’s dimensions against the lowest dimensions of the farray
in sequence, i.e. gridToFieldMap = (/1,2,3,.../). Unmapped farray dimensions are undistributed Field
dimensions. All gridToFieldMap entries must be greater than or equal to zero and smaller than or equal
to the Field dimCount. It is erroneous to specify the same entry multiple times unless it is zero. If the Field
dimCount is less than the LocStream dimCount then the default gridToFieldMap will contain zeros for the
rightmost entries. A zero entry in the gridToFieldMap indicates that the particular LocStream dimension
will be replicating the Field across the DEs along this direction.

[ungriddedLBound] Lower bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in the field. All ungridded dimen-
sions of the field are also undistributed. When field dimension count is greater than locstream dimension
count, both ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are
checked for consistency. Note that the the ordering of these ungridded dimensions is the same as their order in
the field.

[ungriddedUBound] Upper bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in the field. All ungridded dimen-
sions of the field are also undistributed. When field dimension count is greater than locstream dimension
count, both ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are
checked for consistency. Note that the the ordering of these ungridded dimensions is the same as their order in
the field.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

418

26.6.33 ESMF_FieldEmptyComplete - Complete a Field from LocStream started with FieldEmptyCreate

INTERFACE:

! Private name; call using ESMF_FieldEmptyComplete()

subroutine ESMF_FieldEmptyCompLSPtr<rank><type><kind>(field, locstream, &

farrayPtr, datacopyflag, gridToFieldMap, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: field

type(ESMF_LocStream), intent(in) :: locstream

<type> (ESMF_KIND_<kind>), pointer :: farrayPtr(<rank>)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_DataCopy_Flag), intent(in), optional :: datacopyflag

integer, intent(in), optional :: gridToFieldMap(:)

integer, intent(out), optional :: rc

DESCRIPTION:

This call completes an ESMF_Field allocated with the ESMF_FieldEmptyCreate() call.

The Fortran data pointer inside ESMF_Field can be queried and deallocated when datacopyflag is
ESMF_DATACOPY_REFERENCE. Note that the ESMF_FieldDestroy call does not deallocate the Fortran data
pointer in this case. This gives user more flexibility over memory management.

The arguments are:

field The ESMF_Field object to be completed and committed in this call. The field will have the same dimension
(dimCount) as the rank of the farrayPtr.

locstream The ESMF_LocStream object to complete the Field.

farrayPtr Native Fortran data pointer to be copied/referenced in the field. The field dimension (dimCount) will
be the same as the dimCount for the farrayPtr.

[datacopyflag] Indicates whether to copy the farrayPtr or reference it directly. For valid values see 52.12. The
default is ESMF_DATACOPY_REFERENCE.

[gridToFieldMap] List with number of elements equal to the locstream’s dimCount. The list elements map each
dimension of the locstream to a dimension in the farrayPtr by specifying the appropriate farrayPtr
dimension index. The default is to map all of the locstream’s dimensions against the lowest dimensions
of the farrayPtr in sequence, i.e. gridToFieldMap = (/1,2,3,.../). Unmapped farrayPtr dimensions
are undistributed Field dimensions. All gridToFieldMap entries must be greater than or equal to zero and
smaller than or equal to the Field dimCount. It is erroneous to specify the same entry multiple times unless it is
zero. If the Field dimCount is less than the LocStream dimCount then the default gridToFieldMap will contain
zeros for the rightmost entries. A zero entry in the gridToFieldMap indicates that the particular LocStream
dimension will be replicating the Field across the DEs along this direction.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

419

26.6.34 ESMF_FieldEmptyComplete - Complete a Field from Mesh started with FieldEmptyCreate

INTERFACE:

! Private name; call using ESMF_FieldEmptyComplete()

subroutine ESMF_FieldEmptyCompMesh<rank><type><kind>(field, mesh, &

farray, indexflag, datacopyflag, meshloc, &

gridToFieldMap, ungriddedLBound, ungriddedUBound, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: field

type(ESMF_Mesh), intent(in) :: mesh

<type> (ESMF_KIND_<kind>), intent(in), target :: farray(<rank>)

type(ESMF_Index_Flag), intent(in) :: indexflag

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_DataCopy_Flag), intent(in), optional :: datacopyflag

type(ESMF_MeshLoc), intent(in), optional :: meshloc

integer, intent(in), optional :: gridToFieldMap(:)

integer, intent(in), optional :: ungriddedLBound(:)

integer, intent(in), optional :: ungriddedUBound(:)

integer, intent(out), optional :: rc

DESCRIPTION:

This call completes an ESMF_Field allocated with the ESMF_FieldEmptyCreate() call.

The Fortran data pointer inside ESMF_Field can be queried but deallocating the retrieved data pointer is not allowed.

The arguments are:

field The ESMF_Field object to be completed and committed in this call. The field will have the same dimension
(dimCount) as the rank of the farray.

mesh The ESMF_Mesh object to complete the Field.

farray Native Fortran data array to be copied/referenced in the field. The field dimension (dimCount) will be
the same as the dimCount for the farray.

indexflag Indicate how DE-local indices are defined. See section 52.27 for a list of valid indexflag options.

[datacopyflag] Indicates whether to copy the farray or reference it directly. For valid values see 52.12. The default
is ESMF_DATACOPY_REFERENCE.

[meshloc] Which part of the mesh to build the Field on. Can be set to either ESMF_MESHLOC_NODE or
ESMF_MESHLOC_ELEMENT. If not set, defaults to ESMF_MESHLOC_NODE.

[gridToFieldMap] List with number of elements equal to the mesh’s dimCount. The list elements map each di-
mension of the mesh to a dimension in the farray by specifying the appropriate farray dimension index.
The default is to map all of the mesh’s dimensions against the lowest dimensions of the farray in sequence,
i.e. gridToFieldMap = (/1,2,3,.../). Unmapped farray dimensions are undistributed Field dimensions.
All gridToFieldMap entries must be greater than or equal to zero and smaller than or equal to the Field
dimCount. It is erroneous to specify the same entry multiple times unless it is zero. If the Field dimCount is

420

less than the Mesh dimCount then the default gridToFieldMap will contain zeros for the rightmost entries. A
zero entry in the gridToFieldMap indicates that the particular Mesh dimension will be replicating the Field
across the DEs along this direction.

[ungriddedLBound] Lower bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than Mesh dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the field.

[ungriddedUBound] Upper bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than Mesh dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the field.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.35 ESMF_FieldEmptyComplete - Complete a Field from Mesh started with FieldEmptyCreate

INTERFACE:

! Private name; call using ESMF_FieldEmptyComplete()

subroutine ESMF_FieldEmptyCompMeshPtr<rank><type><kind>(field, mesh, &

farrayPtr, datacopyflag, meshloc, gridToFieldMap, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: field

type(ESMF_Mesh), intent(in) :: mesh

<type> (ESMF_KIND_<kind>), pointer :: farrayPtr(<rank>)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_DataCopy_Flag), intent(in), optional :: datacopyflag

type(ESMF_MeshLoc), intent(in), optional :: meshloc

integer, intent(in), optional :: gridToFieldMap(:)

integer, intent(out), optional :: rc

DESCRIPTION:

This call completes an ESMF_Field allocated with the ESMF_FieldEmptyCreate() call.

The Fortran data pointer inside ESMF_Field can be queried and deallocated when datacopyflag is
ESMF_DATACOPY_REFERENCE. Note that the ESMF_FieldDestroy call does not deallocate the Fortran data
pointer in this case. This gives user more flexibility over memory management.

The arguments are:

field The ESMF_Field object to be completed and committed in this call. The field will have the same dimension
(dimCount) as the rank of the farrayPtr.

421

mesh The ESMF_Mesh object to complete the Field.

farrayPtr Native Fortran data pointer to be copied/referenced in the field. The field dimension (dimCount) will
be the same as the dimCount for the farrayPtr.

[datacopyflag] Indicates whether to copy the farrayPtr or reference it directly. For valid values see 52.12. The
default is ESMF_DATACOPY_REFERENCE.

[meshloc] Which part of the mesh to build the Field on. Can be set to either ESMF_MESHLOC_NODE or
ESMF_MESHLOC_ELEMENT. If not set, defaults to ESMF_MESHLOC_NODE.

[gridToFieldMap] List with number of elements equal to the mesh’s dimCount. The list elements map each dimen-
sion of the mesh to a dimension in the farrayPtr by specifying the appropriate farrayPtr dimension
index. The default is to map all of the mesh’s dimensions against the lowest dimensions of the farrayPtr in
sequence, i.e. gridToFieldMap = (/1,2,3,.../). Unmapped farrayPtr dimensions are undistributed Field
dimensions. All gridToFieldMap entries must be greater than or equal to zero and smaller than or equal
to the Field dimCount. It is erroneous to specify the same entry multiple times unless it is zero. If the Field
dimCount is less than the Mesh dimCount then the default gridToFieldMap will contain zeros for the rightmost
entries. A zero entry in the gridToFieldMap indicates that the particular Mesh dimension will be replicating
the Field across the DEs along this direction.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.36 ESMF_FieldEmptyComplete - Complete a Field from XGrid started with FieldEmptyCreate

INTERFACE:

! Private name; call using ESMF_FieldEmptyComplete()

subroutine ESMF_FieldEmptyCompXG<rank><type><kind>(field, xgrid, &

farray, indexflag, datacopyflag, xgridside, gridindex, &

gridToFieldMap, &

ungriddedLBound, ungriddedUBound, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: field

type(ESMF_XGrid), intent(in) :: xgrid

<type> (ESMF_KIND_<kind>), intent(in), target :: farray(<rank>)

type(ESMF_Index_Flag), intent(in) :: indexflag

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_DataCopy_Flag), intent(in), optional :: datacopyflag

type(ESMF_XGridSide_Flag), intent(in), optional :: xgridside

integer, intent(in), optional :: gridindex

integer, intent(in), optional :: gridToFieldMap(:)

integer, intent(in), optional :: ungriddedLBound(:)

integer, intent(in), optional :: ungriddedUBound(:)

integer, intent(out), optional :: rc

422

DESCRIPTION:

This call completes an ESMF_Field allocated with the ESMF_FieldEmptyCreate() call.

The Fortran data pointer inside ESMF_Field can be queried but deallocating the retrieved data pointer is not allowed.

The arguments are:

field The ESMF_Field object to be completed and committed in this call. The field will have the same dimension
(dimCount) as the rank of the farray.

xgrid The ESMF_XGrid object to complete the Field.

farray Native Fortran data array to be copied/referenced in the field. The field dimension (dimCount) will be
the same as the dimCount for the farray.

indexflag Indicate how DE-local indices are defined. See section 52.27 for a list of valid indexflag options.

[datacopyflag] Indicates whether to copy the farray or reference it directly. For valid values see 52.12. The default
is ESMF_DATACOPY_REFERENCE.

[xgridside] Which side of the XGrid to create the Field on (either ESMF_XGRIDSIDE_A, ESMF_XGRIDSIDE_B,
or ESMF_XGRIDSIDE_BALANCED). If not passed in then defaults to ESMF_XGRIDSIDE_BALANCED.

[gridindex] If xgridSide is ESMF_XGRIDSIDE_A or ESMF_XGRIDSIDE_B then this index tells which Grid on
that side to create the Field on. If not provided, defaults to 1.

[gridToFieldMap] List with number of elements equal to the xgrid’s dimCount. The list elements map each di-
mension of the xgrid to a dimension in the farray by specifying the appropriate farray dimension index.
The default is to map all of the xgrid’s dimensions against the lowest dimensions of the farray in sequence,
i.e. gridToFieldMap = (/1,2,3,.../). Unmapped farray dimensions are undistributed Field dimensions.
All gridToFieldMap entries must be greater than or equal to zero and smaller than or equal to the Field
dimCount. It is erroneous to specify the same entry multiple times unless it is zero. If the Field dimCount is
less than the XGrid dimCount then the default gridToFieldMap will contain zeros for the rightmost entries. A
zero entry in the gridToFieldMap indicates that the particular XGrid dimension will be replicating the Field
across the DEs along this direction.

[ungriddedLBound] Lower bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than XGrid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the field.

[ungriddedUBound] Upper bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than XGrid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the field.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.37 ESMF_FieldEmptyComplete - Complete a Field from XGrid started with FieldEmptyCreate

INTERFACE:

423

! Private name; call using ESMF_FieldEmptyComplete()

subroutine ESMF_FieldEmptyCompXGPtr<rank><type><kind>(field, xgrid, &

farrayPtr, xgridside, gridindex, &

datacopyflag, gridToFieldMap, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: field

type(ESMF_XGrid), intent(in) :: xgrid

<type> (ESMF_KIND_<kind>), pointer :: farrayPtr(<rank>)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_DataCopy_Flag), intent(in), optional :: datacopyflag

type(ESMF_XGridSide_Flag), intent(in), optional :: xgridside

integer, intent(in), optional :: gridindex

integer, intent(in), optional :: gridToFieldMap(:)

integer, intent(out), optional :: rc

DESCRIPTION:

This call completes an ESMF_Field allocated with the ESMF_FieldEmptyCreate() call.

The Fortran data pointer inside ESMF_Field can be queried and deallocated when datacopyflag is
ESMF_DATACOPY_REFERENCE. Note that the ESMF_FieldDestroy call does not deallocate the Fortran data
pointer in this case. This gives user more flexibility over memory management.

The arguments are:

field The ESMF_Field object to be completed and committed in this call. The field will have the same dimension
(dimCount) as the rank of the farrayPtr.

xgrid The ESMF_XGrid object to complete the Field.

farrayPtr Native Fortran data pointer to be copied/referenced in the field. The field dimension (dimCount) will
be the same as the dimCount for the farrayPtr.

[datacopyflag] Indicates whether to copy the farrayPtr or reference it directly. For valid values see 52.12. The
default is ESMF_DATACOPY_REFERENCE.

[xgridside] Which side of the XGrid to create the Field on (either ESMF_XGRIDSIDE_A, ESMF_XGRIDSIDE_B,
or ESMF_XGRIDSIDE_BALANCED). If not passed in then defaults to ESMF_XGRIDSIDE_BALANCED.

[gridindex] If xgridside is ESMF_XGRIDSIDE_A or ESMF_XGRIDSIDE_B then this index tells which Grid on
that side to create the Field on. If not provided, defaults to 1.

[gridToFieldMap] List with number of elements equal to the xgrid’s dimCount. The list elements map each dimen-
sion of the xgrid to a dimension in the farrayPtr by specifying the appropriate farrayPtr dimension
index. The default is to map all of the xgrid’s dimensions against the lowest dimensions of the farrayPtr
in sequence, i.e. gridToFieldMap = (/1,2,3,.../). Unmapped farrayPtr dimensions are undistributed
Field dimensions. All gridToFieldMap entries must be greater than or equal to zero and smaller than or
equal to the Field dimCount. It is erroneous to specify the same entry multiple times unless it is zero. If the
Field dimCount is less than the XGrid dimCount then the default gridToFieldMap will contain zeros for the
rightmost entries. A zero entry in the gridToFieldMap indicates that the particular XGrid dimension will be
replicating the Field across the DEs along this direction.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

424

26.6.38 ESMF_FieldEmptyCreate - Create an empty Field

INTERFACE:

function ESMF_FieldEmptyCreate(name, vm, rc)

RETURN VALUE:

type(ESMF_Field) :: ESMF_FieldEmptyCreate

ARGUMENTS:

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character (len = *), intent(in), optional :: name

type(ESMF_VM), intent(in), optional :: vm

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

8.0.0 Added argument vm to support object creation on a different VM than that of the current context.

DESCRIPTION:

This version of ESMF_FieldCreate builds an empty ESMF_Field and depends on later calls to add an
ESMF_Grid and ESMF_Array to it. The empty ESMF_Field can be completed in one more step or two more
steps by the ESMF_FieldEmptySet and ESMF_FieldEmptyComplete methods. Attributes can be added to
an empty Field object. For an example and associated documentation using this method see section 26.3.8 and 26.3.7.

The arguments are:

[name] Field name.

[vm] If present, the Field object is created on the specified ESMF_VM object. The default is to create on the VM of
the current component context.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.39 ESMF_FieldEmptySet - Set a Grid in an empty Field

INTERFACE:

425

! Private name; call using ESMF_FieldEmptySet()

subroutine ESMF_FieldEmptySetGrid(field, grid, StaggerLoc, &

vm, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: field

type(ESMF_Grid), intent(in) :: grid

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_STAGGERLOC), intent(in), optional :: StaggerLoc

type(ESMF_VM), intent(in), optional :: vm

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

7.1.0r Added argument vm to support object creation on a different VM than that of the current context.

DESCRIPTION:

Set a grid and an optional staggerloc (default to center stagger ESMF_STAGGERLOC_CENTER) in a non-completed
ESMF_Field. The ESMF_Field must not be completed for this to succeed. After this operation, the
ESMF_Field contains the ESMF_Grid internally but holds no data. The status of the field changes from
ESMF_FIELDSTATUS_EMPTY to ESMF_FIELDSTATUS_GRIDSET or stays ESMF_FIELDSTATUS_GRIDSET.

For an example and associated documentation using this method see section 26.3.7.

The arguments are:

field Empty ESMF_Field. After this operation, the ESMF_Field contains the ESMF_Grid inter-
nally but holds no data. The status of the field changes from ESMF_FIELDSTATUS_EMPTY to
ESMF_FIELDSTATUS_GRIDSET.

grid ESMF_Grid to be set in the ESMF_Field.

[StaggerLoc] Stagger location of data in grid cells. For valid predefined values see section 31.2.6. To create a custom
stagger location see section 31.3.25. The default value is ESMF_STAGGERLOC_CENTER.

[vm] If present, the Field object will only be accessed, and the Grid object set, on those PETs contained in the
specified ESMF_VM object. The default is to assume the VM of the current context.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

426

26.6.40 ESMF_FieldEmptySet - Set a Mesh in an empty Field

INTERFACE:

! Private name; call using ESMF_FieldEmptySet()

subroutine ESMF_FieldEmptySetMesh(field, mesh, indexflag, meshloc, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: field

type(ESMF_Mesh), intent(in) :: mesh

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Index_Flag),intent(in), optional :: indexflag

type(ESMF_MeshLoc), intent(in), optional :: meshloc

integer, intent(out), optional :: rc

DESCRIPTION:

Set a mesh and an optional meshloc (default to center stagger ESMF_MESHLOC_NODE) in a non-completed
ESMF_Field. The ESMF_Field must not be completed for this to succeed. After this operation, the
ESMF_Field contains the ESMF_Mesh internally but holds no data. The status of the field changes from
ESMF_FIELDSTATUS_EMPTY to ESMF_FIELDSTATUS_GRIDSET or stays ESMF_FIELDSTATUS_GRIDSET.

The arguments are:

field Empty ESMF_Field. After this operation, the ESMF_Field contains the ESMF_Mesh inter-
nally but holds no data. The status of the field changes from ESMF_FIELDSTATUS_EMPTY to
ESMF_FIELDSTATUS_GRIDSET.

mesh ESMF_Mesh to be set in the ESMF_Field.

[indexflag] Indicate how DE-local indices are defined. See section 52.27 for a list of valid indexflag options.

[meshloc] Which part of the mesh to build the Field on. Can be set to either ESMF_MESHLOC_NODE or
ESMF_MESHLOC_ELEMENT. If not set, defaults to ESMF_MESHLOC_NODE.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.41 ESMF_FieldEmptySet - Set a LocStream in an empty Field

INTERFACE:

! Private name; call using ESMF_FieldEmptySet()

subroutine ESMF_FieldEmptySetLocStream(field, locstream, &

vm, rc)

ARGUMENTS:

427

type(ESMF_Field), intent(inout) :: field

type(ESMF_LocStream), intent(in) :: locstream

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_VM), intent(in), optional :: vm

integer, intent(out), optional :: rc

DESCRIPTION:

Set a ESMF_LocStream in a non-completed ESMF_Field. The ESMF_Field must not be completed for this
to succeed. After this operation, the ESMF_Field contains the ESMF_LocStream internally but holds no data.
The status of the field changes from ESMF_FIELDSTATUS_EMPTY to ESMF_FIELDSTATUS_GRIDSET or stays
ESMF_FIELDSTATUS_GRIDSET.

The arguments are:

field Empty ESMF_Field. After this operation, the ESMF_Field contains the ESMF_LocStream in-
ternally but holds no data. The status of the field changes from ESMF_FIELDSTATUS_EMPTY to
ESMF_FIELDSTATUS_GRIDSET.

locstream ESMF_LocStream to be set in the ESMF_Field.

[vm] If present, the Field object will only be accessed, and the Grid object set, on those PETs contained in the
specified ESMF_VM object. The default is to assume the VM of the current context.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.42 ESMF_FieldEmptySet - Set an XGrid in an empty Field

INTERFACE:

! Private name; call using ESMF_FieldEmptySet()

subroutine ESMF_FieldEmptySetXGrid(field, xgrid, xgridside, gridindex, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: field

type(ESMF_XGrid), intent(in) :: xgrid

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_XGridSide_Flag), intent(in), optional :: xgridside

integer, intent(in), optional :: gridindex

integer, intent(out), optional :: rc

DESCRIPTION:

Set a xgrid and optional xgridside (default to balanced side ESMF_XGRIDSIDE_Balanced) and gridindex (default
to 1) in a non-complete ESMF_Field. The ESMF_Field must not be completed for this to succeed. After this oper-
ation, the ESMF_Field contains the ESMF_XGrid internally but holds no data. The status of the field changes from
ESMF_FIELDSTATUS_EMPTY to ESMF_FIELDSTATUS_GRIDSET or stays ESMF_FIELDSTATUS_GRIDSET.

The arguments are:

428

field Empty ESMF_Field. After this operation, the ESMF_Field contains the ESMF_XGrid inter-
nally but holds no data. The status of the field changes from ESMF_FIELDSTATUS_EMPTY to
ESMF_FIELDSTATUS_GRIDSET.

xgrid ESMF_XGrid to be set in the ESMF_Field.

[xgridside] Side of XGrid to retrieve a DistGrid. For valid predefined values see section 34.2.1. The default value is
ESMF_XGRIDSIDE_BALANCED.

[gridindex] Index to specify which DistGrid when on side A or side B. The default value is 1.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.43 ESMF_FieldFill - Fill data into a Field

INTERFACE:

subroutine ESMF_FieldFill(field, dataFillScheme, &

const1, member, step, &

param1I4, param2I4, param3I4, &

param1R4, param2R4, param3R4, &

param1R8, param2R8, param3R8, &

rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: field

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character(len=*), intent(in), optional :: dataFillScheme

real(ESMF_KIND_R8), intent(in), optional :: const1

integer, intent(in), optional :: member

integer, intent(in), optional :: step

integer(ESMF_KIND_I4), intent(in), optional :: param1I4

integer(ESMF_KIND_I4), intent(in), optional :: param2I4

integer(ESMF_KIND_I4), intent(in), optional :: param3I4

real(ESMF_KIND_R4), intent(in), optional :: param1R4

real(ESMF_KIND_R4), intent(in), optional :: param2R4

real(ESMF_KIND_R4), intent(in), optional :: param3R4

real(ESMF_KIND_R8), intent(in), optional :: param1R8

real(ESMF_KIND_R8), intent(in), optional :: param2R8

real(ESMF_KIND_R8), intent(in), optional :: param3R8

integer, intent(out), optional :: rc

DESCRIPTION:

Fill field with data according to dataFillScheme. Depending on the chosen fill scheme, the member and
step arguments are used to provide differing fill data patterns.

The arguments are:

field The ESMF_Field object to fill with data.

[dataFillScheme] The fill scheme. The available options are "sincos", "one", and "const". Defaults to "sincos".

429

[const1] Constant of real type. Defaults to 0.

[member] Member incrementor. Defaults to 1.

[step] Step incrementor. Defaults to 1.

[param1I4] Optional parameter of typekind I4. The default depends on the specified dataFillScheme.

[param2I4] Optional parameter of typekind I4. The default depends on the specified dataFillScheme.

[param3I4] Optional parameter of typekind I4. The default depends on the specified dataFillScheme.

[param1R4] Optional parameter of typekind R4. The default depends on the specified dataFillScheme.

[param2R4] Optional parameter of typekind R4. The default depends on the specified dataFillScheme.

[param3R4] Optional parameter of typekind R4. The default depends on the specified dataFillScheme.

[param1R8] Optional parameter of typekind R8. The default depends on the specified dataFillScheme.

[param2R8] Optional parameter of typekind R8. The default depends on the specified dataFillScheme.

[param3R8] Optional parameter of typekind R8. The default depends on the specified dataFillScheme.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.44 ESMF_FieldGather - Gather a Fortran array from an ESMF_Field

INTERFACE:

subroutine ESMF_FieldGather<rank><type><kind>(field, farray, &

rootPet, tile, vm, rc)

ARGUMENTS:

type(ESMF_Field), intent(in) :: field

<type>(ESMF_KIND_<kind>), intent(out), target :: farray(<rank>)

integer, intent(in) :: rootPet

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: tile

type(ESMF_VM), intent(in), optional :: vm

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

430

DESCRIPTION:

Gather the data of an ESMF_Field object into the farray located on rootPET. A single DistGrid tile of array
must be gathered into farray. The optional tile argument allows selection of the tile. For Fields defined on a
single tile DistGrid the default selection (tile 1) will be correct. The shape of farray must match the shape of the
tile in Field.

If the Field contains replicating DistGrid dimensions data will be gathered from the numerically higher DEs. Repli-
cated data elements in numericaly lower DEs will be ignored.

The implementation of Scatter and Gather is not sequence index based. If the Field is built on arbitrarily distributed
Grid, Mesh, LocStream or XGrid, Gather will not gather data to rootPet from source data points corresponding to
the sequence index on rootPet. Instead Gather will gather a contiguous memory range from source PET to rootPet.
The size of the memory range is equal to the number of data elements on the source PET. Vice versa for the Scatter
operation. In this case, the user should use ESMF_FieldRedist to achieve the same data operation result. For
examples how to use ESMF_FieldRedist to perform Gather and Scatter, please refer to 26.3.32 and 26.3.31.

This version of the interface implements the PET-based blocking paradigm: Each PET of the VM must issue this call
exactly once for all of its DEs. The call will block until all PET-local data objects are accessible.

For examples and associated documentation regarding this method see Section 26.3.28.

The arguments are:

field The ESMF_Field object from which data will be gathered.

{farray} The Fortran array into which to gather data. Only root must provide a valid farray, the other PETs may
treat farray as an optional argument.

rootPet PET that holds the valid destination array, i.e. farray.

[tile] The DistGrid tile in field from which to gather farray. By default farray will be gathered from tile 1.

[vm] Optional ESMF_VM object of the current context. Providing the VM of the current context will lower the
method’s overhead.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.45 ESMF_FieldGet - Get object-wide Field information

INTERFACE:

! Private name; call using ESMF_FieldGet()

subroutine ESMF_FieldGetDefault(field, arrayspec, &

status, geomtype, grid, mesh, locstream, xgrid, array, localarrayList, &

typekind, dimCount, rank, staggerloc, meshloc, xgridside, &

gridindex, gridToFieldMap, ungriddedLBound, ungriddedUBound, &

totalLWidth, totalUWidth, localDeCount, ssiLocalDeCount, &

localDeToDeMap, minIndex, maxIndex, elementCount, &

localMinIndex, localMaxIndex, localElementCount, name, vm, rc)

ARGUMENTS:

431

type(ESMF_Field), intent(in) :: field

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_ArraySpec), intent(out), optional :: arrayspec

type(ESMF_FieldStatus_Flag),intent(out), optional :: status

type(ESMF_GeomType_Flag), intent(out), optional :: geomtype

type(ESMF_Grid), intent(out), optional :: grid

type(ESMF_Mesh), intent(out), optional :: mesh

type(ESMF_LocStream), intent(out), optional :: locstream

type(ESMF_XGrid), intent(out), optional :: xgrid

type(ESMF_Array), intent(out), optional :: array

type(ESMF_LocalArray), target, intent(out), optional :: localarrayList(:)

type(ESMF_TypeKind_Flag), intent(out), optional :: typekind

integer, intent(out), optional :: dimCount

integer, intent(out), optional :: rank

type(ESMF_StaggerLoc), intent(out), optional :: staggerloc

type(ESMF_MeshLoc), intent(out), optional :: meshloc

type(ESMF_XGridSide_Flag), intent(out), optional :: xgridside

integer, intent(out), optional :: gridindex

integer, intent(out), optional :: gridToFieldMap(:)

integer, intent(out), optional :: ungriddedLBound(:)

integer, intent(out), optional :: ungriddedUBound(:)

integer, intent(out), optional :: totalLWidth(:,:)

integer, intent(out), optional :: totalUWidth(:,:)

integer, intent(out), optional :: localDeCount

integer, intent(out), optional :: ssiLocalDeCount

integer, intent(out), optional :: localDeToDeMap(:)

integer, intent(out), optional :: minIndex(:)

integer, intent(out), optional :: maxIndex(:)

integer, intent(out), optional :: elementCount(:)

integer, intent(out), optional :: localMinIndex(:)

integer, intent(out), optional :: localMaxIndex(:)

integer, intent(out), optional :: localElementCount(:)

character(len=*), intent(out), optional :: name

type(ESMF_VM), intent(out), optional :: vm

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r - except those arguments indicated
below.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

6.3.0r Added argument vm in order to offer information about the VM on which the Field was created.

8.0.0 Added argument minIndex. The new argument allows the user to query the global lower bounds of the
field data across all PETs.
Added argument maxIndex. The new argument allows the user to query the global upper bounds of the
field data across all PETs.
Added argument elementCount. The new argument allows the user to query the global number of
items of the field data across all PETs.
Added argument localMinIndex. The new argument allows the user to query the PET local lower

432

bounds globally indexed of the field data.
Added argument localMaxIndex. The new argument allows the user to query the PET local upper
bounds globally indexed of the field data.
Added argument localElementCount. The new argument allows the user to query the PET local
number of items of the field data.

8.1.0 Added argument ssiLocalDeCount and localarrayList to support DE sharing between PETs
on the same single system image (SSI).
Added argument localDeToDeMap to support DE handling from the Field level rather than require user
to go to Array level.

DESCRIPTION:

Query an ESMF_Field object for various pieces of information. All arguments after the field argument are
optional. To select individual items use the named_argument=value syntax. For an example and associated
documentation using this method see section 26.3.3.

The arguments are:

field ESMF_Field object to query.

[arrayspec] ESMF_ArraySpec object containing the type/kind/rank information of the Field object.

[status] The status of the Field. See section 26.2.1 for a complete list of values.

[geomtype] The type of geometry on which the Field is built. See section 52.22 for the range of values.

[grid] ESMF_Grid.

[mesh] STATUS:This argument is excluded from the backward compatibility statement.
ESMF_Mesh.

[locstream] STATUS:This argument is excluded from the backward compatibility statement.
ESMF_LocStream.

[xgrid] STATUS:This argument is excluded from the backward compatibility statement.
ESMF_XGrid.

[array] ESMF_Array.

[localarrayList] Upon return this holds a list of the associated ESMC_LocalArray objects. localarrayList
must be allocated to be of size localDeCount or ssiLocalDeCount.

[typekind] TypeKind specifier for Field. See section 52.59 for a complete list of values.

[dimCount] Number of geometrical dimensions in field. For an detailed discussion of this parameter, please see
section 26.3.23 and section 26.3.24.

[rank] Number of dimensions in the physical memory of the field data. It is identical to dimCount when the
corresponding grid is a non-arbitrary grid. It is less than dimCount when the grid is arbitrarily distributed. For
an detailed discussion of this parameter, please see section 26.3.23 and section 26.3.24.

[staggerloc] Stagger location of data in grid cells. For valid predefined values and interpretation of results see section
31.2.6.

[meshloc] STATUS:This argument is excluded from the backward compatibility statement.
The part of the mesh to build the Field on. Can be either ESMF_MESHLOC_NODE or
ESMF_MESHLOC_ELEMENT. If not set, defaults to ESMF_MESHLOC_NODE.

433

[xgridside] STATUS:This argument is excluded from the backward compatibility statement.
The side of the XGrid that the Field was created on. See section 34.2.1 for a complete list of values.

[gridIndex] STATUS:This argument is excluded from the backward compatibility statement.
If xgridside is ESMF_XGRIDSIDE_A or ESMF_XGRIDSIDE_B then this index tells which Grid/Mesh on that
side the Field was created on.

[gridToFieldMap] List with number of elements equal to the grid’s dimCount. The list elements map each dimen-
sion of the grid to a dimension in the field by specifying the appropriate field dimension index. The
default is to map all of the grid’s dimensions against the lowest dimensions of the field in sequence, i.e.
gridToFieldMap = (/1,2,3,.../). The total ungridded dimensions in the field are the total field dimen-
sions less the dimensions in the grid. Ungridded dimensions must be in the same order they are stored in the
⁀field.

[ungriddedLBound] Lower bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the field.

[ungriddedUBound] Upper bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the field.

[totalLWidth] Lower bound of halo region. The size of the first dimension of this array is the number of gridded
dimensions in the field. However, ordering of the elements needs to be the same as they appear in the field.
Values default to 0. If values for totalLWidth are specified they must be reflected in the size of the field.
That is, for each gridded dimension the field size should be max(totalLWidth + totalUWidth +
computationalCount, exclusiveCount). The size of the 2nd dimension of this array is localDeCount.

[totalUWidth] Upper bound of halo region. The size of the first dimension of this array is the number of gridded
dimensions in the field. However, ordering of the elements needs to be the same as they appear in the
field. Values default to 0. If values for totalUWidth are specified they must be reflected in the size of the
field. That is, for each gridded dimension the field size should max(totalLWidth + totalUWidth +
computationalCount, exclusiveCount). The size of the 2nd dimension of this array is localDeCount.

[localDeCount] Upon return this holds the number of PET-local DEs defined in the DELayout associated with the
Field object.

[ssiLocalDeCount] The number of DEs in the Field available to the local PET. This includes DEs that are local to
other PETs on the same SSI, that are accessible via shared memory.

[localDeToDeMap] Mapping between localDe indices and the (global) DEs associated with the local PET. The lo-
calDe index variables are discussed in sections 48.3.7 and 28.2.5. The provided actual argument must be of size
localDeCount, or ssiLocalDeCount, and will be filled accordingly.

[minIndex] Upon return this holds the global lower bounds of the field data across all PETs. This information will
be identical across all PETs. minIndex must be allocated to be of size equal to the field rank.

[maxIndex] Upon return this holds the global upper bounds of the field data across all PETs. This information will
be identical across all PETs. maxIndex must be allocated to be of size equal to the field rank.

[elementCount] Upon return this holds the global number of items of the field data across all PETs. This information
will be identical across all PETs. elementCount must be allocated to be of size equal to the field rank.

[localMinIndex] Upon return this holds the PET local lower bounds globally indexed of the field data.
localMinIndex must be allocated to be of size equal to the field rank.

434

[localMaxIndex] Upon return this holds the PET local upper bounds globally indexed of the field data.
localMaxIndex must be allocated to be of size equal to the field rank.

[localElementCount] Upon return this holds the PET local number of items of the field data.
localElementCount must be allocated to be of size equal to the field rank.

[name] Name of queried item.

[vm] The VM on which the Field object was created.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.46 ESMF_FieldGet - Get a DE-local Fortran array pointer from a Field

INTERFACE:

! Private name; call using ESMF_FieldGet()

subroutine ESMF_FieldGetDataPtr<rank><type><kind>(field, localDe, &

farrayPtr, exclusiveLBound, exclusiveUBound, exclusiveCount, &

computationalLBound, computationalUBound, computationalCount, &

totalLBound, totalUBound, totalCount, rc)

ARGUMENTS:

type(ESMF_Field), intent(in) :: field

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: localDe

<type> (ESMF_KIND_<kind>), pointer :: farrayPtr(<rank>)

integer, intent(out), optional :: exclusiveLBound(:)

integer, intent(out), optional :: exclusiveUBound(:)

integer, intent(out), optional :: exclusiveCount(:)

integer, intent(out), optional :: computationalLBound(:)

integer, intent(out), optional :: computationalUBound(:)

integer, intent(out), optional :: computationalCount(:)

integer, intent(out), optional :: totalLBound(:)

integer, intent(out), optional :: totalUBound(:)

integer, intent(out), optional :: totalCount(:)

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Get a Fortran pointer to DE-local memory allocation within field. For convenience DE-local bounds can be queried
at the same time. For an example and associated documentation using this method see section 26.3.2.

The arguments are:

435

field ESMF_Field object.

[localDe] Local DE for which information is requested. [0,..,localDeCount-1]. For localDeCount==1
the localDe argument may be omitted, in which case it will default to localDe=0.

farrayPtr Fortran array pointer which will be pointed at DE-local memory allocation. It depends on the specific entry
point of ESMF_FieldCreate() used during field creation, which Fortran operations are supported on the
returned farrayPtr. See 26.4 for more details.

[exclusiveLBound] Upon return this holds the lower bounds of the exclusive region. exclusiveLBound must be
allocated to be of size equal to field’s dimCount. See section 28.2.6 for a description of the regions and
their associated bounds and counts.

[exclusiveUBound] Upon return this holds the upper bounds of the exclusive region. exclusiveUBound must be
allocated to be of size equal to field’s dimCount. See section 28.2.6 for a description of the regions and
their associated bounds and counts.

[exclusiveCount] Upon return this holds the number of items, exclusiveUBound-exclusiveLBound+1, in
the exclusive region per dimension. exclusiveCount must be allocated to be of size equal to field’s
dimCount. See section 28.2.6 for a description of the regions and their associated bounds and counts.

[computationalLBound] Upon return this holds the lower bounds of the computational region.
computationalLBound must be allocated to be of size equal to field’s dimCount. See section
28.2.6 for a description of the regions and their associated bounds and counts.

[computationalUBound] Upon return this holds the lower bounds of the computational region.
computationalUBound must be allocated to be of size equal to field’s dimCount. See section
28.2.6 for a description of the regions and their associated bounds and counts.

[computationalCount] Upon return this holds the number of items in the computational region per dimension (i.e.
computationalUBound-computationalLBound+1). computationalCount must be allocated to
be of size equal to field’s dimCount. See section 28.2.6 for a description of the regions and their associated
bounds and counts.

[totalLBound] Upon return this holds the lower bounds of the total region. totalLBound must be allocated to be
of size equal to field’s dimCount. See section 28.2.6 for a description of the regions and their associated
bounds and counts.

[totalUBound] Upon return this holds the lower bounds of the total region. totalUBound must be allocated to be
of size equal to field’s dimCount. See section 28.2.6 for a description of the regions and their associated
bounds and counts.

[totalCount] Upon return this holds the number of items in the total region per dimension (i.e.
totalUBound-totalLBound+1). computationalCount must be allocated to be of size equal to
field’s dimCount. See section 28.2.6 for a description of the regions and their associated bounds and
counts.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.47 ESMF_FieldGetBounds - Get DE-local Field data bounds

INTERFACE:

436

! Private name; call using ESMF_FieldGetBounds()

subroutine ESMF_FieldGetBounds(field, localDe, &

exclusiveLBound, exclusiveUBound, exclusiveCount, computationalLBound, &

computationalUBound, computationalCount, totalLBound, &

totalUBound, totalCount, rc)

ARGUMENTS:

type(ESMF_Field), intent(in) :: field

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: localDe

integer, intent(out), optional :: exclusiveLBound(:)

integer, intent(out), optional :: exclusiveUBound(:)

integer, intent(out), optional :: exclusiveCount(:)

integer, intent(out), optional :: computationalLBound(:)

integer, intent(out), optional :: computationalUBound(:)

integer, intent(out), optional :: computationalCount(:)

integer, intent(out), optional :: totalLBound(:)

integer, intent(out), optional :: totalUBound(:)

integer, intent(out), optional :: totalCount(:)

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

This method returns the bounds information of a field that consists of a internal grid and a internal array. The exclusive
and computational bounds are shared between the grid and the array but the total bounds are the array bounds plus the
halo width. The count is the number of elements between each bound pair.

The arguments are:

field Field to get the information from.

[localDe] Local DE for which information is requested. [0,..,localDeCount-1]. For localDeCount==1
the localDe argument may be omitted, in which case it will default to localDe=0.

[exclusiveLBound] Upon return this holds the lower bounds of the exclusive region. exclusiveLBound must be
allocated to be of size equal to the field rank. Please see section 31.3.19 for a description of the regions and their
associated bounds and counts.

[exclusiveUBound] Upon return this holds the upper bounds of the exclusive region. exclusiveUBound must be
allocated to be of size equal to the field rank. Please see section 31.3.19 for a description of the regions and their
associated bounds and counts.

[exclusiveCount] Upon return this holds the number of items, exclusiveUBound-exclusiveLBound+1, in
the exclusive region per dimension. exclusiveCount must be allocated to be of size equal to the field rank.
Please see section 31.3.19 for a description of the regions and their associated bounds and counts.

[computationalLBound] Upon return this holds the lower bounds of the stagger region. computationalLBound
must be allocated to be of size equal to the field rank. Please see section 31.3.19 for a description of the regions
and their associated bounds and counts.

437

[computationalUBound] Upon return this holds the upper bounds of the stagger region. computationalUBound
must be allocated to be of size equal to the field rank. Please see section 31.3.19 for a description of the regions
and their associated bounds and counts.

[computationalCount] Upon return this holds the number of items in the computational region per dimension (i.e.
computationalUBound-computationalLBound+1). computationalCount must be allocated to
be of size equal to the field rank. Please see section 31.3.19 for a description of the regions and their associated
bounds and counts.

[totalLBound] Upon return this holds the lower bounds of the total region. totalLBound must be allocated to be
of size equal to the field rank.

[totalUBound] Upon return this holds the upper bounds of the total region. totalUBound must be allocated to be
of size equal to the field rank.

[totalCount] Upon return this holds the number of items in the total region per dimension (i.e.
totalUBound-totalLBound+1). totalCount must be allocated to be of size equal to the field rank.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.48 ESMF_FieldHalo - Execute a FieldHalo operation

INTERFACE:

subroutine ESMF_FieldHalo(field, routehandle, &

routesyncflag, finishedflag, checkflag, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: field

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_RouteSync_Flag), intent(in), optional :: routesyncflag

logical, intent(out), optional :: finishedflag

logical, intent(in), optional :: checkflag

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Execute a precomputed Field halo operation for field. The field argument must match the Field used during
ESMF_FieldHaloStore() in type, kind, and memory layout of the gridded dimensions. However, the size,
number, and index order of ungridded dimensions may be different. See section 36.2.4 for a more detailed discussion
of RouteHandle reusability.

See ESMF_FieldHaloStore() on how to precompute routehandle.

This call is collective across the current VM.

438

field ESMF_Field containing data to be haloed.

routehandle Handle to the precomputed Route.

[routesyncflag] Indicate communication option. Default is ESMF_ROUTESYNC_BLOCKING, resulting in a blocking
operation. See section 52.51 for a complete list of valid settings.

[finishedflag] Used in combination with routesyncflag = ESMF_ROUTESYNC_NBTESTFINISH. Re-
turned finishedflag equal to .true. indicates that all operations have finished. A value
of .false. indicates that there are still unfinished operations that require additional calls with
routesyncflag = ESMF_ROUTESYNC_NBTESTFINISH, or a final call with routesyncflag =

ESMF_ROUTESYNC_NBWAITFINISH. For all other routesyncflag settings the returned value in
finishedflag is always .true..

[checkflag] If set to .TRUE. the input Field pair will be checked for consistency with the precomputed operation
provided by routehandle. If set to .FALSE. (default) only a very basic input check will be performed,
leaving many inconsistencies undetected. Set checkflag to .FALSE. to achieve highest performance.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.49 ESMF_FieldHaloRelease - Release resources associated with a Field halo operation

INTERFACE:

subroutine ESMF_FieldHaloRelease(routehandle, noGarbage, rc)

ARGUMENTS:

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: noGarbage

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

8.0.0 Added argument noGarbage. The argument provides a mechanism to override the default garbage
collection mechanism when destroying an ESMF object.

DESCRIPTION:

Release resources associated with a Field halo operation. After this call routehandle becomes invalid.

439

routehandle Handle to the precomputed Route.

[noGarbage] If set to .TRUE. the object will be fully destroyed and removed from the ESMF garbage collection
system. Note however that under this condition ESMF cannot protect against accessing the destroyed object
through dangling aliases – a situation which may lead to hard to debug application crashes.

It is generally recommended to leave the noGarbage argument set to .FALSE. (the default), and to take
advantage of the ESMF garbage collection system which will prevent problems with dangling aliases or incorrect
sequences of destroy calls. However this level of support requires that a small remnant of the object is kept in
memory past the destroy call. This can lead to an unexpected increase in memory consumption over the course
of execution in applications that use temporary ESMF objects. For situations where the repeated creation and
destruction of temporary objects leads to memory issues, it is recommended to call with noGarbage set to
.TRUE., fully removing the entire temporary object from memory.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.50 ESMF_FieldHaloStore - Store a FieldHalo operation

INTERFACE:

subroutine ESMF_FieldHaloStore(field, routehandle, &

startregion, haloLDepth, haloUDepth, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: field

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_StartRegion_Flag), intent(in), optional :: startregion

integer, intent(in), optional :: haloLDepth(:)

integer, intent(in), optional :: haloUDepth(:)

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Store a Field halo operation over the data in field. By default, i.e. without specifying startregion,
haloLDepth and haloUDepth, all elements in the total Field region that lie outside the exclusive region will
be considered potential destination elements for halo. However, only those elements that have a corresponding halo
source element, i.e. an exclusive element on one of the DEs, will be updated under the halo operation. Elements that
have no associated source remain unchanged under halo.

Specifying startregion allows to change the shape of the effective halo region from the inside. Setting
this flag to ESMF_STARTREGION_COMPUTATIONAL means that only elements outside the computational re-
gion of the Field are considered for potential destination elements for the halo operation. The default is
ESMF_STARTREGION_EXCLUSIVE.

440

The haloLDepth and haloUDepth arguments allow to reduce the extent of the effective halo region. Starting at
the region specified by startregion, the haloLDepth and haloUDepth define a halo depth in each direction.
Note that the maximum halo region is limited by the total Field region, independent of the actual haloLDepth
and haloUDepth setting. The total Field region is local DE specific. The haloLDepth and haloUDepth are
interpreted as the maximum desired extent, reducing the potentially larger region available for the halo operation.

The routine returns an ESMF_RouteHandle that can be used to call ESMF_FieldHalo() on any Field that
matches field in type, kind, and memory layout of the gridded dimensions. However, the size, number, and index
order of ungridded dimensions may be different. See section 36.2.4 for a more detailed discussion of RouteHandle
reusability.

This call is collective across the current VM.

field ESMF_Field containing data to be haloed. The data in this Field may be destroyed by this call.

routehandle Handle to the precomputed Route.

[startregion] The start of the effective halo region on every DE. The default setting is
ESMF_STARTREGION_EXCLUSIVE, rendering all non-exclusive elements potential halo destination
elements. See section 52.54 for a complete list of valid settings.

[haloLDepth] This vector specifies the lower corner of the effective halo region with respect to the lower corner of
startregion. The size of haloLDepth must equal the number of distributed Array dimensions.

[haloUDepth] This vector specifies the upper corner of the effective halo region with respect to the upper corner of
startregion. The size of haloUDepth must equal the number of distributed Array dimensions.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.51 ESMF_FieldIsCreated - Check whether a Field object has been created

INTERFACE:

function ESMF_FieldIsCreated(field, rc)

RETURN VALUE:

logical :: ESMF_FieldIsCreated

ARGUMENTS:

type(ESMF_Field), intent(in) :: field

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Return .true. if the field has been created. Otherwise return .false.. If an error occurs, i.e. rc /=

ESMF_SUCCESS is returned, the return value of the function will also be .false..

The arguments are:

441

field ESMF_Field queried.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.52 ESMF_FieldPrint - Print Field information

INTERFACE:

subroutine ESMF_FieldPrint(field, rc)

ARGUMENTS:

type(ESMF_Field), intent(in) :: field

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Prints information about the field to stdout. This subroutine goes through the internal data members of a field
data type and prints information of each data member.

The arguments are:

field An ESMF_Field object.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.53 ESMF_FieldRead - Read Field data from a file

INTERFACE:

subroutine ESMF_FieldRead(field, fileName, &

variableName, timeslice, iofmt, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: field

character(*), intent(in) :: fileName

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character(*), intent(in), optional :: variableName

integer, intent(in), optional :: timeslice

type(ESMF_IOFmt_Flag), intent(in), optional :: iofmt

integer, intent(out), optional :: rc

442

DESCRIPTION:

Read Field data from a file and put it into an ESMF_Field object. For this API to be functional, the environment
variable ESMF_PIO should be set to "internal" when the ESMF library is built. Please see the section on Data
I/O, 37.2.

Limitations:

• Only single tile Fields are supported.

• Not supported in ESMF_COMM=mpiuni mode.

The arguments are:

field The ESMF_Field object in which the read data is returned.

fileName The name of the file from which Field data is read.

[variableName] Variable name in the file; default is the "name" of Field. Use this argument only in the I/O format
(such as NetCDF) that supports variable name. If the I/O format does not support this (such as binary format),
ESMF will return an error code.

timeslice Number of slices to be read from file, starting from the 1st slice

[iofmt] The I/O format. Please see Section 52.28 for the list of options. If not present, file names with a .bin
extension will use ESMF_IOFMT_BIN, and file names with a .nc extension will use ESMF_IOFMT_NETCDF.
Other files default to ESMF_IOFMT_NETCDF.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.54 ESMF_FieldRedist - Execute a Field redistribution

INTERFACE:

subroutine ESMF_FieldRedist(srcField, dstField, routehandle, &

checkflag, rc)

ARGUMENTS:

type(ESMF_Field), intent(in),optional :: srcField

type(ESMF_Field), intent(inout),optional :: dstField

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: checkflag

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

443

DESCRIPTION:

Execute a precomputed Field redistribution from srcField to dstField. Both srcField and dstField must
match the respective Fields used during ESMF_FieldRedistStore() in type, kind, and memory layout of the
gridded dimensions. However, the size, number, and index order of ungridded dimensions may be different. See
section 36.2.4 for a more detailed discussion of RouteHandle reusability.

The srcField and dstField arguments are optional in support of the situation where srcField and/or
dstField are not defined on all PETs. The srcField and dstField must be specified on those PETs that
hold source or destination DEs, respectively, but may be omitted on all other PETs. PETs that hold neither source nor
destination DEs may omit both arguments.

It is erroneous to specify the identical Field object for srcField and dstField arguments.

See ESMF_FieldRedistStore() on how to precompute routehandle.

This call is collective across the current VM.

For examples and associated documentation regarding this method see Section 26.3.30.

[srcField] ESMF_Field with source data.

[dstField] ESMF_Field with destination data.

routehandle Handle to the precomputed Route.

[checkflag] If set to .TRUE. the input Field pair will be checked for consistency with the precomputed operation
provided by routehandle. If set to .FALSE. (default) only a very basic input check will be performed,
leaving many inconsistencies undetected. Set checkflag to .FALSE. to achieve highest performance.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.55 ESMF_FieldRedistRelease - Release resources associated with Field redistribution

INTERFACE:

subroutine ESMF_FieldRedistRelease(routehandle, noGarbage, rc)

ARGUMENTS:

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: noGarbage

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

444

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

8.0.0 Added argument noGarbage. The argument provides a mechanism to override the default garbage
collection mechanism when destroying an ESMF object.

DESCRIPTION:

Release resources associated with a Field redistribution. After this call routehandle becomes invalid.

routehandle Handle to the precomputed Route.

[noGarbage] If set to .TRUE. the object will be fully destroyed and removed from the ESMF garbage collection
system. Note however that under this condition ESMF cannot protect against accessing the destroyed object
through dangling aliases – a situation which may lead to hard to debug application crashes.

It is generally recommended to leave the noGarbage argument set to .FALSE. (the default), and to take
advantage of the ESMF garbage collection system which will prevent problems with dangling aliases or incorrect
sequences of destroy calls. However this level of support requires that a small remnant of the object is kept in
memory past the destroy call. This can lead to an unexpected increase in memory consumption over the course
of execution in applications that use temporary ESMF objects. For situations where the repeated creation and
destruction of temporary objects leads to memory issues, it is recommended to call with noGarbage set to
.TRUE., fully removing the entire temporary object from memory.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.56 ESMF_FieldRedistStore - Precompute Field redistribution with a local factor argument

INTERFACE:

! Private name; call using ESMF_FieldRedistStore()

subroutine ESMF_FieldRedistStore<type><kind>(srcField, dstField, &

routehandle, factor, srcToDstTransposeMap, &

ignoreUnmatchedIndices, rc)

ARGUMENTS:

type(ESMF_Field), intent(in) :: srcField

type(ESMF_Field), intent(inout) :: dstField

type(ESMF_RouteHandle), intent(inout) :: routehandle

<type>(ESMF_KIND_<kind>), intent(in) :: factor

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: srcToDstTransposeMap(:)

logical, intent(in), optional :: ignoreUnmatchedIndices

integer, intent(out), optional :: rc

445

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

7.0.0 Added argument ignoreUnmatchedIndices to support sparse matrices that contain elements with
indices that do not have a match within the source or destination Array.

DESCRIPTION:

ESMF_FieldRedistStore() is a collective method across all PETs of the current Component. The interface of
the method is overloaded, allowing – in principle – each PET to call into ESMF_FieldRedistStore() through a
different entry point. Restrictions apply as to which combinations are sensible. All other combinations result in ESMF
run time errors. The complete semantics of the ESMF_FieldRedistStore() method, as provided through the
separate entry points shown in 26.6.56 and 26.6.57, is described in the following paragraphs as a whole.

Store a Field redistribution operation from srcField to dstField. Interface 26.6.56 allows PETs to specify a
factor argument. PETs not specifying a factor argument call into interface 26.6.57. If multiple PETs specify the
factor argument, its type and kind, as well as its value must match across all PETs. If none of the PETs specify
a factor argument the default will be a factor of 1. The resulting factor is applied to all of the source data during
redistribution, allowing scaling of the data, e.g. for unit transformation.

Both srcField and dstField are interpreted as sequentialized vectors. The sequence is defined by the order of
DistGrid dimensions and the order of tiles within the DistGrid or by user-supplied arbitrary sequence indices. See
section 28.2.18 for details on the definition of sequence indices.

Source Field, destination Field, and the factor may be of different <type><kind>. Further, source and destination
Fields may differ in shape, however, the number of elements must match.

If srcToDstTransposeMap is not specified the redistribution corresponds to an identity mapping of the sequen-
tialized source Field to the sequentialized destination Field. If the srcToDstTransposeMap argument is provided
it must be identical on all PETs. The srcToDstTransposeMap allows source and destination Field dimensions to
be transposed during the redistribution. The number of source and destination Field dimensions must be equal under
this condition and the size of mapped dimensions must match.

It is erroneous to specify the identical Field object for srcField and dstField arguments.

The routine returns an ESMF_RouteHandle that can be used to call ESMF_FieldRedist() on any pair of Fields
that matches srcField and dstField in type, kind, and memory layout of the gridded dimensions. However, the
size, number, and index order of ungridded dimensions may be different. See section 36.2.4 for a more detailed
discussion of RouteHandle reusability.

This method is overloaded for:
ESMF_TYPEKIND_I4, ESMF_TYPEKIND_I8,
ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8.

This call is collective across the current VM.

For examples and associated documentation regarding this method see Section 26.3.30.

The arguments are:

srcField ESMF_Field with source data.

446

dstField ESMF_Field with destination data. The data in this Field may be destroyed by this call.

routehandle Handle to the precomputed Route.

factor Factor by which to multiply data. Default is 1. See full method description above for details on the interplay
with other PETs.

[srcToDstTransposeMap] List with as many entries as there are dimensions in srcField. Each entry maps the
corresponding srcField dimension against the specified dstField dimension. Mixing of distributed and
undistributed dimensions is supported.

[ignoreUnmatchedIndices] A logical flag that affects the behavior for when not all elements match between the
srcField and dstField side. The default setting is .false., indicating that it is an error when such a
situation is encountered. Setting ignoreUnmatchedIndices to .true. ignores unmatched indices.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.57 ESMF_FieldRedistStore - Precompute Field redistribution without a local factor argument

INTERFACE:

! Private name; call using ESMF_FieldRedistStore()

subroutine ESMF_FieldRedistStoreNF(srcField, dstField, &

routehandle, srcToDstTransposeMap, &

ignoreUnmatchedIndices, rc)

ARGUMENTS:

type(ESMF_Field), intent(in) :: srcField

type(ESMF_Field), intent(inout) :: dstField

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: srcToDstTransposeMap(:)

logical, intent(in), optional :: ignoreUnmatchedIndices

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

ESMF_FieldRedistStore() is a collective method across all PETs of the current Component. The interface of
the method is overloaded, allowing – in principle – each PET to call into ESMF_FieldRedistStore() through a
different entry point. Restrictions apply as to which combinations are sensible. All other combinations result in ESMF
run time errors. The complete semantics of the ESMF_FieldRedistStore() method, as provided through the
separate entry points shown in 26.6.56 and 26.6.57, is described in the following paragraphs as a whole.

Store a Field redistribution operation from srcField to dstField. Interface 26.6.56 allows PETs to specify a
factor argument. PETs not specifying a factor argument call into interface 26.6.57. If multiple PETs specify the

447

factor argument, its type and kind, as well as its value must match across all PETs. If none of the PETs specify
a factor argument the default will be a factor of 1. The resulting factor is applied to all of the source data during
redistribution, allowing scaling of the data, e.g. for unit transformation.

Both srcField and dstField are interpreted as sequentialized vectors. The sequence is defined by the order of
DistGrid dimensions and the order of tiles within the DistGrid or by user-supplied arbitrary sequence indices. See
section 28.2.18 for details on the definition of sequence indices.

Source Field, destination Field, and the factor may be of different <type><kind>. Further, source and destination
Fields may differ in shape, however, the number of elements must match.

If srcToDstTransposeMap is not specified the redistribution corresponds to an identity mapping of the sequen-
tialized source Field to the sequentialized destination Field. If the srcToDstTransposeMap argument is provided
it must be identical on all PETs. The srcToDstTransposeMap allows source and destination Field dimensions to
be transposed during the redistribution. The number of source and destination Field dimensions must be equal under
this condition and the size of mapped dimensions must match.

It is erroneous to specify the identical Field object for srcField and dstField arguments.

The routine returns an ESMF_RouteHandle that can be used to call ESMF_FieldRedist() on any pair of Fields
that matches srcField and dstField in type, kind, and memory layout of the gridded dimensions. However, the
size, number, and index order of ungridded dimensions may be different. See section 36.2.4 for a more detailed
discussion of RouteHandle reusability.

This call is collective across the current VM.

For examples and associated documentation regarding this method see Section 26.3.30.

The arguments are:

srcField ESMF_Field with source data.

dstField ESMF_Field with destination data. The data in this Field may be destroyed by this call.

routehandle Handle to the precomputed Route.

[srcToDstTransposeMap] List with as many entries as there are dimensions in srcField. Each entry maps the
corresponding srcField dimension against the specified dstField dimension. Mixing of distributed and
undistributed dimensions is supported.

[ignoreUnmatchedIndices] A logical flag that affects the behavior for when not all elements match between the
srcField and dstField side. The default setting is .false., indicating that it is an error when such a
situation is encountered. Setting ignoreUnmatchedIndices to .true. ignores unmatched indices.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.58 ESMF_FieldRegrid - Compute a regridding operation

INTERFACE:

subroutine ESMF_FieldRegrid(srcField, dstField, routehandle, &

zeroregion, termorderflag, checkflag, dynamicMask, rc)

ARGUMENTS:

448

type(ESMF_Field), intent(in), optional :: srcField

type(ESMF_Field), intent(inout), optional :: dstField

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Region_Flag), intent(in), optional :: zeroregion

type(ESMF_TermOrder_Flag), intent(in), optional :: termorderflag

logical, intent(in), optional :: checkflag

type(ESMF_DynamicMask), target, intent(in), optional :: dynamicMask

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

6.1.0 Added argument termorderflag. The new argument gives the user control over the order in which
the src terms are summed up.

7.1.0r Added argument dynamicMask. The new argument supports the dynamic masking feature.

DESCRIPTION:

Execute the precomputed regrid operation stored in routehandle to interpolate from srcField to dstField.
See ESMF_FieldRegridStore() on how to precompute the routehandle.

Both srcField and dstField must match the respective Fields used during ESMF_FieldRegridStore() in
type, kind, and memory layout of the gridded dimensions. However, the size, number, and index order of ungridded
dimensions may be different. See section 36.2.4 for a more detailed discussion of RouteHandle reusability.

The srcField and dstField arguments are optional in support of the situation where srcField and/or
dstField are not defined on all PETs. The srcField and dstField must be specified on those PETs that
hold source or destination DEs, respectively, but may be omitted on all other PETs. PETs that hold neither source nor
destination DEs may omit both arguments.

It is erroneous to specify the identical Field object for srcField and dstField arguments.

This call is collective across the current VM.

[srcField] ESMF_Field with source data.

[dstField] ESMF_Field with destination data.

routehandle Handle to the precomputed Route.

[zeroregion] If set to ESMF_REGION_TOTAL (default) the total regions of all DEs in dstField will be ini-
tialized to zero before updating the elements with the results of the sparse matrix multiplication. If
set to ESMF_REGION_EMPTY the elements in dstField will not be modified prior to the sparse ma-
trix multiplication and results will be added to the incoming element values. Setting zeroregion to
ESMF_REGION_SELECT will only zero out those elements in the destination Array that will be updated by the
sparse matrix multiplication. See section 52.48 for a complete list of valid settings.

449

[termorderflag] Specifies the order of the source side terms in all of the destination sums. The termorderflag
only affects the order of terms during the execution of the RouteHandle. See the 36.2.1 section for an
in-depth discussion of all bit-for-bit reproducibility aspects related to route-based communication meth-
ods. See 52.58 for a full list of options. The default setting depends on whether the dynamicMask

argument is present or not. With dynamicMask argument present, the default of termorderflag

is ESMF_TERMORDER_SRCSEQ. This ensures that all source terms are present on the destination side,
and the interpolation can be calculated as a single sum. When dynamicMask is absent, the default of
termorderflag is ESMF_TERMORDER_FREE, allowing maximum flexibility and partial sums for optimum
performance.

[checkflag] If set to .TRUE. the input Array pair will be checked for consistency with the precomputed operation
provided by routehandle. If set to .FALSE. (default) only a very basic input check will be performed,
leaving many inconsistencies undetected. Set checkflag to .FALSE. to achieve highest performance.

[dynamicMask] Object holding dynamic masking information. See section 36.2.5 for a discussion of dynamic mask-
ing.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.59 ESMF_FieldRegridRelease - Free resources used by a regridding operation

INTERFACE:

subroutine ESMF_FieldRegridRelease(routehandle, &

noGarbage, rc)

ARGUMENTS:

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: noGarbage

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

8.0.0 Added argument noGarbage. The argument provides a mechanism to override the default garbage
collection mechanism when destroying an ESMF object.

DESCRIPTION:

Release resources associated with a regrid operation. After this call routehandle becomes invalid.

The arguments are:

450

routehandle Handle to the precomputed Route.

[noGarbage] If set to .TRUE. the object will be fully destroyed and removed from the ESMF garbage collection
system. Note however that under this condition ESMF cannot protect against accessing the destroyed object
through dangling aliases – a situation which may lead to hard to debug application crashes.

It is generally recommended to leave the noGarbage argument set to .FALSE. (the default), and to take
advantage of the ESMF garbage collection system which will prevent problems with dangling aliases or incorrect
sequences of destroy calls. However this level of support requires that a small remnant of the object is kept in
memory past the destroy call. This can lead to an unexpected increase in memory consumption over the course
of execution in applications that use temporary ESMF objects. For situations where the repeated creation and
destruction of temporary objects leads to memory issues, it is recommended to call with noGarbage set to
.TRUE., fully removing the entire temporary object from memory.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.60 ESMF_FieldRegridStore - Precompute a Field regridding operation and return a RouteHandle and

weights

INTERFACE:

! Private name; call using ESMF_FieldRegridStore()

subroutine ESMF_FieldRegridStoreNX(srcField, dstField, &

srcMaskValues, dstMaskValues, &

regridmethod, &

polemethod, regridPoleNPnts, &

lineType, &

normType, &

extrapMethod, &

extrapNumSrcPnts, &

extrapDistExponent, &

extrapNumLevels, &

unmappedaction, ignoreDegenerate, &

srcTermProcessing, &

pipeLineDepth, &

routehandle, &

factorList, factorIndexList, &

weights, indices, & ! DEPRECATED ARGUMENTS

srcFracField, dstFracField, &

dstStatusField, &

unmappedDstList, &

checkFlag, &

rc)

ARGUMENTS:

type(ESMF_Field), intent(in) :: srcField

type(ESMF_Field), intent(inout) :: dstField

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer(ESMF_KIND_I4), intent(in), optional :: srcMaskValues(:)

451

integer(ESMF_KIND_I4), intent(in), optional :: dstMaskValues(:)

type(ESMF_RegridMethod_Flag), intent(in), optional :: regridmethod

type(ESMF_PoleMethod_Flag), intent(in), optional :: polemethod

integer, intent(in), optional :: regridPoleNPnts

type(ESMF_LineType_Flag), intent(in), optional :: lineType

type(ESMF_NormType_Flag), intent(in), optional :: normType

type(ESMF_ExtrapMethod_Flag), intent(in), optional :: extrapMethod

integer, intent(in), optional :: extrapNumSrcPnts

real(ESMF_KIND_R4), intent(in), optional :: extrapDistExponent

integer, intent(in), optional :: extrapNumLevels

type(ESMF_UnmappedAction_Flag), intent(in), optional :: unmappedaction

logical, intent(in), optional :: ignoreDegenerate

integer, intent(inout), optional :: srcTermProcessing

integer, intent(inout), optional :: pipeLineDepth

type(ESMF_RouteHandle), intent(inout), optional :: routehandle

real(ESMF_KIND_R8), pointer, optional :: factorList(:)

integer(ESMF_KIND_I4), pointer, optional :: factorIndexList(:,:)

real(ESMF_KIND_R8), pointer, optional :: weights(:) ! DEPRECATED ARG

integer(ESMF_KIND_I4), pointer, optional :: indices(:,:) ! DEPRECATED ARG

type(ESMF_Field), intent(inout), optional :: srcFracField

type(ESMF_Field), intent(inout), optional :: dstFracField

type(ESMF_Field), intent(inout), optional :: dstStatusField

integer(ESMF_KIND_I4), pointer, optional :: unmappedDstList(:)

logical, intent(in), optional :: checkFlag

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

5.2.0rp1 Added arguments factorList and factorIndexList. Started to deprecate arguments
weights and indices. This corrects an inconsistency of this interface with all other ESMF meth-
ods that take these same arguments.

6.1.0 Added arguments ignoreDegenerate, srcTermProcessing, pipelineDepth, and
unmappedDstList. The argument ignoreDegenerate allows the user to skip degenerate
cells in the regridding instead of stopping with an error. The two arguments srcTermProcessing and
pipelineDepth provide access to the tuning parameters affecting the sparse matrix execution. The
argument unmappedDstList allows the user to get a list of the destination items which the regridding
couldn’t map to a source.

6.3.0r Added argument lineType. This argument allows the user to control the path of the line between
two points on a sphere surface. This allows the user to use their preferred line path for the calculation of
distances and the shape of cells during regrid weight calculation on a sphere.

6.3.0rp1 Added argument normType. This argument allows the user to control the type of normalization done
during conservative weight generation.

7.1.0r Added argument dstStatusField. This argument allows the user to receive information about what
happened to each location in the destination Field during regridding.

Added arguments extrapMethod, extrapNumSrcPnts, and extrapDistExponent. These
three new extrapolation arguments allow the user to extrapolate destination points not mapped by the regrid

452

method. extrapMethod allows the user to choose the extrapolation method. extrapNumSrcPnts
and extrapDistExponent are parameters that allow the user to tune the behavior of the
ESMF_EXTRAPMETHOD_NEAREST_IDAVG method.

8.0.0 Added argument extrapNumLevels. For level based extrapolation methods (e.g.
ESMF_EXTRAPMETHOD_CREEP) this argument allows the user to set how many levels to extrap-
olate.

8.1.0 Added argument checkFlag to enable the user to turn on more expensive error checking during regrid
weight calculation.

DESCRIPTION:

Creates a sparse matrix operation (stored in routehandle) that contains the calculations and communica-
tions necessary to interpolate from srcField to dstField. The routehandle can then be used in the call
ESMF_FieldRegrid() to interpolate between the Fields. The user may also get the interpolation matrix in sparse
matrix form via the optional arguments factorList and factorIndexList.

The routehandle generated by this call is based just on the coordinates in the Grids or Meshes contained in the Fields.
If those coordinates don’t change the routehandle can be used repeatedly to interpolate from the source Field to the
destination Field. This is true even if the data in the Fields changes. The routehandle may also be used to interpolate
between any source and destination Field which are created on the same location in the same Grid, LocStream, or
Mesh as the original Fields.

When it’s no longer needed the routehandle should be destroyed by using ESMF_FieldRegridRelease() to free
the memory it’s using.

Note, as a side effect, that this call may change the data in dstField. If this is undesirable, then an easy work around
is to create a second temporary field with the same structure as dstField and pass that in instead.

The arguments are:

srcField Source Field.

dstField Destination Field. The data in this Field may be overwritten by this call.

[srcMaskValues] Mask information can be set in the Grid (see 31.3.17) or Mesh (see 33.3.11) upon which the
srcField is built. The srcMaskValues argument specifies the values in that mask information which in-
dicate a source point should be masked out. In other words, a locati on is masked if and only if the value for that
location in the mask information matches one of the values listed in srcMaskValues. If srcMaskValues
is not specified, no masking will occur.

[dstMaskValues] Mask information can be set in the Grid (see 31.3.17) or Mesh (see 33.3.11) upon which the
dstField is built. The dstMaskValues argument specifies the values in that mask information which
indicate a destination point should be masked out. In other words, a location is masked if and only if the
value for that location in the mask information matches one of the values listed in dstMaskValues. If
dstMaskValues is not specified, no masking will occur.

[regridmethod] The type of interpolation. Please see Section 52.49 for a list of valid options. If not specified, defaults
to ESMF_REGRIDMETHOD_BILINEAR.

[polemethod] Specifies the type of pole to construct on the source Grid during regridding. Please see Section 52.46
for a list of valid options. If not specified, defaults to ESMF_POLEMETHOD_ALLAVG for non-conservative
regrid methods, and ESMF_POLEMETHOD_NONE for conservative methods.

[regridPoleNPnts] If polemethod is ESMF_POLEMETHOD_NPNTAVG, then this parameter indicates the num-
ber of points over which to average. If polemethod is not ESMF_POLEMETHOD_NPNTAVG and
regridPoleNPnts is specified, then it will be ignored. This subroutine will return an error if polemethod
is ESMF_POLEMETHOD_NPNTAVG and regridPoleNPnts is not specified.

453

[lineType] This argument controls the path of the line which connects two points on a sphere surface. This in turn
controls the path along which distances are calculated and the shape of the edges that make up a cell. Both of
these quantities can influence how interpolation weights are calculated. As would be expected, this argument
is only applicable when srcField and dstField are built on grids which lie on the surface of a sphere.
Section 52.34 shows a list of valid options for this argument. If not specified, the default depends on the regrid
method. Section 52.34 has the defaults by line type. Figure 24.2.16 shows which line types are supported for
each regrid method as well as showing the default line type by regrid method.

[normType] This argument controls the type of normalization used when generating conservative weights. This
option only applies to weights generated with regridmethod=ESMF_REGRIDMETHOD_CONSERVE or
regridmethod=ESMF_REGRIDMETHOD_CONSERVE_2ND Please see Section 52.43 for a list of valid op-
tions. If not specified normType defaults to ESMF_NORMTYPE_DSTAREA.

[extrapMethod] The type of extrapolation. Please see Section 52.17 for a list of valid options. If not specified,
defaults to ESMF_EXTRAPMETHOD_NONE.

[extrapNumSrcPnts] The number of source points to use for the extrapolation methods that use more than one source
point (e.g. ESMF_EXTRAPMETHOD_NEAREST_IDAVG). If not specified, defaults to 8.

[extrapDistExponent] The exponent to raise the distance to when calculating weights for the
ESMF_EXTRAPMETHOD_NEAREST_IDAVG extrapolation method. A higher value reduces the influence of
more distant points. If not specified, defaults to 2.0.

[extrapNumLevels] The number of levels to output for the extrapolation methods that fill levels (e.g.
ESMF_EXTRAPMETHOD_CREEP). When a method is used that requires this, then an error will be returned,
if it is not specified.

[unmappedaction] Specifies what should happen if there are destination points that can’t be mapped to a source
cell. Please see Section 52.60 for a list of valid options. If not specified, unmappedaction defaults to
ESMF_UNMAPPEDACTION_ERROR.

[ignoreDegenerate] Ignore degenerate cells when checking the input Grids or Meshes for errors. If this is set to true,
then the regridding proceeds, but degenerate cells will be skipped. If set to false, a degenerate cell produces an
error. If not specified, ignoreDegenerate defaults to false.

[srcTermProcessing] The srcTermProcessing parameter controls how many source terms, located on the same
PET and summing into the same destination element, are summed into partial sums on the source PET before
being transferred to the destination PET. A value of 0 indicates that the entire arithmetic is done on the destina-
tion PET; source elements are neither multiplied by their factors nor added into partial sums before being sent
off by the source PET. A value of 1 indicates that source elements are multiplied by their factors on the source
side before being sent to the destination PET. Larger values of srcTermProcessing indicate the maximum
number of terms in the partial sums on the source side.

Note that partial sums may lead to bit-for-bit differences in the results. See section 36.2.1 for an in-depth
discussion of all bit-for-bit reproducibility aspects related to route-based communication methods.

The ESMF_FieldRegridStore() method implements an auto-tuning scheme for the
srcTermProcessing parameter. The intent on the srcTermProcessing argument is "inout"
in order to support both overriding and accessing the auto-tuning parameter. If an argument >= 0 is specified,
it is used for the srcTermProcessing parameter, and the auto-tuning phase is skipped. In this case
the srcTermProcessing argument is not modified on return. If the provided argument is < 0, the
srcTermProcessing parameter is determined internally using the auto-tuning scheme. In this case the
srcTermProcessing argument is re-set to the internally determined value on return. Auto-tuning is also
used if the optional srcTermProcessing argument is omitted.

[pipelineDepth] The pipelineDepth parameter controls how many messages a PET may have outstanding during
a sparse matrix exchange. Larger values of pipelineDepth typically lead to better performance. However,
on some systems too large a value may lead to performance degradation, or runtime errors.

Note that the pipeline depth has no effect on the bit-for-bit reproducibility of the results. However, it may affect
the performance reproducibility of the exchange.

454

The ESMF_FieldRegridStore() method implements an auto-tuning scheme for the pipelineDepth
parameter. The intent on the pipelineDepth argument is "inout" in order to support both overriding and
accessing the auto-tuning parameter. If an argument >= 0 is specified, it is used for the pipelineDepth
parameter, and the auto-tuning phase is skipped. In this case the pipelineDepth argument is not modified
on return. If the provided argument is < 0, the pipelineDepth parameter is determined internally using the
auto-tuning scheme. In this case the pipelineDepth argument is re-set to the internally determined value on
return. Auto-tuning is also used if the optional pipelineDepth argument is omitted.

[routehandle] The communication handle that implements the regrid operation and that can be used later in the
ESMF_FieldRegrid() call. The routehandle is optional so that if the user doesn’t need it, then they
can indicate that by not requesting it. The time to compute the routehandle can be a significant fraction of
the time taken by this method, so if it’s not needed then not requesting it is worthwhile.

[factorList] The list of coefficients for a sparse matrix which interpolates from srcField to dstField. The array
coming out of this variable is in the appropriate format to be used in other ESMF sparse matrix multiply calls,
for example ESMF_FieldSMMStore(). The factorList array is allocated by the method and the user is
responsible for deallocating it.

[factorIndexList] The indices for a sparse matrix which interpolates from srcField to dstField. This
argument is a 2D array containing pairs of source and destination sequence indices corresponding
to the coefficients in the factorList argument. The first dimension of factorIndexList is
of size 2. factorIndexList(1,:) specifies the sequence index of the source element in the
srcField. factorIndexList(2,:) specifies the sequence index of the destination element in
the dstField. The se cond dimension of factorIndexList steps through the list of pairs,
i.e. size(factorIndexList,2)==size(factorList). The array coming out of this vari-
able is in the appropriate format to be used in other ESMF sparse matrix multiply calls, for example
ESMF_FieldSMMStore(). The factorIndexList array is allocated by the method and the user is
responsible for deallocating it.

[weights] DEPRECATED ARGUMENT! Please use the argument factorList instead.

[indices] DEPRECATED ARGUMENT! Please use the argument factorIndexList instead.

[srcFracField] The fraction of each source cell participating in the regridding. Only valid when regridmethod
is ESMF_REGRIDMETHOD_CONSERVE or regridmethod=ESMF_REGRIDMETHOD_CONSERVE_2ND.
This Field needs to be created on the same location (e.g staggerloc) as the srcField.

[dstFracField] The fraction of each destination cell participating in the regridding. Only valid when regridmethod
is ESMF_REGRIDMETHOD_CONSERVE or regridmethod=ESMF_REGRIDMETHOD_CONSERVE_2ND.
This Field needs to be created on the same location (e.g staggerloc) as the dstField. It is important to note
that the current implementation of conservative regridding doesn’t normalize the interpolation weights by the
destination fraction. This means that for a destination grid which only partially overlaps the source grid the
destination field which is output from the regrid operation should be divided by the corresponding destination
fraction to yield the true interpolated values for cells which are only partially covered by the source grid.

[dstStatusField] An ESMF Field which outputs a regrid status value for each destination location. Sec-
tion 52.50 indicates the meaning of each value. The Field needs to be built on the same grid-location
(e.g. staggerloc) in the same Grid, Mesh, or LocStream as the dstField argument. The Field
also needs to be of typekind ESMF_TYPEKIND_I4. This option currently doesn’t work with the
ESMF_REGRIDMETHOD_NEAREST_DTOS regrid method.

[unmappedDstList] The list of the sequence indices for locations in dstField which couldn’t be mapped the
srcField. The list on each PET only contains the unmapped locations for the piece of the dstField on
that PET. If a destination point is masked, it won’t be put in this list. This option currently doesn’t work with
the ESMF_REGRIDMETHOD_NEAREST_DTOS regrid method.

[checkFlag] If set to .FALSE. (default) only quick error checking will be performed. If set to .TRUE. more
expensive error checking will be performed, possibly catching more errors. Set checkFlag to .FALSE. to
achieve highest performance. The checkFlag currently only turns on checking for conservative regrid methods
(e.g. ESMF_REGRIDMETHOD_CONSERVE).

455

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.61 ESMF_FieldRegridStore - Precompute a Field regridding operation and return a RouteHandle using

XGrid

INTERFACE:

! Private name; call using ESMF_FieldRegridStore()

subroutine ESMF_FieldRegridStoreX(xgrid, srcField, dstField, &

regridmethod, routehandle, &

srcFracField, dstFracField, &

srcMergeFracField, dstMergeFracField, rc)

ARGUMENTS:

type(ESMF_XGrid), intent(in) :: xgrid

type(ESMF_Field), intent(in) :: srcField

type(ESMF_Field), intent(inout) :: dstField

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_RegridMethod_Flag), intent(in), optional :: regridmethod

type(ESMF_RouteHandle), intent(inout), optional :: routehandle

type(ESMF_Field), intent(inout), optional :: srcFracField

type(ESMF_Field), intent(inout), optional :: dstFracField

type(ESMF_Field), intent(inout), optional :: srcMergeFracField

type(ESMF_Field), intent(inout), optional :: dstMergeFracField

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

5.3.0 Added arguments srcFracField, dstFracField, srcMergeFracField, and
dstMergeFracField. These fraction Fields allow a user to calculate correct flux regridded
through ESMF_XGrid.

7.1.0r Added argument regridmethod. This new argument allows the user to choose the regrid method to
apply when computing the routehandle.

DESCRIPTION:

Creates a sparse matrix operation (stored in routehandle) that contains the calculations and communica-
tions necessary to interpolate from srcField to dstField. The routehandle can then be used in the call

456

ESMF_FieldRegrid() to interpolate between the ESMF_Fields. Information such as index mapping and
weights are obtained from the XGrid by matching the Field Grids or Meshes in the XGrid. It’s erroneous to have
matching Grid or Mesh objects in the srcField and dstField. They must be different in either topological or ge-
ometric characteristics. For ESMF_Fields built on identical ESMF_Grid or ESMF_Mesh on different VM, user can
use ESMF_FieldRedistStore() and ESMF_FieldRedist() methods to communicate data directly without
interpolation.

The routehandle generated by this call is subsequently computed based on these information. If those information
don’t change the routehandle can be used repeatedly to interpolate from the source Field to the destination Field. This
is true even if the data in the Fields changes. The routehandle may also be used to interpolate between any source and
destination Field which are created on the same stagger location and Grid or on the same mesh location and Mesh as
the original Fields.

When it’s no longer needed the routehandle should be destroyed by using ESMF_FieldRegridRelease() to free
the memory it’s using. Note ESMF_FieldRegridStore() assumes the coordinates used in the Grids upon which
the Fields are built are in degrees.

The arguments are:

xgrid Exchange Grid.

srcField Source Field.

dstField Destination Field. The data in this Field may be overwritten by this call.

[regridmethod] The type of interpolation. For this method only ESMF_REGRIDMETHOD_CONSERVE

and ESMF_REGRIDMETHOD_CONSERVE_2ND are supported. If not specified, defaults to
ESMF_REGRIDMETHOD_CONSERVE.

[routehandle] The handle that implements the regrid and that can be used in later ESMF_FieldRegrid.

[srcFracField] The fraction of each source cell participating in the regridding returned from this call. This Field
needs to be created on the same Grid and location (e.g staggerloc) as the srcField.

[dstFracField] The fraction of each destination cell participating in the regridding returned from this call. This Field
needs to be created on the same Grid and location (e.g staggerloc) as the dstField.

[srcMergeFracField] The fraction of each source cell as a result of Grid merge returned from this call. This Field
needs to be created on the same Grid and location (e.g staggerloc) as the srcField.

[dstMergeFracField] The fraction of each destination cell as a result of Grid merge returned from this call. This
Field needs to be created on the same Grid and location (e.g staggerloc) as the dstField.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.62 ESMF_FieldRegridGetArea - Get the area of the cells used for conservative interpolation

INTERFACE:

subroutine ESMF_FieldRegridGetArea(areaField, rc)

RETURN VALUE:

457

ARGUMENTS:

type(ESMF_Field), intent(inout) :: areaField

integer, intent(out), optional :: rc

DESCRIPTION:

This subroutine gets the area of the cells used for conservative interpolation for the grid object associ-
ated with areaField and puts them into areaField. If created on a 2D Grid, it must be built on
the ESMF_STAGGERLOC_CENTER stagger location. If created on a 3D Grid, it must be built on the
ESMF_STAGGERLOC_CENTER_VCENTER stagger location. If created on a Mesh, it must be built on the
ESMF_MESHLOC_ELEMENT mesh location.

If the user has set the area in the Grid or Mesh under areaField, then that’s the area that’s returned in the units that
the user set it in. If the user hasn’t set the area, then the area is calculated and returned. If the Grid or Mesh is on the
surface of a sphere, then the calculated area is in units of square radians. If the Grid or Mesh is Cartesian, then the
calculated area is in square units of whatever unit the coordinates are in.

The arguments are:

areaField The Field to put the area values in.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.63 ESMF_FieldScatter - Scatter a Fortran array across the ESMF_Field

INTERFACE:

subroutine ESMF_FieldScatter<rank><type><kind>(field, farray, &

rootPet, tile, vm, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: field

mtype (ESMF_KIND_mtypekind),intent(in), target :: farray(mdim)

integer, intent(in) :: rootPet

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: tile

type(ESMF_VM), intent(in), optional :: vm

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

458

DESCRIPTION:

Scatter the data of farray located on rootPET across an ESMF_Field object. A single farray must be scattered
across a single DistGrid tile in Field. The optional tile argument allows selection of the tile. For Fields defined on
a single tile DistGrid the default selection (tile 1) will be correct. The shape of farray must match the shape of the
tile in Field.

If the Field contains replicating DistGrid dimensions data will be scattered across all of the replicated pieces.

The implementation of Scatter and Gather is not sequence index based. If the Field is built on arbitrarily distributed
Grid, Mesh, LocStream or XGrid, Scatter will not scatter data from rootPet to the destination data points corresponding
to the sequence index on the rootPet. Instead Scatter will scatter a contiguous memory range from rootPet to destination
PET. The size of the memory range is equal to the number of data elements on the destination PET. Vice versa for the
Gather operation. In this case, the user should use ESMF_FieldRedist to achieve the same data operation result.
For examples how to use ESMF_FieldRedist to perform Gather and Scatter, please refer to 26.3.32 and 26.3.31.

This version of the interface implements the PET-based blocking paradigm: Each PET of the VM must issue this call
exactly once for all of its DEs. The call will block until all PET-local data objects are accessible.

For examples and associated documentation regarding this method see Section 26.3.29.

The arguments are:

field The ESMF_Field object across which data will be scattered.

{farray} The Fortran array that is to be scattered. Only root must provide a valid farray, the other PETs may treat
farray as an optional argument.

rootPet PET that holds the valid data in farray.

[tile] The DistGrid tile in field into which to scatter farray. By default farray will be scattered into tile 1.

[vm] Optional ESMF_VM object of the current context. Providing the VM of the current context will lower the
method’s overhead.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.64 ESMF_FieldSet - Set object-wide Field information

INTERFACE:

subroutine ESMF_FieldSet(field, name, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: field

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character(len = *), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

Sets adjustable settings in an ESMF_Field object.

The arguments are:

459

field ESMF_Field object for which to set properties.

[name] The Field name.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.65 ESMF_FieldSync - Synchronize DEs across the Field in case of sharing

INTERFACE:

subroutine ESMF_FieldSync(field, rc)

ARGUMENTS:

type(ESMF_Field), intent(in) :: field

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Synchronizes access to DEs across field to make sure PETs correctly access the data for read and write when DEs
are shared.

The arguments are:

field Specified ESMF_Field object.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.66 ESMF_FieldSMM - Execute a Field sparse matrix multiplication

INTERFACE:

subroutine ESMF_FieldSMM(srcField, dstField, routehandle, &

zeroregion, termorderflag, checkflag, rc)

ARGUMENTS:

type(ESMF_Field), intent(in), optional :: srcField

type(ESMF_Field), intent(inout), optional :: dstField

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Region_Flag), intent(in), optional :: zeroregion

type(ESMF_TermOrder_Flag), intent(in), optional :: termorderflag

logical, intent(in), optional :: checkflag

integer, intent(out), optional :: rc

460

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

6.1.0 Added argument termorderflag. The new argument gives the user control over the order in which
the src terms are summed up.

DESCRIPTION:

Execute a precomputed Field sparse matrix multiplication from srcField to dstField. Both srcField and
dstField must match the respective Fields used during ESMF_FieldSMMStore() in type, kind, and memory
layout of the gridded dimensions. However, the size, number, and index order of ungridded dimensions may be
different. See section 36.2.4 for a more detailed discussion of RouteHandle reusability.

The srcField and dstField arguments are optional in support of the situation where srcField and/or
dstField are not defined on all PETs. The srcField and dstField must be specified on those PETs that
hold source or destination DEs, respectively, but may be omitted on all other PETs. PETs that hold neither source nor
destination DEs may omit both arguments.

It is erroneous to specify the identical Field object for srcField and dstField arguments.

See ESMF_FieldSMMStore() on how to precompute routehandle.

This call is collective across the current VM.

For examples and associated documentation regarding this method see Section 26.3.33.

[srcField] ESMF_Field with source data.

[dstField] ESMF_Field with destination data.

routehandle Handle to the precomputed Route.

[zeroregion] If set to ESMF_REGION_TOTAL (default) the total regions of all DEs in dstField will be ini-
tialized to zero before updating the elements with the results of the sparse matrix multiplication. If
set to ESMF_REGION_EMPTY the elements in dstField will not be modified prior to the sparse ma-
trix multiplication and results will be added to the incoming element values. Setting zeroregion to
ESMF_REGION_SELECT will only zero out those elements in the destination Field that will be updated by
the sparse matrix multiplication. See section 52.48 for a complete list of valid settings.

[termorderflag] Specifies the order of the source side terms in all of the destination sums. The termorderflag
only affects the order of terms during the execution of the RouteHandle. See the 36.2.1 section for an in-depth
discussion of all bit-for-bit reproducibility aspects related to route-based communication methods. See 52.58
for a full list of options. The default is ESMF_TERMORDER_FREE, allowing maximum flexibility in the order
of terms for optimum performance.

[checkflag] If set to .TRUE. the input Field pair will be checked for consistency with the precomputed operation
provided by routehandle. If set to .FALSE. (default) only a very basic input check will be performed,
leaving many inconsistencies undetected. Set checkflag to .FALSE. to achieve highest performance.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

461

26.6.67 ESMF_FieldSMMRelease - Release resources associated with Field

sparse matrix multiplication

INTERFACE:

subroutine ESMF_FieldSMMRelease(routehandle, noGarbage, rc)

ARGUMENTS:

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: noGarbage

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

8.0.0 Added argument noGarbage. The argument provides a mechanism to override the default garbage
collection mechanism when destroying an ESMF object.

DESCRIPTION:

Release resources associated with a Field sparse matrix multiplication. After this call routehandle becomes in-
valid.

routehandle Handle to the precomputed Route.

[noGarbage] If set to .TRUE. the object will be fully destroyed and removed from the ESMF garbage collection
system. Note however that under this condition ESMF cannot protect against accessing the destroyed object
through dangling aliases – a situation which may lead to hard to debug application crashes.

It is generally recommended to leave the noGarbage argument set to .FALSE. (the default), and to take
advantage of the ESMF garbage collection system which will prevent problems with dangling aliases or incorrect
sequences of destroy calls. However this level of support requires that a small remnant of the object is kept in
memory past the destroy call. This can lead to an unexpected increase in memory consumption over the course
of execution in applications that use temporary ESMF objects. For situations where the repeated creation and
destruction of temporary objects leads to memory issues, it is recommended to call with noGarbage set to
.TRUE., fully removing the entire temporary object from memory.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

462

26.6.68 ESMF_FieldSMMStore - Precompute Field sparse matrix multiplication with local factors

INTERFACE:

! Private name; call using ESMF_FieldSMMStore()

subroutine ESMF_FieldSMMStore<type><kind>(srcField, dstField, &

routehandle, factorList, factorIndexList, &

ignoreUnmatchedIndices, srcTermProcessing, pipelineDepth, rc)

ARGUMENTS:

type(ESMF_Field), intent(in) :: srcField

type(ESMF_Field), intent(inout) :: dstField

type(ESMF_RouteHandle), intent(inout) :: routehandle

<type>(ESMF_KIND_<kind>), intent(in) :: factorList(:)

integer, intent(in), :: factorIndexList(:,:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: ignoreUnmatchedIndices

integer, intent(inout), optional :: srcTermProcessing

integer, intent(inout), optional :: pipeLineDepth

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

6.1.0 Added arguments srcTermProcessing, pipelineDepth The two arguments
srcTermProcessing and pipelineDepth provide access to the tuning parameters affecting
the sparse matrix execution.

7.0.0 Added argument transposeRoutehandle to allow a handle to the transposed matrix operation to be
returned.
Added argument ignoreUnmatchedIndices to support sparse matrices that contain elements with
indices that do not have a match within the source or destination Array.

7.1.0r Removed argument transposeRoutehandle and provide it via interface overloading instead. This
allows argument srcField to stay strictly intent(in) for this entry point.

DESCRIPTION:

Store a Field sparse matrix multiplication operation from srcField to dstField. PETs that specify
non-zero matrix coefficients must use the <type><kind> overloaded interface and provide the factorList

and factorIndexList arguments. Providing factorList and factorIndexList arguments with
size(factorList) = (/0/) and size(factorIndexList) = (/2,0/) or (/4,0/) indicates that a

463

PET does not provide matrix elements. Alternatively, PETs that do not provide matrix elements may also call into the
overloaded interface without factorList and factorIndexList arguments.

Both srcField and dstField are interpreted as sequentialized vectors. The sequence is defined by the order of
DistGrid dimensions and the order of tiles within the DistGrid or by user-supplied arbitrary sequence indices. See
section 28.2.18 for details on the definition of sequence indices. SMM corresponds to an identity mapping of the
source Field vector to the destination Field vector.

Source and destination Fields may be of different <type><kind>. Further source and destination Fields may differ in
shape, however, the number of elements must match.

It is erroneous to specify the identical Field object for srcField and dstField arguments.

The routine returns an ESMF_RouteHandle that can be used to call ESMF_FieldSMM() on any pair of Fields that
matches srcField and dstField in type, kind, and memory layout of the gridded dimensions. However, the size,
number, and index order of ungridded dimensions may be different. See section 36.2.4 for a more detailed discussion
of RouteHandle reusability.

This method is overloaded for:
ESMF_TYPEKIND_I4, ESMF_TYPEKIND_I8,
ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8.

This call is collective across the current VM.

For examples and associated documentation regarding this method see Section 26.3.33.

The arguments are:

srcField ESMF_Field with source data.

dstField ESMF_Field with destination data. The data in this Field may be destroyed by this call.

routehandle Handle to the precomputed Route.

factorList List of non-zero coefficients.

factorIndexList Pairs of sequence indices for the factors stored in factorList.

The second dimension of factorIndexList steps through the list of pairs, i.e.
size(factorIndexList,2) == size(factorList). The first dimension of factorIndexList
is either of size 2 or size 4.

The second dimension of factorIndexList steps through the list of

In the size 2 format factorIndexList(1,:) specifies the sequence index of the source element in the
srcField while factorIndexList(2,:) specifies the sequence index of the destination element in
dstField. For this format to be a valid option source and destination Fields must have matching number of
tensor elements (the product of the sizes of all Field tensor dimensions). Under this condition an identity matrix
can be applied within the space of tensor elements for each sparse matrix factor.

The size 4 format is more general and does not require a matching tensor element count. Here the
factorIndexList(1,:) specifies the sequence index while factorIndexList(2,:) specifies the
tensor sequence index of the source element in the srcField. Further factorIndexList(3,:) specifies
the sequence index and factorIndexList(4,:) specifies the tensor sequence index of the destination
element in the dstField.

See section 28.2.18 for details on the definition of Field sequence indices and tensor sequence indices.

[ignoreUnmatchedIndices] A logical flag that affects the behavior for when sequence indices in the sparse matrix are
encountered that do not have a match on the srcField or dstField side. The default setting is .false.,
indicating that it is an error when such a situation is encountered. Setting ignoreUnmatchedIndices to
.true. ignores entries with unmatched indices.

464

[srcTermProcessing] The srcTermProcessing parameter controls how many source terms, located on the same
PET and summing into the same destination element, are summed into partial sums on the source PET before
being transferred to the destination PET. A value of 0 indicates that the entire arithmetic is done on the destina-
tion PET; source elements are neither multiplied by their factors nor added into partial sums before being sent
off by the source PET. A value of 1 indicates that source elements are multiplied by their factors on the source
side before being sent to the destination PET. Larger values of srcTermProcessing indicate the maximum
number of terms in the partial sums on the source side.

Note that partial sums may lead to bit-for-bit differences in the results. See section 36.2.1 for an in-depth
discussion of all bit-for-bit reproducibility aspects related to route-based communication methods.

The ESMF_FieldSMMStore() method implements an auto-tuning scheme for the srcTermProcessing
parameter. The intent on the srcTermProcessing argument is "inout" in order to support both
overriding and accessing the auto-tuning parameter. If an argument >= 0 is specified, it is used
for the srcTermProcessing parameter, and the auto-tuning phase is skipped. In this case the
srcTermProcessing argument is not modified on return. If the provided argument is < 0, the
srcTermProcessing parameter is determined internally using the auto-tuning scheme. In this case the
srcTermProcessing argument is re-set to the internally determined value on return. Auto-tuning is also
used if the optional srcTermProcessing argument is omitted.

[pipelineDepth] The pipelineDepth parameter controls how many messages a PET may have outstanding during
a sparse matrix exchange. Larger values of pipelineDepth typically lead to better performance. However,
on some systems too large a value may lead to performance degradation, or runtime errors.

Note that the pipeline depth has no effect on the bit-for-bit reproducibility of the results. However, it may affect
the performance reproducibility of the exchange.

The ESMF_FieldSMMStore() method implements an auto-tuning scheme for the pipelineDepth pa-
rameter. The intent on the pipelineDepth argument is "inout" in order to support both overriding and
accessing the auto-tuning parameter. If an argument >= 0 is specified, it is used for the pipelineDepth
parameter, and the auto-tuning phase is skipped. In this case the pipelineDepth argument is not modified
on return. If the provided argument is < 0, the pipelineDepth parameter is determined internally using the
auto-tuning scheme. In this case the pipelineDepth argument is re-set to the internally determined value on
return. Auto-tuning is also used if the optional pipelineDepth argument is omitted.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.69 ESMF_FieldSMMStore - Precompute Field sparse matrix multiplication and transpose with local

factors

INTERFACE:

! Private name; call using ESMF_FieldSMMStore()

subroutine ESMF_FieldSMMStore<type><kind>TR(srcField, dstField, &

routehandle, transposeRoutehandle, factorList, factorIndexList, &

ignoreUnmatchedIndices, srcTermProcessing, &

pipelineDepth, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: srcField

type(ESMF_Field), intent(inout) :: dstField

465

type(ESMF_RouteHandle), intent(inout) :: routehandle

type(ESMF_RouteHandle), intent(inout) :: transposeRoutehandle

<type>(ESMF_KIND_<kind>), intent(in) :: factorList(:)

integer, intent(in), :: factorIndexList(:,:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: ignoreUnmatchedIndices

integer, intent(inout), optional :: srcTermProcessing

integer, intent(inout), optional :: pipeLineDepth

integer, intent(out), optional :: rc

DESCRIPTION:

Store a Field sparse matrix multiplication operation from srcField to dstField. PETs that specify
non-zero matrix coefficients must use the <type><kind> overloaded interface and provide the factorList

and factorIndexList arguments. Providing factorList and factorIndexList arguments with
size(factorList) = (/0/) and size(factorIndexList) = (/2,0/) or (/4,0/) indicates that a
PET does not provide matrix elements. Alternatively, PETs that do not provide matrix elements may also call into the
overloaded interface without factorList and factorIndexList arguments.

Both srcField and dstField are interpreted as sequentialized vectors. The sequence is defined by the order of
DistGrid dimensions and the order of tiles within the DistGrid or by user-supplied arbitrary sequence indices. See
section 28.2.18 for details on the definition of sequence indices. SMM corresponds to an identity mapping of the
source Field vector to the destination Field vector.

Source and destination Fields may be of different <type><kind>. Further source and destination Fields may differ in
shape, however, the number of elements must match.

It is erroneous to specify the identical Field object for srcField and dstField arguments.

The routine returns an ESMF_RouteHandle that can be used to call ESMF_FieldSMM() on any pair of Fields that
matches srcField and dstField in type, kind, and memory layout of the gridded dimensions. However, the size,
number, and index order of ungridded dimensions may be different. See section 36.2.4 for a more detailed discussion
of RouteHandle reusability.

This method is overloaded for:
ESMF_TYPEKIND_I4, ESMF_TYPEKIND_I8,
ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8.

This call is collective across the current VM.

For examples and associated documentation regarding this method see Section 26.3.33.

The arguments are:

srcField ESMF_Field with source data. The data in this Array may be destroyed by this call.

dstField ESMF_Field with destination data. The data in this Field may be destroyed by this call.

routehandle Handle to the precomputed Route.

transposeRoutehandle A handle to the transposed matrix operation is returned. The transposed operation goes from
dstArray to srcArray.

factorList List of non-zero coefficients.

factorIndexList Pairs of sequence indices for the factors stored in factorList.

466

The second dimension of factorIndexList steps through the list of pairs, i.e.
size(factorIndexList,2) == size(factorList). The first dimension of factorIndexList
is either of size 2 or size 4.

The second dimension of factorIndexList steps through the list of

In the size 2 format factorIndexList(1,:) specifies the sequence index of the source element in the
srcField while factorIndexList(2,:) specifies the sequence index of the destination element in
dstField. For this format to be a valid option source and destination Fields must have matching number of
tensor elements (the product of the sizes of all Field tensor dimensions). Under this condition an identity matrix
can be applied within the space of tensor elements for each sparse matrix factor.

The size 4 format is more general and does not require a matching tensor element count. Here the
factorIndexList(1,:) specifies the sequence index while factorIndexList(2,:) specifies the
tensor sequence index of the source element in the srcField. Further factorIndexList(3,:) specifies
the sequence index and factorIndexList(4,:) specifies the tensor sequence index of the destination
element in the dstField.

See section 28.2.18 for details on the definition of Field sequence indices and tensor sequence indices.

[ignoreUnmatchedIndices] A logical flag that affects the behavior for when sequence indices in the sparse matrix are
encountered that do not have a match on the srcField or dstField side. The default setting is .false.,
indicating that it is an error when such a situation is encountered. Setting ignoreUnmatchedIndices to
.true. ignores entries with unmatched indices.

[srcTermProcessing] The srcTermProcessing parameter controls how many source terms, located on the same
PET and summing into the same destination element, are summed into partial sums on the source PET before
being transferred to the destination PET. A value of 0 indicates that the entire arithmetic is done on the destina-
tion PET; source elements are neither multiplied by their factors nor added into partial sums before being sent
off by the source PET. A value of 1 indicates that source elements are multiplied by their factors on the source
side before being sent to the destination PET. Larger values of srcTermProcessing indicate the maximum
number of terms in the partial sums on the source side.

Note that partial sums may lead to bit-for-bit differences in the results. See section 36.2.1 for an in-depth
discussion of all bit-for-bit reproducibility aspects related to route-based communication methods.

The ESMF_FieldSMMStore() method implements an auto-tuning scheme for the srcTermProcessing
parameter. The intent on the srcTermProcessing argument is "inout" in order to support both
overriding and accessing the auto-tuning parameter. If an argument >= 0 is specified, it is used
for the srcTermProcessing parameter, and the auto-tuning phase is skipped. In this case the
srcTermProcessing argument is not modified on return. If the provided argument is < 0, the
srcTermProcessing parameter is determined internally using the auto-tuning scheme. In this case the
srcTermProcessing argument is re-set to the internally determined value on return. Auto-tuning is also
used if the optional srcTermProcessing argument is omitted.

[pipelineDepth] The pipelineDepth parameter controls how many messages a PET may have outstanding during
a sparse matrix exchange. Larger values of pipelineDepth typically lead to better performance. However,
on some systems too large a value may lead to performance degradation, or runtime errors.

Note that the pipeline depth has no effect on the bit-for-bit reproducibility of the results. However, it may affect
the performance reproducibility of the exchange.

The ESMF_FieldSMMStore() method implements an auto-tuning scheme for the pipelineDepth pa-
rameter. The intent on the pipelineDepth argument is "inout" in order to support both overriding and
accessing the auto-tuning parameter. If an argument >= 0 is specified, it is used for the pipelineDepth
parameter, and the auto-tuning phase is skipped. In this case the pipelineDepth argument is not modified
on return. If the provided argument is < 0, the pipelineDepth parameter is determined internally using the
auto-tuning scheme. In this case the pipelineDepth argument is re-set to the internally determined value on
return. Auto-tuning is also used if the optional pipelineDepth argument is omitted.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

467

26.6.70 ESMF_FieldSMMStore - Precompute Field sparse matrix multiplication without local factors

INTERFACE:

! Private name; call using ESMF_FieldSMMStore()

subroutine ESMF_FieldSMMStoreNF(srcField, dstField, &

routehandle, ignoreUnmatchedIndices, &

srcTermProcessing, pipelineDepth, rc)

ARGUMENTS:

type(ESMF_Field), intent(in) :: srcField

type(ESMF_Field), intent(inout) :: dstField

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: ignoreUnmatchedIndices

integer, intent(inout), optional :: srcTermProcessing

integer, intent(inout), optional :: pipeLineDepth

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

6.1.0 Added arguments srcTermProcessing, pipelineDepth The two arguments
srcTermProcessing and pipelineDepth provide access to the tuning parameters affecting
the sparse matrix execution.

7.0.0 Added argument transposeRoutehandle to allow a handle to the transposed matrix operation to be
returned.
Added argument ignoreUnmatchedIndices to support sparse matrices that contain elements with
indices that do not have a match within the source or destination Array.

7.1.0r Removed argument transposeRoutehandle and provide it via interface overloading instead. This
allows argument srcField to stay strictly intent(in) for this entry point.

DESCRIPTION:

Store a Field sparse matrix multiplication operation from srcField to dstField. PETs that specify
non-zero matrix coefficients must use the <type><kind> overloaded interface and provide the factorList

and factorIndexList arguments. Providing factorList and factorIndexList arguments with
size(factorList) = (/0/) and size(factorIndexList) = (/2,0/) or (/4,0/) indicates that a
PET does not provide matrix elements. Alternatively, PETs that do not provide matrix elements may also call into the
overloaded interface without factorList and factorIndexList arguments.

Both srcField and dstField are interpreted as sequentialized vectors. The sequence is defined by the order of
DistGrid dimensions and the order of tiles within the DistGrid or by user-supplied arbitrary sequence indices. See

468

section 28.2.18 for details on the definition of sequence indices. SMM corresponds to an identity mapping of the
source Field vector to the destination Field vector.

Source and destination Fields may be of different <type><kind>. Further source and destination Fields may differ in
shape, however, the number of elements must match.

It is erroneous to specify the identical Field object for srcField and dstField arguments.

The routine returns an ESMF_RouteHandle that can be used to call ESMF_FieldSMM() on any pair of Fields that
matches srcField and dstField in type, kind, and memory layout of the gridded dimensions. However, the size,
number, and index order of ungridded dimensions may be different. See section 36.2.4 for a more detailed discussion
of RouteHandle reusability.

This method is overloaded for:
ESMF_TYPEKIND_I4, ESMF_TYPEKIND_I8,
ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8.

This call is collective across the current VM.

For examples and associated documentation regarding this method see Section 26.3.33.

The arguments are:

srcField ESMF_Field with source data.

dstField ESMF_Field with destination data. The data in this Field may be destroyed by this call.

routehandle Handle to the precomputed Route.

[ignoreUnmatchedIndices] A logical flag that affects the behavior for when sequence indices in the sparse matrix are
encountered that do not have a match on the srcField or dstField side. The default setting is .false.,
indicating that it is an error when such a situation is encountered. Setting ignoreUnmatchedIndices to
.true. ignores entries with unmatched indices.

[srcTermProcessing] The srcTermProcessing parameter controls how many source terms, located on the same
PET and summing into the same destination element, are summed into partial sums on the source PET before
being transferred to the destination PET. A value of 0 indicates that the entire arithmetic is done on the destina-
tion PET; source elements are neither multiplied by their factors nor added into partial sums before being sent
off by the source PET. A value of 1 indicates that source elements are multiplied by their factors on the source
side before being sent to the destination PET. Larger values of srcTermProcessing indicate the maximum
number of terms in the partial sums on the source side.

Note that partial sums may lead to bit-for-bit differences in the results. See section 36.2.1 for an in-depth
discussion of all bit-for-bit reproducibility aspects related to route-based communication methods.

The ESMF_FieldSMMStore() method implements an auto-tuning scheme for the srcTermProcessing
parameter. The intent on the srcTermProcessing argument is "inout" in order to support both
overriding and accessing the auto-tuning parameter. If an argument >= 0 is specified, it is used
for the srcTermProcessing parameter, and the auto-tuning phase is skipped. In this case the
srcTermProcessing argument is not modified on return. If the provided argument is < 0, the
srcTermProcessing parameter is determined internally using the auto-tuning scheme. In this case the
srcTermProcessing argument is re-set to the internally determined value on return. Auto-tuning is also
used if the optional srcTermProcessing argument is omitted.

[pipelineDepth] The pipelineDepth parameter controls how many messages a PET may have outstanding during
a sparse matrix exchange. Larger values of pipelineDepth typically lead to better performance. However,
on some systems too large a value may lead to performance degradation, or runtime errors.

Note that the pipeline depth has no effect on the bit-for-bit reproducibility of the results. However, it may affect
the performance reproducibility of the exchange.

469

The ESMF_FieldSMMStore() method implements an auto-tuning scheme for the pipelineDepth pa-
rameter. The intent on the pipelineDepth argument is "inout" in order to support both overriding and
accessing the auto-tuning parameter. If an argument >= 0 is specified, it is used for the pipelineDepth
parameter, and the auto-tuning phase is skipped. In this case the pipelineDepth argument is not modified
on return. If the provided argument is < 0, the pipelineDepth parameter is determined internally using the
auto-tuning scheme. In this case the pipelineDepth argument is re-set to the internally determined value on
return. Auto-tuning is also used if the optional pipelineDepth argument is omitted.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.71 ESMF_FieldSMMStore - Precompute Field sparse matrix multiplication and transpose without local

factors

INTERFACE:

! Private name; call using ESMF_FieldSMMStore()

subroutine ESMF_FieldSMMStoreNFTR(srcField, dstField, &

routehandle, transposeRoutehandle, ignoreUnmatchedIndices, &

srcTermProcessing, pipelineDepth, rc)

ARGUMENTS:

type(ESMF_Field), intent(inout) :: srcField

type(ESMF_Field), intent(inout) :: dstField

type(ESMF_RouteHandle), intent(inout) :: routehandle

type(ESMF_RouteHandle), intent(inout) :: transposeRoutehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: ignoreUnmatchedIndices

integer, intent(inout), optional :: srcTermProcessing

integer, intent(inout), optional :: pipeLineDepth

integer, intent(out), optional :: rc

DESCRIPTION:

Store a Field sparse matrix multiplication operation from srcField to dstField. PETs that specify
non-zero matrix coefficients must use the <type><kind> overloaded interface and provide the factorList

and factorIndexList arguments. Providing factorList and factorIndexList arguments with
size(factorList) = (/0/) and size(factorIndexList) = (/2,0/) or (/4,0/) indicates that a
PET does not provide matrix elements. Alternatively, PETs that do not provide matrix elements may also call into the
overloaded interface without factorList and factorIndexList arguments.

Both srcField and dstField are interpreted as sequentialized vectors. The sequence is defined by the order of
DistGrid dimensions and the order of tiles within the DistGrid or by user-supplied arbitrary sequence indices. See
section 28.2.18 for details on the definition of sequence indices. SMM corresponds to an identity mapping of the
source Field vector to the destination Field vector.

Source and destination Fields may be of different <type><kind>. Further source and destination Fields may differ in
shape, however, the number of elements must match.

It is erroneous to specify the identical Field object for srcField and dstField arguments.

470

The routine returns an ESMF_RouteHandle that can be used to call ESMF_FieldSMM() on any pair of Fields that
matches srcField and dstField in type, kind, and memory layout of the gridded dimensions. However, the size,
number, and index order of ungridded dimensions may be different. See section 36.2.4 for a more detailed discussion
of RouteHandle reusability.

This method is overloaded for:
ESMF_TYPEKIND_I4, ESMF_TYPEKIND_I8,
ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8.

This call is collective across the current VM.

For examples and associated documentation regarding this method see Section 26.3.33.

The arguments are:

srcField ESMF_Field with source data. The data in this Field may be destroyed by this call.

dstField ESMF_Field with destination data. The data in this Field may be destroyed by this call.

routehandle Handle to the precomputed Route.

transposeRoutehandle A handle to the transposed matrix operation is returned. The transposed operation goes from
dstArray to srcArray.

[ignoreUnmatchedIndices] A logical flag that affects the behavior for when sequence indices in the sparse matrix are
encountered that do not have a match on the srcField or dstField side. The default setting is .false.,
indicating that it is an error when such a situation is encountered. Setting ignoreUnmatchedIndices to
.true. ignores entries with unmatched indices.

[srcTermProcessing] The srcTermProcessing parameter controls how many source terms, located on the same
PET and summing into the same destination element, are summed into partial sums on the source PET before
being transferred to the destination PET. A value of 0 indicates that the entire arithmetic is done on the destina-
tion PET; source elements are neither multiplied by their factors nor added into partial sums before being sent
off by the source PET. A value of 1 indicates that source elements are multiplied by their factors on the source
side before being sent to the destination PET. Larger values of srcTermProcessing indicate the maximum
number of terms in the partial sums on the source side.

Note that partial sums may lead to bit-for-bit differences in the results. See section 36.2.1 for an in-depth
discussion of all bit-for-bit reproducibility aspects related to route-based communication methods.

The ESMF_FieldSMMStore() method implements an auto-tuning scheme for the srcTermProcessing
parameter. The intent on the srcTermProcessing argument is "inout" in order to support both
overriding and accessing the auto-tuning parameter. If an argument >= 0 is specified, it is used
for the srcTermProcessing parameter, and the auto-tuning phase is skipped. In this case the
srcTermProcessing argument is not modified on return. If the provided argument is < 0, the
srcTermProcessing parameter is determined internally using the auto-tuning scheme. In this case the
srcTermProcessing argument is re-set to the internally determined value on return. Auto-tuning is also
used if the optional srcTermProcessing argument is omitted.

[pipelineDepth] The pipelineDepth parameter controls how many messages a PET may have outstanding during
a sparse matrix exchange. Larger values of pipelineDepth typically lead to better performance. However,
on some systems too large a value may lead to performance degradation, or runtime errors.

Note that the pipeline depth has no effect on the bit-for-bit reproducibility of the results. However, it may affect
the performance reproducibility of the exchange.

The ESMF_FieldSMMStore() method implements an auto-tuning scheme for the pipelineDepth pa-
rameter. The intent on the pipelineDepth argument is "inout" in order to support both overriding and
accessing the auto-tuning parameter. If an argument >= 0 is specified, it is used for the pipelineDepth
parameter, and the auto-tuning phase is skipped. In this case the pipelineDepth argument is not modified

471

on return. If the provided argument is < 0, the pipelineDepth parameter is determined internally using the
auto-tuning scheme. In this case the pipelineDepth argument is re-set to the internally determined value on
return. Auto-tuning is also used if the optional pipelineDepth argument is omitted.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.72 ESMF_FieldSMMStore - Precompute sparse matrix multiplication using factors read from file

INTERFACE:

! Private name; call using ESMF_FieldSMMStore()

subroutine ESMF_FieldSMMStoreFromFile(srcField, dstField, filename, &

routehandle, ignoreUnmatchedIndices, &

srcTermProcessing, pipelineDepth, rc)

! ARGUMENTS:

type(ESMF_Field), intent(in) :: srcField

type(ESMF_Field), intent(inout) :: dstField

character(len=*), intent(in) :: filename

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: ignoreUnmatchedIndices

integer, intent(inout), optional :: srcTermProcessing

integer, intent(inout), optional :: pipeLineDepth

integer, intent(out), optional :: rc

DESCRIPTION:

Compute an ESMF_RouteHandle using factors read from file.

The arguments are:

srcField ESMF_Field with source data.

dstField ESMF_Field with destination data. The data in this Field may be destroyed by this call.

filename Path to the file containing weights for creating an ESMF_RouteHandle. See (12.9) for a description of
the SCRIP weight file format. Only "row", "col", and "S" variables are required. They must be one-dimensionsal
with dimension "n_s".

routehandle Handle to the ESMF_RouteHandle.

[ignoreUnmatchedIndices] A logical flag that affects the behavior for when sequence indices in the sparse matrix are
encountered that do not have a match on the srcField or dstField side. The default setting is .false.,
indicating that it is an error when such a situation is encountered. Setting ignoreUnmatchedIndices to
.true. ignores entries with unmatched indices.

[srcTermProcessing] The srcTermProcessing parameter controls how many source terms, located on the same
PET and summing into the same destination element, are summed into partial sums on the source PET before
being transferred to the destination PET. A value of 0 indicates that the entire arithmetic is done on the destina-
tion PET; source elements are neither multiplied by their factors nor added into partial sums before being sent

472

off by the source PET. A value of 1 indicates that source elements are multiplied by their factors on the source
side before being sent to the destination PET. Larger values of srcTermProcessing indicate the maximum
number of terms in the partial sums on the source side.

Note that partial sums may lead to bit-for-bit differences in the results. See section 36.2.1 for an in-depth
discussion of all bit-for-bit reproducibility aspects related to route-based communication methods.

The ESMF_FieldSMMStore() method implements an auto-tuning scheme for the srcTermProcessing
parameter. The intent on the srcTermProcessing argument is "inout" in order to support both
overriding and accessing the auto-tuning parameter. If an argument >= 0 is specified, it is used
for the srcTermProcessing parameter, and the auto-tuning phase is skipped. In this case the
srcTermProcessing argument is not modified on return. If the provided argument is < 0, the
srcTermProcessing parameter is determined internally using the auto-tuning scheme. In this case the
srcTermProcessing argument is re-set to the internally determined value on return. Auto-tuning is also
used if the optional srcTermProcessing argument is omitted.

[pipelineDepth] The pipelineDepth parameter controls how many messages a PET may have outstanding during
a sparse matrix exchange. Larger values of pipelineDepth typically lead to better performance. However,
on some systems too large a value may lead to performance degradation, or runtime errors.

Note that the pipeline depth has no effect on the bit-for-bit reproducibility of the results. However, it may
affect the performance reproducibility of the exchange. The ESMF_FieldSMMStore() method implements
an auto-tuning scheme for the pipelineDepth parameter. The intent on the pipelineDepth argument is
"inout" in order to support both overriding and accessing the auto-tuning parameter. If an argument >= 0 is
specified, it is used for the pipelineDepth parameter, and the auto-tuning phase is skipped. In this case the
pipelineDepth argument is not modified on return. If the provided argument is < 0, the pipelineDepth
parameter is determined internally using the auto-tuning scheme. In this case the pipelineDepth argument
is re-set to the internally determined value on return. Auto-tuning is also used if the optional pipelineDepth
argument is omitted.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.6.73 ESMF_FieldSMMStore - Precompute sparse matrix multiplication and transpose using factors read

from file

INTERFACE:

! Private name; call using ESMF_FieldSMMStore()

subroutine ESMF_FieldSMMStoreFromFileTR(srcField, dstField, filename, &

routehandle, transposeRoutehandle, &

ignoreUnmatchedIndices, srcTermProcessing, pipelineDepth, rc)

! ARGUMENTS:

type(ESMF_Field), intent(inout) :: srcField

type(ESMF_Field), intent(inout) :: dstField

character(len=*), intent(in) :: filename

type(ESMF_RouteHandle), intent(inout) :: routehandle

type(ESMF_RouteHandle), intent(inout) :: transposeRoutehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: ignoreUnmatchedIndices

integer, intent(inout), optional :: srcTermProcessing

integer, intent(inout), optional :: pipeLineDepth

integer, intent(out), optional :: rc

473

DESCRIPTION:

Compute an ESMF_RouteHandle using factors read from file.

The arguments are:

srcField ESMF_Field with source data. The data in this Array may be destroyed by this call.

dstField ESMF_Field with destination data. The data in this Field may be destroyed by this call.

filename Path to the file containing weights for creating an ESMF_RouteHandle. See (12.9) for a description of
the SCRIP weight file format. Only "row", "col", and "S" variables are required. They must be one-dimensionsal
with dimension "n_s".

routehandle Handle to the ESMF_RouteHandle.

transposeRoutehandle A handle to the transposed matrix operation is returned. The transposed operation goes from
dstArray to srcArray.

[ignoreUnmatchedIndices] A logical flag that affects the behavior for when sequence indices in the sparse matrix are
encountered that do not have a match on the srcField or dstField side. The default setting is .false.,
indicating that it is an error when such a situation is encountered. Setting ignoreUnmatchedIndices to
.true. ignores entries with unmatched indices.

[srcTermProcessing] The srcTermProcessing parameter controls how many source terms, located on the same
PET and summing into the same destination element, are summed into partial sums on the source PET before
being transferred to the destination PET. A value of 0 indicates that the entire arithmetic is done on the destina-
tion PET; source elements are neither multiplied by their factors nor added into partial sums before being sent
off by the source PET. A value of 1 indicates that source elements are multiplied by their factors on the source
side before being sent to the destination PET. Larger values of srcTermProcessing indicate the maximum
number of terms in the partial sums on the source side.

Note that partial sums may lead to bit-for-bit differences in the results. See section 36.2.1 for an in-depth
discussion of all bit-for-bit reproducibility aspects related to route-based communication methods.

The ESMF_FieldSMMStore() method implements an auto-tuning scheme for the srcTermProcessing
parameter. The intent on the srcTermProcessing argument is "inout" in order to support both
overriding and accessing the auto-tuning parameter. If an argument >= 0 is specified, it is used
for the srcTermProcessing parameter, and the auto-tuning phase is skipped. In this case the
srcTermProcessing argument is not modified on return. If the provided argument is < 0, the
srcTermProcessing parameter is determined internally using the auto-tuning scheme. In this case the
srcTermProcessing argument is re-set to the internally determined value on return. Auto-tuning is also
used if the optional srcTermProcessing argument is omitted.

[pipelineDepth] The pipelineDepth parameter controls how many messages a PET may have outstanding during
a sparse matrix exchange. Larger values of pipelineDepth typically lead to better performance. However,
on some systems too large a value may lead to performance degradation, or runtime errors.

Note that the pipeline depth has no effect on the bit-for-bit reproducibility of the results. However, it may
affect the performance reproducibility of the exchange. The ESMF_FieldSMMStore() method implements
an auto-tuning scheme for the pipelineDepth parameter. The intent on the pipelineDepth argument is
"inout" in order to support both overriding and accessing the auto-tuning parameter. If an argument >= 0 is
specified, it is used for the pipelineDepth parameter, and the auto-tuning phase is skipped. In this case the
pipelineDepth argument is not modified on return. If the provided argument is < 0, the pipelineDepth
parameter is determined internally using the auto-tuning scheme. In this case the pipelineDepth argument
is re-set to the internally determined value on return. Auto-tuning is also used if the optional pipelineDepth
argument is omitted.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

474

26.6.74 ESMF_FieldValidate - Check validity of a Field

INTERFACE:

subroutine ESMF_FieldValidate(field, rc)

ARGUMENTS:

type(ESMF_Field), intent(in) :: field

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Validates that the field is internally consistent. Currently this method determines if the field is uninitialized or
already destroyed. It validates the contained array and grid objects. The code also checks if the array and grid sizes
agree. This check compares the distgrid contained in array and grid; then it proceeds to compare the computational
bounds contained in array and grid.

The method returns an error code if problems are found.

The arguments are:

field ESMF_Field to validate.

[rc] Return code; equals ESMF_SUCCESS if the field is valid.

26.6.75 ESMF_FieldWrite - Write Field data into a file

INTERFACE:

subroutine ESMF_FieldWrite(field, fileName, &

variableName, convention, purpose, overwrite, status, timeslice, iofmt, rc)

ARGUMENTS:

type(ESMF_Field), intent(in) :: field

character(*), intent(in) :: fileName

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character(*), intent(in), optional :: variableName

character(*), intent(in), optional :: convention

character(*), intent(in), optional :: purpose

logical, intent(in), optional :: overwrite

type(ESMF_FileStatus_Flag), intent(in), optional :: status

integer, intent(in), optional :: timeslice

type(ESMF_IOFmt_Flag), intent(in), optional :: iofmt

integer, intent(out), optional :: rc

475

DESCRIPTION:

Write Field data into a file. For this API to be functional, the environment variable ESMF_PIO should be set to
"internal" when the ESMF library is built. Please see the section on Data I/O, 37.2.

When convention and purpose arguments are specified, a NetCDF variable can be created with user-
specified dimension labels and attributes. Dimension labels may be defined for both gridded and ungridded di-
mensions. Dimension labels for gridded dimensions are specified at the Grid level by attaching an ESMF At-
tribute package to it. The Attribute package must contain an attribute named by the pre-defined ESMF parameter
ESMF_ATT_GRIDDED_DIM_LABELS. The corresponding value is an array of character strings specifying the de-
sired names of the dimensions. Likewise, for ungridded dimensions, an Attribute package is attached at the Field level.
The name of the name must be ESMF_ATT_UNGRIDDED_DIM_LABELS.

NetCDF attributes for the variable can also be specified. As with dimension labels, an Attribute package is added to
the Field with the desired names and values. A value may be either a scalar character string, or a scalar or array of type
integer, real, or double precision. Dimension label attributes can co-exist with variable attributes within a common
Attribute package.

Limitations:

• Only single tile Fields are supported.

• Not supported in ESMF_COMM=mpiuni mode.

The arguments are:

field The ESMF_Field object that contains data to be written.

fileName The name of the output file to which Field data is written.

[variableName] Variable name in the output file; default is the "name" of field. Use this argument only in the I/O
format (such as NetCDF) that supports variable name. If the I/O format does not support this (such as binary
format), ESMF will return an error code.

[convention] Specifies an Attribute package associated with the Field, used to create NetCDF dimension labels and
attributes for the variable in the file. When this argument is present, the purpose argument must also be
present. Use this argument only with a NetCDF I/O format. If binary format is used, ESMF will return an error
code.

[purpose] Specifies an Attribute package associated with the Field, used to create NetCDF dimension labels and
attributes for the variable in the file. When this argument is present, the convention argument must also be
present. Use this argument only with a NetCDF I/O format. If binary format is used, ESMF will return an error
code.

[overwrite] A logical flag, the default is .false., i.e., existing field data may not be overwritten. If .true., the overwrite
behavior depends on the value of iofmt as shown below:

iofmt = ESMF_IOFMT_BIN: All data in the file will be overwritten with each field’s data.

iofmt = ESMF_IOFMT_NETCDF, ESMF_IOFMT_NETCDF_64BIT_OFFSET: Only the data corre-
sponding to each field’s name will be be overwritten. If the timeslice option is given, only data for
the given timeslice may be overwritten. Note that it is always an error to attempt to overwrite a NetCDF
variable with data which has a different shape.

[status] The file status. Please see Section 52.21 for the list of options. If not present, defaults to
ESMF_FILESTATUS_UNKNOWN.

476

[timeslice] Some I/O formats (e.g. NetCDF) support the output of data in form of time slices. An unlimited dimension
called time is defined in the file variable for this capability. The timeslice argument provides access to the
time dimension, and must have a positive value. The behavior of this option may depend on the setting of the
overwrite flag:

overwrite = .false.: If the timeslice value is less than the maximum time already in the file, the write
will fail.

overwrite = .true.: Any positive timeslice value is valid.

By default, i.e. by omitting the timeslice argument, no provisions for time slicing are made in the output
file, however, if the file already contains a time axis for the variable, a timeslice one greater than the maximum
will be written.

[iofmt] The I/O format. Please see Section 52.28 for the list of options. If not present, file names with a .bin
extension will use ESMF_IOFMT_BIN, and file names with a .nc extension will use ESMF_IOFMT_NETCDF.
Other files default to ESMF_IOFMT_NETCDF.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.7 Class API: Field Utilities

26.7.1 ESMF_GridGetFieldBounds - Get precomputed DE-local Fortran data array bounds for creating a

Field from a Grid and Fortran array

INTERFACE:

subroutine ESMF_GridGetFieldBounds(grid, &

localDe, staggerloc, gridToFieldMap, &

ungriddedLBound, ungriddedUBound, &

totalLWidth, totalUWidth, &

totalLBound, totalUBound, totalCount, rc)

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: localDe

type(ESMF_StaggerLoc), intent(in), optional :: staggerloc

integer, intent(in), optional :: gridToFieldMap(:)

integer, intent(in), optional :: ungriddedLBound(:)

integer, intent(in), optional :: ungriddedUBound(:)

integer, intent(in), optional :: totalLWidth(:)

integer, intent(in), optional :: totalUWidth(:)

integer, intent(out), optional :: totalLBound(:)

integer, intent(out), optional :: totalUBound(:)

integer, intent(out), optional :: totalCount(:)

integer, intent(out), optional :: rc

STATUS:

477

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Compute the lower and upper bounds of Fortran data array that can later be used in FieldCreate interface to create a
ESMF_Field from a ESMF_Grid and the Fortran data array. For an example and associated documentation using
this method see section 26.3.9.

The arguments are:

grid ESMF_Grid.

[localDe] Local DE for which information is requested. [0,..,localDeCount-1]. For localDeCount==1
the localDe argument may be omitted, in which case it will default to localDe=0.

[staggerloc] Stagger location of data in grid cells. For valid predefined values and interpretation of results see section
31.2.6.

[gridToFieldMap] List with number of elements equal to the grid|s dimCount. The list elements map each dimen-
sion of the grid to a dimension in the field by specifying the appropriate field dimension index. The
default is to map all of the grid|s dimensions against the lowest dimensions of the field in sequence, i.e.
gridToFieldMap = (/1,2,3,.../). The values of all gridToFieldMap entries must be greater than or equal
to one and smaller than or equal to the field rank. It is erroneous to specify the same gridToFieldMap
entry multiple times. The total ungridded dimensions in the field are the total field dimensions less the
dimensions in the grid. Ungridded dimensions must be in the same order they are stored in the field.

[ungriddedLBound] Lower bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the field.

[ungriddedUBound] Upper bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the field.

[totalLWidth] Lower bound of halo region. The size of this array is the number of dimensions in the grid. How-
ever, ordering of the elements needs to be the same as they appear in the field. Values default to 0. If
values for totalLWidth are specified they must be reflected in the size of the field. That is, for each gridded
dimension the field size should be max(totalLWidth + totalUWidth + computationalCount,
exclusiveCount).

[totalUWidth] Upper bound of halo region. The size of this array is the number of dimensions in the grid. How-
ever, ordering of the elements needs to be the same as they appear in the field. Values default to 0. If
values for totalUWidth are specified they must be reflected in the size of the field. That is, for each grid-
ded dimension the field size should max(totalLWidth + totalUWidth + computationalCount,
exclusiveCount).

[totalLBound] The relative lower bounds of Fortran data array to be used later in ESMF_FieldCreate from
ESMF_Grid and Fortran data array. This is an output variable from this user interface.

The relative lower bounds of Fortran data array to be used

[totalUBound] The relative upper bounds of Fortran data array to be used later in ESMF_FieldCreate from
ESMF_Grid and Fortran data array. This is an output variable from this user interface.

478

[totalCount] Number of elements need to be allocated for Fortran data array to be used later in
ESMF_FieldCreate from ESMF_Grid and Fortran data array. This is an output variable from this user
interface.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.7.2 ESMF_LocStreamGetFieldBounds - Get precomputed DE-local Fortran data array bounds for creat-

ing a Field from a LocStream and Fortran array

INTERFACE:

subroutine ESMF_LocStreamGetFieldBounds(locstream, &

localDe, gridToFieldMap, &

ungriddedLBound, ungriddedUBound, &

totalLBound, totalUBound, totalCount, rc)

ARGUMENTS:

type(ESMF_LocStream), intent(in) :: locstream

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: localDe

integer, intent(in), optional :: gridToFieldMap(:)

integer, intent(in), optional :: ungriddedLBound(:)

integer, intent(in), optional :: ungriddedUBound(:)

integer, intent(out), optional :: totalLBound(:)

integer, intent(out), optional :: totalUBound(:)

integer, intent(out), optional :: totalCount(:)

integer, intent(out), optional :: rc

DESCRIPTION:

Compute the lower and upper bounds of Fortran data array that can later be used in FieldCreate interface to create a
ESMF_Field from a ESMF_LocStream and the Fortran data array. For an example and associated documentation
using this method see section 26.3.9.

The arguments are:

locstream ESMF_LocStream.

[localDe] Local DE for which information is requested. [0,..,localDeCount-1]. For localDeCount==1
the localDe argument may be omitted, in which case it will default to localDe=0.

[gridToFieldMap] List with number of elements equal to 1. The list elements map the dimension of the locstream
to a dimension in the field by specifying the appropriate field dimension index. The default is to map the
locstream|s dimension against the lowest dimension of the field in sequence, i.e. gridToFieldMap =
(/1/). The values of all gridToFieldMap entries must be greater than or equal to one and smaller than or
equal to the field rank. The total ungridded dimensions in the field are the total field dimensions less

the dimensions in the grid. Ungridded dimensions must be in the same order they are stored in the ⁀field.

479

[ungriddedLBound] Lower bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than 1, both ungriddedLBound and
ungriddedUBound must be specified. When both are specified the values are checked for consistency. Note that
the the ordering of these ungridded dimensions is the same as their order in the field.

[ungriddedUBound] Upper bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than 1, both ungriddedLBound and
ungriddedUBound must be specified. When both are specified the values are checked for consistency. Note that
the the ordering of these ungridded dimensions is the same as their order in the field.

[totalLBound] The relative lower bounds of Fortran data array to be used later in ESMF_FieldCreate from
ESMF_LocStream and Fortran data array. This is an output variable from this user interface.

[totalUBound] The relative upper bounds of Fortran data array to be used later in ESMF_FieldCreate from
ESMF_LocStream and Fortran data array. This is an output variable from this user interface.

[totalCount] Number of elements need to be allocated for Fortran data array to be used later in
ESMF_FieldCreate from ESMF_LocStream and Fortran data array. This is an output variable from this
user interface.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.7.3 ESMF_MeshGetFieldBounds - Get precomputed DE-local Fortran data array bounds for creating a

Field from a Mesh and a Fortran array

INTERFACE:

subroutine ESMF_MeshGetFieldBounds(mesh, &

meshloc, &

localDe, gridToFieldMap, &

ungriddedLBound, ungriddedUBound, &

totalLBound, totalUBound, totalCount, rc)

ARGUMENTS:

type(ESMF_Mesh), intent(in) :: mesh

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_MeshLoc),intent(in),optional :: meshloc

integer, intent(in), optional :: localDe

integer, intent(in), optional :: gridToFieldMap(:)

integer, intent(in), optional :: ungriddedLBound(:)

integer, intent(in), optional :: ungriddedUBound(:)

integer, intent(out), optional :: totalLBound(:)

integer, intent(out), optional :: totalUBound(:)

integer, intent(out), optional :: totalCount(:)

integer, intent(out), optional :: rc

480

DESCRIPTION:

Compute the lower and upper bounds of Fortran data array that can later be used in FieldCreate interface to create a
ESMF_Field from a ESMF_Mesh and the Fortran data array. For an example and associated documentation using
this method see section 26.3.9.

The arguments are:

mesh ESMF_Mesh.

[meshloc] Which part of the mesh to build the Field on. Can be set to either ESMF_MESHLOC_NODE or
ESMF_MESHLOC_ELEMENT. If not set, defaults to ESMF_MESHLOC_NODE.

[localDe] Local DE for which information is requested. [0,..,localDeCount-1]. For localDeCount==1
the localDe argument may be omitted, in which case it will default to localDe=0.

[gridToFieldMap] List with number of elements equal to the grid|s dimCount. The list elements map each dimen-
sion of the grid to a dimension in the field by specifying the appropriate field dimension index. The
default is to map all of the grid|s dimensions against the lowest dimensions of the field in sequence, i.e.
gridToFieldMap = (/1,2,3,.../). The values of all gridToFieldMap entries must be greater than or equal
to one and smaller than or equal to the field rank. It is erroneous to specify the same gridToFieldMap
entry multiple times. The total ungridded dimensions in the field are the total field dimensions less the

dimensions in the grid. Ungridded dimensions must be in the same order they are stored in the ⁀field.

[ungriddedLBound] Lower bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the field.

[ungriddedUBound] Upper bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than grid dimension count, both
ungriddedLBound and ungriddedUBound must be specified. When both are specified the values are checked for
consistency. Note that the the ordering of these ungridded dimensions is the same as their order in the field.

[totalLBound] The relative lower bounds of Fortran data array to be used later in ESMF_FieldCreate from
ESMF_Mesh and Fortran data array. This is an output variable from this user interface.

[totalUBound] The relative upper bounds of Fortran data array to be used later in ESMF_FieldCreate from
ESMF_Mesh and Fortran data array. This is an output variable from this user interface.

[totalCount] Number of elements need to be allocated for Fortran data array to be used later in
ESMF_FieldCreate from ESMF_Mesh and Fortran data array. This is an output variable from this user
interface.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

26.7.4 ESMF_XGridGetFieldBounds - Get precomputed DE-local Fortran data array bounds for creating a

Field from an XGrid and a Fortran array

INTERFACE:

481

subroutine ESMF_XGridGetFieldBounds(xgrid, &

xgridside, gridindex, localDe, gridToFieldMap, &

ungriddedLBound, ungriddedUBound, &

totalLBound, totalUBound, totalCount, rc)

ARGUMENTS:

type(ESMF_XGrid), intent(in) :: xgrid

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_XGridSide_Flag), intent(in), optional :: xgridside

integer, intent(in), optional :: gridindex

integer, intent(in), optional :: localDe

integer, intent(in), optional :: gridToFieldMap(:)

integer, intent(in), optional :: ungriddedLBound(:)

integer, intent(in), optional :: ungriddedUBound(:)

integer, intent(out), optional :: totalLBound(:)

integer, intent(out), optional :: totalUBound(:)

integer, intent(out), optional :: totalCount(:)

integer, intent(out), optional :: rc

DESCRIPTION:

Compute the lower and upper bounds of Fortran data array that can later be used in FieldCreate interface to create a
ESMF_Field from a ESMF_XGrid and the Fortran data array. For an example and associated documentation using
this method see section 26.3.9.

The arguments are:

xgrid ESMF_XGrid object.

[xgridside] Which side of the XGrid to create the Field on (either ESMF_XGRIDSIDE_A, ESMF_XGRIDSIDE_B,
or ESMF_XGRIDSIDE_BALANCED). If not passed in then defaults to ESMF_XGRIDSIDE_BALANCED.

[gridindex] If xgridside is ESMF_XGRIDSIDE_A or ESMF_XGRIDSIDE_B then this index tells which Grid on
that side to create the Field on. If not provided, defaults to 1.

[localDe] Local DE for which information is requested. [0,..,localDeCount-1]. For localDeCount==1
the localDe argument may be omitted, in which case it will default to localDe=0.

[gridToFieldMap] List with number of elements equal to 1. The list elements map the dimension of the locstream
to a dimension in the field by specifying the appropriate field dimension index. The default is to map the
locstream|s dimension against the lowest dimension of the field in sequence, i.e. gridToFieldMap =
(/1/). The values of all gridToFieldMap entries must be greater than or equal to one and smaller than or
equal to the field rank. The total ungridded dimensions in the field are the total field dimensions less

the dimensions in the grid. Ungridded dimensions must be in the same order they are stored in the ⁀field.

[ungriddedLBound] Lower bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedLBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions
of the field are also undistributed. When field dimension count is greater than 1, both ungriddedLBound and
ungriddedUBound must be specified. When both are specified the values are checked for consistency. Note that
the the ordering of these ungridded dimensions is the same as their order in the field.

[ungriddedUBound] Upper bounds of the ungridded dimensions of the field. The number of elements in the
ungriddedUBound is equal to the number of ungridded dimensions in the field. All ungridded dimensions

482

of the field are also undistributed. When field dimension count is greater than 1, both ungriddedLBound and
ungriddedUBound must be specified. When both are specified the values are checked for consistency. Note that
the the ordering of these ungridded dimensions is the same as their order in the field.

[totalLBound] The relative lower bounds of Fortran data array to be used later in ESMF_FieldCreate from
ESMF_LocStream and Fortran data array. This is an output variable from this user interface.

[totalUBound] The relative upper bounds of Fortran data array to be used later in ESMF_FieldCreate from
ESMF_LocStream and Fortran data array. This is an output variable from this user interface.

[totalCount] Number of elements need to be allocated for Fortran data array to be used later in
ESMF_FieldCreate from ESMF_LocStream and Fortran data array. This is an output variable from this
user interface.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

27 ArrayBundle Class

27.1 Description

The ESMF_ArrayBundle class allows a set of Arrays to be bundled into a single object. The Arrays in an Ar-

rayBundle may be of different type, kind, rank and distribution. Besides ease of use resulting from bundling, the

ArrayBundle class offers the opportunity for performance optimization when operating on a bundle of Arrays as a sin-

gle entity. Communication methods are especially good candidates for performance optimization. Best optimization

results are expected for ArrayBundles that contain Arrays that share a common distribution, i.e. DistGrid, and are of

same type, kind and rank.

ArrayBundles are one of the data objects that can be added to States, which are used for providing to or receiving data

from other Components.

27.2 Use and Examples

Examples of creating, destroying and accessing ArrayBundles and their constituent Arrays are provided in this section,

along with some notes on ArrayBundle methods.

27.2.1 Creating an ArrayBundle from a list of Arrays

An ArrayBundle is created from a list of ESMF_Array objects.

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEKIND_R8, rank=2, rc=rc)

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIndex=(/5,5/), &

regDecomp=(/2,3/), rc=rc)

allocate(arrayList(2))

arrayList(1) = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid=distgrid, &

rc=rc)

483

arrayList(2) = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid=distgrid, &

rc=rc)

Now arrayList is used to create an ArrayBundle object.

arraybundle = ESMF_ArrayBundleCreate(arrayList=arrayList, &

name="MyArrayBundle", rc=rc)

Here the temporary arrayList can be deallocated. This will not affect the ESMF Array objects inside the Array-
Bundle. However, the Array objects must not be deallocated while the ArrayBundle references them.

deallocate(arrayList)

27.2.2 Adding, removing, replacing Arrays in the ArrayBundle

Individual Arrays can be added using the Fortran array constructor syntax (/ ... /). Here an ESMF_Array is
created on the fly and immediately added to the ArrayBundle.

call ESMF_ArrayBundleAdd(arraybundle, arrayList=(/ &

ESMF_ArrayCreate(arrayspec=arrayspec, distgrid=distgrid, name="AonFly")/), &

rc=rc)

Items in the ArrayBundle can be replaced by items with the same name.

call ESMF_ArraySpecSet(arrayspec2, typekind=ESMF_TYPEKIND_R4, rank=2, rc=rc)

call ESMF_ArrayBundleReplace(arraybundle, arrayList=(/ &

ESMF_ArrayCreate(arrayspec=arrayspec2, distgrid=distgrid, name="AonFly")/), &

rc=rc)

Items can be removed from the ArrayBundle by providing their name.

call ESMF_ArrayBundleRemove(arraybundle, arrayNameList=(/"AonFly"/), rc=rc)

The ArrayBundle AddReplace() method can be used to conveniently add an item to the ArrayBundle, or replacing an
existing item of the same name.

call ESMF_ArrayBundleAddReplace(arraybundle, arrayList=(/ &

ESMF_ArrayCreate(arrayspec=arrayspec2, distgrid=distgrid, name="AonFly")/), &

rc=rc)

The ArrayBundle object can be printed at any time to list its contents by name.

call ESMF_ArrayBundlePrint(arraybundle, rc=rc)

484

27.2.3 Accessing Arrays inside the ArrayBundle

Individual items in the ArrayBundle can be accessed directly by their name.

call ESMF_ArrayBundleGet(arraybundle, arrayName="AonFly", array=arrayOut, &

rc=rc)

A list containing all of the Arrays in the ArrayBundle can also be requested in a single call. This requires that a large
enough list argument is passed into the ESMF_ArrayBundleGet() method. The exact number of items in the
ArrayBundle can be queried using the arrayCount argument first.

call ESMF_ArrayBundleGet(arraybundle, arrayCount=arrayCount, rc=rc)

Then use arrayCount to correctly allocate the arrayList variable for a second call to
ESMF_ArrayBundleGet().

allocate(arrayList(arrayCount))

call ESMF_ArrayBundleGet(arraybundle, arrayList=arrayList, rc=rc)

Now the arrayList variable can be used to access the individual Arrays, e.g. to print them.

do i=1, arrayCount

call ESMF_ArrayPrint(arrayList(i), rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

enddo

By default the arrayList returned by ESMF_ArrayBundleGet() contains the items in alphabetical order. To
instead return the items in the same order in which they were added to the ArrayBundle, the itemorderflag

argument is passed with a value of ESMF_ITEMORDER_ADDORDER.

call ESMF_ArrayBundleGet(arraybundle, arrayList=arrayList, &

itemorderflag=ESMF_ITEMORDER_ADDORDER, rc=rc)

27.2.4 Destroying an ArrayBundle and its constituents

Destroying an ArrayBundle does not destroy the Arrays. In fact, it leaves the Arrays totally unchanged.

call ESMF_ArrayBundleDestroy(arraybundle, rc=rc)

The Arrays must be destroyed separately.

call ESMF_ArrayDestroy(arrayList(1), rc=rc)

485

call ESMF_ArrayDestroy(arrayList(2), rc=rc)

deallocate(arrayList)

call ESMF_DistGridDestroy(distgrid, rc=rc)

27.2.5 Halo communication

One of the most fundamental communication pattern in domain decomposition codes is the halo operation. The ESMF
Array class supports halos by allowing memory for extra elements to be allocated on each DE. See section 28.2.15 for
a discussion of the Array level halo operation. The ArrayBundle level extents the Array halo operation to bundles of
Arrays.

First create an ESMF_ArrayBundle object containing a set of ESMF Arrays.

arraybundle = ESMF_ArrayBundleCreate(arrayList=arrayList, &

name="MyArrayBundle", rc=rc)

The ArrayBundle object can be treated as a single entity. The ESMF_ArrayBundleHaloStore() call determines
the most efficient halo exchange pattern for all Arrays that are part of arraybundle.

call ESMF_ArrayBundleHaloStore(arraybundle=arraybundle, &

routehandle=haloHandle, rc=rc)

The halo exchange pattern stored in haloHandle can now be applied to the arraybundle object, or any other
ArrayBundle that is compatible to the one used during the ESMF_ArrayBundleHaloStore() call.

call ESMF_ArrayBundleHalo(arraybundle=arraybundle, routehandle=haloHandle, &

rc=rc)

Finally, when no longer needed, the resources held by haloHandle need to be returned to the system by calling
ESMF_ArrayBundleHaloRelease().

call ESMF_ArrayBundleHaloRelease(routehandle=haloHandle, rc=rc)

Finally the ArrayBundle object can be destroyed.

call ESMF_ArrayBundleDestroy(arraybundle, rc=rc)

27.3 Restrictions and Future Work

• Non-blocking ArrayBundle communications option is not yet implemented. In the future this functionality will

be provided via the routesyncflag option.

486

27.4 Design and Implementation Notes

The following is a list of implementation specific details about the current ESMF ArrayBundle.

• Implementation language is C++.

• All precomputed communication methods are based on sparse matrix multiplication.

27.5 Class API

27.5.1 ESMF_ArrayBundleAssignment(=) - ArrayBundle assignment

INTERFACE:

interface assignment(=)

arraybundle1 = arraybundle2

ARGUMENTS:

type(ESMF_ArrayBundle) :: arraybundle1

type(ESMF_ArrayBundle) :: arraybundle2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Assign arraybundle1 as an alias to the same ESMF ArrayBundle object in memory as arraybundle2. If arraybundle2
is invalid, then arraybundle1 will be equally invalid after the assignment.

The arguments are:

arraybundle1 The ESMF_ArrayBundle object on the left hand side of the assignment.

arraybundle2 The ESMF_ArrayBundle object on the right hand side of the assignment.

27.5.2 ESMF_ArrayBundleOperator(==) - ArrayBundle equality operator

INTERFACE:

interface operator(==)

if (arraybundle1 == arraybundle2) then ... endif

OR

result = (arraybundle1 == arraybundle2)

487

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_ArrayBundle), intent(in) :: arraybundle1

type(ESMF_ArrayBundle), intent(in) :: arraybundle2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Test whether arraybundle1 and arraybundle2 are valid aliases to the same ESMF ArrayBundle object in mem-
ory. For a more general comparison of two ESMF ArrayBundles, going beyond the simple alias test, the
ESMF_ArrayBundleMatch() function (not yet implemented) must be used.

The arguments are:

arraybundle1 The ESMF_ArrayBundle object on the left hand side of the equality operation.

arraybundle2 The ESMF_ArrayBundle object on the right hand side of the equality operation.

27.5.3 ESMF_ArrayBundleOperator(/=) - ArrayBundle not equal operator

INTERFACE:

interface operator(/=)

if (arraybundle1 /= arraybundle2) then ... endif

OR

result = (arraybundle1 /= arraybundle2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_ArrayBundle), intent(in) :: arraybundle1

type(ESMF_ArrayBundle), intent(in) :: arraybundle2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

488

DESCRIPTION:

Test whether arraybundle1 and arraybundle2 are not valid aliases to the same ESMF ArrayBundle object in
memory. For a more general comparison of two ESMF ArrayBundles, going beyond the simple alias test, the
ESMF_ArrayBundleMatch() function (not yet implemented) must be used.

The arguments are:

arraybundle1 The ESMF_ArrayBundle object on the left hand side of the non-equality operation.

arraybundle2 The ESMF_ArrayBundle object on the right hand side of the non-equality operation.

27.5.4 ESMF_ArrayBundleAdd - Add Arrays to an ArrayBundle

INTERFACE:

subroutine ESMF_ArrayBundleAdd(arraybundle, arrayList, &

multiflag, relaxedflag, rc)

ARGUMENTS:

type(ESMF_ArrayBundle), intent(inout) :: arraybundle

type(ESMF_Array), intent(in) :: arrayList(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: multiflag

logical, intent(in), optional :: relaxedflag

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Add Array(s) to an ArrayBundle. It is an error if arrayList contains Arrays that match by name Arrays already
contained in arraybundle.

arraybundle ESMF_ArrayBundle to be added to.

arrayList List of ESMF_Array objects to be added.

[multiflag] A setting of .true. allows multiple items with the same name to be added to arraybundle. For
.false. added items must have unique names. The default setting is .false..

[relaxedflag] A setting of .true. indicates a relaxed definition of "add" under multiflag=.false. mode,
where it is not an error if arrayList contains items with names that are also found in arraybundle. The
arraybundle is left unchanged for these items. For .false. this is treated as an error condition. The
default setting is .false..

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

489

27.5.5 ESMF_ArrayBundleAddReplace - Conditionally add or replace Arrays in an ArrayBundle

INTERFACE:

subroutine ESMF_ArrayBundleAddReplace(arraybundle, arrayList, rc)

ARGUMENTS:

type(ESMF_ArrayBundle), intent(inout) :: arraybundle

type(ESMF_Array), intent(in) :: arrayList(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Arrays in arrayList that do not match any Arrays by name in arraybundle are added to the ArrayBundle.
Arrays in arraybundle that match by name Arrays in arrayList are replaced by those Arrays.

arraybundle ESMF_ArrayBundle to be manipulated.

arrayList List of ESMF_Array objects to be added or used as replacement.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

27.5.6 ESMF_ArrayBundleCreate - Create an ArrayBundle from a list of Arrays

INTERFACE:

function ESMF_ArrayBundleCreate(arrayList, multiflag, &

relaxedflag, name, rc)

RETURN VALUE:

type(ESMF_ArrayBundle) :: ESMF_ArrayBundleCreate

ARGUMENTS:

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Array), intent(in), optional :: arrayList(:)

logical, intent(in), optional :: multiflag

logical, intent(in), optional :: relaxedflag

character(len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

490

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Create an ESMF_ArrayBundle object from a list of existing Arrays.

The creation of an ArrayBundle leaves the bundled Arrays unchanged, they remain valid individual objects. An
ArrayBundle is a light weight container of Array references. The actual data remains in place, there are no data
movements or duplications associated with the creation of an ArrayBundle.

[arrayList] List of ESMF_Array objects to be bundled.

[multiflag] A setting of .true. allows multiple items with the same name to be added to arraybundle. For
.false. added items must have unique names. The default setting is .false..

[relaxedflag] A setting of .true. indicates a relaxed definition of "add" under multiflag=.false. mode,
where it is not an error if arrayList contains items with names that are also found in arraybundle. The
arraybundle is left unchanged for these items. For .false. this is treated as an error condition. The
default setting is .false..

[name] Name of the created ESMF_ArrayBundle. A default name is generated if not specified.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

27.5.7 ESMF_ArrayBundleDestroy - Release resources associated with an ArrayBundle

INTERFACE:

subroutine ESMF_ArrayBundleDestroy(arraybundle, noGarbage, rc)

ARGUMENTS:

type(ESMF_ArrayBundle), intent(inout) :: arraybundle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: noGarbage

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

491

7.0.0 Added argument noGarbage. The argument provides a mechanism to override the default garbage
collection mechanism when destroying an ESMF object.

DESCRIPTION:

Destroys an ESMF_ArrayBundle object. The member Arrays are not touched by this operation and remain valid
objects that need to be destroyed individually if necessary.

By default a small remnant of the object is kept in memory in order to prevent problems with dangling aliases. The
default garbage collection mechanism can be overridden with the noGarbage argument.

The arguments are:

arraybundle ESMF_ArrayBundle object to be destroyed.

[noGarbage] If set to .TRUE. the object will be fully destroyed and removed from the ESMF garbage collection
system. Note however that under this condition ESMF cannot protect against accessing the destroyed object
through dangling aliases – a situation which may lead to hard to debug application crashes.

It is generally recommended to leave the noGarbage argument set to .FALSE. (the default), and to take
advantage of the ESMF garbage collection system which will prevent problems with dangling aliases or incorrect
sequences of destroy calls. However this level of support requires that a small remnant of the object is kept in
memory past the destroy call. This can lead to an unexpected increase in memory consumption over the course
of execution in applications that use temporary ESMF objects. For situations where the repeated creation and
destruction of temporary objects leads to memory issues, it is recommended to call with noGarbage set to
.TRUE., fully removing the entire temporary object from memory.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

27.5.8 ESMF_ArrayBundleGet - Get object-wide information from an ArrayBundle

INTERFACE:

! Private name; call using ESMF_ArrayBundleGet()

subroutine ESMF_ArrayBundleGetListAll(arraybundle, &

itemorderflag, arrayCount, arrayList, arrayNameList, name, rc)

ARGUMENTS:

type(ESMF_ArrayBundle), intent(in) :: arraybundle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_ItemOrder_Flag), intent(in), optional :: itemorderflag

integer, intent(out), optional :: arrayCount

type(ESMF_Array), intent(out), optional :: arrayList(:)

character(len=*), intent(out), optional :: arrayNameList(:)

character(len=*), intent(out), optional :: name

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

492

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

6.1.0 Added argument itemorderflag. The new argument gives the user control over the order in which
the items are returned.

DESCRIPTION:

Get general, i.e. not Array name specific information from the ArrayBundle.

arraybundle ESMF_ArrayBundle to be queried.

[itemorderflag] Specifies the order of the returned items in the arrayList and arrayNameList. The default is
ESMF_ITEMORDER_ABC. See 52.32 for a full list of options.

[arrayCount] Upon return holds the number of Arrays bundled in the ArrayBundle.

[arrayList] Upon return holds a list of Arrays bundled in arraybundle. The argument must be allocated to be at
least of size arrayCount.

[arrayNameList] Upon return holds a list of the names of the Arrays bundled in arraybundle. The argument
must be allocated to be at least of size arrayCount.

[name] Name of the ArrayBundle object.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

27.5.9 ESMF_ArrayBundleGet - Get information about an Array by name and optionally return an Array

INTERFACE:

! Private name; call using ESMF_ArrayBundleGet()

subroutine ESMF_ArrayBundleGetItem(arraybundle, arrayName, &

array, arrayCount, isPresent, rc)

ARGUMENTS:

type(ESMF_ArrayBundle), intent(in) :: arraybundle

character(len=*), intent(in) :: arrayName

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Array), intent(out), optional :: array

integer, intent(out), optional :: arrayCount

logical, intent(out), optional :: isPresent

integer, intent(out), optional :: rc

STATUS:

493

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Get information about items that match arrayName in ArrayBundle.

arraybundle ESMF_ArrayBundle to be queried.

arrayName Specified name.

[array] Upon return holds the requested Array item. It is an error if this argument was specified and there is not
exactly one Array item in arraybundle that matches arrayName.

[arrayCount] Number of Arrays with arrayName in arraybundle.

[isPresent] Upon return indicates whether Array(s) with arrayName exist in arraybundle.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

27.5.10 ESMF_ArrayBundleGet - Get a list of Arrays by name

INTERFACE:

! Private name; call using ESMF_ArrayBundleGet()

subroutine ESMF_ArrayBundleGetList(arraybundle, arrayName, arrayList, &

itemorderflag, rc)

ARGUMENTS:

type(ESMF_ArrayBundle), intent(in) :: arraybundle

character(len=*), intent(in) :: arrayName

type(ESMF_Array), intent(out) :: arrayList(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_ItemOrder_Flag), intent(in), optional :: itemorderflag

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

6.1.0 Added argument itemorderflag. The new argument gives the user control over the order in which
the items are returned.

494

DESCRIPTION:

Get the list of Arrays from ArrayBundle that match arrayName.

arraybundle ESMF_ArrayBundle to be queried.

arrayName Specified name.

arrayList List of Arrays in arraybundle that match arrayName. The argument must be allocated to be at least
of size arrayCount returned for this arrayName.

[itemorderflag] Specifies the order of the returned items in the arrayList. The default is
ESMF_ITEMORDER_ABC. See 52.32 for a full list of options.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

27.5.11 ESMF_ArrayBundleHalo - Execute an ArrayBundle halo operation

INTERFACE:

subroutine ESMF_ArrayBundleHalo(arraybundle, routehandle, &

checkflag, rc)

ARGUMENTS:

type(ESMF_ArrayBundle), intent(inout) :: arraybundle

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: checkflag

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Execute a precomputed ArrayBundle halo operation for the Arrays in arrayBundle.

See ESMF_ArrayBundleHaloStore() on how to precompute routehandle.

This call is collective across the current VM.

arraybundle ESMF_ArrayBundle containing data to be haloed.

routehandle Handle to the precomputed Route.

[checkflag] If set to .TRUE. the input Array pairs will be checked for consistency with the precomputed operation
provided by routehandle. If set to .FALSE. (default) only a very basic input check will be performed,
leaving many inconsistencies undetected. Set checkflag to .FALSE. to achieve highest performance.

495

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

27.5.12 ESMF_ArrayBundleHaloRelease - Release resources associated with an ArrayBundle halo operation

INTERFACE:

subroutine ESMF_ArrayBundleHaloRelease(routehandle, &

noGarbage, rc)

ARGUMENTS:

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: noGarbage

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

8.0.0 Added argument noGarbage. The argument provides a mechanism to override the default garbage
collection mechanism when destroying an ESMF object.

DESCRIPTION:

Release resources associated with an ArrayBundle halo operation. After this call routehandle becomes invalid.

routehandle Handle to the precomputed Route.

[noGarbage] If set to .TRUE. the object will be fully destroyed and removed from the ESMF garbage collection
system. Note however that under this condition ESMF cannot protect against accessing the destroyed object
through dangling aliases – a situation which may lead to hard to debug application crashes.

It is generally recommended to leave the noGarbage argument set to .FALSE. (the default), and to take
advantage of the ESMF garbage collection system which will prevent problems with dangling aliases or incorrect
sequences of destroy calls. However this level of support requires that a small remnant of the object is kept in
memory past the destroy call. This can lead to an unexpected increase in memory consumption over the course
of execution in applications that use temporary ESMF objects. For situations where the repeated creation and
destruction of temporary objects leads to memory issues, it is recommended to call with noGarbage set to
.TRUE., fully removing the entire temporary object from memory.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

496

27.5.13 ESMF_ArrayBundleHaloStore - Precompute an ArrayBundle halo operation

INTERFACE:

subroutine ESMF_ArrayBundleHaloStore(arraybundle, routehandle, &

startregion, haloLDepth, haloUDepth, rc)

ARGUMENTS:

type(ESMF_ArrayBundle), intent(inout) :: arraybundle

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_StartRegion_Flag),intent(in), optional :: startregion

integer, intent(in), optional :: haloLDepth(:)

integer, intent(in), optional :: haloUDepth(:)

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Store an ArrayBundle halo operation over the data in arraybundle. By default, i.e. without specifying
startregion, haloLDepth and haloUDepth, all elements in the total Array regions that lie outside the ex-
clusive regions will be considered potential destination elements for the halo operation. However, only those elements
that have a corresponding halo source element, i.e. an exclusive element on one of the DEs, will be updated under the
halo operation. Elements that have no associated source remain unchanged under halo.

Specifying startregion allows to change the shape of the effective halo region from the inside. Setting
this flag to ESMF_STARTREGION_COMPUTATIONAL means that only elements outside the computational re-
gion for each Array are considered for potential destination elements for the halo operation. The default is
ESMF_STARTREGION_EXCLUSIVE.

The haloLDepth and haloUDepth arguments allow to reduce the extent of the effective halo region. Starting at the
region specified by startregion, the haloLDepth and haloUDepth define a halo depth in each direction. Note
that the maximum halo region is limited by the total region for each Array, independent of the actual haloLDepth
and haloUDepth setting. The total Array regions are local DE specific. The haloLDepth and haloUDepth are
interpreted as the maximum desired extent, reducing the potentially larger region available for the halo operation.

The routine returns an ESMF_RouteHandle that can be used to call ESMF_ArrayBundleHalo() on any pair
of ArrayBundles that matches srcArrayBundle and dstArrayBundle in type, kind, and memory layout of the
distributed dimensions. However, the size, number, and index order of undistributed dimensions may be different. See
section 36.2.4 for a more detailed discussion of RouteHandle reusability.

This call is collective across the current VM.

arraybundle ESMF_ArrayBundle containing data to be haloed. The data in the halo regions may be destroyed by
this call.

routehandle Handle to the precomputed Route.

497

[startregion] The start of the effective halo region on every DE. The default setting is
ESMF_STARTREGION_EXCLUSIVE, rendering all non-exclusive elements potential halo destination
elements. See section 52.54 for a complete list of valid settings.

[haloLDepth] This vector specifies the lower corner of the effective halo region with respect to the lower corner of
startregion. The size of haloLDepth must equal the number of distributed Array dimensions.

[haloUDepth] This vector specifies the upper corner of the effective halo region with respect to the upper corner of
startregion. The size of haloUDepth must equal the number of distributed Array dimensions.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

27.5.14 ESMF_ArrayBundleIsCreated - Check whether an ArrayBundle object has been created

INTERFACE:

function ESMF_ArrayBundleIsCreated(arraybundle, rc)

RETURN VALUE:

logical :: ESMF_ArrayBundleIsCreated

ARGUMENTS:

type(ESMF_ArrayBundle), intent(in) :: arraybundle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Return .true. if the arraybundle has been created. Otherwise return .false.. If an error occurs, i.e. rc /=

ESMF_SUCCESS is returned, the return value of the function will also be .false..

The arguments are:

arraybundle ESMF_ArrayBundle queried.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

27.5.15 ESMF_ArrayBundlePrint - Print ArrayBundle information

INTERFACE:

subroutine ESMF_ArrayBundlePrint(arraybundle, rc)

498

ARGUMENTS:

type(ESMF_ArrayBundle), intent(in) :: arraybundle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Print internal information of the specified ESMF_ArrayBundle object to stdout.

The arguments are:

arraybundle ESMF_ArrayBundle object.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

27.5.16 ESMF_ArrayBundleRead - Read Arrays to an ArrayBundle from file(s)

INTERFACE:

subroutine ESMF_ArrayBundleRead(arraybundle, fileName, &

singleFile, timeslice, iofmt, rc)

ARGUMENTS:

type(ESMF_ArrayBundle), intent(inout) :: arraybundle

character(*), intent(in) :: fileName

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: singleFile

integer, intent(in), optional :: timeslice

type(ESMF_IOFmt_Flag), intent(in), optional :: iofmt

integer, intent(out), optional :: rc

DESCRIPTION:

Read Array data to an ArrayBundle object from file(s). For this API to be functional, the environment variable
ESMF_PIO should be set to "internal" when the ESMF library is built. Please see the section on Data I/O, 37.2.

Limitations:

• Only single tile Arrays are supported.

• Not supported in ESMF_COMM=mpiuni mode.

499

The arguments are:

arraybundle An ESMF_ArrayBundle object.

fileName The name of the file from which ArrayBundle data is read.

[singleFile] A logical flag, the default is .true., i.e., all Arrays in the bundle are stored in one single file. If .false., each
Array is stored in separate files; these files are numbered with the name based on the argument "file". That is, a
set of files are named: [file_name]001, [file_name]002, [file_name]003,...

[timeslice] The time-slice number of the variable read from file.

[iofmt] The I/O format. Please see Section 52.28 for the list of options. If not present, file names with a .bin
extension will use ESMF_IOFMT_BIN, and file names with a .nc extension will use ESMF_IOFMT_NETCDF.
Other files default to ESMF_IOFMT_NETCDF.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

27.5.17 ESMF_ArrayBundleRedist - Execute an ArrayBundle redistribution

INTERFACE:

subroutine ESMF_ArrayBundleRedist(srcArrayBundle, dstArrayBundle, &

routehandle, checkflag, rc)

ARGUMENTS:

type(ESMF_ArrayBundle), intent(in), optional :: srcArrayBundle

type(ESMF_ArrayBundle), intent(inout), optional :: dstArrayBundle

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: checkflag

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Execute a precomputed ArrayBundle redistribution from the Arrays in srcArrayBundle to the Arrays in
dstArrayBundle.

The srcArrayBundle and dstArrayBundle arguments are optional in support of the situation where
srcArrayBundle and/or dstArrayBundle are not defined on all PETs. The srcArrayBundle and
dstArrayBundle must be specified on those PETs that hold source or destination DEs, respectively, but may
be omitted on all other PETs. PETs that hold neither source nor destination DEs may omit both arguments.

This call is collective across the current VM.

500

[srcArrayBundle] ESMF_ArrayBundle with source data.

[dstArrayBundle] ESMF_ArrayBundle with destination data.

routehandle Handle to the precomputed Route.

[checkflag] If set to .TRUE. the input Array pairs will be checked for consistency with the precomputed operation
provided by routehandle. If set to .FALSE. (default) only a very basic input check will be performed,
leaving many inconsistencies undetected. Set checkflag to .FALSE. to achieve highest performance.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

27.5.18 ESMF_ArrayBundleRedistRelease - Release resources associated with ArrayBundle redistribution

INTERFACE:

subroutine ESMF_ArrayBundleRedistRelease(routehandle, &

noGarbage, rc)

ARGUMENTS:

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: noGarbage

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

8.0.0 Added argument noGarbage. The argument provides a mechanism to override the default garbage
collection mechanism when destroying an ESMF object.

DESCRIPTION:

Release resources associated with an ArrayBundle redistribution. After this call routehandle becomes invalid.

routehandle Handle to the precomputed Route.

[noGarbage] If set to .TRUE. the object will be fully destroyed and removed from the ESMF garbage collection
system. Note however that under this condition ESMF cannot protect against accessing the destroyed object
through dangling aliases – a situation which may lead to hard to debug application crashes.

501

It is generally recommended to leave the noGarbage argument set to .FALSE. (the default), and to take
advantage of the ESMF garbage collection system which will prevent problems with dangling aliases or incorrect
sequences of destroy calls. However this level of support requires that a small remnant of the object is kept in
memory past the destroy call. This can lead to an unexpected increase in memory consumption over the course
of execution in applications that use temporary ESMF objects. For situations where the repeated creation and
destruction of temporary objects leads to memory issues, it is recommended to call with noGarbage set to
.TRUE., fully removing the entire temporary object from memory.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

27.5.19 ESMF_ArrayBundleRedistStore - Precompute an ArrayBundle redistribution with local factor argu-

ment

INTERFACE:

! Private name; call using ESMF_ArrayBundleRedistStore()

subroutine ESMF_ArrayBundleRedistStore<type><kind>(srcArrayBundle, &

dstArrayBundle, routehandle, factor, ignoreUnmatchedIndicesFlag, &

srcToDstTransposeMap, rc)

ARGUMENTS:

type(ESMF_ArrayBundle), intent(in) :: srcArrayBundle

type(ESMF_ArrayBundle), intent(inout) :: dstArrayBundle

type(ESMF_RouteHandle), intent(inout) :: routehandle

<type>(ESMF_KIND_<kind>),intent(in) :: factor

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: ignoreUnmatchedIndicesFlag(:)

integer, intent(in), optional :: srcToDstTransposeMap(:)

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

8.1.0 Added argument ignoreUnmatchedIndicesFlag to support cases where source and destination
side do not cover the exact same index space.

DESCRIPTION:

Store an ArrayBundle redistribution operation from srcArrayBundle to dstArrayBundle. The redistribution
between ArrayBundles is defined as the sequence of individual Array redistributions over all source and destination Ar-
ray pairs in sequence. The method requires that srcArrayBundle and dstArrayBundle reference an identical
number of ESMF_Array objects.

502

The effect of this method on ArrayBundles that contain aliased members is undefined.

PETs that specify a factor argument must use the <type><kind> overloaded interface. Other PETs call into the
interface without factor argument. If multiple PETs specify the factor argument its type and kind as well as its
value must match across all PETs. If none of the PETs specifies a factor argument the default will be a factor of 1.

See the description of method ESMF_ArrayRedistStore() for the definition of the Array based operation.

The routine returns an ESMF_RouteHandle that can be used to call ESMF_ArrayBundleRedist() on any pair
of ArrayBundles that matches srcArrayBundle and dstArrayBundle in type, kind, and memory layout of the
distributed dimensions. However, the size, number, and index order of undistributed dimensions may be different. See
section 36.2.4 for a more detailed discussion of RouteHandle reusability.

This method is overloaded for:
ESMF_TYPEKIND_I4, ESMF_TYPEKIND_I8,
ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8.

This call is collective across the current VM.

srcArrayBundle ESMF_ArrayBundle with source data.

dstArrayBundle ESMF_ArrayBundle with destination data. The data in these Arrays may be destroyed by this
call.

routehandle Handle to the precomputed Route.

factor Factor by which to multiply source data.

[ignoreUnmatchedIndicesFlag] If set to .false., the default, source and destination side must cover the identical
index space, using precisely matching sequence indices. If set to .true., mismatching sequence indices between
source and destination side are silently ignored. The size of this array argument must either be 1 or equal
the number of Arrays in the srcArrayBundle and dstArrayBundle arguments. In the latter case, the
handling of unmatched indices is specified for each Array pair separately. If only one element is specified, it is
used for all Array pairs.

[srcToDstTransposeMap] List with as many entries as there are dimensions in the Arrays in srcArrayBundle.
Each entry maps the corresponding source Array dimension against the specified destination Array dimension.
Mixing of distributed and undistributed dimensions is supported.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

27.5.20 ESMF_ArrayBundleRedistStore - Precompute an ArrayBundle redistribution without local factor

argument

INTERFACE:

! Private name; call using ESMF_ArrayBundleRedistStore()

subroutine ESMF_ArrayBundleRedistStoreNF(srcArrayBundle, dstArrayBundle, &

routehandle, ignoreUnmatchedIndicesFlag, &

srcToDstTransposeMap, rc)

ARGUMENTS:

503

type(ESMF_ArrayBundle), intent(in) :: srcArrayBundle

type(ESMF_ArrayBundle), intent(inout) :: dstArrayBundle

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: ignoreUnmatchedIndicesFlag(:)

integer, intent(in), optional :: srcToDstTransposeMap(:)

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

8.1.0 Added argument ignoreUnmatchedIndicesFlag to support cases where source and destination
side do not cover the exact same index space.

DESCRIPTION:

Store an ArrayBundle redistribution operation from srcArrayBundle to dstArrayBundle. The redistribution
between ArrayBundles is defined as the sequence of individual Array redistributions over all source and destination Ar-
ray pairs in sequence. The method requires that srcArrayBundle and dstArrayBundle reference an identical
number of ESMF_Array objects.

The effect of this method on ArrayBundles that contain aliased members is undefined.

PETs that specify a factor argument must use the <type><kind> overloaded interface. Other PETs call into the
interface without factor argument. If multiple PETs specify the factor argument its type and kind as well as its
value must match across all PETs. If none of the PETs specifies a factor argument the default will be a factor of 1.

See the description of method ESMF_ArrayRedistStore() for the definition of the Array based operation.

The routine returns an ESMF_RouteHandle that can be used to call ESMF_ArrayBundleRedist() on any pair
of ArrayBundles that matches srcArrayBundle and dstArrayBundle in type, kind, and memory layout of the
distributed dimensions. However, the size, number, and index order of undistributed dimensions may be different. See
section 36.2.4 for a more detailed discussion of RouteHandle reusability.

This call is collective across the current VM.

srcArrayBundle ESMF_ArrayBundle with source data.

dstArrayBundle ESMF_ArrayBundle with destination data. The data in these Arrays may be destroyed by this
call.

routehandle Handle to the precomputed Route.

[ignoreUnmatchedIndicesFlag] If set to .false., the default, source and destination side must cover the identical
index space, using precisely matching sequence indices. If set to .true., mismatching sequence indices between
source and destination side are silently ignored. The size of this array argument must either be 1 or equal
the number of Arrays in the srcArrayBundle and dstArrayBundle arguments. In the latter case, the
handling of unmatched indices is specified for each Array pair separately. If only one element is specified, it is
used for all Array pairs.

504

[srcToDstTransposeMap] List with as many entries as there are dimensions in the Arrays in srcArrayBundle.
Each entry maps the corresponding source Array dimension against the specified destination Array dimension.
Mixing of distributed and undistributed dimensions is supported.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

27.5.21 ESMF_ArrayBundleRemove - Remove Arrays from ArrayBundle

INTERFACE:

subroutine ESMF_ArrayBundleRemove(arraybundle, arrayNameList, &

multiflag, relaxedflag, rc)

ARGUMENTS:

type(ESMF_ArrayBundle), intent(inout) :: arraybundle

character(len=*), intent(in) :: arrayNameList(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: multiflag

logical, intent(in), optional :: relaxedflag

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Remove Array(s) by name from ArrayBundle. In the relaxed setting it is not an error if arrayNameList contains
names that are not found in arraybundle.

arraybundle ESMF_ArrayBundle from which to remove items.

arrayNameList List of items to remove.

[multiflag] A setting of .true. allows multiple Arrays with the same name to be removed from arraybundle.
For .false., items to be removed must have unique names. The default setting is .false..

[relaxedflag] A setting of .true. indicates a relaxed definition of "remove" where it is not an error if
arrayNameList contains item names that are not found in arraybundle. For .false. this is treated as
an error condition. Further, in multiflag=.false. mode, the relaxed definition of "remove" also covers
the case where there are multiple items in arraybundle that match a single entry in arrayNameList. For
relaxedflag=.false. this is treated as an error condition. The default setting is .false..

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

505

27.5.22 ESMF_ArrayBundleReplace - Replace Arrays in ArrayBundle

INTERFACE:

subroutine ESMF_ArrayBundleReplace(arraybundle, arrayList, &

multiflag, relaxedflag, rc)

ARGUMENTS:

type(ESMF_ArrayBundle), intent(inout) :: arraybundle

type(ESMF_Array), intent(in) :: arrayList(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: multiflag

logical, intent(in), optional :: relaxedflag

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Replace Array(s) by name in ArrayBundle. In the relaxed setting it is not an error if arrayList contains Arrays that
do not match by name any item in arraybundle. These Arrays are simply ignored in this case.

arraybundle ESMF_ArrayBundle in which to replace items.

arrayList List of items to replace.

[multiflag] A setting of .true. allows multiple items with the same name to be replaced in arraybundle. For
.false., items to be replaced must have unique names. The default setting is .false..

[relaxedflag] A setting of .true. indicates a relaxed definition of "replace" where it is not an error if arrayList
contains items with names that are not found in arraybundle. These items in arrayList are ignored in
the relaxed mode. For .false. this is treated as an error condition. Further, in multiflag=.false.

mode, the relaxed definition of "replace" also covers the case where there are multiple items in arraybundle
that match a single entry by name in arrayList. For relaxedflag=.false. this is treated as an error
condition. The default setting is .false..

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

27.5.23 ESMF_ArrayBundleSMM - Execute an ArrayBundle sparse matrix multiplication

INTERFACE:

subroutine ESMF_ArrayBundleSMM(srcArrayBundle, dstArrayBundle, &

routehandle, &

zeroregion, & ! DEPRECATED ARGUMENT

zeroregionflag, termorderflag, checkflag, rc)

506

ARGUMENTS:

type(ESMF_ArrayBundle), intent(in), optional :: srcArrayBundle

type(ESMF_ArrayBundle), intent(inout), optional :: dstArrayBundle

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Region_Flag), intent(in), optional :: zeroregion ! DEPRECATED ARGUMENT

type(ESMF_Region_Flag), intent(in), target, optional :: zeroregionflag(:)

type(ESMF_TermOrder_Flag), intent(in), target, optional :: termorderflag(:)

logical, intent(in), optional :: checkflag

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

7.0.0 Added argument termorderflag. The new argument gives the user control over the order in which
the src terms are summed up.

8.1.0 Added argument zeroregionflag, and deprecated zeroregion. The new argument allows greater
flexibility in setting the zero region for individual ArrayBundle members.

DESCRIPTION:

Execute a precomputed ArrayBundle sparse matrix multiplication from the Arrays in srcArrayBundle to the
Arrays in dstArrayBundle.

The srcArrayBundle and dstArrayBundle arguments are optional in support of the situation where
srcArrayBundle and/or dstArrayBundle are not defined on all PETs. The srcArrayBundle and
dstArrayBundle must be specified on those PETs that hold source or destination DEs, respectively, but may
be omitted on all other PETs. PETs that hold neither source nor destination DEs may omit both arguments.

This call is collective across the current VM.

[srcArrayBundle] ESMF_ArrayBundle with source data.

[dstArrayBundle] ESMF_ArrayBundle with destination data.

routehandle Handle to the precomputed Route.

[zeroregion] If set to ESMF_REGION_TOTAL (default) the total regions of all DEs in all Arrays in
dstArrayBundle will be initialized to zero before updating the elements with the results of the sparse matrix
multiplication. If set to ESMF_REGION_EMPTY the elements in the Arrays in dstArrayBundle will not
be modified prior to the sparse matrix multiplication and results will be added to the incoming element values.
Setting zeroregion to ESMF_REGION_SELECT will only zero out those elements in the destination Arrays
that will be updated by the sparse matrix multiplication. See section 52.48 for a complete list of valid settings.

[zeroregionflag] If set to ESMF_REGION_TOTAL (default) the total regions of all DEs in the destination Array will
be initialized to zero before updating the elements with the results of the sparse matrix multiplication. If set to
ESMF_REGION_EMPTY the elements in the destination Array will not be modified prior to the sparse matrix

507

multiplication and results will be added to the incoming element values. A setting of ESMF_REGION_SELECT
will only zero out those elements in the destination Array that will be updated by the sparse matrix multipli-
cation. See section 52.48 for a complete list of valid settings. The size of this array argument must either be
1 or equal the number of Arrays in the srcArrayBundle and dstArrayBundle arguments. In the latter
case, the zero region for each Array SMM operation is indicated separately. If only one zero region element is
specified, it is used for all Array pairs.

[termorderflag] Specifies the order of the source side terms in all of the destination sums. The termorderflag
only affects the order of terms during the execution of the RouteHandle. See the 36.2.1 section for an in-depth
discussion of all bit-for-bit reproducibility aspects related to route-based communication methods. See 52.58
for a full list of options. The size of this array argument must either be 1 or equal the number of Arrays in
the srcArrayBundle and dstArrayBundle arguments. In the latter case, the term order for each Array
SMM operation is indicated separately. If only one term order element is specified, it is used for all Array
pairs. The default is (/ESMF_TERMORDER_FREE/), allowing maximum flexibility in the order of terms for
optimum performance.

[checkflag] If set to .TRUE. the input Array pairs will be checked for consistency with the precomputed operation
provided by routehandle. If set to .FALSE. (default) only a very basic input check will be performed,
leaving many inconsistencies undetected. Set checkflag to .FALSE. to achieve highest performance.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

27.5.24 ESMF_ArrayBundleSMMRelease - Release resources associated with ArrayBundle sparse matrix

multiplication

INTERFACE:

subroutine ESMF_ArrayBundleSMMRelease(routehandle, &

noGarbage, rc)

ARGUMENTS:

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: noGarbage

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

8.0.0 Added argument noGarbage. The argument provides a mechanism to override the default garbage
collection mechanism when destroying an ESMF object.

508

DESCRIPTION:

Release resources associated with an ArrayBundle sparse matrix multiplication. After this call routehandle be-
comes invalid.

routehandle Handle to the precomputed Route.

[noGarbage] If set to .TRUE. the object will be fully destroyed and removed from the ESMF garbage collection
system. Note however that under this condition ESMF cannot protect against accessing the destroyed object
through dangling aliases – a situation which may lead to hard to debug application crashes.

It is generally recommended to leave the noGarbage argument set to .FALSE. (the default), and to take
advantage of the ESMF garbage collection system which will prevent problems with dangling aliases or incorrect
sequences of destroy calls. However this level of support requires that a small remnant of the object is kept in
memory past the destroy call. This can lead to an unexpected increase in memory consumption over the course
of execution in applications that use temporary ESMF objects. For situations where the repeated creation and
destruction of temporary objects leads to memory issues, it is recommended to call with noGarbage set to
.TRUE., fully removing the entire temporary object from memory.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

27.5.25 ESMF_ArrayBundleSMMStore - Precompute an ArrayBundle sparse matrix multiplication with lo-

cal factors

INTERFACE:

! Private name; call using ESMF_ArrayBundleSMMStore()

subroutine ESMF_ArrayBundleSMMStore<type><kind>(srcArrayBundle, &

dstArrayBundle, routehandle, factorList, factorIndexList, &

ignoreUnmatchedIndicesFlag, srcTermProcessing, rc)

ARGUMENTS:

type(ESMF_ArrayBundle), intent(in) :: srcArrayBundle

type(ESMF_ArrayBundle), intent(inout) :: dstArrayBundle

type(ESMF_RouteHandle), intent(inout) :: routehandle

<type>(ESMF_KIND_<kind>), target, intent(in) :: factorList(:)

integer, intent(in) :: factorIndexList(:,:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: ignoreUnmatchedIndicesFlag(:)

integer, intent(inout), optional :: srcTermProcessing(:)

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

509

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

7.1.0r Added argument srcTermProcessing. The new argument gives the user access to the tuning pa-
rameter affecting the sparse matrix execution and bit-wise reproducibility.

8.1.0 Added argument ignoreUnmatchedIndicesFlag to support cases where the sparse matrix includes
terms with source or destination sequence indices not present in the source or destination array.

DESCRIPTION:

Store an ArrayBundle sparse matrix multiplication operation from srcArrayBundle to dstArrayBundle. The
sparse matrix multiplication between ArrayBundles is defined as the sequence of individual Array sparse matrix mul-
tiplications over all source and destination Array pairs in sequence. The method requires that srcArrayBundle
and dstArrayBundle reference an identical number of ESMF_Array objects.

The effect of this method on ArrayBundles that contain aliased members is undefined.

PETs that specify non-zero matrix coefficients must use the <type><kind> overloaded interface and provide the
factorList and factorIndexList arguments. Providing factorList and factorIndexList argu-
ments with size(factorList) = (/0/) and size(factorIndexList) = (/2,0/) or (/4,0/) in-
dicates that a PET does not provide matrix elements. Alternatively, PETs that do not provide matrix elements may
also call into the overloaded interface without factorList and factorIndexList arguments.

See the description of method ESMF_ArraySMMStore() for the definition of the Array based operation.

The routine returns an ESMF_RouteHandle that can be used to call ESMF_ArrayBundleSMM() on any pair of
ArrayBundles that matches srcArrayBundle and dstArrayBundle in type, kind, and memory layout of the
distributed dimensions. However, the size, number, and index order of undistributed dimensions may be different. See
section 36.2.4 for a more detailed discussion of RouteHandle reusability.

This method is overloaded for:
ESMF_TYPEKIND_I4, ESMF_TYPEKIND_I8,
ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8.

This call is collective across the current VM.

srcArrayBundle ESMF_ArrayBundle with source data.

dstArrayBundle ESMF_ArrayBundle with destination data. The data in these Arrays may be destroyed by this
call.

routehandle Handle to the precomputed Route.

factorList List of non-zero coefficients.

factorIndexList Pairs of sequence indices for the factors stored in factorList.

The second dimension of factorIndexList steps through the list of pairs, i.e.
size(factorIndexList,2) == size(factorList). The first dimension of factorIndexList
is either of size 2 or size 4.

In the size 2 format factorIndexList(1,:) specifies the sequence index of the source element in the
source Array while factorIndexList(2,:) specifies the sequence index of the destination element in the
destination Array. For this format to be a valid option source and destination Arrays must have matching number

510

of tensor elements (the product of the sizes of all Array tensor dimensions). Under this condition an identity
matrix can be applied within the space of tensor elements for each sparse matrix factor.

The size 4 format is more general and does not require a matching tensor element count. Here the
factorIndexList(1,:) specifies the sequence index while factorIndexList(2,:) specifies the
tensor sequence index of the source element in the source Array. Further factorIndexList(3,:) speci-
fies the sequence index and factorIndexList(4,:) specifies the tensor sequence index of the destination
element in the destination Array.

See section 28.2.18 for details on the definition of Array sequence indices and tensor sequence indices.

[ignoreUnmatchedIndicesFlag] If set to .false., the default, source and destination side must cover all of the squence
indices defined in the sparse matrix. An error will be returned if a sequence index in the sparse matrix does not
match on either the source or destination side. If set to .true., mismatching sequence indices are silently ignored.
The size of this array argument must either be 1 or equal the number of Arrays in the srcArrayBundle and
dstArrayBundle arguments. In the latter case, the handling of unmatched indices is specified for each Array
pair separately. If only one element is specified, it is used for all Array pairs.

[srcTermProcessing] Source term summing options for route handle creation. See ESMF_ArraySMMStore docu-
mentation for a full parameter description. Two forms may be provided. If a single element list is provided, this
integer value is applied across all bundle members. Otherwise, the list must contain as many elements as there
are bundle members. For the special case of accessing the auto-tuned parameter (providing a negative integer
value), the list length must equal the bundle member count.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

27.5.26 ESMF_ArrayBundleSMMStore - Precompute an ArrayBundle sparse matrix multiplication without

local factors

INTERFACE:

! Private name; call using ESMF_ArrayBundleSMMStore()

subroutine ESMF_ArrayBundleSMMStoreNF(srcArrayBundle, dstArrayBundle, &

routehandle, ignoreUnmatchedIndicesFlag, srcTermProcessing, rc)

ARGUMENTS:

type(ESMF_ArrayBundle), intent(in) :: srcArrayBundle

type(ESMF_ArrayBundle), intent(inout) :: dstArrayBundle

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: ignoreUnmatchedIndicesFlag(:)

integer, intent(inout), optional :: srcTermProcessing(:)

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

511

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

7.1.0r Added argument srcTermProcessing. The new argument gives the user access to the tuning pa-
rameter affecting the sparse matrix execution and bit-wise reproducibility.

8.1.0 Added argument ignoreUnmatchedIndicesFlag to support cases where the sparse matrix includes
terms with source or destination sequence indices not present in the source or destination array.

DESCRIPTION:

Store an ArrayBundle sparse matrix multiplication operation from srcArrayBundle to dstArrayBundle. The
sparse matrix multiplication between ArrayBundles is defined as the sequence of individual Array sparse matrix mul-
tiplications over all source and destination Array pairs in sequence. The method requires that srcArrayBundle
and dstArrayBundle reference an identical number of ESMF_Array objects.

The effect of this method on ArrayBundles that contain aliased members is undefined.

PETs that specify non-zero matrix coefficients must use the <type><kind> overloaded interface and provide the
factorList and factorIndexList arguments. Providing factorList and factorIndexList argu-
ments with size(factorList) = (/0/) and size(factorIndexList) = (/2,0/) or (/4,0/) in-
dicates that a PET does not provide matrix elements. Alternatively, PETs that do not provide matrix elements may
also call into the overloaded interface without factorList and factorIndexList arguments.

See the description of method ESMF_ArraySMMStore() for the definition of the Array based operation.

The routine returns an ESMF_RouteHandle that can be used to call ESMF_ArrayBundleSMM() on any pair of
ArrayBundles that matches srcArrayBundle and dstArrayBundle in type, kind, and memory layout of the
distributed dimensions. However, the size, number, and index order of undistributed dimensions may be different. See
section 36.2.4 for a more detailed discussion of RouteHandle reusability.

This call is collective across the current VM.

srcArrayBundle ESMF_ArrayBundle with source data.

dstArrayBundle ESMF_ArrayBundle with destination data. The data in these Arrays may be destroyed by this
call.

routehandle Handle to the precomputed Route.

[ignoreUnmatchedIndicesFlag] If set to .false., the default, source and destination side must cover all of the squence
indices defined in the sparse matrix. An error will be returned if a sequence index in the sparse matrix does not
match on either the source or destination side. If set to .true., mismatching sequence indices are silently ignored.
The size of this array argument must either be 1 or equal the number of Arrays in the srcArrayBundle and
dstArrayBundle arguments. In the latter case, the handling of unmatched indices is specified for each Array
pair separately. If only one element is specified, it is used for all Array pairs.

[srcTermProcessing] Source term summing options for route handle creation. See ESMF_ArraySMMStore docu-
mentation for a full parameter description. Two forms may be provided. If a single element list is provided, this
integer value is applied across all bundle members. Otherwise, the list must contain as many elements as there
are bundle members. For the special case of accessing the auto-tuned parameter (providing a negative integer
value), the list length must equal the bundle member count.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

512

27.5.27 ESMF_ArrayBundleWrite - Write the Arrays into a file

INTERFACE:

subroutine ESMF_ArrayBundleWrite(arraybundle, fileName, &

convention, purpose, singleFile, overwrite, status, timeslice, iofmt, rc)

ARGUMENTS:

type(ESMF_ArrayBundle), intent(in) :: arraybundle

character(*), intent(in) :: fileName

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character(*), intent(in), optional :: convention

character(*), intent(in), optional :: purpose

logical, intent(in), optional :: singleFile

logical, intent(in), optional :: overwrite

type(ESMF_FileStatus_Flag), intent(in), optional :: status

integer, intent(in), optional :: timeslice

type(ESMF_IOFmt_Flag), intent(in), optional :: iofmt

integer, intent(out), optional :: rc

DESCRIPTION:

Write the Arrays into a file. For this API to be functional, the environment variable ESMF_PIO should be set to
"internal" when the ESMF library is built. Please see the section on Data I/O, 37.2.

When convention and purpose arguments are specified, NetCDF dimension labels and variable attributes are
written from each Array in the ArrayBundle from the corresponding Attribute package. Additionally, Attributes may
be set on the ArrayBundle level under the same Attribute package. This allows the specification of global attributes
within the file. As with individual Arrays, the value associated with each name may be either a scalar character string,
or a scalar or array of type integer, real, or double precision.

Limitations:

• Only single tile Arrays are supported.

• Not supported in ESMF_COMM=mpiuni mode.

The arguments are:

arraybundle An ESMF_ArrayBundle object.

fileName The name of the output file to which array bundle data is written.

[convention] Specifies an Attribute package associated with the ArrayBundle, and the contained Arrays, used to cre-
ate NetCDF dimension labels and attributes in the file. When this argument is present, the purpose argument
must also be present. Use this argument only with a NetCDF I/O format. If binary format is used, ESMF will
return an error code.

[purpose] Specifies an Attribute package associated with the ArrayBundle, and the contained Arrays, used to create
NetCDF dimension labels and attributes in the file. When this argument is present, the convention argument
must also be present. Use this argument only with a NetCDF I/O format. If binary format is used, ESMF will
return an error code.

513

[singleFile] A logical flag, the default is .true., i.e., all arrays in the bundle are written in one single file. If .false.,
each array will be written in separate files; these files are numbered with the name based on the argument "file".
That is, a set of files are named: [file_name]001, [file_name]002, [file_name]003,...

[overwrite] A logical flag, the default is .false., i.e., existing Array data may not be overwritten. If .true., the overwrite
behavior depends on the value of iofmt as shown below:

iofmt = ESMF_IOFMT_BIN: All data in the file will be overwritten with each Arrays’s data.

iofmt = ESMF_IOFMT_NETCDF, ESMF_IOFMT_NETCDF_64BIT_OFFSET: Only the data corre-
sponding to each Array’s name will be be overwritten. If the timeslice option is given, only data for
the given timeslice may be overwritten. Note that it is always an error to attempt to overwrite a NetCDF
variable with data which has a different shape.

[status] The file status. Please see Section 52.21 for the list of options. If not present, defaults to
ESMF_FILESTATUS_UNKNOWN.

[timeslice] Some I/O formats (e.g. NetCDF) support the output of data in form of time slices. The timeslice
argument provides access to this capability. timeslice must be positive. The behavior of this option may
depend on the setting of the overwrite flag:

overwrite = .false.: If the timeslice value is less than the maximum time already in the file, the write
will fail.

overwrite = .true.: Any positive timeslice value is valid.

By default, i.e. by omitting the timeslice argument, no provisions for time slicing are made in the output
file, however, if the file already contains a time axis for the variable, a timeslice one greater than the maximum
will be written.

[iofmt] The I/O format. Please see Section 52.28 for the list of options. If not present, file names with a .bin
extension will use ESMF_IOFMT_BIN, and file names with a .nc extension will use ESMF_IOFMT_NETCDF.
Other files default to ESMF_IOFMT_NETCDF.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28 Array Class

28.1 Description

The Array class is an alternative to the Field class for representing distributed, structured data. Unlike Fields, which are

built to carry grid coordinate information, Arrays only carry information about the indices associated with grid cells.

Since they do not have coordinate information, Arrays cannot be used to calculate interpolation weights. However,

if the user supplies interpolation weights, the Array sparse matrix multiply (SMM) operation can be used to apply

the weights and transfer data to the new grid. Arrays carry enough information to perform redistribution, scatter, and

gather communication operations.

Like Fields, Arrays can be added to a State and used in inter-Component data communications. Arrays can also

be grouped together into ArrayBundles, allowing operations to be performed collectively on the whole group. One

motivation for this is convenience; another is the ability to schedule optimized, collective data transfers.

From a technical standpoint, the ESMF Array class is an index space based, distributed data storage class. Its purpose

is to hold distributed user data. Each decompositon element (DE) is associated with its own memory allocation. The

index space relationship between DEs is described by the ESMF DistGrid class. DEs, and their associated memory

allocation, are pinned either to a specific perisistent execution thread (PET), virtual address space (VAS), or a single

514

system image (SSI). This aspect is managed by the ESMF DELayout class. Pinning to PET is the most common mode

and is the default.

The Array class offers common communication patterns within the index space formalism. All RouteHandle based

communication methods of the Field, FieldBundle, and ArrayBundle layers are implemented via the Array SMM

operation.

28.2 Use and Examples

An ESMF_Array is a distributed object that must exist on all PETs of the current context. Each PET-local instance of

an Array object contains memory allocations for all PET-local DEs. There may be 0, 1, or more DEs per PET and the

number of DEs per PET can differ between PETs for the same Array object. Memory allocations may be provided for

each PET by the user during Array creation or can be allocated as part of the Array create call. Many of the concepts

of the ESMF_Array class are illustrated by the following examples.

28.2.1 Array from native Fortran array with 1 DE per PET

The create call of the ESMF_Array class has been overloaded extensively to facilitate the need for generality while
keeping simple cases simple. The following program demonstrates one of the simpler cases, where existing local
Fortran arrays are to be used to provide the PET-local memory allocations for the Array object.

program ESMF_ArrayFarrayEx

use ESMF

use ESMF_TestMod

implicit none

The Fortran language provides a variety of ways to define and allocate an array. Actual Fortran array objects must
either be explicit-shape or deferred-shape. In the first case the memory allocation and deallocation is automatic from
the user’s perspective and the details of the allocation (static or dynamic, heap or stack) are left to the compiler.
(Compiler flags may be used to control some of the details). In the second case, i.e. for deferred-shape actual objects,
the array definition must include the pointer or allocatable attribute and it is the user’s responsibility to allocate
memory. While it is also the user’s responsibility to deallocate memory for arrays with the pointer attribute the
compiler will automatically deallocate allocatable arrays under certain circumstances defined by the Fortran standard.

The ESMF_ArrayCreate() interface has been written to accept native Fortran arrays of any flavor as a means to
allow user-controlled memory management. The Array create call will check on each PET if sufficient memory has
been provided by the specified Fortran arrays and will indicate an error if a problem is detected. However, the Array
create call cannot validate the lifetime of the provided memory allocations. If, for instance, an Array object was created
in a subroutine from an automatic explicit-shape array or an allocatable array, the memory allocations referenced by
the Array object will be automatically deallocated on return from the subroutine unless provisions are made by the
application writer to prevent such behavior. The Array object cannot control when memory that has been provided by
the user during Array creation becomes deallocated, however, the Array will indicate an error if its memory references
have been invalidated.

The easiest, portable way to provide safe native Fortran memory allocations to Array create is to use arrays with the
pointer attribute. Memory allocated for an array pointer will not be deallocated automatically. However, in this

515

case the possibility of memory leaks becomes an issue of concern. The deallocation of memory provided to an Array
in form of a native Fortran allocation will remain the users responsibility.

None of the concerns discussed above are an issue in this example where the native Fortran array farray is defined
in the main program. All different types of array memory allocation are demonstrated in this example. First farrayE
is defined as a 2D explicit-shape array on each PET which will automatically provide memory for 10× 10 elements.

! local variables

real(ESMF_KIND_R8) :: farrayE(10,10) ! explicit shape Fortran array

Then an allocatable array farrayA is declared which will be used to show user-controlled dynamic memory alloca-
tion.

real(ESMF_KIND_R8), allocatable :: farrayA(:,:) ! allocatable Fortran array

Finally an array with pointer attribute farrayP is declared, also used for user-controlled dynamic memory allocation.

real(ESMF_KIND_R8), pointer :: farrayP(:,:) ! Fortran array pointer

A matching array pointer must also be available to gain access to the arrays held by an Array object.

real(ESMF_KIND_R8), pointer :: farrayPtr(:,:) ! matching Fortran array ptr

type(ESMF_DistGrid) :: distgrid ! DistGrid object

type(ESMF_Array) :: array ! Array object

integer :: rc

call ESMF_Initialize(defaultlogfilename="ArrayFarrayEx.Log", &

logkindflag=ESMF_LOGKIND_MULTI, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

On each PET farrayE can be accessed directly to initialize the entire PET-local array.

farrayE = 12.45d0 ! initialize to some value

In order to create an Array object a DistGrid must first be created that describes the total index space and how it is
decomposed and distributed. In the simplest case only the minIndex and maxIndex of the total space must be
provided.

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIndex=(/40,10/), rc=rc)

This example is assumed to run on 4 PETs. The default 2D decomposition will then be into 4 x 1 DEs as to ensure 1
DE per PET.

Now the Array object can be created using the farrayE and the DistGrid just created.

516

array = ESMF_ArrayCreate(farray=farrayE, distgrid=distgrid, &

indexflag=ESMF_INDEX_DELOCAL, rc=rc)

The 40 x 10 index space defined by the minIndex and maxIndex arguments paired with the default decomposition
will result in the following distributed Array.

+---------------------------> 2nd dimension

| (1,1)-------+

| | |

| | DE 0 | <--- farray on PET 0

| | |

| +------(10,10)

| (11,1)-------+

| | |

| | DE 1 | <--- farray on PET 1

| | |

| +------(20,10)

| (21,1)-------+

| | |

| | DE 2 | <--- farray on PET 2

| | |

| +------(30,10)

| (31,1)-------+

| | |

| | DE 3 | <--- farray on PET 3

| | |

| +------(40,10)

v

1st dimension

Providing farrayE during Array creation does not change anything about the actual farrayE object. This means
that each PET can use its local farrayE directly to access the memory referenced by the Array object.

print *, farrayE

Another way of accessing the memory associated with an Array object is to use ArrayGet() to obtain an Fortran
pointer that references the PET-local array.

call ESMF_ArrayGet(array, farrayPtr=farrayPtr, rc=rc)

print *, farrayPtr

Finally the Array object must be destroyed. The PET-local memory of the farrayEs will remain in user control and
will not be altered by ArrayDestroy().

517

call ESMF_ArrayDestroy(array, rc=rc)

Since the memory allocation for each farrayE is automatic there is nothing more to do.

The interaction between farrayE and the Array class is representative also for the two other cases farrayA and
farrayP. The only difference is in the handling of memory allocations.

allocate(farrayA(10,10)) ! user controlled allocation

farrayA = 23.67d0 ! initialize to some value

array = ESMF_ArrayCreate(farray=farrayA, distgrid=distgrid, &

indexflag=ESMF_INDEX_DELOCAL, rc=rc)

print *, farrayA ! print PET-local farrayA directly

call ESMF_ArrayGet(array, farrayPtr=farrayPtr, rc=rc)! obtain array pointer

print *, farrayPtr ! print PET-local piece of Array through pointer

call ESMF_ArrayDestroy(array, rc=rc) ! destroy the Array

deallocate(farrayA) ! user controlled de-allocation

The farrayP case is identical.

allocate(farrayP(10,10)) ! user controlled allocation

farrayP = 56.81d0 ! initialize to some value

array = ESMF_ArrayCreate(farray=farrayP, distgrid=distgrid, &

indexflag=ESMF_INDEX_DELOCAL, rc=rc)

print *, farrayP ! print PET-local farrayA directly

call ESMF_ArrayGet(array, farrayPtr=farrayPtr, rc=rc)! obtain array pointer

print *, farrayPtr ! print PET-local piece of Array through pointer

call ESMF_ArrayDestroy(array, rc=rc) ! destroy the Array

deallocate(farrayP) ! user controlled de-allocation

To wrap things up the DistGrid object is destroyed and ESMF can be finalized.

call ESMF_DistGridDestroy(distgrid, rc=rc) ! destroy the DistGrid

call ESMF_Finalize(rc=rc)

end program

518

28.2.2 Array from native Fortran array with extra elements for halo or padding

The example of the previous section showed how easy it is to create an Array object from existing PET-local Fortran
arrays. The example did, however, not define any halo elements around the DE-local regions. The following code
demonstrates how an Array object with space for a halo can be set up.

program ESMF_ArrayFarrayHaloEx

use ESMF

use ESMF_TestMod

implicit none

The allocatable array farrayA will be used to provide the PET-local Fortran array for this example.

! local variables

real(ESMF_KIND_R8), allocatable :: farrayA(:,:) ! allocatable Fortran array

real(ESMF_KIND_R8), pointer :: farrayPtr(:,:) ! matching Fortran array ptr

type(ESMF_DistGrid) :: distgrid ! DistGrid object

type(ESMF_Array) :: array ! Array object

integer :: rc, i, j

real(ESMF_KIND_R8) :: localSum

call ESMF_Initialize(defaultlogfilename="ArrayFarrayHaloEx.Log", &

logkindflag=ESMF_LOGKIND_MULTI, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

The Array is to cover the exact same index space as in the previous example. Furthermore decomposition and distribu-
tion are also kept the same. Hence the same DistGrid object will be created and it is expected to execute this example
with 4 PETs.

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIndex=(/40,10/), rc=rc)

This DistGrid describes a 40 x 10 index space that will be decomposed into 4 DEs when executed on 4 PETs, associ-
ating 1 DE per PET. Each DE-local exclusive region contains 10 x 10 elements. The DistGrid also stores and provides
information about the relationship between DEs in index space, however, DistGrid does not contain information about
halos. Arrays contain halo information and it is possible to create multiple Arrays covering the same index space with
identical decomposition and distribution using the same DistGrid object, while defining different, Array-specific halo
regions.

The extra memory required to cover the halo in the Array object must be taken into account when allocating the
PET-local farrayA arrays. For a halo of 2 elements in each direction the following allocation will suffice.

allocate(farrayA(14,14)) ! Fortran array with halo: 14 = 10 + 2 * 2

519

The farrayA can now be used to create an Array object with enough space for a two element halo in each direction.
The Array creation method checks for each PET that the local Fortran array can accommodate the requested regions.

The default behavior of ArrayCreate() is to center the exclusive region within the total region. Consequently the
following call will provide the 2 extra elements on each side of the exclusive 10 x 10 region without having to specify
any additional arguments.

array = ESMF_ArrayCreate(farray=farrayA, distgrid=distgrid, &

indexflag=ESMF_INDEX_DELOCAL, rc=rc)

The exclusive Array region on each PET can be accessed through a suitable Fortran array pointer. See section 28.2.6
for more details on Array regions.

call ESMF_ArrayGet(array, farrayPtr=farrayPtr, rc=rc)

Following Array bounds convention, which by default puts the beginning of the exclusive region at (1, 1, ...), the
following loop will add up the values of the local exclusive region for each DE, regardless of how the bounds were
chosen for the original PET-local farrayA arrays.

localSum = 0.

do j=1, 10

do i=1, 10

localSum = localSum + farrayPtr(i, j)

enddo

enddo

Elements with i or j in the [-1,0] or [11,12] ranges are located outside the exclusive region and may be used to define
extra computational points or halo operations.

Cleanup and shut down ESMF.

call ESMF_ArrayDestroy(array, rc=rc)

deallocate(farrayA)

call ESMF_DistGridDestroy(distgrid, rc=rc)

call ESMF_Finalize(rc=rc)

end program

28.2.3 Array from ESMF_LocalArray

Alternative to the direct usage of Fortran arrays during Array creation it is also possible to first create an
ESMF_LocalArray and create the Array from it. While this may seem more burdensome for the 1 DE per PET

520

cases discussed in the previous sections it allows a straightforward generalization to the multiple DE per PET case.
The following example first recaptures the previous example using an ESMF_LocalArray and then expands to the
multiple DE per PET case.

program ESMF_ArrayLarrayEx

use ESMF

use ESMF_TestMod

implicit none

The current ESMF_LocalArray interface requires Fortran arrays to be defined with pointer attribute.

! local variables

real(ESMF_KIND_R8), pointer :: farrayP(:,:) ! Fortran array pointer

real(ESMF_KIND_R8), pointer :: farrayPtr(:,:) ! matching Fortran array ptr

type(ESMF_LocalArray) :: larray ! ESMF_LocalArray object

type(ESMF_LocalArray) :: larrayRef ! ESMF_LocalArray object

type(ESMF_DistGrid) :: distgrid ! DistGrid object

type(ESMF_Array) :: array ! Array object

integer :: rc, i, j, de

real(ESMF_KIND_R8) :: localSum

type(ESMF_LocalArray), allocatable :: larrayList(:) ! LocalArray object list

type(ESMF_LocalArray), allocatable :: larrayRefList(:)!LocalArray obj. list

type(ESMF_VM):: vm

integer:: localPet, petCount

call ESMF_Initialize(vm=vm, defaultlogfilename="ArrayLarrayEx.Log", &

logkindflag=ESMF_LOGKIND_MULTI, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

call ESMF_VMGet(vm, localPet=localPet, petCount=petCount, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

if (petCount /= 4) then

finalrc = ESMF_FAILURE

goto 10

endif

DistGrid and array allocation remains unchanged.

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIndex=(/40,10/), rc=rc)

allocate(farrayP(14,14)) ! allocate Fortran array on each PET with halo

521

Now instead of directly creating an Array object using the PET-local farrayPs an ESMF_LocalArray object will
be created on each PET.

larray = ESMF_LocalArrayCreate(farrayP, &

datacopyflag=ESMF_DATACOPY_REFERENCE, rc=rc)

The Array object can now be created from larray. The Array creation method checks for each PET that the Lo-
calArray can accommodate the requested regions.

array = ESMF_ArrayCreate(localarrayList=(/larray/), distgrid=distgrid, rc=rc)

Once created there is no difference in how the Array object can be used. The exclusive Array region on each PET can
be accessed through a suitable Fortran array pointer as before.

call ESMF_ArrayGet(array, farrayPtr=farrayPtr, rc=rc)

Alternatively it is also possible (independent of how the Array object was created) to obtain the reference to the array
allocation held by Array in form of an ESMF_LocalArray object. The farrayPtr can then be extracted using
LocalArray methods.

call ESMF_ArrayGet(array, localarray=larrayRef, rc=rc)

call ESMF_LocalArrayGet(larrayRef, farrayPtr, rc=rc)

Either way the farrayPtr reference can be used now to add up the values of the local exclusive region for each DE.
The following loop works regardless of how the bounds were chosen for the original PET-local farrayP arrays and
consequently the PET-local larray objects.

localSum = 0.

do j=1, 10

do i=1, 10

localSum = localSum + farrayPtr(i, j)

enddo

enddo

print *, "localSum=", localSum

Cleanup.

call ESMF_ArrayDestroy(array, rc=rc)

call ESMF_LocalArrayDestroy(larray, rc=rc)

deallocate(farrayP) ! use the pointer that was used in allocate statement

call ESMF_DistGridDestroy(distgrid, rc=rc)

522

While the usage of LocalArrays is unnecessarily cumbersome for 1 DE per PET Arrays, it provides a straightforward
path for extending the interfaces to multiple DEs per PET.

In the following example a 8 x 8 index space will be decomposed into 2 x 4 = 8 DEs. The situation is captured by the
following DistGrid object.

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIndex=(/8,8/), &

regDecomp=(/2,4/), rc=rc)

The distgrid object created in this manner will contain 8 DEs no matter how many PETs are available during
execution. Assuming an execution on 4 PETs will result in the following distribution of the decomposition.

+---------------------------------------> 2nd dimension

| (1,1)

| +-----------+-----------+-----------+-----------+

| | DE0, PET0 | DE2, PET1 | DE4, PET2 | DE6, PET3 |

| | * * | * * | * * | * * |

| | | | | |

| | * * | * * | * * | * * |

| | | | | |

| | * * | * * | * * | * * |

| | | | | |

| | * * | * * | * * | * * |

| +-----------+-----------+-----------+-----------+

| | DE1, PET0 | DE3, PET1 | DE5, PET2 | DE7, PET3 |

| | * * | * * | * * | * * |

| | | | | |

| | * * | * * | * * | * * |

| | | | | |

| | * * | * * | * * | * * |

| | | | | |

| | * * | * * | * * | * * |

| +-----------+-----------+-----------+-----------+

| (8,8)

v

1st dimension

Obviously each PET is associated with 2 DEs. Each PET must allocate enough space for all its DEs. This is done by
allocating as many DE-local arrays as there are DEs on the PET. The reference to these array allocations is passed into
ArrayCreate via a LocalArray list argument that holds as many elements as there are DEs on the PET. Here each PET
must allocate for two DEs.

allocate(larrayList(2)) ! 2 DEs per PET

allocate(farrayP(4, 2)) ! without halo each DE is of size 4 x 2

farrayP = 123.456d0

larrayList(1) = ESMF_LocalArrayCreate(farrayP, &

datacopyflag=ESMF_DATACOPY_REFERENCE, rc=rc) !1st DE

allocate(farrayP(4, 2)) ! without halo each DE is of size 4 x 2

farrayP = 456.789d0

larrayList(2) = ESMF_LocalArrayCreate(farrayP, &

523

datacopyflag=ESMF_DATACOPY_REFERENCE, rc=rc) !2nd DE

Notice that it is perfectly fine to re-use farrayP for all allocations of DE-local Fortran arrays. The allocated memory
can be deallocated at the end using the array pointer contained in the larrayList.

With this information an Array object can be created. The distgrid object indicates 2 DEs for each PET and
ArrayCreate() expects to find two LocalArray elements in larrayList.

array = ESMF_ArrayCreate(localarrayList=larrayList, distgrid=distgrid, rc=rc)

Usage of a LocalArray list is the only way to provide a list of variable length of Fortran array allocations to ArrayCre-
ate() for each PET. The array object created by the above call is an ESMF distributed object. As such it must follow
the ESMF convention that requires that the call to ESMF_ArrayCreate() must be issued in unison by all PETs of
the current context. Each PET only calls ArrayCreate() once, even if there are multiple DEs per PET.

The ArrayGet() method provides access to the list of LocalArrays on each PET.

allocate(larrayRefList(2))

call ESMF_ArrayGet(array, localarrayList=larrayRefList, rc=rc)

Finally, access to the actual Fortran pointers is done on a per DE basis. Generally each PET will loop over its DEs.

do de=1, 2

call ESMF_LocalArrayGet(larrayRefList(de), farrayPtr, rc=rc)

localSum = 0.

do j=1, 2

do i=1, 4

localSum = localSum + farrayPtr(i, j)

enddo

enddo

print *, "localSum=", localSum

enddo

Note: If the VM associates multiple PEs with a PET the application writer may decide to use OpenMP loop paral-
lelization on the de loop.

Cleanup requires that the PET-local deallocations are done before the pointers to the actual Fortran arrays are lost.
Notice that larrayList is used to obtain the pointers used in the deallocate statement. Pointers obtained from the
larrayRefList, while pointing to the same data, cannot be used to deallocate the array allocations!

do de=1, 2

call ESMF_LocalArrayGet(larrayList(de), farrayPtr, rc=rc)

deallocate(farrayPtr)

call ESMF_LocalArrayDestroy(larrayList(de), rc=rc)

524

enddo

deallocate(larrayList)

deallocate(larrayRefList)

call ESMF_ArrayDestroy(array, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

call ESMF_DistGridDestroy(distgrid, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

With that ESMF can be shut down cleanly.

call ESMF_Finalize(rc=rc)

end program

28.2.4 Create Array with automatic memory allocation

In the examples of the previous sections the user provided memory allocations for each of the DE-local regions
for an Array object. The user was able to use any of the Fortran methods to allocate memory, or go through the
ESMF_LocalArray interfaces to obtain memory allocations before passing them into ArrayCreate(). Alternatively
ESMF offers methods that handle Array memory allocations inside the library.

As before, to create an ESMF_Array object an ESMF_DistGrid must be created. The DistGrid object holds
information about the entire index space and how it is decomposed into DE-local exclusive regions. The following
line of code creates a DistGrid for a 5x5 global index space that is decomposed into 2 x 3 = 6 DEs.

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIndex=(/5,5/), &

regDecomp=(/2,3/), rc=rc)

The following is a representation of the index space and its decomposition into DEs. Each asterisk (*) represents a
single element.

+---------------------------------------> 2nd dimension

| (1,1)

| +-----------+-----------+------+

| | DE 0 | DE 2 | DE 4 |

| | | | |

| | * * | * * | * |

| | | | |

| | * * | * * | * |

| | | | |

| | * * | * * | * |

| +-----------+-----------+------+

| | | | |

| | DE 1 | DE 3 | DE 5 |

525

| | | | |

| | * * | * * | * |

| | | | |

| | * * | * * | * |

| +-----------+-----------+------+

| (5,5)

v

1st dimension

Besides the DistGrid it is the type, kind and rank information, "tkr" for short, that is required to create an Array object.
It turns out that the rank of the Array object is fully determined by the DistGrid and other (optional) arguments passed
into ArrayCreate(), so that explicit specification of the Array rank is redundant.

The simplest way to supply the type and kind information of the Array is directly through the typekind argument.
Here a double precision Array is created on the previously created DistGrid. Since no other arguments are specified
that could alter the rank of the Array it becomes equal to the dimCount of the DistGrid, i.e a 2D Array is created on
top of the DistGrid.

array = ESMF_ArrayCreate(typekind=ESMF_TYPEKIND_R8, distgrid=distgrid, rc=rc)

The different methods on how an Array object is created have no effect on the use of ESMF_ArrayDestroy().

call ESMF_ArrayDestroy(array, rc=rc)

Alternatively the same Array can be created specifying the "tkr" information in form of an ArraySpec variable. The
ArraySpec explicitly contains the Array rank and thus results in an over specification on the ArrayCreate() interface.
ESMF checks all input information for consistency and returns appropriate error codes in case any inconsistencies are
found.

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEKIND_R8, rank=2, rc=rc)

array = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid=distgrid, rc=rc)

The Array object created by the above call is an ESMF distributed object. As such it must follow the ESMF convention
that requires that the call to ESMF_ArrayCreate() must be issued in unison by all PETs of the current context.

28.2.5 Native language memory access

There are two different methods by which the user can access the data held inside an ESMF Array object. The first
method provides direct access to a native language array object. Specifically, the farrayPtr argument returned by
ESMF_ArrayGet() is a Fortran array pointer that can be used to access the PET-local data inside the Array object.

Many applications work in the 1 DE per PET mode, with exactly one DE on every PET. Accessing the Array memory
on each PET for this situation is especially simple as is shown in section 28.2.1. However, the Array class is not
restricted to the special 1 DE per PET case, but supports multiple separate memory allocations on each PET. The

526

number of such PET-local allocations is given by the localDeCount, i.e. there is one memory allocation for every
DE that is associated with the local PET.

Access to a specific local memory allocation of an Array object is still accomplished by returning the farrayPtr
argument. However, for localDeCount > 1 the formally optional localDe argument to ESMF_ArrayGet()

turns into a practically required argument. While in general the localDe in ESMF is simply a local index variable
that enumerates the DEs that are associated with the local PET (e.g. see section 48.3.7), the bounds of this index
variable are strictly defined as [0,...,localDeCount-1] when it is used as an input argument. The following
code demonstrates this.

First query the Array for localDeCount. This number may be different on each PET and indicates how many DEs
are mapped against the local PET.

call ESMF_ArrayGet(array, localDeCount=localDeCount, rc=rc)

Looping the localDe index variable from 0 to localDeCount-1 allows access to each of the local memory
allocations of the Array object:

do localDe=0, localDeCount-1

call ESMF_ArrayGet(array, farrayPtr=myFarray, localDe=localDe, rc=rc)

! use myFarray to access local DE data

enddo

The second method to access the memory allocations in an Array object is to go through the ESMF LocalArray
object. To this end the Array is queried for a list of PET-local LocalArray objects. The LocalArray objects in the
list correspond to the DEs on the local PET. Here the localDe argument is solely a user level index variable, and in
principle the lower bound can be chosen freely. However, for better alignment with the previous case (where localDe
served as an input argument to an ESMF method) the following example again fixes the lower bound at zero.

allocate(larrayList(0:localDeCount-1))

call ESMF_ArrayGet(array, localarrayList=larrayList, rc=rc)

do localDe=0, localDeCount-1

call ESMF_LocalArrayGet(larrayList(localDe), myFarray, &

datacopyflag=ESMF_DATACOPY_REFERENCE, rc=rc)

! use myFarray to access local DE data

enddo

See section 28.2.3 for more on LocalArray usage in Array. In most cases memory access through a LocalArray list is
less convenient than the direct farrayPtr method because it adds an extra object level between the ESMF Array
and the native language array.

527

28.2.6 Regions and default bounds

Each ESMF_Array object is decomposed into DEs as specified by the associated ESMF_DistGrid object. Each
piece of this decomposition, i.e. each DE, holds a chunk of the Array data in its own local piece of memory. The
details of the Array decomposition are described in the following paragraphs.

At the center of the Array decomposition is the ESMF_DistGrid class. The DistGrid object specified during Array
creation contains three essential pieces of information:

• The extent and topology of the global domain covered by the Array object in terms of indexed elements. The
total extent may be a composition of smaller logically rectangular (LR) domain pieces called tiles.

• The decomposition of the entire domain into "element exclusive" DE-local LR chunks. Element exclusive means
that there is no element overlap between DE-local chunks. This, however, does not exclude degeneracies on edge
boundaries for certain topologies (e.g. bipolar).

• The layout of DEs over the available PETs and thus the distribution of the Array data.

Each element of an Array is associated with a single DE. The union of elements associated with a DE, as defined by
the DistGrid above, corresponds to a LR chunk of index space, called the exclusive region of the DE.

There is a hierarchy of four regions that can be identified for each DE in an Array object. Their definition and
relationship to each other is as follows:

• Interior Region: Region that only contains local elements that are not mapped into the halo of any other DE.
The shape and size of this region for a particular DE depends non-locally on the halos defined by other DEs and
may change during computation as halo operations are precomputed and released. Knowledge of the interior
elements may be used to improve performance by overlapping communications with ongoing computation for
a DE.

• Exclusive Region: Elements for which a DE claims exclusive ownership. Practically this means that the DE
will be the sole source for these elements in halo and reduce operations. There are exceptions to this in some
topologies. The exclusive region includes all elements of the interior region.

• Computational Region: Region that can be set arbitrarily within the bounds of the total region (defined next).
The typical use of the computation region is to define bounds that only include elements that are updated by a
DE-local computation kernel. The computational region does not need to include all exclusive elements and it
may also contain elements that lie outside the exclusive region.

• Total (Memory) Region: Total of all DE-locally allocated elements. The size and shape of the total memory
region must accommodate the union of exclusive and computational region but may contain additional elements.
Elements outside the exclusive region may overlap with the exclusive region of another DE which makes them
potential receivers for Array halo operations. Elements outside the exclusive region that do not overlap with the
exclusive region of another DE can be used to set boundary conditions and/or serve as extra memory padding.

+-totalLBound(:)----------------------------------+

|\ |

| \ <--- totalLWidth(:) |

| \ |

| +-computationalLBound(:)------------------+ |

| |\ | |

| | \ <--- computationalLWidth(:) | |

| | \ | |

| | +-exclusiveLBound(:)-------------+ | |

| | | | | |

528

| | | +------+ +-----+ | | |

| | | | | | | | | |

| | | | +------+ | | | |

| | | | "Interior Region" | | | |

| | | +-----+ | | | |

| | | | | | | |

| | | +-------------+ | | |

| | | | | |

| | | "Exclusive Region" | | |

| | +-------------exclusiveUBound(:)-+ | |

| | \ | |

| | computationalUWidth(:) --> \ | |

| | \ | |

| | "Computational Region" \| |

| +------------------computationalUBound(:)-+ |

| \ |

| totalUWidth(:) -> \ |

| "Total Region" \|

+--------------------------------- totalUBound(:)-+

With the following definitions:

computationalLWidth(:) = exclusiveLBound(:) - computationalLBound(:)

computationalUWidth(:) = computationalUBound(:) - exclusiveUBound(:)

and

totalLWidth(:) = exclusiveLBound(:) - totalLBound(:)

totalUWidth(:) = totalUBound(:) - exclusiveUBound(:)

The exclusive region is determined during Array creation by the DistGrid argument. Optional arguments may be used
to specify the computational region when the Array is created, by default it will be set equal to the exclusive region.
The total region, i.e. the actual memory allocation for each DE, is also determined during Array creation. When
creating the Array object from existing Fortran arrays the total region is set equal to the memory provided by the
Fortran arrays. Otherwise the default is to allocate as much memory as is needed to accommodate the union of the
DE-local exclusive and computational region. Finally it is also possible to use optional arguments to the ArrayCreate()
call to specify the total region of the object explicitly.

The ESMF_ArrayCreate() call checks that the input parameters are consistent and will result in an Array that
fulfills all of the above mentioned requirements for its DE-local regions.

Once an Array object has been created the exclusive and total regions are fixed. The computational region, however,
may be adjusted within the limits of the total region using the ArraySet() call.

The interior region is very different from the other regions in that it cannot be specified. The interior region for each
DE is a consequence of the choices made for the other regions collectively across all DEs into which an Array object
is decomposed. An Array object can be queried for its DE-local interior regions as to offer additional information to
the user necessary to write more efficient code.

529

By default the bounds of each DE-local total region are defined as to put the start of the DE-local exclusive region at
the "origin" of the local index space, i.e. at (1, 1, ..., 1). With that definition the following loop will access
each element of the DE-local memory segment for each PET-local DE of the Array object used in the previous sections
and print its content.

do localDe=0, localDeCount-1

call ESMF_LocalArrayGet(larrayList(localDe), myFarray, &

datacopyflag=ESMF_DATACOPY_REFERENCE, rc=rc)

do i=1, size(myFarray, 1)

do j=1, size(myFarray, 2)

print *, "localPET=", localPet, " localDE=", &

localDe, ": array(",i,",",j,")=", myFarray(i,j)

enddo

enddo

enddo

28.2.7 Array bounds

The loop over Array elements at the end of the last section only works correctly because of the default definition of
the computational and total regions used in the example. In general, without such specific knowledge about an Array
object, it is necessary to use a more formal approach to access its regions with DE-local indices.

The DE-local exclusive region takes a central role in the definition of Array bounds. Even as the computational region
may adjust during the course of execution the exclusive region remains unchanged. The exclusive region provides a
unique reference frame for the index space of all Arrays associated with the same DistGrid.

There is a choice between two indexing options that needs to be made during Array creation. By default each DE-local
exclusive region starts at (1, 1, ..., 1). However, for some computational kernels it may be more convenient
to choose the index bounds of the DE-local exclusive regions to match the index space coordinates as they are defined
in the corresponding DistGrid object. The second option is only available if the DistGrid object does not contain any
non-contiguous decompositions (such as cyclically decomposed dimensions).

The following example code demonstrates the safe way of dereferencing the DE-local exclusive regions of the previ-
ously created array object.

allocate(exclusiveUBound(2, 0:localDeCount-1)) ! dimCount=2

allocate(exclusiveLBound(2, 0:localDeCount-1)) ! dimCount=2

call ESMF_ArrayGet(array, indexflag=indexflag, &

exclusiveLBound=exclusiveLBound, exclusiveUBound=exclusiveUBound, rc=rc)

if (indexflag == ESMF_INDEX_DELOCAL) then

! this is the default

! print *, "DE-local exclusive regions start at (1,1)"

do localDe=0, localDeCount-1

call ESMF_LocalArrayGet(larrayList(localDe), myFarray, &

datacopyflag=ESMF_DATACOPY_REFERENCE, rc=rc)

do i=1, exclusiveUBound(1, localDe)

do j=1, exclusiveUBound(2, localDe)

! print *, "DE-local exclusive region for localDE=", localDe, &

! ": array(",i,",",j,")=", myFarray(i,j)

enddo

enddo

enddo

else if (indexflag == ESMF_INDEX_GLOBAL) then

! only if set during ESMF_ArrayCreate()

530

! print *, "DE-local exclusive regions of this Array have global bounds"

do localDe=0, localDeCount-1

call ESMF_LocalArrayGet(larrayList(localDe), myFarray, &

datacopyflag=ESMF_DATACOPY_REFERENCE, rc=rc)

do i=exclusiveLBound(1, localDe), exclusiveUBound(1, localDe)

do j=exclusiveLBound(2, localDe), exclusiveUBound(2, localDe)

! print *, "DE-local exclusive region for localDE=", localDe, &

! ": array(",i,",",j,")=", myFarray(i,j)

enddo

enddo

enddo

endif

call ESMF_ArrayDestroy(array, rc=rc) ! destroy the array object

Obviously the second branch of this simple code will work for either case, however, if a complex computational kernel
was written assuming ESMF_INDEX_DELOCAL type bounds the second branch would simply be used to indicate the
problem and bail out.

The advantage of the ESMF_INDEX_GLOBAL index option is that the Array bounds directly contain information on
where the DE-local Array piece is located in a global index space sense. When the ESMF_INDEX_DELOCAL option
is used the correspondence between local and global index space must be made by querying the associated DistGrid
for the DE-local indexList arguments.

28.2.8 Computational region and extra elements for halo or padding

In the previous examples the computational region of array was chosen by default to be identical to the exclusive re-
gion defined by the DistGrid argument during Array creation. In the following the same arrayspec and distgrid
objects as before will be used to create an Array but now a larger computational region shall be defined around each
DE-local exclusive region. Furthermore, extra space will be defined around the computational region of each DE to
accommodate a halo and/or serve as memory padding.

In this example the indexflag argument is set to ESMF_INDEX_GLOBAL indicating that the bounds of the exclu-
sive region correspond to the index space coordinates as they are defined by the DistGrid object.

The same arrayspec and distgrid objects as before are used which also allows the reuse of the already allocated
larrayList variable.

array = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid=distgrid, &

computationalLWidth=(/0,3/), computationalUWidth=(/1,1/), &

totalLWidth=(/1,4/), totalUWidth=(/3,1/), &

indexflag=ESMF_INDEX_GLOBAL, rc=rc)

Obtain the larrayList on every PET.

allocate(localDeToDeMap(0:localDeCount-1))

call ESMF_ArrayGet(array, localarrayList=larrayList, &

localDeToDeMap=localDeToDeMap, rc=rc)

The bounds of DE 1 for array are shown in the following diagram to illustrate the situation. Notice that the
totalLWidth and totalUWidth arguments in the ArrayCreate() call define the total region with respect to the
exclusive region given for each DE by the distgrid argument.

531

+-(3,-3)---------------------------------+

|\ |

| +-(4,-2)-+-(4,1)--------------------+--+

| | | | |

| | | | |

| | | DE 1 | |

| | | | |

| | | | |

| | | Exclusive Region | |

| | +--------------------(5,2)-+ |

| | Computational Region |

| +-------------------------------(6,3)--+

| |

| Total Region |

+---------------------------------(8,3)--+

When working with this array it is possible for the computational kernel to overstep the exclusive region for both
read/write access (computational region) and potentially read-only access into the total region outside of the compu-
tational region, if a halo operation provides valid entries for these elements.

The Array object can be queried for absolute bounds

allocate(computationalLBound(2, 0:localDeCount-1)) ! dimCount=2

allocate(computationalUBound(2, 0:localDeCount-1)) ! dimCount=2

allocate(totalLBound(2, 0:localDeCount-1)) ! dimCount=2

allocate(totalUBound(2, 0:localDeCount-1)) ! dimCount=2

call ESMF_ArrayGet(array, exclusiveLBound=exclusiveLBound, &

exclusiveUBound=exclusiveUBound, &

computationalLBound=computationalLBound, &

computationalUBound=computationalUBound, &

totalLBound=totalLBound, &

totalUBound=totalUBound, rc=rc)

or for the relative widths.

allocate(computationalLWidth(2, 0:localDeCount-1)) ! dimCount=2

allocate(computationalUWidth(2, 0:localDeCount-1)) ! dimCount=2

allocate(totalLWidth(2, 0:localDeCount-1)) ! dimCount=2

allocate(totalUWidth(2, 0:localDeCount-1)) ! dimCount=2

call ESMF_ArrayGet(array, computationalLWidth=computationalLWidth, &

computationalUWidth=computationalUWidth, totalLWidth=totalLWidth, &

totalUWidth=totalUWidth, rc=rc)

Either way the dereferencing of Array data is centered around the DE-local exclusive region:

do localDe=0, localDeCount-1

call ESMF_LocalArrayGet(larrayList(localDe), myFarray, &

datacopyflag=ESMF_DATACOPY_REFERENCE, rc=rc)

! initialize the DE-local array

myFarray = 0.1d0 * localDeToDeMap(localDe)

532

! first time through the total region of array

! print *, "myFarray bounds for DE=", localDeToDeMap(localDe), &

! lbound(myFarray), ubound(myFarray)

do j=exclusiveLBound(2, localDe), exclusiveUBound(2, localDe)

do i=exclusiveLBound(1, localDe), exclusiveUBound(1, localDe)

! print *, "Excl region DE=", localDeToDeMap(localDe), &

! ": array(",i,",",j,")=", myFarray(i,j)

enddo

enddo

do j=computationalLBound(2, localDe), computationalUBound(2, localDe)

do i=computationalLBound(1, localDe), computationalUBound(1, localDe)

! print *, "Excl region DE=", localDeToDeMap(localDe), &

! ": array(",i,",",j,")=", myFarray(i,j)

enddo

enddo

do j=totalLBound(2, localDe), totalUBound(2, localDe)

do i=totalLBound(1, localDe), totalUBound(1, localDe)

! print *, "Total region DE=", localDeToDeMap(localDe), &

! ": array(",i,",",j,")=", myFarray(i,j)

enddo

enddo

! second time through the total region of array

do j=exclusiveLBound(2, localDe)-totalLWidth(2, localDe), &

exclusiveUBound(2, localDe)+totalUWidth(2, localDe)

do i=exclusiveLBound(1, localDe)-totalLWidth(1, localDe), &

exclusiveUBound(1, localDe)+totalUWidth(1, localDe)

! print *, "Excl region DE=", localDeToDeMap(localDe), &

! ": array(",i,",",j,")=", myFarray(i,j)

enddo

enddo

enddo

28.2.9 Create 1D and 3D Arrays

All previous examples were written for the 2D case. There is, however, no restriction within the Array or DistGrid
class that limits the dimensionality of Array objects beyond the language-specific limitations (7D for Fortran).

In order to create an n-dimensional Array the rank indicated by both the arrayspec and the distgrid arguments
specified during Array create must be equal to n. A 1D Array of double precision real data hence requires the following
arrayspec.

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEKIND_R8, rank=1, rc=rc)

The index space covered by the Array and the decomposition description is provided to the Array create method by
the distgrid argument. The index space in this example has 16 elements and covers the interval [−10, 5]. It is
decomposed into as many DEs as there are PETs in the current context.

distgrid1D = ESMF_DistGridCreate(minIndex=(/-10/), maxIndex=(/5/), &

regDecomp=(/petCount/), rc=rc)

533

A 1D Array object with default regions can now be created.

array1D = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid=distgrid1D, rc=rc)

The creation of a 3D Array proceeds analogous to the 1D case. The rank of the arrayspec must be changed to 3

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEKIND_R8, rank=3, rc=rc)

and an appropriate 3D DistGrid object must be created

distgrid3D = ESMF_DistGridCreate(minIndex=(/1,1,1/), &

maxIndex=(/16,16,16/), regDecomp=(/4,4,4/), rc=rc)

before an Array object can be created.

array3D = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid=distgrid3D, rc=rc)

The distgrid3D object decomposes the 3-dimensional index space into 4 × 4 × 4 = 64 DEs. These DEs are
laid out across the computational resources (PETs) of the current component according to a default DELayout that is
created during the DistGrid create call. Notice that in the index space proposal a DELayout does not have a sense of
dimensionality. The DELayout function is simply to map DEs to PETs. The DistGrid maps chunks of index space
against DEs and thus its rank is equal to the number of index space dimensions.

The previously defined DistGrid and the derived Array object decompose the index space along all three dimension.
It is, however, not a requirement that the decomposition be along all dimensions. An Array with the same 3D index
space could as well be decomposed along just one or along two of the dimensions. The following example shows how
for the same index space only the last two dimensions are decomposed while the first Array dimension has full extent
on all DEs.

call ESMF_ArrayDestroy(array3D, rc=rc)

call ESMF_DistGridDestroy(distgrid3D, rc=rc)

distgrid3D = ESMF_DistGridCreate(minIndex=(/1,1,1/), &

maxIndex=(/16,16,16/), regDecomp=(/1,4,4/), rc=rc)

array3D = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid=distgrid3D, rc=rc)

28.2.10 Working with Arrays of different rank

Assume a computational kernel that involves the array3D object as it was created at the end of the previous section.
Assume further that the kernel also involves a 2D Array on a 16x16 index space where each point (j,k) was interacting
with each (i,j,k) column of the 3D Array. An efficient formulation would require that the decomposition of the 2D
Array must match that of the 3D Array and further the DELayout be identical. The following code shows how this can
be accomplished.

call ESMF_DistGridGet(distgrid3D, delayout=delayout, rc=rc) ! get DELayout

distgrid2D = ESMF_DistGridCreate(minIndex=(/1,1/), maxIndex=(/16,16/), &

534

regDecomp=(/4,4/), delayout=delayout, rc=rc)

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEKIND_R8, rank=2, rc=rc)

array2D = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid=distgrid2D, rc=rc)

Now the following kernel is sure to work with array3D and array2D.

call ESMF_DELayoutGet(delayout, localDeCount=localDeCount, rc=rc)

allocate(larrayList1(0:localDeCount-1))

call ESMF_ArrayGet(array3D, localarrayList=larrayList1, rc=rc)

allocate(larrayList2(0:localDeCount-1))

call ESMF_ArrayGet(array2D, localarrayList=larrayList2, rc=rc)

do localDe=0, localDeCount-1

call ESMF_LocalArrayGet(larrayList1(localDe), myFarray3D, &

datacopyflag=ESMF_DATACOPY_REFERENCE, rc=rc)

myFarray3D = 0.1d0 * localDe ! initialize

call ESMF_LocalArrayGet(larrayList2(localDe), myFarray2D, &

datacopyflag=ESMF_DATACOPY_REFERENCE, rc=rc)

myFarray2D = 0.5d0 * localDe ! initialize

do k=1, 4

do j=1, 4

dummySum = 0.d0

do i=1, 16

dummySum = dummySum + myFarray3D(i,j,k) ! sum up the (j,k) column

enddo

dummySum = dummySum * myFarray2D(j,k) ! multiply with local 2D element

! print *, "dummySum(",j,k,")=",dummySum

enddo

enddo

enddo

28.2.11 Array and DistGrid rank – 2D+1 Arrays

Except for the special Array create interface that implements a copy from an existing Array object all other Array
create interfaces require the specification of at least two arguments: farray and distgrid, larrayList and
distgrid, or arrayspec and distgrid. In all these cases both required arguments contain a sense of dimen-
sionality. The relationship between these two arguments deserves extra attention.

The first argument, farray, larrayList or arrayspec, determines the rank of the created Array object, i.e. the
dimensionality of the actual data storage. The rank of a native language array, extracted from an Array object, is equal
to the rank specified by either of these arguments. So is the rank that is returned by the ESMF_ArrayGet() call.

The rank specification contained in the distgrid argument, which is of type ESMF_DistGrid, on the other hand
has no effect on the rank of the Array. The dimCount specified by the DistGrid object, which may be equal, greater
or less than the Array rank, determines the dimensionality of the decomposition.

While there is no constraint between DistGrid dimCount and Array rank, there is an important relationship between
the two, resulting in the concept of index space dimensionality. Array dimensions can be arbitrarily mapped against
DistGrid dimension, rendering them decomposed dimensions. The index space dimensionality is equal to the number
of decomposed Array dimensions.

Array dimensions that are not mapped to DistGrid dimensions are the undistributed dimensions of the Ar-
ray. They are not part of the index space. The mapping is specified during ESMF_ArrayCreate() via the
distgridToArrayMap argument. DistGrid dimensions that have not been associated with Array dimensions are
replicating dimensions. The Array will be replicated across the DEs that lie along replication DistGrid dimensions.

535

Undistributed Array dimensions can be used to store multi-dimensional data for each Array index space element. One
application of this is to store the components of a vector quantity in a single Array. The same 2D distgrid object
as before will be used.

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIndex=(/5,5/), &

regDecomp=(/2,3/), rc=rc)

The rank in the arrayspec argument, however, must change from 2 to 3 in order to provide for the extra Array
dimension.

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEKIND_R8, rank=3, rc=rc)

During Array creation with extra dimension(s) it is necessary to specify the bounds of these undistributed dimen-
sion(s). This requires two additional arguments, undistLBound and undistUBound, which are vectors in order
to accommodate multiple undistributed dimensions. The other arguments remain unchanged and apply across all
undistributed components.

array = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid=distgrid, &

totalLWidth=(/0,1/), totalUWidth=(/0,1/), &

undistLBound=(/1/), undistUBound=(/2/), rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

This will create array with 2+1 dimensions. The 2D DistGrid is used to describe decomposition into DEs with
2 Array dimensions mapped to the DistGrid dimensions resulting in a 2D index space. The extra Array dimension
provides storage for multi component user data within the Array object.

By default the distgrid dimensions are associated with the first Array dimensions in sequence. For the example
above this means that the first 2 Array dimensions are decomposed according to the provided 2D DistGrid. The 3rd
Array dimension does not have an associated DistGrid dimension, rendering it an undistributed Array dimension.

Native language access to an Array with undistributed dimensions is in principle the same as without extra dimensions.

call ESMF_ArrayGet(array, localDeCount=localDeCount, rc=rc)

allocate(larrayList(0:localDeCount-1))

call ESMF_ArrayGet(array, localarrayList=larrayList, rc=rc)

The following loop shows how a Fortran pointer to the DE-local data chunks can be obtained and used to set data
values in the exclusive regions. The myFarray3D variable must be of rank 3 to match the Array rank of array.
However, variables such as exclusiveUBound that store the information about the decomposition, remain to be
allocated for the 2D index space.

call ESMF_ArrayGet(array, exclusiveLBound=exclusiveLBound, &

exclusiveUBound=exclusiveUBound, rc=rc)

do localDe=0, localDeCount-1

call ESMF_LocalArrayGet(larrayList(localDe), myFarray3D, &

datacopyflag=ESMF_DATACOPY_REFERENCE, rc=rc)

myFarray3D = 0.0 ! initialize

myFarray3D(exclusiveLBound(1,localDe):exclusiveUBound(1,localDe), &

536

exclusiveLBound(2,localDe):exclusiveUBound(2,localDe), &

1) = 5.1 ! dummy assignment

myFarray3D(exclusiveLBound(1,localDe):exclusiveUBound(1,localDe), &

exclusiveLBound(2,localDe):exclusiveUBound(2,localDe), &

2) = 2.5 ! dummy assignment

enddo

deallocate(larrayList)

For some applications the default association rules between DistGrid and Array dimensions may not satisfy the user’s
needs. The optional distgridToArrayMap argument can be used during Array creation to explicitly specify the
mapping between DistGrid and Array dimensions. To demonstrate this the following lines of code reproduce the above
example but with rearranged dimensions. Here the distgridToArrayMap argument is a list with two elements
corresponding to the DistGrid dimCount of 2. The first element indicates which Array dimension the first DistGrid
dimension is mapped against. Here the 1st DistGrid dimension maps against the 3rd Array dimension and the 2nd
DistGrid dimension maps against the 1st Array dimension. This leaves the 2nd Array dimension to be the extra and
undistributed dimension in the resulting Array object.

call ESMF_ArrayDestroy(array, rc=rc)

array = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid=distgrid, &

distgridToArrayMap=(/3, 1/), totalLWidth=(/0,1/), totalUWidth=(/0,1/), &

undistLBound=(/1/), undistUBound=(/2/), rc=rc)

Operations on the Array object as a whole are unchanged by the different mapping of dimensions.

When working with Arrays that contain explicitly mapped Array and DistGrid dimensions it is critical to know the
order in which the entries of width and bound arguments that are associated with distributed Array dimensions are
specified. The size of these arguments is equal to the DistGrid dimCount, because the maximum number of dis-
tributed Array dimensions is given by the dimensionality of the index space.

The order of dimensions in these arguments, however, is not that of the associated DistGrid. Instead each entry
corresponds to the distributed Array dimensions in sequence. In the example above the entries in totalLWidth and
totalUWidth correspond to Array dimensions 1 and 3 in this sequence.

The distgridToArrrayMap argument optionally provided during Array create indicates how the DistGrid di-
mensions map to Array dimensions. The inverse mapping, i.e. Array to DistGrid dimensions, is just as important.
The ESMF_ArrayGet() call offers both mappings as distgridToArrrayMap and arrayToDistGridMap,
respectively. The number of elements in arrayToDistGridMap is equal to the rank of the Array. Each element
corresponds to an Array dimension and indicates the associated DistGrid dimension by an integer number. An entry
of "0" in arrayToDistGridMap indicates that the corresponding Array dimension is undistributed.

Correct understanding about the association between Array and DistGrid dimensions becomes critical for correct data
access into the Array.

allocate(arrayToDistGridMap(3)) ! arrayRank = 3

call ESMF_ArrayGet(array, arrayToDistGridMap=arrayToDistGridMap, &

exclusiveLBound=exclusiveLBound, exclusiveUBound=exclusiveUBound, &

localDeCount=localDeCount, rc=rc)

if (arrayToDistGridMap(2) /= 0) then ! check if extra dimension at

! expected index indicate problem and bail out

endif

! obtain larrayList for local DEs

allocate(larrayList(0:localDeCount-1))

call ESMF_ArrayGet(array, localarrayList=larrayList, rc=rc)

do localDe=0, localDeCount-1

537

call ESMF_LocalArrayGet(larrayList(localDe), myFarray3D, &

datacopyflag=ESMF_DATACOPY_REFERENCE, rc=rc)

myFarray3D(exclusiveLBound(1,localDe):exclusiveUBound(1,localDe), &

1, exclusiveLBound(2,localDe):exclusiveUBound(2, &

localDe)) = 10.5 !dummy assignment

myFarray3D(exclusiveLBound(1,localDe):exclusiveUBound(1,localDe), &

2, exclusiveLBound(2,localDe):exclusiveUBound(2, &

localDe)) = 23.3 !dummy assignment

enddo

deallocate(exclusiveLBound, exclusiveUBound)

deallocate(arrayToDistGridMap)

deallocate(larrayList)

call ESMF_ArrayDestroy(array, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

28.2.12 Arrays with replicated dimensions

Thus far most examples demonstrated cases where the DistGrid dimCount was equal to the Array rank. The
previous section introduced the concept of Array tensor dimensions when dimCount < rank. In this section
dimCount and rank are assumed completely unconstrained and the relationship to distgridToArrayMap and
arrayToDistGridMap will be discussed.

The Array class allows completely arbitrary mapping between Array and DistGrid dimensions. Most cases considered
in the previous sections used the default mapping which assigns the DistGrid dimensions in sequence to the lower
Array dimensions. Extra Array dimensions, if present, are considered non-distributed tensor dimensions for which the
optional undistLBound and undistUBound arguments must be specified.

The optional distgridToArrayMap argument provides the option to override the default DistGrid to Array dimen-
sion mapping. The entries of the distgridToArrayMap array correspond to the DistGrid dimensions in sequence
and assign a unique Array dimension to each DistGrid dimension. DistGrid and Array dimensions are indexed starting
at 1 for the lowest dimension. A value of "0" in the distgridToArrayMap array indicates that the respective
DistGrid dimension is not mapped against any Array dimension. What this means is that the Array will be replicated
along this DistGrid dimension.

As a first example consider the case where a 1D Array

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEKIND_R8, rank=1, rc=rc)

is created on the 2D DistGrid used during the previous section.

array = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid=distgrid, rc=rc)

Here the default DistGrid to Array dimension mapping is used which assigns the Array dimensions in sequence to
the DistGrid dimensions starting with dimension "1". Extra DistGrid dimensions are considered replicator dimensions
because the Array will be replicated along those dimensions. In the above example the 2nd DistGrid dimension will
cause 1D Array pieces to be replicated along the DEs of the 2nd DistGrid dimension. Replication in the context of
ESMF_ArrayCreate() does not mean that data values are communicated and replicated between different DEs,
but it means that different DEs provide memory allocations for identical exclusive elements.

Access to the data storage of an Array that has been replicated along DistGrid dimensions is the same as for Arrays
without replication.

538

call ESMF_ArrayGet(array, localDeCount=localDeCount, rc=rc)

allocate(larrayList(0:localDeCount-1))

allocate(localDeToDeMap(0:localDeCount-1))

call ESMF_ArrayGet(array, localarrayList=larrayList, &

localDeToDeMap=localDeToDeMap, rc=rc)

The array object was created without additional padding which means that the bounds of the Fortran array pointer
correspond to the bounds of the exclusive region. The following loop will cycle through all local DEs, print the DE
number as well as the Fortran array pointer bounds. The bounds should be:

lbound ubound

DE 0: 1 3 --+

DE 2: 1 3 --| 1st replication set

DE 4: 1 3 --+

DE 1: 1 2 --+

DE 3: 1 2 --| 2nd replication set

DE 5: 1 2 --+

do localDe=0, localDeCount-1

call ESMF_LocalArrayGet(larrayList(localDe), myFarray1D, &

datacopyflag=ESMF_DATACOPY_REFERENCE, rc=rc)

print *, "localPet: ", localPet, "DE ",localDeToDeMap(localDe)," [", &

lbound(myFarray1D), ubound(myFarray1D),"]"

enddo

deallocate(larrayList)

deallocate(localDeToDeMap)

call ESMF_ArrayDestroy(array, rc=rc)

The Fortran array pointer in the above loop was of rank 1 because the Array object was of rank 1. However, the
distgrid object associated with array is 2-dimensional! Consequently DistGrid based information queried from
array will be 2D. The distgridToArrayMap and arrayToDistGridMap arrays provide the necessary map-
ping to correctly associate DistGrid based information with Array dimensions.

The next example creates a 2D Array

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEKIND_R8, rank=2, rc=rc)

on the previously used 2D DistGrid. By default, i.e. without the distgridToArrayMap argument, both DistGrid
dimensions would be associated with the two Array dimensions. However, the distgridToArrayMap specified in
the following call will only associate the second DistGrid dimension with the first Array dimension. This will render
the first DistGrid dimension a replicator dimension and the second Array dimension a tensor dimension for which 1D
undistLBound and undistUBound arguments must be supplied.

539

array = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid=distgrid, &

distgridToArrayMap=(/0,1/), undistLBound=(/11/), &

undistUBound=(/14/), rc=rc)

call ESMF_ArrayDestroy(array, rc=rc)

Finally, the same arrayspec and distgrid arguments are used to create a 2D Array that is fully replicated in
both dimensions of the DistGrid. Both Array dimensions are now tensor dimensions and both DistGrid dimensions
are replicator dimensions.

array = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid=distgrid, &

distgridToArrayMap=(/0,0/), undistLBound=(/11,21/), &

undistUBound=(/14,22/), rc=rc)

The result will be an Array with local lower bound (/11,21/) and upper bound (/14,22/) on all 6 DEs of the DistGrid.

call ESMF_ArrayDestroy(array, rc=rc)

call ESMF_DistGridDestroy(distgrid, rc=rc)

Replicated Arrays can also be created from existing local Fortran arrays. The following Fortran array allocation will
provide a 3 x 10 array on each PET.

allocate(myFarray2D(3,10))

Assuming a petCount of 4 the following DistGrid defines a 2D index space that is distributed across the PETs along
the first dimension.

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIndex=(/40,10/), rc=rc)

The following call creates an Array object on the above distgrid using the locally existing myFarray2D Fortran
arrays. The difference compared to the case with automatic memory allocation is that instead of arrayspec the
Fortran array is provided as argument. Furthermore, the undistLBound and undistUBound arguments can be
omitted, defaulting into Array tensor dimension lower bound of 1 and an upper bound equal to the size of the respective
Fortran array dimension.

array = ESMF_ArrayCreate(farray=myFarray2D, distgrid=distgrid, &

indexflag=ESMF_INDEX_DELOCAL, distgridToArrayMap=(/0,2/), rc=rc)

The array object associates the 2nd DistGrid dimension with the 2nd Array dimension. The first DistGrid dimension
is not associated with any Array dimension and will lead to replication of the Array along the DEs of this direction.

540

call ESMF_ArrayDestroy(array, rc=rc)

call ESMF_DistGridDestroy(distgrid, rc=rc)

28.2.13 Shared memory features: DE pinning, sharing, and migration

Practically all modern computer systems today utilize multi-core processors, supporting the concurrent execution of
multiple hardware threads. A number of these multi-core processors are commonly packaged into the same compute
node, having access to the same physical memory. Under ESMF each hardware thread (or core) is identified as a
unique Processing Element (PE). The collection of PEs that share the same physical memory (i.e. compute node) is
referred to as a Single System Image (SSI). The ESMF Array class implements features that allow the user to leverage
the shared memory within each SSI to efficiently exchange data without copies or explicit communication calls.

The software threads executing an ESMF application on the hardware, and that ESMF is aware of, are referred to
as Persistent Execution Threads (PETs). In practice a PET can typically be thought of as an MPI rank, i.e. an OS
process, defining its own private virtual address space (VAS). The ESMF Virtual Machine (VM) class keeps track of
the mapping between PETs and PEs, and their location on the available SSIs.

When an ESMF Array object is created, the specified DistGrid indicates how many Decomposition Elements (DEs)
are created. Each DE has its own memory allocation to hold user data. The DELayout, referenced by the DistGrid,
determines which PET is considered the owner of each of the DEs. Queried for the local DEs, the Array object returns
the list of DEs that are owned by the local PET making the query.

By default DEs are pinned to the PETs under which they were created. The memory allocation associated with a
specific DE is only defined in the VAS of the PET to which the DE is pinned. As a consequence, only the PET owning
a DE has access to its memory allocation.

On shared memory systems, however, ESMF allows DEs to be pinned to SSIs instead of PETs. In this case the PET
under which a DE was created is still consider the owner, but now all PETs under the same SSI have access to the DE.
For this the memory allocation associated with the DE is mapped into the VAS of all the PETs under the SSI.

To create an Array with each DE pinned to SSI instead of PET, first query the VM for the available level of support.

call ESMF_VMGet(vm, ssiSharedMemoryEnabledFlag=ssiSharedMemoryEnabled, rc=rc)

if (ssiSharedMemoryEnabled) then

Knowing that the SSI shared memory feature is available, it is now possible to create an Array object with DE to SSI
pinning.

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIndex=(/40,10/), rc=rc)

array = ESMF_ArrayCreate(typekind=ESMF_TYPEKIND_R8, distgrid=distgrid, &

pinflag=ESMF_PIN_DE_TO_SSI, rc=rc)

Just as in the cases discussed before, where the same DistGrid was used, a default DELayout with as many DEs as
PETs in the VM is constructed. Setting the pinflag to ESMF_PIN_DE_TO_SSI does not change the fact that each

541

PET owns exactly one of the DEs. However, assuming that this code is run on a set of PETs that are all located under
the same SSI, every PET now has access to all of the DEs. The situation can be observed by querying for both the
localDeCount, and the ssiLocalDeCount.

call ESMF_ArrayGet(array, localDeCount=localDeCount, &

ssiLocalDeCount=ssiLocalDeCount, rc=rc)

Assuming execution on 4 PETs, all located on the same SSI, the values of the returned variable are
localDeCount==1 and ssiLocalDeCount==4 on all of the PETs. The mapping between each PET’s lo-
cal DE, and the global DE index is provided through the localDeToDeMap array argument. The amount of
mapping information returned is dependent on how large localDeToDeMap has been sized by the user. For
size(localDeToDeMap)==localDeCount, only mapping information for those DEs owned by the local PET
is filled in. However for size(localDeToDeMap)==ssiLocalDeCount, mapping information for all locally
accessible DEs is returned, including those owned by other PETs on the same SSI.

allocate(localDeToDeMap(0:ssiLocalDeCount-1))

call ESMF_ArrayGet(array, localDeToDeMap=localDeToDeMap, rc=rc)

The first localDeCount entries of localDeToDeMap are always the global DE indices of the DEs owned by the
local PET. The remaining ssiLocalDeCount-localDeCount entries are the global DE indices of DEs shared
by other PETs. The ordering of the shared DEs is from smallest to greatest, excluding the locally owned DEs, which
were already listed at the beginning of localDeToDeMap. For the current case, again assuming execution on 4
PETs all located on the same SSI, we expect the following situation:

PET 0: localDeToDeMap==(/0,1,2,3/)
PET 1: localDeToDeMap==(/1,0,2,3/)
PET 2: localDeToDeMap==(/2,0,1,3/)
PET 3: localDeToDeMap==(/3,0,1,2/)

Each PET can access the memory allocations associated with all of the DEs listed in the localDeToDeMap returned
by the Array object. Direct access to the Fortran array pointer of a specific memory allocation is available through
ESMF_ArrayGet(). Here each PET queries for the farrayPtr of localDe==2, i.e. the 2nd shared DE.

call ESMF_ArrayGet(array, farrayPtr=myFarray, localDe=2, rc=rc)

Now variable myFarray on PETs 0 and 1 both point to the same memory allocation for global DE 2. Both PETs
have access to the same piece of shared memory! The same is true for PETs 2 and 3, pointing to the shared memory
allocation of global DE 1.

It is important to note that all of the typical considerations surrounding shared memory programming apply when
accessing shared DEs! Proper synchronization between PETs accessing shared DEs is critical to avoid race conditions.
Also performance issues like false sharing need to be considered for optimal use.

For a simple demonstration, PETs 0 and 2 fill the entire memory allocation of DE 2 and 1, respectively, to a unique
value.

if (localPet==0) then

myFarray = 12345.6789d0

else if (localPet==2) then

myFarray = 6789.12345d0

endif

542

Here synchronization is needed before any PETs that share access to the same DEs can safely access the data without
race condition. The Array class provides a simple synchronization method that can be used.

call ESMF_ArraySync(array, rc=rc) ! prevent race condition

Now it is safe for PETs 1 and 3 to access the shared DEs. We expect to find the data that was set above. For simplicity
of the code only the first array element is inspected here.

if (localPet==1) then

if (abs(myFarray(1,1)-12345.6789d0)>1.d10) print *, "bad data detected"

else if (localPet==3) then

if (abs(myFarray(1,1)-6789.12345d0)>1.d10) print *, "bad data detected"

endif

Working with shared DEs requires additional bookkeeping on the user code level. In some situations, however, DE
sharing is simply used as a mechanism to move DEs between PETs without requiring data copies. One practical
application of this case is the transfer of an Array between two components, both of which use the same PEs, but run
with different number of PETs. These would typically be sequential components that use OpenMP on the user level
with varying threading levels.

DEs that are pinned to SSI can be moved or migrated to any PET within the SSI. This is accomplished by creating a new
Array object from an existing Array that was created with pinflag=ESMF_PIN_DE_TO_SSI. The information of
how the DEs are to migrate between the old and the new Array is provided through a DELayout object. This object
must have the same number of DEs and describes how they map to the PETs on the current VM. If this is in the context
of a different component, the number of PETs might differ from the original VM under which the existing Array was
created. This situation is explicitly supported, still the number of DEs must match.

Here a simple DELayout is created on the same 4 PETs, but with rotated DE ownerships:

DE 0 -> PET 1 (old PET 0)
DE 1 -> PET 2 (old PET 1)
DE 2 -> PET 3 (old PET 2)
DE 3 -> PET 0 (old PET 3)

delayout = ESMF_DELayoutCreate(petMap=(/1,2,3,0/), rc=rc) ! DE->PET mapping

The creation of the new Array is done by reference, i.e. datacopyflag=ESMF_DATACOPY_REFERENCE, since
the new Array does not create its own memory allocations. Instead the new Array references the shared memory
resources held by the incoming Array object.

arrayMigrated = ESMF_ArrayCreate(array, delayout=delayout, &

datacopyflag=ESMF_DATACOPY_REFERENCE, rc=rc)

Querying arrayMigrated for the number of local DEs will return 1 on each PET. Sizing the localDeToDeMap
accordingly and querying for it.

deallocate(localDeToDeMap) ! free previous allocation

allocate(localDeToDeMap(0:1))

call ESMF_ArrayGet(arrayMigrated, localDeToDeMap=localDeToDeMap, rc=rc)

543

This yields the following expected outcome:

PET 0: localDeToDeMap==(/1/)
PET 1: localDeToDeMap==(/2/)
PET 2: localDeToDeMap==(/3/)
PET 3: localDeToDeMap==(/0/)

On each PET the respective Fortran array pointer is returned by the Array.

call ESMF_ArrayGet(arrayMigrated, farrayPtr=myFarray, rc=rc)

The same situation could have been achieved with the original array. However, it would have required first finding
the correct local DE for the target global DE on each PET, and then querying array accordingly. If needed more
repeatedly, this bookkeeping would need to be kept in a user code data structure. The DE migration feature on the
other hand provides a formal way to create a standard ESMF Array object that can be used directly in any Array level
method as usual, letting ESMF handle the extra bookkeeping needed.

Before destroying an Array whose DEs are shared between PETs, it is advisable to issue one more synchronization.
This prevents cases where a PET still might be accessing a shared DE, while the owner PET is already destroying the
Array, therefore deallocating the shared memory resource.

call ESMF_ArraySync(array, rc=rc) ! prevent race condition

call ESMF_ArrayDestroy(array, rc=rc)

Remember that arrayMigrated shares the same memory allocations that were held by array. Array
arrayMigrated must therefore not be used beyond the life time of array. Best to destroy it now.

call ESMF_ArrayDestroy(arrayMigrated, rc=rc)

endif ! ending the ssiSharedMemoryEnabled conditional

28.2.14 Communication – Scatter and Gather

It is a common situation, particularly in legacy code, that an ESMF Array object must be filled with data originating
from a large Fortran array stored on a single PET.

if (localPet == 0) then

allocate(farray(10,20,30))

do k=1, 30

do j=1, 20

do i=1, 10

farray(i, j, k) = k*1000 + j*100 + i

enddo

enddo

544

enddo

else

allocate(farray(0,0,0))

endif

distgrid = ESMF_DistGridCreate(minIndex=(/1,1,1/), maxIndex=(/10,20,30/), &

rc=rc)

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEKIND_I4, rank=3, rc=rc)

array = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid=distgrid, rc=rc)

The ESMF_ArrayScatter() method provides a convenient way of scattering array data from a single root PET
across the DEs of an ESMF Array object.

call ESMF_ArrayScatter(array, farray=farray, rootPet=0, rc=rc)

deallocate(farray)

The destination of the ArrayScatter() operation are all the DEs of a single tile. For multi-tile Arrays the destination
tile can be specified. The shape of the scattered Fortran array must match the shape of the destination tile in the ESMF
Array.

Gathering data decomposed and distributed across the DEs of an ESMF Array object into a single Fortran array on
root PET is accomplished by calling ESMF_ArrayGather().

if (localPet == 3) then

allocate(farray(10,20,30))

else

allocate(farray(0,0,0))

endif

call ESMF_ArrayGather(array, farray=farray, rootPet=3, rc=rc)

deallocate(farray)

The source of the ArrayGather() operation are all the DEs of a single tile. For multi-tile Arrays the source tile can be
specified. The shape of the gathered Fortran array must match the shape of the source tile in the ESMF Array.

The ESMF_ArrayScatter() operation allows to fill entire replicated Array objects with data coming from a single
root PET.

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIndex=(/5,5/), &

regDecomp=(/2,3/), rc=rc)

545

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEKIND_R8, rank=2, rc=rc)

array = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid=distgrid, &

distgridToArrayMap=(/0,0/), undistLBound=(/11,21/), &

undistUBound=(/14,22/), rc=rc)

The shape of the Fortran source array used in the Scatter() call must be that of the contracted Array, i.e. contracted
DistGrid dimensions do not count. For the array just created this means that the source array on rootPet must be
of shape 4 x 2.

if (localPet == 0) then

allocate(myFarray2D(4,2))

do j=1,2

do i=1,4

myFarray2D(i,j) = i * 100.d0 + j * 1.2345d0 ! initialize

enddo

enddo

else

allocate(myFarray2D(0,0))

endif

call ESMF_ArrayScatter(array, farray=myFarray2D, rootPet=0, rc=rc)

deallocate(myFarray2D)

This will have filled each local 4 x 2 Array piece with the replicated data of myFarray2D.

call ESMF_ArrayDestroy(array, rc=rc)

call ESMF_DistGridDestroy(distgrid, rc=rc)

As a second example for the use of Scatter() and Gather() consider the following replicated Array created from existing
local Fortran arrays.

allocate(myFarray2D(3,10))

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIndex=(/40,10/), rc=rc)

array = ESMF_ArrayCreate(farray=myFarray2D, distgrid=distgrid, &

indexflag=ESMF_INDEX_DELOCAL, distgridToArrayMap=(/0,2/), rc=rc)

The array object associates the 2nd DistGrid dimension with the 2nd Array dimension. The first DistGrid dimension
is not associated with any Array dimension and will lead to replication of the Array along the DEs of this direction.
Still, the local arrays that comprise the array object refer to independent pieces of memory and can be initialized
independently.

546

myFarray2D = localPet ! initialize

However, the notion of replication becomes visible when an array of shape 3 x 10 on root PET 0 is scattered across
the Array object.

if (localPet == 0) then

allocate(myFarray2D2(5:7,11:20))

do j=11,20

do i=5,7

myFarray2D2(i,j) = i * 100.d0 + j * 1.2345d0 ! initialize

enddo

enddo

else

allocate(myFarray2D2(0,0))

endif

call ESMF_ArrayScatter(array, farray=myFarray2D2, rootPet=0, rc=rc)

deallocate(myFarray2D2)

The Array pieces on every DE will receive the same source data, resulting in a replication of data along DistGrid
dimension 1.

When the inverse operation, i.e. ESMF_ArrayGather(), is applied to a replicated Array an intrinsic ambiguity
needs to be considered. ESMF defines the gathering of data of a replicated Array as the collection of data originating
from the numerically higher DEs. This means that data in replicated elements associated with numerically lower
DEs will be ignored during ESMF_ArrayGather(). For the current example this means that changing the Array
contents on PET 1, which here corresponds to DE 1,

if (localPet == 1) then

myFarray2D = real(1.2345, ESMF_KIND_R8)

endif

will not affect the result of

allocate(myFarray2D2(3,10))

myFarray2D2 = 0.d0 ! initialize to a known value

call ESMF_ArrayGather(array, farray=myFarray2D2, rootPet=0, rc=rc)

The result remains completely defined by the unmodified values of Array in DE 3, the numerically highest DE.
However, overriding the DE-local Array piece on DE 3

if (localPet==3) then

myFarray2D = real(5.4321, ESMF_KIND_R8)

endif

547

will change the outcome of

call ESMF_ArrayGather(array, farray=myFarray2D2, rootPet=0, rc=rc)

as expected.

deallocate(myFarray2D2)

call ESMF_ArrayDestroy(array, rc=rc)

call ESMF_DistGridDestroy(distgrid, rc=rc)

28.2.15 Communication – Halo

One of the most fundamental communication pattern in domain decomposition codes is the halo operation. The ESMF
Array class supports halos by allowing memory for extra elements to be allocated on each DE. See sections 28.2.2 and
28.2.8 for examples and details on how to create an Array with extra DE-local elements.

Here we consider an Array object that is created on a DistGrid that defines a 10 x 20 index space, decomposed into 4
DEs using a regular 2 x 2 decomposition.

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIndex=(/10,20/), &

regDecomp=(/2,2/), rc=rc)

The Array holds 2D double precision float data.

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEKIND_R8, rank=2, rc=rc)

The totalLWidth and totalUWidth arguments are used during Array creation to allocate 2 extra elements
along every direction outside the exclusive region defined by the DistGrid for every DE. (The indexflag set to
ESMF_INDEX_GLOBAL in this example does not affect the halo behavior of Array. The setting is simply more
convenient for the following code.)

array = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid=distgrid, &

totalLWidth=(/2,2/), totalUWidth=(/2,2/), indexflag=ESMF_INDEX_GLOBAL, &

rc=rc)

Without the explicit definition of boundary conditions in the DistGrid the following inner connections are defined.

+-------------------+ +-------------------+

| \ 2 / | | \ 2 / |

| +-------------+ | | +-------------+ |

548

| | DE 0 | | | | DE 2 | |

| | | | | | | |

|2 | 5 x 10 | 2| <-> |2 | 5 x 10 | 2|

| | | | | | | |

| | | | | | | |

| +-------------+ | | +-------------+ |

| / 2 \ | | / 2 \ |

+-------------------+ +-------------------+

^ \/ ^

| /\ |

v v

+-------------------+ +-------------------+

| \ 2 / | | \ 2 / |

| +-------------+ | | +-------------+ |

| | DE 1 | | | | DE 3 | |

| | | | | | | |

|2 | 5 x 10 | 2| <-> |2 | 5 x 10 | 2|

| | | | | | | |

| | | | | | | |

| +-------------+ | | +-------------+ |

| / 2 \ | | / 2 \ |

+-------------------+ +-------------------+

The exclusive region on each DE is of shape 5 x 10, while the total region on each DE is of shape (5+2+2) x (10+2+2)
= 9 x 14. In a typical application the elements in the exclusive region are updated exclusively by the PET that owns the
DE. In this example the exclusive elements on every DE are initialized to the value f(i, j) of the geometric function

f(i, j) = sin(αi) cos(βj), (1)

where
α = 2π/Ni, i = 1, ...Ni (2)

and
β = 2π/Nj , j = 1, ...Nj , (3)

with Ni = 10 and Nj = 20.

a = 2. * 3.14159 / 10.

b = 2. * 3.14159 / 20.

call ESMF_ArrayGet(array, farrayPtr=farrayPtr, rc=rc)

call ESMF_ArrayGet(array, exclusiveLBound=eLB, exclusiveUBound=eUB, rc=rc)

do j=eLB(2,1), eUB(2,1)

do i=eLB(1,1), eUB(1,1)

549

farrayPtr(i,j) = sin(a*i) * cos(b*j) ! test function

enddo

enddo

The above loop only initializes the exclusive elements on each DE. The extra elements, outside the exclusive region,
are left untouched, holding undefined values. Elements outside the exclusive region that correspond to exclusive
elements in neighboring DEs can be filled with the data values in those neighboring elements. This is the definition of
the halo operation.

In ESMF the halo communication pattern is first precomputed and stored in a RouteHandle object. This RouteHandle
can then be used repeatedly to perform the same halo operation in the most efficient way.

The default halo operation for an Array is precomputed by the following call.

call ESMF_ArrayHaloStore(array=array, routehandle=haloHandle, rc=rc)

The haloHandle now holds the default halo operation for array, which matches as many elements as possible
outside the exclusive region to their corresponding halo source elements in neighboring DEs. Elements that could not
be matched, e.g. at the edge of the global domain with open boundary conditions, will not be updated by the halo
operation.

The haloHandle is applied through the ESMF_ArrayHalo() method.

call ESMF_ArrayHalo(array=array, routehandle=haloHandle, rc=rc)

Finally the resources held by haloHandle need to be released.

call ESMF_ArrayHaloRelease(routehandle=haloHandle, rc=rc)

The array object created above defines a 2 element wide rim around the exclusive region on each DE. Consequently
the default halo operation used above will have resulted in updating both elements along the inside edges. For simple
numerical kernels often a single halo element is sufficient. One way to achieve this would be to reduce the size of
the rim surrounding the exclusive region to 1 element along each direction. However, if the same Array object is also
used for higher order kernels during a different phase of the calculation, a larger element rim is required. For this
case ESMF_ArrayHaloStore() offers two optional arguments haloLDepth and haloUDepth. Using these
arguments a reduced halo depth can be specified.

call ESMF_ArrayHaloStore(array=array, routehandle=haloHandle, &

haloLDepth=(/1,1/), haloUDepth=(/1,1/), rc=rc)

This halo operation with a depth of 1 is sufficient to support a simple quadratic differentiation kernel.

allocate(farrayTemp(eLB(1,1):eUB(1,1), eLB(2,1):eUB(2,1)))

do step=1, 4

call ESMF_ArrayHalo(array=array, routehandle=haloHandle, rc=rc)

550

do j=eLB(2,1), eUB(2,1)

do i=eLB(1,1), eUB(1,1)

if (i==1) then

! global edge

farrayTemp(i,j) = 0.5 * (-farrayPtr(i+2,j) + 4.*farrayPtr(i+1,j) &

- 3.*farrayPtr(i,j)) / a

else if (i==10) then

! global edge

farrayTemp(i,j) = 0.5 * (farrayPtr(i-2,j) - 4.*farrayPtr(i-1,j) &

+ 3.*farrayPtr(i,j)) / a

else

farrayTemp(i,j) = 0.5 * (farrayPtr(i+1,j) - farrayPtr(i-1,j)) / a

endif

enddo

enddo

farrayPtr(eLB(1,1):eUB(1,1), eLB(2,1):eUB(2,1)) = farrayTemp

enddo

deallocate(farrayTemp)

call ESMF_ArrayHaloRelease(routehandle=haloHandle, rc=rc)

The special treatment of the global edges in the above kernel is due to the fact that the underlying DistGrid object
does not define any special boundary conditions. By default open global boundaries are assumed which means that
the rim elements on the global edges are untouched during the halo operation, and cannot be used in the symmetric
numerical derivative formula. The kernel can be simplified (and the calculation is more precise) with periodic boundary
conditions along the first Array dimension.

First destroy the current Array and DistGrid objects.

call ESMF_ArrayDestroy(array, rc=rc)

call ESMF_DistGridDestroy(distgrid, rc=rc)

Create a DistGrid with periodic boundary condition along the first dimension.

allocate(connectionList(1)) ! one connection

call ESMF_DistGridConnectionSet(connection=connectionList(1), &

tileIndexA=1, tileIndexB=1, positionVector=(/10, 0/), rc=rc)

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIndex=(/10,20/), &

regDecomp=(/2,2/), connectionList=connectionList, rc=rc)

deallocate(connectionList)

array = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid=distgrid, &

totalLWidth=(/2,2/), totalUWidth=(/2,2/), indexflag=ESMF_INDEX_GLOBAL, &

rc=rc)

551

Initialize the exclusive elements to the same geometric function as before.

call ESMF_ArrayGet(array, farrayPtr=farrayPtr, rc=rc)

call ESMF_ArrayGet(array, exclusiveLBound=eLB, exclusiveUBound=eUB, rc=rc)

do j=eLB(2,1), eUB(2,1)

do i=eLB(1,1), eUB(1,1)

farrayPtr(i,j) = sin(a*i) * cos(b*j) ! test function

enddo

enddo

The numerical kernel only operates along the first dimension. An asymmetric halo depth can be used to take this fact
into account.

call ESMF_ArrayHaloStore(array=array, routehandle=haloHandle, &

haloLDepth=(/1,0/), haloUDepth=(/1,0/), rc=rc)

Now the same numerical kernel can be used without special treatment of global edge elements. The symmetric
derivative formula can be used for all exclusive elements.

allocate(farrayTemp(eLB(1,1):eUB(1,1), eLB(2,1):eUB(2,1)))

do step=1, 4

call ESMF_ArrayHalo(array=array, routehandle=haloHandle, rc=rc)

do j=eLB(2,1), eUB(2,1)

do i=eLB(1,1), eUB(1,1)

farrayTemp(i,j) = 0.5 * (farrayPtr(i+1,j) - farrayPtr(i-1,j)) / a

enddo

enddo

farrayPtr(eLB(1,1):eUB(1,1), eLB(2,1):eUB(2,1)) = farrayTemp

enddo

The precision of the above kernel can be improved by going to a higher order interpolation. Doing so requires that the
halo depth must be increased. The following code resets the exclusive Array elements to the test function, precomputes
a RouteHandle for a halo operation with depth 2 along the first dimension, and finally uses the deeper halo in the higher
order kernel.

do j=eLB(2,1), eUB(2,1)

do i=eLB(1,1), eUB(1,1)

552

farrayPtr(i,j) = sin(a*i) * cos(b*j) ! test function

enddo

enddo

call ESMF_ArrayHaloStore(array=array, routehandle=haloHandle2, &

haloLDepth=(/2,0/), haloUDepth=(/2,0/), rc=rc)

do step=1, 4

call ESMF_ArrayHalo(array=array, routehandle=haloHandle2, rc=rc)

do j=eLB(2,1), eUB(2,1)

do i=eLB(1,1), eUB(1,1)

farrayTemp(i,j) = (-farrayPtr(i+2,j) + 8.*farrayPtr(i+1,j) &

- 8.*farrayPtr(i-1,j) + farrayPtr(i-2,j)) / (12.*a)

enddo

enddo

farrayPtr(eLB(1,1):eUB(1,1), eLB(2,1):eUB(2,1)) = farrayTemp

enddo

deallocate(farrayTemp)

ESMF supports having multiple halo operations defined on the same Array object at the same time. Each operation
can be accessed through its unique RouteHandle. The above kernel could have made ESMF_ArrayHalo() calls
with a depth of 1 along the first dimension using the previously precomputed haloHandle if it needed to. Both
RouteHandles need to release their resources when no longer used.

call ESMF_ArrayHaloRelease(routehandle=haloHandle, rc=rc)

call ESMF_ArrayHaloRelease(routehandle=haloHandle2, rc=rc)

Finally the Array and DistGrid objects can be destroyed.

call ESMF_ArrayDestroy(array, rc=rc)

call ESMF_DistGridDestroy(distgrid, rc=rc)

28.2.16 Communication – Halo for arbitrary distribution

In the previous section the Array halo operation was demonstrated for regularly decomposed ESMF Arrays. However,
the ESMF halo operation is not restricted to regular decompositions. The same Array halo methods apply unchanged

553

to Arrays that are created on arbitrarily distributed DistGrids. This includes the non-blocking features discussed in
section 28.2.20.

All of the examples in this section are based on the same arbitrarily distributed DistGrid. Section 35.3.5 discusses
DistGrids with user-supplied, arbitrary sequence indices in detail. Here a global index space range from 1 through 20
is decomposed across 4 DEs. There are 4 PETs in this example with 1 DE per PET. Each PET constructs its local
seqIndexList variable.

do i=1, 5

#ifdef TEST_I8RANGE_on

seqIndexList(i) = localPet + (i - 1) * petCount + 1 + seqIndexOffset

#else

seqIndexList(i) = localPet + (i - 1) * petCount + 1

#endif

enddo

This results in the following cyclic distribution scheme:

DE 0 on PET 0: seqIndexList = (/1, 5, 9, 13, 17/)

DE 1 on PET 1: seqIndexList = (/2, 6, 10, 14, 18/)

DE 2 on PET 2: seqIndexList = (/3, 7, 11, 15, 19/)

DE 3 on PET 3: seqIndexList = (/4, 8, 12, 16, 20/)

The local seqIndexList variables are then used to create a DistGrid with the indicated arbitrary distribution pattern.

distgrid = ESMF_DistGridCreate(arbSeqIndexList=seqIndexList, rc=rc)

The resulting DistGrid is one-dimensional, although the user code may interpret the sequence indices as a 1D map
into a problem of higher dimensionality.

In this example the local DE on each PET is associated with a 5 element exclusive region. Providing seqIndexList
of different size on the different PETs is supported and would result in different number of exclusive elements on each
PET.

Halo for a 1D Array from existing memory allocation, created on the 1D arbitrary DistGrid.

Creating an ESMF Array on top of a DistGrid with arbitrary sequence indices is in principle no different from creating
an Array on a regular DistGrid. However, while an Array that was created on a regular DistGrid automatically inherits
the index space topology information that is contained within the DistGrid object, there is no such topology information
available for DistGrid objects with arbitrary sequence indices. As a consequence of this, Arrays created on arbitrary
DistGrids do not automatically have the information that is required to associated halo elements with the exclusive
elements across DEs. Instead the user must supply this information explicitly during Array creation.

Multiple ArrayCreate() interfaces exist that allow the creation of an Array on a DistGrid with arbitrary sequence
indices. The sequence indices for the halo region of the local DE are supplied through an additional argument with
dummy name haloSeqIndexList. As in the regular case, the ArrayCreate() interfaces differ in the way that the
memory allocations for the Array elements are passed into the call. The following code shows how an ESMF Array
can be wrapped around existing PET-local memory allocations. The allocations are of different size on each PET as to
accommodate the correct number of local Array elements (exclusive region + halo region).

554

allocate(farrayPtr1d(5+localPet+1)) !use explicit Fortran allocate statement

if (localPet==0) then

allocate(haloList(1))

#ifdef TEST_I8RANGE_on

haloList(:)=(/1099511627782_ESMF_KIND_I8/)

#else

haloList(:)=(/6/)

#endif

array = ESMF_ArrayCreate(distgrid, farrayPtr1d, &

haloSeqIndexList=haloList, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

endif

if (localPet==1) then

allocate(haloList(2))

#ifdef TEST_I8RANGE_on

haloList(:)=(/1099511627777_ESMF_KIND_I8,&

1099511627795_ESMF_KIND_I8/)

#else

haloList(:)=(/1,19/)

#endif

array = ESMF_ArrayCreate(distgrid, farrayPtr1d, &

haloSeqIndexList=haloList, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

endif

if (localPet==2) then

allocate(haloList(3))

#ifdef TEST_I8RANGE_on

haloList(:)=(/1099511627792_ESMF_KIND_I8,&

1099511627782_ESMF_KIND_I8,&

1099511627785_ESMF_KIND_I8/)

#else

haloList(:)=(/16,6,9/)

#endif

array = ESMF_ArrayCreate(distgrid, farrayPtr1d, &

haloSeqIndexList=haloList, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

endif

if (localPet==3) then

allocate(haloList(4))

#ifdef TEST_I8RANGE_on

haloList(:)=(/1099511627777_ESMF_KIND_I8,&

1099511627779_ESMF_KIND_I8,&

1099511627777_ESMF_KIND_I8,&

1099511627780_ESMF_KIND_I8/)

#else

haloList(:)=(/1,3,1,4/)

#endif

array = ESMF_ArrayCreate(distgrid, farrayPtr1d, &

haloSeqIndexList=haloList, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

endif

The haloSeqIndexList arguments are 1D arrays of sequence indices. It is through this argument that the user

555

associates the halo elements with exclusive Array elements covered by the DistGrid. In this example there are different
number of halo elements on each DE. They are associated with exclusive elements as follows:

halo on DE 0 on PET 0: <seqIndex=6> 2nd exclusive element on DE 1

halo on DE 1 on PET 1: <seqIndex=1> 1st exclusive element on DE 0

<seqIndex=19> 5th exclusive element on DE 2

halo on DE 2 on PET 2: <seqIndex=16> 4th exclusive element on DE 3

<seqIndex=6> 2nd exclusive element on DE 1

<seqIndex=9> 3rd exclusive element on DE 0

halo on DE 3 on PET 3: <seqIndex=1> 1st exclusive element on DE 0

<seqIndex=3> 1st exclusive element on DE 2

<seqIndex=1> 1st exclusive element on DE 0

<seqIndex=4> 1st exclusive element on DE 3

The above haloSeqIndexList arguments were constructed very artificially in order to show the following general
features:

• There is no restriction on the order in which the indices in a haloSeqIndexList can appear.

• The same sequence index may appear in multiple haloSeqIndexList arguments.

• The same sequence index may appear multiple times in the same haloSeqIndexList argument.

• A local sequence index may appear in a haloSeqIndexList argument.

The ArrayCreate() call checks that the provided Fortran memory allocation is correctly sized to hold the exclusive
elements, as indicated by the DistGrid object, plus the halo elements as indicated by the local haloSeqIndexList
argument. The size of the Fortran allocation must match exactly or a runtime error will be returned.

Analogous to the case of Arrays on regular DistGrids, it is the exclusive region of the local DE that is typically
modified by the code running on each PET. All of the ArrayCreate() calls that accept the haloSeqIndexList
argument place the exclusive region at the beginning of the memory allocation on each DE and use the remaining
space for the halo elements. The following loop demonstrates this by filling the exclusive elements on each DE with
initial values. Remember that in this example each DE holds 5 exclusive elements associated with different arbitrary
sequence indices.

farrayPtr1d = 0 ! initialize

do i=1, 5

farrayPtr1d(i) = real(seqIndexList(i), ESMF_KIND_R8)

enddo

print *, "farrayPtr1d: ", farrayPtr1d

Now the exclusive elements of array are initialized on each DE, however, the halo elements remain unchanged. A
RouteHandle can be set up that encodes the required communication pattern for a halo exchange. The halo exchange is
precomputed according to the arbitrary sequence indices specified for the exclusive elements by the DistGrid and the
sequence indices provided by the user for each halo element on the local DE in form of the haloSeqIndexList
argument during ArrayCreate().

call ESMF_ArrayHaloStore(array, routehandle=haloHandle, rc=rc)

Executing this halo operation will update the local halo elements according to the associated sequence indices.

556

call ESMF_ArrayHalo(array, routehandle=haloHandle, rc=rc)

As always it is good practice to release the RouteHandle when done with it.

call ESMF_ArrayHaloRelease(haloHandle, rc=rc)

Also the Array object should be destroyed when no longer needed.

call ESMF_ArrayDestroy(array, rc=rc)

Further, since the memory allocation was done explicitly using the Fortran allocate() statement, it is necessary to
explicitly deallocate in order to prevent memory leaks in the user application.

deallocate(farrayPtr1d)

Halo for a 1D Array with ESMF managed memory allocation, created on the 1D arbitrary DistGrid.

Alternatively the exact same Array can be created where ESMF does the memory allocation and deallocation. In this
case the typekind of the Array must be specified explicitly.

if (localPet==0) then

array = ESMF_ArrayCreate(distgrid=distgrid, typekind=ESMF_TYPEKIND_R8, &

haloSeqIndexList=haloList, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

endif

if (localPet==1) then

array = ESMF_ArrayCreate(distgrid=distgrid, typekind=ESMF_TYPEKIND_R8, &

haloSeqIndexList=haloList, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

endif

if (localPet==2) then

array = ESMF_ArrayCreate(distgrid=distgrid, typekind=ESMF_TYPEKIND_R8, &

haloSeqIndexList=haloList, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

endif

if (localPet==3) then

array = ESMF_ArrayCreate(distgrid=distgrid, typekind=ESMF_TYPEKIND_R8, &

haloSeqIndexList=haloList, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

endif

Use ESMF_ArrayGet() to gain access to the local memory allocation.

call ESMF_ArrayGet(array, farrayPtr=farrayPtr1d, rc=rc)

557

The returned Fortran pointer can now be used to initialize the exclusive elements on each DE as in the previous case.

do i=1, 5

farrayPtr1d(i) = real(seqIndexList(i),ESMF_KIND_R8) / 10.d0

enddo

Identical halo operations are constructed and used.

call ESMF_ArrayHaloStore(array, routehandle=haloHandle, rc=rc)

call ESMF_ArrayHalo(array, routehandle=haloHandle, rc=rc)

call ESMF_ArrayHaloRelease(haloHandle, rc=rc)

call ESMF_ArrayDestroy(array, rc=rc)

Halo for an Array with undistributed dimensions, created on the 1D arbitrary DistGrid, with default Array to
DistGrid dimension mapping.

A current limitation of the Array implementation restricts DistGrids that contain user-specified, arbitrary sequence
indices to be exactly 1D when used to create Arrays. See section 28.3 for a list of current implementation restrictions.
However, an Array created on such a 1D arbitrary DistGrid is allowed to have undistributed dimensions. The follow-
ing example creates an Array on the same arbitrary DistGrid, with the same arbitrary sequence indices for the halo
elements as before, but with one undistributed dimension with a size of 3.

if (localPet==0) then

array = ESMF_ArrayCreate(distgrid=distgrid, typekind=ESMF_TYPEKIND_R8, &

haloSeqIndexList=haloList, undistLBound=(/1/), undistUBound=(/3/), rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

endif

if (localPet==1) then

array = ESMF_ArrayCreate(distgrid=distgrid, typekind=ESMF_TYPEKIND_R8, &

haloSeqIndexList=haloList, undistLBound=(/1/), undistUBound=(/3/), rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

endif

if (localPet==2) then

array = ESMF_ArrayCreate(distgrid=distgrid, typekind=ESMF_TYPEKIND_R8, &

haloSeqIndexList=haloList, undistLBound=(/1/), undistUBound=(/3/), rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

endif

if (localPet==3) then

array = ESMF_ArrayCreate(distgrid=distgrid, typekind=ESMF_TYPEKIND_R8, &

haloSeqIndexList=haloList, undistLBound=(/1/), undistUBound=(/3/), rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

endif

558

By default the DistGrid dimension is mapped to the first Array dimension, associating the remaining Array dimensions
with the undistributed dimensions in sequence. The dimension order is important when accessing the individual Array
elements. Here the same initialization as before is extended to cover the undistributed dimension.

call ESMF_ArrayGet(array, farrayPtr=farrayPtr2d, rc=rc)

do j=1, 3

do i=1, 5

farrayPtr2d(i,j) = real(seqIndexList(i),ESMF_KIND_R8) / 10.d0 + 100.d0*j

enddo

enddo

In the context of the Array halo operation additional undistributed dimensions are treated in a simple factorized manner.
The same halo association between elements that is encoded in the 1D arbitrary sequence index scheme is applied to
each undistributed element separately. This is completely transparent on the user level and the same halo methods are
used as before.

call ESMF_ArrayHaloStore(array, routehandle=haloHandle, rc=rc)

call ESMF_ArrayHalo(array, routehandle=haloHandle, rc=rc)

call ESMF_ArrayHaloRelease(haloHandle, rc=rc)

call ESMF_ArrayDestroy(array, rc=rc)

Halo for an Array with undistributed dimensions, created on the 1D arbitrary DistGrid, mapping the undis-
tributed dimension first.

In some situations it is more convenient to associate some or all of the undistributed dimensions with the first Array
dimensions. This can be done easily by explicitly mapping the DistGrid dimension to an Array dimension other
than the first one. The distgridToArrayMap argument is used to provide this information. The following code
creates essentially the same Array as before, but with swapped dimension order – now the first Array dimension is the
undistributed one.

if (localPet==0) then

array = ESMF_ArrayCreate(distgrid=distgrid, typekind=ESMF_TYPEKIND_R8, &

distgridToArrayMap=(/2/), haloSeqIndexList=haloList, &

undistLBound=(/1/), undistUBound=(/3/), rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

endif

if (localPet==1) then

array = ESMF_ArrayCreate(distgrid=distgrid, typekind=ESMF_TYPEKIND_R8, &

distgridToArrayMap=(/2/), haloSeqIndexList=haloList, &

undistLBound=(/1/), undistUBound=(/3/), rc=rc)

559

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

endif

if (localPet==2) then

array = ESMF_ArrayCreate(distgrid=distgrid, typekind=ESMF_TYPEKIND_R8, &

distgridToArrayMap=(/2/), haloSeqIndexList=haloList, &

undistLBound=(/1/), undistUBound=(/3/), rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

endif

if (localPet==3) then

#ifdef TEST_I8RANGE_on

haloList(:)=(/1099511627777_ESMF_KIND_I8,&

1099511627780_ESMF_KIND_I8,&

1099511627779_ESMF_KIND_I8,&

1099511627778_ESMF_KIND_I8/)

#else

haloList(:)=(/1,3,5,4/)

#endif

array = ESMF_ArrayCreate(distgrid=distgrid, typekind=ESMF_TYPEKIND_R8, &

distgridToArrayMap=(/2/), haloSeqIndexList=haloList, &

undistLBound=(/1/), undistUBound=(/3/), rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

endif

Notice that the haloList constructed on PET 3 is different from the previous examples. All other PETs reuse
the same haloList as before. In the previous examples the list loaded into PET 3’s haloSeqIndexList ar-
gument contained a duplicate sequence index. However, now that the undistributed dimension is placed first, the
ESMF_ArrayHaloStore() call will try to optimize the data exchange by vectorizing it. Duplicate sequence in-
dices are currently not supported during vectorization.

When accessing the Array elements, the swapped dimension order results in a swapping of i and j. This can be seen
in the following initialization loop.

call ESMF_ArrayGet(array, farrayPtr=farrayPtr2d, rc=rc)

do j=1, 3

do i=1, 5

farrayPtr2d(j,i) = real(seqIndexList(i),ESMF_KIND_R8) / 10.d0 + 100.d0*j

enddo

enddo

Once set up, there is no difference in how the the halo operations are applied.

call ESMF_ArrayHaloStore(array, routehandle=haloHandle, rc=rc)

call ESMF_ArrayHalo(array, routehandle=haloHandle, rc=rc)

call ESMF_ArrayDestroy(array, rc=rc)

560

Halo for an Array with undistributed dimensions, created on the 1D arbitrary DistGrid, re-using the Route-
Handle.

Arrays can reuse the same RouteHandle, saving the overhead that is caused by the precompute step. In order to
demonstrate this the RouteHandle of the previous halo call was not yet released and will be applied to a new Array.

The following code creates an Array that is compatible to the previous Array by using the same input information as
before, only that the size of the undistributed dimension is now 6 instead of 3.

if (localPet==0) then

array2 = ESMF_ArrayCreate(distgrid=distgrid, typekind=ESMF_TYPEKIND_R8, &

distgridToArrayMap=(/2/), haloSeqIndexList=haloList, &

undistLBound=(/1/), undistUBound=(/6/), rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

endif

if (localPet==1) then

array2 = ESMF_ArrayCreate(distgrid=distgrid, typekind=ESMF_TYPEKIND_R8, &

distgridToArrayMap=(/2/), haloSeqIndexList=haloList, &

undistLBound=(/1/), undistUBound=(/6/), rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

endif

if (localPet==2) then

array2 = ESMF_ArrayCreate(distgrid=distgrid, typekind=ESMF_TYPEKIND_R8, &

distgridToArrayMap=(/2/), haloSeqIndexList=haloList, &

undistLBound=(/1/), undistUBound=(/6/), rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

endif

if (localPet==3) then

array2 = ESMF_ArrayCreate(distgrid=distgrid, typekind=ESMF_TYPEKIND_R8, &

distgridToArrayMap=(/2/), haloSeqIndexList=haloList, &

undistLBound=(/1/), undistUBound=(/6/), rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

endif

Again the exclusive Array elements must be initialized.

call ESMF_ArrayGet(array2, farrayPtr=farrayPtr2d, rc=rc)

do j=1, 6

do i=1, 5

farrayPtr2d(j,i) = real(seqIndexList(i),ESMF_KIND_R8) / 10.d0 + 100.d0*j

enddo

enddo

Now the haloHandle that was previously pre-computed for array can be used directly for array2.

call ESMF_ArrayHalo(array2, routehandle=haloHandle, rc=rc)

Release the RouteHandle after its last use and clean up the remaining Array and DistGrid objects.

561

call ESMF_ArrayHaloRelease(haloHandle, rc=rc)

call ESMF_ArrayDestroy(array2, rc=rc)

call ESMF_DistGridDestroy(distgrid, rc=rc)

28.2.17 Communication – Redist

Arrays used in different models often cover the same index space region, however, the distribution of the Arrays may
be different, e.g. the models run on exclusive sets of PETs. Even if the Arrays are defined on the same list of PETs the
decomposition may be different.

srcDistgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIndex=(/10,20/), &

regDecomp=(/4,1/), rc=rc)

dstDistgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIndex=(/10,20/), &

regDecomp=(/1,4/), rc=rc)

The number of elements covered by srcDistgrid is identical to the number of elements covered by
dstDistgrid – in fact the index space regions covered by both DistGrid objects are congruent. However, the
decomposition defined by regDecomp, and consequently the distribution of source and destination, are different.

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEKIND_R8, rank=2, rc=rc)

srcArray = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid=srcDistgrid, rc=rc)

dstArray = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid=dstDistgrid, rc=rc)

By construction srcArray and dstArray are of identical type and kind. Further the number of exclusive elements
matches between both Arrays. These are the prerequisites for the application of an Array redistribution in default
mode. In order to increase performance of the actual redistribution the communication pattern is precomputed once,
and stored in an ESMF_RouteHandle object.

call ESMF_ArrayRedistStore(srcArray=srcArray, dstArray=dstArray, &

routehandle=redistHandle, rc=rc)

The redistHandle can now be used repeatedly to transfer data from srcArray to dstArray.

call ESMF_ArrayRedist(srcArray=srcArray, dstArray=dstArray, &

routehandle=redistHandle, rc=rc)

562

The use of the precomputed redistHandle is not restricted to the (srcArray, dstArray) pair. Instead the
redistHandle can be used to redistribute data between any two Arrays that are compatible with the Array pair
used during precomputation. I.e. any pair of Arrays that matches srcArray and dstArray in type, kind, and
memory layout of the distributed dimensions. However, the size, number, and index order of undistributed dimensions
may be different. See section 36.2.4 for a more detailed discussion of RouteHandle reusability.

The transferability of RouteHandles between Array pairs can greatly reduce the number of communication store calls
needed. In a typical application Arrays are often defined on the same decomposition, typically leading to congru-
ent distributed dimensions. For these Arrays, while they may not have the same shape or size in the undistributed
dimensions, RouteHandles are reusable.

For the current case, the redistHandle was precomputed for simple 2D Arrays without undistributed dimensions.
The RouteHandle transferability rule allows us to use this same RouteHandle to redistribute between two 3D Array
that are built on the same 2D DistGrid, but have an undistributed dimension. Note that the undistributed dimension
does not have to be in the same position on source and destination. Here the undistributed dimension is in position 2
for srcArray1, and in position 1 for dstArray1.

call ESMF_ArraySpecSet(arrayspec3d, typekind=ESMF_TYPEKIND_R8, rank=3, rc=rc)

srcArray1 = ESMF_ArrayCreate(arrayspec=arrayspec3d, distgrid=srcDistgrid, &

distgridToArrayMap=(/1,3/), undistLBound=(/1/), undistUBound=(/10/), rc=rc)

dstArray1 = ESMF_ArrayCreate(arrayspec=arrayspec3d, distgrid=dstDistgrid, &

distgridToArrayMap=(/2,3/), undistLBound=(/1/), undistUBound=(/10/), rc=rc)

call ESMF_ArrayRedist(srcArray=srcArray1, dstArray=dstArray1, &

routehandle=redistHandle, rc=rc)

The following variation of the code shows that the same RouteHandle can be applied to an Array pair where the
number of undistributed dimensions does not match between source and destination Array. Here we prepare a source
Array with two undistributed dimensions, in position 1 and 3, that multiply out to 2x5=10 undistributed elements. The
destination array is the same as before with only a single undistributed dimension in position 1 of size 10.

call ESMF_ArraySpecSet(arrayspec4d, typekind=ESMF_TYPEKIND_R8, rank=4, rc=rc)

srcArray2 = ESMF_ArrayCreate(arrayspec=arrayspec4d, distgrid=srcDistgrid, &

distgridToArrayMap=(/2,4/), undistLBound=(/1,1/), undistUBound=(/2,5/), &

rc=rc)

call ESMF_ArrayRedist(srcArray=srcArray2, dstArray=dstArray1, &

routehandle=redistHandle, rc=rc)

When done, the resources held by redistHandle need to be deallocated by the user code before the RouteHandle
becomes inaccessible.

563

call ESMF_ArrayRedistRelease(routehandle=redistHandle, rc=rc)

In default mode, i.e. without providing the optional srcToDstTransposeMap argument,
ESMF_ArrayRedistStore() does not require equal number of dimensions in source and destination
Array. Only the total number of elements must match. Specifying srcToDstTransposeMap switches
ESMF_ArrayRedistStore() into transpose mode. In this mode each dimension of srcArray is uniquely
associated with a dimension in dstArray, and the sizes of associated dimensions must match for each pair.

dstDistgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIndex=(/20,10/), &

rc=rc)

dstArray = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid=dstDistgrid, rc=rc)

This dstArray object covers a 20 x 10 index space while the srcArray, defined further up, covers a 10 x 20
index space. Setting srcToDstTransposeMap = (/2,1/) will associate the first and second dimension of
srcArray with the second and first dimension of dstArray, respectively. This corresponds to a transpose of
dimensions. Since the decomposition and distribution of dimensions may be different for source and destination
redistribution may occur at the same time.

call ESMF_ArrayRedistStore(srcArray=srcArray, dstArray=dstArray, &

routehandle=redistHandle, srcToDstTransposeMap=(/2,1/), rc=rc)

call ESMF_ArrayRedist(srcArray=srcArray, dstArray=dstArray, &

routehandle=redistHandle, rc=rc)

The transpose mode of ESMF_ArrayRedist() is not limited to distributed dimensions of Arrays. The
srcToDstTransposeMap argument can be used to transpose undistributed dimensions in the same manner. Fur-
thermore transposing distributed and undistributed dimensions between Arrays is also supported.

The srcArray used in the following examples is of rank 4 with 2 distributed and 2 undistributed dimensions. The
distributed dimensions are the two first dimensions of the Array and are distributed according to the srcDistgrid
which describes a total index space region of 100 x 200 elements. The last two Array dimensions are undistributed
dimensions of size 2 and 3, respectively.

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEKIND_R8, rank=4, rc=rc)

srcDistgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIndex=(/100,200/), &

rc=rc)

srcArray = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid=srcDistgrid, &

undistLBound=(/1,1/), undistUBound=(/2,3/), rc=rc)

The first dstArray to consider is defined on a DistGrid that also describes a 100 x 200 index space region. The
distribution indicated by dstDistgrid may be different from the source distribution. Again the first two Array
dimensions are associated with the DistGrid dimensions in sequence. Furthermore, the last two Array dimensions are
undistributed dimensions, however, the sizes are 3 and 2, respectively.

564

dstDistgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIndex=(/100,200/), &

rc=rc)

dstArray = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid=dstDistgrid, &

undistLBound=(/1,1/), undistUBound=(/3,2/), rc=rc)

The desired mapping between srcArray and dstArray dimensions is expressed by srcToDstTransposeMap
= (/1,2,4,3/), transposing only the two undistributed dimensions.

call ESMF_ArrayRedistStore(srcArray=srcArray, dstArray=dstArray, &

routehandle=redistHandle, srcToDstTransposeMap=(/1,2,4,3/), rc=rc)

call ESMF_ArrayRedist(srcArray=srcArray, dstArray=dstArray, &

routehandle=redistHandle, rc=rc)

Next consider a dstArray that is defined on the same dstDistgrid, but with a different order of Array di-
mensions. The desired order is specified during Array creation using the argument distgridToArrayMap =

(/2,3/). This map associates the first and second DistGrid dimensions with the second and third Array dimensions,
respectively, leaving Array dimensions one and four undistributed.

dstArray = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid=dstDistgrid, &

distgridToArrayMap=(/2,3/), undistLBound=(/1,1/), undistUBound=(/3,2/), &

rc=rc)

Again the sizes of the undistributed dimensions are chosen in reverse order compared to srcArray. The desired
transpose mapping in this case will be srcToDstTransposeMap = (/2,3,4,1/).

call ESMF_ArrayRedistStore(srcArray=srcArray, dstArray=dstArray, &

routehandle=redistHandle, srcToDstTransposeMap=(/2,3,4,1/), rc=rc)

call ESMF_ArrayRedist(srcArray=srcArray, dstArray=dstArray, &

routehandle=redistHandle, rc=rc)

Finally consider the case where dstArray is constructed on a 200 x 3 index space and where the undistributed
dimensions are of size 100 and 2.

dstDistgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIndex=(/200,3/), &

rc=rc)

dstArray = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid=dstDistgrid, &

undistLBound=(/1,1/), undistUBound=(/100,2/), rc=rc)

565

By construction srcArray and dstArray hold the same number of elements, albeit in a very different layout.
Nevertheless, with a srcToDstTransposeMap that maps matching dimensions from source to destination an
Array redistribution becomes a well defined operation between srcArray and dstArray.

call ESMF_ArrayRedistStore(srcArray=srcArray, dstArray=dstArray, &

routehandle=redistHandle, srcToDstTransposeMap=(/3,1,4,2/), rc=rc)

call ESMF_ArrayRedist(srcArray=srcArray, dstArray=dstArray, &

routehandle=redistHandle, rc=rc)

The default mode of Array redistribution, i.e. without providing a srcToDstTransposeMap to
ESMF_ArrayRedistStore(), also supports undistributed Array dimensions. The requirement in this case is
that the total undistributed element count, i.e. the product of the sizes of all undistributed dimensions, be the same for
source and destination Array. In this mode the number of undistributed dimensions need not match between source
and destination.

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEKIND_R8, rank=4, rc=rc)

srcDistgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIndex=(/10,20/), &

regDecomp=(/4,1/), rc=rc)

srcArray = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid=srcDistgrid, &

undistLBound=(/1,1/), undistUBound=(/2,4/), rc=rc)

dstDistgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIndex=(/10,20/), &

regDecomp=(/1,4/), rc=rc)

dstArray = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid=dstDistgrid, &

distgridToArrayMap=(/2,3/), undistLBound=(/1,1/), undistUBound=(/2,4/), &

rc=rc)

Both srcArray and dstArray have two undistributed dimensions and a total count of undistributed elements of
2× 4 = 8.

The Array redistribution operation is defined in terms of sequentialized undistributed dimensions. In the above case
this means that a unique sequence index will be assigned to each of the 8 undistributed elements. The sequence indices
will be 1, 2, ..., 8, where sequence index 1 is assigned to the first element in the first (i.e. fastest varying in memory)
undistributed dimension. The following undistributed elements are labeled in consecutive order as they are stored in
memory.

call ESMF_ArrayRedistStore(srcArray=srcArray, dstArray=dstArray, &

routehandle=redistHandle, rc=rc)

566

The redistribution operation by default applies the identity operation between the elements of undistributed dimen-
sions. This means that source element with sequence index 1 will be mapped against destination element with sequence
index 1 and so forth. Because of the way source and destination Arrays in the current example were constructed this
corresponds to a mapping of dimensions 3 and 4 on srcArray to dimensions 1 and 4 on dstArray, respectively.

call ESMF_ArrayRedist(srcArray=srcArray, dstArray=dstArray, &

routehandle=redistHandle, rc=rc)

Array redistribution does not require the same number of undistributed dimensions in source and destination Array,
merely the total number of undistributed elements must match.

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEKIND_R8, rank=3, rc=rc)

dstArray = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid=dstDistgrid, &

distgridToArrayMap=(/1,3/), undistLBound=(/11/), undistUBound=(/18/), &

rc=rc)

This dstArray object only has a single undistributed dimension, while the srcArray, defined further back, has
two undistributed dimensions. However, the total undistributed element count for both Arrays is 8.

call ESMF_ArrayRedistStore(srcArray=srcArray, dstArray=dstArray, &

routehandle=redistHandle, rc=rc)

In this case the default identity operation between the elements of undistributed dimensions corresponds to a merging
of dimensions 3 and 4 on srcArray into dimension 2 on dstArray.

call ESMF_ArrayRedist(srcArray=srcArray, dstArray=dstArray, &

routehandle=redistHandle, rc=rc)

28.2.18 Communication – SparseMatMul

Sparse matrix multiplication is a fundamental Array communication method. One frequently used application of this
method is the interpolation between pairs of Arrays. The principle is this: the value of each element in the exclusive
region of the destination Array is expressed as a linear combination of potentially all the exclusive elements of the
source Array. Naturally most of the coefficients of these linear combinations will be zero and it is more efficient to
store explicit information about the non-zero elements than to keep track of all the coefficients.

There is a choice to be made with respect to the format in which to store the information about the non-zero elements.
One option is to store the value of each coefficient together with the corresponding destination element index and
source element index. Destination and source indices could be expressed in terms of the corresponding DistGrid tile
index together with the coordinate tuple within the tile. While this format may be the most natural way to express
elements in the source and destination Array, it has two major drawbacks. First the coordinate tuple is dimCount
specific and second the format is extremely bulky. For 2D source and destination Arrays it would require 6 integers
to store the source and destination element information for each non-zero coefficient and matters get worse for higher
dimensions.

567

Both problems can be circumvented by interpreting source and destination Arrays as sequentialized strings or vectors
of elements. This is done by assigning a unique sequence index to each exclusive element in both Arrays. With that
the operation of updating the elements in the destination Array as linear combinations of source Array elements takes
the form of a sparse matrix multiplication.

The default sequence index rule assigns index 1 to the minIndex corner element of the first tile of the DistGrid on
which the Array is defined. It then increments the sequence index by 1 for each element running through the DistGrid
dimensions by order. The index space position of the DistGrid tiles does not affect the sequence labeling of elements.
The default sequence indices for

srcDistgrid = ESMF_DistGridCreate(minIndex=(/-1,0/), maxIndex=(/1,3/), rc=rc)

for each element are:

-------------------------------------> 2nd dim

|

| +------+------+------+------+

| |(-1,0)| | |(-1,3)|

| | | | | |

| | 1 | 4 | 7 | 10 |

| +------+------+------+------+

| | | | | |

| | | | | |

| | 2 | 5 | 8 | 11 |

| +------+------+------+------+

| | (1,0)| | | (1,3)|

| | | | | |

| | 3 | 6 | 9 | 12 |

| +------+------+------+------+

|

v

1st dim

The assigned sequence indices are decomposition and distribution invariant by construction. Furthermore, when an
Array is created with extra elements per DE on a DistGrid the sequence indices (which only cover the exclusive
elements) remain unchanged.

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEKIND_R8, rank=2, rc=rc)

srcArray = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid=srcDistgrid, &

totalLWidth=(/1,1/), totalUWidth=(/1,1/), indexflag=ESMF_INDEX_GLOBAL, &

rc=rc)

The extra padding of 1 element in each direction around the exclusive elements on each DE are "invisible" to the Array
sparse matrix multiplication method. These extra elements are either updated by the computational kernel or by Array
halo operations.

An alternative way to assign sequence indices to all the elements in the tiles covered by a DistGrid object is to use
a special ESMF_DistGridCreate() call. This call has been specifically designed for 1D cases with arbitrary,
user-supplied sequence indices.

568

seqIndexList(1) = localPet*10

seqIndexList(2) = localPet*10 + 1

dstDistgrid = ESMF_DistGridCreate(arbSeqIndexList=seqIndexList, rc=rc)

This call to ESMF_DistGridCreate() is collective across the current VM. The arbSeqIndexList argument
specifies the PET-local arbitrary sequence indices that need to be covered by the local DE. The resulting DistGrid has
one local DE per PET which covers the entire PET-local index range. The user supplied sequence indices must be
unique, but the sequence may be interrupted. The four DEs of dstDistgrid have the following local 1D index
space coordinates (given between "()") and sequence indices:

covered by DE 0 covered by DE 1 covered by DE 2 covered by DE 3

on PET 0 on PET 1 on PET 2 on PET 3

--

(1) : 0 (1) : 10 (1) : 20 (1) : 30

(2) : 1 (2) : 11 (2) : 21 (2) : 31

Again the DistGrid object provides the sequence index labeling for the exclusive elements of an Array created on the
DistGrid regardless of extra, non-exclusive elements.

dstArray = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid=dstDistgrid, rc=rc)

With the definition of sequence indices, either by the default rule or as user provided arbitrary sequence indices, it
is now possible to uniquely identify each exclusive element in the source and destination Array by a single integer
number. Specifying a pair of source and destination elements takes two integer number regardless of the number of
dimensions.

The information required to carry out a sparse matrix multiplication are the pair of source and destination
sequence indices and the associated multiplication factor for each pair. ESMF requires this information in
form of two Fortran arrays. The factors are stored in a 1D array of the appropriate type and kind, e.g.
real(ESMF_KIND_R8)::factorList(:). Array sparse matrix multiplications are supported between Arrays
of different type and kind. The type and kind of the factors can also be chosen freely. The sequence index pairs
associated with the factors provided by factorList are stored in a 2D Fortran array of default integer kind of the
shape integer::factorIndexList(2,:). The sequence indices of the source Array elements are stored in
the first row of factorIndexList while the sequence indices of the destination Array elements are stored in the
second row.

Each PET in the current VM must call into ESMF_ArraySMMStore() to precompute and store the communication
pattern for the sparse matrix multiplication. The multiplication factors may be provided in parallel, i.e. multiple PETs
may specify factorList and factorIndexList arguments when calling into ESMF_ArraySMMStore().
PETs that do not provide factors either call with factorList and factorIndexList arguments containing zero
elements or issue the call omitting both arguments.

if (localPet == 0) then

allocate(factorList(1)) ! PET 0 specifies 1 factor

allocate(factorIndexList(2,1))

factorList = (/0.2/) ! factors

factorIndexList(1,:) = (/5/) ! seq indices into srcArray

factorIndexList(2,:) = (/30/) ! seq indices into dstArray

call ESMF_ArraySMMStore(srcArray=srcArray, dstArray=dstArray, &

routehandle=sparseMatMulHandle, factorList=factorList, &

569

factorIndexList=factorIndexList, rc=rc)

deallocate(factorList)

deallocate(factorIndexList)

else if (localPet == 1) then

allocate(factorList(3)) ! PET 1 specifies 3 factor

allocate(factorIndexList(2,3))

factorList = (/0.5, 0.5, 0.8/) ! factors

factorIndexList(1,:) = (/8, 2, 12/) ! seq indices into srcArray

factorIndexList(2,:) = (/11, 11, 30/) ! seq indices into dstArray

call ESMF_ArraySMMStore(srcArray=srcArray, dstArray=dstArray, &

routehandle=sparseMatMulHandle, factorList=factorList, &

factorIndexList=factorIndexList, rc=rc)

deallocate(factorList)

deallocate(factorIndexList)

else

! PETs 2 and 3 do not provide factors

call ESMF_ArraySMMStore(srcArray=srcArray, dstArray=dstArray, &

routehandle=sparseMatMulHandle, rc=rc)

endif

The RouteHandle object sparseMatMulHandle produced by ESMF_ArraySMMStore() can now be used to
call ESMF_ArraySMM() collectively across all PETs of the current VM to perform

dstArray = 0.0

do n=1, size(combinedFactorList)

dstArray(combinedFactorIndexList(2, n)) +=

combinedFactorList(n) * srcArray(combinedFactorIndexList(1, n))

enddo

in parallel. Here combinedFactorList and combinedFactorIndexList are the combined lists defined by
the respective local lists provided by PETs 0 and 1 in parallel. For this example

call ESMF_ArraySMM(srcArray=srcArray, dstArray=dstArray, &

routehandle=sparseMatMulHandle, rc=rc)

will initialize the entire dstArray to 0.0 and then update two elements:

on DE 1:

dstArray(2) = 0.5 * srcArray(0,0) + 0.5 * srcArray(0,2)

570

and

on DE 3:

dstArray(1) = 0.2 * srcArray(0,1) + 0.8 * srcArray(1,3).

The call to ESMF_ArraySMM() does provide the option to turn the default dstArray initialization off. If argument
zeroregion is set to ESMF_REGION_EMPTY

call ESMF_ArraySMM(srcArray=srcArray, dstArray=dstArray, &

routehandle=sparseMatMulHandle, zeroregion=ESMF_REGION_EMPTY, rc=rc)

skips the initialization and elements in dstArray are updated according to:

do n=1, size(combinedFactorList)

dstArray(combinedFactorIndexList(2, n)) +=

combinedFactorList(n) * srcArray(combinedFactorIndexList(1, n)).

enddo

The ESMF_RouteHandle object returned by ESMF_ArraySMMStore() can be applied to any src/dst Array pairs
that is compatible with the Array pair used during precomputation, i.e. any pair of Arrays that matches srcArray
and dstArray in type, kind, and memory layout of the distributed dimensions. However, the size, number, and index
order of undistributed dimensions may be different. See section 36.2.4 for a more detailed discussion of RouteHandle
reusability.

The resources held by sparseMatMulHandle need to be deallocated by the user code before the handle becomes
inaccessible.

call ESMF_ArraySMMRelease(routehandle=sparseMatMulHandle, rc=rc)

The Array sparse matrix multiplication also applies to Arrays with undistributed dimensions. The undistributed dimen-
sions are interpreted in a sequentialized manner, much like the distributed dimensions, introducing a second sequence
index for source and destination elements. Sequence index 1 is assigned to the first element in the first (i.e. fastest
varying in memory) undistributed dimension. The following undistributed elements are labeled in consecutive order
as they are stored in memory.

In the simplest case the Array sparse matrix multiplication will apply an identity matrix to the vector of sequentialized
undistributed Array elements for every non-zero element in the sparse matrix. The requirement in this case is that the
total undistributed element count, i.e. the product of the sizes of all undistributed dimensions, be the same for source
and destination Array.

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEKIND_R8, rank=3, rc=rc)

srcArray = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid=srcDistgrid, &

totalLWidth=(/1,1/), totalUWidth=(/1,1/), indexflag=ESMF_INDEX_GLOBAL, &

distgridToArrayMap=(/1,2/), undistLBound=(/1/), undistUBound=(/2/), rc=rc)

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEKIND_R8, rank=2, rc=rc)

dstArray = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid=dstDistgrid, &

distgridToArrayMap=(/2/), undistLBound=(/1/), undistUBound=(/2/), rc=rc)

571

Setting up factorList and factorIndexList is identical to the case for Arrays without undistributed di-
mensions. Also the call to ESMF_ArraySMMStore() remains unchanged. Internally, however, the source and
destination Arrays are checked to make sure the total undistributed element count matches.

if (localPet == 0) then

allocate(factorList(1)) ! PET 0 specifies 1 factor

allocate(factorIndexList(2,1))

factorList = (/0.2/) ! factors

factorIndexList(1,:) = (/5/) ! seq indices into srcArray

factorIndexList(2,:) = (/30/) ! seq indices into dstArray

call ESMF_ArraySMMStore(srcArray=srcArray, dstArray=dstArray, &

routehandle=sparseMatMulHandle, factorList=factorList, &

factorIndexList=factorIndexList, rc=rc)

deallocate(factorList)

deallocate(factorIndexList)

else if (localPet == 1) then

allocate(factorList(3)) ! PET 1 specifies 3 factor

allocate(factorIndexList(2,3))

factorList = (/0.5, 0.5, 0.8/) ! factors

factorIndexList(1,:) = (/8, 2, 12/) ! seq indices into srcArray

factorIndexList(2,:) = (/11, 11, 30/) ! seq indices into dstArray

call ESMF_ArraySMMStore(srcArray=srcArray, dstArray=dstArray, &

routehandle=sparseMatMulHandle, factorList=factorList, &

factorIndexList=factorIndexList, rc=rc)

deallocate(factorList)

deallocate(factorIndexList)

else

! PETs 2 and 3 do not provide factors

call ESMF_ArraySMMStore(srcArray=srcArray, dstArray=dstArray, &

routehandle=sparseMatMulHandle, rc=rc)

endif

The call into the ESMF_ArraySMM() operation is completely transparent with respect to whether source and/or
destination Arrays contain undistributed dimensions.

call ESMF_ArraySMM(srcArray=srcArray, dstArray=dstArray, &

routehandle=sparseMatMulHandle, rc=rc)

572

This operation will initialize the entire dstArray to 0.0 and then update four elements:

on DE 1:

dstArray[1](2) = 0.5 * srcArray(0,0)[1] + 0.5 * srcArray(0,2)[1],

dstArray2 = 0.5 * srcArray(0,0)[2] + 0.5 * srcArray(0,2)[2]

and

on DE 3:

dstArray1 = 0.2 * srcArray(0,1)[1] + 0.8 * srcArray(1,3)[1],

dstArray[2](1) = 0.2 * srcArray(0,1)[2] + 0.8 * srcArray(1,3)[2].

Here indices between "()" refer to distributed dimensions while indices between "[]" correspond to undistributed
dimensions.

In a more general version of the Array sparse matrix multiplication the total undistributed element count, i.e. the
product of the sizes of all undistributed dimensions, need not be the same for source and destination Array. In this
formulation each non-zero element of the sparse matrix is identified with a unique element in the source and destination
Array. This requires a generalization of the factorIndexList argument which now must contain four integer
numbers for each element. These numbers in sequence are the sequence index of the distributed dimensions and the
sequence index of the undistributed dimensions of the element in the source Array, followed by the sequence index of
the distributed dimensions and the sequence index of the undistributed dimensions of the element in the destination
Array.

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEKIND_R8, rank=3, rc=rc)

srcArray = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid=srcDistgrid, &

totalLWidth=(/1,1/), totalUWidth=(/1,1/), indexflag=ESMF_INDEX_GLOBAL, &

distgridToArrayMap=(/1,2/), undistLBound=(/1/), undistUBound=(/2/), rc=rc)

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEKIND_R8, rank=2, rc=rc)

dstArray = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid=dstDistgrid, &

distgridToArrayMap=(/2/), undistLBound=(/1/), undistUBound=(/4/), rc=rc)

Setting up factorList is identical to the previous cases since there is still only one value associated with each
non-zero matrix element. However, each entry in factorIndexList now has 4 instead of just 2 components.

if (localPet == 0) then

allocate(factorList(1)) ! PET 0 specifies 1 factor

allocate(factorIndexList(4,1))

factorList = (/0.2/) ! factors

factorIndexList(1,:) = (/5/) ! seq indices into srcArray

factorIndexList(2,:) = (/1/) ! undistr. seq indices into srcArray

factorIndexList(3,:) = (/30/) ! seq indices into dstArray

factorIndexList(4,:) = (/2/) ! undistr. seq indices into dstArray

call ESMF_ArraySMMStore(srcArray=srcArray, dstArray=dstArray, &

routehandle=sparseMatMulHandle, factorList=factorList, &

factorIndexList=factorIndexList, rc=rc)

573

deallocate(factorList)

deallocate(factorIndexList)

else if (localPet == 1) then

allocate(factorList(3)) ! PET 1 specifies 3 factor

allocate(factorIndexList(4,3))

factorList = (/0.5, 0.5, 0.8/) ! factors

factorIndexList(1,:) = (/8, 2, 12/) ! seq indices into srcArray

factorIndexList(2,:) = (/2, 1, 1/) ! undistr. seq indices into srcArray

factorIndexList(3,:) = (/11, 11, 30/) ! seq indices into dstArray

factorIndexList(4,:) = (/4, 4, 2/) ! undistr. seq indices into dstArray

call ESMF_ArraySMMStore(srcArray=srcArray, dstArray=dstArray, &

routehandle=sparseMatMulHandle, factorList=factorList, &

factorIndexList=factorIndexList, rc=rc)

deallocate(factorList)

deallocate(factorIndexList)

else

! PETs 2 and 3 do not provide factors

call ESMF_ArraySMMStore(srcArray=srcArray, dstArray=dstArray, &

routehandle=sparseMatMulHandle, rc=rc)

endif

The call into the ESMF_ArraySMM() operation remains unchanged.

call ESMF_ArraySMM(srcArray=srcArray, dstArray=dstArray, &

routehandle=sparseMatMulHandle, rc=rc)

This operation will initialize the entire dstArray to 0.0 and then update two elements:

on DE 1:

dstArray[4](2) = 0.5 * srcArray(0,0)[1] + 0.5 * srcArray(0,2)[2],

and

on DE 3:

dstArray[2](1) = 0.2 * srcArray(0,1)[1] + 0.8 * srcArray(1,3)[1],

Here indices in () refer to distributed dimensions while indices in [] correspond to undistributed dimensions.

574

28.2.19 Communication – Scatter and Gather, revisited

The ESMF_ArrayScatter() and ESMF_ArrayGather() calls, introduced in section 28.2.14, provide a conve-
nient way of communicating data between a Fortran array and all of the DEs of a single Array tile. A key requirement
of ESMF_ArrayScatter() and ESMF_ArrayGather() is that the shape of the Fortran array and the Array tile
must match. This means that the dimCount must be equal, and that the size of each dimension must match. Element
reordering during scatter and gather is only supported on a per dimension level, based on the decompflag option
available during DistGrid creation.

While the ESMF_ArrayScatter() and ESMF_ArrayGather()methods cover a broad, and important spectrum
of cases, there are situations that require a different set of rules to scatter and gather data between a Fortran array and an
ESMF Array object. For instance, it is often convenient to create an Array on a DistGrid that was created with arbitrary,
user-supplied sequence indices. See section 35.3.5 for more background on DistGrids with arbitrary sequence indices.

allocate(arbSeqIndexList(10)) ! each PET will have 10 elements

do i=1, 10

arbSeqIndexList(i) = (i-1)*petCount + localPet+1 ! initialize unique

! seq. indices

enddo

distgrid = ESMF_DistGridCreate(arbSeqIndexList=arbSeqIndexList, rc=rc)

deallocate(arbSeqIndexList)

call ESMF_ArraySpecSet(arrayspec, typekind=ESMF_TYPEKIND_I4, rank=1, rc=rc)

array = ESMF_ArrayCreate(arrayspec=arrayspec, distgrid=distgrid, rc=rc)

This array object holds 10 elements on each DE, and there is one DE per PET, for a total element count of 10 x
petCount. The arbSeqIndexList, used during DistGrid creation, was constructed cyclic across all DEs. DE 0,
for example, on a 4 PET run, would hold sequence indices 1, 5, 9, DE 1 would hold 2, 6, 10, ..., and so on.

The usefulness of the user-specified arbitrary sequence indices becomes clear when they are interpreted as global
element ids. The ArrayRedist() and ArraySMM() communication methods are based on sequence index mapping
between source and destination Arrays. Other than providing a canonical sequence index order via the default sequence
scheme, outlined in 28.2.18, ESMF does not place any restrictions on the sequence indices. Objects that were not
created with user supplied sequence indices default to the ESMF sequence index order.

A common, and useful interpretation of the arbitrary sequence indices, specified during DistGrid creation, is that of
relating them to the canonical ESMF sequence index order of another data object. Within this interpretation the array
object created above could be viewed as an arbitrary distribution of a (petCount x 10) 2D array.

if (localPet == 0) then

allocate(farray(petCount,10)) ! allocate 2D Fortran array petCount x 10

do j=1, 10

do i=1, petCount

farray(i,j) = 100 + (j-1)*petCount + i ! initialize to something

enddo

enddo

else

575

allocate(farray(0,0)) ! must allocate an array of size 0 on all other PETs

endif

For a 4 PET run, farray on PET 0 now holds the following data.

-----1----2----3------------10-----> j

|

1 101, 105, 109, , 137

|

2 102, 106, 110, , 138

|

3 103, 107, 111, , 139

|

4 104, 108, 112, , 140

|

|

v

i

On all other PETs farray has a zero size allocation.

Following the sequence index interpretation from above, scattering the data contained in farray on PET 0 across the
array object created further up, seems like a well defined operation. Looking at it a bit closer, it becomes clear that it
is in fact more of a redistribution than a simple scatter operation. The general rule for such a "redist-scatter" operation,
of a Fortran array, located on a single PET, into an ESMF Array, is to use the canonical ESMF sequence index scheme
to label the elements of the Fortran array, and to send the data to the Array element with the same sequence index.

The just described "redist-scatter" operation is much more general than the standard ESMF_ArrayScatter()

method. It does not require shape matching, and supports full element reordering based on the sequence indices.
Before farray can be scattered across array in the described way, it must be wrapped into an ESMF Array object
itself, essentially labeling the array elements according to the canonical sequence index scheme.

distgridAux = ESMF_DistGridCreate(minIndex=(/1,1/), &

maxIndex=(/petCount,10/), &

regDecomp=(/1,1/), rc=rc) ! DistGrid with only 1 DE

The first step is to create a DistGrid object with only a single DE. This DE must be located on the PET on which the
Fortran data array resides. In this example farray holds data on PET 0, which is where the default DELayout will
place the single DE defined in the DistGrid. If the farray was setup on a different PET, an explicit DELayout would
need to be created first, mapping the only DE to the PET on which the data is defined.

Next the Array wrapper object can be created from the farray and the just created DistGrid object.

arrayAux = ESMF_ArrayCreate(farray=farray, distgrid=distgridAux, &

indexflag=ESMF_INDEX_DELOCAL, rc=rc)

At this point all of the pieces are in place to use ESMF_ArrayRedist() to do the "redist-scatter" operation. The
typical store/execute/release pattern must be followed.

call ESMF_ArrayRedistStore(srcArray=arrayAux, dstArray=array, &

routehandle=scatterHandle, rc=rc)

576

call ESMF_ArrayRedist(srcArray=arrayAux, dstArray=array, &

routehandle=scatterHandle, rc=rc)

In this example, after ESMF_ArrayRedist() was called, the content of array on a 4 PET run would look like
this:

PET 0: 101, 105, 109, , 137

PET 1: 102, 106, 110, , 138

PET 2: 103, 107, 111, , 139

PET 3: 104, 108, 112, , 140

Once set up, scatterHandle can be used repeatedly to scatter data from farray on PET 0 to all the DEs of
array. All of the resources should be released once scatterHandle is no longer needed.

call ESMF_ArrayRedistRelease(routehandle=scatterHandle, rc=rc)

The opposite operation, i.e. gathering of the array data into farray on PET 0, follows a very similar setup. In
fact, the arrayAux object already constructed for the scatter direction, can directly be re-used. The only thing that
is different for the "redist-gather", are the srcArray and dstArray argument assignments, reflecting the opposite
direction of data movement.

call ESMF_ArrayRedistStore(srcArray=array, dstArray=arrayAux, &

routehandle=gatherHandle, rc=rc)

call ESMF_ArrayRedist(srcArray=array, dstArray=arrayAux, &

routehandle=gatherHandle, rc=rc)

Just as for the scatter case, the gatherHandle can be used repeatedly to gather data from array into farray on
PET 0. All of the resources should be released once gatherHandle is no longer needed.

call ESMF_ArrayRedistRelease(routehandle=gatherHandle, rc=rc)

Finally the wrapper Array arrayAux and the associated DistGrid object can also be destroyed.

call ESMF_ArrayDestroy(arrayAux, rc=rc)

call ESMF_DistGridDestroy(distgridAux, rc=rc)

Further, the primary data objects of this example must be deallocated and destroyed.

deallocate(farray)

call ESMF_ArrayDestroy(array, rc=rc)

577

call ESMF_DistGridDestroy(distgrid, rc=rc)

28.2.20 Non-blocking Communications

All ESMF_RouteHandle based communication methods, like ESMF_ArrayRedist(), ESMF_ArrayHalo()
and ESMF_ArraySMM(), can be executed in blocking or non-blocking mode. The non-blocking feature is useful, for
example, to overlap computation with communication, or to implement a more loosely synchronized inter-Component
interaction scheme than is possible with the blocking communication mode.

Access to the non-blocking execution mode is provided uniformly across all RouteHandle based communication calls.
Every such call contains the optional routesyncflag argument of type ESMF_RouteSync_Flag. Section 52.51
lists all of the valid settings for this flag.

It is an execution time decision to select whether to invoke a precomputed communication pattern, stored in a Route-
Handle, in the blocking or non-blocking mode. Neither requires specifically precomputed RouteHandles - i.e. a
RouteHandle is neither specifically blocking nor specifically non-blocking.

call ESMF_ArrayRedistStore(srcArray=srcArray, dstArray=dstArray, &

routehandle=routehandle, rc=rc)

The returned RouteHandle routehandle can be used in blocking or non-blocking execution calls. The application
is free to switch between both modes for the same RouteHandle.

By default routesyncflag is set to ESMF_ROUTESYNC_BLOCKING in all of the RouteHandle execution meth-
ods, and the behavior is that of the VM-wide collective communication calls described in the previous sections. In
the blocking mode the user must assume that the communication call will not return until all PETs have exchanged
the precomputed information. On the other hand, the user has no guarantee about the exact synchronization behavior,
and it is unsafe to make specific assumptions. What is guaranteed in the blocking communication mode is that when
the call returns on the local PET, all data exchanges associated with all local DEs have finished. This means that all
in-bound data elements are valid and that all out-bound data elements can safely be overwritten by the user.

call ESMF_ArrayRedist(srcArray=srcArray, dstArray=dstArray, &

routehandle=routehandle, routesyncflag=ESMF_ROUTESYNC_BLOCKING, rc=rc)

The same exchange pattern, that is encoded in routehandle, can be executed in non-blocking mode, simply by
setting the appropriate routesyncflag when calling into ESMF_ArrayRedist().

At first sight there are obvious similarities between the non-blocking RouteHandle based execution paradigm and the
non-blocking message passing calls provided by MPI. However, there are significant differences in the behavior of
the non-blocking point-to-point calls that MPI defines and the non-blocking mode of the collective exchange patterns
described by ESMF RouteHandles.

Setting routesyncflag to ESMF_ROUTESYNC_NBSTART in any RouteHandle execution call returns immedi-
ately after all out-bound data has been moved into ESMF internal transfer buffers and the exchange has been initiated.

call ESMF_ArrayRedist(srcArray=srcArray, dstArray=dstArray, &

routehandle=routehandle, routesyncflag=ESMF_ROUTESYNC_NBSTART, rc=rc)

Once a call with routesyncflag = ESMF_ROUTESYNC_NBSTART returns, it is safe to modify the out-bound
data elements in the srcArray object. However, no guarantees are made for the in-bound data elements in

578

dstArray at this phase of the non-blocking execution. It is unsafe to access these elements until the exchange
has finished locally.

One way to ensure that the exchange has finished locally is to call with routesyncflag set to
ESMF_ROUTESYNC_NBWAITFINISH.

call ESMF_ArrayRedist(srcArray=srcArray, dstArray=dstArray, &

routehandle=routehandle, routesyncflag=ESMF_ROUTESYNC_NBWAITFINISH, rc=rc)

Calling with routesyncflag = ESMF_ROUTESYNC_NBWAITFINISH instructs the communication method to
wait and block until the previously started exchange has finished, and has been processed locally according to the
RouteHandle. Once the call returns, it is safe to access both in-bound and out-bound data elements in dstArray and
srcArray, respectively.

Some situations require more flexibility than is provided by the ESMF_ROUTESYNC_NBSTART -
ESMF_ROUTESYNC_NBWAITFINISH pair. For instance, a Component that needs to interact with
several other Components, virtually simultaneously, would initiated several different exchanges with
ESMF_ROUTESYNC_NBSTART. Calling with ESMF_ROUTESYNC_NBWAITFINISH for any of the outstand-
ing exchanges may potentially block for a long time, lowering the throughput. In the worst case a dead lock situation
may arise. Calling with routesyncflag = ESMF_ROUTESYNC_NBTESTFINISH addresses this problem.

call ESMF_ArrayRedist(srcArray=srcArray, dstArray=dstArray, &

routehandle=routehandle, routesyncflag=ESMF_ROUTESYNC_NBTESTFINISH, &

finishedflag=finishflag, rc=rc)

This call tests the locally outstanding data transfer operation in routehandle, and finishes the exchange as much
as currently possible. It does not block until the entire exchange has finished locally, instead it returns immediately
after one round of testing has been completed. The optional return argument finishedflag is set to .true. if
the exchange is completely finished locally, and set to .false. otherwise.

The user code must decide, depending on the value of the returned finishedflag, whether additional calls are re-
quired to finish an outstanding non-blocking exchange. If so, it can be done by calling ESMF_ArrayRedist()

repeatedly with ESMF_ROUTESYNC_NBTESTFINISH until finishedflag comes back with a value of
.true.. Such a loop allows other pieces of user code to be executed between the calls. A call with
ESMF_ROUTESYNC_NBWAITFINISH can alternatively be used to block until the exchange has locally finished.

Noteworthy property. It is allowable to invoke a RouteHandle based communication call with routesyncflag

set to ESMF_ROUTESYNC_NBTESTFINISH or ESMF_ROUTESYNC_NBWAITFINISH on a specific RouteHandle
without there being an outstanding non-blocking exchange. As a matter of fact, it is not required that there was
ever a call made with ESMF_ROUTESYNC_NBSTART for the RouteHandle. In these cases the calls made with
ESMF_ROUTESYNC_NBTESTFINISH or ESMF_ROUTESYNC_NBWAITFINISH will simply return immediately
(with finishedflag set to .true.).

Noteworthy property. It is fine to mix blocking and non-blocking invocations of the same RouteHandle
based communication call across the PETs. This means that it is fine for some PETs to issue the call with
ESMF_ROUTESYNC_BLOCKING (or using the default), while other PETs call the same communication call with
ESMF_ROUTESYNC_NBSTART.

Noteworthy restriction. A RouteHandle that is currently involved in an outstanding non-blocking exchange may not
be used to start any further exchanges, neither blocking nor non-blocking. This restriction is independent of whether
the newly started RouteHandle based exchange is made for the same or for different data objects.

579

28.3 Restrictions and Future Work

• CAUTION: Depending on the specific ESMF_ArrayCreate() entry point used during Array cre-

ation, certain Fortran operations are not supported on the Fortran array pointer farrayPtr, returned by

ESMF_ArrayGet(). Only if the ESMF_ArrayCreate() from pointer variant was used, will the returned

farrayPtr variable contain the original bounds information, and be suitable for the Fortran deallocate()

call. This limitation is a direct consequence of the Fortran 95 standard relating to the passing of array argu-

ments. Fortran array pointers returned from an Array that was created through the assumed shape array variant

of ESMF_ArrayCreate() will have bounds that are consistent with the other arguments specified during

Array creation. These pointers are not suitable for deallocation in accordance to the Fortran 95 standard.

• 1D limit: ArrayHalo(), ArrayRedist() and ArraySMM() operations on Arrays created on DistGrids with arbi-

trary sequence indices are currently limited to 1D arbitrary DistGrids. There is no restriction on the number,

size and mapping of undistributed Array dimensions in the presence of such a 1D arbitrary DistGrid.

28.4 Design and Implementation Notes

The Array class is part of the ESMF index space layer and is built on top of the DistGrid and DELayout classes. The

DELayout class introduces the notion of decomposition elements (DEs) and their layout across the available PETs. The

DistGrid describes how index space is decomposed by assigning logically rectangular index space pieces or DE-local

tiles to the DEs. The Array finally associates a local memory allocation with each local DE.

The following is a list of implementation specific details about the current ESMF Array.

• Implementation language is C++.

• Local memory allocations are internally held in ESMF_LocalArray objects.

• All precomputed communication methods are based on sparse matrix multiplication.

28.5 Class API

28.5.1 ESMF_ArrayAssignment(=) - Array assignment

INTERFACE:

interface assignment(=)

array1 = array2

ARGUMENTS:

type(ESMF_Array) :: array1

type(ESMF_Array) :: array2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

580

DESCRIPTION:

Assign array1 as an alias to the same ESMF Array object in memory as array2. If array2 is invalid, then array1 will
be equally invalid after the assignment.

The arguments are:

array1 The ESMF_Array object on the left hand side of the assignment.

array2 The ESMF_Array object on the right hand side of the assignment.

28.5.2 ESMF_ArrayOperator(==) - Array equality operator

INTERFACE:

interface operator(==)

if (array1 == array2) then ... endif

OR

result = (array1 == array2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_Array), intent(in) :: array1

type(ESMF_Array), intent(in) :: array2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Test whether array1 and array2 are valid aliases to the same ESMF Array object in memory. For a more general
comparison of two ESMF Arrays, going beyond the simple alias test, the ESMF_ArrayMatch() function (not yet
implemented) must be used.

The arguments are:

array1 The ESMF_Array object on the left hand side of the equality operation.

array2 The ESMF_Array object on the right hand side of the equality operation.

581

28.5.3 ESMF_ArrayOperator(/=) - Array not equal operator

INTERFACE:

interface operator(/=)

if (array1 /= array2) then ... endif

OR

result = (array1 /= array2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_Array), intent(in) :: array1

type(ESMF_Array), intent(in) :: array2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Test whether array1 and array2 are not valid aliases to the same ESMF Array object in memory. For a more general
comparison of two ESMF Arrays, going beyond the simple alias test, the ESMF_ArrayMatch() function (not yet
implemented) must be used.

The arguments are:

array1 The ESMF_Array object on the left hand side of the non-equality operation.

array2 The ESMF_Array object on the right hand side of the non-equality operation.

28.5.4 ESMF_ArrayCopy - Copy data from one Array object to another

INTERFACE:

subroutine ESMF_ArrayCopy(arrayOut, arrayIn, rc)

ARGUMENTS:

type(ESMF_Array), intent(inout) :: arrayOut

type(ESMF_Array), intent(in) :: arrayIn

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

582

DESCRIPTION:

Copy data from one ESMF_Array object to another.

The arguments are:

arrayOut ESMF_Array object into which to copy the data. The incoming arrayOut must already references a
matching memory allocation.

arrayIn ESMF_Array object that holds the data to be copied.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28.5.5 ESMF_ArrayCreate - Create Array object from Fortran array pointer

INTERFACE:

! Private name; call using ESMF_ArrayCreate()

function ESMF_ArrayCreateFrmPtr<rank><type><kind>(distgrid, farrayPtr, &

datacopyflag, distgridToArrayMap, computationalEdgeLWidth, &

computationalEdgeUWidth, computationalLWidth, &

computationalUWidth, totalLWidth, &

totalUWidth, name, rc)

RETURN VALUE:

type(ESMF_Array) :: ESMF_ArrayCreateDataPtr<rank><type><kind>

ARGUMENTS:

type(ESMF_DistGrid), intent(in) :: distgrid

<type> (ESMF_KIND_<kind>), pointer :: farrayPtr(<rank>)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_DataCopy_Flag), intent(in), optional :: datacopyflag

integer, intent(in), optional :: distgridToArrayMap(:)

integer, intent(in), optional :: computationalEdgeLWidth(:)

integer, intent(in), optional :: computationalEdgeUWidth(:)

integer, intent(in), optional :: computationalLWidth(:)

integer, intent(in), optional :: computationalUWidth(:)

integer, intent(in), optional :: totalLWidth(:)

integer, intent(in), optional :: totalUWidth(:)

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

STATUS:

583

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Create an ESMF_Array object from existing local native Fortran arrays with pointer attribute. The decomposition
and distribution is specified by the distgrid argument. Each PET must issue this call with identical arguments in
order to create a consistent Array object. The only exception is the farrayPtr argument which will be different on
each PET. The bounds of the local arrays are preserved by this call and determine the bounds of the total region of
the resulting Array object. Bounds of the DE-local exclusive regions are set to be consistent with the total regions and
the specified distgrid argument. Bounds for Array dimensions that are not distributed are automatically set to the
bounds provided by farrayPtr.

This interface requires a 1 DE per PET decomposition. The Array object will not be created and an error will be
returned if this condition is not met.

The not distributed Array dimensions form a tensor of rank = array.rank - distgrid.dimCount. The widths of the com-
putational region are set to the provided value, or zero by default, for all tensor elements. Use ESMF_ArraySet()
to change these default settings after the Array object has been created.

The return value is the newly created ESMF_Array object.

The arguments are:

distgrid ESMF_DistGrid object that describes how the array is decomposed and distributed over DEs. The dim-
Count of distgrid must be smaller or equal to the rank of farrayPtr.

farrayPtr Valid native Fortran array with pointer attribute. Memory must be associated with the actual argument. The
type/kind/rank information of farrayPtr will be used to set Array’s properties accordingly. The shape of
farrayPtrwill be checked against the information contained in the distgrid. The bounds of farrayPtr
will be preserved by this call and the bounds of the resulting Array object are set accordingly.

[datacopyflag] Specifies whether the Array object will reference the memory allocation provided by farrayPtr

directly or will copy the data from farrayPtr into a new memory allocation. For valid values see 52.12. The
default is ESMF_DATACOPY_REFERENCE. Note that the ESMF_DATACOPY_REFERENCE option may not
be safe when providing an array slice in farrayPtr.

[distgridToArrayMap] List that contains as many elements as is indicated by distgrids’s dimCount. The list
elements map each dimension of the DistGrid object to a dimension in farrayPtr by specifying the ap-
propriate Array dimension index. The default is to map all of distgrid’s dimensions against the lower
dimensions of the farrayPtr argument in sequence, i.e. distgridToArrayMap = (/1, 2, .../).
Unmapped farrayPtr dimensions are not decomposed dimensions and form a tensor of rank = Array.rank
- DistGrid.dimCount. All distgridToArrayMap entries must be greater than or equal to zero and smaller
than or equal to the Array rank. It is erroneous to specify the same entry multiple times unless it is zero. If the
Array rank is less than the DistGrid dimCount then the default distgridToArrayMap will contain zeros for the
dimCount - rank rightmost entries. A zero entry in the distgridToArrayMap indicates that the particular
DistGrid dimension will be replicating the Array across the DEs along this direction.

[computationalEdgeLWidth] This vector argument must have dimCount elements, where dimCount is specified
in distgrid. It specifies the lower corner of the computational region with respect to the lower corner of the
exclusive region for DEs that are located on the edge of a tile. The default is a zero vector.

[computationalEdgeUWidth] This vector argument must have dimCount elements, where dimCount is specified
in distgrid. It specifies the upper corner of the computational region with respect to the upper corner of the
exclusive region for DEs that are located on the edge of a tile. The default is a zero vector.

[computationalLWidth] This vector argument must have dimCount elements, where dimCount is specified in dist-
grid. It specifies the lower corner of the computational region with respect to the lower corner of the exclusive
region. The default is a zero vector.

584

[computationalUWidth] This vector argument must have dimCount elements, where dimCount is specified in dist-
grid. It specifies the upper corner of the computational region with respect to the upper corner of the exclusive
region. The default is a zero vector.

[totalLWidth] This vector argument must have dimCount elements, where dimCount is specified in distgrid. It
specifies the lower corner of the total memory region with respect to the lower corner of the exclusive region.
The default is to accommodate the union of exclusive and computational region exactly.

[totalUWidth] This vector argument must have dimCount elements, where dimCount is specified in distgrid. It
specifies the upper corner of the total memory region with respect to the upper corner of the exclusive region.
The default is a vector that contains the remaining number of elements in each direction as to fit the union of
exclusive and computational region into the memory region provided by the farrayPtr argument.

[name] Name of the Array object.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28.5.6 ESMF_ArrayCreate - Create Array object from Fortran array pointer w/ arbitrary seqIndices for halo

INTERFACE:

! Private name; call using ESMF_ArrayCreate()

function ESMF_ArrayCreateFrmPtrArb<indexkind><rank><type><kind>(distgrid, &

farrayPtr, haloSeqIndexList, datacopyflag, &

distgridToArrayMap, name, rc)

RETURN VALUE:

type(ESMF_Array) :: ESMF_ArrayCreateDataPtrArb<rank><type><kind>

ARGUMENTS:

type(ESMF_DistGrid), intent(in) :: distgrid

<type> (ESMF_KIND_<kind>), pointer :: farrayPtr(<rank>)

integer(ESMF_KIND_<indexkind>), intent(in) :: haloSeqIndexList(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_DataCopy_Flag), intent(in), optional :: datacopyflag

integer, intent(in), optional :: distgridToArrayMap(:)

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

585

DESCRIPTION:

Create an ESMF_Array object from existing local native Fortran arrays with pointer attribute, according to distgrid.
Besides farrayPtr each PET must issue this call with identical arguments in order to create a consistent Array
object. The bounds of the local arrays are preserved by this call and determine the bounds of the total region of the
resulting Array object. Bounds of the DE-local exclusive regions are set to be consistent with the total regions and the
specified distgrid argument. Bounds for Array dimensions that are not distributed are automatically set to the bounds
provided by farrayPtr.

This interface requires a 1 DE per PET decomposition. The Array object will not be created and an error will be
returned if this condition is not met.

The not distributed Array dimensions form a tensor of rank = array.rank - distgrid.dimCount. The widths of the com-
putational region are set to the provided value, or zero by default, for all tensor elements. Use ESMF_ArraySet()
to change these default settings after the Array object has been created.

The return value is the newly created ESMF_Array object.

The arguments are:

distgrid ESMF_DistGrid object that describes how the array is decomposed and distributed over DEs. The dim-
Count of distgrid must be smaller or equal to the rank of farrayPtr.

farrayPtr Valid native Fortran array with pointer attribute. Memory must be associated with the actual argument. The
type/kind/rank information of farrayPtr will be used to set Array’s properties accordingly. The shape of
farrayPtrwill be checked against the information contained in the distgrid. The bounds of farrayPtr
will be preserved by this call and the bounds of the resulting Array object are set accordingly.

haloSeqIndexList One dimensional array containing sequence indices of local halo region. The size (and content)
of haloSeqIndexList can (and typically will) be different on each PET. The haloSeqIndexList ar-
gument is of integer type, but can be of different kind in order to support both 32-bit (ESMF_KIND_I4) and
64-bit (ESMF_KIND_I8) indexing.

[datacopyflag] Specifies whether the Array object will reference the memory allocation provided by farrayPtr

directly or will copy the data from farrayPtr into a new memory allocation. For valid values see 52.12. The
default is ESMF_DATACOPY_REFERENCE. Note that the ESMF_DATACOPY_REFERENCE option may not
be safe when providing an array slice in farrayPtr.

[distgridToArrayMap] List that contains as many elements as is indicated by distgrids’s dimCount. The list
elements map each dimension of the DistGrid object to a dimension in farrayPtr by specifying the ap-
propriate Array dimension index. The default is to map all of distgrid’s dimensions against the lower
dimensions of the farrayPtr argument in sequence, i.e. distgridToArrayMap = (/1, 2, .../).
Unmapped farrayPtr dimensions are not decomposed dimensions and form a tensor of rank = Array.rank
- DistGrid.dimCount. All distgridToArrayMap entries must be greater than or equal to zero and smaller
than or equal to the Array rank. It is erroneous to specify the same entry multiple times unless it is zero. If the
Array rank is less than the DistGrid dimCount then the default distgridToArrayMap will contain zeros for the
dimCount - rank rightmost entries. A zero entry in the distgridToArrayMap indicates that the particular
DistGrid dimension will be replicating the Array across the DEs along this direction.

[name] Name of the Array object.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

586

28.5.7 ESMF_ArrayCreate - Create Array object from Fortran array

INTERFACE:

! Private name; call using ESMF_ArrayCreate()

function ESMF_ArrayCreateAsmdSp<rank><type><kind>(distgrid, farray, &

indexflag, datacopyflag, distgridToArrayMap, &

computationalEdgeLWidth, computationalEdgeUWidth, computationalLWidth, &

computationalUWidth, totalLWidth, &

totalUWidth, undistLBound, undistUBound, name, rc)

RETURN VALUE:

type(ESMF_Array) :: ESMF_ArrayCreateDataAssmdShape<rank><type><kind>

ARGUMENTS:

type(ESMF_DistGrid), intent(in) :: distgrid

<type> (ESMF_KIND_<kind>), intent(in), target :: farray(<rank>)

type(ESMF_Index_Flag), intent(in) :: indexflag

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_DataCopy_Flag), intent(in), optional :: datacopyflag

integer, intent(in), optional :: distgridToArrayMap(:)

integer, intent(in), optional :: computationalEdgeLWidth(:)

integer, intent(in), optional :: computationalEdgeUWidth(:)

integer, intent(in), optional :: computationalLWidth(:)

integer, intent(in), optional :: computationalUWidth(:)

integer, intent(in), optional :: totalLWidth(:)

integer, intent(in), optional :: totalUWidth(:)

integer, intent(in), optional :: undistLBound(:)

integer, intent(in), optional :: undistUBound(:)

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Create an ESMF_Array object from an existing local native Fortran array. The decomposition and distribution is
specified by the distgrid argument. Each PET must issue this call with identical arguments in order to create a
consistent Array object. The only exception is the farray argument which will be different on each PET. The local
arrays provided must be dimensioned according to the DE-local total region. Bounds of the exclusive regions are set
as specified in the distgrid argument. Bounds for Array dimensions that are not distributed can be chosen freely
using the undistLBound and undistUBound arguments.

This interface requires a 1 DE per PET decomposition. The Array object will not be created and an error will be
returned if this condition is not met.

587

The not distributed Array dimensions form a tensor of rank = array.rank - distgrid.dimCount. The widths of the com-
putational region are set to the provided value, or zero by default, for all tensor elements. Use ESMF_ArraySet()
to change these default settings after the Array object has been created.

The return value is the newly created ESMF_Array object.

The arguments are:

distgrid ESMF_DistGrid object that describes how the array is decomposed and distributed over DEs. The dim-
Count of distgrid must be smaller or equal to the rank of farray.

farray Valid native Fortran array, i.e. memory must be associated with the actual argument. The type/kind/rank
information of farray will be used to set Array’s properties accordingly. The shape of farray will be
checked against the information contained in the distgrid.

indexflag Indicate how DE-local indices are defined. See section 52.27 for a list of valid indexflag options.

[datacopyflag] Specifies whether the Array object will reference the memory allocation provided by farray directly
or will copy the data from farray into a new memory allocation. For valid values see 52.12. The default
is ESMF_DATACOPY_REFERENCE. Note that the ESMF_DATACOPY_REFERENCE option may not be safe
when providing an array slice in farray.

[distgridToArrayMap] List that contains as many elements as is indicated by distgrids’s dimCount. The list el-
ements map each dimension of the DistGrid object to a dimension in farray by specifying the appropriate Ar-
ray dimension index. The default is to map all of distgrid’s dimensions against the lower dimensions of the
farray argument in sequence, i.e. distgridToArrayMap = (/1, 2, .../). Unmapped farray

dimensions are not decomposed dimensions and form a tensor of rank = Array.rank - DistGrid.dimCount. All
distgridToArrayMap entries must be greater than or equal to zero and smaller than or equal to the Array
rank. It is erroneous to specify the same entry multiple times unless it is zero. If the Array rank is less than the
DistGrid dimCount then the default distgridToArrayMap will contain zeros for the dimCount - rank rightmost
entries. A zero entry in the distgridToArrayMap indicates that the particular DistGrid dimension will be
replicating the Array across the DEs along this direction.

[computationalEdgeLWidth] This vector argument must have dimCount elements, where dimCount is specified
in distgrid. It specifies the lower corner of the computational region with respect to the lower corner of the
exclusive region for DEs that are located on the edge of a tile. The default is a zero vector.

[computationalEdgeUWidth] This vector argument must have dimCount elements, where dimCount is specified
in distgrid. It specifies the upper corner of the computational region with respect to the upper corner of the
exclusive region for DEs that are located on the edge of a tile. The default is a zero vector.

[computationalLWidth] This vector argument must have dimCount elements, where dimCount is specified in dist-
grid. It specifies the lower corner of the computational region with respect to the lower corner of the exclusive
region. The default is a zero vector.

[computationalUWidth] This vector argument must have dimCount elements, where dimCount is specified in dist-
grid. It specifies the upper corner of the computational region with respect to the upper corner of the exclusive
region. The default is a zero vector.

[totalLWidth] This vector argument must have dimCount elements, where dimCount is specified in distgrid. It
specifies the lower corner of the total memory region with respect to the lower corner of the exclusive region.
The default is to accommodate the union of exclusive and computational region exactly.

[totalUWidth] This vector argument must have dimCount elements, where dimCount is specified in distgrid. It
specifies the upper corner of the total memory region with respect to the upper corner of the exclusive region.
The default is a vector that contains the remaining number of elements in each direction as to fit the union of
exclusive and computational region into the memory region provided by the farray argument.

[undistLBound] Lower bounds for the array dimensions that are not distributed. By default lbound is 1.

588

[undistUBound] Upper bounds for the array dimensions that are not distributed. By default ubound is equal to the
extent of the corresponding dimension in farray.

[name] Name of the Array object.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28.5.8 ESMF_ArrayCreate - Create Array object from Fortran array w/ arbitrary seqIndices for halo

INTERFACE:

! Private name; call using ESMF_ArrayCreate()

function ESMF_ArrayCreateAsmdSpArb<indexkind><rank><type><kind>(distgrid, &

farray, indexflag, haloSeqIndexList, datacopyflag, &

distgridToArrayMap, computationalEdgeLWidth, computationalEdgeUWidth, &

computationalLWidth, computationalUWidth, totalLWidth, totalUWidth, &

undistLBound, undistUBound, name, rc)

RETURN VALUE:

type(ESMF_Array) :: ESMF_ArrayCreateDataAssmdShapeArb<rank><type><kind>

ARGUMENTS:

type(ESMF_DistGrid), intent(in) :: distgrid

<type> (ESMF_KIND_<kind>), intent(in), target :: farray(<rank>)

type(ESMF_Index_Flag), intent(in) :: indexflag

integer(ESMF_KIND_<indexkind>), intent(in) :: haloSeqIndexList(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_DataCopy_Flag), intent(in), optional :: datacopyflag

integer, intent(in), optional :: distgridToArrayMap(:)

integer, intent(in), optional :: computationalEdgeLWidth(:)

integer, intent(in), optional :: computationalEdgeUWidth(:)

integer, intent(in), optional :: computationalLWidth(:)

integer, intent(in), optional :: computationalUWidth(:)

integer, intent(in), optional :: totalLWidth(:)

integer, intent(in), optional :: totalUWidth(:)

integer, intent(in), optional :: undistLBound(:)

integer, intent(in), optional :: undistUBound(:)

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

589

DESCRIPTION:

Create an ESMF_Array object from an existing local native Fortran array. The decomposition and distribution is
specified by the distgrid argument. Each PET must issue this call with identical arguments in order to create a
consistent Array object. The only exception is the farray argument which will be different on each PET. The local
arrays provided must be dimensioned according to the DE-local total region. Bounds of the exclusive regions are set
as specified in the distgrid argument. Bounds for Array dimensions that are not distributed can be chosen freely
using the undistLBound and undistUBound arguments.

This interface requires a 1 DE per PET decomposition. The Array object will not be created and an error will be
returned if this condition is not met.

The not distributed Array dimensions form a tensor of rank = array.rank - distgrid.dimCount. The widths of the com-
putational region are set to the provided value, or zero by default, for all tensor elements. Use ESMF_ArraySet()
to change these default settings after the Array object has been created.

The return value is the newly created ESMF_Array object.

The arguments are:

distgrid ESMF_DistGrid object that describes how the array is decomposed and distributed over DEs. The dim-
Count of distgrid must be smaller or equal to the rank of farray.

farray Valid native Fortran array, i.e. memory must be associated with the actual argument. The type/kind/rank
information of farray will be used to set Array’s properties accordingly. The shape of farray will be
checked against the information contained in the distgrid.

indexflag Indicate how DE-local indices are defined. See section 52.27 for a list of valid indexflag options.

haloSeqIndexList One dimensional array containing sequence indices of local halo region. The size (and content)
of haloSeqIndexList can (and typically will) be different on each PET. The haloSeqIndexList ar-
gument is of integer type, but can be of different kind in order to support both 32-bit (ESMF_KIND_I4) and
64-bit (ESMF_KIND_I8) indexing.

[datacopyflag] Specifies whether the Array object will reference the memory allocation provided by farray directly
or will copy the data from farray into a new memory allocation. For valid values see 52.12. The default
is ESMF_DATACOPY_REFERENCE. Note that the ESMF_DATACOPY_REFERENCE option may not be safe
when providing an array slice in farray.

[distgridToArrayMap] List that contains as many elements as is indicated by distgrids’s dimCount. The list el-
ements map each dimension of the DistGrid object to a dimension in farray by specifying the appropriate Ar-
ray dimension index. The default is to map all of distgrid’s dimensions against the lower dimensions of the
farray argument in sequence, i.e. distgridToArrayMap = (/1, 2, .../). Unmapped farray

dimensions are not decomposed dimensions and form a tensor of rank = Array.rank - DistGrid.dimCount. All
distgridToArrayMap entries must be greater than or equal to zero and smaller than or equal to the Array
rank. It is erroneous to specify the same entry multiple times unless it is zero. If the Array rank is less than the
DistGrid dimCount then the default distgridToArrayMap will contain zeros for the dimCount - rank rightmost
entries. A zero entry in the distgridToArrayMap indicates that the particular DistGrid dimension will be
replicating the Array across the DEs along this direction.

[computationalEdgeLWidth] This vector argument must have dimCount elements, where dimCount is specified
in distgrid. It specifies the lower corner of the computational region with respect to the lower corner of the
exclusive region for DEs that are located on the edge of a tile. The default is a zero vector.

[computationalEdgeUWidth] This vector argument must have dimCount elements, where dimCount is specified
in distgrid. It specifies the upper corner of the computational region with respect to the upper corner of the
exclusive region for DEs that are located on the edge of a tile. The default is a zero vector.

590

[computationalLWidth] This vector argument must have dimCount elements, where dimCount is specified in dist-
grid. It specifies the lower corner of the computational region with respect to the lower corner of the exclusive
region. The default is a zero vector.

[computationalUWidth] This vector argument must have dimCount elements, where dimCount is specified in dist-
grid. It specifies the upper corner of the computational region with respect to the upper corner of the exclusive
region. The default is a zero vector.

[totalLWidth] This vector argument must have dimCount elements, where dimCount is specified in distgrid. It
specifies the lower corner of the total memory region with respect to the lower corner of the exclusive region.
The default is to accommodate the union of exclusive and computational region exactly.

[totalUWidth] This vector argument must have dimCount elements, where dimCount is specified in distgrid. It
specifies the upper corner of the total memory region with respect to the upper corner of the exclusive region.
The default is a vector that contains the remaining number of elements in each direction as to fit the union of
exclusive and computational region into the memory region provided by the farray argument.

[undistLBound] Lower bounds for the array dimensions that are not distributed. By default lbound is 1.

[undistUBound] Upper bounds for the array dimensions that are not distributed. By default ubound is equal to the
extent of the corresponding dimension in farray.

[name] Name of the Array object.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28.5.9 ESMF_ArrayCreate - Create Array object from a list of LocalArray objects

INTERFACE:

! Private name; call using ESMF_ArrayCreate()

function ESMF_ArrayCreateLocalArray(distgrid, localarrayList, &

indexflag, datacopyflag, distgridToArrayMap, computationalEdgeLWidth, &

computationalEdgeUWidth, computationalLWidth, computationalUWidth, &

totalLWidth, totalUWidth, undistLBound, undistUBound, name, rc)

RETURN VALUE:

type(ESMF_Array) :: ESMF_ArrayCreateLocalArray

ARGUMENTS:

type(ESMF_DistGrid), intent(in) :: distgrid

type(ESMF_LocalArray), intent(in) :: localarrayList(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Index_Flag), intent(in), optional :: indexflag

type(ESMF_DataCopy_Flag),intent(in), optional :: datacopyflag

integer, intent(in), optional :: distgridToArrayMap(:)

integer, intent(in), optional :: computationalEdgeLWidth(:)

integer, intent(in), optional :: computationalEdgeUWidth(:)

integer, intent(in), optional :: computationalLWidth(:)

integer, intent(in), optional :: computationalUWidth(:)

591

integer, intent(in), optional :: totalLWidth(:)

integer, intent(in), optional :: totalUWidth(:)

integer, intent(in), optional :: undistLBound(:)

integer, intent(in), optional :: undistUBound(:)

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Create an ESMF_Array object from existing ESMF_LocalArray objects. The decomposition and distribution is
specified by the distgrid argument. Each PET must issue this call with identical arguments in order to create a
consistent Array object. The only exception is the localarrayList argument which will be different on each
PET. The local arrays provided must be dimensioned according to the DE-local total region. Bounds of the exclusive
regions are set as specified in the distgrid argument. Bounds for Array dimensions that are not distributed can be
chosen freely using the undistLBound and undistUBound arguments.

This interface is able to handle multiple DEs per PET.

The not distributed Array dimensions form a tensor of rank = array.rank - distgrid.dimCount. The widths of the com-
putational region are set to the provided value, or zero by default, for all tensor elements. Use ESMF_ArraySet()
to change these default settings after the Array object has been created.

The return value is the newly created ESMF_Array object.

The arguments are:

distgrid ESMF_DistGrid object that describes how the array is decomposed and distributed over DEs. The dim-
Count of distgrid must be smaller or equal to the rank specified in arrayspec, otherwise a runtime ESMF error
will be raised.

localarrayList List of valid ESMF_LocalArray objects, i.e. memory must be associated with the actual arguments.
The type/kind/rank information of all localarrayList elements must be identical and will be used to set
Array’s properties accordingly. The shape of each localarrayList element will be checked against the
information contained in the distgrid.

[indexflag] Indicate how DE-local indices are defined. By default, the exclusive region of each DE is placed to start
at the local index space origin, i.e. (1, 1, ..., 1). Alternatively the DE-local index space can be aligned with the
global index space, if a global index space is well defined by the associated DistGrid. See section 52.27 for a
list of valid indexflag options.

[datacopyflag] Specifies whether the Array object will reference the memory allocation of the arrays provided in
localarrayList directly, or will copy the actual data into new memory allocations. For valid values see
52.12. The default is ESMF_DATACOPY_REFERENCE.

[distgridToArrayMap] List that contains as many elements as is indicated by distgrids’s dimCount. The list
elements map each dimension of the DistGrid object to a dimension in the localarrayList elements
by specifying the appropriate Array dimension index. The default is to map all of distgrid’s dimensions
against the lower dimensions of the localarrayList elements in sequence, i.e. distgridToArrayMap
= (/1, 2, .../). Unmapped dimensions in the localarrayList elements are not decomposed di-
mensions and form a tensor of rank = Array.rank - DistGrid.dimCount. All distgridToArrayMap entries
must be greater than or equal to zero and smaller than or equal to the Array rank. It is erroneous to specify
the same entry multiple times unless it is zero. If the Array rank is less than the DistGrid dimCount then the

592

default distgridToArrayMap will contain zeros for the dimCount - rank rightmost entries. A zero entry in the
distgridToArrayMap indicates that the particular DistGrid dimension will be replicating the Array across
the DEs along this direction.

[computationalEdgeLWidth] This vector argument must have dimCount elements, where dimCount is specified
in distgrid. It specifies the lower corner of the computational region with respect to the lower corner of the
exclusive region for DEs that are located on the edge of a tile.

[computationalEdgeUWidth] This vector argument must have dimCount elements, where dimCount is specified
in distgrid. It specifies the upper corner of the computational region with respect to the upper corner of the
exclusive region for DEs that are located on the edge of a tile.

[computationalLWidth] This vector argument must have dimCount elements, where dimCount is specified in dist-
grid. It specifies the lower corner of the computational region with respect to the lower corner of the exclusive
region. The default is a zero vector.

[computationalUWidth] This vector argument must have dimCount elements, where dimCount is specified in dist-
grid. It specifies the upper corner of the computational region with respect to the upper corner of the exclusive
region. The default is a zero vector.

[totalLWidth] This vector argument must have dimCount elements, where dimCount is specified in distgrid. It
specifies the lower corner of the total memory region with respect to the lower corner of the exclusive region.
The default is to accommodate the union of exclusive and computational region exactly.

[totalUWidth] This vector argument must have dimCount elements, where dimCount is specified in distgrid. It
specifies the upper corner of the total memory region with respect to the upper corner of the exclusive region.
The default is a vector that contains the remaining number of elements in each direction as to fit the union of
exclusive and computational region into the memory region provided by the localarrayList argument.

[undistLBound] Lower bounds for the array dimensions that are not distributed. By default lbound is 1.

[undistUBound] Upper bounds for the array dimensions that are not distributed. By default ubound is equal to the
extent of the corresponding dimension in localarrayList.

[name] Name of the Array object.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28.5.10 ESMF_ArrayCreate - Create Array object from a list of LocalArray objects w/ arbitrary seqIndices

for halo

INTERFACE:

! Private name; call using ESMF_ArrayCreate()

function ESMF_ArrayCreateLocalArrayArb<indexkind>(distgrid, localarrayList, &

haloSeqIndexList, indexflag, datacopyflag, &

distgridToArrayMap, computationalEdgeLWidth, computationalEdgeUWidth, &

computationalLWidth, computationalUWidth, &

totalLWidth, totalUWidth, undistLBound, undistUBound, name, rc)

RETURN VALUE:

type(ESMF_Array) :: ESMF_ArrayCreateLocalArrayArb

593

ARGUMENTS:

type(ESMF_DistGrid), intent(in) :: distgrid

type(ESMF_LocalArray), intent(in) :: localarrayList(:)

integer(ESMF_KIND_<indexkind>), intent(in) :: haloSeqIndexList(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Index_Flag), intent(in), optional :: indexflag

type(ESMF_DataCopy_Flag),intent(in), optional :: datacopyflag

integer, intent(in), optional :: distgridToArrayMap(:)

integer, intent(in), optional :: computationalEdgeLWidth(:)

integer, intent(in), optional :: computationalEdgeUWidth(:)

integer, intent(in), optional :: computationalLWidth(:)

integer, intent(in), optional :: computationalUWidth(:)

integer, intent(in), optional :: totalLWidth(:)

integer, intent(in), optional :: totalUWidth(:)

integer, intent(in), optional :: undistLBound(:)

integer, intent(in), optional :: undistUBound(:)

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

7.0.0 Added arguments indexflag, computationalEdgeLWidth, computationalEdgeUWidth,
computationalLWidth, computationalUWidth, totalLWidth, totalUWidth. These ar-
guments were missed in previous versions by mistake.

DESCRIPTION:

Create an ESMF_Array object from existing ESMF_LocalArray objects according to distgrid. Each PET must
issue this call in unison in order to create a consistent Array object. The local arrays provided must be dimensioned
according to the DE-local total region. Bounds of the exclusive regions are set as specified in the distgrid argu-
ment. Bounds for array dimensions that are not distributed can be chosen freely using the undistLBound and
undistUBound arguments.

The return value is the newly created ESMF_Array object.

The arguments are:

distgrid ESMF_DistGrid object that describes how the array is decomposed and distributed over DEs. The dim-
Count of distgrid must be smaller or equal to the rank specified in arrayspec, otherwise a runtime ESMF error
will be raised.

localarrayList List of valid ESMF_LocalArray objects, i.e. memory must be associated with the actual arguments.
The type/kind/rank information of all localarrayList elements must be identical and will be used to set
Array’s properties accordingly. The shape of each localarrayList element will be checked against the
information contained in the distgrid.

594

haloSeqIndexList One dimensional array containing sequence indices of local halo region. The size (and content)
of haloSeqIndexList can (and typically will) be different on each PET. The haloSeqIndexList ar-
gument is of integer type, but can be of different kind in order to support both 32-bit (ESMF_KIND_I4) and
64-bit (ESMF_KIND_I8) indexing.

[indexflag] Indicate how DE-local indices are defined. By default, the exclusive region of each DE is placed to start
at the local index space origin, i.e. (1, 1, ..., 1). Alternatively the DE-local index space can be aligned with the
global index space, if a global index space is well defined by the associated DistGrid. See section 52.27 for a
list of valid indexflag options.

[datacopyflag] Specifies whether the Array object will reference the memory allocation of the arrays provided in
localarrayList directly, or will copy the actual data into new memory allocations. For valid values see
52.12. The default is ESMF_DATACOPY_REFERENCE.

[distgridToArrayMap] List that contains as many elements as is indicated by distgrids’s dimCount. The list
elements map each dimension of the DistGrid object to a dimension in the localarrayList elements
by specifying the appropriate Array dimension index. The default is to map all of distgrid’s dimensions
against the lower dimensions of the localarrayList elements in sequence, i.e. distgridToArrayMap
= (/1, 2, .../). Unmapped dimensions in the localarrayList elements are not decomposed di-
mensions and form a tensor of rank = Array.rank - DistGrid.dimCount. All distgridToArrayMap entries
must be greater than or equal to zero and smaller than or equal to the Array rank. It is erroneous to specify
the same entry multiple times unless it is zero. If the Array rank is less than the DistGrid dimCount then the
default distgridToArrayMap will contain zeros for the dimCount - rank rightmost entries. A zero entry in the
distgridToArrayMap indicates that the particular DistGrid dimension will be replicating the Array across
the DEs along this direction.

[computationalEdgeLWidth] This vector argument must have dimCount elements, where dimCount is specified
in distgrid. It specifies the lower corner of the computational region with respect to the lower corner of the
exclusive region for DEs that are located on the edge of a tile.

[computationalEdgeUWidth] This vector argument must have dimCount elements, where dimCount is specified
in distgrid. It specifies the upper corner of the computational region with respect to the upper corner of the
exclusive region for DEs that are located on the edge of a tile.

[computationalLWidth] This vector argument must have dimCount elements, where dimCount is specified in dist-
grid. It specifies the lower corner of the computational region with respect to the lower corner of the exclusive
region. The default is a zero vector.

[computationalUWidth] This vector argument must have dimCount elements, where dimCount is specified in dist-
grid. It specifies the upper corner of the computational region with respect to the upper corner of the exclusive
region. The default is a zero vector.

[totalLWidth] This vector argument must have dimCount elements, where dimCount is specified in distgrid. It
specifies the lower corner of the total memory region with respect to the lower corner of the exclusive region.
The default is to accommodate the union of exclusive and computational region exactly.

[totalUWidth] This vector argument must have dimCount elements, where dimCount is specified in distgrid. It
specifies the upper corner of the total memory region with respect to the upper corner of the exclusive region.
The default is a vector that contains the remaining number of elements in each direction as to fit the union of
exclusive and computational region into the memory region provided by the localarrayList argument.

[undistLBound] Lower bounds for the array dimensions that are not distributed. By default lbound is 1.

[undistUBound] Upper bounds for the array dimensions that are not distributed. By default ubound is equal to the
extent of the corresponding dimension in localarrayList.

[name] Name of the Array object.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

595

28.5.11 ESMF_ArrayCreate - Create Array object from typekind (allocate memory)

INTERFACE:

! Private name; call using ESMF_ArrayCreate()

function ESMF_ArrayCreateAllocate(distgrid, typekind, &

indexflag, pinflag, distgridToArrayMap, computationalEdgeLWidth, &

computationalEdgeUWidth, computationalLWidth, computationalUWidth, &

totalLWidth, totalUWidth, undistLBound, undistUBound, name, vm, rc)

RETURN VALUE:

type(ESMF_Array) :: ESMF_ArrayCreateAllocate

ARGUMENTS:

type(ESMF_DistGrid), intent(in) :: distgrid

type(ESMF_TypeKind_Flag), intent(in) :: typekind

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Index_Flag), intent(in), optional :: indexflag

type(ESMF_Pin_Flag), intent(in), optional :: pinflag

integer, intent(in), optional :: distgridToArrayMap(:)

integer, intent(in), optional :: computationalEdgeLWidth(:)

integer, intent(in), optional :: computationalEdgeUWidth(:)

integer, intent(in), optional :: computationalLWidth(:)

integer, intent(in), optional :: computationalUWidth(:)

integer, intent(in), optional :: totalLWidth(:)

integer, intent(in), optional :: totalUWidth(:)

integer, intent(in), optional :: undistLBound(:)

integer, intent(in), optional :: undistUBound(:)

character (len=*), intent(in), optional :: name

type(ESMF_VM), intent(in), optional :: vm

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

6.3.0r Added argument vm to support object creation on a different VM than that of the current context.

8.0.0 Added argument pinflag to provide access to DE sharing between PETs.

DESCRIPTION:

Create an ESMF_Array object and allocate uninitialized data space according to typekind and distgrid. The Array
rank is indirectly determined by the incoming information. Each PET must issue this call in unison in order to create

596

a consistent Array object. DE-local allocations are made according to the total region defined by the distgrid and
the optional Width arguments.

The return value is the newly created ESMF_Array object.

The arguments are:

distgrid ESMF_DistGrid object that describes how the array is decomposed and distributed over DEs. The dim-
Count of distgrid must be smaller or equal to the rank specified in arrayspec, otherwise a runtime ESMF error
will be raised.

typekind The typekind of the Array. See section 52.59 for a list of valid typekind options.

[indexflag] Indicate how DE-local indices are defined. By default, the exclusive region of each DE is placed to start
at the local index space origin, i.e. (1, 1, ..., 1). Alternatively the DE-local index space can be aligned with the
global index space, if a global index space is well defined by the associated DistGrid. See section 52.27 for a
list of valid indexflag options.

[pinflag] Specify which type of resource DEs are pinned to. See section 48.2.1 for a list of valid pinning options. The
default is to pin DEs to PETs, i.e. only the PET on which a DE was created considers the DE as local.

[distgridToArrayMap] List that contains as many elements as is indicated by distgrids’s dimCount. The list
elements map each dimension of the DistGrid object to a dimension in the newly allocated Array object by
specifying the appropriate Array dimension index. The default is to map all of distgrid’s dimensions against
the lower dimensions of the Array object in sequence, i.e. distgridToArrayMap = (/1, 2, .../).
Unmapped dimensions in the Array object are not decomposed dimensions and form a tensor of rank = Ar-
ray.rank - DistGrid.dimCount. All distgridToArrayMap entries must be greater than or equal to zero and
smaller than or equal to the Array rank. It is erroneous to specify the same entry multiple times unless it is
zero. If the Array rank is less than the DistGrid dimCount then the default distgridToArrayMap will contain
zeros for the dimCount - rank rightmost entries. A zero entry in the distgridToArrayMap indicates that
the particular DistGrid dimension will be replicating the Array across the DEs along this direction.

[computationalEdgeLWidth] This vector argument must have dimCount elements, where dimCount is specified
in distgrid. It specifies the lower corner of the computational region with respect to the lower corner of the
exclusive region for DEs that are located on the edge of a tile.

[computationalEdgeUWidth] This vector argument must have dimCount elements, where dimCount is specified
in distgrid. It specifies the upper corner of the computational region with respect to the upper corner of the
exclusive region for DEs that are located on the edge of a tile.

[computationalLWidth] This vector argument must have dimCount elements, where dimCount is specified in dist-
grid. It specifies the lower corner of the computational region with respect to the lower corner of the exclusive
region. The default is a zero vector.

[computationalUWidth] This vector argument must have dimCount elements, where dimCount is specified in dist-
grid. It specifies the upper corner of the computational region with respect to the upper corner of the exclusive
region. The default is a zero vector.

[totalLWidth] This vector argument must have dimCount elements, where dimCount is specified in distgrid. It
specifies the lower corner of the total memory region with respect to the lower corner of the exclusive region.
The default is to accommodate the union of exclusive and computational region.

[totalUWidth] This vector argument must have dimCount elements, where dimCount is specified in distgrid. It
specifies the upper corner of the total memory region with respect to the upper corner of the exclusive region.
The default is to accommodate the union of exclusive and computational region.

[undistLBound] Lower bounds for the array dimensions that are not distributed.

[undistUBound] Upper bounds for the array dimensions that are not distributed.

597

[name] Name of the Array object.

[vm] If present, the Array object is created on the specified ESMF_VM object. The default is to create on the VM of
the current context.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28.5.12 ESMF_ArrayCreate - Create Array object from typekind (allocate memory) w/ arbitrary seqIndices

for halo

INTERFACE:

! Private name; call using ESMF_ArrayCreate()

function ESMF_ArrayCreateAllocateArb<indexkind>(distgrid, typekind, &

haloSeqIndexList, pinflag, distgridToArrayMap, &

undistLBound, undistUBound, name, rc)

RETURN VALUE:

type(ESMF_Array) :: ESMF_ArrayCreateAllocateArb

ARGUMENTS:

type(ESMF_DistGrid), intent(in) :: distgrid

type(ESMF_TypeKind_Flag), intent(in) :: typekind

integer(ESMF_KIND_<indexkind>), intent(in) :: haloSeqIndexList(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Pin_Flag), intent(in), optional :: pinflag

integer, intent(in), optional :: distgridToArrayMap(:)

integer, intent(in), optional :: undistLBound(:)

integer, intent(in), optional :: undistUBound(:)

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

8.0.0 Added argument pinflag to provide access to DE sharing between PETs.

DESCRIPTION:

598

Create an ESMF_Array object and allocate uninitialized data space according to typekind and distgrid. The Array
rank is indirectly determined by the incoming information. Each PET must issue this call in unison in order to create
a consistent Array object. DE-local allocations are made according to the total region defined by the distgrid and
haloSeqIndexList arguments.

The return value is the newly created ESMF_Array object.

The arguments are:

distgrid ESMF_DistGrid object that describes how the array is decomposed and distributed over DEs. The dim-
Count of distgrid must be smaller or equal to the rank specified in arrayspec, otherwise a runtime ESMF error
will be raised.

typekind The typekind of the Array. See section 52.59 for a list of valid typekind options.

haloSeqIndexList One dimensional array containing sequence indices of local halo region. The size (and content)
of haloSeqIndexList can (and typically will) be different on each PET. The haloSeqIndexList ar-
gument is of integer type, but can be of different kind in order to support both 32-bit (ESMF_KIND_I4) and
64-bit (ESMF_KIND_I8) indexing.

[pinflag] Specify which type of resource DEs are pinned to. See section 48.2.1 for a list of valid pinning options. The
default is to pin DEs to PETs, i.e. only the PET on which a DE was created considers the DE as local.

[distgridToArrayMap] List that contains as many elements as is indicated by distgrids’s dimCount. The list
elements map each dimension of the DistGrid object to a dimension in the newly allocated Array object by
specifying the appropriate Array dimension index. The default is to map all of distgrid’s dimensions against
the lower dimensions of the Array object in sequence, i.e. distgridToArrayMap = (/1, 2, .../).
Unmapped dimensions in the Array object are not decomposed dimensions and form a tensor of rank = Ar-
ray.rank - DistGrid.dimCount. All distgridToArrayMap entries must be greater than or equal to zero and
smaller than or equal to the Array rank. It is erroneous to specify the same entry multiple times unless it is
zero. If the Array rank is less than the DistGrid dimCount then the default distgridToArrayMap will contain
zeros for the dimCount - rank rightmost entries. A zero entry in the distgridToArrayMap indicates that
the particular DistGrid dimension will be replicating the Array across the DEs along this direction.

[undistLBound] Lower bounds for the array dimensions that are not distributed.

[undistUBound] Upper bounds for the array dimensions that are not distributed.

[name] Name of the Array object.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28.5.13 ESMF_ArrayCreate - Create Array object from ArraySpec (allocate memory)

INTERFACE:

! Private name; call using ESMF_ArrayCreate()

function ESMF_ArrayCreateAllocateAS(distgrid, arrayspec, &

indexflag, pinflag, distgridToArrayMap, computationalEdgeLWidth, &

computationalEdgeUWidth, computationalLWidth, computationalUWidth, &

totalLWidth, totalUWidth, undistLBound, undistUBound, name, vm, rc)

RETURN VALUE:

599

type(ESMF_Array) :: ESMF_ArrayCreateAllocateAS

ARGUMENTS:

type(ESMF_DistGrid), intent(in) :: distgrid

type(ESMF_ArraySpec), intent(in) :: arrayspec

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Index_Flag), intent(in), optional :: indexflag

type(ESMF_Pin_Flag), intent(in), optional :: pinflag

integer, intent(in), optional :: distgridToArrayMap(:)

integer, intent(in), optional :: computationalEdgeLWidth(:)

integer, intent(in), optional :: computationalEdgeUWidth(:)

integer, intent(in), optional :: computationalLWidth(:)

integer, intent(in), optional :: computationalUWidth(:)

integer, intent(in), optional :: totalLWidth(:)

integer, intent(in), optional :: totalUWidth(:)

integer, intent(in), optional :: undistLBound(:)

integer, intent(in), optional :: undistUBound(:)

character (len=*), intent(in), optional :: name

type(ESMF_VM), intent(in), optional :: vm

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

6.3.0r Added argument vm to support object creation on a different VM than that of the current context.

8.0.0 Added argument pinflag to provide access to DE sharing between PETs.

DESCRIPTION:

Create an ESMF_Array object and allocate uninitialized data space according to arrayspec and distgrid. Each PET
must issue this call with identical arguments in order to create a consistent Array object. DE-local allocations are made
according to the total region defined by the arguments to this call: distgrid and the optional Width arguments.

The return value is the newly created ESMF_Array object.

The arguments are:

distgrid ESMF_DistGrid object that describes how the array is decomposed and distributed over DEs. The dim-
Count of distgrid must be smaller or equal to the rank specified in arrayspec, otherwise a runtime ESMF error
will be raised.

arrayspec ESMF_ArraySpec object containing the type/kind/rank information.

[indexflag] Indicate how DE-local indices are defined. By default, the exclusive region of each DE is placed to start
at the local index space origin, i.e. (1, 1, ..., 1). Alternatively the DE-local index space can be aligned with the
global index space, if a global index space is well defined by the associated DistGrid. See section 52.27 for a
list of valid indexflag options.

600

[pinflag] Specify which type of resource DEs are pinned to. See section 48.2.1 for a list of valid pinning options. The
default is to pin DEs to PETs, i.e. only the PET on which a DE was created considers the DE as local.

[distgridToArrayMap] List that contains as many elements as is indicated by distgrids’s dimCount. The list
elements map each dimension of the DistGrid object to a dimension in the newly allocated Array object by
specifying the appropriate Array dimension index. The default is to map all of distgrid’s dimensions against
the lower dimensions of the Array object in sequence, i.e. distgridToArrayMap = (/1, 2, .../).
Unmapped dimensions in the Array object are not decomposed dimensions and form a tensor of rank = Ar-
ray.rank - DistGrid.dimCount. All distgridToArrayMap entries must be greater than or equal to zero and
smaller than or equal to the Array rank. It is erroneous to specify the same entry multiple times unless it is
zero. If the Array rank is less than the DistGrid dimCount then the default distgridToArrayMap will contain
zeros for the dimCount - rank rightmost entries. A zero entry in the distgridToArrayMap indicates that
the particular DistGrid dimension will be replicating the Array across the DEs along this direction.

[computationalEdgeLWidth] This vector argument must have dimCount elements, where dimCount is specified
in distgrid. It specifies the lower corner of the computational region with respect to the lower corner of the
exclusive region for DEs that are located on the edge of a tile.

[computationalEdgeUWidth] This vector argument must have dimCount elements, where dimCount is specified
in distgrid. It specifies the upper corner of the computational region with respect to the upper corner of the
exclusive region for DEs that are located on the edge of a tile.

[computationalLWidth] This vector argument must have dimCount elements, where dimCount is specified in dist-
grid. It specifies the lower corner of the computational region with respect to the lower corner of the exclusive
region. The default is a zero vector.

[computationalUWidth] This vector argument must have dimCount elements, where dimCount is specified in dist-
grid. It specifies the upper corner of the computational region with respect to the upper corner of the exclusive
region. The default is a zero vector.

[totalLWidth] This vector argument must have dimCount elements, where dimCount is specified in distgrid. It
specifies the lower corner of the total memory region with respect to the lower corner of the exclusive region.
The default is to accommodate the union of exclusive and computational region.

[totalUWidth] This vector argument must have dimCount elements, where dimCount is specified in distgrid. It
specifies the upper corner of the total memory region with respect to the upper corner of the exclusive region.
The default is to accommodate the union of exclusive and computational region.

[undistLBound] Lower bounds for the array dimensions that are not distributed.

[undistUBound] Upper bounds for the array dimensions that are not distributed.

[name] Name of the Array object.

[vm] If present, the Array object is created on the specified ESMF_VM object. The default is to create on the VM of
the current context.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28.5.14 ESMF_ArrayCreate - Create Array object from ArraySpec (allocate memory) w/ arbitrary seqIndices

for halo

INTERFACE:

601

! Private name; call using ESMF_ArrayCreate()

function ESMF_ArrayCreateAllocateASArb<indexkind>(distgrid, arrayspec, &

haloSeqIndexList, pinflag, distgridToArrayMap, &

undistLBound, undistUBound, name, rc)

RETURN VALUE:

type(ESMF_Array) :: ESMF_ArrayCreateAllocateASArb

ARGUMENTS:

type(ESMF_DistGrid), intent(in) :: distgrid

type(ESMF_ArraySpec), intent(in) :: arrayspec

integer(ESMF_KIND_<indexkind>), intent(in) :: haloSeqIndexList(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Pin_Flag), intent(in), optional :: pinflag

integer, intent(in), optional :: distgridToArrayMap(:)

integer, intent(in), optional :: undistLBound(:)

integer, intent(in), optional :: undistUBound(:)

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

8.0.0 Added argument pinflag to provide access to DE sharing between PETs.

DESCRIPTION:

Create an ESMF_Array object and allocate uninitialized data space according to arrayspec and distgrid. Each PET
must issue this call in unison in order to create a consistent Array object. DE-local allocations are made according to
the total region defined by the arguments to this call: distgrid and haloSeqIndexList arguments.

The return value is the newly created ESMF_Array object.

The arguments are:

distgrid ESMF_DistGrid object that describes how the array is decomposed and distributed over DEs. The dim-
Count of distgrid must be smaller or equal to the rank specified in arrayspec, otherwise a runtime ESMF error
will be raised.

arrayspec ESMF_ArraySpec object containing the type/kind/rank information.

haloSeqIndexList One dimensional array containing sequence indices of local halo region. The size (and content)
of haloSeqIndexList can (and typically will) be different on each PET. The haloSeqIndexList ar-
gument is of integer type, but can be of different kind in order to support both 32-bit (ESMF_KIND_I4) and
64-bit (ESMF_KIND_I8) indexing.

602

[pinflag] Specify which type of resource DEs are pinned to. See section 48.2.1 for a list of valid pinning options. The
default is to pin DEs to PETs, i.e. only the PET on which a DE was created considers the DE as local.

[distgridToArrayMap] List that contains as many elements as is indicated by distgrids’s dimCount. The list
elements map each dimension of the DistGrid object to a dimension in the newly allocated Array object by
specifying the appropriate Array dimension index. The default is to map all of distgrid’s dimensions against
the lower dimensions of the Array object in sequence, i.e. distgridToArrayMap = (/1, 2, .../).
Unmapped dimensions in the Array object are not decomposed dimensions and form a tensor of rank = Ar-
ray.rank - DistGrid.dimCount. All distgridToArrayMap entries must be greater than or equal to zero and
smaller than or equal to the Array rank. It is erroneous to specify the same entry multiple times unless it is
zero. If the Array rank is less than the DistGrid dimCount then the default distgridToArrayMap will contain
zeros for the dimCount - rank rightmost entries. A zero entry in the distgridToArrayMap indicates that
the particular DistGrid dimension will be replicating the Array across the DEs along this direction.

[undistLBound] Lower bounds for the array dimensions that are not distributed.

[undistUBound] Upper bounds for the array dimensions that are not distributed.

[name] Name of the Array object.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28.5.15 ESMF_ArrayCreate - Create Array object as copy of existing Array object

INTERFACE:

! Private name; call using ESMF_ArrayCreate()

function ESMF_ArrayCreateCopy(array, datacopyflag, delayout, rc)

RETURN VALUE:

type(ESMF_Array) :: ESMF_ArrayCreateCopy

ARGUMENTS:

type(ESMF_Array), intent(in) :: array

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_DataCopy_Flag), intent(in), optional :: datacopyflag

type(ESMF_DELayout), intent(in), optional :: delayout

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

603

8.1.0 Added argument datacopyflag to select between different copy options.
Added argument delayout to create Array with different localDe -> DE mapping. This is identical to a
change in DE -> PET mapping.

DESCRIPTION:

Create an ESMF_Array object as the copy of an existing Array.

The return value is the newly created ESMF_Array object.

The arguments are:

array ESMF_Array object to be copied.

[datacopyflag] Specifies whether the created Array object references the memory allocation provided by array

directly or copies the data from array into a new memory allocation. For valid values see 52.12. The default
is ESMF_DATACOPY_VALUE.

[delayout] If present, override the DELayout of the incoming distgrid. By default use the DELayout defined in
distgrid.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28.5.16 ESMF_ArrayDestroy - Release resources associated with an Array object

INTERFACE:

subroutine ESMF_ArrayDestroy(array, noGarbage, rc)

ARGUMENTS:

type(ESMF_Array), intent(inout) :: array

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: noGarbage

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

7.0.0 Added argument noGarbage. The argument provides a mechanism to override the default garbage
collection mechanism when destroying an ESMF object.

604

DESCRIPTION:

Destroy an ESMF_Array, releasing the resources associated with the object.

By default a small remnant of the object is kept in memory in order to prevent problems with dangling aliases. The
default garbage collection mechanism can be overridden with the noGarbage argument.

The arguments are:

array ESMF_Array object to be destroyed.

[noGarbage] If set to .TRUE. the object will be fully destroyed and removed from the ESMF garbage collection
system. Note however that under this condition ESMF cannot protect against accessing the destroyed object
through dangling aliases – a situation which may lead to hard to debug application crashes.

It is generally recommended to leave the noGarbage argument set to .FALSE. (the default), and to take
advantage of the ESMF garbage collection system which will prevent problems with dangling aliases or incorrect
sequences of destroy calls. However this level of support requires that a small remnant of the object is kept in
memory past the destroy call. This can lead to an unexpected increase in memory consumption over the course
of execution in applications that use temporary ESMF objects. For situations where the repeated creation and
destruction of temporary objects leads to memory issues, it is recommended to call with noGarbage set to
.TRUE., fully removing the entire temporary object from memory.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28.5.17 ESMF_ArrayGather - Gather a Fortran array from an ESMF_Array

INTERFACE:

subroutine ESMF_ArrayGather(array, farray, rootPet, tile, vm, rc)

ARGUMENTS:

type(ESMF_Array), intent(in) :: array

<type>(ESMF_KIND_<kind>), intent(out), target :: farray(<rank>)

integer, intent(in) :: rootPet

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: tile

type(ESMF_VM), intent(in), optional :: vm

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

605

Gather the data of an ESMF_Array object into the farray located on rootPET. A single DistGrid tile of array
must be gathered into farray. The optional tile argument allows selection of the tile. For Arrays defined on a
single tile DistGrid the default selection (tile 1) will be correct. The shape of farray must match the shape of the
tile in Array.

If the Array contains replicating DistGrid dimensions data will be gathered from the numerically higher DEs. Repli-
cated data elements in numerically lower DEs will be ignored.

This version of the interface implements the PET-based blocking paradigm: Each PET of the VM must issue this call
exactly once for all of its DEs. The call will block until all PET-local data objects are accessible.

The arguments are:

array The ESMF_Array object from which data will be gathered.

{farray} The Fortran array into which to gather data. Only root must provide a valid farray, the other PETs may
treat farray as an optional argument.

rootPet PET that holds the valid destination array, i.e. farray.

[tile] The DistGrid tile in array from which to gather farray. By default farray will be gathered from tile 1.

[vm] Optional ESMF_VM object of the current context. Providing the VM of the current context will lower the
method’s overhead.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28.5.18 ESMF_ArrayGet - Get object-wide Array information

INTERFACE:

! Private name; call using ESMF_ArrayGet()

subroutine ESMF_ArrayGetDefault(array, arrayspec, typekind, &

rank, localarrayList, indexflag, distgridToArrayMap, &

distgridToPackedArrayMap, arrayToDistGridMap, undistLBound, &

undistUBound, exclusiveLBound, exclusiveUBound, computationalLBound, &

computationalUBound, totalLBound, totalUBound, computationalLWidth, &

computationalUWidth, totalLWidth, totalUWidth, distgrid, dimCount, &

tileCount, minIndexPTile, maxIndexPTile, deToTileMap, indexCountPDe, &

delayout, deCount, localDeCount, ssiLocalDeCount, localDeToDeMap, &

localDeList, & ! DEPRECATED ARGUMENT

name, vm, rc)

ARGUMENTS:

type(ESMF_Array), intent(in) :: array

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_ArraySpec), intent(out), optional :: arrayspec

type(ESMF_TypeKind_Flag), intent(out), optional :: typekind

integer, intent(out), optional :: rank

type(ESMF_LocalArray), target, intent(out), optional :: localarrayList(:)

type(ESMF_Index_Flag), intent(out), optional :: indexflag

606

integer, target, intent(out), optional :: distgridToArrayMap(:)

integer, target, intent(out), optional :: distgridToPackedArrayMap(:)

integer, target, intent(out), optional :: arrayToDistGridMap(:)

integer, target, intent(out), optional :: undistLBound(:)

integer, target, intent(out), optional :: undistUBound(:)

integer, target, intent(out), optional :: exclusiveLBound(:,:)

integer, target, intent(out), optional :: exclusiveUBound(:,:)

integer, target, intent(out), optional :: computationalLBound(:,:)

integer, target, intent(out), optional :: computationalUBound(:,:)

integer, target, intent(out), optional :: totalLBound(:,:)

integer, target, intent(out), optional :: totalUBound(:,:)

integer, target, intent(out), optional :: computationalLWidth(:,:)

integer, target, intent(out), optional :: computationalUWidth(:,:)

integer, target, intent(out), optional :: totalLWidth(:,:)

integer, target, intent(out), optional :: totalUWidth(:,:)

type(ESMF_DistGrid), intent(out), optional :: distgrid

integer, intent(out), optional :: dimCount

integer, intent(out), optional :: tileCount

integer, intent(out), optional :: minIndexPTile(:,:)

integer, intent(out), optional :: maxIndexPTile(:,:)

integer, intent(out), optional :: deToTileMap(:)

integer, intent(out), optional :: indexCountPDe(:,:)

type(ESMF_DELayout), intent(out), optional :: delayout

integer, intent(out), optional :: deCount

integer, intent(out), optional :: localDeCount

integer, intent(out), optional :: ssiLocalDeCount

integer, intent(out), optional :: localDeToDeMap(:)

integer, intent(out), optional :: localDeList(:) ! DEPRECATED ARGUMENT

character(len=*), intent(out), optional :: name

type(ESMF_VM), intent(out), optional :: vm

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

5.2.0rp1 Added argument localDeToDeMap. Started to deprecate argument localDeList. The new
argument name correctly uses the Map suffix and better describes the returned information. This was
pointed out by user request.

8.0.0 Added argument ssiLocalDeCount to support DE sharing between PETs on the same single system
image (SSI).
Added argument vm in order to offer information about the VM on which the Array was created.

DESCRIPTION:

Get internal information.

This interface works for any number of DEs per PET.

607

The arguments are:

array Queried ESMF_Array object.

[arrayspec] ESMF_ArraySpec object containing the type/kind/rank information of the Array object.

[typekind] TypeKind of the Array object.

[rank] Rank of the Array object.

[localarrayList] Upon return this holds a list of the associated ESMC_LocalArray objects. localarrayList
must be allocated to be of size localDeCount or ssiLocalDeCount.

[indexflag] Upon return this flag indicates how the DE-local indices are defined. See section 52.27 for a list of
possible return values.

[distgridToArrayMap] Upon return this list holds the Array dimensions against which the DistGrid dimensions are
mapped. distgridToArrayMap must be allocated to be of size dimCount. An entry of zero indicates that
the respective DistGrid dimension is replicating the Array across the DEs along this direction.

[distgridToPackedArrayMap] Upon return this list holds the indices of the Array dimensions in packed format
against which the DistGrid dimensions are mapped. distgridToPackedArrayMap must be allocated to
be of size dimCount. An entry of zero indicates that the respective DistGrid dimension is replicating the Array
across the DEs along this direction.

[arrayToDistGridMap] Upon return this list holds the DistGrid dimensions against which the Array dimensions are
mapped. arrayToDistGridMap must be allocated to be of size rank. An entry of zero indicates that the
respective Array dimension is not decomposed, rendering it a tensor dimension.

[undistLBound] Upon return this array holds the lower bounds of the undistributed dimensions of the Array.
UndistLBound must be allocated to be of size rank-dimCount.

[undistUBound] Upon return this array holds the upper bounds of the undistributed dimensions of the Array.
UndistUBound must be allocated to be of size rank-dimCount.

[exclusiveLBound] Upon return this holds the lower bounds of the exclusive regions for all PET-local DEs.
exclusiveLBound must be allocated to be of size (dimCount, localDeCount) or (dimCount,
ssiLocalDeCount).

[exclusiveUBound] Upon return this holds the upper bounds of the exclusive regions for all PET-local DEs.
exclusiveUBound must be allocated to be of size (dimCount, localDeCount) or (dimCount,
ssiLocalDeCount).

[computationalLBound] Upon return this holds the lower bounds of the computational regions for all PET-local
DEs. computationalLBound must be allocated to be of size (dimCount, localDeCount) or
(dimCount, ssiLocalDeCount).

[computationalUBound] Upon return this holds the upper bounds of the computational regions for all PET-local
DEs. computationalUBound must be allocated to be of size (dimCount, localDeCount) or
(dimCount, ssiLocalDeCount).

[totalLBound] Upon return this holds the lower bounds of the total regions for all PET-local DEs. totalLBound
must be allocated to be of size (dimCount, localDeCount) or (dimCount, ssiLocalDeCount).

[totalUBound] Upon return this holds the upper bounds of the total regions for all PET-local DEs. totalUBound
must be allocated to be of size (dimCount, localDeCount) or (dimCount, ssiLocalDeCount).

[computationalLWidth] Upon return this holds the lower width of the computational regions for all PET-local
DEs. computationalLWidth must be allocated to be of size (dimCount, localDeCount) or
(dimCount, ssiLocalDeCount).

608

[computationalUWidth] Upon return this holds the upper width of the computational regions for all PET-local
DEs. computationalUWidth must be allocated to be of size (dimCount, localDeCount) or
(dimCount, ssiLocalDeCount).

[totalLWidth] Upon return this holds the lower width of the total memory regions for all PET-local DEs.
totalLWidth must be allocated to be of size (dimCount, localDeCount) or (dimCount,

ssiLocalDeCount).

[totalUWidth] Upon return this holds the upper width of the total memory regions for all PET-local DEs.
totalUWidth must be allocated to be of size (dimCount, localDeCount) or (dimCount,

ssiLocalDeCount).

[distgrid] Upon return this holds the associated ESMF_DistGrid object.

[dimCount] Number of dimensions (rank) of distgrid.

[tileCount] Number of tiles in distgrid.

[minIndexPTile] Lower index space corner per dim, per tile, with size(minIndexPTile) ==

(/dimCount, tileCount/).

[maxIndexPTile] Upper index space corner per dim, per tile, with size(maxIndexPTile) ==

(/dimCount, tileCount/).

[deToTileMap] List of tile id numbers, one for each DE, with size(deToTileMap) == (/deCount/)

[indexCountPDe] Array of extents per dim, per de, with size(indexCountPDe) == (/dimCount,

deCount/).

[delayout] The associated ESMF_DELayout object.

[deCount] The total number of DEs in the Array.

[localDeCount] The number of DEs in the Array associated with the local PET.

[ssiLocalDeCount] The number of DEs in the Array available to the local PET. This includes DEs that are local to
other PETs on the same SSI, that are accessible via shared memory.

[localDeToDeMap] Mapping between localDe indices and the (global) DEs associated with the local PET. The lo-
calDe index variables are discussed in sections 48.3.7 and 28.2.5. The provided actual argument must be of size
localDeCount, or ssiLocalDeCount, and will be filled accordingly.

[localDeList] DEPRECATED ARGUMENT! Please use the argument localDeToDeMap instead.

[name] Name of the Array object.

[vm The VM on which the Array object was created.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28.5.19 ESMF_ArrayGet - Get DE-local Array information for a specific dimension

INTERFACE:

! Private name; call using ESMF_ArrayGet()

subroutine ESMF_ArrayGetPLocalDePDim(array, dim, localDe, &

indexCount, indexList, rc)

609

ARGUMENTS:

type(ESMF_Array), intent(in) :: array

integer, intent(in) :: dim

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: localDe

integer, intent(out), optional :: indexCount

integer, intent(out), optional :: indexList(:)

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Get internal information per local DE, per dim.

This interface works for any number of DEs per PET.

The arguments are:

array Queried ESMF_Array object.

dim Dimension for which information is requested. [1,..,dimCount]

[localDe] Local DE for which information is requested. [0,..,localDeCount-1]. For localDeCount==1
the localDe argument may be omitted, in which case it will default to localDe=0.

[indexCount] DistGrid indexCount associated with localDe, dim.

[indexList] List of DistGrid tile-local indices for localDe along dimension dim.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28.5.20 ESMF_ArrayGet - Get a DE-local Fortran array pointer from an Array

INTERFACE:

! Private name; call using ESMF_ArrayGet()

subroutine ESMF_ArrayGetFPtr<rank><type><kind>(array, localDe, &

farrayPtr, rc)

ARGUMENTS:

type(ESMF_Array), intent(in) :: array

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: localDe

<type> (ESMF_KIND_<kind>), pointer :: farrayPtr(<rank>)

integer, intent(out), optional :: rc

610

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Access Fortran array pointer to the specified DE-local memory allocation of the Array object.

The arguments are:

array Queried ESMF_Array object.

[localDe] Local DE for which information is requested. [0,..,localDeCount-1]. For localDeCount==1
the localDe argument may be omitted, in which case it will default to localDe=0.

farrayPtr Upon return, farrayPtr points to the DE-local data allocation of localDe in array. It depends on
the specific entry point of ESMF_ArrayCreate() used during array creation, which Fortran operations
are supported on the returned farrayPtr. See 28.3 for more details.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28.5.21 ESMF_ArrayGet - Get a DE-local LocalArray object from an Array

INTERFACE:

! Private name; call using ESMF_ArrayGet()

subroutine ESMF_ArrayGetLocalArray(array, localDe, localarray, rc)

ARGUMENTS:

type(ESMF_Array), intent(in) :: array

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: localDe

type(ESMF_LocalArray), intent(inout) :: localarray

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Provide access to ESMF_LocalArray object that holds data for the specified local DE.

The arguments are:

array Queried ESMF_Array object.

611

[localDe] Local DE for which information is requested. [0,..,localDeCount-1]. For localDeCount==1
the localDe argument may be omitted, in which case it will default to localDe=0.

localarray Upon return localarray refers to the DE-local data allocation of array.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28.5.22 ESMF_ArrayHalo - Execute an Array halo operation

INTERFACE:

subroutine ESMF_ArrayHalo(array, routehandle, &

routesyncflag, finishedflag, cancelledflag, checkflag, rc)

ARGUMENTS:

type(ESMF_Array), intent(inout) :: array

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_RouteSync_Flag), intent(in), optional :: routesyncflag

logical, intent(out), optional :: finishedflag

logical, intent(out), optional :: cancelledflag

logical, intent(in), optional :: checkflag

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Execute a precomputed Array halo operation for array. The array argument must match the respective Array used
during ESMF_ArrayHaloStore() in type, kind, and memory layout of the distributed dimensions. However, the
size, number, and index order of undistributed dimensions may be different. See section 36.2.4 for a more detailed
discussion of RouteHandle reusability.

See ESMF_ArrayHaloStore() on how to precompute routehandle.

This call is collective across the current VM.

array ESMF_Array containing data to be haloed.

routehandle Handle to the precomputed Route.

[routesyncflag] Indicate communication option. Default is ESMF_ROUTESYNC_BLOCKING, resulting in a blocking
operation. See section 52.51 for a complete list of valid settings.

612

[finishedflag] Used in combination with routesyncflag = ESMF_ROUTESYNC_NBTESTFINISH. Re-
turned finishedflag equal to .true. indicates that all operations have finished. A value
of .false. indicates that there are still unfinished operations that require additional calls with
routesyncflag = ESMF_ROUTESYNC_NBTESTFINISH, or a final call with routesyncflag =

ESMF_ROUTESYNC_NBWAITFINISH. For all other routesyncflag settings the returned value in
finishedflag is always .true..

[cancelledflag] A value of .true. indicates that were cancelled communication operations. In this case the data
in the dstArray must be considered invalid. It may have been partially modified by the call. A value of
.false. indicates that none of the communication operations was cancelled. The data in dstArray is valid
if finishedflag returns equal .true..

[checkflag] If set to .TRUE. the input Array pair will be checked for consistency with the precomputed operation
provided by routehandle. If set to .FALSE. (default) only a very basic input check will be performed,
leaving many inconsistencies undetected. Set checkflag to .FALSE. to achieve highest performance.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28.5.23 ESMF_ArrayHaloRelease - Release resources associated with Array halo operation

INTERFACE:

subroutine ESMF_ArrayHaloRelease(routehandle, noGarbage, rc)

ARGUMENTS:

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: noGarbage

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

8.0.0 Added argument noGarbage. The argument provides a mechanism to override the default garbage
collection mechanism when destroying an ESMF object.

DESCRIPTION:

Release resources associated with an Array halo operation. After this call routehandle becomes invalid.

routehandle Handle to the precomputed Route.

613

[noGarbage] If set to .TRUE. the object will be fully destroyed and removed from the ESMF garbage collection
system. Note however that under this condition ESMF cannot protect against accessing the destroyed object
through dangling aliases – a situation which may lead to hard to debug application crashes.

It is generally recommended to leave the noGarbage argument set to .FALSE. (the default), and to take
advantage of the ESMF garbage collection system which will prevent problems with dangling aliases or incorrect
sequences of destroy calls. However this level of support requires that a small remnant of the object is kept in
memory past the destroy call. This can lead to an unexpected increase in memory consumption over the course
of execution in applications that use temporary ESMF objects. For situations where the repeated creation and
destruction of temporary objects leads to memory issues, it is recommended to call with noGarbage set to
.TRUE., fully removing the entire temporary object from memory.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28.5.24 ESMF_ArrayHaloStore - Precompute an Array halo operation

INTERFACE:

subroutine ESMF_ArrayHaloStore(array, routehandle, &

startregion, haloLDepth, haloUDepth, pipelineDepth, rc)

ARGUMENTS:

type(ESMF_Array), intent(inout) :: array

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_StartRegion_Flag), intent(in), optional :: startregion

integer, intent(in), optional :: haloLDepth(:)

integer, intent(in), optional :: haloUDepth(:)

integer, intent(inout), optional :: pipelineDepth

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

6.1.0 Added argument pipelineDepth. The new argument provide access to the tuning parameter affecting
the sparse matrix execution.

DESCRIPTION:

Store an Array halo operation over the data in array. By default, i.e. without specifying startregion,
haloLDepth and haloUDepth, all elements in the total Array region that lie outside the exclusive region will

614

be considered potential destination elements for halo. However, only those elements that have a corresponding halo
source element, i.e. an exclusive element on one of the DEs, will be updated under the halo operation. Elements that
have no associated source remain unchanged under halo.

Specifying startregion allows the shape of the effective halo region to be changed from the inside. Set-
ting this flag to ESMF_STARTREGION_COMPUTATIONAL means that only elements outside the computational
region of the Array are considered for potential destination elements for the halo operation. The default is
ESMF_STARTREGION_EXCLUSIVE.

The haloLDepth and haloUDepth arguments allow to reduce the extent of the effective halo region. Starting at
the region specified by startregion, the haloLDepth and haloUDepth define a halo depth in each direction.
Note that the maximum halo region is limited by the total Array region, independent of the actual haloLDepth
and haloUDepth setting. The total Array region is local DE specific. The haloLDepth and haloUDepth are
interpreted as the maximum desired extent, reducing the potentially larger region available for the halo operation.

The routine returns an ESMF_RouteHandle that can be used to call ESMF_ArrayHalo() on any Array that
matches array in type, kind, and memory layout of the distributed dimensions. However, the size, number, and index
order of undistributed dimensions may be different. See section 36.2.4 for a more detailed discussion of RouteHandle
reusability.

This call is collective across the current VM.

array ESMF_Array containing data to be haloed. The data in the halo region may be destroyed by this call.

routehandle Handle to the precomputed Route.

[startregion] The start of the effective halo region on every DE. The default setting is
ESMF_STARTREGION_EXCLUSIVE, rendering all non-exclusive elements potential halo destination
elements. See section 52.54 for a complete list of valid settings.

[haloLDepth] This vector specifies the lower corner of the effective halo region with respect to the lower corner of
startregion. The size of haloLDepth must equal the number of distributed Array dimensions.

[haloUDepth] This vector specifies the upper corner of the effective halo region with respect to the upper corner of
startregion. The size of haloUDepth must equal the number of distributed Array dimensions.

[pipelineDepth] The pipelineDepth parameter controls how many messages a PET may have outstanding during
a halo exchange. Larger values of pipelineDepth typically lead to better performance. However, on some
systems too large a value may lead to performance degradation, or runtime errors.

Note that the pipeline depth has no effect on the bit-for-bit reproducibility of the results. However, it may affect
the performance reproducibility of the exchange.

The ESMF_ArraySMMStore() method implements an auto-tuning scheme for the pipelineDepth pa-
rameter. The intent on the pipelineDepth argument is "inout" in order to support both overriding and
accessing the auto-tuning parameter. If an argument >= 0 is specified, it is used for the pipelineDepth
parameter, and the auto-tuning phase is skipped. In this case the pipelineDepth argument is not modified
on return. If the provided argument is < 0, the pipelineDepth parameter is determined internally using the
auto-tuning scheme. In this case the pipelineDepth argument is re-set to the internally determined value on
return. Auto-tuning is also used if the optional pipelineDepth argument is omitted.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28.5.25 ESMF_ArrayIsCreated - Check whether an Array object has been created

INTERFACE:

615

function ESMF_ArrayIsCreated(array, rc)

RETURN VALUE:

logical :: ESMF_ArrayIsCreated

ARGUMENTS:

type(ESMF_Array), intent(in) :: array

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Return .true. if the array has been created. Otherwise return .false.. If an error occurs, i.e. rc /=

ESMF_SUCCESS is returned, the return value of the function will also be .false..

The arguments are:

array ESMF_Array queried.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28.5.26 ESMF_ArrayPrint - Print Array information

INTERFACE:

subroutine ESMF_ArrayPrint(array, rc)

ARGUMENTS:

type(ESMF_Array), intent(in) :: array

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Print internal information of the specified ESMF_Array object.

The arguments are:

616

array ESMF_Array object.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28.5.27 ESMF_ArrayRead - Read Array data from a file

INTERFACE:

subroutine ESMF_ArrayRead(array, fileName, variableName, &

timeslice, iofmt, rc)

! We need to terminate the strings on the way to C++

ARGUMENTS:

type(ESMF_Array), intent(inout) :: array

character(*), intent(in) :: fileName

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character(*), intent(in), optional :: variableName

integer, intent(in), optional :: timeslice

type(ESMF_IOFmt_Flag), intent(in), optional :: iofmt

integer, intent(out), optional :: rc

DESCRIPTION:

Read Array data from file and put it into an ESMF_Array object. For this API to be functional, the environment
variable ESMF_PIO should be set to "internal" when the ESMF library is built. Please see the section on Data
I/O, 37.2.

Limitations:

• Only single tile Arrays are supported.

• Not supported in ESMF_COMM=mpiuni mode.

The arguments are:

array The ESMF_Array object in which the read data is returned.

fileName The name of the file from which Array data is read.

[variableName] Variable name in the file; default is the "name" of Array. Use this argument only in the I/O format
(such as NetCDF) that supports variable name. If the I/O format does not support this (such as binary format),
ESMF will return an error code.

[timeslice] The time-slice number of the variable read from file.

[iofmt] The I/O format. Please see Section 52.28 for the list of options. If not present, file names with a .bin
extension will use ESMF_IOFMT_BIN, and file names with a .nc extension will use ESMF_IOFMT_NETCDF.
Other files default to ESMF_IOFMT_NETCDF.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

617

28.5.28 ESMF_ArrayRedist - Execute an Array redistribution

INTERFACE:

subroutine ESMF_ArrayRedist(srcArray, dstArray, routehandle, &

routesyncflag, finishedflag, cancelledflag, zeroregion, checkflag, rc)

ARGUMENTS:

type(ESMF_Array), intent(in), optional :: srcArray

type(ESMF_Array), intent(inout), optional :: dstArray

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_RouteSync_Flag), intent(in), optional :: routesyncflag

logical, intent(out), optional :: finishedflag

logical, intent(out), optional :: cancelledflag

type(ESMF_Region_Flag), intent(in), optional :: zeroregion

logical, intent(in), optional :: checkflag

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

7.1.0r Added argument zeroregion to allow user to control how the destination array is zero’ed out. This is
especially useful in cases where the source and destination arrays do not cover the identical index space.

DESCRIPTION:

Execute a precomputed Array redistribution from srcArray to dstArray. Both srcArray and dstArray

must match the respective Arrays used during ESMF_ArrayRedisttore() in type, kind, and memory layout of
the distributed dimensions. However, the size, number, and index order of undistributed dimensions may be different.
See section 36.2.4 for a more detailed discussion of RouteHandle reusability.

The srcArray and dstArray arguments are optional in support of the situation where srcArray and/or
dstArray are not defined on all PETs. The srcArray and dstArray must be specified on those PETs that
hold source or destination DEs, respectively, but may be omitted on all other PETs. PETs that hold neither source nor
destination DEs may omit both arguments.

It is erroneous to specify the identical Array object for srcArray and dstArray arguments.

See ESMF_ArrayRedistStore() on how to precompute routehandle.

This call is collective across the current VM.

[srcArray] ESMF_Array with source data.

618

[dstArray] ESMF_Array with destination data.

routehandle Handle to the precomputed Route.

[routesyncflag] Indicate communication option. Default is ESMF_ROUTESYNC_BLOCKING, resulting in a blocking
operation. See section 52.51 for a complete list of valid settings.

[finishedflag] Used in combination with routesyncflag = ESMF_ROUTESYNC_NBTESTFINISH. Re-
turned finishedflag equal to .true. indicates that all operations have finished. A value
of .false. indicates that there are still unfinished operations that require additional calls with
routesyncflag = ESMF_ROUTESYNC_NBTESTFINISH, or a final call with routesyncflag =

ESMF_ROUTESYNC_NBWAITFINISH. For all other routesyncflag settings the returned value in
finishedflag is always .true..

[cancelledflag] A value of .true. indicates that were cancelled communication operations. In this case the data
in the dstArray must be considered invalid. It may have been partially modified by the call. A value of
.false. indicates that none of the communication operations was cancelled. The data in dstArray is valid
if finishedflag returns equal .true..

[zeroregion] If set to ESMF_REGION_TOTAL the total regions of all DEs in dstArray will be initial-
ized to zero before updating the elements with the results of the sparse matrix multiplication. If set
to ESMF_REGION_EMPTY the elements in dstArray will not be modified prior to the sparse ma-
trix multiplication and results will be added to the incoming element values. Setting zeroregion to
ESMF_REGION_SELECT will only zero out those elements in the destination Array that will be updated
by the sparse matrix multiplication. See section 52.48 for a complete list of valid settings. The default is
ESMF_REGION_SELECT.

[checkflag] If set to .TRUE. the input Array pair will be checked for consistency with the precomputed operation
provided by routehandle. If set to .FALSE. (default) only a very basic input check will be performed,
leaving many inconsistencies undetected. Set checkflag to .FALSE. to achieve highest performance.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28.5.29 ESMF_ArrayRedistRelease - Release resources associated with Array redistribution

INTERFACE:

subroutine ESMF_ArrayRedistRelease(routehandle, noGarbage, rc)

ARGUMENTS:

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: noGarbage

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

619

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

8.0.0 Added argument noGarbage. The argument provides a mechanism to override the default garbage
collection mechanism when destroying an ESMF object.

DESCRIPTION:

Release resources associated with an Array redistribution. After this call routehandle becomes invalid.

routehandle Handle to the precomputed Route.

[noGarbage] If set to .TRUE. the object will be fully destroyed and removed from the ESMF garbage collection
system. Note however that under this condition ESMF cannot protect against accessing the destroyed object
through dangling aliases – a situation which may lead to hard to debug application crashes.

It is generally recommended to leave the noGarbage argument set to .FALSE. (the default), and to take
advantage of the ESMF garbage collection system which will prevent problems with dangling aliases or incorrect
sequences of destroy calls. However this level of support requires that a small remnant of the object is kept in
memory past the destroy call. This can lead to an unexpected increase in memory consumption over the course
of execution in applications that use temporary ESMF objects. For situations where the repeated creation and
destruction of temporary objects leads to memory issues, it is recommended to call with noGarbage set to
.TRUE., fully removing the entire temporary object from memory.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28.5.30 ESMF_ArrayRedistStore - Precompute Array redistribution with local factor argument

INTERFACE:

! Private name; call using ESMF_ArrayRedistStore()

subroutine ESMF_ArrayRedistStore<type><kind>(srcArray, dstArray, &

routehandle, factor, srcToDstTransposeMap, &

ignoreUnmatchedIndices, pipelineDepth, rc)

ARGUMENTS:

type(ESMF_Array), intent(in) :: srcArray

type(ESMF_Array), intent(inout) :: dstArray

type(ESMF_RouteHandle), intent(inout) :: routehandle

<type>(ESMF_KIND_<kind>),intent(in) :: factor

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: srcToDstTransposeMap(:)

logical, intent(in), optional :: ignoreUnmatchedIndices

integer, intent(inout), optional :: pipelineDepth

integer, intent(out), optional :: rc

620

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

6.1.0 Added argument pipelineDepth. The new argument provide access to the tuning parameter affecting
the sparse matrix execution.

7.0.0 Added argument transposeRoutehandle to allow a handle to the transposed redist operation to be
returned.
Added argument ignoreUnmatchedIndices to support situations where not all elements between
source and destination Arrays match.

7.1.0r Removed argument transposeRoutehandle and provide it via interface overloading instead. This
allows argument srcArray to stay strictly intent(in) for this entry point.

DESCRIPTION:

ESMF_ArrayRedistStore() is a collective method across all PETs of the current Component. The interface of
the method is overloaded, allowing – in principle – each PET to call into ESMF_ArrayRedistStore() through a
different entry point. Restrictions apply as to which combinations are sensible. All other combinations result in ESMF
run time errors. The complete semantics of the ESMF_ArrayRedistStore() method, as provided through the
separate entry points shown in 28.5.30 and 28.5.32, is described in the following paragraphs as a whole.

Store an Array redistribution operation from srcArray to dstArray. Interface 28.5.30 allows PETs to specify a
factor argument. PETs not specifying a factor argument call into interface 28.5.32. If multiple PETs specify the
factor argument, its type and kind, as well as its value must match across all PETs. If none of the PETs specify
a factor argument the default will be a factor of 1. The resulting factor is applied to all of the source data during
redistribution, allowing scaling of the data, e.g. for unit transformation.

Both srcArray and dstArray are interpreted as sequentialized vectors. The sequence is defined by the order of
DistGrid dimensions and the order of tiles within the DistGrid or by user-supplied arbitrary sequence indices. See
section 28.2.18 for details on the definition of sequence indices.

Source Array, destination Array, and the factor may be of different <type><kind>. Further, source and destination
Arrays may differ in shape, however, the number of elements must match.

If srcToDstTransposeMap is not specified the redistribution corresponds to an identity mapping of the sequen-
tialized source Array to the sequentialized destination Array. If the srcToDstTransposeMap argument is provided
it must be identical on all PETs. The srcToDstTransposeMap allows source and destination Array dimensions to
be transposed during the redistribution. The number of source and destination Array dimensions must be equal under
this condition and the size of mapped dimensions must match.

It is erroneous to specify the identical Array object for srcArray and dstArray arguments.

The routine returns an ESMF_RouteHandle that can be used to call ESMF_ArrayRedist() on any pair of
Arrays that matches srcArray and dstArray in type, kind, and memory layout of the distributed dimensions.
However, the size, number, and index order of undistributed dimensions may be different. See section 36.2.4 for a
more detailed discussion of RouteHandle reusability.

This method is overloaded for:
ESMF_TYPEKIND_I4, ESMF_TYPEKIND_I8,
ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8.

621

This call is collective across the current VM.

srcArray ESMF_Array with source data.

dstArray ESMF_Array with destination data. The data in this Array may be destroyed by this call.

routehandle Handle to the precomputed Route.

factor Factor by which to multiply source data.

[srcToDstTransposeMap] List with as many entries as there are dimensions in srcArray. Each entry maps the
corresponding srcArray dimension against the specified dstArray dimension. Mixing of distributed and
undistributed dimensions is supported.

[ignoreUnmatchedIndices] A logical flag that affects the behavior for when not all elements match between the
srcArray and dstArray side. The default setting is .false., indicating that it is an error when such a
situation is encountered. Setting ignoreUnmatchedIndices to .true. ignores unmatched indices.

[pipelineDepth] The pipelineDepth parameter controls how many messages a PET may have outstanding during
a redist exchange. Larger values of pipelineDepth typically lead to better performance. However, on some
systems too large a value may lead to performance degradation, or runtime errors.

Note that the pipeline depth has no effect on the bit-for-bit reproducibility of the results. However, it may affect
the performance reproducibility of the exchange.

The ESMF_ArraySMMStore() method implements an auto-tuning scheme for the pipelineDepth pa-
rameter. The intent on the pipelineDepth argument is "inout" in order to support both overriding and
accessing the auto-tuning parameter. If an argument >= 0 is specified, it is used for the pipelineDepth
parameter, and the auto-tuning phase is skipped. In this case the pipelineDepth argument is not modified
on return. If the provided argument is < 0, the pipelineDepth parameter is determined internally using the
auto-tuning scheme. In this case the pipelineDepth argument is re-set to the internally determined value on
return. Auto-tuning is also used if the optional pipelineDepth argument is omitted.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28.5.31 ESMF_ArrayRedistStore - Precompute Array redistribution and transpose with local factor argu-

ment

INTERFACE:

! Private name; call using ESMF_ArrayRedistStore()

subroutine ESMF_ArrayRedistStore<type><kind>TP(srcArray, dstArray, &

routehandle, transposeRoutehandle, factor, &

srcToDstTransposeMap, ignoreUnmatchedIndices, pipelineDepth, rc)

ARGUMENTS:

type(ESMF_Array), intent(inout) :: srcArray

type(ESMF_Array), intent(inout) :: dstArray

type(ESMF_RouteHandle), intent(inout) :: routehandle

type(ESMF_RouteHandle), intent(inout) :: transposeRoutehandle

<type>(ESMF_KIND_<kind>),intent(in) :: factor

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

622

integer, intent(in), optional :: srcToDstTransposeMap(:)

logical, intent(in), optional :: ignoreUnmatchedIndices

integer, intent(inout), optional :: pipelineDepth

integer, intent(out), optional :: rc

DESCRIPTION:

ESMF_ArrayRedistStore() is a collective method across all PETs of the current Component. The interface of
the method is overloaded, allowing – in principle – each PET to call into ESMF_ArrayRedistStore() through a
different entry point. Restrictions apply as to which combinations are sensible. All other combinations result in ESMF
run time errors. The complete semantics of the ESMF_ArrayRedistStore() method, as provided through the
separate entry points shown in 28.5.31 and 28.5.33, is described in the following paragraphs as a whole.

Store an Array redistribution operation from srcArray to dstArray. Interface 28.5.31 allows PETs to specify a
factor argument. PETs not specifying a factor argument call into interface 28.5.33. If multiple PETs specify the
factor argument, its type and kind, as well as its value must match across all PETs. If none of the PETs specify
a factor argument the default will be a factor of 1. The resulting factor is applied to all of the source data during
redistribution, allowing scaling of the data, e.g. for unit transformation.

Both srcArray and dstArray are interpreted as sequentialized vectors. The sequence is defined by the order of
DistGrid dimensions and the order of tiles within the DistGrid or by user-supplied arbitrary sequence indices. See
section 28.2.18 for details on the definition of sequence indices.

Source Array, destination Array, and the factor may be of different <type><kind>. Further, source and destination
Arrays may differ in shape, however, the number of elements must match.

If srcToDstTransposeMap is not specified the redistribution corresponds to an identity mapping of the sequen-
tialized source Array to the sequentialized destination Array. If the srcToDstTransposeMap argument is provided
it must be identical on all PETs. The srcToDstTransposeMap allows source and destination Array dimensions to
be transposed during the redistribution. The number of source and destination Array dimensions must be equal under
this condition and the size of mapped dimensions must match.

It is erroneous to specify the identical Array object for srcArray and dstArray arguments.

The routine returns an ESMF_RouteHandle that can be used to call ESMF_ArrayRedist() on any pair of
Arrays that matches srcArray and dstArray in type, kind, and memory layout of the distributed dimensions.
However, the size, number, and index order of undistributed dimensions may be different. See section 36.2.4 for a
more detailed discussion of RouteHandle reusability.

This method is overloaded for:
ESMF_TYPEKIND_I4, ESMF_TYPEKIND_I8,
ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8.

This call is collective across the current VM.

srcArray ESMF_Array with source data. The data in this Array may be destroyed by this call.

dstArray ESMF_Array with destination data. The data in this Array may be destroyed by this call.

routehandle Handle to the precomputed Route.

transposeRoutehandle Handle to the transposed matrix operation. The transposed operation goes from dstArray

to srcArray.

factor Factor by which to multiply source data.

[srcToDstTransposeMap] List with as many entries as there are dimensions in srcArray. Each entry maps the
corresponding srcArray dimension against the specified dstArray dimension. Mixing of distributed and
undistributed dimensions is supported.

623

[ignoreUnmatchedIndices] A logical flag that affects the behavior for when not all elements match between the
srcArray and dstArray side. The default setting is .false., indicating that it is an error when such a
situation is encountered. Setting ignoreUnmatchedIndices to .true. ignores unmatched indices.

[pipelineDepth] The pipelineDepth parameter controls how many messages a PET may have outstanding during
a redist exchange. Larger values of pipelineDepth typically lead to better performance. However, on some
systems too large a value may lead to performance degradation, or runtime errors.

Note that the pipeline depth has no effect on the bit-for-bit reproducibility of the results. However, it may affect
the performance reproducibility of the exchange.

The ESMF_ArraySMMStore() method implements an auto-tuning scheme for the pipelineDepth pa-
rameter. The intent on the pipelineDepth argument is "inout" in order to support both overriding and
accessing the auto-tuning parameter. If an argument >= 0 is specified, it is used for the pipelineDepth
parameter, and the auto-tuning phase is skipped. In this case the pipelineDepth argument is not modified
on return. If the provided argument is < 0, the pipelineDepth parameter is determined internally using the
auto-tuning scheme. In this case the pipelineDepth argument is re-set to the internally determined value on
return. Auto-tuning is also used if the optional pipelineDepth argument is omitted.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28.5.32 ESMF_ArrayRedistStore - Precompute Array redistribution without local factor argument

INTERFACE:

! Private name; call using ESMF_ArrayRedistStore()

subroutine ESMF_ArrayRedistStoreNF(srcArray, dstArray, routehandle, &

srcToDstTransposeMap, ignoreUnmatchedIndices, &

pipelineDepth, rc)

ARGUMENTS:

type(ESMF_Array), intent(in) :: srcArray

type(ESMF_Array), intent(inout) :: dstArray

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: srcToDstTransposeMap(:)

logical, intent(in), optional :: ignoreUnmatchedIndices

integer, intent(inout), optional :: pipelineDepth

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

624

6.1.0 Added argument pipelineDepth. The new argument provide access to the tuning parameter affecting
the sparse matrix execution.

7.0.0 Added argument transposeRoutehandle to allow a handle to the transposed redist operation to be
returned.
Added argument ignoreUnmatchedIndices to support situations where not all elements between
source and destination Arrays match.

7.1.0r Removed argument transposeRoutehandle and provide it via interface overloading instead. This
allows argument srcArray to stay strictly intent(in) for this entry point.

DESCRIPTION:

ESMF_ArrayRedistStore() is a collective method across all PETs of the current Component. The interface of
the method is overloaded, allowing – in principle – each PET to call into ESMF_ArrayRedistStore() through a
different entry point. Restrictions apply as to which combinations are sensible. All other combinations result in ESMF
run time errors. The complete semantics of the ESMF_ArrayRedistStore() method, as provided through the
separate entry points shown in 28.5.30 and 28.5.32, is described in the following paragraphs as a whole.

Store an Array redistribution operation from srcArray to dstArray. Interface 28.5.30 allows PETs to specify a
factor argument. PETs not specifying a factor argument call into interface 28.5.32. If multiple PETs specify the
factor argument, its type and kind, as well as its value must match across all PETs. If none of the PETs specify
a factor argument the default will be a factor of 1. The resulting factor is applied to all of the source data during
redistribution, allowing scaling of the data, e.g. for unit transformation.

Both srcArray and dstArray are interpreted as sequentialized vectors. The sequence is defined by the order of
DistGrid dimensions and the order of tiles within the DistGrid or by user-supplied arbitrary sequence indices. See
section 28.2.18 for details on the definition of sequence indices.

Source Array, destination Array, and the factor may be of different <type><kind>. Further, source and destination
Arrays may differ in shape, however, the number of elements must match.

If srcToDstTransposeMap is not specified the redistribution corresponds to an identity mapping of the sequen-
tialized source Array to the sequentialized destination Array. If the srcToDstTransposeMap argument is provided
it must be identical on all PETs. The srcToDstTransposeMap allows source and destination Array dimensions to
be transposed during the redistribution. The number of source and destination Array dimensions must be equal under
this condition and the size of mapped dimensions must match.

It is erroneous to specify the identical Array object for srcArray and dstArray arguments.

The routine returns an ESMF_RouteHandle that can be used to call ESMF_ArrayRedist() on any pair of
Arrays that matches srcArray and dstArray in type, kind, and memory layout of the distributed dimensions.
However, the size, number, and index order of undistributed dimensions may be different. See section 36.2.4 for a
more detailed discussion of RouteHandle reusability.

This call is collective across the current VM.

srcArray ESMF_Array with source data.

dstArray ESMF_Array with destination data. The data in this Array may be destroyed by this call.

routehandle Handle to the precomputed Route.

[srcToDstTransposeMap] List with as many entries as there are dimensions in srcArray. Each entry maps the
corresponding srcArray dimension against the specified dstArray dimension. Mixing of distributed and
undistributed dimensions is supported.

[ignoreUnmatchedIndices] A logical flag that affects the behavior for when not all elements match between the
srcArray and dstArray side. The default setting is .false., indicating that it is an error when such a
situation is encountered. Setting ignoreUnmatchedIndices to .true. ignores unmatched indices.

625

[pipelineDepth] The pipelineDepth parameter controls how many messages a PET may have outstanding during
a redist exchange. Larger values of pipelineDepth typically lead to better performance. However, on some
systems too large a value may lead to performance degradation, or runtime errors.

Note that the pipeline depth has no effect on the bit-for-bit reproducibility of the results. However, it may affect
the performance reproducibility of the exchange.

The ESMF_ArraySMMStore() method implements an auto-tuning scheme for the pipelineDepth pa-
rameter. The intent on the pipelineDepth argument is "inout" in order to support both overriding and
accessing the auto-tuning parameter. If an argument >= 0 is specified, it is used for the pipelineDepth
parameter, and the auto-tuning phase is skipped. In this case the pipelineDepth argument is not modified
on return. If the provided argument is < 0, the pipelineDepth parameter is determined internally using the
auto-tuning scheme. In this case the pipelineDepth argument is re-set to the internally determined value on
return. Auto-tuning is also used if the optional pipelineDepth argument is omitted.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28.5.33 ESMF_ArrayRedistStore - Precompute Array redistribution and transpose without local factor argu-

ment

INTERFACE:

! Private name; call using ESMF_ArrayRedistStore()

subroutine ESMF_ArrayRedistStoreNFTP(srcArray, dstArray, routehandle, &

transposeRoutehandle, srcToDstTransposeMap, &

ignoreUnmatchedIndices, pipelineDepth, rc)

ARGUMENTS:

type(ESMF_Array), intent(inout) :: srcArray

type(ESMF_Array), intent(inout) :: dstArray

type(ESMF_RouteHandle), intent(inout) :: routehandle

type(ESMF_RouteHandle), intent(inout) :: transposeRoutehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: srcToDstTransposeMap(:)

logical, intent(in), optional :: ignoreUnmatchedIndices

integer, intent(inout), optional :: pipelineDepth

integer, intent(out), optional :: rc

DESCRIPTION:

ESMF_ArrayRedistStore() is a collective method across all PETs of the current Component. The interface of
the method is overloaded, allowing – in principle – each PET to call into ESMF_ArrayRedistStore() through a
different entry point. Restrictions apply as to which combinations are sensible. All other combinations result in ESMF
run time errors. The complete semantics of the ESMF_ArrayRedistStore() method, as provided through the
separate entry points shown in 28.5.31 and 28.5.33, is described in the following paragraphs as a whole.

Store an Array redistribution operation from srcArray to dstArray. Interface 28.5.31 allows PETs to specify a
factor argument. PETs not specifying a factor argument call into interface 28.5.33. If multiple PETs specify the
factor argument, its type and kind, as well as its value must match across all PETs. If none of the PETs specify

626

a factor argument the default will be a factor of 1. The resulting factor is applied to all of the source data during
redistribution, allowing scaling of the data, e.g. for unit transformation.

Both srcArray and dstArray are interpreted as sequentialized vectors. The sequence is defined by the order of
DistGrid dimensions and the order of tiles within the DistGrid or by user-supplied arbitrary sequence indices. See
section 28.2.18 for details on the definition of sequence indices.

Source Array, destination Array, and the factor may be of different <type><kind>. Further, source and destination
Arrays may differ in shape, however, the number of elements must match.

If srcToDstTransposeMap is not specified the redistribution corresponds to an identity mapping of the sequen-
tialized source Array to the sequentialized destination Array. If the srcToDstTransposeMap argument is provided
it must be identical on all PETs. The srcToDstTransposeMap allows source and destination Array dimensions to
be transposed during the redistribution. The number of source and destination Array dimensions must be equal under
this condition and the size of mapped dimensions must match.

It is erroneous to specify the identical Array object for srcArray and dstArray arguments.

The routine returns an ESMF_RouteHandle that can be used to call ESMF_ArrayRedist() on any pair of
Arrays that matches srcArray and dstArray in type, kind, and memory layout of the distributed dimensions.
However, the size, number, and index order of undistributed dimensions may be different. See section 36.2.4 for a
more detailed discussion of RouteHandle reusability.

This call is collective across the current VM.

srcArray ESMF_Array with source data. The data in this Array may be destroyed by this call.

dstArray ESMF_Array with destination data. The data in this Array may be destroyed by this call.

routehandle Handle to the precomputed Route.

transposeRoutehandle Handle to the transposed matrix operation. The transposed operation goes from dstArray

to srcArray.

[srcToDstTransposeMap] List with as many entries as there are dimensions in srcArray. Each entry maps the
corresponding srcArray dimension against the specified dstArray dimension. Mixing of distributed and
undistributed dimensions is supported.

[ignoreUnmatchedIndices] A logical flag that affects the behavior for when not all elements match between the
srcArray and dstArray side. The default setting is .false., indicating that it is an error when such a
situation is encountered. Setting ignoreUnmatchedIndices to .true. ignores unmatched indices.

[pipelineDepth] The pipelineDepth parameter controls how many messages a PET may have outstanding during
a redist exchange. Larger values of pipelineDepth typically lead to better performance. However, on some
systems too large a value may lead to performance degradation, or runtime errors.

Note that the pipeline depth has no effect on the bit-for-bit reproducibility of the results. However, it may affect
the performance reproducibility of the exchange.

The ESMF_ArraySMMStore() method implements an auto-tuning scheme for the pipelineDepth pa-
rameter. The intent on the pipelineDepth argument is "inout" in order to support both overriding and
accessing the auto-tuning parameter. If an argument >= 0 is specified, it is used for the pipelineDepth
parameter, and the auto-tuning phase is skipped. In this case the pipelineDepth argument is not modified
on return. If the provided argument is < 0, the pipelineDepth parameter is determined internally using the
auto-tuning scheme. In this case the pipelineDepth argument is re-set to the internally determined value on
return. Auto-tuning is also used if the optional pipelineDepth argument is omitted.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

627

28.5.34 ESMF_ArrayScatter - Scatter a Fortran array across the ESMF_Array

INTERFACE:

subroutine ESMF_ArrayScatter(array, farray, rootPet, tile, vm, rc)

ARGUMENTS:

type(ESMF_Array), intent(inout) :: array

<type> (ESMF_KIND_<kind>), intent(in), target :: farray(<rank>)

integer, intent(in) :: rootPet

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: tile

type(ESMF_VM), intent(in), optional :: vm

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Scatter the data of farray located on rootPET across an ESMF_Array object. A single farray must be scattered
across a single DistGrid tile in Array. The optional tile argument allows selection of the tile. For Arrays defined on
a single tile DistGrid the default selection (tile 1) will be correct. The shape of farray must match the shape of the
tile in Array.

If the Array contains replicating DistGrid dimensions data will be scattered across all of the replicated pieces.

This version of the interface implements the PET-based blocking paradigm: Each PET of the VM must issue this call
exactly once for all of its DEs. The call will block until all PET-local data objects are accessible.

The arguments are:

array The ESMF_Array object across which data will be scattered.

{farray} The Fortran array that is to be scattered. Only root must provide a valid farray, the other PETs may treat
farray as an optional argument.

rootPet PET that holds the valid data in farray.

[tile] The DistGrid tile in array into which to scatter farray. By default farray will be scattered into tile 1.

[vm] Optional ESMF_VM object of the current context. Providing the VM of the current context will lower the
method’s overhead.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

628

28.5.35 ESMF_ArraySet - Set object-wide Array information

INTERFACE:

! Private name; call using ESMF_ArraySet()

subroutine ESMF_ArraySetDefault(array, computationalLWidth, &

computationalUWidth, name, rc)

ARGUMENTS:

type(ESMF_Array), intent(inout) :: array

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: computationalLWidth(:,:)

integer, intent(in), optional :: computationalUWidth(:,:)

character(len = *), intent(in), optional :: name

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Sets adjustable settings in an ESMF_Array object. Arrays with tensor dimensions will set values for all tensor
components.

The arguments are:

array ESMF_Array object for which to set properties.

[name] The Array name.

[computationalLWidth] This argument must have of size (dimCount, localDeCount).
computationalLWidth specifies the lower corner of the computational region with respect to the
lower corner of the exclusive region for all local DEs.

[computationalUWidth] This argument must have of size (dimCount, localDeCount).
computationalUWidth specifies the upper corner of the computational region with respect to the
upper corner of the exclusive region for all local DEs.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28.5.36 ESMF_ArraySet - Set DE-local Array information

INTERFACE:

629

! Private name; call using ESMF_ArraySet()

subroutine ESMF_ArraySetPLocalDe(array, localDe, rimSeqIndex, rc)

ARGUMENTS:

type(ESMF_Array), intent(inout) :: array

integer, intent(in) :: localDe

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: rimSeqIndex(:)

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Sets adjustable settings in an ESMF_Array object for a specific localDe.

The arguments are:

array ESMF_Array object for which to set properties.

localDe Local DE for which to set values.

[rimSeqIndex] Sequence indices in the halo rim of localDe.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28.5.37 ESMF_ArraySMM - Execute an Array sparse matrix multiplication

INTERFACE:

subroutine ESMF_ArraySMM(srcArray, dstArray, routehandle, &

routesyncflag, finishedflag, cancelledflag, zeroregion, termorderflag, &

checkflag, dynamicMask, rc)

ARGUMENTS:

type(ESMF_Array), intent(in), optional :: srcArray

type(ESMF_Array), intent(inout), optional :: dstArray

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_RouteSync_Flag), intent(in), optional :: routesyncflag

logical, intent(out), optional :: finishedflag

logical, intent(out), optional :: cancelledflag

type(ESMF_Region_Flag), intent(in), optional :: zeroregion

630

type(ESMF_TermOrder_Flag), intent(in), optional :: termorderflag

logical, intent(in), optional :: checkflag

type(ESMF_DynamicMask), target, intent(in), optional :: dynamicMask

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

6.1.0 Added argument termorderflag. The new argument gives the user control over the order in which
the src terms are summed up.

7.1.0r Added argument dynamicMask. The new argument supports the dynamic masking feature.

DESCRIPTION:

Execute a precomputed Array sparse matrix multiplication from srcArray to dstArray. Both srcArray and
dstArray must match the respective Arrays used during ESMF_ArraySMMStore() in type, kind, and memory
layout of the distributed dimensions. However, the size, number, and index order of undistributed dimensions may be
different. See section 36.2.4 for a more detailed discussion of RouteHandle reusability.

The srcArray and dstArray arguments are optional in support of the situation where srcArray and/or
dstArray are not defined on all PETs. The srcArray and dstArray must be specified on those PETs that
hold source or destination DEs, respectively, but may be omitted on all other PETs. PETs that hold neither source nor
destination DEs may omit both arguments.

It is erroneous to specify the identical Array object for srcArray and dstArray arguments.

See ESMF_ArraySMMStore() on how to precompute routehandle. See section 28.2.18 for details on the
operation ESMF_ArraySMM() performs.

This call is collective across the current VM.

[srcArray] ESMF_Array with source data.

[dstArray] ESMF_Array with destination data.

routehandle Handle to the precomputed Route.

[routesyncflag] Indicate communication option. Default is ESMF_ROUTESYNC_BLOCKING, resulting in a blocking
operation. See section 52.51 for a complete list of valid settings.

[finishedflag] Used in combination with routesyncflag = ESMF_ROUTESYNC_NBTESTFINISH. Re-
turned finishedflag equal to .true. indicates that all operations have finished. A value
of .false. indicates that there are still unfinished operations that require additional calls with
routesyncflag = ESMF_ROUTESYNC_NBTESTFINISH, or a final call with routesyncflag =

ESMF_ROUTESYNC_NBWAITFINISH. For all other routesyncflag settings the returned value in
finishedflag is always .true..

[cancelledflag] A value of .true. indicates that were cancelled communication operations. In this case the data
in the dstArray must be considered invalid. It may have been partially modified by the call. A value of
.false. indicates that none of the communication operations was cancelled. The data in dstArray is valid
if finishedflag returns equal .true..

631

[zeroregion] If set to ESMF_REGION_TOTAL (default) the total regions of all DEs in dstArray will be ini-
tialized to zero before updating the elements with the results of the sparse matrix multiplication. If
set to ESMF_REGION_EMPTY the elements in dstArray will not be modified prior to the sparse ma-
trix multiplication and results will be added to the incoming element values. Setting zeroregion to
ESMF_REGION_SELECT will only zero out those elements in the destination Array that will be updated by the
sparse matrix multiplication. See section 52.48 for a complete list of valid settings.

[termorderflag] Specifies the order of the source side terms in all of the destination sums. The termorderflag
only affects the order of terms during the execution of the RouteHandle. See the 36.2.1 section for an
in-depth discussion of all bit-for-bit reproducibility aspects related to route-based communication meth-
ods. See 52.58 for a full list of options. The default setting depends on whether the dynamicMask

argument is present or not. With dynamicMask argument present, the default of termorderflag

is ESMF_TERMORDER_SRCSEQ. This ensures that all source terms are present on the destination side,
and the interpolation can be calculated as a single sum. When dynamicMask is absent, the default of
termorderflag is ESMF_TERMORDER_FREE, allowing maximum flexibility and partial sums for optimum
performance.

[checkflag] If set to .TRUE. the input Array pair will be checked for consistency with the precomputed operation
provided by routehandle. If set to .FALSE. (default) only a very basic input check will be performed,
leaving many inconsistencies undetected. Set checkflag to .FALSE. to achieve highest performance.

[dynamicMask] Object holding dynamic masking information. See section 36.2.5 for a discussion of dynamic mask-
ing.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28.5.38 ESMF_ArraySMMRelease - Release resources associated with Array sparse matrix multiplication

INTERFACE:

subroutine ESMF_ArraySMMRelease(routehandle, noGarbage, rc)

ARGUMENTS:

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: noGarbage

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

8.0.0 Added argument noGarbage. The argument provides a mechanism to override the default garbage
collection mechanism when destroying an ESMF object.

632

DESCRIPTION:

Release resources associated with an Array sparse matrix multiplication. After this call routehandle becomes
invalid.

routehandle Handle to the precomputed Route.

[noGarbage] If set to .TRUE. the object will be fully destroyed and removed from the ESMF garbage collection
system. Note however that under this condition ESMF cannot protect against accessing the destroyed object
through dangling aliases – a situation which may lead to hard to debug application crashes.

It is generally recommended to leave the noGarbage argument set to .FALSE. (the default), and to take
advantage of the ESMF garbage collection system which will prevent problems with dangling aliases or incorrect
sequences of destroy calls. However this level of support requires that a small remnant of the object is kept in
memory past the destroy call. This can lead to an unexpected increase in memory consumption over the course
of execution in applications that use temporary ESMF objects. For situations where the repeated creation and
destruction of temporary objects leads to memory issues, it is recommended to call with noGarbage set to
.TRUE., fully removing the entire temporary object from memory.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28.5.39 ESMF_ArraySMMStore - Precompute Array sparse matrix multiplication with local factors

INTERFACE:

! Private name; call using ESMF_ArraySMMStore()

subroutine ESMF_ArraySMMStore<type><kind>(srcArray, dstArray, &

routehandle, factorList, factorIndexList, &

ignoreUnmatchedIndices, srcTermProcessing, pipelineDepth, rc)

ARGUMENTS:

type(ESMF_Array), intent(in) :: srcArray

type(ESMF_Array), intent(inout) :: dstArray

type(ESMF_RouteHandle), intent(inout) :: routehandle

<type>(ESMF_KIND_<kind>), target, intent(in) :: factorList(:)

integer(ESMF_KIND_<kind>), intent(in) :: factorIndexList(:,:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: ignoreUnmatchedIndices

integer, intent(inout), optional :: srcTermProcessing

integer, intent(inout), optional :: pipelineDepth

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

633

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

6.1.0 Added argument srcTermProcessing. Added argument pipelineDepth. The new arguments
provide access to the tuning parameters affecting the sparse matrix execution.

7.0.0 Added argument transposeRoutehandle to allow a handle to the transposed matrix operation to be
returned.
Added argument ignoreUnmatchedIndices to support sparse matrices that contain elements with
indices that do not have a match within the source or destination Array.

7.1.0r Removed argument transposeRoutehandle and provide it via interface overloading instead. This
allows argument srcArray to stay strictly intent(in) for this entry point.

DESCRIPTION:

ESMF_ArraySMMStore() is a collective method across all PETs of the current Component. The interface of the
method is overloaded, allowing – in principle – each PET to call into ESMF_ArraySMMStore() through a different
entry point. Restrictions apply as to which combinations are sensible. All other combinations result in ESMF run time
errors. The complete semantics of the ESMF_ArraySMMStore() method, as provided through the separate entry
points shown in 28.5.39 and 28.5.41, is described in the following paragraphs as a whole.

Store an Array sparse matrix multiplication operation from srcArray to dstArray. PETs that specify
non-zero matrix coefficients must use the <type><kind> overloaded interface and provide the factorList

and factorIndexList arguments. Providing factorList and factorIndexList arguments with
size(factorList) = (/0/) and size(factorIndexList) = (/2,0/) or (/4,0/) indicates that a
PET does not provide matrix elements. Alternatively, PETs that do not provide matrix elements may also call into the
overloaded interface without factorList and factorIndexList arguments.

Both srcArray and dstArray are interpreted as sequentialized vectors. The sequence is defined by the order of
DistGrid dimensions and the order of tiles within the DistGrid or by user-supplied arbitrary sequence indices. See
section 28.2.18 for details on the definition of sequence indices.

Source and destination Arrays, as well as the supplied factorList argument, may be of different <type><kind>.
Further source and destination Arrays may differ in shape and number of elements.

It is erroneous to specify the identical Array object for srcArray and dstArray arguments.

The routine returns an ESMF_RouteHandle that can be used to call ESMF_ArraySMM() on any pair of Arrays
that matches srcArray and dstArray in type, kind, and memory layout of the distributed dimensions. However,
the size, number, and index order of undistributed dimensions may be different. See section 36.2.4 for a more detailed
discussion of RouteHandle reusability.

This method is overloaded for:
ESMF_TYPEKIND_I4, ESMF_TYPEKIND_I8,
ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8.

This call is collective across the current VM.

srcArray ESMF_Array with source data.

dstArray ESMF_Array with destination data. The data in this Array may be destroyed by this call.

routehandle Handle to the precomputed Route.

factorList List of non-zero coefficients.

634

factorIndexList Pairs of sequence indices for the factors stored in factorList.

The second dimension of factorIndexList steps through the list of pairs, i.e.
size(factorIndexList,2) == size(factorList). The first dimension of factorIndexList
is either of size 2 or size 4.

In the size 2 format factorIndexList(1,:) specifies the sequence index of the source element in the
srcArray while factorIndexList(2,:) specifies the sequence index of the destination element in
dstArray. For this format to be a valid option source and destination Arrays must have matching number of
tensor elements (the product of the sizes of all Array tensor dimensions). Under this condition an identity matrix
can be applied within the space of tensor elements for each sparse matrix factor.

The size 4 format is more general and does not require a matching tensor element count. Here the
factorIndexList(1,:) specifies the sequence index while factorIndexList(2,:) specifies the
tensor sequence index of the source element in the srcArray. Further factorIndexList(3,:) specifies
the sequence index and factorIndexList(4,:) specifies the tensor sequence index of the destination
element in the dstArray.

See section 28.2.18 for details on the definition of Array sequence indices and tensor sequence indices.

[ignoreUnmatchedIndices] A logical flag that affects the behavior for when sequence indices in the sparse matrix are
encountered that do not have a match on the srcArray or dstArray side. The default setting is .false.,
indicating that it is an error when such a situation is encountered. Setting ignoreUnmatchedIndices to
.true. ignores entries with unmatched indices.

[srcTermProcessing] The srcTermProcessing parameter controls how many source terms, located on the same
PET and summing into the same destination element, are summed into partial sums on the source PET before
being transferred to the destination PET. A value of 0 indicates that the entire arithmetic is done on the destina-
tion PET; source elements are neither multiplied by their factors nor added into partial sums before being sent
off by the source PET. A value of 1 indicates that source elements are multiplied by their factors on the source
side before being sent to the destination PET. Larger values of srcTermProcessing indicate the maximum
number of terms in the partial sums on the source side.

Note that partial sums may lead to bit-for-bit differences in the results. See section 36.2.1 for an in-depth
discussion of all bit-for-bit reproducibility aspects related to route-based communication methods.

The ESMF_ArraySMMStore() method implements an auto-tuning scheme for the srcTermProcessing
parameter. The intent on the srcTermProcessing argument is "inout" in order to support both
overriding and accessing the auto-tuning parameter. If an argument >= 0 is specified, it is used
for the srcTermProcessing parameter, and the auto-tuning phase is skipped. In this case the
srcTermProcessing argument is not modified on return. If the provided argument is < 0, the
srcTermProcessing parameter is determined internally using the auto-tuning scheme. In this case the
srcTermProcessing argument is re-set to the internally determined value on return. Auto-tuning is also
used if the optional srcTermProcessing argument is omitted.

[pipelineDepth] The pipelineDepth parameter controls how many messages a PET may have outstanding during
a sparse matrix exchange. Larger values of pipelineDepth typically lead to better performance. However,
on some systems too large a value may lead to performance degradation, or runtime errors.

Note that the pipeline depth has no effect on the bit-for-bit reproducibility of the results. However, it may affect
the performance reproducibility of the exchange.

The ESMF_ArraySMMStore() method implements an auto-tuning scheme for the pipelineDepth pa-
rameter. The intent on the pipelineDepth argument is "inout" in order to support both overriding and
accessing the auto-tuning parameter. If an argument >= 0 is specified, it is used for the pipelineDepth
parameter, and the auto-tuning phase is skipped. In this case the pipelineDepth argument is not modified
on return. If the provided argument is < 0, the pipelineDepth parameter is determined internally using the
auto-tuning scheme. In this case the pipelineDepth argument is re-set to the internally determined value on
return. Auto-tuning is also used if the optional pipelineDepth argument is omitted.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

635

28.5.40 ESMF_ArraySMMStore - Precompute Array sparse matrix multiplication and transpose with local

factors

INTERFACE:

! Private name; call using ESMF_ArraySMMStore()

subroutine ESMF_ArraySMMStore<type><kind>TP(srcArray, dstArray, &

routehandle, transposeRoutehandle, factorList, factorIndexList, &

ignoreUnmatchedIndices, srcTermProcessing, pipelineDepth, &

rc)

ARGUMENTS:

type(ESMF_Array), intent(inout) :: srcArray

type(ESMF_Array), intent(inout) :: dstArray

type(ESMF_RouteHandle), intent(inout) :: routehandle

type(ESMF_RouteHandle), intent(inout) :: transposeRoutehandle

<type>(ESMF_KIND_<kind>), target, intent(in) :: factorList(:)

integer(ESMF_KIND_<kind>), intent(in) :: factorIndexList(:,:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: ignoreUnmatchedIndices

integer, intent(inout), optional :: srcTermProcessing

integer, intent(inout), optional :: pipelineDepth

integer, intent(out), optional :: rc

DESCRIPTION:

ESMF_ArraySMMStore() is a collective method across all PETs of the current Component. The interface of the
method is overloaded, allowing – in principle – each PET to call into ESMF_ArraySMMStore() through a different
entry point. Restrictions apply as to which combinations are sensible. All other combinations result in ESMF run time
errors. The complete semantics of the ESMF_ArraySMMStore() method, as provided through the separate entry
points shown in 28.5.40 and 28.5.42, is described in the following paragraphs as a whole.

Store an Array sparse matrix multiplication operation from srcArray to dstArray. PETs that specify
non-zero matrix coefficients must use the <type><kind> overloaded interface and provide the factorList

and factorIndexList arguments. Providing factorList and factorIndexList arguments with
size(factorList) = (/0/) and size(factorIndexList) = (/2,0/) or (/4,0/) indicates that a
PET does not provide matrix elements. Alternatively, PETs that do not provide matrix elements may also call into the
overloaded interface without factorList and factorIndexList arguments.

Both srcArray and dstArray are interpreted as sequentialized vectors. The sequence is defined by the order of
DistGrid dimensions and the order of tiles within the DistGrid or by user-supplied arbitrary sequence indices. See
section 28.2.18 for details on the definition of sequence indices.

Source and destination Arrays, as well as the supplied factorList argument, may be of different <type><kind>.
Further source and destination Arrays may differ in shape and number of elements.

It is erroneous to specify the identical Array object for srcArray and dstArray arguments.

The routine returns an ESMF_RouteHandle that can be used to call ESMF_ArraySMM() on any pair of Arrays
that matches srcArray and dstArray in type, kind, and memory layout of the distributed dimensions. However,
the size, number, and index order of undistributed dimensions may be different. See section 36.2.4 for a more detailed
discussion of RouteHandle reusability.

This method is overloaded for:

636

ESMF_TYPEKIND_I4, ESMF_TYPEKIND_I8,
ESMF_TYPEKIND_R4, ESMF_TYPEKIND_R8.

This call is collective across the current VM.

srcArray ESMF_Array with source data. The data in this Array may be destroyed by this call.

dstArray ESMF_Array with destination data. The data in this Array may be destroyed by this call.

routehandle Handle to the precomputed Route.

[transposeRoutehandle] Handle to the transposed matrix operation. The transposed operation goes from dstArray

to srcArray.

factorList List of non-zero coefficients.

factorIndexList Pairs of sequence indices for the factors stored in factorList.

The second dimension of factorIndexList steps through the list of pairs, i.e.
size(factorIndexList,2) == size(factorList). The first dimension of factorIndexList
is either of size 2 or size 4.

In the size 2 format factorIndexList(1,:) specifies the sequence index of the source element in the
srcArray while factorIndexList(2,:) specifies the sequence index of the destination element in
dstArray. For this format to be a valid option source and destination Arrays must have matching number of
tensor elements (the product of the sizes of all Array tensor dimensions). Under this condition an identity matrix
can be applied within the space of tensor elements for each sparse matrix factor.

The size 4 format is more general and does not require a matching tensor element count. Here the
factorIndexList(1,:) specifies the sequence index while factorIndexList(2,:) specifies the
tensor sequence index of the source element in the srcArray. Further factorIndexList(3,:) specifies
the sequence index and factorIndexList(4,:) specifies the tensor sequence index of the destination
element in the dstArray.

See section 28.2.18 for details on the definition of Array sequence indices and tensor sequence indices.

[ignoreUnmatchedIndices] A logical flag that affects the behavior for when sequence indices in the sparse matrix are
encountered that do not have a match on the srcArray or dstArray side. The default setting is .false.,
indicating that it is an error when such a situation is encountered. Setting ignoreUnmatchedIndices to
.true. ignores entries with unmatched indices.

[srcTermProcessing] The srcTermProcessing parameter controls how many source terms, located on the same
PET and summing into the same destination element, are summed into partial sums on the source PET before
being transferred to the destination PET. A value of 0 indicates that the entire arithmetic is done on the destina-
tion PET; source elements are neither multiplied by their factors nor added into partial sums before being sent
off by the source PET. A value of 1 indicates that source elements are multiplied by their factors on the source
side before being sent to the destination PET. Larger values of srcTermProcessing indicate the maximum
number of terms in the partial sums on the source side.

Note that partial sums may lead to bit-for-bit differences in the results. See section 36.2.1 for an in-depth
discussion of all bit-for-bit reproducibility aspects related to route-based communication methods.

The ESMF_ArraySMMStore() method implements an auto-tuning scheme for the srcTermProcessing
parameter. The intent on the srcTermProcessing argument is "inout" in order to support both
overriding and accessing the auto-tuning parameter. If an argument >= 0 is specified, it is used
for the srcTermProcessing parameter, and the auto-tuning phase is skipped. In this case the
srcTermProcessing argument is not modified on return. If the provided argument is < 0, the
srcTermProcessing parameter is determined internally using the auto-tuning scheme. In this case the
srcTermProcessing argument is re-set to the internally determined value on return. Auto-tuning is also
used if the optional srcTermProcessing argument is omitted.

637

[pipelineDepth] The pipelineDepth parameter controls how many messages a PET may have outstanding during
a sparse matrix exchange. Larger values of pipelineDepth typically lead to better performance. However,
on some systems too large a value may lead to performance degradation, or runtime errors.

Note that the pipeline depth has no effect on the bit-for-bit reproducibility of the results. However, it may affect
the performance reproducibility of the exchange.

The ESMF_ArraySMMStore() method implements an auto-tuning scheme for the pipelineDepth pa-
rameter. The intent on the pipelineDepth argument is "inout" in order to support both overriding and
accessing the auto-tuning parameter. If an argument >= 0 is specified, it is used for the pipelineDepth
parameter, and the auto-tuning phase is skipped. In this case the pipelineDepth argument is not modified
on return. If the provided argument is < 0, the pipelineDepth parameter is determined internally using the
auto-tuning scheme. In this case the pipelineDepth argument is re-set to the internally determined value on
return. Auto-tuning is also used if the optional pipelineDepth argument is omitted.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28.5.41 ESMF_ArraySMMStore - Precompute Array sparse matrix multiplication without local factors

INTERFACE:

! Private name; call using ESMF_ArraySMMStore()

subroutine ESMF_ArraySMMStoreNF(srcArray, dstArray, routehandle, &

ignoreUnmatchedIndices, srcTermProcessing, pipelineDepth, &

rc)

ARGUMENTS:

type(ESMF_Array), intent(in) :: srcArray

type(ESMF_Array), intent(inout) :: dstArray

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: ignoreUnmatchedIndices

integer, intent(inout), optional :: srcTermProcessing

integer, intent(inout), optional :: pipelineDepth

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

6.1.0 Added argument srcTermProcessing. Added argument pipelineDepth. The new arguments
provide access to the tuning parameters affecting the sparse matrix execution.

638

7.0.0 Added argument transposeRoutehandle to allow a handle to the transposed matrix operation to be
returned.
Added argument ignoreUnmatchedIndices to support sparse matrices that contain elements with
indices that do not have a match within the source or destination Array.

7.1.0r Removed argument transposeRoutehandle and provide it via interface overloading instead. This
allows argument srcArray to stay strictly intent(in) for this entry point.

DESCRIPTION:

ESMF_ArraySMMStore() is a collective method across all PETs of the current Component. The interface of the
method is overloaded, allowing – in principle – each PET to call into ESMF_ArraySMMStore() through a different
entry point. Restrictions apply as to which combinations are sensible. All other combinations result in ESMF run time
errors. The complete semantics of the ESMF_ArraySMMStore() method, as provided through the separate entry
points shown in 28.5.39 and 28.5.41, is described in the following paragraphs as a whole.

Store an Array sparse matrix multiplication operation from srcArray to dstArray. PETs that specify
non-zero matrix coefficients must use the <type><kind> overloaded interface and provide the factorList

and factorIndexList arguments. Providing factorList and factorIndexList arguments with
size(factorList) = (/0/) and size(factorIndexList) = (/2,0/) or (/4,0/) indicates that a
PET does not provide matrix elements. Alternatively, PETs that do not provide matrix elements may also call into the
overloaded interface without factorList and factorIndexList arguments.

Both srcArray and dstArray are interpreted as sequentialized vectors. The sequence is defined by the order of
DistGrid dimensions and the order of tiles within the DistGrid or by user-supplied arbitrary sequence indices. See
section 28.2.18 for details on the definition of sequence indices.

Source and destination Arrays, as well as the supplied factorList argument, may be of different <type><kind>.
Further source and destination Arrays may differ in shape and number of elements.

It is erroneous to specify the identical Array object for srcArray and dstArray arguments.

The routine returns an ESMF_RouteHandle that can be used to call ESMF_ArraySMM() on any pair of Arrays
that matches srcArray and dstArray in type, kind, and memory layout of the distributed dimensions. However,
the size, number, and index order of undistributed dimensions may be different. See section 36.2.4 for a more detailed
discussion of RouteHandle reusability.

This call is collective across the current VM.

srcArray ESMF_Array with source data.

dstArray ESMF_Array with destination data. The data in this Array may be destroyed by this call.

routehandle Handle to the precomputed Route.

[ignoreUnmatchedIndices] A logical flag that affects the behavior for when sequence indices in the sparse matrix are
encountered that do not have a match on the srcArray or dstArray side. The default setting is .false.,
indicating that it is an error when such a situation is encountered. Setting ignoreUnmatchedIndices to
.true. ignores entries with unmatched indices.

[srcTermProcessing] The srcTermProcessing parameter controls how many source terms, located on the same
PET and summing into the same destination element, are summed into partial sums on the source PET before
being transferred to the destination PET. A value of 0 indicates that the entire arithmetic is done on the destina-
tion PET; source elements are neither multiplied by their factors nor added into partial sums before being sent
off by the source PET. A value of 1 indicates that source elements are multiplied by their factors on the source
side before being sent to the destination PET. Larger values of srcTermProcessing indicate the maximum
number of terms in the partial sums on the source side.

Note that partial sums may lead to bit-for-bit differences in the results. See section 36.2.1 for an in-depth
discussion of all bit-for-bit reproducibility aspects related to route-based communication methods.

639

The ESMF_ArraySMMStore() method implements an auto-tuning scheme for the srcTermProcessing
parameter. The intent on the srcTermProcessing argument is "inout" in order to support both
overriding and accessing the auto-tuning parameter. If an argument >= 0 is specified, it is used
for the srcTermProcessing parameter, and the auto-tuning phase is skipped. In this case the
srcTermProcessing argument is not modified on return. If the provided argument is < 0, the
srcTermProcessing parameter is determined internally using the auto-tuning scheme. In this case the
srcTermProcessing argument is re-set to the internally determined value on return. Auto-tuning is also
used if the optional srcTermProcessing argument is omitted.

[pipelineDepth] The pipelineDepth parameter controls how many messages a PET may have outstanding during
a sparse matrix exchange. Larger values of pipelineDepth typically lead to better performance. However,
on some systems too large a value may lead to performance degradation, or runtime errors.

Note that the pipeline depth has no effect on the bit-for-bit reproducibility of the results. However, it may affect
the performance reproducibility of the exchange.

The ESMF_ArraySMMStore() method implements an auto-tuning scheme for the pipelineDepth pa-
rameter. The intent on the pipelineDepth argument is "inout" in order to support both overriding and
accessing the auto-tuning parameter. If an argument >= 0 is specified, it is used for the pipelineDepth
parameter, and the auto-tuning phase is skipped. In this case the pipelineDepth argument is not modified
on return. If the provided argument is < 0, the pipelineDepth parameter is determined internally using the
auto-tuning scheme. In this case the pipelineDepth argument is re-set to the internally determined value on
return. Auto-tuning is also used if the optional pipelineDepth argument is omitted.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28.5.42 ESMF_ArraySMMStore - Precompute Array sparse matrix multiplication and transpose without lo-

cal factors

INTERFACE:

! Private name; call using ESMF_ArraySMMStore()

subroutine ESMF_ArraySMMStoreNFTP(srcArray, dstArray, routehandle, &

transposeRoutehandle, ignoreUnmatchedIndices, &

srcTermProcessing, pipelineDepth, rc)

ARGUMENTS:

type(ESMF_Array), intent(inout) :: srcArray

type(ESMF_Array), intent(inout) :: dstArray

type(ESMF_RouteHandle), intent(inout) :: routehandle

type(ESMF_RouteHandle), intent(inout) :: transposeRoutehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: ignoreUnmatchedIndices

integer, intent(inout), optional :: srcTermProcessing

integer, intent(inout), optional :: pipelineDepth

integer, intent(out), optional :: rc

DESCRIPTION:

ESMF_ArraySMMStore() is a collective method across all PETs of the current Component. The interface of the
method is overloaded, allowing – in principle – each PET to call into ESMF_ArraySMMStore() through a different

640

entry point. Restrictions apply as to which combinations are sensible. All other combinations result in ESMF run time
errors. The complete semantics of the ESMF_ArraySMMStore() method, as provided through the separate entry
points shown in 28.5.40 and 28.5.42, is described in the following paragraphs as a whole.

Store an Array sparse matrix multiplication operation from srcArray to dstArray. PETs that specify
non-zero matrix coefficients must use the <type><kind> overloaded interface and provide the factorList

and factorIndexList arguments. Providing factorList and factorIndexList arguments with
size(factorList) = (/0/) and size(factorIndexList) = (/2,0/) or (/4,0/) indicates that a
PET does not provide matrix elements. Alternatively, PETs that do not provide matrix elements may also call into the
overloaded interface without factorList and factorIndexList arguments.

Both srcArray and dstArray are interpreted as sequentialized vectors. The sequence is defined by the order of
DistGrid dimensions and the order of tiles within the DistGrid or by user-supplied arbitrary sequence indices. See
section 28.2.18 for details on the definition of sequence indices.

Source and destination Arrays, as well as the supplied factorList argument, may be of different <type><kind>.
Further source and destination Arrays may differ in shape and number of elements.

It is erroneous to specify the identical Array object for srcArray and dstArray arguments.

The routine returns an ESMF_RouteHandle that can be used to call ESMF_ArraySMM() on any pair of Arrays
that matches srcArray and dstArray in type, kind, and memory layout of the distributed dimensions. However,
the size, number, and index order of undistributed dimensions may be different. See section 36.2.4 for a more detailed
discussion of RouteHandle reusability.

This call is collective across the current VM.

srcArray ESMF_Array with source data. The data in this Array may be destroyed by this call.

dstArray ESMF_Array with destination data. The data in this Array may be destroyed by this call.

routehandle Handle to the precomputed Route.

[transposeRoutehandle] Handle to the transposed matrix operation. The transposed operation goes from dstArray

to srcArray.

[ignoreUnmatchedIndices] A logical flag that affects the behavior for when sequence indices in the sparse matrix are
encountered that do not have a match on the srcArray or dstArray side. The default setting is .false.,
indicating that it is an error when such a situation is encountered. Setting ignoreUnmatchedIndices to
.true. ignores entries with unmatched indices.

[srcTermProcessing] The srcTermProcessing parameter controls how many source terms, located on the same
PET and summing into the same destination element, are summed into partial sums on the source PET before
being transferred to the destination PET. A value of 0 indicates that the entire arithmetic is done on the destina-
tion PET; source elements are neither multiplied by their factors nor added into partial sums before being sent
off by the source PET. A value of 1 indicates that source elements are multiplied by their factors on the source
side before being sent to the destination PET. Larger values of srcTermProcessing indicate the maximum
number of terms in the partial sums on the source side.

Note that partial sums may lead to bit-for-bit differences in the results. See section 36.2.1 for an in-depth
discussion of all bit-for-bit reproducibility aspects related to route-based communication methods.

The ESMF_ArraySMMStore() method implements an auto-tuning scheme for the srcTermProcessing
parameter. The intent on the srcTermProcessing argument is "inout" in order to support both
overriding and accessing the auto-tuning parameter. If an argument >= 0 is specified, it is used
for the srcTermProcessing parameter, and the auto-tuning phase is skipped. In this case the
srcTermProcessing argument is not modified on return. If the provided argument is < 0, the
srcTermProcessing parameter is determined internally using the auto-tuning scheme. In this case the
srcTermProcessing argument is re-set to the internally determined value on return. Auto-tuning is also
used if the optional srcTermProcessing argument is omitted.

641

[pipelineDepth] The pipelineDepth parameter controls how many messages a PET may have outstanding during
a sparse matrix exchange. Larger values of pipelineDepth typically lead to better performance. However,
on some systems too large a value may lead to performance degradation, or runtime errors.

Note that the pipeline depth has no effect on the bit-for-bit reproducibility of the results. However, it may affect
the performance reproducibility of the exchange.

The ESMF_ArraySMMStore() method implements an auto-tuning scheme for the pipelineDepth pa-
rameter. The intent on the pipelineDepth argument is "inout" in order to support both overriding and
accessing the auto-tuning parameter. If an argument >= 0 is specified, it is used for the pipelineDepth
parameter, and the auto-tuning phase is skipped. In this case the pipelineDepth argument is not modified
on return. If the provided argument is < 0, the pipelineDepth parameter is determined internally using the
auto-tuning scheme. In this case the pipelineDepth argument is re-set to the internally determined value on
return. Auto-tuning is also used if the optional pipelineDepth argument is omitted.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28.5.43 ESMF_ArraySMMStore - Precompute sparse matrix multiplication using factors read from file.

INTERFACE:

! Private name; call using ESMF_ArraySMMStore()

subroutine ESMF_ArraySMMStoreFromFile(srcArray, dstArray, filename, &

routehandle, ignoreUnmatchedIndices, &

srcTermProcessing, pipelineDepth, rc)

! ARGUMENTS:

type(ESMF_Array), intent(in) :: srcArray

type(ESMF_Array), intent(inout) :: dstArray

character(len=*), intent(in) :: filename

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: ignoreUnmatchedIndices

integer, intent(inout), optional :: srcTermProcessing

integer, intent(inout), optional :: pipeLineDepth

integer, intent(out), optional :: rc

DESCRIPTION:

Compute an ESMF_RouteHandle using factors read from file.

The arguments are:

srcArray ESMF_Array with source data.

dstArray ESMF_Array with destination data. The data in this Array may be destroyed by this call.

filename Path to the file containing weights for creating an ESMF_RouteHandle. See (12.9) for a description of
the SCRIP weight file format. Only "row", "col", and "S" variables are required. They must be one-dimensionsal
with dimension "n_s".

routehandle Handle to the ESMF_RouteHandle.

642

[ignoreUnmatchedIndices] A logical flag that affects the behavior for when sequence indices in the sparse matrix are
encountered that do not have a match on the srcArray or dstArray side. The default setting is .false.,
indicating that it is an error when such a situation is encountered. Setting ignoreUnmatchedIndices to
.true. ignores entries with unmatched indices.

[srcTermProcessing] The srcTermProcessing parameter controls how many source terms, located on the same
PET and summing into the same destination element, are summed into partial sums on the source PET before
being transferred to the destination PET. A value of 0 indicates that the entire arithmetic is done on the destina-
tion PET; source elements are neither multiplied by their factors nor added into partial sums before being sent
off by the source PET. A value of 1 indicates that source elements are multiplied by their factors on the source
side before being sent to the destination PET. Larger values of srcTermProcessing indicate the maximum
number of terms in the partial sums on the source side.

Note that partial sums may lead to bit-for-bit differences in the results. See section 36.2.1 for an in-depth
discussion of all bit-for-bit reproducibility aspects related to route-based communication methods.

The ESMF_ArraySMMStore() method implements an auto-tuning scheme for the srcTermProcessing
parameter. The intent on the srcTermProcessing argument is "inout" in order to support both
overriding and accessing the auto-tuning parameter. If an argument >= 0 is specified, it is used
for the srcTermProcessing parameter, and the auto-tuning phase is skipped. In this case the
srcTermProcessing argument is not modified on return. If the provided argument is < 0, the
srcTermProcessing parameter is determined internally using the auto-tuning scheme. In this case the
srcTermProcessing argument is re-set to the internally determined value on return. Auto-tuning is also
used if the optional srcTermProcessing argument is omitted.

[pipelineDepth] The pipelineDepth parameter controls how many messages a PET may have outstanding during
a sparse matrix exchange. Larger values of pipelineDepth typically lead to better performance. However,
on some systems too large a value may lead to performance degradation, or runtime errors.

Note that the pipeline depth has no effect on the bit-for-bit reproducibility of the results. However, it may
affect the performance reproducibility of the exchange. The ESMF_ArraySMMStore() method implements
an auto-tuning scheme for the pipelineDepth parameter. The intent on the pipelineDepth argument is
"inout" in order to support both overriding and accessing the auto-tuning parameter. If an argument >= 0 is
specified, it is used for the pipelineDepth parameter, and the auto-tuning phase is skipped. In this case the
pipelineDepth argument is not modified on return. If the provided argument is < 0, the pipelineDepth
parameter is determined internally using the auto-tuning scheme. In this case the pipelineDepth argument
is re-set to the internally determined value on return. Auto-tuning is also used if the optional pipelineDepth
argument is omitted.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28.5.44 ESMF_ArraySMMStore - Precompute sparse matrix multiplication and transpose using factors read

from file.

INTERFACE:

! Private name; call using ESMF_ArraySMMStore()

subroutine ESMF_ArraySMMStoreFromFileTP(srcArray, dstArray, filename, &

routehandle, transposeRoutehandle, ignoreUnmatchedIndices,&

srcTermProcessing, pipelineDepth, rc)

! ARGUMENTS:

type(ESMF_Array), intent(inout) :: srcArray

643

type(ESMF_Array), intent(inout) :: dstArray

character(len=*), intent(in) :: filename

type(ESMF_RouteHandle), intent(inout) :: routehandle

type(ESMF_RouteHandle), intent(inout) :: transposeRoutehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: ignoreUnmatchedIndices

integer, intent(inout), optional :: srcTermProcessing

integer, intent(inout), optional :: pipeLineDepth

integer, intent(out), optional :: rc

DESCRIPTION:

Compute an ESMF_RouteHandle using factors read from file.

The arguments are:

srcArray ESMF_Array with source data. The data in this Array may be destroyed by this call.

dstArray ESMF_Array with destination data. The data in this Array may be destroyed by this call.

filename Path to the file containing weights for creating an ESMF_RouteHandle. See (12.9) for a description of
the SCRIP weight file format. Only "row", "col", and "S" variables are required. They must be one-dimensionsal
with dimension "n_s".

routehandle Handle to the ESMF_RouteHandle.

[transposeRoutehandle] Handle to the transposed matrix operation. The transposed operation goes from dstArray

to srcArray.

[ignoreUnmatchedIndices] A logical flag that affects the behavior for when sequence indices in the sparse matrix are
encountered that do not have a match on the srcArray or dstArray side. The default setting is .false.,
indicating that it is an error when such a situation is encountered. Setting ignoreUnmatchedIndices to
.true. ignores entries with unmatched indices.

[srcTermProcessing] The srcTermProcessing parameter controls how many source terms, located on the same
PET and summing into the same destination element, are summed into partial sums on the source PET before
being transferred to the destination PET. A value of 0 indicates that the entire arithmetic is done on the destina-
tion PET; source elements are neither multiplied by their factors nor added into partial sums before being sent
off by the source PET. A value of 1 indicates that source elements are multiplied by their factors on the source
side before being sent to the destination PET. Larger values of srcTermProcessing indicate the maximum
number of terms in the partial sums on the source side.

Note that partial sums may lead to bit-for-bit differences in the results. See section 36.2.1 for an in-depth
discussion of all bit-for-bit reproducibility aspects related to route-based communication methods.

The ESMF_ArraySMMStore() method implements an auto-tuning scheme for the srcTermProcessing
parameter. The intent on the srcTermProcessing argument is "inout" in order to support both
overriding and accessing the auto-tuning parameter. If an argument >= 0 is specified, it is used
for the srcTermProcessing parameter, and the auto-tuning phase is skipped. In this case the
srcTermProcessing argument is not modified on return. If the provided argument is < 0, the
srcTermProcessing parameter is determined internally using the auto-tuning scheme. In this case the
srcTermProcessing argument is re-set to the internally determined value on return. Auto-tuning is also
used if the optional srcTermProcessing argument is omitted.

[pipelineDepth] The pipelineDepth parameter controls how many messages a PET may have outstanding during
a sparse matrix exchange. Larger values of pipelineDepth typically lead to better performance. However,
on some systems too large a value may lead to performance degradation, or runtime errors.

644

Note that the pipeline depth has no effect on the bit-for-bit reproducibility of the results. However, it may
affect the performance reproducibility of the exchange. The ESMF_ArraySMMStore() method implements
an auto-tuning scheme for the pipelineDepth parameter. The intent on the pipelineDepth argument is
"inout" in order to support both overriding and accessing the auto-tuning parameter. If an argument >= 0 is
specified, it is used for the pipelineDepth parameter, and the auto-tuning phase is skipped. In this case the
pipelineDepth argument is not modified on return. If the provided argument is < 0, the pipelineDepth
parameter is determined internally using the auto-tuning scheme. In this case the pipelineDepth argument
is re-set to the internally determined value on return. Auto-tuning is also used if the optional pipelineDepth
argument is omitted.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28.5.45 ESMF_ArraySync - Synchronize DEs across the Array in case of sharing

INTERFACE:

subroutine ESMF_ArraySync(array, rc)

ARGUMENTS:

type(ESMF_Array), intent(in) :: array

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Synchronizes access to DEs across array to make sure PETs correctly access the data for read and write when DEs
are shared.

The arguments are:

array Specified ESMF_Array object.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28.5.46 ESMF_ArrayValidate - Validate object-wide Array information

INTERFACE:

subroutine ESMF_ArrayValidate(array, rc)

ARGUMENTS:

type(ESMF_Array), intent(in) :: array

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

645

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Validates that the Array is internally consistent. The method returns an error code if problems are found.

The arguments are:

array Specified ESMF_Array object.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28.5.47 ESMF_ArrayWrite - Write Array data into a file

INTERFACE:

subroutine ESMF_ArrayWrite(array, fileName, &

variableName, convention, purpose, &

overwrite, status, timeslice, iofmt, rc)

ARGUMENTS:

type(ESMF_Array), intent(in) :: array

character(*), intent(in) :: fileName

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character(*), intent(in), optional :: variableName

character(*), intent(in), optional :: convention

character(*), intent(in), optional :: purpose

logical, intent(in), optional :: overwrite

type(ESMF_FileStatus_Flag), intent(in), optional :: status

integer, intent(in), optional :: timeslice

type(ESMF_IOFmt_Flag), intent(in), optional :: iofmt

integer, intent(out), optional :: rc

DESCRIPTION:

Write Array data into a file. For this API to be functional, the environment variable ESMF_PIO should be set to
"internal" when the ESMF library is built. Please see the section on Data I/O, 37.2.

When convention and purpose arguments are specified, a NetCDF variable can be created with user-specified
dimension labels and attributes. Dimension labels may be defined for both gridded and ungridded dimensions.
Dimension labels for gridded dimensions are specified at the DistGrid level by attaching an ESMF Attribute
package to it. The Attribute package must contain an attribute named by the pre-defined ESMF parameter
ESMF_ATT_GRIDDED_DIM_LABELS. The corresponding value is an array of character strings specifying the de-
sired names of the dimensions. Likewise, for ungridded dimensions, an Attribute package is attached at the Array
level. The name of the name must be ESMF_ATT_UNGRIDDED_DIM_LABELS.

646

NetCDF attributes for the variable can also be specified. As with dimension labels, an Attribute package is added to
the Array with the desired names and values. A value may be either a scalar character string, or a scalar or array of type
integer, real, or double precision. Dimension label attributes can co-exist with variable attributes within a common
Attribute package.

Limitations:

• Only single tile Arrays are supported.

• Not supported in ESMF_COMM=mpiuni mode.

The arguments are:

array The ESMF_Array object that contains data to be written.

fileName The name of the output file to which Array data is written.

[variableName] Variable name in the output file; default is the "name" of Array. Use this argument only in the I/O
format (such as NetCDF) that supports variable name. If the I/O format does not support this (such as binary
format), ESMF will return an error code.

[convention] Specifies an Attribute package associated with the Array, used to create NetCDF dimension labels and
attributes for the variable in the file. When this argument is present, the purpose argument must also be
present. Use this argument only with a NetCDF I/O format. If binary format is used, ESMF will return an error
code.

[purpose] Specifies an Attribute package associated with the Array, used to create NetCDF dimension labels and
attributes for the variable in the file. When this argument is present, the convention argument must also be
present. Use this argument only with a NetCDF I/O format. If binary format is used, ESMF will return an error
code.

[overwrite] A logical flag, the default is .false., i.e., existing Array data may not be overwritten. If .true., the overwrite
behavior depends on the value of iofmt as shown below:

iofmt = ESMF_IOFMT_BIN: All data in the file will be overwritten with each Array’s data.

iofmt = ESMF_IOFMT_NETCDF, ESMF_IOFMT_NETCDF_64BIT_OFFSET: Only the data corre-
sponding to each Array’s name will be be overwritten. If the timeslice option is given, only data for
the given timeslice may be overwritten. Note that it is always an error to attempt to overwrite a NetCDF
variable with data which has a different shape.

[status] The file status. Please see Section 52.21 for the list of options. If not present, defaults to
ESMF_FILESTATUS_UNKNOWN.

[timeslice] Some I/O formats (e.g. NetCDF) support the output of data in form of time slices. An unlimited dimension
called time is defined in the file variable for this capability. The timeslice argument provides access to the
time dimension, and must have a positive value. The behavior of this option may depend on the setting of the
overwrite flag:

overwrite = .false.: If the timeslice value is less than the maximum time already in the file, the write
will fail.

overwrite = .true.: Any positive timeslice value is valid.

By default, i.e. by omitting the timeslice argument, no provisions for time slicing are made in the output
file, however, if the file already contains a time axis for the variable, a timeslice one greater than the maximum
will be written.

[iofmt] The I/O format. Please see Section 52.28 for the list of options. If not present, file names with a .bin
extension will use ESMF_IOFMT_BIN, and file names with a .nc extension will use ESMF_IOFMT_NETCDF.
Other files default to ESMF_IOFMT_NETCDF.

647

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28.5.48 ESMF_SparseMatrixWrite - Write a sparse matrix to file

INTERFACE:

subroutine ESMF_SparseMatrixWrite(factorList, factorIndexList, fileName, &

rc)

ARGUMENTS:

real(ESMF_KIND_R8), intent(in) :: factorList(:)

integer(ESMF_KIND_I4), intent(in) :: factorIndexList(:,:)

character(*), intent(in) :: fileName

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Write the factorList and factorIndexList into a NetCDF file. The data is stored in SCRIP format docu-
mented under section (12.9).

Limitations:

• Only real(ESMF_KIND_R8) factorList and integer(ESMF_KIND_I4) factorIndexList

supported.

• Not supported in ESMF_COMM=mpiuni mode.

The arguments are:

factorList The sparse matrix factors to be written.

factorIndexList The sparse matrix sequence indices to be written.

fileName The name of the output file to be written.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28.6 Class API: DynamicMask Methods

28.6.1 ESMF_DynamicMaskSetR8R8R8 - Set DynamicMask for R8R8R8

INTERFACE:

subroutine ESMF_DynamicMaskSetR8R8R8(dynamicMask, dynamicMaskRoutine, &

handleAllElements, dynamicSrcMaskValue, &

dynamicDstMaskValue, rc)

648

ARGUMENTS:

type(ESMF_DynamicMask), intent(out) :: dynamicMask

procedure(ESMF_DynamicMaskRoutineR8R8R8) :: dynamicMaskRoutine

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: handleAllElements

real(ESMF_KIND_R8), intent(in), optional :: dynamicSrcMaskValue

real(ESMF_KIND_R8), intent(in), optional :: dynamicDstMaskValue

integer, intent(out), optional :: rc

DESCRIPTION:

Set an ESMF_DynamicMask object suitable for destination element typekind ESMF_TYPEKIND_R8, factor type-
kind ESMF_TYPEKIND_R8, and source element typekind ESMF_TYPEKIND_R8.

All values in dynamicMask will be reset by this call.

See section 36.2.5 for a general discussion of dynamic masking.

The arguments are:

dynamicMask DynamicMask object.

dynamicMaskRoutine The routine responsible for handling dynamically masked source and destination elements.
See section 36.2.5 for the precise definition of the dynamicMaskRoutine procedure interface. The routine
is only called on PETs where at least one interpolation element is identified for special handling.

[handleAllElements] If set to .true., all local elements, regardless of their dynamic masking status, are made
available to dynamicMaskRoutine for handling. This option can be used to implement fully customized in-
terpolations based on the information provided by ESMF. The default is .false., meaning that only elements
affected by dynamic masking will be handed to dynamicMaskRoutine.

[dynamicSrcMaskValue] The value for which a source element is considered dynamically masked. The default is to
not consider any source elements as dynamically masked.

[dynamicDstMaskValue] The value for which a destination element is considered dynamically masked. The default
is to not consider any destination elements as dynamically masked.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28.6.2 ESMF_DynamicMaskSetR8R8R8V - Set DynamicMask for R8R8R8 with vectorization

INTERFACE:

subroutine ESMF_DynamicMaskSetR8R8R8V(dynamicMask, dynamicMaskRoutine, &

handleAllElements, dynamicSrcMaskValue, &

dynamicDstMaskValue, rc)

ARGUMENTS:

649

type(ESMF_DynamicMask), intent(out) :: dynamicMask

procedure(ESMF_DynamicMaskRoutineR8R8R8V) :: dynamicMaskRoutine

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: handleAllElements

real(ESMF_KIND_R8), intent(in), optional :: dynamicSrcMaskValue

real(ESMF_KIND_R8), intent(in), optional :: dynamicDstMaskValue

integer, intent(out), optional :: rc

DESCRIPTION:

Set an ESMF_DynamicMask object suitable for destination element typekind ESMF_TYPEKIND_R8, factor type-
kind ESMF_TYPEKIND_R8, and source element typekind ESMF_TYPEKIND_R8.

All values in dynamicMask will be reset by this call.

See section 36.2.5 for a general discussion of dynamic masking.

The arguments are:

dynamicMask DynamicMask object.

dynamicMaskRoutine The routine responsible for handling dynamically masked source and destination elements.
See section 36.2.5 for the precise definition of the dynamicMaskRoutine procedure interface. The routine
is only called on PETs where at least one interpolation element is identified for special handling.

[handleAllElements] If set to .true., all local elements, regardless of their dynamic masking status, are made
available to dynamicMaskRoutine for handling. This option can be used to implement fully customized in-
terpolations based on the information provided by ESMF. The default is .false., meaning that only elements
affected by dynamic masking will be handed to dynamicMaskRoutine.

[dynamicSrcMaskValue] The value for which a source element is considered dynamically masked. The default is to
not consider any source elements as dynamically masked.

[dynamicDstMaskValue] The value for which a destination element is considered dynamically masked. The default
is to not consider any destination elements as dynamically masked.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28.6.3 ESMF_DynamicMaskSetR4R8R4 - Set DynamicMask for R4R8R4

INTERFACE:

subroutine ESMF_DynamicMaskSetR4R8R4(dynamicMask, dynamicMaskRoutine, &

handleAllElements, dynamicSrcMaskValue, &

dynamicDstMaskValue, rc)

ARGUMENTS:

type(ESMF_DynamicMask), intent(out) :: dynamicMask

procedure(ESMF_DynamicMaskRoutineR4R8R4) :: dynamicMaskRoutine

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

650

logical, intent(in), optional :: handleAllElements

real(ESMF_KIND_R4), intent(in), optional :: dynamicSrcMaskValue

real(ESMF_KIND_R4), intent(in), optional :: dynamicDstMaskValue

integer, intent(out), optional :: rc

DESCRIPTION:

Set an ESMF_DynamicMask object suitable for destination element typekind ESMF_TYPEKIND_R4, factor type-
kind ESMF_TYPEKIND_R8, and source element typekind ESMF_TYPEKIND_R4.

All values in dynamicMask will be reset by this call.

See section 36.2.5 for a general discussion of dynamic masking.

The arguments are:

dynamicMask DynamicMask object.

dynamicMaskRoutine The routine responsible for handling dynamically masked source and destination elements.
See section 36.2.5 for the precise definition of the dynamicMaskRoutine procedure interface. The routine
is only called on PETs where at least one interpolation element is identified for special handling.

[handleAllElements] If set to .true., all local elements, regardless of their dynamic masking status, are made
available to dynamicMaskRoutine for handling. This option can be used to implement fully customized in-
terpolations based on the information provided by ESMF. The default is .false., meaning that only elements
affected by dynamic masking will be handed to dynamicMaskRoutine.

[dynamicSrcMaskValue] The value for which a source element is considered dynamically masked. The default is to
not consider any source elements as dynamically masked.

[dynamicDstMaskValue] The value for which a destination element is considered dynamically masked. The default
is to not consider any destination elements as dynamically masked.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28.6.4 ESMF_DynamicMaskSetR4R8R4V - Set DynamicMask for R4R8R4 with vectorization

INTERFACE:

subroutine ESMF_DynamicMaskSetR4R8R4V(dynamicMask, dynamicMaskRoutine, &

handleAllElements, dynamicSrcMaskValue, &

dynamicDstMaskValue, rc)

ARGUMENTS:

type(ESMF_DynamicMask), intent(out) :: dynamicMask

procedure(ESMF_DynamicMaskRoutineR4R8R4V) :: dynamicMaskRoutine

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: handleAllElements

real(ESMF_KIND_R4), intent(in), optional :: dynamicSrcMaskValue

real(ESMF_KIND_R4), intent(in), optional :: dynamicDstMaskValue

integer, intent(out), optional :: rc

651

DESCRIPTION:

Set an ESMF_DynamicMask object suitable for destination element typekind ESMF_TYPEKIND_R4, factor type-
kind ESMF_TYPEKIND_R8, and source element typekind ESMF_TYPEKIND_R4.

All values in dynamicMask will be reset by this call.

See section 36.2.5 for a general discussion of dynamic masking.

The arguments are:

dynamicMask DynamicMask object.

dynamicMaskRoutine The routine responsible for handling dynamically masked source and destination elements.
See section 36.2.5 for the precise definition of the dynamicMaskRoutine procedure interface. The routine
is only called on PETs where at least one interpolation element is identified for special handling.

[handleAllElements] If set to .true., all local elements, regardless of their dynamic masking status, are made
available to dynamicMaskRoutine for handling. This option can be used to implement fully customized in-
terpolations based on the information provided by ESMF. The default is .false., meaning that only elements
affected by dynamic masking will be handed to dynamicMaskRoutine.

[dynamicSrcMaskValue] The value for which a source element is considered dynamically masked. The default is to
not consider any source elements as dynamically masked.

[dynamicDstMaskValue] The value for which a destination element is considered dynamically masked. The default
is to not consider any destination elements as dynamically masked.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28.6.5 ESMF_DynamicMaskSetR4R4R4 - Set DynamicMask for R4R4R4

INTERFACE:

subroutine ESMF_DynamicMaskSetR4R4R4(dynamicMask, dynamicMaskRoutine, &

handleAllElements, dynamicSrcMaskValue, &

dynamicDstMaskValue, rc)

ARGUMENTS:

type(ESMF_DynamicMask), intent(out) :: dynamicMask

procedure(ESMF_DynamicMaskRoutineR4R4R4) :: dynamicMaskRoutine

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: handleAllElements

real(ESMF_KIND_R4), intent(in), optional :: dynamicSrcMaskValue

real(ESMF_KIND_R4), intent(in), optional :: dynamicDstMaskValue

integer, intent(out), optional :: rc

DESCRIPTION:

652

Set an ESMF_DynamicMask object suitable for destination element typekind ESMF_TYPEKIND_R4, factor type-
kind ESMF_TYPEKIND_R4, and source element typekind ESMF_TYPEKIND_R4.

All values in dynamicMask will be reset by this call.

See section 36.2.5 for a general discussion of dynamic masking.

The arguments are:

dynamicMask DynamicMask object.

dynamicMaskRoutine The routine responsible for handling dynamically masked source and destination elements.
See section 36.2.5 for the precise definition of the dynamicMaskRoutine procedure interface. The routine
is only called on PETs where at least one interpolation element is identified for special handling.

[handleAllElements] If set to .true., all local elements, regardless of their dynamic masking status, are made
available to dynamicMaskRoutine for handling. This option can be used to implement fully customized in-
terpolations based on the information provided by ESMF. The default is .false., meaning that only elements
affected by dynamic masking will be handed to dynamicMaskRoutine.

[dynamicSrcMaskValue] The value for which a source element is considered dynamically masked. The default is to
not consider any source elements as dynamically masked.

[dynamicDstMaskValue] The value for which a destination element is considered dynamically masked. The default
is to not consider any destination elements as dynamically masked.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

28.6.6 ESMF_DynamicMaskSetR4R4R4V - Set DynamicMask for R4R4R4 with vectorization

INTERFACE:

subroutine ESMF_DynamicMaskSetR4R4R4V(dynamicMask, dynamicMaskRoutine, &

handleAllElements, dynamicSrcMaskValue, &

dynamicDstMaskValue, rc)

ARGUMENTS:

type(ESMF_DynamicMask), intent(out) :: dynamicMask

procedure(ESMF_DynamicMaskRoutineR4R4R4V) :: dynamicMaskRoutine

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: handleAllElements

real(ESMF_KIND_R4), intent(in), optional :: dynamicSrcMaskValue

real(ESMF_KIND_R4), intent(in), optional :: dynamicDstMaskValue

integer, intent(out), optional :: rc

DESCRIPTION:

Set an ESMF_DynamicMask object suitable for destination element typekind ESMF_TYPEKIND_R4, factor type-
kind ESMF_TYPEKIND_R4, and source element typekind ESMF_TYPEKIND_R4.

653

All values in dynamicMask will be reset by this call.

See section 36.2.5 for a general discussion of dynamic masking.

The arguments are:

dynamicMask DynamicMask object.

dynamicMaskRoutine The routine responsible for handling dynamically masked source and destination elements.
See section 36.2.5 for the precise definition of the dynamicMaskRoutine procedure interface. The routine
is only called on PETs where at least one interpolation element is identified for special handling.

[handleAllElements] If set to .true., all local elements, regardless of their dynamic masking status, are made
available to dynamicMaskRoutine for handling. This option can be used to implement fully customized in-
terpolations based on the information provided by ESMF. The default is .false., meaning that only elements
affected by dynamic masking will be handed to dynamicMaskRoutine.

[dynamicSrcMaskValue] The value for which a source element is considered dynamically masked. The default is to
not consider any source elements as dynamically masked.

[dynamicDstMaskValue] The value for which a destination element is considered dynamically masked. The default
is to not consider any destination elements as dynamically masked.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

29 LocalArray Class

29.1 Description

The ESMF_LocalArray class provides a language independent representation of data in array format. One of the

major functions of the LocalArray class is to bridge the Fortran/C/C++ language difference that exists with respect

to array representation. All ESMF Field and Array data is internally stored in ESMF LocalArray objects allowing

transparent access from Fortran and C/C++.

In the ESMF Fortran API the LocalArray becomes visible in those cases where a local PET may be associated with

multiple pieces of an Array, e.g. if there are multiple DEs associated with a single PET. The Fortran language standard

does not provide an array of arrays construct, however arrays of derived types holding arrays are possible. ESMF calls

use arguments that are of type ESMF_LocalArray with dimension attributes where necessary.

29.2 Restrictions and Future Work

• The TKR (type/kind/rank) overloaded LocalArray interfaces declare the dummy Fortran array arguments with

the pointer attribute. The advantage of doing this is that it allows ESMF to inquire information about the

provided Fortran array. The disadvantage of this choice is that actual Fortran arrays passed into these interfaces

must also be defined with pointer attribute in the user code.

29.3 Class API

29.3.1 ESMF_LocalArrayAssignment(=) - LocalArray assignment

INTERFACE:

654

interface assignment(=)

localarray1 = localarray2

ARGUMENTS:

type(ESMF_LocalArray) :: localarray1

type(ESMF_LocalArray) :: localarray2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Assign localarray1 as an alias to the same ESMF LocalArray object in memory as localarray2. If localarray2 is invalid,
then localarray1 will be equally invalid after the assignment.

The arguments are:

localarray1 The ESMF_LocalArray object on the left hand side of the assignment.

localarray2 The ESMF_LocalArray object on the right hand side of the assignment.

29.3.2 ESMF_LocalArrayOperator(==) - LocalArray equality operator

INTERFACE:

interface operator(==)

if (localarray1 == localarray2) then ... endif

OR

result = (localarray1 == localarray2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_LocalArray), intent(in) :: localarray1

type(ESMF_LocalArray), intent(in) :: localarray2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

655

DESCRIPTION:

Test whether localarray1 and localarray2 are valid aliases to the same ESMF LocalArray object in memory. For a more
general comparison of two ESMF LocalArrays, going beyond the simple alias test, the ESMF_LocalArrayMatch()
function (not yet implemented) must be used.

The arguments are:

localarray1 The ESMF_LocalArray object on the left hand side of the equality operation.

localarray2 The ESMF_LocalArray object on the right hand side of the equality operation.

29.3.3 ESMF_LocalArrayOperator(/=) - LocalArray not equal operator

INTERFACE:

interface operator(/=)

if (localarray1 /= localarray2) then ... endif

OR

result = (localarray1 /= localarray2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_LocalArray), intent(in) :: localarray1

type(ESMF_LocalArray), intent(in) :: localarray2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Test whether localarray1 and localarray2 are not valid aliases to the same ESMF LocalArray object in mem-
ory. For a more general comparison of two ESMF LocalArrays, going beyond the simple alias test, the
ESMF_LocalArrayMatch() function (not yet implemented) must be used.

The arguments are:

localarray1 The ESMF_LocalArray object on the left hand side of the non-equality operation.

localarray2 The ESMF_LocalArray object on the right hand side of the non-equality operation.

656

29.3.4 ESMF_LocalArrayCreate – Create a LocalArray by explicitly specifying typekind and rank arguments

INTERFACE:

! Private name; call using ESMF_LocalArrayCreate()

function ESMF_LocalArrayCreateByTKR(typekind, rank, totalCount, &

totalLBound, totalUBound, rc)

RETURN VALUE:

type(ESMF_LocalArray) :: ESMF_LocalArrayCreateByTKR

ARGUMENTS:

type(ESMF_TypeKind_Flag), intent(in) :: typekind

integer, intent(in) :: rank

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: totalCount(:)

integer, intent(in), optional :: totalLBound(:)

integer, intent(in), optional :: totalUBound(:)

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Create a new ESMF_LocalArray and allocate data space, which remains uninitialized. The return value is a new
LocalArray.

The arguments are:

typekind Array typekind. See section 52.59 for valid values.

rank Array rank (dimensionality, 1D, 2D, etc). Maximum allowed is 7D.

[totalCount] The number of items in each dimension of the array. This is a 1D integer array the same length as
the rank. The count argument may be omitted if both totalLBound and totalUBound arguments are
present.

[totalLBound] An integer array of length rank, with the lower index for each dimension.

[totalUBound] An integer array of length rank, with the upper index for each dimension.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

657

29.3.5 ESMF_LocalArrayCreate – Create a LocalArray by specifying an ArraySpec

INTERFACE:

! Private name; call using ESMF_LocalArrayCreate()

function ESMF_LocalArrayCreateBySpec(arrayspec, totalCount, &

totalLBound, totalUBound, rc)

RETURN VALUE:

type(ESMF_LocalArray) :: ESMF_LocalArrayCreateBySpec

ARGUMENTS:

type(ESMF_ArraySpec), intent(in) :: arrayspec

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: totalCount(:)

integer, intent(in), optional :: totalLBound(:)

integer, intent(in), optional :: totalUBound(:)

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Create a new ESMF_LocalArray and allocate data space, which remains uninitialized. The return value is a new
LocalArray.

The arguments are:

arrayspec ArraySpec object specifying typekind and rank.

[totalCount] The number of items in each dimension of the array. This is a 1D integer array the same length as
the rank. The count argument may be omitted if both totalLBound and totalUBound arguments are
present.

[totalLBound] An integer array of length rank, with the lower index for each dimension.

[totalUBound] An integer array of length rank, with the upper index for each dimension.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

29.3.6 ESMF_LocalArrayCreate – Create a LocalArray from pre-existing LocalArray

INTERFACE:

658

! Private name; call using ESMF_LocalArrayCreate()

function ESMF_LocalArrayCreateCopy(localarray, rc)

RETURN VALUE:

type(ESMF_LocalArray) :: ESMF_LocalArrayCreateCopy

ARGUMENTS:

type(ESMF_LocalArray), intent(in) :: localarray

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Perform a deep copy of an existing ESMF_LocalArray object. The return value is a new LocalArray.

The arguments are:

localarray Existing LocalArray to be copied.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

29.3.7 ESMF_LocalArrayCreate - Create a LocalArray from a Fortran pointer (associated or unassociated)

INTERFACE:

! Private name; call using ESMF_LocalArrayCreate()

function ESMF_LocalArrCreateByPtr<rank><type><kind>(farrayPtr, &

datacopyflag, totalCount, totalLBound, totalUBound, rc)

RETURN VALUE:

type(ESMF_LocalArray) :: ESMF_LocalArrCreateByPtr<rank><type><kind>

ARGUMENTS:

<type> (ESMF_KIND_<kind>), pointer :: farrayPtr(<rank>)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_DataCopy_Flag), intent(in), optional :: datacopyflag

659

integer, intent(in), optional :: totalCount(:)

integer, intent(in), optional :: totalLBound(:)

integer, intent(in), optional :: totalUBound(:)

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Creates an ESMF_LocalArray based on a Fortran array pointer. Two cases must be distinguished.

First, if farrayPtr is associated the optional datacopyflag argument may be used to indicate whether the as-
sociated data is to be copied or referenced. For associated farrayPtr the optional totalCount, totalLBound
and totalUBound arguments need not be specified. However, all present arguments will be checked against
farrayPtr for consistency.

Second, if farrayPtr is unassociated the optional argument datacopyflag must not be specified. However,
in this case a complete set of totalCount and bounds information must be provided. Any combination of present
totalCount totalLBound and totalUBound arguments that provides a complete specification is valid. All
input information will be checked for consistency.

The arguments are:

farrayPtr A Fortran array pointer (associated or unassociated).

[datacopyflag] Indicate copy vs. reference behavior in case of associated farrayPtr. This argument must
not be present for unassociated farrayPtr. Default to ESMF_DATACOPY_REFERENCE, makes the
ESMF_LocalArray reference the associated data array. If set to ESMF_DATACOPY_VALUE this routine
allocates new memory and copies the data from the pointer into the new LocalArray allocation.

[totalCount] The number of items in each dimension of the array. This is a 1D integer array the same length as
the rank. The count argument may be omitted if both totalLBound and totalUBound arguments are
present.

[totalLBound] An integer array of lower index values. Must be the same length as the rank.

[totalUBound] An integer array of upper index values. Must be the same length as the rank.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

29.3.8 ESMF_LocalArrayDestroy - Release resources associated with a LocalArray

INTERFACE:

subroutine ESMF_LocalArrayDestroy(localarray, rc)

ARGUMENTS:

660

type(ESMF_LocalArray), intent(inout) :: localarray

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Destroys an ESMF_LocalArray, releasing all resources associated with the object.

The arguments are:

localarray Destroy contents of this ESMF_LocalArray.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

29.3.9 ESMF_LocalArrayGet - Get object-wide LocalArray information

INTERFACE:

! Private name; call using ESMF_LocalArrayGet()

subroutine ESMF_LocalArrayGetDefault(localarray, &

typekind, rank, totalCount, totalLBound, totalUBound, rc)

ARGUMENTS:

type(ESMF_LocalArray), intent(in) :: localarray

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_TypeKind_Flag), intent(out), optional :: typekind

integer, intent(out), optional :: rank

integer, intent(out), optional :: totalCount(:)

integer, intent(out), optional :: totalLBound(:)

integer, intent(out), optional :: totalUBound(:)

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Returns information about the ESMF_LocalArray.

The arguments are:

661

localarray Queried ESMF_LocalArray object.

[typekind] TypeKind of the LocalArray object.

[rank] Rank of the LocalArray object.

[totalCount] Count per dimension.

[totalLBound] Lower bound per dimension.

[totalUBound] Upper bound per dimension.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

29.3.10 ESMF_LocalArrayGet - Get a Fortran array pointer from a LocalArray

INTERFACE:

! Private name; call using ESMF_LocalArrayGet()

subroutine ESMF_LocalArrayGetData<rank><type><kind>(localarray, farrayPtr, &

datacopyflag, rc)

ARGUMENTS:

type(ESMF_LocalArray) :: localarray

<type> (ESMF_KIND_<kind>), pointer :: farrayPtr

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_DataCopy_Flag), intent(in), optional :: datacopyflag

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Return a Fortran pointer to the data buffer, or return a Fortran pointer to a new copy of the data.

The arguments are:

localarray The ESMF_LocalArray to get the value from.

farrayPtr An unassociated or associated Fortran pointer correctly allocated.

[datacopyflag] An optional copy flag which can be specified. Can either make a new copy of the data or reference
existing data. See section 52.12 for a list of possible values.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

662

29.3.11 ESMF_LocalArrayIsCreated - Check whether a LocalArray object has been created

INTERFACE:

function ESMF_LocalArrayIsCreated(localarray, rc)

RETURN VALUE:

logical :: ESMF_LocalArrayIsCreated

ARGUMENTS:

type(ESMF_LocalArray), intent(in) :: localarray

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Return .true. if the localarray has been created. Otherwise return .false.. If an error occurs, i.e. rc /=

ESMF_SUCCESS is returned, the return value of the function will also be .false..

The arguments are:

localarray ESMF_LocalArray queried.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

30 ArraySpec Class

30.1 Description

An ArraySpec is a very simple class that contains type, kind, and rank information about an Array. This information

is stored in two parameters. TypeKind describes the data type of the elements in the Array and their precision. Rank

is the number of dimensions in the Array.

The only methods that are associated with the ArraySpec class are those that allow you to set and retrieve this infor-

mation.

30.2 Use and Examples

The ArraySpec is passed in as an argument at Field and FieldBundle creation in order to describe an Array that

will be allocated or attached at a later time. There are any number of situations in which this approach is useful. One

common example is a case in which the user wants to create a very flexible export State with many diagnostic variables

predefined, but only a subset desired and consequently allocated for a particular run.

663

! !PROGRAM: ESMF_ArraySpecEx - ArraySpec manipulation examples

!

! !DESCRIPTION:

!

! This program shows examples of ArraySpec set and get usage

!---

#include "ESMF.h"

! ESMF Framework module

use ESMF

use ESMF_TestMod

implicit none

! local variables

type(ESMF_ArraySpec) :: arrayDS

integer :: myrank

type(ESMF_TypeKind_Flag) :: mytypekind

! return code

integer:: rc, result

character(ESMF_MAXSTR) :: testname

character(ESMF_MAXSTR) :: failMsg

! initialize ESMF framework

call ESMF_Initialize(defaultlogfilename="ArraySpecEx.Log", &

logkindflag=ESMF_LOGKIND_MULTI, rc=rc)

30.2.1 Set ArraySpec values

This example shows how to set values in an ESMF_ArraySpec.

call ESMF_ArraySpecSet(arrayDS, rank=2, &

typekind=ESMF_TYPEKIND_R8, rc=rc)

30.2.2 Get ArraySpec values

This example shows how to query an ESMF_ArraySpec.

call ESMF_ArraySpecGet(arrayDS, rank=myrank, &

typekind=mytypekind, rc=rc)

print *, "Returned values from ArraySpec:"

print *, "rank =", myrank

664

! finalize ESMF framework

call ESMF_Finalize(rc=rc)

end program ESMF_ArraySpecEx

30.3 Restrictions and Future Work

1. Limit on rank. The values for type, kind and rank passed into the ArraySpec class are subject to the same

limitations as Arrays. The maximum array rank is 7, which is the highest rank supported by Fortran.

30.4 Design and Implementation Notes

The information contained in an ESMF_ArraySpec is used to create ESMF_Array objects.

ESMF_ArraySpec is a shallow class, and only set and get methods are needed. They do not need to be created or

destroyed.

30.5 Class API

30.5.1 ESMF_ArraySpecAssignment(=) - Assign an ArraySpec to another ArraySpec

INTERFACE:

interface assignment(=)

arrayspec1 = arrayspec2

ARGUMENTS:

type(ESMF_ArraySpec) :: arrayspec1

type(ESMF_ArraySpec) :: arrayspec2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Set arrayspec1 equal to arrayspec2. This is the default Fortran assignment, which creates a complete, inde-
pendent copy of arrayspec2 as arrayspec1. If arrayspec2 is an invalid ESMF_ArraySpec object then
arrayspec1 will be equally invalid after the assignment.

The arguments are:

arrayspec1 The ESMF_ArraySpec to be set.

arrayspec2 The ESMF_ArraySpec to be copied.

665

30.5.2 ESMF_ArraySpecOperator(==) - Test if ArraySpec 1 is equal to ArraySpec 2

INTERFACE:

interface operator(==)

if (arrayspec1 == arrayspec2) then ... endif

OR

result = (arrayspec1 == arrayspec2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_ArraySpec), intent(in) :: arrayspec1

type(ESMF_ArraySpec), intent(in) :: arrayspec2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Overloads the (==) operator for the ESMF_ArraySpec class to return .true. if arrayspec1 and arrayspec2
specify the same type, kind and rank, and .false. otherwise.

The arguments are:

arrayspec1 First ESMF_ArraySpec in comparison.

arrayspec2 Second ESMF_ArraySpec in comparison.

30.5.3 ESMF_ArraySpecOperator(/=) - Test if ArraySpec 1 is not equal to ArraySpec 2

INTERFACE:

interface operator(/=)

if (arrayspec1 /= arrayspec2) then ... endif

OR

result = (arrayspec1 /= arrayspec2)

RETURN VALUE:

logical :: result

666

ARGUMENTS:

type(ESMF_ArraySpec), intent(in) :: arrayspec1

type(ESMF_ArraySpec), intent(in) :: arrayspec2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Overloads the (/=) operator for the ESMF_ArraySpec class to return .true. if arrayspec1 and arrayspec2
do not specify the same type, kind or rank, and .false. otherwise.

The arguments are:

arrayspec1 First ESMF_ArraySpec in comparison.

arrayspec2 Second ESMF_ArraySpec in comparison.

30.5.4 ESMF_ArraySpecGet - Get values from an ArraySpec

INTERFACE:

subroutine ESMF_ArraySpecGet(arrayspec, rank, typekind, rc)

ARGUMENTS:

type(ESMF_ArraySpec), intent(in) :: arrayspec

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rank

type(ESMF_TypeKind_Flag), intent(out), optional :: typekind

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Returns information about the contents of an ESMF_ArraySpec.

The arguments are:

arrayspec The ESMF_ArraySpec to query.

667

[rank] Array rank (dimensionality – 1D, 2D, etc). Maximum possible is 7D.

[typekind] Array typekind. See section 52.59 for valid values.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

30.5.5 ESMF_ArraySpecPrint - Print ArraySpec information

INTERFACE:

subroutine ESMF_ArraySpecPrint(arrayspec, rc)

ARGUMENTS:

type(ESMF_ArraySpec), intent(in) :: arrayspec

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Print ArraySpec internals.

The arguments are:

arrayspec Specified ESMF_ArraySpec object.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

30.5.6 ESMF_ArraySpecSet - Set values for an ArraySpec

INTERFACE:

subroutine ESMF_ArraySpecSet(arrayspec, rank, typekind, rc)

ARGUMENTS:

type(ESMF_ArraySpec), intent(out) :: arrayspec

integer, intent(in) :: rank

type(ESMF_TypeKind_Flag), intent(in) :: typekind

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

668

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Creates a description of the data – the typekind, the rank, and the dimensionality.

The arguments are:

arrayspec The ESMF_ArraySpec to set.

rank Array rank (dimensionality – 1D, 2D, etc). Maximum allowed is 7D.

typekind Array typekind. See section 52.59 for valid values.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

30.5.7 ESMF_ArraySpecValidate - Validate ArraySpec internals

INTERFACE:

subroutine ESMF_ArraySpecValidate(arrayspec, rc)

ARGUMENTS:

type(ESMF_ArraySpec), intent(in) :: arrayspec

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Validates that the arrayspec is internally consistent. The method returns an error code if problems are found.

The arguments are:

arrayspec Specified ESMF_ArraySpec object.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

669

31 Grid Class

31.1 Description

The ESMF Grid class is used to describe the geometry and discretization of logically rectangular physical grids. It

also contains the description of the grid’s underlying topology and the decomposition of the physical grid across the

available computational resources. The most frequent use of the Grid class is to describe physical grids in user code

so that sufficient information is available to perform ESMF methods such as regridding.

Key Features

Representation of grids formed by logically rectangular regions, including uniform and rectilinear grids (e.g.

lat-lon grids), curvilinear grids (e.g. displaced pole grids), and grids formed by connected logically rectangu-

lar regions (e.g. cubed sphere grids).

Support for 1D, 2D, 3D, and higher dimension grids.

Distribution of grids across computational resources for parallel operations - users set which grid dimensions

are distributed.

Grids can be created already distributed, so that no single resource needs global information during the

creation process.

Options to define periodicity and other edge connectivities either explicitly or implicitly via shape shortcuts.

Options for users to define grid coordinates themselves or to call prefabricated coordinate generation routines

for standard grids.

Options for incremental construction of grids.

Options for using a set of pre-defined stagger locations or for setting custom stagger locations.

31.1.1 Grid Representation in ESMF

ESMF Grids are based on the concepts described in A Standard Description of Grids Used in Earth System Models

[Balaji 2006]. In this document Balaji introduces the mosaic concept as a means of describing a wide variety of Earth

system model grids. A mosaic is composed of grid tiles connected at their edges. Mosaic grids includes simple, single

tile grids as a special case.

The ESMF Grid class is a representation of a mosaic grid. Each ESMF Grid is constructed of one or more logically

rectangular Tiles. A Tile will usually have some physical significance (e.g. the region of the world covered by one

face of a cubed sphere grid).

The piece of a Tile that resides on one DE (for simple cases, a DE can be thought of as a processor - see section on the

DELayout) is called a LocalTile. For example, the six faces of a cubed sphere grid are each Tiles, and each Tile can

be divided into many LocalTiles.

Every ESMF Grid contains a DistGrid object, which defines the Grid’s index space, topology, distribution, and con-

nectivities. It enables the user to define the complex edge relationships of tripole and other grids. The DistGrid can be

created explicitly and passed into a Grid creation routine, or it can be created implicitly if the user takes a Grid creation

shortcut. The DistGrid used in Grid creation describes the properties of the Grid cells. In addition to this one, the Grid

internally creates DistGrids for each stagger location. These stagger DistGrids are related to the original DistGrid, but

may contain extra padding to represent the extent of the index space of the stagger. These DistGrids are what are used

when a Field is created on a Grid.

670

31.1.2 Supported Grids

The range of supported grids in ESMF can be defined by:

• Types of topologies and shapes supported. ESMF supports one or more logically rectangular grid Tiles with

connectivities specified between cells. For more details see section 31.1.3.

• Types of distributions supported. ESMF supports regular, irregular, or arbitrary distributions of data. For more

details see section 31.1.4.

• Types of coordinates supported. ESMF supports uniform, rectilinear, and curvilinear coordinates. For more

details see section 31.1.5.

31.1.3 Grid Topologies and Periodicity

ESMF has shortcuts for the creation of standard Grid topologies or shapes up to 3D. In many cases, these enable the

user to bypass the step of creating a DistGrid before creating the Grid. There are two sets of methods which allow

the user to do this. These two sets of methods cover the same set of topologies, but allow the user to specify them in

different ways.

The first set of these are a group of overloaded calls broken up by the number of periodic dimensions they specify.

With these the user can pick the method which creates a Grid with the number of periodic dimensions they need, and

then specify other connectivity options via arguments to the method. The following is a description of these methods:

ESMF_GridCreateNoPeriDim() Allows the user to create a Grid with no edge connections, for example, a regional

Grid with closed boundaries.

ESMF_GridCreate1PeriDim() Allows the user to create a Grid with 1 periodic dimension and supports a range of

options for what to do at the pole (see Section 31.2.5). Some examples of Grids which can be created here are

tripole spheres, bipole spheres, cylinders with open poles.

ESMF_GridCreate2PeriDim() Allows the user to create a Grid with 2 periodic dimensions, for example a torus, or

a regional Grid with doubly periodic boundaries.

More detailed information can be found in the API description of each.

The second set of shortcut methods is a set of methods overloaded under the name ESMF_GridCreate(). These

methods allow the user to specify the connectivites at the end of each dimension, by using the ESMF_GridConn_Flag

flag. The table below shows the ESMF_GridConn_Flag settings used to create standard shapes in 2D using the

ESMF_GridCreate() call. Two values are specified for each dimension, one for the low end and one for the high end

of the dimension’s index values.

2D Shape connflagDim1(1) connflagDim1(2) connflagDim2(1) connflagDim2(2)

Rectangle NONE NONE NONE NONE

Bipole Sphere POLE POLE PERIODIC PERIODIC

Tripole Sphere POLE BIPOLE PERIODIC PERIODIC

Cylinder NONE NONE PERIODIC PERIODIC

Torus PERIODIC PERIODIC PERIODIC PERIODIC

If the user’s grid shape is too complex for an ESMF shortcut routine, or involves more than three dimensions, a

DistGrid can be created to specify the shape in detail. This DistGrid is then passed into a Grid create call.

671

Regular distribution
 Irregular distribution
 Arbitrary distribution

a

11

a

21

a

12

a

22

a

23

a

13

a

31

a

41

a

32

a

42

a

43

a

33

a

51

a

61

a

52

a

62

a

63

a

53

a

14

a

24

a

15

a

22

a

23

a

16

a

34

a

44

a

35

a

45

a

46

a

36

a

54

a

64

a

55

a

65

a

66

a

56

a

11

a

21

a

12

a

22

a

23

a

13

a

31

a

41

a

32

a

42

a

43

a

33

a

51

a

61

a

52

a

62

a

63

a

53

a

14

a

24

a

15

a

22

a

23

a

16

a

34

a

44

a

35

a

45

a

46

a

36

a

54

a

64

a

55

a

65

a

66

a

56

b

21

b

22

b

23

b

31

b

41

b

32

b

42

b

43

b

33

b

51

b

61

b

52

b

62

b

63

b

53

b

11

b

12

b

13

Figure 13: Examples of regular and irregular decomposition of a grid a that is 6x6, and an arbitrary decomposition of

a grid b that is 6x3.

31.1.4 Grid Distribution

ESMF Grids have several options for data distribution (also referred to as decomposition). As ESMF Grids are cell

based, these options are all specified in terms of how the cells in the Grid are broken up between DEs.

The main distribution options are regular, irregular, and arbitrary. A regular distribution is one in which the same

number of contiguous grid cells are assigned to each DE in the distributed dimension. An irregular distribution is one

in which unequal numbers of contiguous grid cells are assigned to each DE in the distributed dimension. An arbitrary

distribution is one in which any grid cell can be assigned to any DE. Any of these distribution options can be applied

to any of the grid shapes (i.e., rectangle) or types (i.e., rectilinear). Support for arbitrary distribution is limited in the

current version of ESMF, see Section 31.3.7 for an example of creating a Grid with an arbitrary distribution.

Figure 13 illustrates options for distribution.

A distribution can also be specified using the DistGrid, by passing object into a Grid create call.

31.1.5 Grid Coordinates

Grid Tiles can have uniform, rectilinear, or curvilinear coordinates. The coordinates of uniform grids are equally

spaced along their axes, and can be fully specified by the coordinates of the two opposing points that define the grid’s

physical span. The coordinates of rectilinear grids are unequally spaced along their axes, and can be fully specified

by giving the spacing of grid points along each axis. The coordinates of curvilinear grids must be specified by giving

the explicit set of coordinates for each grid point. Curvilinear grids are often uniform or rectilinear grids that have

been warped; for example, to place a pole over a land mass so that it does not affect the computations performed on

an ocean model grid. Figure 14 shows examples of each type of grid.

Each of these coordinate types can be set for each of the standard grid shapes described in section 31.1.3.

The table below shows how examples of common single Tile grids fall into this shape and coordinate taxonomy. Note

that any of the grids in the table can have a regular or arbitrary distribution.

Uniform Rectilinear Curvilinear

Sphere Global uniform lat-lon grid Gaussian grid Displaced pole grid

Rectangle Regional uniform lat-lon

grid

Gaussian grid section Polar stereographic grid sec-

tion

672

Uniform grid
 Rectilinear grid
 Curvilinear grid

Figure 14: Types of logically rectangular grid tiles. Red circles show the values needed to specify grid coordinates for

each type.

31.1.6 Coordinate Specification and Generation

There are two ways of specifying coordinates in ESMF. The first way is for the user to set the coordinates. The second

way is to take a shortcut and have the framework generate the coordinates.

See Section 31.3.13 for more description and examples of setting coordinates.

31.1.7 Staggering

Staggering is a finite difference technique in which the values of different physical quantities are placed at different

locations within a grid cell.

The ESMF Grid class supports a variety of stagger locations, including cell centers, corners, and edge centers. The

default stagger location in ESMF is the cell center, and cell counts in Grid are based on this assumption. Combinations

of the 2D ESMF stagger locations are sufficient to specify any of the Arakawa staggers. ESMF also supports staggering

in 3D and higher dimensions. There are shortcuts for standard staggers, and interfaces through which users can create

custom staggers.

As a default the ESMF Grid class provides symmetric staggering, so that cell centers are enclosed by cell perimeter

(e.g. corner) stagger locations. This means the coordinate arrays for stagger locations other than the center will have

an additional element of padding in order to enclose the cell center locations. However, to achieve other types of

staggering, the user may alter or eliminate this padding by using the appropriate options when adding coordinates to a

Grid.

In the current release, only the cell center stagger location is supported for an arbitrarily distributed grid. For examples

and a full description of the stagger interface see Section 31.3.13.

31.1.8 Masking

Masking is the process whereby parts of a Grid can be marked to be ignored during an operation. For a description of

how to set mask information in the Grid, see here 31.3.17. For a description of how masking works in regridding, see

here 24.2.10.

673

31.2 Constants

31.2.1 ESMF_GRIDCONN

DESCRIPTION:

The ESMF_GridCreateShapeTile command has three specific arguments connflagDim1, connflagDim2,

and connflagDim3. These can be used to setup different types of connections at the ends of each dimension of a

Tile. Each of these parameters is a two element array. The first element is the connection type at the minimum end of

the dimension and the second is the connection type at the maximum end. The default value for all the connections is

ESMF_GRIDCONN_NONE, specifying no connection.

The type of this flag is:

type(ESMF_GridConn_Flag)

The valid values are:

ESMF_GRIDCONN_NONE No connection.

ESMF_GRIDCONN_PERIODIC Periodic connection.

ESMF_GRIDCONN_POLE This edge is connected to itself. Given that the edge is n elements long, then element i

is connected to element ((i+n/2) mod n).

ESMF_GRIDCONN_BIPOLE This edge is connected to itself. Given that the edge is n elements long, element i is

connected to element (n-i-1).

31.2.2 ESMF_GRIDITEM

DESCRIPTION:

The ESMF Grid can contain other kinds of data besides coordinates. This data is referred to as Grid “items”.

Some items may be used by ESMF for calculations involving the Grid. The following are the valid values of

ESMF_GridItem_Flag.

The type of this flag is:

type(ESMF_GridItem_Flag)

The valid values are:

Item Label Type Restriction Type Default ESMF Uses Controls

ESMF_GRIDITEM_MASK ESMF_TYPEKIND_I4 ESMF_TYPEKIND_I4 YES Masking in Regrid

ESMF_GRIDITEM_AREA NONE ESMF_TYPEKIND_R8 YES Conservation in Regrid

NOTE: One important thing to consider when setting areas in the Grid using ESMF_GRIDITEM_AREA, ESMF

doesn’t currently do unit conversion on areas. If these areas are going to be used in a process that also involves the

areas of another Grid or Mesh (e.g. conservative regridding), then it is the user’s responsibility to make sure that the

area units are consistent between the two sides. If ESMF calculates an area on the surface of a sphere, then it is in

units of square radians. If it calculates the area for a Cartesian grid, then it is in the same units as the coordinates, but

squared.

674

31.2.3 ESMF_GRIDMATCH

DESCRIPTION:

This type is used to indicate the level to which two grids match.

The type of this flag is:

type(ESMF_GridMatch_Flag)

The valid values are:

ESMF_GRIDMATCH_INVALID: Indicates a non-valid matching level. Returned if an error occurs in the matching

function. If a higher matching level is returned then no error occurred.

ESMF_GRIDMATCH_NONE: The lowest level of grid matching. This indicates that the Grid’s don’t match at any

of the higher levels.

ESMF_GRIDMATCH_EXACT: All the pieces of the Grid (e.g. distgrids, coordinates, etc.) except the name, match

between the two Grids.

ESMF_GRIDMATCH_ALIAS: Both Grid variables are aliases to the exact same Grid object in memory.

31.2.4 ESMF_GRIDSTATUS

DESCRIPTION:

The ESMF Grid class can exist in two states. These states are present so that the library code can detect if a Grid has

been appropriately setup for the task at hand. The following are the valid values of ESMF_GRIDSTATUS.

The type of this flag is:

type(ESMF_GridStatus_Flag)

The valid values are:

ESMF_GRIDSTATUS_EMPTY: Status after a Grid has been created with ESMF_GridEmptyCreate. A Grid

object container is allocated but space for internal objects is not. Topology information and coordinate informa-

tion is incomplete. This object can be used in ESMF_GridEmptyComplete() methods in which additional

information is added to the Grid.

ESMF_GRIDSTATUS_COMPLETE: The Grid has a specific topology and distribution, but incomplete coordi-

nate arrays. The Grid can be used as the basis for allocating a Field, and coordinates can be added via

ESMF_GridCoordAdd() to allow other functionality.

31.2.5 ESMF_POLEKIND

DESCRIPTION:

This type describes the type of connection that occurs at the pole when a Grid is created with

ESMF_GridCreate1PeriodicDim().

The type of this flag is:

type(ESMF_PoleKind_Flag)

The valid values are:

675

ESMF_STAGGERLOC_CORNER ESMF_STAGGERLOC_CORNER

ESMF_STAGGERLOC_CORNERESMF_STAGGERLOC_CORNER

ESMF_STAGGERLOC_CENTER

ESMF_STAGGERLOC_EDGE2

ESMF_STAGGERLOC_EDGE2

ESMF_STAGGERLOC_EDGE1 ESMF_STAGGERLOC_EDGE1

Dim. 2

Dim. 1

Figure 15: 2D Predefined Stagger Locations

ESMF_POLEKIND_NONE No connection at pole.

ESMF_POLEKIND_MONOPOLE This edge is connected to itself. Given that the edge is n elements long, then

element i is connected to element i+n/2.

ESMF_POLEKIND_BIPOLE This edge is connected to itself. Given that the edge is n elements long, element i is

connected to element n-i-1.

31.2.6 ESMF_STAGGERLOC

DESCRIPTION:

In the ESMF Grid class, data can be located at different positions in a Grid cell. When setting or retrieving coordinate

data the stagger location is specified to tell the Grid method from where in the cell to get the data. Although the user

may define their own custom stagger locations, ESMF provides a set of predefined locations for ease of use. The

following are the valid predefined stagger locations.

The 2D predefined stagger locations (illustrated in figure 15) are:

ESMF_STAGGERLOC_CENTER: The center of the cell.

ESMF_STAGGERLOC_CORNER: The corners of the cell.

ESMF_STAGGERLOC_EDGE1: The edges offset from the center in the 1st dimension.

ESMF_STAGGERLOC_EDGE2: The edges offset from the center in the 2nd dimension.

676

CORNER_VFACE

EDGE2_VFACE

CORNER_VFACE

CORNER_VCENTER

EDGE2_VCENTER

CORNER_VCENTER

CORNER_VFACE

EDGE2_VFACE

EDGE1_VFACE
CORNER_VFACE

EDGE1_VFACE

EDGE2_VFACE

CORNER_VFACE

CENTER_VFACE

CENTER_VCENTER

EDGE1_VCENTER

EDGE1_VCENTER

Dim. 2

Dim. 1

Dim. 3

CORNER_VFACE

CORNER_VFACE

CORNER_VCENTER

CORNER_VCENTER

EDGE2_VCENTER

EDGE2_VFACE
CENTER_VFACE

EDGE1_VFACE

EDGE1_VFACE

Figure 16: 3D Predefined Stagger Locations

The 3D predefined stagger locations (illustrated in figure 16) are:

ESMF_STAGGERLOC_CENTER_VCENTER: The center of the 3D cell.

ESMF_STAGGERLOC_CORNER_VCENTER: Half way up the vertical edges of the cell.

ESMF_STAGGERLOC_EDGE1_VCENTER: The center of the face bounded by edge 1 and the vertical dimen-

sion.

ESMF_STAGGERLOC_EDGE2_VCENTER: The center of the face bounded by edge 2 and the vertical dimen-

sion.

ESMF_STAGGERLOC_CORNER_VFACE: The corners of the 3D cell.

ESMF_STAGGERLOC_EDGE1_VFACE: The center of the edges of the 3D cell parallel offset from the center in

the 1st dimension.

ESMF_STAGGERLOC_EDGE2_VFACE: The center of the edges of the 3D cell parallel offset from the center in

the 2nd dimension.

ESMF_STAGGERLOC_CENTER_VFACE: The center of the top and bottom face. The face bounded by the 1st

and 2nd dimensions.

31.3 Use and Examples

This section describes the use of the ESMF Grid class. It first discusses the more user friendly shape specific interface

to the Grid. During this discussion it covers creation and options, adding stagger locations, coordinate data access,

677

and other grid functionality. After this initial phase the document discusses the more advanced options which the user

can employ should they need more customized interaction with the Grid class.

31.3.1 Create single-tile Grid shortcut method

The set of methods ESMF_GridCreateNoPeriDim(), ESMF_GridCreate1PeriDim(),
ESMF_GridCreate2PeriDim(), and ESMF_GridCreate() are shortcuts for building 2D or 3D single
tile logically rectangular Grids. These methods support all three types of distributions described in Section 31.1.4:
regular, irregular and arbitrary.

The ESMF Grid is cell based and so for all distribution options the methods take as input the number of cells to
describe the total index space and the number of cells to specify distribution.

To create a Grid with a regular distribution the user specifies the global maximum and minimum ranges of the Grid
cell index space (maxIndex and minIndex), and the number of pieces in which to partition each dimension (via a
regDecomp argument). ESMF then divides the index space as evenly as possible into the specified number of pieces.
If there are cells left over then they are distributed one per DE starting from the first DE until they are gone.

If minIndex is not specified, then the bottom of the Grid cell index range is assumed to be (1,1,...,1). If regDecomp
is not specified, then by default ESMF creates a distribution that partitions the grid cells in the first dimension (e.g.
NPx1x1...1) as evenly as possible by the number of PETs NP. The remaining dimensions are not partitioned. The
dimension of the Grid is the size of maxIndex. The following is an example of creating a 10x20x30 3D grid where
the first dimensions is broken into 2 pieces, the second is broken into 4 pieces, and the third is not divided (i.e. every
DE will have length 30 in the 3rd dimension).

grid3D=ESMF_GridCreateNoPeriDim(regDecomp=(/2,4,1/), maxIndex=(/10,20,30/), &

rc=rc)

Irregular distribution requires the user to specify the exact number of Grid cells per DE in each dimen-
sion. In the ESMF_GridCreateNoPeriDim() call the countsPerDEDim1, countsPerDim2, and
countsPerDim3 arguments are used to specify a rectangular distribution containing size(countsPerDEDim1) by
size(countsPerDEDim2) by size(countsPerDEDim3) DEs. The entries in each of these arrays specify the number of
grid cells per DE in that dimension. The dimension of the grid is determined by the presence of countsPerDEDim3.
If it’s present the Grid will be 3D. If just countsPerDEDim1 and countsPerDEDim2 are specified the Grid will
be 2D.

The following call illustrates the creation of a 10x20 two dimensional rectangular Grid distributed across six DEs that
are arranged 2x3. In the first dimension there are 3 grid cells on the first DE and 7 cells on the second DE. The second
dimension has 3 DEs with 11,2, and 7 cells, respectively.

grid2D=ESMF_GridCreateNoPeriDim(countsPerDEDim1=(/3,7/), &

countsPerDEDim2=(/11,2,7/), rc=rc)

To add a distributed third dimension of size 30, broken up into two groups of 15, the above call would be altered as
follows.

grid3d=ESMF_GridCreateNoPeriDim(countsPerDEDim1=(/3,7/), &

countsPerDEDim2=(/11,2,7/), countsPerDEDim3=(/15,15/), rc=rc)

To make a third dimension distributed across only 1 DE, then countsPerDEDim3 in the call should only have a
single term.

678

grid3D=ESMF_GridCreateNoPeriDim(countsPerDEDim1=(/3,7/), &

countsPerDEDim2=(/11,2,7/), countsPerDEDim3=(/30/), rc=rc)

The petMap parameter may be used to specify on to which specific PETs the DEs in the Grid are assigned. Each entry
in petMap specifies to which PET the corresponding DE should be assigned. For example, petMap(3,2)=4 tells
the Grid create call to put the DE located at column 3 row 2 on PET 4. Note that this parameter is only available for the
regular and irregular distribution types. The petMap array is a 3D array, for a 3D Grid each of its dimensions corre-
spond to a Grid dimension. If the Grid is 2D, then the first two dimensions correspond to Grid dimensions and the last
dimension should be of size 1. The size of each petMap dimension is the number of DE’s along that dimension in the
Grid. For a regular Grid, the size is equal to the number in regDecomp (i.e. size(petMap,d)=regDecomp(d)
for all dimensions d in the Grid). For an irregular Grid the size is equal to the number of items in the cor-
responding countsPerDEDim variable (i.e. size(petMap,d)=size(countsPerDEDimd) for all dimen-
sions d in the Grid). The following example demonstrates how to specify the PET to DE association for an
ESMF_GridCreateNoPeriDim() call.

! allocate memory for petMap

allocate(petMap(2,2,1))

! Set petMap

petMap(:,1,1) = (/3,2/) ! DE (1,1,1) on PET 3 and DE (2,1,1) on PET 2

petMap(:,2,1) = (/1,0/) ! DE (1,2,1) on PET 1 and DE (2,2,1) on PET 0

! Let the 3D grid be be distributed only in the first two dimensions.

grid2D=ESMF_GridCreateNoPeriDim(countsPerDEDim1=(/3,7/), &

countsPerDEDim2=(/7,6/), petMap=petMap, rc=rc)

To create an grid with arbitrary distribution, the user specifies the global minimum and maximum ranges of the index
space with the arguments minIndex and maxIndex, the total number of cells and their index space locations resid-
ing on the local PET through a localArbIndexCount and a localArbIndex argument. localArbIndex is
a 2D array with size (localArbIndexCount, n) where n is the total number dimensions distributed arbitrarily.
Again, if minIndex is not specified, then the bottom of the index range is assumed to be (1,1,...). The dimension
of the Grid is equal to the size of maxIndex. If n (number of arbitrarily distributed dimension) is less than the grid
dimension, an optional argument distDim is used to specify which of the grid dimension is arbitrarily distributed. If
not given, the first n dimensions are assumed to be distributed.

The following example creates a 2D Grid of dimensions 5x5, and places the diagonal elements (i.e. indices (i,i)
where i goes from 1 to 5) on the local PET. The remaining PETs would individually declare the remainder of the Grid
locations.

! allocate memory for localArbIndex

allocate(localArbIndex(5,2))

! Set local indices

localArbIndex(1,:)=(/1,1/)

localArbIndex(2,:)=(/2,2/)

localArbIndex(3,:)=(/3,3/)

localArbIndex(4,:)=(/4,4/)

localArbIndex(5,:)=(/5,5/)

! Create a 2D Arbitrarily distributed Grid

grid2D=ESMF_GridCreateNoPeriDim(maxIndex=(/5,5/), &

arbIndexList=localArbIndex, arbIndexCount=5, rc=rc)

679

To create a 3D Grid of dimensions 5x6x5 with the first and the third dimensions distributed arbitrarily, distDim is
used.

! Create a 3D Grid with the 1st and 3rd dimension arbitrarily distributed

grid3D=ESMF_GridCreateNoPeriDim(maxIndex=(/5,6,5/), &

arbIndexList=localArbIndex, arbIndexCount=5, &

distDim=(/1,3/), rc=rc)

31.3.2 Create a 2D regularly distributed rectilinear Grid with uniformly spaced coordinates

The following is an example of creating a simple rectilinear grid and loading in a set of coordinates. It illustrates
a straightforward use of the ESMF_GridCreateNoPeriDim() call described in the previous section. This code
creates a 10x20 2D grid with uniformly spaced coordinates varying from (10,10) to (100,200). The grid is partitioned
using a regular distribution. The first dimension is divided into two pieces, and the second dimension is divided into
3. This example assumes that the code is being run with a 1-1 mapping between PETs and DEs because we are only
accessing the first DE on each PET (localDE=0). Because we have 6 DEs (2x3), this example would only work when
run on 6 PETs. The Grid is created with global indices. After Grid creation the local bounds and native Fortran arrays
are retrieved and the coordinates are set by the user.

!---

! Create the Grid: Allocate space for the Grid object, define the

! topology and distribution of the Grid, and specify that it

! will have global indices. Note that here aperiodic bounds are

! specified by the argument name. In this call the minIndex hasn’t

! been set, so it defaults to (1,1,...). The default is to

! divide the index range as equally as possible among the DEs

! specified in regDecomp. This behavior can be changed by

! specifying decompFlag.

!---

grid2D=ESMF_GridCreateNoPeriDim(&

! Define a regular distribution

maxIndex=(/10,20/), & ! define index space

regDecomp=(/2,3/), & ! define how to divide among DEs

coordSys=ESMF_COORDSYS_CART, &

! Specify mapping of coords dim to Grid dim

coordDep1=(/1/), & ! 1st coord is 1D and depends on 1st Grid dim

coordDep2=(/2/), & ! 2nd coord is 1D and depends on 2nd Grid dim

indexflag=ESMF_INDEX_GLOBAL, &

rc=rc)

!---

! Allocate coordinate storage and associate it with the center

! stagger location. Since no coordinate values are specified in

! this call no coordinate values are set yet.

!---

call ESMF_GridAddCoord(grid2D, &

staggerloc=ESMF_STAGGERLOC_CENTER, rc=rc)

680

!---

! Get the pointer to the first coordinate array and the bounds

! of its global indices on the local DE.

!---

call ESMF_GridGetCoord(grid2D, coordDim=1, localDE=0, &

staggerloc=ESMF_STAGGERLOC_CENTER, &

computationalLBound=lbnd, computationalUBound=ubnd, &

farrayPtr=coordX, rc=rc)

!---

! Calculate and set coordinates in the first dimension [10-100].

!---

do i=lbnd(1),ubnd(1)

coordX(i) = i*10.0

enddo

!---

! Get the pointer to the second coordinate array and the bounds of

! its global indices on the local DE.

!---

call ESMF_GridGetCoord(grid2D, coordDim=2, localDE=0, &

staggerloc=ESMF_STAGGERLOC_CENTER, &

computationalLBound=lbnd, computationalUBound=ubnd, &

farrayPtr=coordY, rc=rc)

!---

! Calculate and set coordinates in the second dimension [10-200]

!---

do j=lbnd(1),ubnd(1)

coordY(j) = j*10.0

enddo

31.3.3 Create a periodic 2D regularly distributed rectilinear Grid

The following is an example of creating a simple rectilinear grid with a periodic dimension and loading in a set
of coordinates. It illustrates a straightforward use of the ESMF_GridCreate1PeriDim() call described in the
previous section. This code creates a 360x180 2D grid with uniformly spaced coordinates varying from (1,1) to
(360,180). The grid is partitioned using a regular distribution. The first dimension is divided into two pieces, and the
second dimension is divided into 3. This example assumes that the code is being run with a 1-1 mapping between
PETs and DEs because we are only accessing the first DE on each PET (localDE=0). Because we have 6 DEs (2x3),
this example would only work when run on 6 PETs. The Grid is created with global indices. After Grid creation the
local bounds and native Fortran arrays are retrieved and the coordinates are set by the user.

!---

! Create the Grid: Allocate space for the Grid object, define the

! topology and distribution of the Grid, and specify that it

681

! will have global indices. Note that here a single periodic connection

! is specified by the argument name. In this call the minIndex hasn’t

! been set, so it defaults to (1,1,...). The default is to

! divide the index range as equally as possible among the DEs

! specified in regDecomp. This behavior can be changed by

! specifying decompFlag. Since the coordinate system is

! not specified, it defaults to ESMF_COORDSYS_SPH_DEG.

!---

grid2D=ESMF_GridCreate1PeriDim(&

! Define a regular distribution

maxIndex=(/360,180/), & ! define index space

regDecomp=(/2,3/), & ! define how to divide among DEs

! Specify mapping of coords dim to Grid dim

coordDep1=(/1/), & ! 1st coord is 1D and depends on 1st Grid dim

coordDep2=(/2/), & ! 2nd coord is 1D and depends on 2nd Grid dim

indexflag=ESMF_INDEX_GLOBAL, &

rc=rc)

!---

! Allocate coordinate storage and associate it with the center

! stagger location. Since no coordinate values are specified in

! this call no coordinate values are set yet.

!---

call ESMF_GridAddCoord(grid2D, &

staggerloc=ESMF_STAGGERLOC_CENTER, rc=rc)

!---

! Get the pointer to the first coordinate array and the bounds

! of its global indices on the local DE.

!---

call ESMF_GridGetCoord(grid2D, coordDim=1, localDE=0, &

staggerloc=ESMF_STAGGERLOC_CENTER, &

computationalLBound=lbnd, computationalUBound=ubnd, &

farrayPtr=coordX, rc=rc)

!---

! Calculate and set coordinates in the first dimension [10-100].

!---

do i=lbnd(1),ubnd(1)

coordX(i) = i*1.0

enddo

!---

! Get the pointer to the second coordinate array and the bounds of

! its global indices on the local DE.

682

!---

call ESMF_GridGetCoord(grid2D, coordDim=2, localDE=0, &

staggerloc=ESMF_STAGGERLOC_CENTER, &

computationalLBound=lbnd, computationalUBound=ubnd, &

farrayPtr=coordY, rc=rc)

!---

! Calculate and set coordinates in the second dimension [10-200]

!---

do j=lbnd(1),ubnd(1)

coordY(j) = j*1.0

enddo

The remaining examples in this section will use the irregular distribution because of its greater generality. To create
code similar to these, but using a regular distribution, replace the countsPerDEDim arguments in the Grid create
with the appropriate maxIndex and regDecomp arguments.

31.3.4 Create a 2D irregularly distributed rectilinear Grid with uniformly spaced coordinates

This example serves as an illustration of the difference between using a regular and irregular distribution. It repeats
the previous example except using an irregular distribution to give the user more control over how the cells are divided
between the DEs. As before, this code creates a 10x20 2D Grid with uniformly spaced coordinates varying from
(10,10) to (100,200). In this example, the Grid is partitioned using an irregular distribution. The first dimension is
divided into two pieces, the first with 3 Grid cells per DE and the second with 7 Grid cells per DE. In the second
dimension, the Grid is divided into 3 pieces, with 11, 2, and 7 cells per DE respectively. This example assumes that
the code is being run with a 1-1 mapping between PETs and DEs because we are only accessing the first DE on each
PET (localDE=0). Because we have 6 DEs (2x3), this example would only work when run on 6 PETs. The Grid
is created with global indices. After Grid creation the local bounds and native Fortran arrays are retrieved and the
coordinates are set by the user.

!---

! Create the Grid: Allocate space for the Grid object, define the

! topology and distribution of the Grid, and specify that it

! will have global coordinates. Note that aperiodic bounds are

! indicated by the method name. In this call the minIndex hasn’t

! been set, so it defaults to (1,1,...).

!---

grid2D=ESMF_GridCreateNoPeriDim(&

! Define an irregular distribution

countsPerDEDim1=(/3,7/), &

countsPerDEDim2=(/11,2,7/), &

! Specify mapping of coords dim to Grid dim

coordDep1=(/1/), & ! 1st coord is 1D and depends on 1st Grid dim

coordDep2=(/2/), & ! 2nd coord is 1D and depends on 2nd Grid dim

indexflag=ESMF_INDEX_GLOBAL, &

rc=rc)

683

!---

! Allocate coordinate storage and associate it with the center

! stagger location. Since no coordinate values are specified in

! this call no coordinate values are set yet.

!---

call ESMF_GridAddCoord(grid2D, &

staggerloc=ESMF_STAGGERLOC_CENTER, rc=rc)

!---

! Get the pointer to the first coordinate array and the bounds

! of its global indices on the local DE.

!---

call ESMF_GridGetCoord(grid2D, coordDim=1, localDE=0, &

staggerloc=ESMF_STAGGERLOC_CENTER, &

computationalLBound=lbnd, computationalUBound=ubnd, &

farrayPtr=coordX, rc=rc)

!---

! Calculate and set coordinates in the first dimension [10-100].

!---

do i=lbnd(1),ubnd(1)

coordX(i) = i*10.0

enddo

!---

! Get the pointer to the second coordinate array and the bounds of

! its global indices on the local DE.

!---

call ESMF_GridGetCoord(grid2D, coordDim=2, localDE=0, &

staggerloc=ESMF_STAGGERLOC_CENTER, &

computationalLBound=lbnd, computationalUBound=ubnd, &

farrayPtr=coordY, rc=rc)

!---

! Calculate and set coordinates in the second dimension [10-200]

!---

do j=lbnd(1),ubnd(1)

coordY(j) = j*10.0

enddo

31.3.5 Create a 2D irregularly distributed Grid with curvilinear coordinates

The following is an example of creating a simple curvilinear Grid and loading in a set of coordinates. It creates a 10x20
2D Grid where the coordinates vary along every dimension. The Grid is partitioned using an irregular distribution. The

684

first dimension is divided into two pieces, the first with 3 Grid cells per DE and the second with 7 Grid cells per DE.
In the second dimension, the Grid is divided into 3 pieces, with 11, 2, and 7 cells per DE respectively. This example
assumes that the code is being run with a 1-1 mapping between PETs and DEs because we are only accessing the first
DE on each PET (localDE=0). Because we have 6 DEs (2x3), this example would only work when run on 6 PETs.
The Grid is created with global indices. After Grid creation the local bounds and native Fortran arrays are retrieved
and the coordinates are set by the user.

!---

! Create the Grid: Allocate space for the Grid object, define the

! distribution of the Grid, and specify that it

! will have global indices. Note that aperiodic bounds are

! indicated by the method name. If periodic bounds were desired they

! could be specified by using the ESMF_GridCreate1PeriDim() call.

! In this call the minIndex hasn’t been set, so it defaults to (1,1,...).

!---

grid2D=ESMF_GridCreateNoPeriDim(&

! Define an irregular distribution

countsPerDEDim1=(/3,7/), &

countsPerDEDim2=(/11,2,7/), &

! Specify mapping of coords dim to Grid dim

coordDep1=(/1,2/), & ! 1st coord is 2D and depends on both Grid dim

coordDep2=(/1,2/), & ! 2nd coord is 2D and depends on both Grid dim

indexflag=ESMF_INDEX_GLOBAL, &

rc=rc)

!---

! Allocate coordinate storage and associate it with the center

! stagger location. Since no coordinate values are specified in

! this call no coordinate values are set yet.

!---

call ESMF_GridAddCoord(grid2D, &

staggerloc=ESMF_STAGGERLOC_CENTER, rc=rc)

!---

! Get the pointer to the first coordinate array and the bounds

! of its global indices on the local DE.

!---

call ESMF_GridGetCoord(grid2D, coordDim=1, localDE=0, &

staggerloc=ESMF_STAGGERLOC_CENTER, &

computationalLBound=lbnd, computationalUBound=ubnd, &

farrayPtr=coordX2D, rc=rc)

!---

! Calculate and set coordinates in the first dimension [10-100].

!---

685

do j=lbnd(2),ubnd(2)

do i=lbnd(1),ubnd(1)

coordX2D(i,j) = i+j

enddo

enddo

!---

! Get the pointer to the second coordinate array and the bounds of

! its global indices on the local DE.

!---

call ESMF_GridGetCoord(grid2D, coordDim=2, localDE=0, &

staggerloc=ESMF_STAGGERLOC_CENTER, &

computationalLBound=lbnd, computationalUBound=ubnd, &

farrayPtr=coordY2D, rc=rc)

!---

! Calculate and set coordinates in the second dimension [10-200]

!---

do j=lbnd(2),ubnd(2)

do i=lbnd(1),ubnd(1)

coordY2D(i,j) = j-i/100.0

enddo

enddo

31.3.6 Create an irregularly distributed rectilinear Grid with a non-distributed vertical dimension

This example demonstrates how a user can build a rectilinear horizontal Grid with a non-distributed vertical dimension.
The Grid contains both the center and corner stagger locations (i.e. Arakawa B-Grid). In contrast to the previous
examples, this example doesn’t assume that the code is being run with a 1-1 mapping between PETs and DEs. It
should work when run on any number of PETs.

!---

! Create the Grid: Allocate space for the Grid object. The

! Grid is defined to be 180 Grid cells in the first dimension

! (e.g. longitude), 90 Grid cells in the second dimension

! (e.g. latitude), and 40 Grid cells in the third dimension

! (e.g. height). The first dimension is decomposed over 4 DEs,

! the second over 3 DEs, and the third is not distributed.

! The connectivities in each dimension are set to aperiodic

! by this method. In this call the minIndex hasn’t been set,

! so it defaults to (1,1,...).

!---

grid3D=ESMF_GridCreateNoPeriDim(&

! Define an irregular distribution

countsPerDEDim1=(/45,75,40,20/), &

countsPerDEDim2=(/30,40,20/), &

countsPerDEDim3=(/40/), &

! Specify mapping of coords dim to Grid dim

coordDep1=(/1/), & ! 1st coord is 1D and depends on 1st Grid dim

coordDep2=(/2/), & ! 2nd coord is 1D and depends on 2nd Grid dim

686

coordDep3=(/3/), & ! 3rd coord is 1D and depends on 3rd Grid dim

indexflag=ESMF_INDEX_GLOBAL, & ! Use global indices

rc=rc)

!---

! Allocate coordinate storage for both center and corner stagger

! locations. Since no coordinate values are specified in this

! call no coordinate values are set yet.

!---

call ESMF_GridAddCoord(grid3D, &

staggerloc=ESMF_STAGGERLOC_CENTER_VCENTER, rc=rc)

call ESMF_GridAddCoord(grid3D, &

staggerloc=ESMF_STAGGERLOC_CORNER_VCENTER, rc=rc)

!---

! Get the number of DEs on this PET, so that the program

! can loop over them when accessing data.

!---

call ESMF_GridGet(grid3D, localDECount=localDECount, rc=rc)

!---

! Loop over each localDE when accessing data

!---

do lDE=0,localDECount-1

!--

! Fill in the coordinates for the corner stagger location first.

!--

!--

! Get the local bounds of the global indexing for the first

! coordinate array on the local DE. If the number of PETs

! is less than the total number of DEs then the rest of this

! example would be in a loop over the local DEs. Also get the

! pointer to the first coordinate array.

!--

call ESMF_GridGetCoord(grid3D, coordDim=1, localDE=lDE, &

staggerLoc=ESMF_STAGGERLOC_CORNER_VCENTER, &

computationalLBound=lbnd_corner, &

computationalUBound=ubnd_corner, &

farrayPtr=cornerX, rc=rc)

687

!--

! Calculate and set coordinates in the first dimension.

!--

do i=lbnd_corner(1),ubnd_corner(1)

cornerX(i) = (i-1)*(360.0/180.0)

enddo

!--

! Get the local bounds of the global indexing for the second

! coordinate array on the local DE. Also get the pointer to the

! second coordinate array.

!--

call ESMF_GridGetCoord(grid3D, coordDim=2, localDE=lDE, &

staggerLoc=ESMF_STAGGERLOC_CORNER_VCENTER, &

computationalLBound=lbnd_corner, &

computationalUBound=ubnd_corner, &

farrayPtr=cornerY, rc=rc)

!--

! Calculate and set coordinates in the second dimension.

!--

do j=lbnd_corner(1),ubnd_corner(1)

cornerY(j) = (j-1)*(180.0/90.0)

enddo

!--

! Get the local bounds of the global indexing for the third

! coordinate array on the local DE, and the pointer to the array.

!--

call ESMF_GridGetCoord(grid3D, coordDim=3, localDE=lDE, &

staggerloc=ESMF_STAGGERLOC_CENTER_VCENTER, &

computationalLBound=lbnd, computationalUBound=ubnd,&

farrayPtr=cornerZ, rc=rc)

!--

! Calculate and set the vertical coordinates

!--

do k=lbnd(1),ubnd(1)

cornerZ(k) = 4000.0*((1./39.)*(k-1))**2

enddo

!--

! Now fill the coordinates for the center stagger location with

! the average of the corner coordinate location values.

!--

!--

! Get the local bounds of the global indexing for the first

688

! coordinate array on the local DE, and the pointer to the array.

!--

call ESMF_GridGetCoord(grid3D, coordDim=1, localDE=lDE, &

staggerloc=ESMF_STAGGERLOC_CENTER_VCENTER, &

computationalLBound=lbnd, computationalUBound=ubnd, &

farrayPtr=centerX, rc=rc)

!--

! Calculate and set coordinates in the first dimension.

!--

do i=lbnd(1),ubnd(1)

centerX(i) = 0.5*(i-1 + i)*(360.0/180.0)

enddo

!--

! Get the local bounds of the global indexing for the second

! coordinate array on the local DE, and the pointer to the array.

!--

call ESMF_GridGetCoord(grid3D, coordDim=2, localDE=lDE, &

staggerloc=ESMF_STAGGERLOC_CENTER_VCENTER, &

computationalLBound=lbnd, computationalUBound=ubnd, &

farrayPtr=centerY, rc=rc)

!--

! Calculate and set coordinates in the second dimension.

!--

do j=lbnd(1),ubnd(1)

centerY(j) = 0.5*(j-1 + j)*(180.0/90.0)

enddo

!--

! Get the local bounds of the global indexing for the third

! coordinate array on the local DE, and the pointer to the array.

!--

call ESMF_GridGetCoord(grid3D, coordDim=3, localDE=lDE, &

staggerloc=ESMF_STAGGERLOC_CENTER_VCENTER, &

computationalLBound=lbnd, computationalUBound=ubnd,&

farrayPtr=centerZ, rc=rc)

!--

! Calculate and set the vertical coordinates

!--

do k=lbnd(1),ubnd(1)

centerZ(k) = 4000.0*((1./39.)*(k-1))**2

enddo

689

!---

! End of loop over DEs

!---

enddo

31.3.7 Create an arbitrarily distributed rectilinear Grid with a non-distributed vertical dimension

There are more restrictions in defining an arbitrarily distributed grid. First, there is always one DE per
PET. Secondly, only local index (ESMF_INDEX_LOCAL) is supported. Third, only one stagger location, i.e.
ESMF_STAGGERLOC_CENTER is allowed and last there is no extra paddings on the edge of the grid.

This example demonstrates how a user can build a 3D grid with its rectilinear horizontal Grid distributed arbitrarily
and a non-distributed vertical dimension.

!---

! Set up the local index array: Assuming the grid is 360x180x10. First

! calculate the localArbIndexCount and localArbIndex array for each PET

! based on the total number of PETs. The cells are evenly distributed in

! all the PETs. If the total number of cells are not divisible by the

! total PETs, the remaining cells are assigned to the last PET. The

! cells are card dealt to each PET in y dimension first,

! i.e. (1,1) -> PET 0, (1,2)-> PET 1, (1,3)-> PET 2, and so forth.

!---

xdim = 360

ydim = 180

zdim = 10

localArbIndexCount = (xdim*ydim)/petCount

remain = (xdim*ydim)-localArbIndexCount*petCount

if (localPet == petCount-1) localArbIndexCount = localArbIndexCount+remain

allocate(localArbIndex(localArbIndexCount,2))

ind = localPet

do i=1, localArbIndexCount

localArbIndex(i,1)=mod(ind,ydim)+1

localArbIndex(i,2)=ind/ydim + 1

ind = ind + petCount

enddo

if (localPet == petCount-1) then

ind = xdim*ydim-remain+1

do i=localArbIndexCount-remain+1,localArbIndexCount

localArbIndex(i,1)=mod(ind,ydim)+1

localArbIndex(i,2)=ind/ydim+1

ind = ind + 1

enddo

endif

!---

! Create the Grid: Allocate space for the Grid object.

! the minIndex hasn’t been set, so it defaults to (1,1,...). The

! default coordDep1 and coordDep2 are (/ESMF_DIM_ARB/) where

690

! ESMF_DIM_ARB represents the collapsed dimension for the

! arbitrarily distributed grid dimensions. For the undistributed

! grid dimension, the default value for coordDep3 is (/3/). The

! default values for coordDepX in the arbitrary distribution are

! different from the non-arbitrary distributions.

!---

grid3D=ESMF_GridCreateNoPeriDim(&

maxIndex = (/xdim, ydim, zdim/), &

arbIndexList = localArbIndex, &

arbIndexCount = localArbIndexCount, &

rc=rc)

!---

! Allocate coordinate storage for the center stagger location, the

! only stagger location supported for the arbitrary distribution.

!---

call ESMF_GridAddCoord(grid3D, &

staggerloc=ESMF_STAGGERLOC_CENTER_VCENTER, rc=rc)

!--

! Fill in the coordinates for the center stagger location. There is

! always one DE per PET, so localDE is always 0

!--

call ESMF_GridGetCoord(grid3D, coordDim=1, localDE=0, &

staggerLoc=ESMF_STAGGERLOC_CENTER, &

computationalLBound=lbnd, &

computationalUBound=ubnd, &

farrayPtr=centerX, rc=rc)

!--

! Calculate and set coordinates in the first dimension.

!--

do i=lbnd(1),ubnd(1)

centerX(i) = (localArbIndex(i,1)-0.5)*(360.0/xdim)

enddo

!--

! Get the local bounds of the global indexing for the second

! coordinate array on the local DE, and the pointer to the array.

!--

call ESMF_GridGetCoord(grid3D, coordDim=2, localDE=0, &

staggerloc=ESMF_STAGGERLOC_CENTER, &

computationalLBound=lbnd, computationalUBound=ubnd, &

691

farrayPtr=centerY, rc=rc)

!--

! Calculate and set coordinates in the second dimension.

!--

do j=lbnd(1),ubnd(1)

centerY(j) = (localArbIndex(j,2)-0.5)*(180.0/ydim)-90.0

enddo

!--

! Get the local bounds of the global indexing for the third

! coordinate array on the local DE, and the pointer to the array.

!--

call ESMF_GridGetCoord(grid3D, coordDim=3, localDE=0, &

staggerloc=ESMF_STAGGERLOC_CENTER, &

computationalLBound=lbnd, computationalUBound=ubnd,&

farrayPtr=centerZ, rc=rc)

!--

! Calculate and set the vertical coordinates

!--

do k=lbnd(1),ubnd(1)

centerZ(k) = 4000.0*((1./zdim)*(k-1))**2

enddo

31.3.8 Create a curvilinear Grid using the coordinates defined in a SCRIP file

ESMF supports the creation of a 2D curvilinear Grid using the coordinates defined in a SCRIP format Grid
file [13]. The grid contained in the file must be a 2D logically rectangular grid with grid_rank in the file set
to 2. The center coordinates variables grid_center_lat and grid_center_lon in the file are placed in the
ESMF_STAGGERLOC_CENTER location. If the parameter addCornerStagger in the ESMF_GridCreate
call is set to .true., then the variables grid_corner_lat and grid_corner_lon in the file are used to set the
ESMF_STAGGERLOC_CORNER coordinates, otherwise they are ignored. The values in the grid_imask variable
in the file are used to set the ESMF_GRIDITEM_MASK in the Grid.

The following example code shows you how to create a 2D Grid with both center and corner coordinates using a
SCRIP file and a row only regular distribution:

grid2D = ESMF_GridCreate(filename="data/T42_grid.nc", &

fileFormat=ESMF_FILEFORMAT_SCRIP, &

regDecomp=(/PetCount,1/), addCornerStagger=.true., rc=rc)

where T42_grid.nc is a 2D global grid of size (128x64) and the resulting Grid is distributed by partitioning the rows
evenly over all the PETs.

692

ESMF also support the creation of a 2D Grid from the SCRIP format Grid file using a user specified ESMF_DistGrid.
The following example code demonstrates the creation of an Grid object using a pre-defined DistGrid. The resulting
Grid is the same as the one created above:

distgrid = ESMF_DistGridCreate((/1,1/), (/128,64/), &

regDecomp=(/PetCount,1/), rc=rc)

grid2D = ESMF_GridCreate(filename="data/T42_grid.nc", &

fileFormat=ESMF_FILEFORMAT_SCRIP, &

distGrid=distgrid, addCornerStagger=.true., rc=rc)

31.3.9 Create an empty Grid in a parent Component for completion in a child Component

ESMF Grids can be created incrementally. To do this, the user first calls ESMF_GridEmptyCreate() to allocate
the shell of a Grid. Next, we use the ESMF_GridEmptyComplete() call that fills in the Grid and does an internal
commit to make it usable. For consistency’s sake the ESMF_GridSetCommitShapeTile() call must occur on
the same or a subset of the PETs as the ESMF_GridEmptyCreate() call. The ESMF_GridEmptyComplete()
call uses the VM for the context in which it’s executed and the "empty" Grid contains no information about the VM
in which its create was run. This means that if the ESMF_GridEmptyComplete() call occurs in a subset of the
PETs in which the ESMF_GridEmptyCreate() was executed that the Grid is created only in that subset. Inside
the subset the Grid will be fine, but outside the subset the Grid objects will still be "empty" and not usable. The
following example uses the incremental technique to create a rectangular 10x20 Grid with coordinates at the center
and corner stagger locations.

!---

! IN THE PARENT COMPONENT:

! Create an empty Grid in the parent component for use in a child component.

! The parent may be defined on more PETs than the child component.

! The child’s [vm or pet list] is passed into the create call so that

! the Grid is defined on the appropriate subset of the parent’s PETs.

!---

grid2D=ESMF_GridEmptyCreate(rc=rc)

!---

! IN THE CHILD COMPONENT:

! Set the Grid topology. Here we define an irregularly distributed

! rectangular Grid.

!---

call ESMF_GridEmptyComplete(grid2D, &

countsPerDEDim1=(/6,4/), &

countsPerDEDim2=(/10,3,7/), rc=rc)

!---

! Add Grid coordinates at the cell center location.

!---

call ESMF_GridAddCoord(grid2D, staggerLoc=ESMF_STAGGERLOC_CENTER, rc=rc)

693

!---

! Add Grid coordinates at the corner stagger location.

!---

call ESMF_GridAddCoord(grid2D, staggerLoc=ESMF_STAGGERLOC_CORNER, rc=rc)

31.3.10 Create a six-tile cubed sphere Grid

This example creates a multi-tile Grid to represent a cubed sphere grid. Each of the six tiles making up the cubed
sphere has 45 elements on each side, so the total number of elements is 45x45x6=12150. Each tile is decomposed
using a regular decomposition. The first two tiles are decomposed into 2x2 blocks each and the remaining 4 tiles are
decomposed into 1x2 block. A total of 16 DEs are used.

In this example, both the center and corner coordinates will be added to the grid.

! Set up decomposition for each tile

allocate(decomptile(2,6))

decomptile(:,1)=(/2,2/) ! Tile 1

decomptile(:,2)=(/2,2/) ! Tile 2

decomptile(:,3)=(/1,2/) ! Tile 3

decomptile(:,4)=(/1,2/) ! Tile 4

decomptile(:,5)=(/1,2/) ! Tile 5

decomptile(:,6)=(/1,2/) ! Tile 6

! Create cubed sphere grid

grid2D = ESMF_GridCreateCubedSphere(tileSize=45, regDecompPTile=decomptile, &

staggerLocList=(/ESMF_STAGGERLOC_CENTER, ESMF_STAGGERLOC_CORNER/), rc=rc)

31.3.11 Create a six-tile cubed sphere Grid and apply Schmidt transform

This example creates the same cubed sphere grid with the same regular decomposition as in 31.3.10
with a few differences. First, the coordinates of the grid are of type ESMF_TYPEKIND_R4 instead of
the default ESMF_TYPEKIND_R8. Secondly, the coordinate system is ESMF_COORDSYS_SPH_RAD in-
stead of the default ESMF_COORDSYS_SPH_DEG. Lastly, the grid was then transformed using Schmidt
Transformation algorithm on an arbitrary target point and a streatching factor. An optional argument
TransformArgs of type ESMF_CubedSphereTransform_Args is used to pass the Schmidt Transform ar-
guments. ESMF_CubedSphereTransform_Args is defined as follows:

type ESMF_CubedSphereTransform_Args

real(ESMF_KIND_R4) :: stretch_factor, target_lat, target_lon

end type

Note target_lat and target_lon are in radians.

transformArgs%stretch_factor = 0.5;

transformArgs%target_lat = 0.0; ! in radians

transformArgs%target_lat = 1.3; ! in radians

grid2D = ESMF_GridCreateCubedSphere(tileSize=45, regDecompPTile=decomptile, &

694

staggerLocList = (/ESMF_STAGGERLOC_CENTER, ESMF_STAGGERLOC_CORNER/), &

coordTypeKind = ESMF_TYPEKIND_R4, &

coordSys = ESMF_COORDSYS_SPH_RAD, &

transformArgs=transformArgs, &

rc=rc)

31.3.12 Create a six-tile cubed sphere Grid from a GRIDSPEC Mosaic file

This example creates a six-tile Grid to represent a cubed sphere grid defined in a GRIDSPEC
Mosaic file C48_mosaic.nc. The GRIDSPEC mosaic file format is defined in the document
GRIDSPEC: A standard for the description of grids used in Earth System models by V. Balaji, Alistair Adcroft and
Zhi Liang.

The mosaic file contains the following information:

netcdf C48_mosaic {

dimensions:

ntiles = 6 ;

ncontact = 12 ;

string = 255 ;

variables:

char mosaic(string) ;

mosaic:standard_name = "grid_mosaic_spec" ;

mosaic:children = "gridtiles" ;

mosaic:contact_regions = "contacts" ;

mosaic:grid_descriptor = "" ;

char gridlocation(string) ;

gridlocation:standard_name = "grid_file_location" ;

char gridfiles(ntiles, string) ;

char gridtiles(ntiles, string) ;

char contacts(ncontact, string) ;

contacts:standard_name = "grid_contact_spec" ;

contacts:contact_type = "boundary" ;

contacts:alignment = "true" ;

contacts:contact_index = "contact_index" ;

contacts:orientation = "orient" ;

char contact_index(ncontact, string) ;

contact_index:standard_name = "starting_ending_point_index_of_contact" ;

// global attributes:

:grid_version = "0.2" ;

:code_version = "$Name: testing $" ;

data:

mosaic = "C48_mosaic" ;

gridlocation = "/archive/z1l/tools/test_20091028/output_all/" ;

gridfiles =

"horizontal_grid.tile1.nc",

"horizontal_grid.tile2.nc",

"horizontal_grid.tile3.nc",

695

http://extranet.gfdl.noaa.gov/~vb/gridstd/gridstdse3.html#x5-220003.2

"horizontal_grid.tile4.nc",

"horizontal_grid.tile5.nc",

"horizontal_grid.tile6.nc" ;

gridtiles =

"tile1",

"tile2",

"tile3",

"tile4",

"tile5",

"tile6" ;

contacts =

"C48_mosaic:tile1::C48_mosaic:tile2",

"C48_mosaic:tile1::C48_mosaic:tile3",

"C48_mosaic:tile1::C48_mosaic:tile5",

"C48_mosaic:tile1::C48_mosaic:tile6",

"C48_mosaic:tile2::C48_mosaic:tile3",

"C48_mosaic:tile2::C48_mosaic:tile4",

"C48_mosaic:tile2::C48_mosaic:tile6",

"C48_mosaic:tile3::C48_mosaic:tile4",

"C48_mosaic:tile3::C48_mosaic:tile5",

"C48_mosaic:tile4::C48_mosaic:tile5",

"C48_mosaic:tile4::C48_mosaic:tile6",

"C48_mosaic:tile5::C48_mosaic:tile6" ;

contact_index =

"96:96,1:96::1:1,1:96",

"1:96,96:96::1:1,96:1",

"1:1,1:96::96:1,96:96",

"1:96,1:1::1:96,96:96",

"1:96,96:96::1:96,1:1",

"96:96,1:96::96:1,1:1",

"1:96,1:1::96:96,96:1",

"96:96,1:96::1:1,1:96",

"1:96,96:96::1:1,96:1",

"1:96,96:96::1:96,1:1",

"96:96,1:96::96:1,1:1",

"96:96,1:96::1:1,1:96" ;

}

A dummy variable with its standard_name attribute set to grid_mosaic_spec is required. The children
attribute of this dummy variable provides the variable name that contains the tile names and the contact_region
attribute points to the variable name that defines a list of tile pairs that are connected to each other. For a
Cubed Sphere grid, there are six tiles and 12 connections. The contacts variable has three required at-
tributes: standard_name, contact_type, and contact_index. startand_name has to be set to
grid_contact_spec. contact_type has to be boundary. ESMF does not support overlapping contact
regions. contact_index defines the variable name that contains the information how the two adjacent tiles are
connected to each other. The contact_index variable contains 12 entries. Each entry contains the index of four
points that defines the two edges that contact to each other from the two neighboring tiles. Assuming the four points
are A, B, C, and D. A and B defines the edge of tile 1 and C and D defines the edge of tile2. A is the same point as C
and B is the same as D. (Ai, Aj) is the index for point A. The entry looks like this:

Ai:Bi,Aj:Bj::Ci:Di,Cj:Dj

696

The associated tile file names are defined in variable gridfiles and the directory path is defined in variable
gridlocation. The gridlocation can be overwritten with an optional arguemnt TileFilePath. Each
tile is decomposed using a regular decomposition. The first two tiles are decomposed into 2x2 blocks each and the
remaining 4 tiles are decomposed into 1x2 block. A total of 16 DEs are used.

ESMF_GridCreateMosaic() first reads in the mosaic file and defines the tile connections in the
ESMF_DistGrid using the information defined in variables contacts and contact_index. Then it reads
in the coordinates defined in the tile files if the optional argument staggerLocList is provided. The coordinates
defined in the tile file are a supergrid. A supergrid contains all the stagger locations in one grid. It contains the
corner, edge and center coordinates all in one 2D array. In this example, there are 48 elements in each side of a tile,
therefore, the size of the supergrid is 48*2+1=97, i.e. 97x97.

Here is the header of one of the tile files:

netcdf horizontal_grid.tile1 {

dimensions:

string = 255 ;

nx = 96 ;

ny = 96 ;

nxp = 97 ;

nyp = 97 ;

variables:

char tile(string) ;

tile:standard_name = "grid_tile_spec" ;

tile:geometry = "spherical" ;

tile:north_pole = "0.0 90.0" ;

tile:projection = "cube_gnomonic" ;

tile:discretization = "logically_rectangular" ;

tile:conformal = "FALSE" ;

double x(nyp, nxp) ;

x:standard_name = "geographic_longitude" ;

x:units = "degree_east" ;

double y(nyp, nxp) ;

y:standard_name = "geographic_latitude" ;

y:units = "degree_north" ;

double dx(nyp, nx) ;

dx:standard_name = "grid_edge_x_distance" ;

dx:units = "meters" ;

double dy(ny, nxp) ;

dy:standard_name = "grid_edge_y_distance" ;

dy:units = "meters" ;

double area(ny, nx) ;

area:standard_name = "grid_cell_area" ;

area:units = "m2" ;

double angle_dx(nyp, nxp) ;

angle_dx:standard_name = "grid_vertex_x_angle_WRT_geographic_east" ;

angle_dx:units = "degrees_east" ;

double angle_dy(nyp, nxp) ;

angle_dy:standard_name = "grid_vertex_y_angle_WRT_geographic_north" ;

angle_dy:units = "degrees_north" ;

char arcx(string) ;

arcx:standard_name = "grid_edge_x_arc_type" ;

arcx:north_pole = "0.0 90.0" ;

697

// global attributes:

:grid_version = "0.2" ;

:code_version = "$Name: testing $" ;

:history = "/home/z1l/bin/tools_20091028/make_hgrid --grid_type gnomonic_ed

}

The tile file not only defines the coordinates at all staggers, it also has a complete specification of distances, angles, and
areas. In ESMF, we currently only use the geographic_longitude and geographic_latitude variables.

! Set up decomposition for each tile

allocate(decomptile(2,6))

decomptile(:,1)=(/2,2/) ! Tile 1

decomptile(:,2)=(/2,2/) ! Tile 2

decomptile(:,3)=(/1,2/) ! Tile 3

decomptile(:,4)=(/1,2/) ! Tile 4

decomptile(:,5)=(/1,2/) ! Tile 5

decomptile(:,6)=(/1,2/) ! Tile 6

! Create cubed sphere grid without reading in the coordinates

grid2D = ESMF_GridCreateMosaic(filename=’data/C48_mosaic.nc’, &

tileFilePath=’./data/’, regDecompPTile=decomptile, rc=rc)

! Create cubed sphere grid and read in the center and corner stagger coordinates

! from the tile files

grid2D = ESMF_GridCreateMosaic(filename=’data/C48_mosaic.nc’, &

staggerLocList=(/ESMF_STAGGERLOC_CENTER, ESMF_STAGGERLOC_CORNER/), &

tileFilePath=’./data/’, regDecompPTile=decomptile, rc=rc)

! Create cubed sphere grid and read in the edge staggers’ coordinates

! from the tile files, set the coordTypeKind to ESMF_TYPEKIND_R4

grid2D = ESMF_GridCreateMosaic(filename=’data/C48_mosaic.nc’, &

staggerLocList=(/ESMF_STAGGERLOC_EDGE1, ESMF_STAGGERLOC_EDGE2/), &

coordTypeKind = ESMF_TYPEKIND_R4, &

tileFilePath=’./data/’, regDecompPTile=decomptile, rc=rc)

31.3.13 Grid stagger locations

A useful finite difference technique is to place different physical quantities at different locations within a grid cell.
This staggering of the physical variables on the mesh is introduced so that the difference of a field is naturally defined
at the location of another variable. This method was first formalized by Mesinger and Arakawa (1976).

To support the staggering of variables, the Grid provides the idea of stagger locations. Stagger locations refer to the
places in a Grid cell that can contain coordinates or other data and once a Grid is associated with a Field object, field

698

data. Typically Grid data can be located at the cell center, at the cell corners, or at the cell faces, in 2D, 3D, and
higher dimensions. (Note that any Arakawa stagger can be constructed of a set of Grid stagger locations.) There are
predefined stagger locations (see Section 31.2.6), or, should the user wish to specify their own, there is also a set of
methods for generating custom locations (See Section 31.3.25). Users can put Grid data (e.g. coordinates) at multiple
stagger locations in a Grid. In addition, the user can create a Field at any of the stagger locations in a Grid.

By default the Grid data array at the center stagger location starts at the bottom index of the Grid (default (1,1..,1)) and
extends up to the maximum cell index in the Grid (e.g. given by the maxIndex argument). Other stagger locations
also start at the bottom index of the Grid, however, they can extend to +1 element beyond the center in some dimensions
to allow for the extra space to surround the center elements. See Section 31.3.25 for a description of this extra
space and how to adjust if it necessary. There are ESMF_GridGet subroutines (e.g. ESMF_GridGetCoord() or
ESMF_GridGetItem()) which can be used to retrieve the stagger bounds for the piece of Grid data on a particular
DE.

31.3.14 Associate coordinates with stagger locations

The primary type of data the Grid is responsible for storing is coordinates. The coordinate values in a Grid can be
employed by the user in calculations or to describe the geometry of a Field. The Grid coordinate values are also used by
ESMF_FieldRegridStore()when calculating the interpolation matrix between two Fields. The user can allocate
coordinate arrays without setting coordinate values using the ESMF_GridAddCoord() call. (See Section 31.3.16
for a discussion of setting/getting coordinate values.) When adding or accessing coordinate data, the stagger location
is specified to tell the Grid method where in the cell to get the data. The different stagger locations may also have
slightly different index ranges and sizes. Please see Section 31.3.13 for a discussion of Grid stagger locations.

The following example adds coordinate storage to the corner stagger location in a Grid using one of the predefined
stagger locations.

call ESMF_GridAddCoord(grid2D, staggerLoc=ESMF_STAGGERLOC_CORNER, rc=rc)

Note only the center stagger location ESMF_STAGGERLOC_CENTER is supported in an arbitrarily distributed Grid.

31.3.15 Specify the relationship of coordinate Arrays to index space dimensions

To specify how the coordinate arrays are mapped to the index dimensions the arguments coordDep1, coordDep2,
and coordDep3 are used, each of which is a Fortran array. The values of the elements in a coordDep array specify
which index dimension the corresponding coordinate dimension maps to. For example, coordDep1=(/1,2/)
means that the first dimension of coordinate 1 maps to index dimension 1 and the second maps to index dimension
2. For a grid with non-arbitrary distribution, the default values for coordDep1, coordDep2 and coordDep3 are
/1,2..,gridDimCount/. This default thus specifies a curvilinear grid.

The following call demonstrates the creation of a 10x20 2D rectilinear grid where the first coordinate component is
mapped to the second index dimension (i.e. is of size 20) and the second coordinate component is mapped to the first
index dimension (i.e. is of size 10).

grid2D=ESMF_GridCreateNoPeriDim(countsPerDEDim1=(/5,5/), &

countsPerDEDim2=(/7,7,6/), &

coordDep1=(/2/), &

coordDep2=(/1/), rc=rc)

The following call demonstrates the creation of a 10x20x30 2D plus 1 curvilinear grid where coordinate component 1
and 2 are still 10x20, but coordinate component 3 is mapped just to the third index dimension.

699

grid2D=ESMF_GridCreateNoPeriDim(countsPerDEDim1=(/6,4/), &

countsPerDEDim2=(/10,7,3/), countsPerDEDim3=(/30/), &

coordDep1=(/1,2/), coordDep2=(/1,2/), &

coordDep3=(/3/), rc=rc)

By default the local piece of the array on each PET starts at (1,1,..), however, the indexing for each grid coordinate
array on each DE may be shifted to the global indices by using the indexflag. For example, the following call
switches the grid to use global indices.

grid2D=ESMF_GridCreateNoPeriDim(countsPerDEDim1=(/6,4/), &

countsPerDEDim2=(/10,7,3/), indexflag=ESMF_INDEX_GLOBAL, rc=rc)

For an arbitrarily distributed grid, the default value of a coordinate array dimension is ESMF_DIM_ARB if the index
dimension is arbitrarily distributed and is n where n is the index dimension itself when it is not distributed. The
following call is equivalent to the example in Section 31.3.7

grid3D=ESMF_GridCreateNoPeriDim(&

maxIndex = (/xdim, ydim, zdim/), &

arbIndexList = localArbIndex, &

arbIndexCount = localArbIndexCount, &

coordDep1 = (/ESMF_DIM_ARB/), &

coordDep2 = (/ESMF_DIM_ARB/), &

coordDep3 = (/3/), &

rc=rc)

The following call uses non-default coordDep1, coordDep2, and coordDep3 to create a 3D curvilinear grid
with its horizontal dimensions arbitrarily distributed.

grid3D=ESMF_GridCreateNoPeriDim(&

maxIndex = (/xdim, ydim, zdim/), &

arbIndexList = localArbIndex, &

arbIndexCount = localArbIndexCount, &

coordDep1 = (/ESMF_DIM_ARB, 3/), &

coordDep2 = (/ESMF_DIM_ARB, 3/), &

coordDep3 = (/ESMF_DIM_ARB, 3/), &

rc=rc)

31.3.16 Access coordinates

Once a Grid has been created, the user has several options to access the Grid coordinate data. The first of these,
ESMF_GridSetCoord(), enables the user to use ESMF Arrays to set data for one stagger location across the
whole Grid. For example, the following sets the coordinates in the first dimension (e.g. x) for the corner stagger
location to those in the ESMF Array arrayCoordX.

call ESMF_GridSetCoord(grid2D, &

staggerLoc=ESMF_STAGGERLOC_CORNER, &

coordDim=1, array=arrayCoordX, rc=rc)

700

The method ESMF_GridGetCoord() allows the user to obtain a reference to an ESMF Array which contains the
coordinate data for a stagger location in a Grid. The user can then employ any of the standard ESMF_Array tools to
operate on the data. The following copies the coordinates from the second component of the corner and puts it into the
ESMF Array arrayCoordY.

call ESMF_GridGetCoord(grid2D, &

staggerLoc=ESMF_STAGGERLOC_CORNER, &

coordDim=2, &

array=arrayCoordY, rc=rc)

Alternatively, the call ESMF_GridGetCoord() gets a Fortran pointer to the coordinate data. The user can then
operate on this array in the usual manner. The following call gets a reference to the Fortran array which holds the data
for the second coordinate (e.g. y).

call ESMF_GridGetCoord(grid2D, coordDim=2, localDE=0, &

staggerloc=ESMF_STAGGERLOC_CORNER, farrayPtr=coordY2D, rc=rc)

31.3.17 Associate items with stagger locations

The ESMF Grids contain the ability to store other kinds of data beyond coordinates. These kinds of data are referred
to as "items". Although the user is free to use this data as they see fit, the user should be aware that this data may
also be used by other parts of ESMF (e.g. the ESMF_GRIDITEM_MASK item is used in regridding). Please see
Section 31.2.2 for a list of valid items.

Like coordinates items are also created on stagger locations. When adding or accessing item data, the stagger location
is specified to tell the Grid method where in the cell to get the data. The different stagger locations may also have
slightly different index ranges and sizes. Please see Section 31.3.13 for a discussion of Grid stagger locations. The user
can allocate item arrays without setting item values using the ESMF_GridAddItem() call. (See Section 31.3.18
for a discussion of setting/getting item values.)

The following example adds mask item storage to the corner stagger location in a grid.

call ESMF_GridAddItem(grid2D, staggerLoc=ESMF_STAGGERLOC_CORNER, &

itemflag=ESMF_GRIDITEM_MASK, rc=rc)

31.3.18 Access items

Once an item has been added to a Grid, the user has several options to access the data. The first of these,
ESMF_GridSetItem(), enables the user to use ESMF Arrays to set data for one stagger location across the whole
Grid. For example, the following sets the mask item in the corner stagger location to those in the ESMF Array
arrayMask.

call ESMF_GridSetItem(grid2D, &

staggerLoc=ESMF_STAGGERLOC_CORNER, &

itemflag=ESMF_GRIDITEM_MASK, array=arrayMask, rc=rc)

The method ESMF_GridGetItem() allows the user to get a reference to the Array which contains item data for a
stagger location on a Grid. The user can then employ any of the standard ESMF_Array tools to operate on the data.
The following gets the mask data from the corner and puts it into the ESMF Array arrayMask.

701

call ESMF_GridGetItem(grid2D, &

staggerLoc=ESMF_STAGGERLOC_CORNER, &

itemflag=ESMF_GRIDITEM_MASK, &

array=arrayMask, rc=rc)

Alternatively, the call ESMF_GridGetItem() gets a Fortran pointer to the item data. The user can then operate on
this array in the usual manner. The following call gets a reference to the Fortran array which holds the data for the
mask data.

call ESMF_GridGetItem(grid2D, localDE=0, &

staggerloc=ESMF_STAGGERLOC_CORNER, &

itemflag=ESMF_GRIDITEM_MASK, farrayPtr=mask2D, rc=rc)

31.3.19 Grid regions and bounds

Like an Array or a Field, the index space of each stagger location in the Grid contains an exclusive region, a compu-
tational region and a total region. Please see Section 28.2.6 for an in depth description of these regions.

The exclusive region is the index space defined by the distgrid of each stagger location of the Grid. This re-
gion is the region which is owned by the DE and is the region operated on by communication methods such as
ESMF_FieldRegrid(). The exclusive region for a stagger location is based on the exclusive region defined by the
DistGrid used to create the Grid. The size of the stagger exclusive region is the index space for the Grid cells, plus the
stagger padding.

The default stagger padding depends on the topology of the Grid. For an unconnected dimension the stagger padding
is a width of 1 on the upper side (i.e. gridEdgeUWidth=(1,1,1,1...)). For a periodic dimension there is no
stagger padding. By adjusting gridEdgeLWidth and gridEdgeUWidth, the user can set the stagger padding
for the whole Grid and thus the exclusive region can be adjusted at will around the index space corresponding to
the cells. The user can also use staggerEdgeLWidth and staggerEdgeUWidth to adjust individual stagger
location padding within the Grid’s padding (Please see Section 31.3.26 for further discussion of customizing the
stagger padding).

Figure 17 shows an example of a Grid exclusive region for the ESMF_STAGGERLOC_CORNER stagger with default
stagger padding. This exclusive region would be for a Grid generated by either of the following calls:

grid2D=ESMF_GridCreateNoPeriDim(regDecomp=(/2,4/), maxIndex=(/5,15/), &

indexflag=ESMF_INDEX_GLOBAL, rc=rc)

grid2D=ESMF_GridCreateNoPeriDim(countsPerDEDim1=(/4,4,4,3/), &

countsPerDEDim2=(/3,2/), indexflag=ESMF_INDEX_GLOBAL, rc=rc)

Each rectangle in this diagram represents a DE and the numbers along the sides are the index values of the locations in
the DE. Note that the exclusive region has one extra index location in each dimension than the number of cells because
of the padding for the larger corner stagger location.

The computational region is a user-settable region which can be used to distinguish a particular area for computation.
The Grid doesn’t currently contain functionality to let the user set the computational region so it defaults to the

702

21 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

5

6

Figure 17: An example of a Grid’s exclusive region for the corner stagger

exclusive region. However, if the user sets an Array holding different computational bounds into the Grid then that
Array’s computational bounds will be used.

The total region is the outermost boundary of the memory allocated on each DE to hold the data for the stagger location
on that DE. This region can be as small as the exclusive region, but may be larger to include space for halos, memory
padding, etc. The total region is what is enlarged to include space for halos, and the total region must be large enough
to contain the maximum halo operation on the Grid. The Grid doesn’t currently contain functionality to let the user set
the total region so it defaults to the exclusive region. However, if the user sets an Array holding different total bounds
into the Grid then that Array’s total bounds will be used.

The user can retrieve a set of bounds for each index space region described above: exclusive bounds, computational
bounds, and total bounds. Note that although some of these are similar to bounds provided by ESMF_Array subrou-
tines (see Section 28.2.6) the format here is different. The Array bounds are only for distributed dimensions and are
ordered to correspond to the dimension order in the associated DistGrid. The bounds provided by the Grid are ordered
according to the order of dimensions of the data in question. This means that the bounds provided should be usable
"as is" to access the data.

Each of the three types of bounds refers to the maximum and minimum per dimension of the index ranges of a par-
ticular region. The parameters referring to the maximums contain a ’U’ for upper. The parameters referring to the
minimums contain an ’L’ for lower. The bounds and associated quantities are almost always given on a per DE
basis. The three types of bounds exclusiveBounds, computationalBounds, and totalBounds refer to
the ranges of the exclusive region, the computational region, and the total region. Each of these bounds also has
a corresponding count parameter which gives the number of items across that region (on a DE) in each dimension.
(e.g. totalCount(d)=totallUBound(i)-totalLBound(i)+1). Width parameters give the spacing be-
tween two different types of region. The computationalWidth argument gives the spacing between the exclusive
region and the computational region. The totalWidth argument gives the spacing between the total region and the
computational region. Like the other bound information these are typically on a per DE basis, for example specifying
totalLWidth=(1,1) makes the bottom of the total region one lower in each dimension than the computational
region on each DE. The exceptions to the per DE rule are staggerEdgeWidth, and gridEdgeWidth which give
the spacing only on the DEs along the boundary of the Grid.

All the above bound discussions only apply to the grid with non-arbitrary distributions, i.e., regular or irregular
distributions. For an arbitrarily distributed grid, only center stagger location is supported and there is no padding
around the grid. Thus, the exclusive bounds, the total bounds and the computational bounds are identical and

703

staggerEdgeWidth, and gridEdgeWidth are all zeros.

31.3.20 Get Grid coordinate bounds

When operating on coordinates the user may often wish to retrieve the bounds of the piece of coordinate data on a par-
ticular local DE. This is useful for iterating through the data to set coordinates, retrieve coordinates, or do calculations.
The method ESMF_GridGetCoord allows the user to retrieve bound information for a particular coordinate array.

As described in the previous section there are three types of bounds the user can get: exclusive bounds, computational
bounds, and total bounds. The bounds provided by ESMF_GridGetCoordBounds are for both distributed and
undistributed dimensions and are ordered according to the order of dimensions in the coordinate. This means that the
bounds provided should be usable "as is" to access data in the coordinate array. In the case of factorized coordinate Ar-
rays where a coordinate may have a smaller dimension than its associated Grid, then the dimension of the coordinate’s
bounds are the dimension of the coordinate, not the Grid.

The following is an example of retrieving the bounds for localDE 0 for the first coordinate array from the corner
stagger location.

call ESMF_GridGetCoordBounds(grid2D, coordDim=1, localDE=0, &

staggerLoc=ESMF_STAGGERLOC_CORNER, &

exclusiveLBound=elbnd, exclusiveUBound=eubnd, &

computationalLBound=clbnd, computationalUBound=cubnd, &

totalLBound=tlbnd, totalUBound=tubnd, rc=rc)

31.3.21 Get Grid stagger location bounds

When operating on data stored at a particular stagger in a Grid the user may find it useful to be able to retrieve the
bounds of the data on a particular local DE. This is useful for iterating through the data for computations or allocating
arrays to hold the data. The method ESMF_GridGet allows the user to retrieve bound information for a particular
stagger location.

As described in Section 31.3.19 there are three types of bounds the user can typically get, however, the Grid doesn’t
hold data at a stagger location (that is the job of the Field), and so no Array is contained there and so no total region
exists, so the user may only retrieve exclusive and computational bounds from a stagger location. The bounds provided
by ESMF_GridGet are ordered according to the order of dimensions in the Grid.

The following is an example of retrieving the bounds for localDE 0 from the corner stagger location.

call ESMF_GridGet(grid2D, localDE=0, &

staggerLoc=ESMF_STAGGERLOC_CORNER, &

exclusiveLBound=elbnd, exclusiveUBound=eubnd, &

computationalLBound=clbnd, computationalUBound=cubnd, rc=rc)

31.3.22 Get Grid stagger location information

In addition to the per DE information that can be accessed about a stagger location there is some global information
that can accessed by using ESMF_GridGet without specifying a localDE. One of the uses of this information is to
create an ESMF Array to hold data for a stagger location.

The information currently available from a stagger location is the distgrid. The distgrid gives the distgrid
which describes the size and distribution of the elements in the stagger location.

704

The following is an example of retrieving information for localDE 0 from the corner stagger location.

! Get info about staggerloc

call ESMF_GridGet(grid2D, staggerLoc=ESMF_STAGGERLOC_CORNER, &

distgrid=staggerDistgrid, &

rc=rc)

31.3.23 Create an Array at a stagger location

In order to create an Array to correspond to a Grid stagger location several pieces of information need to be obtained
from both the Grid and the stagger location in the Grid.

The information that needs to be obtained from the Grid is the distgridToGridMap to ensure that the new Array
has its dimensions are mapped correctly to the Grid. These are obtained using the ESMF_GridGet method.

The information that needs to be obtained from the stagger location is the distgrid that describes the size and distri-
bution of the elements in the stagger location. This information can be obtained using the stagger location specific
ESMF_GridGet method.

The following is an example of using information from a 2D Grid with non-arbitrary distribution to create an Array
corresponding to a stagger location.

! Get info from Grid

call ESMF_GridGet(grid2D, distgridToGridMap=distgridToGridMap, rc=rc)

! Get info about staggerloc

call ESMF_GridGet(grid2D, staggerLoc=ESMF_STAGGERLOC_CORNER, &

distgrid=staggerDistgrid, &

rc=rc)

! construct ArraySpec

call ESMF_ArraySpecSet(arrayspec, rank=2, typekind=ESMF_TYPEKIND_R8, rc=rc)

! Create an Array based on info from grid

array=ESMF_ArrayCreate(arrayspec=arrayspec, &

distgrid=staggerDistgrid, distgridToArrayMap=distgridToGridMap, &

rc=rc)

Creating an Array for a Grid with arbitrary distribution is different. For a 2D Grid with both dimension arbitrarily
distributed, the Array dimension is 1. For a 3D Grid with two arbitrarily distributed dimensions and one undistributed

705

dimension, the Array dimension is 2. In general, if the Array does not have any ungridded dimension, the Array
dimension should be 1 plus the number of undistributed dimensions of the Grid.

The following is an example of creating an Array for a 3D Grid with 2 arbitrarily distributed dimensions such as the
one defined in Section 31.3.7.

! Get distGrid from Grid

call ESMF_GridGet(grid3D, distgrid=distgrid, rc=rc)

! construct ArraySpec

call ESMF_ArraySpecSet(arrayspec, rank=2, typekind=ESMF_TYPEKIND_R8, rc=rc)

! Create an Array based on the presence of distributed dimensions

array=ESMF_ArrayCreate(arrayspec=arrayspec,distgrid=distgrid, rc=rc)

31.3.24 Create more complex Grids using DistGrid

Besides the shortcut methods for creating a Grid object such as ESMF_GridCreateNoPeriDim(), there is a set
of methods which give the user more control over the specifics of the grid. The following describes the more general
interface, using DistGrid. The basic idea is to first create an ESMF DistGrid object describing the distribution and
shape of the Grid, and then to employ that to either directly create the Grid or first create Arrays and then create the
Grid from those. This method gives the user maximum control over the topology and distribution of the Grid. See the
DistGrid documentation in Section 35.1 for an in-depth description of its interface and use.

As an example, the following call constructs a 10x20 Grid with a lower bound of (1,2).

! Create DistGrid

distgrid2D = ESMF_DistGridCreate(minIndex=(/1,2/), maxIndex=(/11,22/), &

rc=rc)

! Create Grid

grid3D=ESMF_GridCreate(distGrid=distgrid2D, rc=rc)

To alter which dimensions are distributed, the distgridToGridMap argument can be used. The
distgridToGridMap is used to set which dimensions of the Grid are mapped to the dimensions described by
maxIndex. In other words, it describes how the dimensions of the underlying default DistGrid are mapped to the
Grid. Each entry in distgridToGridMap contains the Grid dimension to which the corresponding DistGrid di-
mension should be mapped. The following example illustrates the creation of a Grid where the largest dimension is
first. To accomplish this the two dimensions are swapped.

! Create DistGrid

706

Dim. 2

Dim. 1

0

0-1

-1

1

1

0

0

1

1

(0,1) – EDGE1 (1,1) – CORNER

(1,0) – EDGE2

Full Cell 1st Quadrant

Figure 18: An example of specifying 2D stagger locations using coordinates.

distgrid2D = ESMF_DistGridCreate(minIndex=(/1,2/), maxIndex=(/11,22/), &

rc=rc)

! Create Grid

grid2D=ESMF_GridCreate(distGrid=distgrid2D, distgridToGridMap=(/2,1/), &

rc=rc)

31.3.25 Specify custom stagger locations

Although ESMF provides a set of predefined stagger locations (See Section 31.2.6), the user may need one outside
this set. This section describes the construction of custom stagger locations.

To completely specify a stagger for an arbitrary number of dimensions, we define the stagger location in terms of a
set of cartesian coordinates. The cell is represented by a n-dimensional cube with sides of length 2, and the coordinate
origin located at the center of the cell. The geometry of the cell is for reference purposes only, and does not literally
represent the actual shape of the cell. Think of this method instead as an easy way to specify a part (e.g. center, corner,
face) of a higher dimensional cell which is extensible to any number of dimensions.

To illustrate this approach, consider a 2D cell. In 2 dimensions the cell is represented by a square. An xy axis is placed
at its center, with the positive x-axis oriented East and the positive y-axis oriented North. The resulting coordinate for
the lower left corner is at (−1,−1), and upper right corner at (1, 1). However, because our staggers are symmetric
they don’t need to distinguish between the −1, and the 1, so we only need to concern ourselves with the first quadrant
of this cell. We only need to use the 1, and the 0, and many of the cell locations collapse together (e.g. we only need
to represent one corner). See figure 18 for an illustration of these concepts.

The cell center is represented by the coordinate pair (0, 0) indicating the origin. The cell corner is +1 in each direction,

707

giving a coordinate pair of (1, 1). The edges are each +1 in one dimension and 0 in the other indicating that they’re
even with the center in one dimension and offset in the other.

For three dimensions, the vertical component of the stagger location can be added by simply adding an additional
coordinate. The three dimensional generalization of the cell center becomes (0, 0, 0) and the cell corner becomes
(1, 1, 1). The rest of the 3D stagger locations are combinations of +1 offsets from the center.

To generalize this to d dimensions, to represent a d dimensional stagger location. A set of d 0 and 1 is used to specify
for each dimension whether a stagger location is aligned with the cell center in that dimension (0), or offset by +1 in
that dimension (1). Using this scheme we can represent any symmetric stagger location.

To construct a custom stagger location in ESMF the subroutine ESMF_StaggerLocSet() is used to specify, for
each dimension, whether the stagger is located at the interior (0) or on the boundary (1) of the cell. This method
allows users to construct stagger locations for which there is no predefined value. In this example, it’s used to set the
4D center and 4D corner locations.

! Set Center

call ESMF_StaggerLocSet(staggerLoc,loc=(/0,0,0,0/),rc=rc)

call ESMF_GridAddCoord(grid4D, staggerLoc=staggerLoc, rc=rc)

! Set Corner

call ESMF_StaggerLocSet(staggerLoc,loc=(/1,1,1,1/),rc=rc)

call ESMF_GridAddCoord(grid4D, staggerLoc=staggerLoc, rc=rc)

31.3.26 Specify custom stagger padding

There is an added complication with the data (e.g. coordinates) stored at stagger locations in that they can require
different amounts of storage depending on the underlying Grid type.

Consider the example 2D grid in figure 19, where the dots represent the cell corners and the “+” represents the cell
centers. For the corners to completely enclose the cell centers (symmetric stagger), the number of corners in each
dimension needs to be one greater then the number of cell centers. In the above figure, there are two rows and three
columns of cell centers. To enclose the cell centers, there must be three rows and four columns of cell corners. This is
true in general for Grids without periodicity or other connections. In fact, for a symmetric stagger, given that the center
location requires n x m storage, the corresponding corner location requires n+1 x m+1, and the edges, depending on
the side, require n+1 x m or m+1 x n. In order to add the extra storage, a new DistGrid is created at each stagger
location. This Distgrid is similar to the DistGrid used to create the Grid, but has an extra set of elements added to
hold the index locations for the stagger padding. By default, when the coordinate arrays are created, one extra layer of
padding is added to the index space to create symmetric staggers (i.e. the center location is surrounded). The default
is to add this padding on the positive side, and to only add this padding where needed (e.g. no padding for the center,
padding on both dimensions for the corner, in only one dimension for the edge in 2D.) There are two ways for the user
to change these defaults.

708

Figure 19: An example 2D Grid with cell centers and corners.

One way is to use the GridEdgeWidth or GridAlign arguments when creating a Grid. These arguments can
be used to change the default padding around the Grid cell index space. This extra padding is used by default when
setting the padding for a stagger location.

The gridEdgeLWidth and gridEdgeUWidth arguments are both 1D arrays of the same size as the Grid di-
mension. The entries in the arrays give the extra offset from the outer boundary of the grid cell index space. The
following example shows the creation of a Grid with all the extra space to hold stagger padding on the negative side
of a Grid. This is the reverse of the default behavior. The resulting Grid will have an exclusive region which extends
from (−1,−1) to (10, 10), however, the cell center stagger location will still extend from (1, 1) to (10, 10).

grid2D=ESMF_GridCreateNoPeriDim(minIndex=(/1,1/),maxIndex=(/10,10/), &

gridEdgeLWidth=(/1,1/), gridEdgeUWidth=(/0,0/), rc=rc)

To indicate how the data in a Grid’s stagger locations are aligned with the cell centers, the optional gridAlign
parameter may be used. This parameter indicates which stagger elements in a cell share the same index values as the
cell center. For example, in a 2D cell, it would indicate which of the four corners has the same index value as the
center. To set gridAlign, the values -1,+1 are used to indicate the alignment in each dimension. This parameter is
mostly informational, however, if the gridEdgeWidth parameters are not set then its value determines where the
default padding is placed. If not specified, then the default is to align all staggers to the most negative, so the padding
is on the positive side. The following code illustrates creating a Grid aligned to the reverse of default (with everything
to the positive side). This creates a Grid identical to that created in the previous example.

grid2D=ESMF_GridCreateNoPeriDim(minIndex=(/1,1/),maxIndex=(/10,10/), &

gridAlign=(/1,1/), rc=rc)

The gridEdgeWidth and gridAlign arguments both allow the user to set the default padding to be used by
stagger locations in a Grid. By default, stagger locations allocated in a Grid set their stagger padding based on these
values. A stagger location’s padding in each dimension is equal to the value of gridEdgeWidth (or the value
implied by gridAlign), unless the stagger location is centered in a dimension in which case the stagger padding
is 0. For example, the cell center stagger location has 0 stagger padding in all dimensions, whereas the edge stagger
location lower padding is equal to gridEdgeLWidth and the upper padding is equal to gridEdgeUWidth in one

709

dimension, but both are 0 in the other, centered, dimension. If the user wishes to set the stagger padding individually
for each stagger location they may use the staggerEdgeWidth and staggerAlign arguments.

The staggerEdgeLWidth and staggerEdgeUWidth arguments are both 1D arrays of the same size as the Grid
dimension. The entries in the arrays give the extra offset from the Grid cell index space for a stagger location. The
following example shows the addition of two stagger locations. The corner location has no extra boundary and the
center has a single layer of extra padding on the negative side and none on the positive. This is the reverse of the
default behavior.

grid2D=ESMF_GridCreate(distgrid=distgrid2D, &

gridEdgeLWidth=(/1,1/), gridEdgeUWidth=(/0,0/), rc=rc)

call ESMF_GridAddCoord(grid2D, &

staggerLoc=ESMF_STAGGERLOC_CORNER, &

staggerEdgeLWidth=(/0,0/), staggerEdgeUWidth=(/0,0/), rc=rc)

call ESMF_GridAddCoord(grid2D, &

staggerLoc=ESMF_STAGGERLOC_CENTER, &

staggerEdgeLWidth=(/1,1/), staggerEdgeUWidth=(/0,0/), rc=rc)

To indicate how the data at a particular stagger location is aligned with the cell center, the optional staggerAlign
parameter may be used. This parameter indicates which stagger elements in a cell share the same index values as the
cell center. For example, in a 2D cell, it would indicate which of the four corners has the same index value as the center.
To set staggerAlign, the values -1,+1 are used to indicate the alignment in each dimension. If a stagger location
is centered in a dimension (e.g. an edge in 2D), then that dimension is ignored in the alignment. This parameter is
mostly informational, however, if the staggerEdgeWidth parameters are not set then its value determines where
the default padding is placed. If not specified, then the default is to align all staggers to the most negative, so the
padding is on the positive side. The following code illustrates aligning the positive (northeast in 2D) corner with the
center.

call ESMF_GridAddCoord(grid2D, &

staggerLoc=ESMF_STAGGERLOC_CORNER, staggerAlign=(/1,1/), rc=rc)

31.4 Restrictions and Future Work

• 7D limit. Only grids up to 7D will be supported.

• During the first development phase only single tile grids are supported. In the near future, support for

mosaic grids will be added. The initial implementation will be to create mosaics that contain tiles of the same

grid type, e.g. rectilinear.

• Future adaptation. Currently Grids are created and then remain unchanged. In the future, it would be useful

to provide support for the various forms of grid adaptation. This would allow the grids to dynamically change

their resolution to more closely match what is needed at a particular time and position during a computation for

front tracking or adaptive meshes.

710

• Future Grid generation. This class for now only contains the basic functionality for operating on the grid. In

the future methods will be added to enable the automatic generation of various types of grids.

31.5 Design and Implementation Notes

31.5.1 Grid Topology

The ESMF_Grid class depends upon the ESMF_DistGrid class for the specification of its topology. That is, when

creating a Grid, first an ESMF_DistGrid is created to describe the appropriate index space topology. This decision

was made because it seemed redundant to have a system for doing this in both classes. It also seems most appropriate

for the machinary for topology creation to be located at the lowest level possible so that it can be used by other

classes (e.g. the ESMF_Array class). Because of this, however, the authors recommend that as a natural part of

the implementation of subroutines to generate standard grid shapes (e.g. ESMF_GridGenSphere) a set of standard

topology generation subroutines be implemented (e.g. ESMF_DistGridGenSphere) for users who want to create

a standard topology, but a custom geometry.

31.6 Class API: General Grid Methods

31.6.1 ESMF_GridAssignment(=) - Grid assignment

INTERFACE:

interface assignment(=)

grid1 = grid2

ARGUMENTS:

type(ESMF_Grid) :: grid1

type(ESMF_Grid) :: grid2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Assign grid1 as an alias to the same ESMF Grid object in memory as grid2. If grid2 is invalid, then grid1 will be
equally invalid after the assignment.

The arguments are:

grid1 The ESMF_Grid object on the left hand side of the assignment.

grid2 The ESMF_Grid object on the right hand side of the assignment.

711

31.6.2 ESMF_GridOperator(==) - Grid equality operator

INTERFACE:

interface operator(==)

if (grid1 == grid2) then ... endif

OR

result = (grid1 == grid2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid1

type(ESMF_Grid), intent(in) :: grid2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Test whether grid1 and grid2 are valid aliases to the same ESMF Grid object in memory. For a more general compari-
son of two ESMF Grids, going beyond the simple alias test, the ESMF_GridMatch() function must be used.

The arguments are:

grid1 The ESMF_Grid object on the left hand side of the equality operation.

grid2 The ESMF_Grid object on the right hand side of the equality operation.

31.6.3 ESMF_GridOperator(/=) - Grid not equal operator

INTERFACE:

interface operator(/=)

if (grid1 /= grid2) then ... endif

OR

result = (grid1 /= grid2)

RETURN VALUE:

logical :: result

712

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid1

type(ESMF_Grid), intent(in) :: grid2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Test whether grid1 and grid2 are not valid aliases to the same ESMF Grid object in memory. For a more general
comparison of two ESMF Grids, going beyond the simple alias test, the ESMF_GridMatch() function (not yet fully
implemented) must be used.

The arguments are:

grid1 The ESMF_Grid object on the left hand side of the non-equality operation.

grid2 The ESMF_Grid object on the right hand side of the non-equality operation.

31.6.4 ESMF_GridAddCoord - Allocate coordinate arrays but don’t set their values

INTERFACE:

! Private name; call using ESMF_GridAddCoord()

subroutine ESMF_GridAddCoordNoValues(grid, staggerloc, &

staggerEdgeLWidth, staggerEdgeUWidth, staggerAlign, &

staggerLBound,rc)

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type (ESMF_StaggerLoc), intent(in), optional :: staggerloc

integer, intent(in), optional :: staggerEdgeLWidth(:)

integer, intent(in), optional :: staggerEdgeUWidth(:)

integer, intent(in), optional :: staggerAlign(:)

integer, intent(in), optional :: staggerLBound(:)

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

713

DESCRIPTION:

When a Grid is created all of its potential stagger locations can hold coordinate data, but none of them have storage
allocated. This call allocates coordinate storage (creates internal ESMF_Arrays and associated memory) for a partic-
ular stagger location. Note that this call doesn’t assign any values to the storage, it only allocates it. The remaining
options staggerEdgeLWidth, etc. allow the user to adjust the padding on the coordinate arrays.

The arguments are:

grid Grid to allocate coordinate storage in.

[staggerloc] The stagger location to add. Please see Section 31.2.6 for a list of predefined stagger locations. If not
present, defaults to ESMF_STAGGERLOC_CENTER.

[staggerEdgeLWidth] This array should be the same dimCount as the grid. It specifies the lower corner of the stagger
region with respect to the lower corner of the exclusive region.

[staggerEdgeUWidth] This array should be the same dimCount as the grid. It specifies the upper corner of the
stagger region with respect to the upper corner of the exclusive region.

[staggerAlign] This array is of size grid dimCount. For this stagger location, it specifies which element has the same
index value as the center. For example, for a 2D cell with corner stagger it specifies which of the 4 corners
has the same index as the center. If this is set and either staggerEdgeUWidth or staggerEdgeLWidth is not, this
determines the default array padding for a stagger. If not set, then this defaults to all negative. (e.g. The most
negative part of the stagger in a cell is aligned with the center and the padding is all on the positive side.)

[staggerLBound] Specifies the lower index range of the memory of every DE in this staggerloc in this Grid. Only
used when Grid indexflag is ESMF_INDEX_USER.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

31.6.5 ESMF_GridAddItem - Allocate item array but don’t set their values

INTERFACE:

! Private name; call using ESMF_GridAddItem()

subroutine ESMF_GridAddItemNoValues(grid, itemflag, &

staggerloc, itemTypeKind, staggerEdgeLWidth, staggerEdgeUWidth, &

staggerAlign, staggerLBound,rc)

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid

type (ESMF_GridItem_Flag),intent(in) :: itemflag

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type (ESMF_StaggerLoc) , intent(in), optional :: staggerloc

type (ESMF_TypeKind_Flag),intent(in), optional :: itemTypeKind

integer, intent(in), optional :: staggerEdgeLWidth(:)

integer, intent(in), optional :: staggerEdgeUWidth(:)

integer, intent(in), optional :: staggerAlign(:)

integer, intent(in), optional :: staggerLBound(:)

integer, intent(out),optional :: rc

714

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

When a Grid is created all of its potential stagger locations can hold item data, but none of them have storage allocated.
This call allocates item storage (creates an internal ESMF_Array and associated memory) for a particular stagger
location. Note that this call doesn’t assign any values to the storage, it only allocates it. The remaining options
staggerEdgeLWidth, etc. allow the user to adjust the padding on the item array.

The arguments are:

grid Grid to allocate coordinate storage in.

itemflag The grid item to add. Please see Section 31.2.2 for a list of valid items.

[staggerloc] The stagger location to add. Please see Section 31.2.6 for a list of predefined stagger locations. If not
present, defaults to ESMF_STAGGERLOC_CENTER.

[itemTypeKind] The typekind of the item to add.

[staggerEdgeLWidth] This array should be the same dimCount as the grid. It specifies the lower corner of the stagger
region with respect to the lower corner of the exclusive region.

[staggerEdgeUWidth] This array should be the same dimCount as the grid. It specifies the upper corner of the
stagger region with respect to the upper corner of the exclusive region.

[staggerAlign] This array is of size grid dimCount. For this stagger location, it specifies which element has the same
index value as the center. For example, for a 2D cell with corner stagger it specifies which of the 4 corners
has the same index as the center. If this is set and either staggerEdgeUWidth or staggerEdgeLWidth is not, this
determines the default array padding for a stagger. If not set, then this defaults to all negative. (e.g. The most
negative part of the stagger in a cell is aligned with the center and the padding is all on the positive side.)

[staggerLBound] Specifies the lower index range of the memory of every DE in this staggerloc in this Grid. Only
used when Grid indexflag is ESMF_INDEX_USER.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

31.6.6 ESMF_GridCreate - Create a copy of a Grid with a new DistGrid

INTERFACE:

! Private name; call using ESMF_GridCreate()

function ESMF_GridCreateCopyFromNewDG(grid, distgrid, &

name, copyAttributes, rc)

RETURN VALUE:

type(ESMF_Grid) :: ESMF_GridCreateCopyFromNewDG

715

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid

type(ESMF_DistGrid), intent(in) :: distgrid

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character (len=*), intent(in), optional :: name

logical, intent(in), optional :: copyAttributes

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

7.1.0r Added argument copyAttributes to support attribute propagation from the existing to the newly
created grid object.

DESCRIPTION:

This call allows the user to copy of an existing ESMF Grid, but with a new distribution. All internal data from the old
Grid (coords, items) is redistributed to the new Grid.

The arguments are:

grid ESMF_Grid to copy.

distgrid ESMF_DistGrid object which describes how the Grid is decomposed and distributed over DEs.

[name] Name of the new Grid. If not specified, a new unique name will be created for the Grid.

[copyAttributes] A flag to indicate whether to copy the attributes of the existing grid to the new grid. The default
value is .false..

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

31.6.7 ESMF_GridCreate - Create a copy of a Grid with a different regular distribution

INTERFACE:

! Private name; call using ESMF_GridCreate()

function ESMF_GridCreateCopyFromReg(grid, &

regDecomp, decompFlag, name, copyAttributes, rc)

RETURN VALUE:

716

type(ESMF_Grid) :: ESMF_GridCreateCopyFromReg

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: regDecomp(:)

type(ESMF_Decomp_Flag), intent(in), optional :: decompflag(:)

character (len=*), intent(in), optional :: name

logical, intent(in), optional :: copyAttributes

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

7.1.0r Added argument copyAttributes to support attribute propagation from the existing to the newly
created grid object.

DESCRIPTION:

This method creates a copy of an existing Grid, the new Grid is regularly distributed (see Figure 13). To specify the
new distribution, the user passes in an array (regDecomp) specifying the number of DEs to divide each dimension
into. The array decompFlag indicates how the division into DEs is to occur. The default is to divide the range as
evenly as possible.

The arguments are:

grid ESMF_Grid to copy.

[regDecomp] List that has the same number of elements as maxIndex. Each entry is the number of decounts for
that dimension. If not specified, the default decomposition will be petCountx1x1..x1.

[decompflag] List of decomposition flags indicating how each dimension of the tile is to be divided between the
DEs. The default setting is ESMF_DECOMP_BALANCED in all dimensions. Please see Section 52.13 for a full
description of the possible options. Note that currently the option ESMF_DECOMP_CYCLIC isn’t supported in
Grid creation.

[name] Name of the new Grid. If not specified, a new unique name will be created for the Grid.

[copyAttributes] A flag to indicate whether to copy the attributes of the existing grid to the new grid. The default
value is .false..

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

717

31.6.8 ESMF_GridCreate - Create a Grid with user set edge connections and an irregular distribution

INTERFACE:

! Private name; call using ESMF_GridCreate()

function ESMF_GridCreateEdgeConnI(minIndex, &

countsPerDEDim1,countsPerDeDim2, &

countsPerDEDim3, &

connflagDim1, connflagDim2, connflagDim3, &

coordSys, coordTypeKind, &

coordDep1, coordDep2, coordDep3, &

gridEdgeLWidth, gridEdgeUWidth, gridAlign, &

gridMemLBound, indexflag, petMap, name, rc)

RETURN VALUE:

type(ESMF_Grid) :: ESMF_GridCreateEdgeConnI

ARGUMENTS:

integer, intent(in), optional :: minIndex(:)

integer, intent(in) :: countsPerDEDim1(:)

integer, intent(in) :: countsPerDEDim2(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: countsPerDEDim3(:)

type(ESMF_GridConn_Flag), intent(in), optional :: connflagDim1(:)

type(ESMF_GridConn_Flag), intent(in), optional :: connflagDim2(:)

type(ESMF_GridConn_Flag), intent(in), optional :: connflagDim3(:)

type(ESMF_CoordSys_Flag), intent(in), optional :: coordSys

type(ESMF_TypeKind_Flag), intent(in), optional :: coordTypeKind

integer, intent(in), optional :: coordDep1(:)

integer, intent(in), optional :: coordDep2(:)

integer, intent(in), optional :: coordDep3(:)

integer, intent(in), optional :: gridEdgeLWidth(:)

integer, intent(in), optional :: gridEdgeUWidth(:)

integer, intent(in), optional :: gridAlign(:)

integer, intent(in), optional :: gridMemLBound(:)

type(ESMF_Index_Flag), intent(in), optional :: indexflag

integer, intent(in), optional :: petMap(:,:,:)

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

This method creates a single tile, irregularly distributed grid (see Figure 13). To specify the irregular distribution, the
user passes in an array for each grid dimension, where the length of the array is the number of DEs in the dimension.
Currently this call only supports creating 2D or 3D Grids. A 2D Grid can be specified using the countsPerDEDim1 and
countsPerDEDim2 arguments. A 3D Grid can be specified by also using the optional countsPerDEDim3 argument.
The index of each array element in these arguments corresponds to a DE number. The array value at the index is the
number of grid cells on the DE in that dimension.

Section 31.3.4 shows an example of using this method to create a 2D Grid with uniformly spaced coordinates. This
creation method can also be used as the basis for grids with rectilinear coordinates or curvilinear coordinates.

718

The arguments are:

[minIndex] Tuple to start the index ranges at. If not present, defaults to /1,1,1,.../.

countsPerDEDim1 This arrays specifies the number of cells per DE for index dimension 1 for the exclusive region
(the center stagger location).

countsPerDEDim2 This array specifies the number of cells per DE for index dimension 2 for the exclusive region
(center stagger location).

[countsPerDEDim3] This array specifies the number of cells per DE for index dimension 3 for the exclusive region
(center stagger location). If not specified then grid is 2D.

[connflagDim1] Fortran array describing the index dimension 1 connections. The first element represents the mini-
mum end of dimension 1. The second element represents the maximum end of dimension 1. If array is only one
element long, then that element is used for both the minimum and maximum end. Please see Section 31.2.1 for
a list of valid options. If not present, defaults to ESMF_GRIDCONN_NONE.

[connflagDim2] Fortran array describing the index dimension 2 connections. The first element represents the mini-
mum end of dimension 2. The second element represents the maximum end of dimension 2. If array is only one
element long, then that element is used for both the minimum and maximum end. Please see Section 31.2.1 for
a list of valid options. If not present, defaults to ESMF_GRIDCONN_NONE.

[connflagDim3] Fortran array describing the index dimension 3 connections. The first element represents the mini-
mum end of dimension 3. The second element represents the maximum end of dimension 3. If array is only one
element long, then that element is used for both the minimum and maximum end. Please see Section 31.2.1 for
a list of valid options. If not present, defaults to ESMF_GRIDCONN_NONE.

[coordSys] The coordinate system of the grid coordinate data. For a full list of options, please see Section 52.11. If
not specified then defaults to ESMF_COORDSYS_SPH_DEG.

[coordTypeKind] The type/kind of the grid coordinate data. All numerical types listed under section 52.59 are
supported. If not specified then defaults to ESMF_TYPEKIND_R8.

[coordDep1] This array specifies the dependence of the first coordinate component on the three index dimensions
described by coordsPerDEDim1,2,3. The size of the array specifies the number of dimensions of the first
coordinate component array. The values specify which of the index dimensions the corresponding coordinate
arrays map to. If not present the default is 1,2,...,grid rank.

[coordDep2] This array specifies the dependence of the second coordinate component on the three index dimen-
sions described by coordsPerDEDim1,2,3. The size of the array specifies the number of dimensions of
the second coordinate component array. The values specify which of the index dimensions the corresponding
coordinate arrays map to. If not present the default is 1,2,...,grid rank.

[coordDep3] This array specifies the dependence of the third coordinate component on the three index dimensions
described by coordsPerDEDim1,2,3. The size of the array specifies the number of dimensions of the third
coordinate component array. The values specify which of the index dimensions the corresponding coordinate
arrays map to. If not present the default is 1,2,...,grid rank.

[gridEdgeLWidth] The padding around the lower edges of the grid. This padding is between the index space cor-
responding to the cells and the boundary of the the exclusive region. This extra space is to contain the extra
padding for non-center stagger locations, and should be big enough to hold any stagger in the grid. If this and
gridAlign are not present then defaults to 0, 0, ..., 0 (all zeros).

[gridEdgeUWidth] The padding around the upper edges of the grid. This padding is between the index space cor-
responding to the cells and the boundary of the the exclusive region. This extra space is to contain the extra
padding for non-center stagger locations, and should be big enough to hold any stagger in the grid. If this and
gridAlign are not present then defaults to 1, 1, ..., 1 (all ones).

719

[gridAlign] Specification of how the stagger locations should align with the cell index space (can be overridden by
the individual staggerAligns). If the gridEdgeWidths are not specified than this argument implies the grid-
EdgeWidths. If the gridEdgeWidths are specified and this argument isn’t then this argument is implied by the
gridEdgeWidths. If this and the gridEdgeWidths are not specified, then defaults to -1, -1, ..., -1 (all negative
ones).

[gridMemLBound] Specifies the lower index range of the memory of every DE in this Grid. Only used when
indexflag is ESMF_INDEX_USER. May be overridden by staggerMemLBound.

[indexflag] Indicates the indexing scheme to be used in the new Grid. Please see Section 52.27 for the list of options.
If not present, defaults to ESMF_INDEX_DELOCAL.

[petMap] Sets the mapping of pets to the created DEs. This 3D should be of size size(countsPerDEDim1) x
size(countsPerDEDim2) x size(countsPerDEDim3). If countsPerDEDim3 isn’t present, then the last dimen-
sion is of size 1.

[name] ESMF_Grid name.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

31.6.9 ESMF_GridCreate - Create a Grid with user set edge connections and a regular distribution

INTERFACE:

! Private name; call using ESMF_GridCreate()

function ESMF_GridCreateEdgeConnR(regDecomp, decompFlag, &

minIndex, maxIndex, &

connflagDim1, connflagDim2, connflagDim3, &

coordSys, coordTypeKind, &

coordDep1, coordDep2, coordDep3, &

gridEdgeLWidth, gridEdgeUWidth, gridAlign, &

gridMemLBound, indexflag, petMap, name, rc)

RETURN VALUE:

type(ESMF_Grid) :: ESMF_GridCreateEdgeConnR

ARGUMENTS:

integer, intent(in), optional :: regDecomp(:)

type(ESMF_Decomp_Flag), intent(in), optional :: decompflag(:)

integer, intent(in), optional :: minIndex(:)

integer, intent(in) :: maxIndex(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_GridConn_Flag), intent(in), optional :: connflagDim1(:)

type(ESMF_GridConn_Flag), intent(in), optional :: connflagDim2(:)

type(ESMF_GridConn_Flag), intent(in), optional :: connflagDim3(:)

type(ESMF_CoordSys_Flag), intent(in), optional :: coordSys

type(ESMF_TypeKind_Flag), intent(in), optional :: coordTypeKind

integer, intent(in), optional :: coordDep1(:)

720

integer, intent(in), optional :: coordDep2(:)

integer, intent(in), optional :: coordDep3(:)

integer, intent(in), optional :: gridEdgeLWidth(:)

integer, intent(in), optional :: gridEdgeUWidth(:)

integer, intent(in), optional :: gridAlign(:)

integer, intent(in), optional :: gridMemLBound(:)

type(ESMF_Index_Flag), intent(in), optional :: indexflag

integer, intent(in), optional :: petMap(:,:,:)

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

This method creates a single tile, regularly distributed grid (see Figure 13). To specify the distribution, the user passes
in an array (regDecomp) specifying the number of DEs to divide each dimension into. The array decompFlag

indicates how the division into DEs is to occur. The default is to divide the range as evenly as possible. Currently this
call only supports creating a 2D or 3D Grid, and thus, for example, maxIndex must be of size 2 or 3.

The arguments are:

[regDecomp] List that has the same number of elements as maxIndex. Each entry is the number of decounts for
that dimension. If not specified, the default decomposition will be petCountx1x1..x1.

[decompflag] List of decomposition flags indicating how each dimension of the tile is to be divided between the
DEs. The default setting is ESMF_DECOMP_BALANCED in all dimensions. Please see Section 52.13 for a full
description of the possible options. Note that currently the option ESMF_DECOMP_CYCLIC isn’t supported in
Grid creation.

[minIndex] The bottom extent of the grid array. If not given then the value defaults to /1,1,1,.../.

maxIndex The upper extent of the grid array.

[connflagDim1] Fortran array describing the index dimension 1 connections. The first element represents the mini-
mum end of dimension 1. The second element represents the maximum end of dimension 1. If array is only one
element long, then that element is used for both the minimum and maximum end. Please see Section 31.2.1 for
a list of valid options. If not present, defaults to ESMF_GRIDCONN_NONE.

[connflagDim2] Fortran array describing the index dimension 2 connections. The first element represents the mini-
mum end of dimension 2. The second element represents the maximum end of dimension 2. If array is only one
element long, then that element is used for both the minimum and maximum end. Please see Section 31.2.1 for
a list of valid options. If not present, defaults to ESMF_GRIDCONN_NONE.

[connflagDim3] Fortran array describing the index dimension 3 connections. The first element represents the mini-
mum end of dimension 3. The second element represents the maximum end of dimension 3. If array is only one
element long, then that element is used for both the minimum and maximum end. Please see Section 31.2.1 for
a list of valid options. If not present, defaults to ESMF_GRIDCONN_NONE.

[coordSys] The coordinate system of the grid coordinate data. For a full list of options, please see Section 52.11. If
not specified then defaults to ESMF_COORDSYS_SPH_DEG.

[coordTypeKind] The type/kind of the grid coordinate data. All numerical types listed under section 52.59 are
supported. If not specified then defaults to ESMF_TYPEKIND_R8.

[coordDep1] This array specifies the dependence of the first coordinate component on the three index dimensions
described by coordsPerDEDim1,2,3. The size of the array specifies the number of dimensions of the first
coordinate component array. The values specify which of the index dimensions the corresponding coordinate
arrays map to. If not present the default is 1,2,...,grid rank.

721

[coordDep2] This array specifies the dependence of the second coordinate component on the three index dimen-
sions described by coordsPerDEDim1,2,3. The size of the array specifies the number of dimensions of
the second coordinate component array. The values specify which of the index dimensions the corresponding
coordinate arrays map to. If not present the default is 1,2,...,grid rank.

[coordDep3] This array specifies the dependence of the third coordinate component on the three index dimensions
described by coordsPerDEDim1,2,3. The size of the array specifies the number of dimensions of the third
coordinate component array. The values specify which of the index dimensions the corresponding coordinate
arrays map to. If not present the default is 1,2,...,grid rank.

[gridEdgeLWidth] The padding around the lower edges of the grid. This padding is between the index space cor-
responding to the cells and the boundary of the the exclusive region. This extra space is to contain the extra
padding for non-center stagger locations, and should be big enough to hold any stagger in the grid. If this and
gridAlign are not present then defaults to 0, 0, ..., 0 (all zeros).

[gridEdgeUWidth] The padding around the upper edges of the grid. This padding is between the index space cor-
responding to the cells and the boundary of the the exclusive region. This extra space is to contain the extra
padding for non-center stagger locations, and should be big enough to hold any stagger in the grid. If this and
gridAlign are not present then defaults to 1, 1, ..., 1 (all ones).

[gridAlign] Specification of how the stagger locations should align with the cell index space (can be overridden by
the individual staggerAligns). If the gridEdgeWidths are not specified than this argument implies the grid-
EdgeWidths. If the gridEdgeWidths are specified and this argument isn’t then this argument is implied by the
gridEdgeWidths. If this and the gridEdgeWidths are not specified, then defaults to -1, -1, ..., -1 (all negative
ones).

[gridMemLBound] Specifies the lower index range of the memory of every DE in this Grid. Only used when
indexflag is ESMF_INDEX_USER. May be overridden by staggerMemLBound.

[indexflag] Indicates the indexing scheme to be used in the new Grid. Please see Section 52.27 for the list of options.
If not present, defaults to ESMF_INDEX_DELOCAL.

[petMap] Sets the mapping of pets to the created DEs. This 3D should be of size regDecomp(1) x regDecomp(2) x
regDecomp(3) If the Grid is 2D, then the last dimension is of size 1.

[name] ESMF_Grid name.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

31.6.10 ESMF_GridCreate - Create a Grid with user set edge connections and an arbitrary distribution

INTERFACE:

! Private name; call using ESMF_GridCreate()

function ESMF_GridCreateEdgeConnA(minIndex, maxIndex, &

arbIndexCount, arbIndexList, &

connflagDim1, connflagDim2, connflagDim3, &

coordSys, coordTypeKind, &

coordDep1, coordDep2, coordDep3, &

distDim, name, rc)

RETURN VALUE:

722

type(ESMF_Grid) :: ESMF_GridCreateEdgeConnA

ARGUMENTS:

integer, intent(in), optional :: minIndex(:)

integer, intent(in) :: maxIndex(:)

integer, intent(in) :: arbIndexCount

integer, intent(in) :: arbIndexList(:,:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_GridConn_Flag), intent(in), optional :: connflagDim1(:)

type(ESMF_GridConn_Flag), intent(in), optional :: connflagDim2(:)

type(ESMF_GridConn_Flag), intent(in), optional :: connflagDim3(:)

type(ESMF_CoordSys_Flag), intent(in), optional :: coordSys

type(ESMF_TypeKind_Flag), intent(in), optional :: coordTypeKind

integer, intent(in), optional :: coordDep1(:)

integer, intent(in), optional :: coordDep2(:)

integer, intent(in), optional :: coordDep3(:)

integer, intent(in), optional :: distDim(:)

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

This method creates a single tile, arbitrarily distributed grid (see Figure 13). To specify the arbitrary distribution, the
user passes in an 2D array of local indices, where the first dimension is the number of local grid cells specified by
localArbIndexCount and the second dimension is the number of distributed dimensions.

distDim specifies which grid dimensions are arbitrarily distributed. The size of distDim has to agree with the size
of the second dimension of localArbIndex.

Currently this call only supports creating a 2D or 3D Grid, and thus, for example, maxIndex must be of size 2 or 3.

The arguments are:

[minIndex] Tuple to start the index ranges at. If not present, defaults to /1,1,1,.../.

maxIndex The upper extend of the grid index ranges.

arbIndexCount The number of grid cells in the local DE. It is okay to have 0 grid cell in a local DE.

arbIndexList This 2D array specifies the indices of the PET LOCAL grid cells. The dimensions should be arbIndex-
Count * number of Distributed grid dimensions where arbIndexCount is the input argument specified below

[connflagDim1] Fortran array describing the index dimension 1 connections. The first element represents the mini-
mum end of dimension 1. The second element represents the maximum end of dimension 1. If array is only one
element long, then that element is used for both the minimum and maximum end. Please see Section 31.2.1 for
a list of valid options. If not present, defaults to ESMF_GRIDCONN_NONE.

[connflagDim2] Fortran array describing the index dimension 2 connections. The first element represents the mini-
mum end of dimension 2. The second element represents the maximum end of dimension 2. If array is only one
element long, then that element is used for both the minimum and maximum end. Please see Section 31.2.1 for
a list of valid options. If not present, defaults to ESMF_GRIDCONN_NONE.

[connflagDim3] Fortran array describing the index dimension 3 connections. The first element represents the mini-
mum end of dimension 3. The second element represents the maximum end of dimension 3. If array is only one
element long, then that element is used for both the minimum and maximum end. Please see Section 31.2.1 for
a list of valid options. If not present, defaults to ESMF_GRIDCONN_NONE.

723

[coordSys] The coordinate system of the grid coordinate data. For a full list of options, please see Section 52.11. If
not specified then defaults to ESMF_COORDSYS_SPH_DEG.

[coordTypeKind] The type/kind of the grid coordinate data. All numerical types listed under section 52.59 are
supported. If not specified then defaults to ESMF_TYPEKIND_R8.

[coordDep1] The size of the array specifies the number of dimensions of the first coordinate component array. The
values specify which of the index dimensions the corresponding coordinate arrays map to. The format should
be /ESMF_DIM_ARB/ where /ESMF_DIM_ARB/ is mapped to the collapsed 1D dimension from all the arbi-
trarily distributed dimensions. n is the dimension that is not distributed (if exists). If not present the default is
/ESMF_DIM_ARB/ if the first dimension is arbitararily distributed, or /n/ if not distributed (i.e. n=1) Please see
Section 52.2 for a definition of ESMF_DIM_ARB.

[coordDep2] The size of the array specifies the number of dimensions of the second coordinate component array.
The values specify which of the index dimensions the corresponding coordinate arrays map to. The format
should be /ESMF_DIM_ARB/ where /ESMF_DIM_ARB/ is mapped to the collapsed 1D dimension from all
the arbitrarily distributed dimensions. n is the dimension that is not distributed (if exists). If not present the
default is /ESMF_DIM_ARB/ if this dimension is arbitararily distributed, or /n/ if not distributed (i.e. n=2)
Please see Section 52.2 for a definition of ESMF_DIM_ARB.

[coordDep3] The size of the array specifies the number of dimensions of the third coordinate component array.
The values specify which of the index dimensions the corresponding coordinate arrays map to. The format
should be /ESMF_DIM_ARB/ where /ESMF_DIM_ARB/ is mapped to the collapsed 1D dimension from all
the arbitrarily distributed dimensions. n is the dimension that is not distributed (if exists). If not present the
default is /ESMF_DIM_ARB/ if this dimension is arbitararily distributed, or /n/ if not distributed (i.e. n=3)
Please see Section 52.2 for a definition of ESMF_DIM_ARB.

[distDim] This array specifies which dimensions are arbitrarily distributed. The size of the array specifies the total
distributed dimensions. if not specified, defaults is all dimensions will be arbitrarily distributed. The size has to
agree with the size of the second dimension of localArbIndex.

[name] ESMF_Grid name.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

31.6.11 ESMF_GridCreate - Create a Grid from a DistGrid

INTERFACE:

! Private name; call using ESMF_GridCreate()

function ESMF_GridCreateFrmDistGrid(distgrid, &

distgridToGridMap, &

coordSys, coordTypeKind, coordDimCount, coordDimMap, &

gridEdgeLWidth, gridEdgeUWidth, gridAlign, &

gridMemLBound, indexflag, name, vm, rc)

RETURN VALUE:

type(ESMF_Grid) :: ESMF_GridCreateFrmDistGrid

ARGUMENTS:

724

type(ESMF_DistGrid), intent(in) :: distgrid

integer, intent(in), optional :: distgridToGridMap(:)

type(ESMF_CoordSys_Flag),intent(in), optional :: coordSys

type(ESMF_TypeKind_Flag),intent(in), optional :: coordTypeKind

integer, intent(in), optional :: coordDimCount(:)

integer, intent(in), optional :: coordDimMap(:,:)

integer, intent(in), optional :: gridEdgeLWidth(:)

integer, intent(in), optional :: gridEdgeUWidth(:)

integer, intent(in), optional :: gridAlign(:)

integer, intent(in), optional :: gridMemLBound(:)

type(ESMF_Index_Flag), intent(in), optional :: indexflag

character (len=*), intent(in), optional :: name

type(ESMF_VM), intent(in), optional :: vm

integer, intent(out), optional :: rc

DESCRIPTION:

This is the most general form of creation for an ESMF_Grid object. It allows the user to fully specify the topology
and index space using the DistGrid methods and then build a grid out of the resulting DistGrid. Note that since the Grid
created by this call uses distgrid as a description of its index space, the resulting Grid will have exactly the same
number of dimensions (i.e. the same dimCount) as distgrid. The distgridToGridMap argument specifies
how the Grid dimensions are mapped to the distgrid. The coordDimCount and coordDimMap arguments
allow the user to specify how the coordinate arrays should map to the grid dimensions. (Note, though, that creating a
grid does not allocate coordinate storage. A method such as ESMF_GridAddCoord() must be called before adding
coordinate values.)

The arguments are:

distgrid ESMF_DistGrid object that describes how the array is decomposed and distributed over DEs.

[distgridToGridMap] List that has dimCount elements. The elements map each dimension of distgrid to a dimension
in the grid. (i.e. the values should range from 1 to dimCount). If not specified, the default is to map all of
distgrid’s dimensions against the dimensions of the grid in sequence.

[coordSys] The coordinate system of the grid coordinate data. For a full list of options, please see Section 52.11. If
not specified then defaults to ESMF_COORDSYS_SPH_DEG.

[coordTypeKind] The type/kind of the grid coordinate data. All numerical types listed under section 52.59 are
supported. If not specified then defaults to ESMF_TYPEKIND_R8.

[coordDimCount] List that has dimCount elements. Gives the dimension of each component (e.g. x) array. This is
to allow factorization of the coordinate arrays. If not specified all arrays are the same size as the grid.

[coordDimMap] 2D list of size dimCount x dimCount. This array describes the map of each component array’s di-
mensions onto the grids dimensions. Each entry coordDimMap(i,j) tells which grid dimension component
i’s, jth dimension maps to. Note that if j is bigger than coordDimCount(i) it is ignored. The default for
each row i is coordDimMap(i,:)=(1,2,3,4,...).

[gridEdgeLWidth] The padding around the lower edges of the grid. This padding is between the index space cor-
responding to the cells and the boundary of the the exclusive region. This extra space is to contain the extra
padding for non-center stagger locations, and should be big enough to hold any stagger in the grid. If this and
gridAlign are not present then defaults to 0, 0, ..., 0 (all zeros).

[gridEdgeUWidth] The padding around the upper edges of the grid. This padding is between the index space cor-
responding to the cells and the boundary of the the exclusive region. This extra space is to contain the extra
padding for non-center stagger locations, and should be big enough to hold any stagger in the grid. If this and
gridAlign are not present then defaults to 1, 1, ..., 1 (all ones).

725

[gridAlign] Specification of how the stagger locations should align with the cell index space (can be overridden by
the individual staggerAligns). If the gridEdgeWidths are not specified than this argument implies the grid-
EdgeWidths. If the gridEdgeWidths are specified and this argument isn’t then this argument is implied by the
gridEdgeWidths. If this and the gridEdgeWidths are not specified, then defaults to -1, -1, ..., -1 (all negative
ones).

[gridMemLBound] Specifies the lower index range of the memory of every DE in this Grid. Only used when
indexflag is ESMF_INDEX_USER. May be overridden by staggerMemLBound.

[indexflag] Indicates the indexing scheme to be used in the new Grid. Please see Section 52.27 for the list of options.
If not present, defaults to ESMF_INDEX_DELOCAL.

[name] ESMF_Grid name.

[vm] If present, the Grid object is created on the specified ESMF_VM object. The default is to create on the VM of
the current context.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

31.6.12 ESMF_GridCreate - Create a Arbitrary Grid from a DistGrid

INTERFACE:

! Private name; call using ESMF_GridCreate()

function ESMF_GridCreateFrmDistGridArb(distgrid, &

indexArray, distDim, &

coordSys, coordTypeKind, coordDimCount, coordDimMap, &

name, rc)

RETURN VALUE:

type(ESMF_Grid) :: ESMF_GridCreateFrmDistGridArb

ARGUMENTS:

type(ESMF_DistGrid), intent(in) :: distgrid

integer, intent(in) :: indexArray(:,:)

integer, intent(in), optional :: distDim(:)

type(ESMF_CoordSys_Flag), intent(in), optional :: coordSys

type(ESMF_TypeKind_Flag), intent(in), optional :: coordTypeKind

integer, intent(in), optional :: coordDimCount(:)

integer, intent(in), optional :: coordDimMap(:,:)

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

This is the lower level function to create an arbitrarily distributed ESMF_Grid object. It allows the user to fully
specify the topology and index space (of the distributed dimensions) using the DistGrid methods and then build a grid
out of the resulting distgrid. The indexArray(2,dimCount), argument is required to specifies the topology
of the grid.

The arguments are:

726

distgrid ESMF_DistGrid object that describes how the array is decomposed and distributed over DEs.

indexArray The minIndex and maxIndex array of size 2 x dimCount indexArray(1,:) is the minIndex and
indexArray(2,:) is the maxIndex

[distDim] This array specifies which dimensions are arbitrarily distributed. The size of the array specifies the total
distributed dimensions. if not specified, the default is that all dimensions will be arbitrarily distributed.

[coordSys] The coordinate system of the grid coordinate data. For a full list of options, please see Section 52.11. If
not specified then defaults to ESMF_COORDSYS_SPH_DEG.

[coordTypeKind] The type/kind of the grid coordinate data. All numerical types listed under section 52.59 are
supported. If not specified then defaults to ESMF_TYPEKIND_R8.

[coordDimCount] List that has dimCount elements. Gives the dimension of each component (e.g. x) array. This is
to allow factorization of the coordinate arrays. If not specified each component is assumed to be size 1. Note,
the default value is different from the same argument for a non-arbitrarily distributed grid.

[coordDimMap] 2D list of size dimCount x dimCount. This array describes the map of each coordinate array’s
dimensions onto the grids dimensions. coordDimMap(i,j) is the grid dimension of the jth dimension of
the i’th coordinate array. If not specified, the default value of coordDimMap(i,1) is /ESMF_DIM_ARB/
if the ith dimension of the grid is arbitrarily distributed, or i if the ith dimension is not distributed. Note
that if j is bigger than coordDimCount(i) then it’s ignored. Please see Section 52.2 for a definition of
ESMF_DIM_ARB.

[name] ESMF_Grid name.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

31.6.13 ESMF_GridCreate - Create a Grid from a SCRIP or GRIDSPEC format grid file with a user specified

distribution

INTERFACE:

! Private name; call using ESMF_GridCreate()

function ESMF_GridCreateFrmNCFileDG(filename, fileformat, distgrid, &

isSphere, polekindflag, addCornerStagger, coordTypeKind, addUserArea, indexflag, &

addMask, varname, coordNames, rc)

RETURN VALUE:

type(ESMF_Grid) :: ESMF_GridCreateFrmNCFileDG

ARGUMENTS:

character(len=*), intent(in) :: filename

type(ESMF_FileFormat_Flag), intent(in), optional :: fileformat

type(ESMF_DistGrid), intent(in) :: distgrid

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: isSphere

type(ESMF_PoleKind_Flag), intent(in), optional :: polekindflag(2)

727

logical, intent(in), optional :: addCornerStagger

type(ESMF_TypeKind_Flag),intent(in), optional :: coordTypeKind

logical, intent(in), optional :: addUserArea

type(ESMF_Index_Flag), intent(in), optional :: indexflag

logical, intent(in), optional :: addMask

character(len=*), intent(in), optional :: varname

character(len=*), intent(in), optional :: coordNames(:)

integer, intent(out), optional :: rc

DESCRIPTION:

This function creates a ESMF_Grid object using the grid definition from a grid file in NetCDF that is either in the
SCRIP format or in the CF convention. To specify the distribution, the user passes in a distGrid. The grid defined
in the file has to be a 2D logically rectangular grid. This function first call ESMF_GridCreateFrmNCFile() to
create a ESMF_Grid object using a pre-calculated block distribution, then redistribute the Grid to create a new Grid
object using the user specified distGrid.

This call is collective across the current VM.

The arguments are:

filename The NetCDF Grid filename.

[fileformat] The file format. The valid options are ESMF_FILEFORMAT_SCRIP and
ESMF_FILEFORMAT_GRIDSPEC. If it is the SCRIP format, the dimension grid_rank in the file
has to be equal to 2. Please see section 52.19 for a detailed description of the options. If not specified, the file
type will be detected automatically.

distGrid A distGrid defines how the grid is distributed

[isSphere] If .true., create a periodic Grid. If .false., create a regional Grid. Defaults to .true.

[polekindflag] Two item array which specifies the type of connection which occurs at the pole. The value in polekind-
flag(1) specifies the connection that occurs at the minimum end of the pole dimension. The value in polekind-
flag(2) specifies the connection that occurs at the maximum end of the pole dimension. Please see Section 31.2.5
for a full list of options. If not specified, the default is ESMF_POLEKIND_MONOPOLE for both.

[addCornerStagger] Uses the information in the grid file to add the Corner stagger to the Grid. The coordinates for
the corner stagger is required for conservative regridding. If not specified, defaults to false.

[coordTypeKind] The type/kind of the grid coordinate data. Only ESMF_TYPEKIND_R4 and
ESMF_TYPEKIND_R8 are allowed. Currently, ESMF_TYPEKIND_R4 is only supported for the GRIDSPEC
fileformat. If not specified then defaults to ESMF_TYPEKIND_R8.

[addUserArea] If .true., read in the cell area from the Grid file, otherwise, ESMF will calculate it. The feature is only
supported when the grid file is in the SCRIP format. If not set, the default value is .false.

[indexflag] Indicates the indexing scheme to be used in the new Grid. Please see section 52.27 for the list of options.
If not present, defaults to ESMF_INDEX_DELOCAL.

[addMask] If .true., generate the mask using the missing_value attribute defined in ’varname’. This flag is only
needed for the GRIDSPEC file format. If not set, the default value is .false.

[varname] If addMask is true, provide a variable name stored in the grid file and the mask will be generated using
the missing value of the data value of this variable. The first two dimensions of the variable has to be the the
longitude and the latitude dimension and the mask is derived from the first 2D values of this variable even if this
data is 3D, or 4D array.

728

[coordNames] a two-element array containing the longitude and latitude variable names in a GRIDSPEC file if there
are multiple coordinates defined in the file

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

31.6.14 ESMF_GridCreate - Create a Grid from a SCRIP or GRIDSPEC format grid file

INTERFACE:

! Private name; call using ESMF_GridCreate()

function ESMF_GridCreateFrmNCFile(filename, fileformat, regDecomp, &

decompflag, delayout, isSphere, polekindflag, addCornerStagger, coordTypeKind, &

addUserArea, indexflag, addMask, varname, coordNames, rc)

RETURN VALUE:

type(ESMF_Grid) :: ESMF_GridCreateFrmNCFile

ARGUMENTS:

character(len=*), intent(in) :: filename

type(ESMF_FileFormat_Flag), intent(in), optional :: fileformat

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: regDecomp(:)

type(ESMF_Decomp_Flag), intent(in), optional :: decompflag(:)

type(ESMF_DELayout), intent(in), optional :: delayout

logical, intent(in), optional :: isSphere

type(ESMF_PoleKind_Flag), intent(in), optional :: polekindflag(2)

logical, intent(in), optional :: addCornerStagger

type(ESMF_TypeKind_Flag),intent(in), optional :: coordTypeKind

logical, intent(in), optional :: addUserArea

type(ESMF_Index_Flag), intent(in), optional :: indexflag

logical, intent(in), optional :: addMask

character(len=*), intent(in), optional :: varname

character(len=*), intent(in), optional :: coordNames(:)

integer, intent(out), optional :: rc

DESCRIPTION:

This function creates a ESMF_Grid object using the grid definition from a grid file in NetCDF that is either in
the SCRIP format or in the CF convention. To specify the distribution, the user passes in an array (regDecomp)
specifying the number of DEs to divide each dimension into. The array decompflag indicates how the division into
DEs is to occur. The default is to divide the range as evenly as possible. The grid defined in the file has to be a 2D
logically rectangular grid.

This call is collective across the current VM.

The arguments are:

729

filename The NetCDF Grid filename.

[fileformat] The file format. The valid options are ESMF_FILEFORMAT_SCRIP and
ESMF_FILEFORMAT_GRIDSPEC. If it is the SCRIP format, the dimension grid_rank in the file
has to be equal to 2. Please see section 52.19 for a detailed description of the options. If not specified, the
filetype will be automatically detected.

[regDecomp] A 2 element array specifying how the grid is decomposed. Each entry is the number of decounts for
that dimension. The total decounts cannot exceed the total number of PETs. In other word, at most one DE is
allowed per processor. If not specified, the default decomposition will be petCountx1.

[decompflag] List of decomposition flags indicating how each dimension of the tile is to be divided between the
DEs. The default setting is ESMF_DECOMP_BALANCED in all dimensions. Please see section 52.13 for a full
description of the possible options. Note that currently the option ESMF_DECOMP_CYCLIC isn’t supported in
Grid creation.

[delayout] The DELayout that determines DE layout of DEs across PETs. The default is to create a default
DELayout with the correct number of DEs according to the regDecomp. See the documentation of the
ESMF_DELayoutCreate() method for details about the default DELayout.

[isSphere] If .true., create a periodic Grid. If .false., create a regional Grid. Defaults to .true.

[polekindflag] Two item array which specifies the type of connection which occurs at the pole. The value in polekind-
flag(1) specifies the connection that occurs at the minimum end of the pole dimension. The value in polekind-
flag(2) specifies the connection that occurs at the maximum end of the pole dimension. Please see Section 31.2.5
for a full list of options. If not specified, the default is ESMF_POLEKIND_MONOPOLE for both.

[addCornerStagger] Uses the information in the grid file to add the Corner stagger to the Grid. The coordinates for
the corner stagger is required for conservative regridding. If not specified, defaults to false.

[coordTypeKind] The type/kind of the grid coordinate data. Only ESMF_TYPEKIND_R4 and
ESMF_TYPEKIND_R8 are allowed. Currently, ESMF_TYPEKIND_R4 is only supported for the GRIDSPEC
fileformat. If not specified then defaults to ESMF_TYPEKIND_R8.

[addUserArea] If .true., read in the cell area from the Grid file, otherwise, ESMF will calculate it. The feature is only
supported when the grid file is in the SCRIP format. If not set, the default value is .false.

[indexflag] Indicates the indexing scheme to be used in the new Grid. Please see section 52.27 for the list of options.
If not present, defaults to ESMF_INDEX_DELOCAL.

[addMask] If .true., generate the mask using the missing_value attribute defined in ’varname’. This flag is only
needed for the GRIDSPEC file format. If not set, the default value is .false.

[varname] If addMask is true, provide a variable name stored in the grid file and the mask will be generated using
the missing value of the data value of this variable. The first two dimensions of the variable has to be the the
longitude and the latitude dimension and the mask is derived from the first 2D values of this variable even if this
data is 3D, or 4D array.

[coordNames] a two-element array containing the longitude and latitude variable names in a GRIDSPEC file if there
are multiple coordinates defined in the file

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

730

31.6.15 ESMF_GridCreate1PeriDim - Create a Grid with one periodic dim and an irregular distribution

INTERFACE:

! Private name; call using ESMF_GridCreate1PeriDim()

function ESMF_GridCreate1PeriDimI(minIndex, &

countsPerDEDim1,countsPerDeDim2, &

countsPerDEDim3, &

polekindflag, periodicDim, poleDim, &

coordSys, coordTypeKind, &

coordDep1, coordDep2, coordDep3, &

gridEdgeLWidth, gridEdgeUWidth, gridAlign, &

gridMemLBound, indexflag, petMap, name, rc)

RETURN VALUE:

type(ESMF_Grid) :: ESMF_GridCreate1PeriDimI

ARGUMENTS:

integer, intent(in), optional :: minIndex(:)

integer, intent(in) :: countsPerDEDim1(:)

integer, intent(in) :: countsPerDEDim2(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: countsPerDEDim3(:)

type(ESMF_PoleKind_Flag), intent(in), optional :: polekindflag(2)

integer, intent(in), optional :: periodicDim

integer, intent(in), optional :: poleDim

type(ESMF_CoordSys_Flag), intent(in), optional :: coordSys

type(ESMF_TypeKind_Flag), intent(in), optional :: coordTypeKind

integer, intent(in), optional :: coordDep1(:)

integer, intent(in), optional :: coordDep2(:)

integer, intent(in), optional :: coordDep3(:)

integer, intent(in), optional :: gridEdgeLWidth(:)

integer, intent(in), optional :: gridEdgeUWidth(:)

integer, intent(in), optional :: gridAlign(:)

integer, intent(in), optional :: gridMemLBound(:)

type(ESMF_Index_Flag), intent(in), optional :: indexflag

integer, intent(in), optional :: petMap(:,:,:)

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

This method creates a single tile, irregularly distributed grid (see Figure 13) with one periodic dimension. To specify
the irregular distribution, the user passes in an array for each grid dimension, where the length of the array is the
number of DEs in the dimension. Currently this call only supports creating 2D or 3D Grids. A 2D Grid can be
specified using the countsPerDEDim1 and countsPerDEDim2 arguments. A 3D Grid can be specified by also using
the optional countsPerDEDim3 argument. The index of each array element in these arguments corresponds to a DE
number. The array value at the index is the number of grid cells on the DE in that dimension.

Section 31.3.4 shows an example of using this method to create a 2D Grid with uniformly spaced coordinates. This
creation method can also be used as the basis for grids with rectilinear coordinates or curvilinear coordinates.

731

The arguments are:

[minIndex] Tuple to start the index ranges at. If not present, defaults to /1,1,1,.../.

countsPerDEDim1 This arrays specifies the number of cells per DE for index dimension 1 for the exclusive region
(the center stagger location).

countsPerDEDim2 This array specifies the number of cells per DE for index dimension 2 for the exclusive region
(center stagger location).

[countsPerDEDim3] This array specifies the number of cells per DE for index dimension 3 for the exclusive region
(center stagger location). If not specified then grid is 2D.

[polekindflag] Two item array which specifies the type of connection which occurs at the pole. The value in polekind-
flag(1) specifies the connection that occurs at the minimum end of the pole dimension. The value in polekind-
flag(2) specifies the connection that occurs at the maximum end of the pole dimension. Please see Section 31.2.5
for a full list of options. If not specified, the default is ESMF_POLEKIND_MONOPOLE for both.

[periodicDim] The periodic dimension. If not specified, defaults to 1.

[poleDim] The dimension at who’s ends the poles are located. If not specified defaults to 2.

[coordSys] The coordinate system of the grid coordinate data. For a full list of options, please see Section 52.11. If
not specified then defaults to ESMF_COORDSYS_SPH_DEG.

[coordTypeKind] The type/kind of the grid coordinate data. All numerical types listed under section 52.59 are
supported. If not specified then defaults to ESMF_TYPEKIND_R8.

[coordDep1] This array specifies the dependence of the first coordinate component on the three index dimensions
described by coordsPerDEDim1,2,3. The size of the array specifies the number of dimensions of the first
coordinate component array. The values specify which of the index dimensions the corresponding coordinate
arrays map to. If not present the default is 1,2,...,grid rank.

[coordDep2] This array specifies the dependence of the second coordinate component on the three index dimen-
sions described by coordsPerDEDim1,2,3. The size of the array specifies the number of dimensions of
the second coordinate component array. The values specify which of the index dimensions the corresponding
coordinate arrays map to. If not present the default is 1,2,...,grid rank.

[coordDep3] This array specifies the dependence of the third coordinate component on the three index dimensions
described by coordsPerDEDim1,2,3. The size of the array specifies the number of dimensions of the third
coordinate component array. The values specify which of the index dimensions the corresponding coordinate
arrays map to. If not present the default is 1,2,...,grid rank.

[gridEdgeLWidth] The padding around the lower edges of the grid. This padding is between the index space cor-
responding to the cells and the boundary of the the exclusive region. This extra space is to contain the extra
padding for non-center stagger locations, and should be big enough to hold any stagger in the grid. If this and
gridAlign are not present then defaults to 0, 0, ..., 0 (all zeros).

[gridEdgeUWidth] The padding around the upper edges of the grid. This padding is between the index space cor-
responding to the cells and the boundary of the the exclusive region. This extra space is to contain the extra
padding for non-center stagger locations, and should be big enough to hold any stagger in the grid. If this and
gridAlign are not present then defaults to 1, 1, ..., 1 (all ones).

[gridAlign] Specification of how the stagger locations should align with the cell index space (can be overridden by
the individual staggerAligns). If the gridEdgeWidths are not specified than this argument implies the grid-
EdgeWidths. If the gridEdgeWidths are specified and this argument isn’t then this argument is implied by the
gridEdgeWidths. If this and the gridEdgeWidths are not specified, then defaults to -1, -1, ..., -1 (all negative
ones).

732

[gridMemLBound] Specifies the lower index range of the memory of every DE in this Grid. Only used when
indexflag is ESMF_INDEX_USER. May be overridden by staggerMemLBound.

[indexflag] Indicates the indexing scheme to be used in the new Grid. Please see Section 52.27 for the list of options.
If not present, defaults to ESMF_INDEX_DELOCAL.

[petMap] Sets the mapping of pets to the created DEs. This 3D should be of size size(countsPerDEDim1) x
size(countsPerDEDim2) x size(countsPerDEDim3). If countsPerDEDim3 isn’t present, then the last dimen-
sion is of size 1.

[name] ESMF_Grid name.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

31.6.16 ESMF_GridCreate1PeriDim - Create a Grid with one periodic dim and a regular distribution

INTERFACE:

! Private name; call using ESMF_GridCreate1PeriDim()

function ESMF_GridCreate1PeriDimR(regDecomp, decompFlag, &

minIndex, maxIndex, &

polekindflag, periodicDim, poleDim, &

coordSys, coordTypeKind, &

coordDep1, coordDep2, coordDep3, &

gridEdgeLWidth, gridEdgeUWidth, gridAlign, &

gridMemLBound, indexflag, petMap, name, rc)

RETURN VALUE:

type(ESMF_Grid) :: ESMF_GridCreate1PeriDimR

ARGUMENTS:

integer, intent(in), optional :: regDecomp(:)

type(ESMF_Decomp_Flag), intent(in), optional :: decompflag(:)

integer, intent(in), optional :: minIndex(:)

integer, intent(in) :: maxIndex(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_PoleKind_Flag), intent(in), optional :: polekindflag(2)

integer, intent(in), optional :: periodicDim

integer, intent(in), optional :: poleDim

type(ESMF_CoordSys_Flag), intent(in), optional :: coordSys

type(ESMF_TypeKind_Flag), intent(in), optional :: coordTypeKind

integer, intent(in), optional :: coordDep1(:)

integer, intent(in), optional :: coordDep2(:)

integer, intent(in), optional :: coordDep3(:)

integer, intent(in), optional :: gridEdgeLWidth(:)

integer, intent(in), optional :: gridEdgeUWidth(:)

integer, intent(in), optional :: gridAlign(:)

integer, intent(in), optional :: gridMemLBound(:)

733

type(ESMF_Index_Flag), intent(in), optional :: indexflag

integer, intent(in), optional :: petMap(:,:,:)

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

This method creates a single tile, regularly distributed grid (see Figure 13) with one periodic dimension. To specify the
distribution, the user passes in an array (regDecomp) specifying the number of DEs to divide each dimension into.
The array decompFlag indicates how the division into DEs is to occur. The default is to divide the range as evenly
as possible. Currently this call only supports creating a 2D or 3D Grid, and thus, for example, maxIndex must be of
size 2 or 3.

The arguments are:

[regDecomp] List that has the same number of elements as maxIndex. Each entry is the number of decounts for
that dimension. If not specified, the default decomposition will be petCountx1x1..x1.

[decompflag] List of decomposition flags indicating how each dimension of the tile is to be divided between the
DEs. The default setting is ESMF_DECOMP_BALANCED in all dimensions. Please see Section 52.13 for a full
description of the ! possible options. Note that currently the option ESMF_DECOMP_CYCLIC isn’t supported
in Grid creation.

[minIndex] The bottom extent of the grid array. If not given then the value defaults to /1,1,1,.../.

maxIndex The upper extent of the grid array.

[polekindflag] Two item array which specifies the type of connection which occurs at the pole. The value in polekind-
flag(1) specifies the connection that occurs at the minimum end of the pole dimension. The value in polekind-
flag(2) specifies the connection that occurs at the maximum end of the pole dimension. Please see Section 31.2.5
for a full list of options. If not specified, the default is ESMF_POLEKIND_MONOPOLE for both.

[periodicDim] The periodic dimension. If not specified, defaults to 1.

[poleDim] The dimension at who’s ends the poles are located. If not specified defaults to 2.

[coordSys] The coordinate system of the grid coordinate data. For a full list of options, please see Section 52.11. If
not specified then defaults to ESMF_COORDSYS_SPH_DEG.

[coordTypeKind] The type/kind of the grid coordinate data. All numerical types listed under section 52.59 are
supported. If not specified then defaults to ESMF_TYPEKIND_R8.

[coordDep1] This array specifies the dependence of the first coordinate component on the three index dimensions
described by coordsPerDEDim1,2,3. The size of the array specifies the number of dimensions of the first
coordinate component array. The values specify which of the index dimensions the corresponding coordinate
arrays map to. If not present the default is 1,2,...,grid rank.

[coordDep2] This array specifies the dependence of the second coordinate component on the three index dimen-
sions described by coordsPerDEDim1,2,3. The size of the array specifies the number of dimensions of
the second coordinate component array. The values specify which of the index dimensions the corresponding
coordinate arrays map to. If not present the default is 1,2,...,grid rank.

[coordDep3] This array specifies the dependence of the third coordinate component on the three index dimensions
described by coordsPerDEDim1,2,3. The size of the array specifies the number of dimensions of the third
coordinate component array. The values specify which of the index dimensions the corresponding coordinate
arrays map to. If not present the default is 1,2,...,grid rank.

734

[gridEdgeLWidth] The padding around the lower edges of the grid. This padding is between the index space cor-
responding to the cells and the boundary of the the exclusive region. This extra space is to contain the extra
padding for non-center stagger locations, and should be big enough to hold any stagger in the grid. If this and
gridAlign are not present then defaults to 0, 0, ..., 0 (all zeros).

[gridEdgeUWidth] The padding around the upper edges of the grid. This padding is between the index space cor-
responding to the cells and the boundary of the the exclusive region. This extra space is to contain the extra
padding for non-center stagger locations, and should be big enough to hold any stagger in the grid. If this and
gridAlign are not present then defaults to 1, 1, ..., 1 (all ones).

[gridAlign] Specification of how the stagger locations should align with the cell index space (can be overridden by
the individual staggerAligns). If the gridEdgeWidths are not specified than this argument implies the grid-
EdgeWidths. If the gridEdgeWidths are specified and this argument isn’t then this argument is implied by the
gridEdgeWidths. If this and the gridEdgeWidths are not specified, then defaults to -1, -1, ..., -1 (all negative
ones).

[gridMemLBound] Specifies the lower index range of the memory of every DE in this Grid. Only used when
indexflag is ESMF_INDEX_USER. May be overridden by staggerMemLBound.

[indexflag] Indicates the indexing scheme to be used in the new Grid. Please see Section 52.27 for the list of options.
If not present, defaults to ESMF_INDEX_DELOCAL.

[petMap] Sets the mapping of pets to the created DEs. This 3D should be of size regDecomp(1) x regDecomp(2) x
regDecomp(3) If the Grid is 2D, then the last dimension is of size 1.

[name] ESMF_Grid name.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

31.6.17 ESMF_GridCreate1PeriDim - Create a Grid with one periodic dim and an arbitrary distribution

INTERFACE:

! Private name; call using ESMF_GridCreate1PeriDim()

function ESMF_GridCreate1PeriDimA(minIndex, maxIndex, &

arbIndexCount, arbIndexList, &

polekindflag, periodicDim, poleDim, &

coordSys, coordTypeKind, &

coordDep1, coordDep2, coordDep3, &

distDim, name, rc)

RETURN VALUE:

type(ESMF_Grid) :: ESMF_GridCreate1PeriDimA

ARGUMENTS:

integer, intent(in), optional :: minIndex(:)

integer, intent(in) :: maxIndex(:)

integer, intent(in) :: arbIndexCount

integer, intent(in) :: arbIndexList(:,:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

735

type(ESMF_PoleKind_Flag), intent(in), optional :: polekindflag(2)

integer, intent(in), optional :: periodicDim

integer, intent(in), optional :: poleDim

type(ESMF_CoordSys_Flag), intent(in), optional :: coordSys

type(ESMF_TypeKind_Flag), intent(in), optional :: coordTypeKind

integer, intent(in), optional :: coordDep1(:)

integer, intent(in), optional :: coordDep2(:)

integer, intent(in), optional :: coordDep3(:)

integer, intent(in), optional :: distDim(:)

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

This method creates a single tile, arbitrarily distributed grid (see Figure 13) with one periodic dimension. To specify
the arbitrary distribution, the user passes in an 2D array of local indices, where the first dimension is the number
of local grid cells specified by localArbIndexCount and the second dimension is the number of distributed
dimensions.

distDim specifies which grid dimensions are arbitrarily distributed. The size of distDim has to agree with the size
of the second dimension of localArbIndex.

Currently this call only supports creating a 2D or 3D Grid, and thus, for example, maxIndex must be of size 2 or 3.

The arguments are:

[minIndex] Tuple to start the index ranges at. If not present, defaults to /1,1,1,.../.

maxIndex The upper extend of the grid index ranges.

arbIndexCount The number of grid cells in the local DE. It is okay to have 0 grid cell in a local DE.

arbIndexList This 2D array specifies the indices of the PET LOCAL grid cells. The dimensions should be arbIndex-
Count * number of Distributed grid dimensions where arbIndexCount is the input argument specified below

[polekindflag] Two item array which specifies the type of connection which occurs at the pole. The value in polekind-
flag(1) specifies the connection that occurs at the minimum end of the pole dimension. The value in polekind-
flag(2) specifies the connection that occurs at the maximum end of the pole dimension. Please see Section 31.2.5
for a full list of options. If not specified, the default is ESMF_POLEKIND_MONOPOLE for both.

[periodicDim] The periodic dimension. If not specified, defaults to 1.

[poleDim] The dimension at who’s ends the poles are located. If not specified defaults to 2.

[coordSys] The coordinate system of the grid coordinate data. For a full list of options, please see Section 52.11. If
not specified then defaults to ESMF_COORDSYS_SPH_DEG.

[coordTypeKind] The type/kind of the grid coordinate data. All numerical types listed under section 52.59 are
supported. If not specified then defaults to ESMF_TYPEKIND_R8.

[coordDep1] The size of the array specifies the number of dimensions of the first coordinate component array. The
values specify which of the index dimensions the corresponding coordinate arrays map to. The format should
be /ESMF_DIM_ARB/ where /ESMF_DIM_ARB/ is mapped to the collapsed 1D dimension from all the arbi-
trarily distributed dimensions. n is the dimension that is not distributed (if exists). If not present the default is
/ESMF_DIM_ARB/ if the first dimension is arbitararily distributed, or /n/ if not distributed (i.e. n=1) Please see
Section 52.2 for a definition of ESMF_DIM_ARB.

736

[coordDep2] The size of the array specifies the number of dimensions of the second coordinate component array.
The values specify which of the index dimensions the corresponding coordinate arrays map to. The format
should be /ESMF_DIM_ARB/ where /ESMF_DIM_ARB/ is mapped to the collapsed 1D dimension from all
the arbitrarily distributed dimensions. n is the dimension that is not distributed (if exists). If not present the
default is /ESMF_DIM_ARB/ if this dimension is arbitararily distributed, or /n/ if not distributed (i.e. n=2)
Please see Section 52.2 for a definition of ESMF_DIM_ARB.

[coordDep3] The size of the array specifies the number of dimensions of the third coordinate component array.
The values specify which of the index dimensions the corresponding coordinate ! arrays map to. The format
should be /ESMF_DIM_ARB/ where /ESMF_DIM_ARB/ is mapped to the collapsed 1D dimension from all the
arbitrarily distributed dimensions. n is the dimension that is not distributed (if exists). If not present the default
is /ESMF_DIM_ARB/ if this dimension is arbitararily distributed, or /n/ if not distributed (i.e. n=3) Please see
Section 52.2 for a definition of ESMF_DIM_ARB.

[distDim] This array specifies which dimensions are arbitrarily distributed. The size of the array specifies the total
distributed dimensions. if not specified, defaults is all dimensions will be arbitrarily distributed. The size has to
agree with the size of the second dimension of localArbIndex.

[name] ESMF_Grid name.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

31.6.18 ESMF_GridCreate2PeriDim - Create a Grid with two periodic dims and an irregular distribution

INTERFACE:

! Private name; call using ESMF_GridCreate2PeriDim()

function ESMF_GridCreate2PeriDimI(minIndex, &

countsPerDEDim1,countsPerDeDim2, &

countsPerDEDim3, &

coordSys, coordTypeKind, &

coordDep1, coordDep2, coordDep3, &

gridEdgeLWidth, gridEdgeUWidth, gridAlign, &

gridMemLBound, indexflag, petMap, name, rc)

RETURN VALUE:

type(ESMF_Grid) :: ESMF_GridCreate2PeriDimI

ARGUMENTS:

integer, intent(in), optional :: minIndex(:)

integer, intent(in) :: countsPerDEDim1(:)

integer, intent(in) :: countsPerDEDim2(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: countsPerDEDim3(:)

type(ESMF_CoordSys_Flag), intent(in), optional :: coordSys

type(ESMF_TypeKind_Flag), intent(in), optional :: coordTypeKind

integer, intent(in), optional :: coordDep1(:)

integer, intent(in), optional :: coordDep2(:)

integer, intent(in), optional :: coordDep3(:)

737

integer, intent(in), optional :: gridEdgeLWidth(:)

integer, intent(in), optional :: gridEdgeUWidth(:)

integer, intent(in), optional :: gridAlign(:)

integer, intent(in), optional :: gridMemLBound(:)

type(ESMF_Index_Flag), intent(in), optional :: indexflag

integer, intent(in), optional :: petMap(:,:,:)

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

This method creates a single tile, irregularly distributed grid (see Figure 13) with two periodic dimensions. To specify
the irregular distribution, the user passes in an array for each grid dimension, where the length of the array is the
number of DEs in the dimension. Currently this call only supports creating 2D or 3D Grids. A 2D Grid can be
specified using the countsPerDEDim1 and countsPerDEDim2 arguments. A 3D Grid can be specified by also using
the optional countsPerDEDim3 argument. The index of each array element in these arguments corresponds to a DE
number. The array value at the index is the number of grid ! cells on the DE in that dimension.

Section 31.3.4 shows an example of using this method to create a 2D Grid with uniformly spaced coordinates. This
creation method can also be used as the basis for grids with rectilinear coordinates or curvilinear coordinates.

The arguments are:

[minIndex] Tuple to start the index ranges at. If not present, defaults to /1,1,1,.../.

countsPerDEDim1 This arrays specifies the number of cells per DE for index dimension 1 for the exclusive region
(the center stagger location).

countsPerDEDim2 This array specifies the number of cells per DE for index dimension 2 for the exclusive region
(center stagger location).

[countsPerDEDim3] This array specifies the number of cells per DE for index dimension 3 for the exclusive region
(center stagger location). If not specified then grid is 2D.

[coordSys] The coordinate system of the grid coordinate data. For a full list of options, please see Section 52.11. If
not specified then defaults to ESMF_COORDSYS_SPH_DEG.

[coordTypeKind] The type/kind of the grid coordinate data. All numerical types listed under section 52.59 are
supported. If not specified then defaults to ESMF_TYPEKIND_R8.

[coordDep1] This array specifies the dependence of the first coordinate component on the three index dimensions
described by coordsPerDEDim1,2,3. The size of the array specifies the number of dimensions of the first
coordinate component array. The values specify which of the index dimensions the corresponding coordinate
arrays map to. If not present the default is 1,2,...,grid rank.

[coordDep2] This array specifies the dependence of the second coordinate component on the three index dimen-
sions described by coordsPerDEDim1,2,3. The size of the array specifies the number of dimensions of
the second coordinate component array. The values specify which of the index dimensions the corresponding
coordinate arrays map to. If not present the default is 1,2,...,grid rank. !

[coordDep3] This array specifies the dependence of the third coordinate component on the three index dimensions
described by coordsPerDEDim1,2,3. The size of the array specifies the number of dimensions of the third
coordinate component array. The values specify which of the index dimensions the corresponding coordinate
arrays map to. If not present the default is 1,2,...,grid rank.

[gridEdgeLWidth] The padding around the lower edges of the grid. This padding is between the index space cor-
responding to the cells and the boundary of the the exclusive region. This extra space is to contain the extra
padding for non-center stagger locations, and should be big enough to hold any stagger in the grid. If this and
gridAlign are not present then defaults to 0, 0, ..., 0 (all zeros).

738

[gridEdgeUWidth] The padding around the upper edges of the grid. This padding is between the index space cor-
responding to the cells and the boundary of the the exclusive region. This extra space is to contain the extra
padding for non-center stagger locations, and should be big enough to hold any stagger in the grid. If this and
gridAlign are not present then defaults to 1, 1, ..., 1 (all ones).

[gridAlign] Specification of how the stagger locations should align with the cell index space (can be overridden by
the individual staggerAligns). If the gridEdgeWidths are not specified than this argument implies the grid-
EdgeWidths. If the gridEdgeWidths are specified and this argument isn’t then this argument is implied by the
gridEdgeWidths. If this and the gridEdgeWidths are not specified, then defaults to -1, -1, ..., -1 (all negative
ones).

[gridMemLBound] Specifies the lower index range of the memory of every DE in this Grid. Only used when
indexflag is ESMF_INDEX_USER. May be overridden by staggerMemLBound.

[indexflag] Indicates the indexing scheme to be used in the new Grid. Please see Section 52.27 for the list of options.
If not present, defaults to ESMF_INDEX_DELOCAL.

[petMap] Sets the mapping of pets to the created DEs. This 3D should be of size size(countsPerDEDim1) x
size(countsPerDEDim2) x size(countsPerDEDim3). If countsPerDEDim3 isn’t present, then the last dimen-
sion is of size 1.

[name] ESMF_Grid name.

[rc] ! Return code; equals ESMF_SUCCESS if there are no errors.

31.6.19 ESMF_GridCreate2PeriDim - Create a Grid with two periodic dims and a regular distribution

INTERFACE:

! Private name; call using ESMF_GridCreate2PeriDim()

function ESMF_GridCreate2PeriDimR(regDecomp, decompFlag, &

minIndex, maxIndex, &

coordSys, coordTypeKind, &

coordDep1, coordDep2, coordDep3, &

gridEdgeLWidth, gridEdgeUWidth, gridAlign, &

gridMemLBound, indexflag, petMap, name, rc)

RETURN VALUE:

type(ESMF_Grid) :: ESMF_GridCreate2PeriDimR

ARGUMENTS:

integer, intent(in), optional :: regDecomp(:)

type(ESMF_Decomp_Flag), intent(in), optional :: decompflag(:)

integer, intent(in), optional :: minIndex(:)

integer, intent(in) :: maxIndex(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_CoordSys_Flag), intent(in), optional :: coordSys

type(ESMF_TypeKind_Flag), intent(in), optional :: coordTypeKind

739

integer, intent(in), optional :: coordDep1(:)

integer, intent(in), optional :: coordDep2(:)

integer, intent(in), optional :: coordDep3(:)

integer, intent(in), optional :: gridEdgeLWidth(:)

integer, intent(in), optional :: gridEdgeUWidth(:)

integer, intent(in), optional :: gridAlign(:)

integer, intent(in), optional :: gridMemLBound(:)

type(ESMF_Index_Flag), intent(in), optional :: indexflag

integer, intent(in), optional :: petMap(:,:,:)

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

This method creates a single tile, regularly distributed grid (see Figure 13) with two periodic dimensions. To specify
the distribution, the user passes in an array (regDecomp) specifying the number of DEs to divide each dimension
into. The array decompFlag indicates how the division into DEs is to occur. The default is to divide the range as
evenly as possible. Currently this call only supports creating a 2D or 3D Grid, and thus, for example, maxIndex
must be of size 2 or 3.

The arguments are:

[regDecomp] List that has the same number of elements as maxIndex. Each entry is the number of decounts for
that dimension. If not specified, the default decomposition will be petCountx1x1..x1.

[decompflag] List of decomposition flags indicating how each dimension of the tile is to be divided between the
DEs. The default setting is ESMF_DECOMP_BALANCED in all dimensions. Please see Section 52.13 for a full
description of the possible options. Note that currently the option ESMF_DECOMP_CYCLIC isn’t supported in
Grid creation.

[minIndex] The bottom extent of the grid array. If not given then the value defaults to /1,1,1,.../.

maxIndex The upper extent of the grid array.

[coordSys] The coordinate system of the grid coordinate data. For a full list of options, please see Section 52.11. If
not specified then defaults to ESMF_COORDSYS_SPH_DEG.

[coordTypeKind] The type/kind of the grid coordinate data. All numerical types listed under section 52.59 are
supported. If not specified then defaults to ESMF_TYPEKIND_R8.

[coordDep1] This array specifies the dependence of the first coordinate component on the three index dimensions
described by coordsPerDEDim1,2,3. The size of the array specifies the number of dimensions of the first
coordinate component array. The values specify which of the index dimensions the corresponding coordinate
arrays map to. If not present the default is 1,2,...,grid rank.

[coordDep2] This array specifies the dependence of the second coordinate component on the three index dimen-
sions described by coordsPerDEDim1,2,3. The size of the array specifies the number of dimensions of
the second coordinate component array. The values specify which of the index dimensions the corresponding
coordinate arrays map to. If not present the default is 1,2,...,grid rank.

[coordDep3] This array specifies the dependence of the third coordinate component on the three index dimensions
described by coordsPerDEDim1,2,3. The size of the array specifies the number of dimensions of the third
coordinate component array. The values specify which of the index dimensions the corresponding coordinate
arrays map to. If not present the default is 1,2,...,grid rank.

[gridEdgeLWidth] The padding around the lower edges of the grid. This padding is between the index space cor-
responding to the cells and the boundary of the the exclusive region. This extra space is to contain the extra
padding for non-center stagger locations, and should be big enough to hold any stagger in the grid. If this and
gridAlign are not present then defaults to 0, 0, ..., 0 (all zeros).

740

[gridEdgeUWidth] The padding around the upper edges of the grid. This padding is between the index space cor-
responding to the cells and the boundary of the the exclusive region. This extra space is to contain the extra
padding for non-center stagger locations, and should be big enough to hold any stagger in the grid. If this and
gridAlign are not present then defaults to 1, 1, ..., 1 (all ones).

[gridAlign] Specification of how the stagger locations should align with the cell index space (can be overridden by
the individual staggerAligns). If the gridEdgeWidths are not specified than this argument implies the grid-
EdgeWidths. If the gridEdgeWidths are specified and this argument isn’t then this argument is implied by the
gridEdgeWidths. If this and the gridEdgeWidths are not specified, then defaults to -1, -1, ..., -1 (all negative
ones).

[gridMemLBound] Specifies the lower index range of the memory of every DE in this Grid. Only used when
indexflag is ESMF_INDEX_USER. May be overridden by staggerMemLBound.

[indexflag] Indicates the indexing scheme to be used in the new Grid. Please see Section 52.27 for the list of options.
If not present, defaults to ESMF_INDEX_DELOCAL.

[petMap] Sets the mapping of pets to the created DEs. This 3D should be of size regDecomp(1) x regDecomp(2) x
regDecomp(3) If the Grid is 2D, then the last dimension is of size 1.

[name] ESMF_Grid name.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

31.6.20 ESMF_GridCreate2PeriDim - Create a Grid with two periodic dims and an arbitrary distribution

INTERFACE:

! Private name; call using ESMF_GridCreate2PeriDim()

function ESMF_GridCreate2PeriDimA(minIndex, maxIndex, &

arbIndexCount, arbIndexList, &

coordSys, coordTypeKind, &

coordDep1, coordDep2, coordDep3, &

distDim, name, rc)

RETURN VALUE:

type(ESMF_Grid) :: ESMF_GridCreate2PeriDimA

ARGUMENTS:

integer, intent(in), optional :: minIndex(:)

integer, intent(in) :: maxIndex(:)

integer, intent(in) :: arbIndexCount

integer, intent(in) :: arbIndexList(:,:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_CoordSys_Flag), intent(in), optional :: coordSys

type(ESMF_TypeKind_Flag), intent(in), optional :: coordTypeKind

integer, intent(in), optional :: coordDep1(:)

integer, intent(in), optional :: coordDep2(:)

integer, intent(in), optional :: coordDep3(:)

integer, intent(in), optional :: distDim(:)

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

741

DESCRIPTION:

This method creates a single tile, arbitrarily distributed grid (see Figure 13) with two periodic dimensions. To specify
the arbitrary distribution, the user passes in an 2D array of local indices, where the first dimension is the number
of local grid cells specified by localArbIndexCount and the second dimension is the number of distributed
dimensions.

distDim specifies which grid dimensions are arbitrarily distributed. The size of distDim has to agree with the size
of the second dimension of localArbIndex.

Currently this call only supports creating a 2D or 3D Grid, and thus, for example, maxIndex must be of size 2 or 3.

The arguments are:

[minIndex] Tuple to start the index ranges at. If not present, defaults to /1,1,1,.../.

maxIndex The upper extend of the grid index ranges.

arbIndexCount The number of grid cells in the local DE. It is okay to have 0 grid cell in a local DE.

arbIndexList This 2D array specifies the indices of the PET LOCAL grid cells. The dimensions should be arbIndex-
Count * number of Distributed grid dimensions where arbIndexCount is the input argument specified below

[coordSys] The coordinate system of the grid coordinate data. For a full list of options, please see Section 52.11. If
not specified then defaults to ESMF_COORDSYS_SPH_DEG.

[coordTypeKind] The type/kind of the grid coordinate data. All numerical types listed under section 52.59 are
supported. If not specified then defaults to ESMF_TYPEKIND_R8.

[coordDep1] The size of the array specifies the number of dimensions of the first coordinate component array. The
values specify which of the index dimensions the corresponding coordinate arrays map to. The format should
be /ESMF_DIM_ARB/ where /ESMF_DIM_ARB/ is mapped to the collapsed 1D dimension from all the arbi-
trarily distributed dimensions. n is the dimension that is not distributed (if exists). If not present the default is
/ESMF_DIM_ARB/ if the first dimension is arbitararily distributed, or /n/ if not distributed (i.e. n=1) Please see
Section 52.2 for a definition of ESMF_DIM_ARB.

[coordDep2] The size of the array specifies the number of dimensions of the second coordinate component array.
The values specify which of the index dimensions the corresponding coordinate arrays map to. The format
should be /ESMF_DIM_ARB/ where /ESMF_DIM_ARB/ is mapped to the collapsed 1D dimension from all
the arbitrarily distributed dimensions. n is the dimension that is not distributed (if exists). If not present the
default is /ESMF_DIM_ARB/ if this dimension is arbitararily distributed, or /n/ if not distributed (i.e. n=2)
Please see Section 52.2 for a definition of ESMF_DIM_ARB.

[coordDep3] The size of the array specifies the number of dimensions of the third coordinate component array.
The values specify which of the index dimensions the corresponding coordinate arrays map to. The format
should be /ESMF_DIM_ARB/ where /ESMF_DIM_ARB/ is mapped to the collapsed 1D dimension from all
the arbitrarily distributed dimensions. n is the dimension that is not distributed (if exists). If not present the
default is /ESMF_DIM_ARB/ if this dimension is arbitararily distributed, or /n/ if not distributed (i.e. n=3)
Please see Section 52.2 for a definition of ESMF_DIM_ARB.

[distDim] This array specifies which dimensions are arbitrarily distributed. The size of the array specifies the total
distributed dimensions. if not specified, defaults is all dimensions will be arbitrarily distributed. The size has to
agree with the size of the second dimension of localArbIndex.

[name] ESMF_Grid name. !

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

742

31.6.21 ESMF_GridCreateNoPeriDim - Create a Grid with no periodic dim and an irregular distribution

INTERFACE:

! Private name; call using ESMF_GridCreateNoPeriDim()

function ESMF_GridCreateNoPeriDimI(minIndex, &

countsPerDEDim1,countsPerDeDim2, &

countsPerDEDim3, &

coordSys, coordTypeKind, &

coordDep1, coordDep2, coordDep3, &

gridEdgeLWidth, gridEdgeUWidth, gridAlign, &

gridMemLBound, indexflag, petMap, name, rc)

RETURN VALUE:

type(ESMF_Grid) :: ESMF_GridCreateNoPeriDimI

ARGUMENTS:

integer, intent(in), optional :: minIndex(:)

integer, intent(in) :: countsPerDEDim1(:)

integer, intent(in) :: countsPerDEDim2(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: countsPerDEDim3(:)

type(ESMF_CoordSys_Flag), intent(in), optional :: coordSys

type(ESMF_TypeKind_Flag), intent(in), optional :: coordTypeKind

integer, intent(in), optional :: coordDep1(:)

integer, intent(in), optional :: coordDep2(:)

integer, intent(in), optional :: coordDep3(:)

integer, intent(in), optional :: gridEdgeLWidth(:)

integer, intent(in), optional :: gridEdgeUWidth(:)

integer, intent(in), optional :: gridAlign(:)

integer, intent(in), optional :: gridMemLBound(:)

type(ESMF_Index_Flag), intent(in), optional :: indexflag

integer, intent(in), optional :: petMap(:,:,:)

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

This method creates a single tile, irregularly distributed grid (see Figure 13) without a periodic dimension. To specify
the irregular distribution, the user passes in an array for each grid dimension, where the length of the array is the
number of DEs in the dimension. Currently this call only supports creating 2D or 3D Grids. A 2D Grid can be
specified using the countsPerDEDim1 and countsPerDEDim2 arguments. A 3D Grid can be specified by also using
the optional countsPerDEDim3 argument. The index of each array element in these arguments corresponds to a DE
number. The array value at the index is the number of grid cells on the DE in that dimension.

Section 31.3.4 shows an example of using this method to create a 2D Grid with uniformly spaced coordinates. This
creation method can also be used as the basis for grids with rectilinear coordinates or curvilinear coordinates.

The arguments are:

[minIndex] Tuple to start the index ranges at. If not present, defaults to /1,1,1,.../.

743

countsPerDEDim1 This arrays specifies the number of cells per DE for index dimension 1 for the exclusive region
(the center stagger location).

countsPerDEDim2 This array specifies the number of cells per DE for index dimension 2 ! for the exclusive region
(center stagger location).

[countsPerDEDim3] This array specifies the number of cells per DE for index dimension 3 for the exclusive region
(center stagger location). If not specified then grid is 2D.

[coordSys] The coordinate system of the grid coordinate data. For a full list of options, please see Section 52.11. If
not specified then defaults to ESMF_COORDSYS_SPH_DEG.

[coordTypeKind] The type/kind of the grid coordinate data. All numerical types listed under section 52.59 are
supported. If not specified then defaults to ESMF_TYPEKIND_R8.

[coordDep1] This array specifies the dependence of the first coordinate component on the three index dimensions
described by coordsPerDEDim1,2,3. The size of the array specifies the number of dimensions of the first
coordinate component array. The values specify which of the index dimensions the corresponding coordinate
arrays map to. If not present the default is 1,2,...,grid rank. !

[coordDep2] This array specifies the dependence of the second coordinate component on the three index dimen-
sions described by coordsPerDEDim1,2,3. The size of the array specifies the number of dimensions of
the second coordinate component array. The values specify which of the index dimensions the corresponding
coordinate arrays map to. If not present the default is 1,2,...,grid rank.

[coordDep3] This array specifies the dependence of the third coordinate component on the three index dimensions
described by coordsPerDEDim1,2,3. The size of the array specifies the number of dimensions of the third
coordinate component array. The values specify which of the index dimensions the corresponding coordinate
arrays map to. If not present the default is 1,2,...,grid rank.

[gridEdgeLWidth] The padding around the lower edges of the grid. This padding is between the index space cor-
responding to the cells and the boundary of the the exclusive region. This extra space is to contain the extra
padding for non-center stagger locations, and should be big enough to hold any stagger in the grid. If this and
gridAlign are not present then defaults to 0, 0, ..., 0 (all zeros).

[gridEdgeUWidth] The padding around the upper edges of the grid. This padding is between the index space cor-
responding to the cells and the boundary of the the exclusive region. This extra space is to contain the extra
padding for non-center stagger locations, and should be big enough to hold any stagger in the grid. If this and
gridAlign are not present then defaults to 1, 1, ..., 1 (all ones).

[gridAlign] Specification of how the stagger locations should align with the cell index space (can be overridden by
the individual staggerAligns). If the gridEdgeWidths are not specified than this argument implies the grid-
EdgeWidths. If the gridEdgeWidths are specified and this argument isn’t then this argument is implied by the
gridEdgeWidths. If this and the gridEdgeWidths are not specified, then defaults to -1, -1, ..., -1 (all negative
ones).

[gridMemLBound] Specifies the lower index range of the memory of every DE in this Grid. Only used when
indexflag is ESMF_INDEX_USER. May be overridden by staggerMemLBound.

[indexflag] Indicates the indexing scheme to be used in the new Grid. Please see Section 52.27 for the list of options.
If not present, defaults to ESMF_INDEX_DELOCAL.

[petMap] Sets the mapping of pets to the created DEs. This 3D should be of size size(countsPerDEDim1) x
size(countsPerDEDim2) x size(countsPerDEDim3). If countsPerDEDim3 isn’t present, then the last dimen-
sion is of size 1.

[name] ESMF_Grid name.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

744

31.6.22 ESMF_GridCreateNoPeriDim - Create a Grid with no periodic dim and a regular distribution

INTERFACE:

! Private name; call using ESMF_GridCreateNoPeriDim()

function ESMF_GridCreateNoPeriDimR(regDecomp, decompFlag, &

minIndex, maxIndex, &

coordSys, coordTypeKind, &

coordDep1, coordDep2, coordDep3, &

gridEdgeLWidth, gridEdgeUWidth, gridAlign, &

gridMemLBound, indexflag, petMap, name, rc)

RETURN VALUE:

type(ESMF_Grid) :: ESMF_GridCreateNoPeriDimR

ARGUMENTS:

integer, intent(in), optional :: regDecomp(:)

type(ESMF_Decomp_Flag), intent(in), optional :: decompflag(:)

integer, intent(in), optional :: minIndex(:)

integer, intent(in) :: maxIndex(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_CoordSys_Flag), intent(in), optional :: coordSys

type(ESMF_TypeKind_Flag), intent(in), optional :: coordTypeKind

integer, intent(in), optional :: coordDep1(:)

integer, intent(in), optional :: coordDep2(:)

integer, intent(in), optional :: coordDep3(:)

integer, intent(in), optional :: gridEdgeLWidth(:)

integer, intent(in), optional :: gridEdgeUWidth(:)

integer, intent(in), optional :: gridAlign(:)

integer, intent(in), optional :: gridMemLBound(:)

type(ESMF_Index_Flag), intent(in), optional :: indexflag

integer, intent(in), optional :: petMap(:,:,:)

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

This method creates a single tile, regularly distributed grid (see Figure 13) with no periodic dimension. To specify the
distribution, the user passes in an array (regDecomp) specifying the number of DEs to divide each dimension into.
The array decompFlag indicates how the division into DEs is to occur. The default is to divide the range as evenly
as possible. Currently this call only supports creating a 2D or 3D Grid, and thus, for example, maxIndex must be of
size 2 or 3.

The arguments are:

[regDecomp] List that has the same number of elements as maxIndex. Each entry is the number of decounts for
that dimension. If not specified, the default decomposition will be petCountx1x1..x1.

[decompflag] List of decomposition flags indicating how each dimension of the tile is to be divided between the
DEs. The default setting is ESMF_DECOMP_BALANCED in all dimensions. Please see Section 52.13 for a full

745

description of the possible options. Note that currently the option ESMF_DECOMP_CYCLIC isn’t supported in
Grid creation.

[minIndex] The bottom extent of the grid array. If not given then the value defaults to /1,1,1,.../.

maxIndex The upper extent of the grid array.

[coordSys] The coordinate system of the grid coordinate data. For a full list of options, please see Section 52.11. If
not specified then defaults to ESMF_COORDSYS_SPH_DEG.

[coordTypeKind] The type/kind of the grid coordinate data. All numerical types listed under section 52.59 are
supported. If not specified then defaults to ESMF_TYPEKIND_R8.

[coordDep1] This array specifies the dependence of the first coordinate component on the three index dimensions
described by coordsPerDEDim1,2,3. The size of the array specifies the number of dimensions of the first
coordinate component array. The values specify which ! of the index dimensions the corresponding coordinate
arrays map to. If not present the default is 1,2,...,grid rank.

[coordDep2] This array specifies the dependence of the second coordinate component on the three index dimen-
sions described by coordsPerDEDim1,2,3. The size of the array specifies the number of dimensions of
the second coordinate component array. The values specify which of the index dimensions the corresponding
coordinate arrays map to. If not present the default is 1,2,...,grid rank.

[coordDep3] This array specifies the dependence of the third coordinate component on the three index dimensions
described by coordsPerDEDim1,2,3. The size of the array specifies the number of dimensions of the third
coordinate component array. The values specify which of the index dimensions the corresponding coordinate
arrays map to. If not present the default is 1,2,...,grid rank.

[gridEdgeLWidth] The padding around the lower edges of the grid. This padding is between the index space cor-
responding to the cells and the boundary of the the exclusive region. This extra space is to contain the extra
padding for non-center stagger locations, and should be big enough to hold any stagger in the grid. If this and
gridAlign are not present then defaults to 0, 0, ..., 0 (all zeros).

[gridEdgeUWidth] The padding around the upper edges of the grid. This padding is between the index space cor-
responding to the cells and the boundary of the the exclusive region. This extra space is to contain the extra
padding for non-center stagger locations, and should be big enough to hold any stagger in the grid. If this and
gridAlign are not present then defaults to 1, 1, ..., 1 (all ones).

[gridAlign] Specification of how the stagger locations should align with the cell index space (can be overridden by
the individual staggerAligns). If the gridEdgeWidths are not specified than this argument implies the grid-
EdgeWidths. If the gridEdgeWidths are specified and this argument isn’t then this argument is implied by the
gridEdgeWidths. If this and the gridEdgeWidths are not specified, then defaults to -1, -1, ..., -1 (all negative
ones).

[gridMemLBound] Specifies the lower index range of the memory of every DE in this Grid. Only used when
indexflag is ESMF_INDEX_USER. May be overridden by staggerMemLBound.

[indexflag] Indicates the indexing scheme to be used in the new Grid. Please see Section 52.27 for the list of options.
If not present, defaults to ESMF_INDEX_DELOCAL.

[petMap] Sets the mapping of pets to the created DEs. This 3D ! should be of size regDecomp(1) x regDecomp(2) x
regDecomp(3) If the Grid is 2D, then the last dimension is of size 1.

[name] ESMF_Grid name.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

746

31.6.23 ESMF_GridCreateNoPeriDim - Create a Grid with no periodic dim and an arbitrary distribution

INTERFACE:

! Private name; call using ESMF_GridCreateNoPeriodic()

function ESMF_GridCreateNoPeriDimA(minIndex, maxIndex, &

arbIndexCount, arbIndexList, &

coordSys, coordTypeKind, &

coordDep1, coordDep2, coordDep3, &

distDim, name, rc)

RETURN VALUE:

type(ESMF_Grid) :: ESMF_GridCreateNoPeriDimA

ARGUMENTS:

integer, intent(in), optional :: minIndex(:)

integer, intent(in) :: maxIndex(:)

integer, intent(in) :: arbIndexCount

integer, intent(in) :: arbIndexList(:,:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_CoordSys_Flag), intent(in), optional :: coordSys

type(ESMF_TypeKind_Flag), intent(in), optional :: coordTypeKind

integer, intent(in), optional :: coordDep1(:)

integer, intent(in), optional :: coordDep2(:)

integer, intent(in), optional :: coordDep3(:)

integer, intent(in), optional :: distDim(:)

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

This method creates a single tile, arbitrarily distributed grid (see Figure 13) with no periodic dimension. To specify the
arbitrary distribution, the user passes in an 2D array of local indices, where the first dimension is the number of local
grid cells specified by localArbIndexCount and the second dimension is the number of distributed dimensions.

distDim specifies which grid dimensions are arbitrarily distributed. The size of distDim has to agree with the size
of the second dimension of localArbIndex.

Currently this call only supports creating a 2D or 3D Grid, and thus, for example, maxIndex must be of size 2 or 3.

The arguments are:

[minIndex] Tuple to start the index ranges at. If not present, defaults to /1,1,1,.../.

maxIndex The upper extend of the grid index ranges.

arbIndexCount The number of grid cells in the local DE. It is okay to have 0 grid cell in a local DE.

arbIndexList ! This 2D array specifies the indices of the PET LOCAL grid cells. The dimensions should be arbIndex-
Count * number of Distributed grid dimensions ! where arbIndexCount is the input argument specified below

[coordSys] The coordinate system of the grid coordinate data. For a full list of options, please see Section 52.11. If
not specified then defaults to ESMF_COORDSYS_SPH_DEG.

747

[coordTypeKind] The type/kind of the grid coordinate data. All numerical types listed under section 52.59 are
supported. If not specified then defaults to ESMF_TYPEKIND_R8.

[coordDep1] The size of the array specifies the number of dimensions of the first coordinate component array. The
values specify which of the index dimensions the corresponding coordinate arrays map to. The format should
be /ESMF_DIM_ARB/ where /ESMF_DIM_ARB/ is mapped to the collapsed 1D dimension from all the arbi-
trarily distributed dimensions. n is the dimension that is not distributed (if exists). If not present the default is
/ESMF_DIM_ARB/ if the first dimension is arbitararily distributed, or /n/ if not distributed (i.e. n=1) Please see
Section 52.2 for a definition of ESMF_DIM_ARB.

[coordDep2] The size of the array specifies the number of dimensions of the second coordinate component array.
The values specify which of the index dimensions the corresponding coordinate arrays map to. The format
should be /ESMF_DIM_ARB/ where /ESMF_DIM_ARB/ is mapped to the collapsed 1D dimension from all
the arbitrarily distributed dimensions. n is the dimension that is not distributed (if exists). If not present the
default is /ESMF_DIM_ARB/ if this dimension is arbitararily distributed, or /n/ if not distributed (i.e. n=2)
Please see Section 52.2 for a definition of ESMF_DIM_ARB.

[coordDep3] The size of the array specifies the number of dimensions of the third coordinate component array.
The values specify which of the index dimensions the corresponding coordinate arrays map to. The format
should be /ESMF_DIM_ARB/ where /ESMF_DIM_ARB/ is mapped to the collapsed 1D dimension from all
the arbitrarily distributed dimensions. n is the dimension that is not distributed (if exists). If not present the
default is /ESMF_DIM_ARB/ if this dimension is arbitararily distributed, or /n/ if not distributed (i.e. n=3)
Please see Section 52.2 for a definition of ESMF_DIM_ARB.

[distDim] This array specifies which dimensions are arbitrarily distributed. ! The size of the array specifies the total
distributed dimensions. if not specified, defaults is all dimensions will be arbitrarily distributed. The size has to
agree with the size of the second dimension of localArbIndex.

[name] ESMF_Grid name.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

31.6.24 ESMF_GridCreate1PeriDimUfrm - Create a uniform Grid with one periodic dim and a regular dis-

tribution

INTERFACE:

! Private name; call using ESMF_GridCreate1PeriDimUfrm()

function ESMF_GridCreate1PeriDimUfrmR(minIndex, maxIndex, &

minCornerCoord, maxCornerCoord, &

regDecomp, decompFlag, &

polekindflag, coordSys, staggerLocList, &

ignoreNonPeriCoord, petMap, name, rc)

RETURN VALUE:

type(ESMF_Grid) :: ESMF_GridCreate1PeriDimUfrmR

ARGUMENTS:

748

integer, intent(in), optional :: minIndex(:)

integer, intent(in) :: maxIndex(:)

real(ESMF_KIND_R8), intent(in) :: minCornerCoord(:)

real(ESMF_KIND_R8), intent(in) :: maxCornerCoord(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: regDecomp(:)

type(ESMF_Decomp_Flag), intent(in), optional :: decompflag(:)

type(ESMF_PoleKind_Flag), intent(in), optional :: polekindflag(2)

type(ESMF_CoordSys_Flag), intent(in), optional :: coordSys

type(ESMF_StaggerLoc), intent(in), optional :: staggerLocList(:)

logical, intent(in), optional :: ignoreNonPeriCoord

integer, intent(in), optional :: petMap(:,:,:)

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

This method creates a single tile, regularly distributed grid (see Figure 13) with one periodic dimension. The periodic
dimension in the resulting grid will be dimension 1. The dimension with the poles at either end (i.e. the pole dimension)
will be dimension 2.

The grid will have its coordinates uniformly spread between the ranges specified by the user. The coordi-
nates are ESMF_TYPEKIND_R8. Currently, this method only fills the center stagger with coordinates, and the
minCornerCoord and maxCornerCoord arguments give the boundaries of the center stagger.

To specify the distribution, the user passes in an array (regDecomp) specifying the number of DEs to divide each
dimension into. The array decompFlag indicates how the division into DEs is to occur. The default is to divide
the range as evenly as possible. Currently this call only supports creating a 2D or 3D Grid, and thus, for example,
maxIndex must be of size 2 or 3.

The following arguments have been set to non-typical values and so there is a reasonable possibility that they may
change in the future to be inconsistent with other Grid create interfaces:

The arguments coordDep1, coordDep2, and coordDep3 have internally been set to 1, 2, and 3 respectively. This was
done because this call creates a uniform grid and so only 1D arrays are needed to hold the coordinates. This means
the coordinate arrays will be 1D.

The argument indexFlag has internally been set to ESMF_INDEX_GLOBAL. This means that the grid created from
this function will have a global index space.

The arguments are:

[minIndex] The bottom extent of the grid array. If not given then the value defaults to /1,1,1,.../.

maxIndex The upper extent of the grid array.

minCornerCoord The coordinates of the corner of the grid that corresponds to minIndex. size(minCornerCoord)
must be equal to size(maxIndex).

maxCornerCoord The coordinates of the corner of the grid that corresponds to maxIndex. size(maxCornerCoord)
must be equal to size(maxIndex).

[regDecomp] A ndims-element array specifying how the grid is decomposed. Each entry is the number of decounts
for that dimension.

[decompflag] List of decomposition flags indicating how each dimension of the tile is to be divided between the
DEs. The default setting is ESMF_DECOMP_BALANCED in all dimensions. Please see Section 52.13 for a full
description of the possible options. Note that currently the option ESMF_DECOMP_CYCLIC isn’t supported in
Grid creation.

749

[polekindflag] Two item array which specifies the type of connection which occurs at the pole. The value in polekind-
flag(1) specifies the connection that occurs at the minimum end of the pole dimension. The value in polekind-
flag(2) specifies the connection that occurs at the maximum end of the pole dimension. Please see Section 31.2.5
for a full list of options. If not specified, the default is ESMF_POLEKIND_MONOPOLE for both.

[coordSys] The coordinate system of the grid coordinate data. For a full list of options, please see Section 52.11. If
not specified then defaults to ESMF_COORDSYS_SPH_DEG.

[staggerLocList] The list of stagger locations to fill with coordinates. Please see Section 31.2.6 for a description of
the available stagger locations. If not present, then no staggers are added or filled.

[ignoreNonPeriCoord] If .true., do not check if the coordinates for the periodic dimension (i.e. dim=1) specify a full
periodic range (e.g. 0 to 360 degrees). If not specified, defaults to .false. .

[petMap] Sets the mapping of pets to the created DEs. This 3D should be of size regDecomp(1) x regDecomp(2) x
regDecomp(3) If the Grid is 2D, then the last dimension is of size 1.

[name] ESMF_Grid name.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

31.6.25 ESMF_GridCreate1PeriDimUfrm - Create a uniform Grid with one periodic dim and a block distri-

bution

INTERFACE:

! Private name; call using ESMF_GridCreate1PeriDimUfrm()

function ESMF_GridCreate1PeriDimUfrmB(minIndex, maxIndex, &

minCornerCoord, maxCornerCoord, &

deBlockList, deLabelList, &

polekindflag, coordSys, staggerLocList, &

ignoreNonPeriCoord, petMap, name, rc)

RETURN VALUE:

type(ESMF_Grid) :: ESMF_GridCreate1PeriDimUfrmB

ARGUMENTS:

integer, intent(in), optional :: minIndex(:)

integer, intent(in) :: maxIndex(:)

real(ESMF_KIND_R8), intent(in) :: minCornerCoord(:)

real(ESMF_KIND_R8), intent(in) :: maxCornerCoord(:)

integer, intent(in) :: deBlockList(:,:,:)

integer, intent(in), optional :: deLabelList(:)

type(ESMF_PoleKind_Flag), intent(in), optional :: polekindflag(2)

type(ESMF_CoordSys_Flag), intent(in), optional :: coordSys

type(ESMF_StaggerLoc), intent(in), optional :: staggerLocList(:)

logical, intent(in), optional :: ignoreNonPeriCoord

750

integer, intent(in), optional :: petMap(:,:,:)

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

This method creates a single tile, regularly distributed grid (see Figure 13) with one periodic dimension. The periodic
dimension in the resulting grid will be dimension 1. The dimension with the poles at either end (i.e. the pole dimension)
will be dimension 2.

The grid will have its coordinates uniformly spread between the ranges specified by the user. The coordi-
nates are ESMF_TYPEKIND_R8. Currently, this method only fills the center stagger with coordinates, and the
minCornerCoord and maxCornerCoord arguments give the boundaries of the center stagger.

To specify the distribution, the user passes in an array (deBlockList) specifying index space blocks for each DE.

The following arguments have been set to non-typical values and so there is a reasonable possibility that they may
change in the future to be inconsistent with other Grid create interfaces:

The arguements coordDep1, coordDep2, and coordDep3 have internally been set to 1, 2, and 3 respectively. This was
done because this call creates a uniform grid and so only 1D arrays are needed to hold the coordinates. This means
the coordinate arrays will be 1D.

The argument indexFlag has internally been set to ESMF_INDEX_GLOBAL. This means that the grid created from
this function will have a global index space.

The arguments are:

[minIndex] The bottom extent of the grid array. If not given then the value defaults to /1,1,1,.../.

maxIndex The upper extent of the grid array.

minCornerCoord The coordinates of the corner of the grid that corresponds to minIndex. size(minCornerCoord)
must be equal to size(maxIndex).

maxCornerCoord The coordinates of the corner of the grid that corresponds to maxIndex. size(maxCornerCoord)
must be equal to size(maxIndex).

deBlockList List of DE-local LR blocks. The third index of deBlockList steps through the deBlock elements,
which are defined by the first two indices. The first index must be of size dimCount and the second index
must be of size 2. Each 2D element of deBlockList defined by the first two indices hold the following
information.

+---------------------------------------> 2nd index

| 1 2

| 1 minIndex(1) maxIndex(1)

| 2 minIndex(2) maxIndex(2)

| . minIndex(.) maxIndex(.)

| .

v

1st index

It is required that there be no overlap between the LR segments defined by deBlockList.

[deLabelList] List assigning DE labels to the default sequence of DEs. The default sequence is given by the order of
DEs in the deBlockList argument.

751

[polekindflag] Two item array which specifies the type of connection which occurs at the pole. The value in polekind-
flag(1) specifies the connection that occurs at the minimum end of the pole dimension. The value in polekind-
flag(2) specifies the connection that occurs at the maximum end of the pole dimension. Please see Section 31.2.5
for a full list of options. If not specified, the default is ESMF_POLEKIND_MONOPOLE for both.

[coordSys] The coordinate system of the grid coordinate data. For a full list of options, please see Section 52.11. If
not specified then defaults to ESMF_COORDSYS_SPH_DEG.

[staggerLocList] The list of stagger locations to fill with coordinates. Please see Section 31.2.6 for a description of
the available stagger locations. If not present, then no staggers are added or filled.

[ignoreNonPeriCoord] If .true., do not check if the coordinates for the periodic dimension (i.e. dim=1) specify a full
periodic range (e.g. 0 to 360 degrees). If not specified, defaults to .false. .

[petMap] Sets the mapping of pets to the created DEs. This 3D should be of size regDecomp(1) x regDecomp(2) x
regDecomp(3) If the Grid is 2D, then the last dimension is of size 1.

[name] ESMF_Grid name.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

31.6.26 ESMF_GridCreateNoPeriDimUfrm - Create a uniform Grid with no periodic dim and a regular dis-

tribution

INTERFACE:

! Private name; call using ESMF_GridCreateNoPeriDimUfrm()

function ESMF_GridCreateNoPeriDimUfrmR(minIndex, maxIndex, &

minCornerCoord, maxCornerCoord, &

regDecomp, decompFlag, &

coordSys, staggerLocList, petMap, name, rc)

RETURN VALUE:

type(ESMF_Grid) :: ESMF_GridCreateNoPeriDimUfrmR

ARGUMENTS:

integer, intent(in), optional :: minIndex(:)

integer, intent(in) :: maxIndex(:)

real(ESMF_KIND_R8), intent(in) :: minCornerCoord(:)

real(ESMF_KIND_R8), intent(in) :: maxCornerCoord(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: regDecomp(:)

type(ESMF_Decomp_Flag), intent(in), optional :: decompflag(:)

type(ESMF_CoordSys_Flag), intent(in), optional :: coordSys

type(ESMF_StaggerLoc), intent(in), optional :: staggerLocList(:)

integer, intent(in), optional :: petMap(:,:,:)

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

752

DESCRIPTION:

This method creates a single tile, regularly distributed grid (see Figure 13) with no periodic dimension.

The resulting grid will have its coordinates uniformly spread between the ranges specified by the user. The coor-
dinates are ESMF_TYPEKIND_R8. Currently, this method only fills the center stagger with coordinates, and the
minCornerCoord and maxCornerCoord arguments give the boundaries of the center stagger.

To specify the distribution, the user passes in an array (regDecomp) specifying the number of DEs to divide each
dimension into. The array decompFlag indicates how the division into DEs is to occur. The default is to divide
the range as evenly as possible. Currently this call only supports creating a 2D or 3D Grid, and thus, for example,
maxIndex must be of size 2 or 3.

The following arguments have been set to non-typical values and so there is a reasonable possibility that they may
change in the future to be inconsistent with other Grid create interfaces:

The arguements coordDep1, coordDep2, and coordDep3 have internally been set to 1, 2, and 3 respectively. This was
done because this call creates a uniform grid and so only 1D arrays are needed to hold the coordinates. This means
the coordinate arrays will be 1D.

The argument indexFlag has internally been set to ESMF_INDEX_GLOBAL. This means that the grid created from
this function will have a global index space.

The arguments are:

[minIndex] The bottom extent of the grid array. If not given then the value defaults to /1,1,1,.../.

maxIndex The upper extent of the grid array.

minCornerCoord The coordinates of the corner of the grid that corresponds to minIndex. size(minCornerCoord)
must be equal to size(maxIndex).

maxCornerCoord The coordinates of the corner of the grid that corresponds to maxIndex. size(maxCornerCoord)
must be equal to size(maxIndex).

[regDecomp] A ndims-element array specifying how the grid is decomposed. Each entry is the number of decounts
for that dimension.

[decompflag] List of decomposition flags indicating how each dimension of the tile is to be divided between the
DEs. The default setting is ESMF_DECOMP_BALANCED in all dimensions. Please see Section 52.13 for a full
description of the possible options. Note that currently the option ESMF_DECOMP_CYCLIC isn’t supported in
Grid creation.

[coordSys] The coordinate system of the grid coordinate data. For a full list of options, please see Section 52.11. If
not specified then defaults to ESMF_COORDSYS_SPH_DEG.

[staggerLocList] The list of stagger locations to fill with coordinates. Please see Section 31.2.6 for a description of
the available stagger locations. If not present, then no staggers are added or filled.

[petMap] Sets the mapping of pets to the created DEs. This 3D should be of size regDecomp(1) x regDecomp(2) x
regDecomp(3) If the Grid is 2D, then the last dimension is of size 1.

[name] ESMF_Grid name.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

753

31.6.27 ESMF_GridCreateCubedSphere - Create a multi-tile cubed sphere Grid with regular decomposition

INTERFACE:

! Private name; call using ESMF_GridCreateCubedSphere()

function ESMF_GridCreateCubedSphereReg(tileSize,&

regDecompPTile, decompflagPTile, &

coordSys, coordTypeKind, &

deLabelList, staggerLocList, &

delayout, indexflag, name, transformArgs, rc)

RETURN VALUE:

type(ESMF_Grid) :: ESMF_GridCreateCubedSphereReg

ARGUMENTS:

integer, intent(in) :: tilesize

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: regDecompPTile(:,:)

type(ESMF_Decomp_Flag), target, intent(in), optional :: decompflagPTile(:,:)

type(ESMF_CoordSys_Flag), intent(in), optional :: coordSys

type(ESMF_TypeKind_Flag), intent(in), optional :: coordTypeKind

integer, intent(in), optional :: deLabelList(:)

type(ESMF_StaggerLoc), intent(in), optional :: staggerLocList(:)

type(ESMF_DELayout), intent(in), optional :: delayout

type(ESMF_Index_Flag), intent(in), optional :: indexflag

character(len=*), intent(in), optional :: name

type(ESMF_CubedSphereTransform_Args), intent(in), optional :: transformArgs

integer, intent(out), optional :: rc

DESCRIPTION:

Create a six-tile ESMF_Grid for a Cubed Sphere grid using regular decomposition. Each tile can have different
decomposition. The grid coordinates are generated based on the algorithm used by GEOS-5, The tile resolution is
defined by tileSize.

The arguments are:

tilesize The number of elements on each side of the tile of the Cubed Sphere grid.

[regDecompPTile] List of DE counts for each dimension. The second index steps through the tiles. The total
deCount is determined as the sum over the products of regDecompPTile elements for each tile. By default
every tile is decomposed in the same way. If the total PET count is less than 6, one tile will be assigned to one
DE and the DEs will be assigned to PETs sequentially, therefore, some PETs may have more than one DEs.
If the total PET count is greater than 6, the total number of DEs will be a multiple of 6 and less than or equal
to the total PET count. For instance, if the total PET count is 16, the total DE count will be 12 with each tile
decomposed into 1x2 blocks. The 12 DEs are mapped to the first 12 PETs and the remainding 4 PETs have no
DEs locally, unless an optional delayout is provided.

[decompflagPTile] List of decomposition flags indicating how each dimension of each tile is to be divided between
the DEs. The default setting is ESMF_DECOMP_BALANCED in all dimensions for all tiles. See section 52.13
for a list of valid decomposition flag options. The second index indicates the tile number.

754

[deLabelList] List assigning DE labels to the default sequence of DEs. The default sequence is given by the column
major order of the regDecompPTile elements in the sequence as they appear following the tile index.

[staggerLocList] The list of stagger locations to fill with coordinates. Only ESMF_STAGGERLOC_CENTER and
ESMF_STAGGERLOC_CORNER are supported. If not present, no coordinates will be added or filled.

[coordSys] The coordinate system of the grid coordinate data. Only ESMF_COORDSYS_SPH_DEG
and ESMF_COORDSYS_SPH_RAD are supported. If not specified then defaults to
ESMF_COORDSYS_SPH_DEG.

[coordTypeKind] The type/kind of the grid coordinate data. Only ESMF_TYPEKIND_R4 and
ESMF_TYPEKIND_R8 are supported. If not specified then defaults to ESMF_TYPEKIND_R8.

[delayout] Optional ESMF_DELayout object to be used. By default a new DELayout object will be created with
as many DEs as there are PETs, or tiles, which ever is greater. If a DELayout object is specified, the number
of DEs must match regDecompPTile, if present. In the case that regDecompPTile was not specified,
the deCount must be at least that of the default DELayout. The regDecompPTile will be constructed
accordingly.

[indexflag] Indicates the indexing scheme to be used in the new Grid. Please see Section 52.27 for the list of options.
If not present, defaults to ESMF_INDEX_DELOCAL.

[name] ESMF_Grid name.

[transformArgs] A data type containing the stretch factor, target longitude, and target latitude to perform a Schmidt
transformation on the Cubed-Sphere grid. See section 31.3.11 for details.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

31.6.28 ESMF_GridCreateCubedSphere - Create a multi-tile cubed sphere Grid with irregular decomposition

INTERFACE:

! Private name; call using ESMF_GridCreateCubedSphere()

function ESMF_GridCreateCubedSphereIReg(tileSize, &

countsPerDEDim1PTile, countsPerDEDim2PTile, &

&

coordSys, coordTypeKind, &

deLabelList, staggerLocList, &

delayout, indexflag, name, transformArgs, rc)

RETURN VALUE:

type(ESMF_Grid) :: ESMF_GridCreateCubedSphereIReg

ARGUMENTS:

integer, intent(in) :: tilesize

integer, intent(in) :: countsPerDEDim1PTile(:,:)

integer, intent(in) :: countsPerDEDim2PTile(:,:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_CoordSys_Flag), intent(in), optional :: coordSys

755

type(ESMF_TypeKind_Flag), intent(in), optional :: coordTypeKind

integer, intent(in), optional :: deLabelList(:)

type(ESMF_StaggerLoc), intent(in), optional :: staggerLocList(:)

type(ESMF_DELayout), intent(in), optional :: delayout

type(ESMF_Index_Flag), intent(in), optional :: indexflag

character(len=*), intent(in), optional :: name

type(ESMF_CubedSphereTransform_Args), intent(in), optional :: transformArgs

integer, intent(out), optional :: rc

DESCRIPTION:

Create a six-tile ESMF_Grid for a Cubed Sphere grid using irregular decomposition. Each tile can have different
decomposition. The grid coordinates are generated based on the algorithm used by GEOS-5, The tile resolution is
defined by tileSize.

The arguments are:

tilesize The number of elements on each side of the tile of the Cubed Sphere grid.

countsPerDEDim1PTile This array specifies the number of cells per DE for index dimension 1 for the center stagger
location. The second index steps through the tiles. If each tile is decomposed into different number of DEs, the
first dimension is the maximal DEs of all the tiles.

countsPerDEDim2PTile This array specifies the number of cells per DE for index dimension 2 for the center stagger
location. The second index steps through the tiles. If each tile is decomposed into different number of DEs, the
first dimension is the maximal DEs of all the tiles.

[coordSys] The coordinate system of the grid coordinate data. Only ESMF_COORDSYS_SPH_DEG
and ESMF_COORDSYS_SPH_RAD are supported. If not specified then defaults to
ESMF_COORDSYS_SPH_DEG.

[coordTypeKind] The type/kind of the grid coordinate data. Only ESMF_TYPEKIND_R4 and
ESMF_TYPEKIND_R8 are supported. If not specified then defaults to ESMF_TYPEKIND_R8.

[deLabelList] List assigning DE labels to the default sequence of DEs. The default sequence is given by
the column major order in the sequence as they appear in countsPerDEDim1PTile, followed by
countsPerDEDim2PTile, then the tile index.

[staggerLocList] The list of stagger locations to fill with coordinates. Only ESMF_STAGGERLOC_CENTER and
ESMF_STAGGERLOC_CORNER are supported. If not present, no coordinates will be added or filled.

[delayout] Optional ESMF_DELayout object to be used. If a delayout object is specified, the number of DEs must
match with the total DEs defined in countsPerDEDim1PTile and countsPerDEDim2PTile.

[indexflag] Indicates the indexing scheme to be used in the new Grid. Please see Section 52.27 for the list of options.
If not present, defaults to ESMF_INDEX_DELOCAL.

[name] ESMF_Grid name.

[transformArgs] A data type containing the stretch factor, target longitude, and target latitude to perform a Schmidt
transformation on the Cubed-Sphere grid. See section 31.3.11 for details.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

756

31.6.29 ESMF_GridCreateMosaic - Create a multi-tile Grid object with regular decomposition using the grid

definition from a GRIDSPEC Mosaic file.

INTERFACE:

function ESMF_GridCreateMosaicReg(filename,regDecompPTile, decompflagPTile, &

coordTypeKind, deLabelList, staggerLocList, delayout, indexflag, name, tileFilePath,

RETURN VALUE:

type(ESMF_Grid) :: ESMF_GridCreateMosaicReg

ARGUMENTS:

character(len=*), intent(in) :: filename

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: regDecompPTile(:,:)

type(ESMF_Decomp_Flag), target, intent(in), optional :: decompflagPTile(:,:)

type(ESMF_TypeKind_Flag), intent(in), optional :: coordTypeKind

integer, intent(in), optional :: deLabelList(:)

type(ESMF_StaggerLoc), intent(in), optional :: staggerLocList(:)

type(ESMF_DELayout), intent(in), optional :: delayout

type(ESMF_Index_Flag), intent(in), optional :: indexflag

character(len=*), intent(in), optional :: name

character(len=*), intent(in), optional :: tileFilePath

integer, intent(out), optional :: rc

DESCRIPTION:

Create a multiple-tile ESMF_Grid based on the definition from a GRIDSPEC Mosaic file and its associated tile
files using regular decomposition. Each tile can have different decomposition. The tile connections are defined in a
GRIDSPEC format Mosaic file. And each tile’s coordination is defined in a separate NetCDF file. The coordinates
defined in the tile file is so-called "Super Grid". In other words, the dimensions of the coordinate variables are
(2*xdim+1, 2*ydim+1) if (xdim, ydim) is the size of the tile. The Super Grid combines the corner, the
edge and the center coordinates in one big array. A Mosaic file may contain just one tile. If a Mosaic contains multiple
tiles. Each tile is a logically rectangular lat/lon grid. Currently, all the tiles have to be the same size. We will remove
this limitation in the future release.

The arguments are:

filename The name of the GRIDSPEC Mosaic file.

[regDecompPTile] List of DE counts for each dimension. The second index steps through the tiles. The total
deCount is determined as th sum over the products of regDecompPTile elements for each tile. By de-
fault every tile is decomposed in the same way. If the total PET count is less than 6, one tile will be assigned
to one DE and the DEs will be assigned to PETs sequentially, therefore, some PETs may have more than one
DEs. If the total PET count is greater than 6, the total number of DEs will be multiple of 6 and less than or equal
to the total PET count. For instance, if the total PET count is 16, the total DE count will be 12 with each tile
decomposed into 1x2 blocks. The 12 DEs are mapped to the first 12 PETs and the remainding 4 PETs have no
DEs locally, unless an optional delayout is provided.

757

[decompflagPTile] List of decomposition flags indicating how each dimension of each tile is to be divided between
the DEs. The default setting is ESMF_DECOMP_BALANCED in all dimensions for all tiles. See section 52.13
for a list of valid decomposition flag options. The second index indicates the tile number.

[coordTypeKind] The type/kind of the grid coordinate data. Only ESMF_TYPEKIND_R4 and
ESMF_TYPEKIND_R8 are supported. If not specified then defaults to ESMF_TYPEKIND_R8.

[deLabelList] List assigning DE labels to the default sequence of DEs. The default sequence is given by the column
major order of the regDecompPTile elements in the sequence as they appear following the tile index.

[staggerLocList] The list of stagger locations to fill with coordinates. Please see Section 31.2.6 for a description of
the available stagger locations. If not present, no coordinates will be added or filled.

[delayout] Optional ESMF_DELayout object to be used. By default a new DELayout object will be created with
as many DEs as there are PETs, or tiles, which ever is greater. If a DELayout object is specified, the number
of DEs must match regDecompPTile, if present. In the case that regDecompPTile was not specified,
the deCount must be at least that of the default DELayout. The regDecompPTile will be constructed
accordingly.

[indexflag] Indicates the indexing scheme to be used in the new Grid. Please see Section 52.27 for the list of options.
If not present, defaults to ESMF_INDEX_DELOCAL.

[name] ESMF_Grid name.

[tileFilePath] Optional argument to define the path where the tile files reside. If it is given, it overwrites the path
defined in gridlocation variable in the mosaic file.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

31.6.30 ESMF_GridCreateMosaic - Create a multi-tile Grid object with irregular decomposition using the

grid definition from a GRIDSPEC Mosaic file.

INTERFACE:

function ESMF_GridCreateMosaicIReg(filename, &

countsPerDEDim1PTile, countsPerDEDim2PTile, &

&

coordTypeKind, &

deLabelList, staggerLocList, &

delayout, indexflag, name, tileFilePath, rc)

RETURN VALUE:

type(ESMF_Grid) :: ESMF_GridCreateMosaicIReg

ARGUMENTS:

character(len=*), intent(in) :: filename

integer, intent(in) :: countsPerDEDim1PTile(:,:)

integer, intent(in) :: countsPerDEDim2PTile(:,:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_TypeKind_Flag), intent(in), optional :: coordTypeKind

758

integer, intent(in), optional :: deLabelList(:)

type(ESMF_StaggerLoc), intent(in), optional :: staggerLocList(:)

type(ESMF_DELayout), intent(in), optional :: delayout

type(ESMF_Index_Flag), intent(in), optional :: indexflag

character(len=*), intent(in), optional :: name

character(len=*), intent(in), optional :: tileFilePath

integer, intent(out), optional :: rc

DESCRIPTION:

Create a multiple-tile ESMF_Grid based on the definition from a GRIDSPEC Mosaic file and its associated tile files
using irregular decomposition. Each tile can have different decomposition. The tile connections are defined in a
GRIDSPEC format Mosaic file. And each tile’s coordination is defined in a separate NetCDF file. The coordinates
defined in the tile file is so-called "Super Grid". In other words, the dimensions of the coordinate variables are
(2*xdim+1, 2*ydim+1) if (xdim, ydim) is the size of the tile. The Super Grid combines the corner, the
edge and the center coordinates in one big array. A Mosaic file may contain just one tile. If a Mosaic contains multiple
tiles. Each tile is a logically rectangular lat/lon grid. Currently, all the tiles have to be the same size. We will remove
this limitation in the future release.

The arguments are:

filename The name of the GRIDSPEC Mosaic file.

countsPerDEDim1PTile This array specifies the number of cells per DE for index dimension 1 for the center stagger
location. The second index steps through the tiles. If each tile is decomposed into different number of DEs, the
first dimension is the maximal DEs of all the tiles.

countsPerDEDim2PTile This array specifies the number of cells per DE for index dimension 2 for the center stagger
location. The second index steps through the tiles. If each tile is decomposed into different number of DEs, the
first dimension is the maximal DEs of all the tiles.

[coordTypeKind] The type/kind of the grid coordinate data. Only ESMF_TYPEKIND_R4 and
ESMF_TYPEKIND_R8 are supported. If not specified then defaults to ESMF_TYPEKIND_R8.

[deLabelList] List assigning DE labels to the default sequence of DEs. The default sequence is given by
the column major order in the sequence as they appear in countsPerDEDim1PTile, followed by
countsPerDEDim2PTile, then the tile index.

[staggerLocList] The list of stagger locations to fill with coordinates. Please see Section 31.2.6 for a description of
the available stagger locations. If not present, no coordinates will be added or filled.

[delayout] Optional ESMF_DELayout object to be used. If a delayout object is specified, the number of DEs must
match with the total DEs defined in countsPerDEDim1PTile and countsPerDEDim2PTile.

[indexflag] Indicates the indexing scheme to be used in the new Grid. Please see Section 52.27 for the list of options.
If not present, defaults to ESMF_INDEX_DELOCAL.

[name] ESMF_Grid name.

[tileFilePath] Optional argument to define the path where the tile files reside. If it is given, it overwrites the path
defined in gridlocation variable in the mosaic file.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

759

31.6.31 ESMF_GridDestroy - Release resources associated with a Grid

INTERFACE:

subroutine ESMF_GridDestroy(grid, noGarbage, rc)

ARGUMENTS:

type(ESMF_Grid), intent(inout) :: grid

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: noGarbage

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

7.0.0 Added argument noGarbage. The argument provides a mechanism to override the default garbage
collection mechanism when destroying an ESMF object.

DESCRIPTION:

Destroys an ESMF_Grid object and related internal structures. This call does destroy internally created DistGrid and
DELayout classes, for example those created by ESMF_GridCreateShapeTile(). It also destroys internally
created coordinate/item Arrays, for example those created by ESMF_GridAddCoord(). However, if the user uses
an externally created class, for example creating an Array and setting it using ESMF_GridSetCoord(), then that
class is not destroyed by this method.

By default a small remnant of the object is kept in memory in order to prevent problems with dangling aliases. The
default garbage collection mechanism can be overridden with the noGarbage argument.

The arguments are:

grid ESMF_Grid to be destroyed.

[noGarbage] If set to .TRUE. the object will be fully destroyed and removed from the ESMF garbage collection
system. Note however that under this condition ESMF cannot protect against accessing the destroyed object
through dangling aliases – a situation which may lead to hard to debug application crashes.

It is generally recommended to leave the noGarbage argument set to .FALSE. (the default), and to take
advantage of the ESMF garbage collection system which will prevent problems with dangling aliases or incorrect
sequences of destroy calls. However this level of support requires that a small remnant of the object is kept in
memory past the destroy call. This can lead to an unexpected increase in memory consumption over the course
of execution in applications that use temporary ESMF objects. For situations where the repeated creation and
destruction of temporary objects leads to memory issues, it is recommended to call with noGarbage set to
.TRUE., fully removing the entire temporary object from memory.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

760

31.6.32 ESMF_GridEmptyComplete - Complete a Grid with user set edge connections and an irregular dis-

tribution

INTERFACE:

! Private name; call using ESMF_GridEmptyComplete()

subroutine ESMF_GridEmptyCompleteEConnI(grid, minIndex, &

countsPerDEDim1,countsPerDeDim2, &

countsPerDEDim3, &

connDim1, connDim2, connDim3, &

coordSys, coordTypeKind, &

coordDep1, coordDep2, coordDep3, &

gridEdgeLWidth, gridEdgeUWidth, gridAlign, &

gridMemLBound, indexflag, petMap, name, rc)

ARGUMENTS:

type (ESMF_Grid) :: grid

integer, intent(in), optional :: minIndex(:)

integer, intent(in) :: countsPerDEDim1(:)

integer, intent(in) :: countsPerDEDim2(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: countsPerDEDim3(:)

type(ESMF_GridConn_Flag), intent(in), optional :: connDim1(:)

type(ESMF_GridConn_Flag), intent(in), optional :: connDim2(:)

type(ESMF_GridConn_Flag), intent(in), optional :: connDim3(:)

type(ESMF_CoordSys_Flag), intent(in), optional :: coordSys

type(ESMF_TypeKind_Flag), intent(in), optional :: coordTypeKind

integer, intent(in), optional :: coordDep1(:)

integer, intent(in), optional :: coordDep2(:)

integer, intent(in), optional :: coordDep3(:)

integer, intent(in), optional :: gridEdgeLWidth(:)

integer, intent(in), optional :: gridEdgeUWidth(:)

integer, intent(in), optional :: gridAlign(:)

integer, intent(in), optional :: gridMemLBound(:)

type(ESMF_Index_Flag), intent(in), optional :: indexflag

integer, intent(in), optional :: petMap(:,:,:)

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

This method takes in an empty Grid created by ESMF_GridEmptyCreate(). It then completes the grid to form a
single tile, irregularly distributed grid (see Figure 13). To specify the irregular distribution, the user passes in an array
for each grid dimension, where the length of the array is the number of DEs in the dimension. Currently this call only
supports creating 2D or 3D Grids. A 2D Grid can be specified using the countsPerDEDim1 and countsPerDEDim2
arguments. A 3D Grid can be specified by also using the optional countsPerDEDim3 argument. The index of each
array element in these arguments corresponds to a DE number. The array value at the index is the number of grid cells
on the DE in that dimension.

Section 31.3.4 shows an example of using an irregular distribution to create a 2D Grid with uniformly spaced co-
ordinates. This creation method can also be used as the basis for grids with rectilinear coordinates or curvilinear

761

coordinates.

For consistency’s sake the ESMF_GridEmptyComplete() call should be executed in the same set or a subset of
the PETs in which the ESMF_GridEmptyCreate() call was made. If the call is made in a subset, the Grid objects
outside that subset will still be "empty" and not usable.

The arguments are:

grid The empty ESMF_Grid to set information into and then commit.

[minIndex] Tuple to start the index ranges at. If not present, defaults to /1,1,1,.../.

countsPerDEDim1 This arrays specifies the number of cells per DE for index dimension 1 for the exclusive region
(the center stagger location).

countsPerDEDim2 This array specifies the number of cells per DE for index dimension 2 for the exclusive region
(center stagger location).

[countsPerDEDim3] This array specifies the number of cells per DE for index dimension 3 for the exclusive region
(center stagger location). If not specified then grid is 2D.

[connDim1] Fortran array describing the index dimension 1 connections. The first element represents the minimum
end of dimension 1. The second element represents the maximum end of dimension 1. If array is only one
element long, then that element is used for both the minimum and maximum end. Please see Section 31.2.1 for
a list of valid options. If not present, defaults to ESMF_GRIDCONN_NONE.

[connDim2] Fortran array describing the index dimension 2 connections. The first element represents the minimum
end of dimension 2. The second element represents the maximum end of dimension 2. If array is only one
element long, then that element is used for both the minimum and maximum end. Please see Section 31.2.1 for
a list of valid options. If not present, defaults to ESMF_GRIDCONN_NONE.

[connDim3] Fortran array describing the index dimension 3 connections. The first element represents the minimum
end of dimension 3. The second element represents the maximum end of dimension 3. If array is only one
element long, then that element is used for both the minimum and maximum end. Please see Section 31.2.1 for
a list of valid options. If not present, defaults to ESMF_GRIDCONN_NONE.

[coordSys] The coordinate system of the grid coordinate data. For a full list of options, please see Section 52.11. If
not specified then defaults to ESMF_COORDSYS_SPH_DEG.

[coordTypeKind] The type/kind of the grid coordinate data. All numerical types listed under section 52.59 are
supported. If not specified then defaults to ESMF_TYPEKIND_R8.

[coordDep1] This array specifies the dependence of the first coordinate component on the three index dimensions
described by coordsPerDEDim1,2,3. The size of the array specifies the number of dimensions of the first
coordinate component array. The values specify which of the index dimensions the corresponding coordinate
arrays map to. If not present the default is 1,2,...,grid rank.

[coordDep2] This array specifies the dependence of the second coordinate component on the three index dimen-
sions described by coordsPerDEDim1,2,3. The size of the array specifies the number of dimensions of
the second coordinate component array. The values specify which of the index dimensions the corresponding
coordinate arrays map to. If not present the default is 1,2,...,grid rank.

[coordDep3] This array specifies the dependence of the third coordinate component on the three index dimensions
described by coordsPerDEDim1,2,3. The size of the array specifies the number of dimensions of the third
coordinate component array. The values specify which of the index dimensions the corresponding coordinate
arrays map to. If not present the default is 1,2,...,grid rank.

[gridEdgeLWidth] The padding around the lower edges of the grid. This padding is between the index space cor-
responding to the cells and the boundary of the the exclusive region. This extra space is to contain the extra
padding for non-center stagger locations, and should be big enough to hold any stagger in the grid. If this and
gridAlign are not present then defaults to 0, 0, ..., 0 (all zeros).

762

[gridEdgeUWidth] The padding around the upper edges of the grid. This padding is between the index space cor-
responding to the cells and the boundary of the the exclusive region. This extra space is to contain the extra
padding for non-center stagger locations, and should be big enough to hold any stagger in the grid. If this and
gridAlign are not present then defaults to 1, 1, ..., 1 (all ones).

[gridAlign] Specification of how the stagger locations should align with the cell index space (can be overridden by
the individual staggerAligns). If the gridEdgeWidths are not specified than this argument implies the grid-
EdgeWidths. If the gridEdgeWidths are specified and this argument isn’t then this argument is implied by the
gridEdgeWidths. If this and the gridEdgeWidths are not specified, then defaults to -1, -1, ..., -1 (all negative
ones).

[gridMemLBound] Specifies the lower index range of the memory of every DE in this Grid. Only used when
indexflag is ESMF_INDEX_USER. May be overridden by staggerMemLBound.

[indexflag] Indicates the indexing scheme to be used in the new Grid. Please see Section 52.27 for the list of options.
If not present, defaults to ESMF_INDEX_DELOCAL.

[petMap] Sets the mapping of pets to the created DEs. This 3D should be of size size(countsPerDEDim1) x
size(countsPerDEDim2) x size(countsPerDEDim3). If countsPerDEDim3 isn’t present, then the last dimen-
sion is of size 1.

[name] ESMF_Grid name.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

31.6.33 ESMF_GridEmptyComplete - Complete a Grid with user set edge connections and a regular distri-

bution

INTERFACE:

! Private name; call using ESMF_GridEmptyComplete()

subroutine ESMF_GridEmptyCompleteEConnR(grid, regDecomp, decompFlag, &

minIndex, maxIndex, &

connDim1, connDim2, connDim3, &

coordSys, coordTypeKind, &

coordDep1, coordDep2, coordDep3, &

gridEdgeLWidth, gridEdgeUWidth, gridAlign, &

gridMemLBound, indexflag, petMap, name, rc)

!

ARGUMENTS:

type (ESMF_Grid) :: grid

integer, intent(in), optional :: regDecomp(:)

type(ESMF_Decomp_Flag), intent(in), optional :: decompflag(:)

integer, intent(in), optional :: minIndex(:)

integer, intent(in) :: maxIndex(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_GridConn_Flag), intent(in), optional :: connDim1(:)

type(ESMF_GridConn_Flag), intent(in), optional :: connDim2(:)

type(ESMF_GridConn_Flag), intent(in), optional :: connDim3(:)

763

type(ESMF_CoordSys_Flag), intent(in), optional :: coordSys

type(ESMF_TypeKind_Flag), intent(in), optional :: coordTypeKind

integer, intent(in), optional :: coordDep1(:)

integer, intent(in), optional :: coordDep2(:)

integer, intent(in), optional :: coordDep3(:)

integer, intent(in), optional :: gridEdgeLWidth(:)

integer, intent(in), optional :: gridEdgeUWidth(:)

integer, intent(in), optional :: gridAlign(:)

integer, intent(in), optional :: gridMemLBound(:)

type(ESMF_Index_Flag), intent(in), optional :: indexflag

integer, intent(in), optional :: petMap(:,:,:)

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

This method takes in an empty Grid created by ESMF_GridEmptyCreate(). It then completes the grid to
form a single tile, regularly distributed grid (see Figure 13). To specify the distribution, the user passes in an ar-
ray (regDecomp) specifying the number of DEs to divide each dimension into. The array decompFlag indicates
how the division into DEs is to occur. The default is to divide the range as evenly as possible. Currently this call only
supports creating a 2D or 3D Grid, and thus, for example, maxIndex must be of size 2 or 3.

For consistency’s sake the ESMF_GridEmptyComplete() call should be executed in the same set or a subset of
the PETs in which the ESMF_GridEmptyCreate() call was made. If the call is made in a subset, the Grid objects
outside that subset will still be "empty" and not usable.

The arguments are:

grid The empty ESMF_Grid to set information into and then commit.

[regDecomp] List that has the same number of elements as maxIndex. Each entry is the number of decounts for
that dimension. If not specified, the default decomposition will be petCountx1x1..x1.

[decompflag] List of decomposition flags indicating how each dimension of the tile is to be divided between the
DEs. The default setting is ESMF_DECOMP_BALANCED in all dimensions. Please see Section 52.13 for a full
description of the possible options. Note that currently the option ESMF_DECOMP_CYCLIC isn’t supported in
Grid creation.

[minIndex] The bottom extent of the grid array. If not given then the value defaults to /1,1,1,.../.

maxIndex The upper extent of the grid array.

[connDim1] Fortran array describing the index dimension 1 connections. The first element represents the minimum
end of dimension 1. The second element represents the maximum end of dimension 1. If array is only one
element long, then that element is used for both the minimum and maximum end. Please see Section 31.2.1 for
a list of valid options. If not present, defaults to ESMF_GRIDCONN_NONE.

[connDim2] Fortran array describing the index dimension 2 connections. The first element represents the minimum
end of dimension 2. The second element represents the maximum end of dimension 2. If array is only one
element long, then that element is used for both the minimum and maximum end. Please see Section 31.2.1 for
a list of valid options. If not present, defaults to ESMF_GRIDCONN_NONE.

[connDim3] Fortran array describing the index dimension 3 connections. The first element represents the minimum
end of dimension 3. The second element represents the maximum end of dimension 3. If array is only one
element long, then that element is used for both the minimum and maximum end. Please see Section 31.2.1 for
a list of valid options. If not present, defaults to ESMF_GRIDCONN_NONE.

764

[coordSys] The coordinate system of the grid coordinate data. For a full list of options, please see Section 52.11. If
not specified then defaults to ESMF_COORDSYS_SPH_DEG.

[coordTypeKind] The type/kind of the grid coordinate data. All numerical types listed under section 52.59 are
supported. If not specified then defaults to ESMF_TYPEKIND_R8.

[coordDep1] This array specifies the dependence of the first coordinate component on the three index dimensions
described by coordsPerDEDim1,2,3. The size of the array specifies the number of dimensions of the first
coordinate component array. The values specify which of the index dimensions the corresponding coordinate
arrays map to. If not present the default is 1,2,...,grid rank.

[coordDep2] This array specifies the dependence of the second coordinate component on the three index dimen-
sions described by coordsPerDEDim1,2,3. The size of the array specifies the number of dimensions of
the second coordinate component array. The values specify which of the index dimensions the corresponding
coordinate arrays map to. If not present the default is 1,2,...,grid rank.

[coordDep3] This array specifies the dependence of the third coordinate component on the three index dimensions
described by coordsPerDEDim1,2,3. The size of the array specifies the number of dimensions of the third
coordinate component array. The values specify which of the index dimensions the corresponding coordinate
arrays map to. If not present the default is 1,2,...,grid rank.

[gridEdgeLWidth] The padding around the lower edges of the grid. This padding is between the index space cor-
responding to the cells and the boundary of the the exclusive region. This extra space is to contain the extra
padding for non-center stagger locations, and should be big enough to hold any stagger in the grid. If this and
gridAlign are not present then defaults to 0, 0, ..., 0 (all zeros).

[gridEdgeUWidth] The padding around the upper edges of the grid. This padding is between the index space cor-
responding to the cells and the boundary of the the exclusive region. This extra space is to contain the extra
padding for non-center stagger locations, and should be big enough to hold any stagger in the grid. If this and
gridAlign are not present then defaults to 1, 1, ..., 1 (all ones).

[gridAlign] Specification of how the stagger locations should align with the cell index space (can be overridden by
the individual staggerAligns). If the gridEdgeWidths are not specified than this argument implies the grid-
EdgeWidths. If the gridEdgeWidths are specified and this argument isn’t then this argument is implied by the
gridEdgeWidths. If this and the gridEdgeWidths are not specified, then defaults to -1, -1, ..., -1 (all negative
ones).

[gridMemLBound] Specifies the lower index range of the memory of every DE in this Grid. Only used when
indexflag is ESMF_INDEX_USER. May be overridden by staggerMemLBound.

[indexflag] Indicates the indexing scheme to be used in the new Grid. Please see Section 52.27 for the list of options.
If not present, defaults to ESMF_INDEX_DELOCAL.

[petMap] Sets the mapping of pets to the created DEs. This 3D should be of size regDecomp(1) x regDecomp(2) x
regDecomp(3) If the Grid is 2D, then the last dimension is of size 1.

[name] ESMF_Grid name.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

31.6.34 ESMF_GridEmptyComplete - Complete a Grid with user set edge connections and an arbitrary dis-

tribution

INTERFACE:

765

! Private name; call using ESMF_GridEmptyComplete()

subroutine ESMF_GridEmptyCompleteEConnA(grid, minIndex, maxIndex, &

arbIndexCount, arbIndexList, &

connDim1, connDim2, connDim3, &

coordSys, coordTypeKind, &

coordDep1, coordDep2, coordDep3, &

distDim, name, rc)

!

ARGUMENTS:

type (ESMF_Grid) :: grid

integer, intent(in), optional :: minIndex(:)

integer, intent(in) :: maxIndex(:)

integer, intent(in) :: arbIndexCount

integer, intent(in) :: arbIndexList(:,:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_GridConn_Flag), intent(in), optional :: connDim1(:)

type(ESMF_GridConn_Flag), intent(in), optional :: connDim2(:)

type(ESMF_GridConn_Flag), intent(in), optional :: connDim3(:)

type(ESMF_CoordSys_Flag), intent(in), optional :: coordSys

type(ESMF_TypeKind_Flag), intent(in), optional :: coordTypeKind

integer, intent(in), optional :: coordDep1(:)

integer, intent(in), optional :: coordDep2(:)

integer, intent(in), optional :: coordDep3(:)

integer, intent(in), optional :: distDim(:)

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

This method takes in an empty Grid created by ESMF_GridEmptyCreate(). It then completes the grid to form a
single tile, arbitrarily distributed grid (see Figure 13). To specify the arbitrary distribution, the user passes in an 2D ar-
ray of local indices, where the first dimension is the number of local grid cells specified by localArbIndexCount
and the second dimension is the number of distributed dimensions.

distDim specifies which grid dimensions are arbitrarily distributed. The size of distDim has to agree with the size
of the second dimension of localArbIndex.

Currently this call only supports creating a 2D or 3D Grid, and thus, for example, maxIndex must be of size 2 or 3.

For consistency’s sake the ESMF_GridEmptyComplete() call should be executed in the same set or a subset of
the PETs in which the ESMF_GridEmptyCreate() call was made. If the call is made in a subset, the Grid objects
outside that subset will still be "empty" and not usable.

The arguments are:

grid The empty ESMF_Grid to set information into and then commit.

[minIndex] Tuple to start the index ranges at. If not present, defaults to /1,1,1,.../.

maxIndex The upper extend of the grid index ranges.

arbIndexCount The number of grid cells in the local DE. It is okay to have 0 grid cell in a local DE.

arbIndexList This 2D array specifies the indices of the PET LOCAL grid cells. The dimensions should be arbIndex-
Count * number of Distributed grid dimensions where arbIndexCount is the input argument specified below

766

[connDim1] Fortran array describing the index dimension 1 connections. The first element represents the minimum
end of dimension 1. The second element represents the maximum end of dimension 1. If array is only one
element long, then that element is used for both the minimum and maximum end. Please see Section 31.2.1 for
a list of valid options. If not present, defaults to ESMF_GRIDCONN_NONE.

[connDim2] Fortran array describing the index dimension 2 connections. The first element represents the minimum
end of dimension 2. The second element represents the maximum end of dimension 2. If array is only one
element long, then that element is used for both the minimum and maximum end. Please see Section 31.2.1 for
a list of valid options. If not present, defaults to ESMF_GRIDCONN_NONE.

[connDim3] Fortran array describing the index dimension 3 connections. The first element represents the minimum
end of dimension 3. The second element represents the maximum end of dimension 3. If array is only one
element long, then that element is used for both the minimum and maximum end. Please see Section 31.2.1 for
a list of valid options. If not present, defaults to ESMF_GRIDCONN_NONE.

[coordSys] The coordinate system of the grid coordinate data. For a full list of options, please see Section 52.11. If
not specified then defaults to ESMF_COORDSYS_SPH_DEG.

[coordTypeKind] The type/kind of the grid coordinate data. All numerical types listed under section 52.59 are
supported. If not specified then defaults to ESMF_TYPEKIND_R8.

[coordDep1] The size of the array specifies the number of dimensions of the first coordinate component array. The
values specify which of the index dimensions the corresponding coordinate arrays map to. The format should
be /ESMF_GRID_ARBDIM/ where /ESMF_GRID_ARBDIM/ is mapped to the collapsed 1D dimension from
all the arbitrarily distributed dimensions. n is the dimension that is not distributed (if exists). If not present the
default is /ESMF_GRID_ARBDIM/ if the first dimension is arbitararily distributed, or /n/ if not distributed (i.e.
n=1) Please see Section 52.2 for a definition of ESMF_GRID_ARBDIM.

[coordDep2] The size of the array specifies the number of dimensions of the second coordinate component array. The
values specify which of the index dimensions the corresponding coordinate arrays map to. The format should
be /ESMF_GRID_ARBDIM/ where /ESMF_GRID_ARBDIM/ is mapped to the collapsed 1D dimension from
all the arbitrarily distributed dimensions. n is the dimension that is not distributed (if exists). If not present
the default is /ESMF_GRID_ARBDIM/ if this dimension is arbitararily distributed, or /n/ if not distributed (i.e.
n=2) Please see Section 52.2 for a definition of ESMF_GRID_ARBDIM.

[coordDep3] The size of the array specifies the number of dimensions of the third coordinate component array. The
values specify which of the index dimensions the corresponding coordinate arrays map to. The format should
be /ESMF_GRID_ARBDIM/ where /ESMF_GRID_ARBDIM/ is mapped to the collapsed 1D dimension from
all the arbitrarily distributed dimensions. n is the dimension that is not distributed (if exists). If not present
the default is /ESMF_GRID_ARBDIM/ if this dimension is arbitararily distributed, or /n/ if not distributed (i.e.
n=3) Please see Section 52.2 for a definition of ESMF_GRID_ARBDIM.

[distDim] This array specifies which dimensions are arbitrarily distributed. The size of the array specifies the total
distributed dimensions. if not specified, defaults is all dimensions will be arbitrarily distributed. The size has to
agree with the size of the second dimension of localArbIndex.

[name] ESMF_Grid name.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

31.6.35 ESMF_GridEmptyCreate - Create a Grid that has no contents

INTERFACE:

767

function ESMF_GridEmptyCreate(vm, rc)

RETURN VALUE:

type(ESMF_Grid) :: ESMF_GridEmptyCreate

ARGUMENTS:

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_VM), intent(in), optional :: vm

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

7.1.0r Added argument vm to support object creation on a different VM than that of the current context.

DESCRIPTION:

Partially create an ESMF_Grid object. This function allocates an ESMF_Grid object, but doesn’t allocate any
coordinate storage or other internal structures. The ESMF_GridEmptyComplete() calls can be used to set the
values in the grid object and to construct the internal structure.

The arguments are:

[vm] If present, the Grid object is created on the specified ESMF_VM object. The default is to create on the VM of
the current context.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

31.6.36 ESMF_GridGet - Get object-wide Grid information

INTERFACE:

! Private name; call using ESMF_GridGet()

subroutine ESMF_GridGetDefault(grid, coordTypeKind, &

dimCount, tileCount, staggerlocCount, localDECount, distgrid, &

distgridToGridMap, coordSys, coordDimCount, coordDimMap, arbDim, &

rank, arbDimCount, gridEdgeLWidth, gridEdgeUWidth, gridAlign, &

indexFlag, status, name, rc)

768

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_TypeKind_Flag), intent(out), optional :: coordTypeKind

integer, intent(out), optional :: dimCount

integer, intent(out), optional :: tileCount

integer, intent(out), optional :: staggerlocCount

integer, intent(out), optional :: localDECount

type(ESMF_DistGrid), intent(out), optional :: distgrid

integer, target, intent(out), optional :: distgridToGridMap(:)

type(ESMF_CoordSys_Flag), intent(out), optional :: coordSys

integer, target, intent(out), optional :: coordDimCount(:)

integer, target, intent(out), optional :: coordDimMap(:,:)

integer, intent(out), optional :: arbDim

integer, intent(out), optional :: rank

integer, intent(out), optional :: arbDimCount

integer, target, intent(out), optional :: gridEdgeLWidth(:)

integer, target, intent(out), optional :: gridEdgeUWidth(:)

integer, target, intent(out), optional :: gridAlign(:)

type(ESMF_Index_Flag), intent(out), optional :: indexflag

type(ESMF_GridStatus_Flag),intent(out), optional :: status

character (len=*), intent(out), optional :: name

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Gets various types of information about a grid.

The arguments are:

grid Grid to get the information from.

[coordTypeKind] The type/kind of the grid coordinate data. All numerical types listed under section 52.59 are
supported.

[dimCount] DimCount of the Grid object.

[tileCount] The number of logically rectangular tiles in the grid.

[staggerlocCount] The number of stagger locations.

[localDECount] The number of DEs in this grid on this PET.

[distgrid] The structure describing the distribution of the grid.

[distgridToGridMap] List that has as many elements as the distgrid dimCount. This array describes mapping be-
tween the grids dimensions and the distgrid.

[coordSys] The coordinate system of the grid coordinate data.

769

[coordDimCount] This argument needs to be of size equal to the Grid’s dimCount. Each entry in the argument will
be filled with the dimCount of the corresponding coordinate component (e.g. the dimCount of coordDim=1 will
be put into entry 1). This is useful because it describes the factorization of the coordinate components in the
Grid.

[coordDimMap] 2D list of size grid dimCount x grid dimCount. This array describes the map of each component
array’s dimensions onto the grids dimensions.

[arbDim] The distgrid dimension that is mapped by the arbitrarily distributed grid dimensions.

[rank] The count of the memory dimensions, it is the same as dimCount for a non-arbitrarily distributed grid, and
equal or less for a arbitrarily distributed grid.

[arbDimCount] The number of dimensions distributed arbitrarily for an arbitrary grid, 0 if the grid is non-arbitrary.

[gridEdgeLWidth] The padding around the lower edges of the grid. The array should be of size greater or equal to
the Grid dimCount.

[gridEdgeUWidth] The padding around the upper edges of the grid. The array should be of size greater or equal to
the Grid dimCount.

[gridAlign] Specification of how the stagger locations should align with the cell index space. The array should be of
size greater or equal to the Grid dimCount.

[indexflag] Flag indicating the indexing scheme being used in the Grid. Please see Section 52.27 for the list of
options.

[status] Flag indicating the status of the Grid. Please see Section 31.2.4 for the list of options.

[name] ESMF_Grid name.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

31.6.37 ESMF_GridGet - Get DE-local Grid information

INTERFACE:

! Private name; call using ESMF_GridGet()

subroutine ESMF_GridGetPLocalDe(grid, localDE, &

isLBound,isUBound, arbIndexCount, arbIndexList, tile, rc)

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid

integer, intent(in) :: localDE

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(out), optional :: isLBound(:)

logical, intent(out), optional :: isUBound(:)

integer, intent(out), optional :: arbIndexCount

integer, target, intent(out), optional :: arbIndexList(:,:)

integer, intent(out), optional :: tile

integer, intent(out), optional :: rc

770

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

7.1.0r Added argument tile. This new argument allows the user to query the tile within which the localDE is
contained.

DESCRIPTION:

This call gets information about a particular local DE in a Grid.

The arguments are:

grid Grid to get the information from.

localDE The local DE from which to get the information. [0,..,localDECount-1]

[isLBound] Upon return, for each dimension this indicates if the DE is a lower bound of the Grid. isLBound must
be allocated to be of size equal to the Grid dimCount.

[isUBound] Upon return, for each dimension this indicates if the DE is an upper bound of the Grid. isUBound must
be allocated to be of size equal to the Grid dimCount.

[arbIndexCount] The number of local cells for an arbitrarily distributed grid

[arbIndexList] The 2D array storing the local cell indices for an arbitrarily distributed grid. The size of the array is
arbIndexCount * arbDimCount

[tile] The number of the tile in which localDE is contained. Tile numbers range from 1 to TileCount.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

31.6.38 ESMF_GridGet - Get DE-local information for a specific stagger location in a Grid

INTERFACE:

! Private name; call using ESMF_GridGet()

subroutine ESMF_GridGetPLocalDePSloc(grid, staggerloc, localDE, &

exclusiveLBound, exclusiveUBound, exclusiveCount, &

computationalLBound, computationalUBound, computationalCount, rc)

ARGUMENTS:

771

type(ESMF_Grid), intent(in) :: grid

type (ESMF_StaggerLoc), intent(in) :: staggerloc

integer, intent(in) :: localDE

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, target, intent(out), optional :: exclusiveLBound(:)

integer, target, intent(out), optional :: exclusiveUBound(:)

integer, target, intent(out), optional :: exclusiveCount(:)

integer, target, intent(out), optional :: computationalLBound(:)

integer, target, intent(out), optional :: computationalUBound(:)

integer, target, intent(out), optional :: computationalCount(:)

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

This method gets information about the range of index space which a particular stagger location occupies. This call
differs from the coordinate bound calls (e.g. ESMF_GridGetCoord) in that a given coordinate array may only
occupy a subset of the Grid’s dimensions, and so these calls may not give all the bounds of the stagger location. The
bounds from this call are the full bounds, and so for example, give the appropriate bounds for allocating a Fortran array
to hold data residing on the stagger location. Note that unlike the output from the Array, these values also include the
undistributed dimensions and are ordered to reflect the order of the indices in the Grid. This call will still give correct
values even if the stagger location does not contain coordinate arrays (e.g. if ESMF_GridAddCoord hasn’t yet been
called on the stagger location).

The arguments are:

grid Grid to get the information from.

staggerloc The stagger location to get the information for. Please see Section 31.2.6 for a list of predefined stagger
locations.

localDE The local DE from which to get the information. [0,..,localDECount-1]

[exclusiveLBound] Upon return this holds the lower bounds of the exclusive region. exclusiveLBound must be
allocated to be of size equal to the Grid dimCount. Please see Section 31.3.19 for a description of the regions
and their associated bounds and counts.

[exclusiveUBound] Upon return this holds the upper bounds of the exclusive region. exclusiveUBound must be
allocated to be of size equal to the Grid dimCount. Please see Section 31.3.19 for a description of the regions
and their associated bounds and counts.

[exclusiveCount] Upon return this holds the number of items,exclusiveUBound-exclusiveLBound+1, in
the exclusive region per dimension. exclusiveCount must be allocated to be of size equal to the Grid
dimCount. Please see Section 31.3.19 for a description of the regions and their associated bounds and counts.

[computationalLBound] Upon return this holds the lower bounds of the computational region.
computationalLBound must be allocated to be of size equal to the Grid dimCount. Please see
Section 31.3.19 for a description of the regions and their associated bounds and counts.

[computationalUBound] Upon return this holds the upper bounds of the computational region.
computationalUBound must be allocated to be of size equal to the Grid dimCount. Please see
Section 31.3.19 for a description of the regions and their associated bounds and counts.

772

[computationalCount] Upon return this holds the number of items in the computational region per dimension. (i.e.
computationalUBound-computationalLBound+1). computationalCount must be allocated to
be of size equal to the Grid dimCount. Please see Section 31.3.19 for a description of the regions and their
associated bounds and counts.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

31.6.39 ESMF_GridGet - Get information about a specific stagger location in a Grid

INTERFACE:

! Private name; call using ESMF_GridGet()

subroutine ESMF_GridGetPSloc(grid, staggerloc, &

distgrid, &

staggerEdgeLWidth, staggerEdgeUWidth, &

staggerAlign, staggerLBound, rc)

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid

type (ESMF_StaggerLoc), intent(in) :: staggerloc

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_DistGrid), intent(out), optional :: distgrid

integer, intent(out), optional :: staggerEdgeLWidth(:)

integer, intent(out), optional :: staggerEdgeUWidth(:)

integer, intent(out), optional :: staggerAlign(:)

integer, intent(out), optional :: staggerLBound(:)

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

7.1.0r Added arguments staggerEdgeLWidth, staggerEdgeUWidth, staggerAlign, and
staggerLBound. These new arguments allow the user to get width, alignment, and bound informa-
tion for the given stagger location.

DESCRIPTION:

This method gets information about a particular stagger location. This information is useful for creating an ESMF
Array to hold the data at the stagger location.

The arguments are:

773

grid Grid to get the information from.

staggerloc The stagger location to get the information for. Please see Section 31.2.6 for a list of predefined stagger
locations.

[distgrid] The structure describing the distribution of this staggerloc in this grid.

[staggerEdgeLWidth] This array should be the same dimCount as the grid. It specifies the lower corner of the stagger
region with respect to the lower corner of the exclusive region.

[staggerEdgeUWidth] This array should be the same dimCount as the grid. It specifies the upper corner of the
stagger region with respect to the upper corner of the exclusive region.

[staggerAlign] This array is of size grid dimCount. For this stagger location, it specifies which element has the same
index value as the center. For example, for a 2D cell with corner stagger it specifies which of the 4 corners has
the same index as the center.

[staggerLBound] Specifies the lower index range of the memory of every DE in this staggerloc in this Grid. Only
used when Grid indexflag is ESMF_INDEX_USER.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

31.6.40 ESMF_GridGet - Get information about a specific stagger location and tile in a Grid

INTERFACE:

! Private name; call using ESMF_GridGet()

subroutine ESMF_GridGetPSlocPTile(grid, tile, staggerloc, &

minIndex, maxIndex, rc)

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid

integer, intent(in) :: tile

type (ESMF_StaggerLoc), intent(in) :: staggerloc

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, target, intent(out), optional :: minIndex(:)

integer, target, intent(out), optional :: maxIndex(:)

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

This method gets information about a particular stagger location. This information is useful for creating an ESMF
Array to hold the data at the stagger location.

The arguments are:

774

grid Grid to get the information from.

tile The tile number to get the data from. Tile numbers range from 1 to TileCount.

staggerloc The stagger location to get the information for. Please see Section 31.2.6 for a list of predefined stagger
locations.

[minIndex] Upon return this holds the global lower index of this stagger location. minIndex must be allocated to
be of size equal to the grid DimCount. Note that this value is only for the first Grid tile, as multigrid support is
added, this interface will likely be changed or moved to adapt.

[maxIndex] Upon return this holds the global upper index of this stagger location. maxIndex must be allocated to
be of size equal to the grid DimCount. Note that this value is only for the first Grid tile, as multigrid support is
added, this interface will likely be changed or moved to adapt.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

31.6.41 ESMF_GridGetCoord - Get a DE-local Fortran array pointer to Grid coord data and coord bounds

INTERFACE:

subroutine ESMF_GridGetCoord<rank><type><kind>(grid, coordDim, &

staggerloc, localDE, farrayPtr, datacopyflag, &

exclusiveLBound, exclusiveUBound, exclusiveCount, &

computationalLBound, computationalUBound, computationalCount, &

totalLBound, totalUBound, totalCount, rc)

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid

integer, intent(in) :: coordDim

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type (ESMF_StaggerLoc) intent(in), optional :: staggerloc

integer, intent(in), optional :: localDE

<type> (ESMF_KIND_<kind>), pointer :: farrayPtr(<rank>)

type(ESMF_DataCopy_Flag), intent(in), optional :: datacopyflag

integer, intent(out), optional :: exclusiveLBound(:)

integer, intent(out), optional :: exclusiveUBound(:)

integer, intent(out), optional :: exclusiveCount(:)

integer, intent(out), optional :: computationalLBound(:)

integer, intent(out), optional :: computationalUBound(:)

integer, intent(out), optional :: computationalCount(:)

integer, intent(out), optional :: totalLBound(:)

integer, intent(out), optional :: totalUBound(:)

integer, intent(out), optional :: totalCount(:)

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

775

DESCRIPTION:

This method gets a Fortran pointer to the piece of memory which holds the coordinate data on the local DE for the
given coordinate dimension and stagger locations. This is useful, for example, for setting the coordinate values in a
Grid, or for reading the coordinate values. Currently this method supports up to three coordinate dimensions, of either
R4 or R8 datatype. See below for specific supported values. If the coordinates that you are trying to retrieve are of
higher dimension, use the ESMF_GetCoord() interface that returns coordinate values in an ESMF_Array instead.
That interface supports the retrieval of coordinates up to 7D.

Supported values for the farrayPtr argument are:

real(ESMF_KIND_R4), pointer :: farrayPtr(:)

real(ESMF_KIND_R4), pointer :: farrayPtr(:,:)

real(ESMF_KIND_R4), pointer :: farrayPtr(:,:,:)

real(ESMF_KIND_R8), pointer :: farrayPtr(:)

real(ESMF_KIND_R8), pointer :: farrayPtr(:,:)

real(ESMF_KIND_R8), pointer :: farrayPtr(:,:,:)

The arguments are:

grid Grid to get the information from.

coordDim The coordinate dimension to get the data from (e.g. 1=x).

[staggerloc] The stagger location to get the information for. Please see Section 31.2.6 for a list of predefined stagger
locations. If not present, defaults to ESMF_STAGGERLOC_CENTER.

[localDE] The local DE for which information is requested. [0,..,localDECount-1]. For
localDECount==1 the localDE argument may be omitted, in which case it will default to localDE=0.

farrayPtr The pointer to the coordinate data.

[datacopyflag] If not specified, default to ESMF_DATACOPY_REFERENCE, in this case farrayPtr is a reference to
the data in the Grid coordinate arrays. Please see Section 52.12 for further description and a list of valid values.

[exclusiveLBound] Upon return this holds the lower bounds of the exclusive region. exclusiveLBound must be
allocated to be of size equal to the coord dimCount.

[exclusiveUBound] Upon return this holds the upper bounds of the exclusive region. exclusiveUBound must be
allocated to be of size equal to the coord dimCount.

[exclusiveCount] Upon return this holds the number of items, exclusiveUBound-exclusiveLBound+1, in
the exclusive region per dimension. exclusiveCount must be allocated to be of size equal to the coord
dimCount. Please see Section 31.3.19 for a description of the regions and their associated bounds and counts.

[computationalLBound] Upon return this holds the lower bounds of the stagger region. computationalLBound
must be allocated to be of size equal to the coord dimCount. Please see Section 31.3.19 for a description of the
regions and their associated bounds and counts.

[computationalUBound] Upon return this holds the upper bounds of the stagger region. exclusiveUBound must
be allocated to be of size equal to the coord dimCount. Please see Section 31.3.19 for a description of the regions
and their associated bounds and counts.

776

[computationalCount] Upon return this holds the number of items in the computational region per dimension (i.e.
computationalUBound-computationalLBound+1). computationalCount must be allocated to
be of size equal to the coord dimCount. Please see Section 31.3.19 for a description of the regions and their
associated bounds and counts.

[totalLBound] Upon return this holds the lower bounds of the total region. totalLBound must be allocated to
be of size equal to the coord dimCount. Please see Section 31.3.19 for a description of the regions and their
associated bounds and counts.

[totalUBound] Upon return this holds the upper bounds of the total region. totalUBound must be allocated to
be of size equal to the coord dimCount. Please see Section 31.3.19 for a description of the regions and their
associated bounds and counts.

[totalCount] Upon return this holds the number of items in the total region per dimension (i.e.
totalUBound-totalLBound+1). totalCount must be allocated to be of size equal to the coord dim-
Count. Please see Section 31.3.19 for a description of the regions and their associated bounds and counts.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

31.6.42 ESMF_GridGetCoord - Get coordinates and put into an Array

INTERFACE:

! Private name; call using ESMF_GridGetCoord()

subroutine ESMF_GridGetCoordIntoArray(grid, coordDim, staggerloc, &

array, rc)

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid

integer, intent(in) :: coordDim

type (ESMF_StaggerLoc), intent(in), optional :: staggerloc

type(ESMF_Array), intent(out) :: array

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

This method allows the user to get access to the ESMF Array holding coordinate data at a particular stagger location.
This is useful, for example, to set the coordinate values. To have an Array to access, the coordinate Arrays must have
already been allocated, for example by ESMF_GridAddCoord or ESMF_GridSetCoord.

The arguments are:

grid The grid to get the coord array from.

777

coordDim The coordinate dimension to get the data from (e.g. 1=x).

[staggerloc] The stagger location from which to get the arrays. Please see Section 31.2.6 for a list of predefined
stagger locations. If not present, defaults to ESMF_STAGGERLOC_CENTER.

array An array into which to put the coordinate information.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

31.6.43 ESMF_GridGetCoord - Get DE-local coordinates from a specific index location in a Grid

INTERFACE:

! Private name; call using ESMF_GridGetCoord()

subroutine ESMF_GridGetCoordR4(grid, staggerloc, localDE, &

index, coord, rc)

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid

type (ESMF_StaggerLoc), intent(in), optional :: staggerloc

integer, intent(in), optional :: localDE

integer, intent(in) :: index(:)

real(ESMF_KIND_R4), intent(out) :: coord(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Given a specific index location in a Grid, this method returns the full set of coordinates from that index location. This
method should work no matter what the factorization of the Grid’s coordinate components.

The arguments are:

grid Grid to get the information from.

[staggerloc] The stagger location to get the information for. Please see Section 31.2.6 for a list of predefined stagger
locations. If not present, defaults to ESMF_STAGGERLOC_CENTER.

[localDE] The local DE for which information is requested. [0,..,localDECount-1]. For
localDECount==1 the localDE argument may be omitted, in which case it will default to localDE=0.

index This array holds the index location to be queried in the Grid. This array must at least be of the size Grid rank.

coord This array will be filled with the coordinate data. This array must at least be of the size Grid rank.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

778

31.6.44 ESMF_GridGetCoord - Get DE-local coordinates from a specific index location in a Grid

INTERFACE:

! Private name; call using ESMF_GridGetCoord()

subroutine ESMF_GridGetCoordR8(grid, staggerloc, localDE, &

index, coord, rc)

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid

type (ESMF_StaggerLoc), intent(in), optional :: staggerloc

integer, intent(in), optional :: localDE

integer, intent(in) :: index(:)

real(ESMF_KIND_R8), intent(out) :: coord(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Given a specific index location in a Grid, this method returns the full set of coordinates from that index location. This
method should work no matter what the factorization of the Grid’s coordinate components.

The arguments are:

grid Grid to get the information from.

[staggerloc] The stagger location to get the information for. Please see Section 31.2.6 for a list of predefined stagger
locations. If not present, defaults to ESMF_STAGGERLOC_CENTER.

[localDE] The local DE for which information is requested. [0,..,localDECount-1]. For
localDECount==1 the localDE argument may be omitted, in which case it will default to localDE=0.

index This array holds the index location to be queried in the Grid. This array must at least be of the size Grid rank.

coord This array will be filled with the coordinate data. This array must at least be of the size Grid rank.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

31.6.45 ESMF_GridGetCoord - Get information about the coordinates at a particular stagger location

INTERFACE:

779

! Private name; call using ESMF_GridGetCoord()

subroutine ESMF_GridGetCoordInfo(grid, &

staggerloc, isPresent, rc)

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type (ESMF_StaggerLoc), intent(in), optional :: staggerloc

logical, intent(out), optional :: isPresent

integer, intent(out), optional :: rc

DESCRIPTION:

This method allows the user to get information about the coordinates on a given stagger.

The arguments are:

grid Grid to get the information from.

[staggerloc] The stagger location from which to get information. Please see Section 31.2.6 for a list of predefined
stagger locations. If not present, defaults to ESMF_STAGGERLOC_CENTER.

[isPresent] If .true. then coordinates have been added on this staggerloc.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

31.6.46 ESMF_GridGetCoordBounds - Get Grid coordinate bounds

INTERFACE:

subroutine ESMF_GridGetCoordBounds(grid, coordDim, &

staggerloc, localDE, exclusiveLBound, exclusiveUBound, &

exclusiveCount, computationalLBound, computationalUBound , &

computationalCount, totalLBound, totalUBound, totalCount, rc)

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid

integer, intent(in) :: coordDim

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type (ESMF_StaggerLoc), intent(in), optional :: staggerloc

integer, intent(in), optional :: localDE

integer, target, intent(out), optional :: exclusiveLBound(:)

integer, target, intent(out), optional :: exclusiveUBound(:)

integer, target, intent(out), optional :: exclusiveCount(:)

integer, target, intent(out), optional :: computationalLBound(:)

integer, target, intent(out), optional :: computationalUBound(:)

integer, target, intent(out), optional :: computationalCount(:)

780

integer, target, intent(out), optional :: totalLBound(:)

integer, target, intent(out), optional :: totalUBound(:)

integer, target, intent(out), optional :: totalCount(:)

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

This method gets information about the range of index space which a particular piece of coordinate data occupies. In
other words, this method returns the bounds of the coordinate arrays. Note that unlike the output from the Array, these
values also include the undistributed dimensions and are ordered to reflect the order of the indices in the coordinate.
So, for example, totalLBound and totalUBound should match the bounds of the Fortran array retrieved by
ESMF_GridGetCoord.

The arguments are:

grid Grid to get the information from.

coordDim The coordinate dimension to get the information for (e.g. 1=x).

[staggerloc] The stagger location to get the information for. Please see Section 31.2.6 for a list of predefined stagger
locations. If not present, defaults to ESMF_STAGGERLOC_CENTER.

[localDE] The local DE for which information is requested. [0,..,localDECount-1]. For
localDECount==1 the localDE argument may be omitted, in which case it will default to localDE=0.

[exclusiveLBound] Upon return this holds the lower bounds of the exclusive region. exclusiveLBound must be
allocated to be of size equal to the coord dimCount. Please see Section 31.3.19 for a description of the regions
and their associated bounds and counts.

[exclusiveUBound] Upon return this holds the upper bounds of the exclusive region. exclusiveUBound must be
allocated to be of size equal to the coord dimCount. Please see Section 31.3.19 for a description of the regions
and their associated bounds and counts.

[exclusiveCount] Upon return this holds the number of items, exclusiveUBound-exclusiveLBound+1, in
the exclusive region per dimension. exclusiveCount must be allocated to be of size equal to the coord
dimCount. Please see Section 31.3.19 for a description of the regions and their associated bounds and counts.

[computationalLBound] Upon return this holds the lower bounds of the stagger region. computationalLBound
must be allocated to be of size equal to the coord dimCount. Please see Section 31.3.19 for a description of the
regions and their associated bounds and counts.

[computationalUBound] Upon return this holds the upper bounds of the stagger region. computationalUBound
must be allocated to be of size equal to the coord dimCount. Please see Section 31.3.19 for a description of the
regions and their associated bounds and counts.

[computationalCount] Upon return this holds the number of items in the computational region per dimension (i.e.
computationalUBound-computationalLBound+1). computationalCount must be allocated to
be of size equal to the coord dimCount. Please see Section 31.3.19 for a description of the regions and their
associated bounds and counts.

[totalLBound] Upon return this holds the lower bounds of the total region. totalLBound must be allocated to
be of size equal to the coord dimCount. Please see Section 31.3.19 for a description of the regions and their
associated bounds and counts.

781

[totalUBound] Upon return this holds the upper bounds of the total region. totalUBound must be allocated to
be of size equal to the coord dimCount. Please see Section 31.3.19 for a description of the regions and their
associated bounds and counts.

[totalCount] Upon return this holds the number of items in the total region per dimension (i.e.
totalUBound-totalLBound+1). totalCount must be allocated to be of size equal to the coord dim-
Count. Please see Section 31.3.19 for a description of the regions and their associated bounds and counts.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

31.6.47 ESMF_GridGetItem - Get a DE-local Fortran array pointer to Grid item data and item bounds

INTERFACE:

subroutine ESMF_GridGetItem<rank><type><kind>(grid, itemflag, &

staggerloc, localDE, farrayPtr, datacopyflag, &

exclusiveLBound, exclusiveUBound, exclusiveCount, &

computationalLBound, computationalUBound, computationalCount, &

totalLBound, totalUBound, totalCount, rc)

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid

type (ESMF_GridItem_Flag),intent(in) :: itemflag

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type (ESMF_StaggerLoc), intent(in), optional :: staggerloc

integer, intent(in), optional :: localDE

<type> (ESMF_KIND_<kind>), pointer :: farrayPtr(<rank>)

type(ESMF_DataCopy_Flag),intent(in), optional :: datacopyflag

integer, intent(out), optional :: exclusiveLBound(:)

integer, intent(out), optional :: exclusiveUBound(:)

integer, intent(out), optional :: exclusiveCount(:)

integer, intent(out), optional :: computationalLBound(:)

integer, intent(out), optional :: computationalUBound(:)

integer, intent(out), optional :: computationalCount(:)

integer, intent(out), optional :: totalLBound(:)

integer, intent(out), optional :: totalUBound(:)

integer, intent(out), optional :: totalCount(:)

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

This method gets a Fortran pointer to the piece of memory which holds the item data on the local DE for the given
stagger locations. This is useful, for example, for setting the item values in a Grid, or for reading the item values.

782

Currently this method supports up to three grid dimensions, but is limited to the I4 datatype. See below for specific
supported values. If the item values that you are trying to retrieve are of higher dimension, use the ESMF_GetItem()
interface that returns coordinate values in an ESMF_Array instead. That interface supports the retrieval of coordinates
up to 7D.

Supported values for the farrayPtr argument are:

integer(ESMF_KIND_I4), pointer :: farrayPtr(:)

integer(ESMF_KIND_I4), pointer :: farrayPtr(:,:)

integer(ESMF_KIND_I4), pointer :: farrayPtr(:,:,:)

real(ESMF_KIND_R4), pointer :: farrayPtr(:)

real(ESMF_KIND_R4), pointer :: farrayPtr(:,:)

real(ESMF_KIND_R4), pointer :: farrayPtr(:,:,:)

real(ESMF_KIND_R8), pointer :: farrayPtr(:)

real(ESMF_KIND_R8), pointer :: farrayPtr(:,:)

real(ESMF_KIND_R8), pointer :: farrayPtr(:,:,:)

The arguments are:

grid Grid to get the information from.

itemflag The item to get the information for. Please see Section 31.2.2 for a list of valid items.

[staggerloc] The stagger location to get the information for. Please see Section 31.2.6 for a list of predefined stagger
locations. If not present, defaults to ESMF_STAGGERLOC_CENTER.

[localDE] The local DE for which information is requested. [0,..,localDECount-1]. For
localDECount==1 the localDE argument may be omitted, in which case it will default to localDE=0.

farrayPtr The pointer to the item data.

[datacopyflag] If not specified, default to ESMF_DATACOPY_REFERENCE, in this case farrayPtr is a reference to
the data in the Grid item arrays. Please see Section 52.12 for further description and a list of valid values.

[exclusiveLBound] Upon return this holds the lower bounds of the exclusive region. exclusiveLBound must be
allocated to be of size equal to the grid dimCount.

[exclusiveUBound] Upon return this holds the upper bounds of the exclusive region. exclusiveUBound must be
allocated to be of size equal to the grid dimCount.

[exclusiveCount] Upon return this holds the number of items in the exclusive region per dimension (i.e.
exclusiveUBound-exclusiveLBound+1). exclusiveCount must be allocated to be of size equal
to the grid dimCount. Please see Section 31.3.19 for a description of the regions and their associated bounds
and counts.

[computationalLBound] Upon return this holds the lower bounds of the stagger region. computationalLBound
must be allocated to be of size equal to the grid dimCount. Please see Section 31.3.19 for a description of the
regions and their associated bounds and counts.

[computationalUBound] Upon return this holds the upper bounds of the stagger region. exclusiveUBound must
be allocated to be of size equal to the grid dimCount. Please see Section 31.3.19 for a description of the regions
and their associated bounds and counts.

783

[computationalCount] Upon return this holds the number of items in the computational region per dimension (i.e.
computationalUBound-computationalLBound+1). computationalCount must be allocated to
be of size equal to the grid dimCount. Please see Section 31.3.19 for a description of the regions and their
associated bounds and counts.

[totalLBound] Upon return this holds the lower bounds of the total region. totalLBound must be allocated to
be of size equal to the grid dimCount. Please see Section 31.3.19 for a description of the regions and their
associated bounds and counts.

[totalUBound] Upon return this holds the upper bounds of the total region. totalUBound must be allocated to
be of size equal to the grid dimCount. Please see Section 31.3.19 for a description of the regions and their
associated bounds and counts.

[totalCount] Upon return this holds the number of items in the total region per dimension (i.e.
totalUBound-totalLBound+1). totalCount must be allocated to be of size equal to the grid dim-
Count. Please see Section 31.3.19 for a description of the regions and their associated bounds and counts.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

31.6.48 ESMF_GridGetItem - Get a Grid item and put into an Array

INTERFACE:

! Private name; call using ESMF_GridGetItem()

subroutine ESMF_GridGetItemIntoArray(grid, itemflag, staggerloc, &

array, rc)

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid

type (ESMF_GridItem_Flag), intent(in) :: itemflag

type (ESMF_StaggerLoc), intent(in), optional :: staggerloc

type(ESMF_Array), intent(out) :: array

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

This method allows the user to get access to the ESMF Array holding item data at a particular stagger location. This
is useful, for example, to set the item values. To have an Array to access, the item Array must have already been
allocated, for example by ESMF_GridAddItem or ESMF_GridSetItem.

The arguments are:

grid Grid to get the information from.

784

itemflag The item from which to get the arrays. Please see Section 31.2.2 for a list of valid items.

[staggerloc] The stagger location from which to get the arrays. Please see Section 31.2.6 for a list of predefined
stagger locations. If not present, defaults to ESMF_STAGGERLOC_CENTER.

array An array into which to put the item information.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

31.6.49 ESMF_GridGetItem - Get information about an item at a particular stagger location

INTERFACE:

! Private name; call using ESMF_GridGetItem()

subroutine ESMF_GridGetItemInfo(grid, itemflag, &

staggerloc, isPresent, rc)

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid

type (ESMF_GridItem_Flag), intent(in) :: itemflag

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type (ESMF_StaggerLoc), intent(in), optional :: staggerloc

logical, intent(out), optional :: isPresent

integer, intent(out), optional :: rc

DESCRIPTION:

This method allows the user to get information about a given item on a given stagger.

The arguments are:

grid Grid to get the information from.

itemflag The item for which to get information. Please see Section 31.2.2 for a list of valid items.

[staggerloc] The stagger location for which to get information. Please see Section 31.2.6 for a list of predefined
stagger locations. If not present, defaults to ESMF_STAGGERLOC_CENTER.

[isPresent] If .true. then an item of type itemflag has been added to this staggerloc.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

31.6.50 ESMF_GridGetItemBounds - Get DE-local item bounds from a Grid

INTERFACE:

785

subroutine ESMF_GridGetItemBounds(grid, itemflag, &

staggerloc, localDE, &

exclusiveLBound, exclusiveUBound, exclusiveCount, &

computationalLBound, computationalUBound, computationalCount, &

totalLBound, totalUBound, totalCount, rc)

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid

type (ESMF_GridItem_Flag), intent(in) :: itemflag

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type (ESMF_StaggerLoc), intent(in), optional :: staggerloc

integer, intent(in), optional :: localDE

integer, target, intent(out), optional :: exclusiveLBound(:)

integer, target, intent(out), optional :: exclusiveUBound(:)

integer, target, intent(out), optional :: exclusiveCount(:)

integer, target, intent(out), optional :: computationalLBound(:)

integer, target, intent(out), optional :: computationalUBound(:)

integer, target, intent(out), optional :: computationalCount(:)

integer, target, intent(out), optional :: totalLBound(:)

integer, target, intent(out), optional :: totalUBound(:)

integer, target, intent(out), optional :: totalCount(:)

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

This method gets information about the range of index space which a particular piece of item data occupies. In
other words, this method returns the bounds of the item arrays. Note that unlike the output from the Array, these
values also include the undistributed dimensions and are ordered to reflect the order of the indices in the item.
So, for example, totalLBound and totalUBound should match the bounds of the Fortran array retrieved by
ESMF_GridGetItem.

The arguments are:

grid Grid to get the information from.

itemflag The item to get the information for. Please see Section 31.2.2 for a list of valid items.

[staggerloc] The stagger location to get the information for. Please see Section 31.2.6 for a list of predefined stagger
locations. If not present, defaults to ESMF_STAGGERLOC_CENTER.

[localDE] The local DE for which information is requested. [0,..,localDECount-1]. For
localDECount==1 the localDE argument may be omitted, in which case it will default to localDE=0.

[exclusiveLBound] Upon return this holds the lower bounds of the exclusive region. exclusiveLBound must be
allocated to be of size equal to the item dimCount. Please see Section 31.3.19 for a description of the regions
and their associated bounds and counts.

[exclusiveUBound] Upon return this holds the upper bounds of the exclusive region. exclusiveUBound must be
allocated to be of size equal to the item dimCount. Please see Section 31.3.19 for a description of the regions
and their associated bounds and counts.

786

[exclusiveCount] Upon return this holds the number of items, exclusiveUBound-exclusiveLBound+1, in
the exclusive region per dimension. exclusiveCount must be allocated to be of size equal to the item
dimCount. Please see Section 31.3.19 for a description of the regions and their associated bounds and counts.

[computationalLBound] Upon return this holds the lower bounds of the stagger region. computationalLBound
must be allocated to be of size equal to the item dimCount. Please see Section 31.3.19 for a description of the
regions and their associated bounds and counts.

[computationalUBound] Upon return this holds the upper bounds of the stagger region. computationalUBound
must be allocated to be of size equal to the item dimCount. Please see Section 31.3.19 for a description of the
regions and their associated bounds and counts.

[computationalCount] Upon return this holds the number of items in the computational region per dimension (i.e.
computationalUBound-computationalLBound+1). computationalCount must be allocated to
be of size equal to the item dimCount. Please see Section 31.3.19 for a description of the regions and their
associated bounds and counts.

[totalLBound] Upon return this holds the lower bounds of the total region. totalLBound must be allocated to
be of size equal to the item dimCount. Please see Section 31.3.19 for a description of the regions and their
associated bounds and counts.

[totalUBound] Upon return this holds the upper bounds of the total region. totalUBound must be allocated to
be of size equal to the item dimCount. Please see Section 31.3.19 for a description of the regions and their
associated bounds and counts.

[totalCount] Upon return this holds the number of items in the total region per dimension (i.e.
totalUBound-totalLBound+1). totalCount must be allocated to be of size equal to the item dim-
Count. Please see Section 31.3.19 for a description of the regions and their associated bounds and counts.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

31.6.51 ESMF_GridIsCreated - Check whether a Grid object has been created

INTERFACE:

function ESMF_GridIsCreated(grid, rc)

RETURN VALUE:

logical :: ESMF_GridIsCreated

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Return .true. if the grid has been created. Otherwise return .false.. If an error occurs, i.e. rc /=

ESMF_SUCCESS is returned, the return value of the function will also be .false..

The arguments are:

787

grid ESMF_Grid queried.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

31.6.52 ESMF_GridMatch - Check if two Grid objects match

INTERFACE:

function ESMF_GridMatch(grid1, grid2, globalflag, rc)

RETURN VALUE:

type(ESMF_GridMatch_Flag) :: ESMF_GridMatch

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid1

type(ESMF_Grid), intent(in) :: grid2

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: globalflag

integer, intent(out), optional :: rc

DESCRIPTION:

Check if grid1 and grid2 match. Returns a range of values of type ESMF_GridMatch indicating how closely the
Grids match. For a description of the possible return values, please see 31.2.3. Please also note that by default this
call is not collective and only returns the match for the piece of the Grids on the local PET. In this case, it is possible
for this call to return a different match on different PETs for the same Grids. To do a global match operation set the
globalflag argument to .true.. In this case, the call becomes collective across the current VM, ensuring the same
result is returned on all PETs.

The arguments are:

grid1 ESMF_Grid object.

grid2 ESMF_Grid object.

[globalflag] By default this flag is set to false. When it’s set to true, the function performs the match check globally.
In this case, the method becomes collective across the current VM.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

31.6.53 ESMF_GridSetCoord - Set coordinates using Arrays

INTERFACE:

788

subroutine ESMF_GridSetCoordFromArray(grid, coordDim, staggerloc, &

array, rc)

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid

integer, intent(in) :: coordDim

type (ESMF_StaggerLoc), intent(in), optional :: staggerloc

type(ESMF_Array), intent(in) :: array

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

This method sets the passed in Array as the holder of the coordinate data for stagger location staggerloc and coordinate
coord. This method can be used in place of ESMF_GridAddCoord(). In fact, if the Grid location already contains an
Array for this coordinate, then this one replaces it. For this method to replace ESMF_GridAddCoord() and produce
a valid set of coordinates, then this method must be used to set an Array for each coordDim ranging from 1 to the
dimCount of the passed in Grid.

The arguments are:

grid The grid to set the coord in.

coordDim The coordinate dimension to put the data in (e.g. 1=x).

[staggerloc] The stagger location into which to copy the arrays. Please see Section 31.2.6 for a list of predefined
stagger locations. If not present, defaults to ESMF_STAGGERLOC_CENTER.

array An array to set the grid coordinate information from.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

31.6.54 ESMF_GridSetItem - Set an item using an Array

INTERFACE:

! Private name; call using ESMF_GridSetItem()

subroutine ESMF_GridSetItemFromArray(grid, itemflag, staggerloc, &

array, rc)

ARGUMENTS:

789

type(ESMF_Grid), intent(in) :: grid

type (ESMF_GridItem_Flag), intent(in) :: itemflag

type (ESMF_StaggerLoc), intent(in), optional :: staggerloc

type(ESMF_Array), intent(in) :: array

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

This method sets the passed in Array as the holder of the item data for stagger location staggerloc and item
itemflag. If the location already contains an Array, then this one overwrites it. This method can be used as a
replacement for ESMF_GridAddItem().

The arguments are:

grid The grid in which to set the array.

itemflag The item into which to copy the arrays. Please see Section 31.2.2 for a list of valid items.

[staggerloc] The stagger location into which to copy the arrays. Please see Section 31.2.6 for a list of predefined
stagger locations. If not present, defaults to ESMF_STAGGERLOC_CENTER.

array An array to set the grid item information from.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

31.6.55 ESMF_GridValidate - Validate Grid internals

INTERFACE:

subroutine ESMF_GridValidate(grid, rc)

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

790

DESCRIPTION:

Validates that the Grid is internally consistent. Note that one of the checks that the Grid validate does is the Grid
status. Currently, the validate will return an error if the grid is not at least ESMF_GRIDSTATUS_COMPLETE. This
means that if a Grid was created with the ESMF_GridEmptyCreate method, it must also have been finished with
ESMF_GridEmptyComplete() to be valid. If a Grid was created with another create call it should automatically
have the correct status level to pass the status part of the validate. The Grid validate at this time doesn’t check for the
presence or consistency of the Grid coordinates. The method returns an error code if problems are found.

The arguments are:

grid Specified ESMF_Grid object.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

31.7 Class API: StaggerLoc Methods

31.7.1 ESMF_StaggerLocGet - Get the value of one dimension of a StaggerLoc

INTERFACE:

! Private name; call using ESMF_StaggerLocGet()

subroutine ESMF_StaggerLocGetDim(staggerloc, dim, loc, &

rc)

ARGUMENTS:

type (ESMF_StaggerLoc), intent(in) :: staggerloc

integer, intent(in) :: dim

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, optional, intent(out) :: loc

integer, optional :: rc

DESCRIPTION:

Gets the position of a particular dimension of a cell staggerloc The argument loc will be only be 0,1. If loc is
0 it means the position should be in the center in that dimension. If loc is +1 then for the dimension, the position
should be on the positive side of the cell. Please see Section 31.3.25 for diagrams.

The arguments are:

staggerloc Stagger location for which to get information.

dim Dimension for which to get information (1-7).

[loc] Output position data (should be either 0,1).

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

791

31.7.2 ESMF_StaggerLocSet - Set a StaggerLoc to a particular position in the cell

INTERFACE:

! Private name; call using ESMF_StaggerLocSet()

subroutine ESMF_StaggerLocSetAllDim(staggerloc, loc, rc)

ARGUMENTS:

type (ESMF_StaggerLoc), intent(inout) :: staggerloc

integer, intent(in) :: loc(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Sets a custom staggerloc to a position in a cell by using the array loc. The values in the array should only be 0,1.
If loc(i) is 0 it ! means the position should be in the center in that dimension. If loc(i) is 1 then for dimension i, the
position should be on the side of the cell. Please see Section 31.3.25 for diagrams and further discussion of custom
stagger locations.

The arguments are:

staggerloc Grid location to be initialized

loc Array holding position data. Each entry in loc should only be 0 or 1. note that dimensions beyond those specified
are set to 0.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

31.7.3 ESMF_StaggerLocSet - Set one dimension of a StaggerLoc to a particular position

INTERFACE:

! Private name; call using ESMF_StaggerLocSet()

subroutine ESMF_StaggerLocSetDim(staggerloc, dim, loc, &

rc)

ARGUMENTS:

792

type (ESMF_StaggerLoc), intent(inout) :: staggerloc

integer, intent(in) :: dim

integer, intent(in) :: loc

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Sets a particular dimension of a custom staggerloc to a position in a cell by using the variable loc. The variable
loc should only be 0,1. If loc is 0 it means the position should be in the center in that dimension. If loc is +1 then
for the dimension, the position should be on the positive side of the cell. Please see Section 31.3.25 for diagrams and
further discussion of custom stagger locations.

The arguments are:

staggerloc Stagger location to be initialized

dim Dimension to be changed (1-7).

loc Position data should be either 0,1.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

31.7.4 ESMF_StaggerLocString - Return a StaggerLoc as a string

INTERFACE:

subroutine ESMF_StaggerLocString(staggerloc, string, &

rc)

ARGUMENTS:

type(ESMF_StaggerLoc), intent(in) :: staggerloc

character (len = *), intent(out) :: string

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, optional, intent(out) :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

793

DESCRIPTION:

Return an ESMF_StaggerLoc as a printable string.

The arguments are:

staggerloc The ESMF_StaggerLoc to be turned into a string.

string Return string.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

31.7.5 ESMF_StaggerLocPrint - Print StaggerLoc information

INTERFACE:

subroutine ESMF_StaggerLocPrint(staggerloc, rc)

ARGUMENTS:

type (ESMF_StaggerLoc), intent(in) :: staggerloc

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, optional, intent(out) :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Print the internal data members of an ESMF_StaggerLoc object.

The arguments are:

staggerloc ESMF_StaggerLoc object as the method input

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

32 LocStream Class

32.1 Description

A location stream (LocStream) can be used to represent the locations of a set of data points. For example, in the data

assimilation world, LocStreams can be used to represent a set of observations. The values of the data points are stored

within a Field or FieldBundle created using the LocStream.

794

The locations are generally described using Cartesian (x, y, z), or (lat, lon, radius) coordinates. The coordinates are

stored using constructs called keys. A Key is essentially a list of point descriptors, one for each data point. They may

hold other information besides the coordinates - a mask, for example. They may also hold a second set of coordinates.

Keys are referenced by name - see 32.2.1 and 32.2.2 for specific keynames required in regridding. Each key must

contain the same number of elements as there are data points in the LocStream. While there is no assumption in the

ordering of the points, the order chosen must be maintained in each of the keys.

LocStreams can be very large. Data assimilation systems might use LocStreams with up to 108 observations, so

efficiency is critical. LocStreams can be created from file, see 32.4.14.

Common operations involving LocStreams are similar to those involving Grids. For example, LocStreams allow users

to:

1. Create a Field or FieldBundle on a LocStream

2. Regrid data in Fields defined on LocStreams

3. Redistribute data between Fields defined on LocStreams

4. Gather or scatter a FieldBundle defined on a LocStream from/to a root DE

5. Extract Fortran array from Field which was defined on a LocStream

A LocStream differs from a Grid in that no topological structure is maintained between the points (e.g. the class

contains no information about which point is the neighbor of which other point).

A LocStream is similar to a Mesh in that both are collections of irregularly positioned points. However, the two

structures differ because a Mesh also has connectivity: each data point represents either a center or corner of a cell.

There is no requirement that the points in a LocStream have connectivity, in fact there is no requirement that any two

points have any particular spatial relationship at all.

32.2 Constants

32.2.1 Coordinate keyNames

DESCRIPTION:

For ESMF to be able to use coordinates specified in a LocStream key (e.g. in regridding) they need to be named with

the appropriate identifiers. The particular identifiers depend on the coordinate system (i.e. coordSys argument) used to

create the LocStream containing the keys. ESMF regridding expects these keys to be of type ESMF_TYPEKIND_R8.

The valid values are:

Coordinate System dimension 1 dimension 2 dimension 3 (if used)

ESMF_COORDSYS_SPH_DEG ESMF:Lon ESMF:Lat ESMF:Radius

ESMF_COORDSYS_SPH_RAD ESMF:Lon ESMF:Lat ESMF:Radius

ESMF_COORDSYS_CART ESMF:X ESMF:Y ESMF:Z

32.2.2 Masking keyName

DESCRIPTION:

Points within a LocStream can be marked and then potentially ignored during certain operations, like regridding. This

masking information must be contained in a key named with the appropriate identifier. ESMF regridding expects this

key to be of type ESMF_TYPEKIND_I4.

795

The valid value is:

ESMF:Mask

32.3 Use and Examples

32.3.1 Create a LocStream with user allocated memory

The following is an example of creating a LocStream object. After creation, key data is added, and a Field is created
to hold data (temperature) at each location.

!---

! Get parallel information. Here petCount is the total number of

! running PETs, and localPet is the number of this particular PET.

!---

call ESMF_VMGet(vm, localPet=localPet, petCount=petCount, rc=rc)

!---

! Allocate and set example location information. Locations on a PET

! are wrapped around sphere. Each PET occupies a different latitude

! ranging from +50.0 to -50.0.

!---

numLocations = 20

allocate(lon(numLocations))

allocate(lat(numLocations))

do i=1,numLocations

lon(i)=360.0*i/numLocations

lat(i)=100*REAL(localPet,ESMF_KIND_R8)/REAL(petCount,ESMF_KIND_R8)-50.0

enddo

!---

! Allocate and set example Field data

!---

allocate(temperature(numLocations))

do i=1,numLocations

temperature(i)= 300 - abs(lat(i))

enddo

!---

! Create the LocStream: Allocate space for the LocStream object,

! define the number and distribution of the locations.

!---

locstream=ESMF_LocStreamCreate(name="Temperature Measurements", &

localCount=numLocations, &

coordSys=ESMF_COORDSYS_SPH_DEG, &

rc=rc)

796

!---

! Add key data, referencing a user data pointer. By changing the

! datacopyflag to ESMF_DATACOPY_VALUE an internally allocated copy of the

! user data may also be set.

!---

call ESMF_LocStreamAddKey(locstream, &

keyName="ESMF:Lat", &

farray=lat, &

datacopyflag=ESMF_DATACOPY_REFERENCE, &

keyUnits="Degrees", &

keyLongName="Latitude", rc=rc)

call ESMF_LocStreamAddKey(locstream, &

keyName="ESMF:Lon", &

farray=lon, &

datacopyflag=ESMF_DATACOPY_REFERENCE, &

keyUnits="Degrees", &

keyLongName="Longitude", rc=rc)

!---

! Create a Field on the Location Stream. In this case the

! Field is created from a user array, but any of the other

! Field create methods (e.g. from ArraySpec) would also apply.

!---

field_temperature=ESMF_FieldCreate(locstream, &

temperature, &

name="temperature", &

rc=rc)

32.3.2 Create a LocStream with internally allocated memory

The following is an example of creating a LocStream object. After creation, key data is internally allocated, the pointer
is retrieved, and the data is set. A Field is also created on the LocStream to hold data (temperature) at each location.

!---

! Get parallel information. Here petCount is the total number of

! running PETs, and localPet is the number of this particular PET.

!---

call ESMF_VMGet(vm, localPet=localPet, petCount=petCount, rc=rc)

numLocations = 20

797

!---

! Create the LocStream: Allocate space for the LocStream object,

! define the number and distribution of the locations.

!---

locstream=ESMF_LocStreamCreate(name="Temperature Measurements", &

localCount=numLocations, &

coordSys=ESMF_COORDSYS_SPH_DEG, &

rc=rc)

!---

! Add key data (internally allocating memory).

!---

call ESMF_LocStreamAddKey(locstream, &

keyName="ESMF:Lat", &

KeyTypeKind=ESMF_TYPEKIND_R8, &

keyUnits="Degrees", &

keyLongName="Latitude", rc=rc)

call ESMF_LocStreamAddKey(locstream, &

keyName="ESMF:Lon", &

KeyTypeKind=ESMF_TYPEKIND_R8, &

keyUnits="Degrees", &

keyLongName="Longitude", rc=rc)

!---

! Get key data.

!---

call ESMF_LocStreamGetKey(locstream, &

keyName="ESMF:Lat", &

farray=lat, &

rc=rc)

call ESMF_LocStreamGetKey(locstream, &

keyName="ESMF:Lon", &

farray=lon, &

rc=rc)

!---

! Set example location information. Locations on a PET are wrapped

! around sphere. Each PET occupies a different latitude ranging

798

! from +50.0 to -50.0.

!---

do i=1,numLocations

lon(i)=360.0*i/numLocations

lat(i)=100*REAL(localPet,ESMF_KIND_R8)/REAL(petCount,ESMF_KIND_R8)-50.0

enddo

!---

! Allocate and set example Field data

!---

allocate(temperature(numLocations))

do i=1,numLocations

temperature(i)= 300 - abs(lat(i))

enddo

!---

! Create a Field on the Location Stream. In this case the

! Field is created from a user array, but any of the other

! Field create methods (e.g. from ArraySpec) would also apply.

!---

field_temperature=ESMF_FieldCreate(locstream, &

temperature, &

name="temperature", &

rc=rc)

32.3.3 Create a LocStream with a distribution based on a Grid

The following is an example of using the LocStream create from background Grid capability. Using this capability,
the newly created LocStream is a copy of the old LocStream, but with a new distribution. The new LocStream is
distributed such that if the coordinates of a location in the LocStream lie within a Grid cell, then that location is put on
the same PET as the Grid cell.

!---

! Get parallel information. Here petCount is the total number of

! running PETs, and localPet is the number of this particular PET.

!---

call ESMF_VMGet(vm, localPet=localPet, petCount=petCount, rc=rc)

!---

! Create the LocStream: Allocate space for the LocStream object,

! define the number and distribution of the locations.

!---

numLocations = 20

locstream=ESMF_LocStreamCreate(name="Temperature Measurements", &

localCount=numLocations, &

coordSys=ESMF_COORDSYS_SPH_DEG, &

rc=rc)

799

!---

! Add key data (internally allocating memory).

!---

call ESMF_LocStreamAddKey(locstream, &

keyName="ESMF:Lon", &

KeyTypeKind=ESMF_TYPEKIND_R8, &

keyUnits="Degrees", &

keyLongName="Longitude", rc=rc)

call ESMF_LocStreamAddKey(locstream, &

keyName="ESMF:Lat", &

KeyTypeKind=ESMF_TYPEKIND_R8, &

keyUnits="Degrees", &

keyLongName="Latitude", rc=rc)

!---

! Get Fortran arrays which hold the key data, so that it can be set.

!---

call ESMF_LocStreamGetKey(locstream, &

keyName="ESMF:Lon", &

farray=lon, &

rc=rc)

call ESMF_LocStreamGetKey(locstream, &

keyName="ESMF:Lat", &

farray=lat, &

rc=rc)

!---

! Set example location information. Locations on a PET are wrapped

! around sphere. Each PET occupies a different latitude ranging

! from +50.0 to -50.0.

!---

do i=1,numLocations

lon(i)=360.0*i/numLocations

lat(i)=100*REAL(localPet,ESMF_KIND_R8)/REAL(petCount,ESMF_KIND_R8)-50.0

enddo

800

!---

! Create a Grid to use as the background. The Grid is

! GridLonSize by GridLatSize with the default distribution

! (The first dimension split across the PETs). The coordinate range

! is 0 to 360 in longitude and -90 to 90 in latitude. Note that we

! use indexflag=ESMF_INDEX_GLOBAL for the Grid creation. At this time

! this is required for a Grid to be usable as a background Grid.

! Note that here the points are treated as cartesian.

!---

grid=ESMF_GridCreateNoPeriDim(maxIndex=(/GridLonSize,GridLatSize/), &

coordSys=ESMF_COORDSYS_SPH_DEG, &

indexflag=ESMF_INDEX_GLOBAL, &

rc=rc)

!---

! Allocate the corner stagger location in which to put the coordinates.

! (The corner stagger must be used for the Grid to be usable as a

! background Grid.)

!---

call ESMF_GridAddCoord(grid, staggerloc=ESMF_STAGGERLOC_CORNER, rc=rc)

!---

! Get access to the Fortran array pointers that hold the Grid

! coordinate information and then set the coordinates to be uniformly

! distributed around the globe.

!---

call ESMF_GridGetCoord(grid, &

staggerLoc=ESMF_STAGGERLOC_CORNER, &

coordDim=1, computationalLBound=clbnd, &

computationalUBound=cubnd, &

farrayPtr=farrayPtrLonC, rc=rc)

call ESMF_GridGetCoord(grid, &

staggerLoc=ESMF_STAGGERLOC_CORNER, &

coordDim=2, farrayPtr=farrayPtrLatC, rc=rc)

do i1=clbnd(1),cubnd(1)

do i2=clbnd(2),cubnd(2)

! Set Grid longitude coordinates as 0 to 360

farrayPtrLonC(i1,i2) = REAL(i1-1)*360.0/REAL(GridLonSize)

! Set Grid latitude coordinates as -90 to 90

farrayPtrLatC(i1,i2) = -90. + REAL(i2-1)*180.0/REAL(GridLatSize) + &

801

0.5*180.0/REAL(GridLatSize)

enddo

enddo

!---

! Create newLocstream on the background Grid using the

! "Lon" and "Lat" keys as the coordinates for the entries in

! locstream. The entries in newLocstream with coordinates (lon,lat)

! are on the same PET as the piece of grid which contains (lon,lat).

!---

newLocstream=ESMF_LocStreamCreate(locstream, &

background=grid, rc=rc)

!---

! A Field can now be created on newLocstream and

! ESMF_FieldRedist() can be used to move data between Fields built

! on locstream and Fields built on newLocstream.

!---

32.3.4 Regridding from a Grid to a LocStream

The following is an example of how a LocStream object can be used in regridding.

!---

! Create a global Grid to use as the regridding source. The Grid is

! GridLonSize by GridLatSize with the default distribution

! (The first dimension split across the PETs). The coordinate range

! is 0 to 360 in longitude and -90 to 90 in latitude. Note that we

! use indexflag=ESMF_INDEX_GLOBAL for the Grid creation to calculate

! coordinates across PETs.

!---

grid=ESMF_GridCreate1PeriDim(maxIndex=(/GridLonSize,GridLatSize/), &

coordSys=ESMF_COORDSYS_SPH_DEG, &

indexflag=ESMF_INDEX_GLOBAL, &

rc=rc)

!---

! Allocate the center stagger location in which to put the coordinates.

!---

call ESMF_GridAddCoord(grid, staggerloc=ESMF_STAGGERLOC_CENTER, rc=rc)

!---

! Get access to the Fortran array pointers that hold the Grid

! coordinate information.

!---

! Longitudes

call ESMF_GridGetCoord(grid, &

staggerLoc=ESMF_STAGGERLOC_CENTER, &

802

coordDim=1, computationalLBound=clbnd, &

computationalUBound=cubnd, &

farrayPtr=farrayPtrLonC, rc=rc)

! Latitudes

call ESMF_GridGetCoord(grid, &

staggerLoc=ESMF_STAGGERLOC_CENTER, &

coordDim=2, computationalLBound=clbnd, &

computationalUBound=cubnd, &

farrayPtr=farrayPtrLatC, rc=rc)

!---

! Create a source Field to hold the data to be regridded to the

! destination

!---

srcField = ESMF_FieldCreate(grid, typekind=ESMF_TYPEKIND_R8, &

staggerloc=ESMF_STAGGERLOC_CENTER, &

name="source", rc=rc)

!---

! Set the Grid coordinates to be uniformly distributed around the globe.

!---

do i1=clbnd(1),cubnd(1)

do i2=clbnd(2),cubnd(2)

! Set Grid longitude coordinates as 0 to 360

farrayPtrLonC(i1,i2) = REAL(i1-1)*360.0/REAL(GridLonSize)

! Set Grid latitude coordinates as -90 to 90

farrayPtrLatC(i1,i2) = -90. + REAL(i2-1)*180.0/REAL(GridLatSize) + &

0.5*180.0/REAL(GridLatSize)

enddo

enddo

!---

! Set the number of points the destination LocStream will have

! depending on the PET.

!---

if (petCount .eq. 1) then

numLocationsOnThisPet=7

else

if (localpet .eq. 0) then

numLocationsOnThisPet=2

else if (localpet .eq. 1) then

numLocationsOnThisPet=2

else if (localpet .eq. 2) then

numLocationsOnThisPet=2

else if (localpet .eq. 3) then

numLocationsOnThisPet=1

803

endif

endif

!---

! Create the LocStream: Allocate space for the LocStream object,

! define the number of locations on this PET.

!---

locstream=ESMF_LocStreamCreate(name="Test Data", &

localCount=numLocationsOnThisPet, &

coordSys=ESMF_COORDSYS_SPH_DEG, &

rc=rc)

!---

! Add key data to LocStream(internally allocating memory).

!---

call ESMF_LocStreamAddKey(locstream, &

keyName="ESMF:Lat", &

KeyTypeKind=ESMF_TYPEKIND_R8, &

keyUnits="degrees", &

keyLongName="Latitude", rc=rc)

call ESMF_LocStreamAddKey(locstream, &

keyName="ESMF:Lon", &

KeyTypeKind=ESMF_TYPEKIND_R8, &

keyUnits="degrees", &

keyLongName="Longitude", rc=rc)

!---

! Get access to the Fortran array pointers that hold the key data.

!---

! Longitudes

call ESMF_LocStreamGetKey(locstream, &

keyName="ESMF:Lon", &

farray=lonArray, &

rc=rc)

! Latitudes

call ESMF_LocStreamGetKey(locstream, &

keyName="ESMF:Lat", &

farray=latArray, &

rc=rc)

!---

! Set coordinates in key arrays depending on the PET.

! For this example use an arbitrary set of points around globe.

!---

if (petCount .eq. 1) then

804

latArray = (/-87.75, -56.25, -26.5, 0.0, 26.5, 56.25, 87.75 /)

lonArray = (/51.4, 102.8, 154.2, 205.6, 257.0, 308.4, 359.8 /)

else

if (localpet .eq. 0) then

latArray = (/ -87.75, -56.25 /)

lonArray = (/ 51.4, 102.8 /)

else if (localpet .eq.1) then

latArray = (/ -26.5, 0.0 /)

lonArray = (/ 154.2, 205.6 /)

else if (localpet .eq.2) then

latArray = (/ 26.5, 56.25 /)

lonArray = (/ 257.0, 308.4 /)

else if (localpet .eq.3) then

latArray = (/ 87.75 /)

lonArray = (/ 359.8 /)

endif

endif

!---

! Create the destination Field on the LocStream to hold the

! result of the regridding.

!---

dstField = ESMF_FieldCreate(locstream, typekind=ESMF_TYPEKIND_R8, &

name="dest", rc=rc)

!---

! Calculate the RouteHandle that represents the regridding from

! the source to destination Field using the Bilinear regridding method.

!---

call ESMF_FieldRegridStore(srcField=srcField, &

dstField=dstField, &

routeHandle=routeHandle, &

regridmethod=ESMF_REGRIDMETHOD_BILINEAR, &

rc=rc)

!---

! Regrid from srcField to dstField

!---

! Can loop here regridding from srcField to dstField as src data changes

! do i=1,...

! (Put data into srcField)

!---

! Use the RouteHandle to regrid data from srcField to dstField.

!---

call ESMF_FieldRegrid(srcField, dstField, routeHandle, rc=rc)

! (Can now use the data in dstField)

805

! enddo

!---

! Now that we are done, release the RouteHandle freeing its memory.

!---

call ESMF_FieldRegridRelease(routeHandle, rc=rc)

32.4 Class API

32.4.1 ESMF_LocStreamAssignment(=) - LocStream assignment

INTERFACE:

interface assignment(=)

locstream1 = locstream2

ARGUMENTS:

type(ESMF_LocStream) :: locstream1

type(ESMF_LocStream) :: locstream2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Assign locstream1 as an alias to the same ESMF LocStream object in memory as locstream2. If locstream2 is invalid,
then locstream1 will be equally invalid after the assignment.

The arguments are:

locstream1 The ESMF_LocStream object on the left hand side of the assignment.

locstream2 The ESMF_LocStream object on the right hand side of the assignment.

32.4.2 ESMF_LocStreamOperator(==) - LocStream equality operator

INTERFACE:

interface operator(==)

if (locstream1 == locstream2) then ... endif

OR

result = (locstream1 == locstream2)

806

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_LocStream), intent(in) :: locstream1

type(ESMF_LocStream), intent(in) :: locstream2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Test whether locstream1 and locstream2 are valid aliases to the same ESMF LocStream object in memory. For a more
general comparison of two ESMF LocStreams, going beyond the simple alias test, the ESMF_LocStreamMatch()
function (not yet implemented) must be used.

The arguments are:

locstream1 The ESMF_LocStream object on the left hand side of the equality operation.

locstream2 The ESMF_LocStream object on the right hand side of the equality operation.

32.4.3 ESMF_LocStreamOperator(/=) - LocStream not equal operator

INTERFACE:

interface operator(/=)

if (locstream1 /= locstream2) then ... endif

OR

result = (locstream1 /= locstream2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_LocStream), intent(in) :: locstream1

type(ESMF_LocStream), intent(in) :: locstream2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

807

DESCRIPTION:

Test whether locstream1 and locstream2 are not valid aliases to the same ESMF LocStream object in memory. For a
more general comparison of two ESMF LocStreams, going beyond the simple alias test, the ESMF_LocStreamMatch()
function (not yet implemented) must be used.

The arguments are:

locstream1 The ESMF_LocStream object on the left hand side of the non-equality operation.

locstream2 The ESMF_LocStream object on the right hand side of the non-equality operation.

32.4.4 ESMF_LocStreamAddKey - Add a key Array and allocate the internal memory

INTERFACE:

! Private name; call using ESMF_LocStreamAddKey()

subroutine ESMF_LocStreamAddKeyAlloc(locstream, keyName, &

keyTypeKind, keyUnits, keyLongName, rc)

ARGUMENTS:

type(ESMF_Locstream), intent(in) :: locstream

character (len=*), intent(in) :: keyName

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_TypeKind_Flag), intent(in), optional :: keyTypeKind

character (len=*), intent(in), optional :: keyUnits

character (len=*), intent(in), optional :: keyLongName

integer, intent(out), optional :: rc

DESCRIPTION:

Add a key to a locstream with a required keyName. Once a key has been added, a pointer to its internally allocated
memory can be retrieved and used to set key values.

The arguments are:

locstream The ESMF_LocStream object to add key to.

keyName The name of the key to add.

[keyTypeKind] The type/kind of the key data. If not specified then the type/kind will default to 8 byte reals.

[keyUnits] The units of the key data. If not specified, then the item remains blank.

[keyLongName] The long name of the key data. If not specified, then the item remains blank.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

808

32.4.5 ESMF_LocStreamAddKey - Add a key Array

INTERFACE:

! Private name; call using ESMF_LocStreamAddKey()

subroutine ESMF_LocStreamAddKeyArray(locstream, keyName, keyArray, &

destroyKey, keyUnits, keyLongName, rc)

ARGUMENTS:

type(ESMF_Locstream), intent(in) :: locstream

character (len=*), intent(in) :: keyName

type(ESMF_Array), intent(in) :: keyArray

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: destroyKey

character (len=*), intent(in), optional :: keyUnits

character (len=*), intent(in), optional :: keyLongName

integer, intent(out), optional :: rc

DESCRIPTION:

Add a key to a locstream with a required keyName and a required ESMF_Array. The user is responsible for the
creation of the ESMF_Array that will hold the key values.

The arguments are:

locstream The ESMF_LocStream object to add key to.

keyName The name of the key to add.

keyArray An ESMF Array which contains the key data

[destroyKey] if .true. destroy this key array when the locstream is destroyed. Defaults to .false.

[keyUnits] The units of the key data. If not specified, then the item remains blank.

[keyLongName] The long name of the key data. If not specified, then the item remains blank.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

32.4.6 ESMF_LocStreamAddKey - Add a key Array created around user memory

INTERFACE:

! Private name; call using ESMF_LocStreamAddKey()

subroutine ESMF_LocStreamAddKeyI4(locstream, keyName, farray, &

datacopyflag, keyUnits, keyLongName, rc)

ARGUMENTS:

809

type(ESMF_Locstream), intent(in) :: locstream

character (len=*), intent(in) :: keyName

<farray>

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_DataCopy_Flag), intent(in), optional :: datacopyflag

character (len=*), intent(in), optional :: keyUnits

character (len=*), intent(in), optional :: keyLongName

integer, intent(out), optional :: rc

DESCRIPTION:

Add a key to a locstream with a required keyName and a required Fortran array. The user is responsible for the creation
of the Fortran array that will hold the key values, including the maintenance of any allocated memory.

Supported values for <farray> are:

integer(ESMF_KIND_I4), intent(in) :: farray(:)

real(ESMF_KIND_R4), intent(in) :: farray(:)

real(ESMF_KIND_R8), intent(in) :: farray(:)

The arguments are:

locstream The ESMF_LocStream object to add key to.

keyName The name of the key to add.

farray Valid native Fortran array, i.e. memory must be associated with the actual argument. The type/kind/rank
information of farray will be used to set the key Array’s properties accordingly.

[datacopyflag] Specifies whether the Array object will reference the memory allocation provided by farray

directly or will copy the data from farray into a new memory allocation. Valid options are !
ESMF_DATACOPY_REFERENCE (default) or ESMF_DATACOPY_VALUE. Depending on the specific situa-
tion the ESMF_DATACOPY_REFERENCE option may be unsafe when specifying an array slice for farray.

[keyUnits] The units of the key data. If not specified, then the item remains blank.

[keyLongName] The long name of the key data. If not specified, then the item remains blank.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

32.4.7 ESMF_LocStreamCreate - Create a new LocStream by projecting onto a Grid

INTERFACE:

! Private name; call using ESMF_LocStreamCreate()

function ESMF_LocStreamCreateByBkgGrid(locstream, &

background, maskValues, &

unmappedaction, name, rc)

810

RETURN VALUE:

type(ESMF_LocStream) :: ESMF_LocStreamCreateByBkgGrid

ARGUMENTS:

type(ESMF_LocStream), intent(in) :: locstream

type(ESMF_Grid), intent(in) :: background

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer(ESMF_KIND_I4), intent(in), optional :: maskValues(:)

type(ESMF_UnmappedAction_Flag), intent(in), optional :: unmappedaction

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

Create an location stream from an existing one in accordance with the distribution of the background Grid. The
entries in the new location stream are redistributed, so that they lie on the same PET as the piece of Grid which
contains the coordinates of the entries. The coordinates of the entries are the data in the keys named ESMF:Lon,
ESMF:Lat, ESMF:Radius in the case of a spherical system and ESMF:X, ESMF:Y, ESMF:Z for cartesian. To
copy data in Fields or FieldBundles built on locstream to the new one simply use ESMF_FieldRedist()

or ESMF_FieldBundleRedist().

The arguments are:

locstream Location stream from which the new location stream is to be created

background Background Grid which determines the distribution of the entries in the new location stream.
The background Grid Note also that this subroutine uses the corner stagger location in the Grid for de-
termining where a point lies, because this is the stagger location which fully contains the cell. A
Grid must have coordinate data in this stagger location to be used in this subroutine. For a 2D
Grid this stagger location is ESMF_STAGGERLOC_CORNER for a 3D Grid this stagger location is
ESMF_STAGGERLOC_CORNER_VFACE. Note that currently the background Grid also needs to have been
created with indexflag=ESMF_INDEX_GLOBAL to be usable here.

[maskValues] List of values that indicate a background grid point should be masked out. If not specified, no masking
will occur.

[unmappedaction] Specifies what should happen if there are destination points that can’t be
mapped to a source cell. Please see Section 52.60 for a list of valid options. If not
specified, unmappedaction defaults to ESMF_UNMAPPEDACTION_ERROR. [NOTE: the
unmappedaction=ESMF_UNMAPPEDACTION_IGNORE option is currently not implemented.]

[name] Name of the resulting location stream

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

32.4.8 ESMF_LocStreamCreate - Create a new LocStream by projecting onto a Mesh

INTERFACE:

811

! Private name; call using ESMF_LocStreamCreate()

function ESMF_LocStreamCreateByBkgMesh(locstream, &

background, unmappedaction, name, rc)

RETURN VALUE:

type(ESMF_LocStream) :: ESMF_LocStreamCreateByBkgMesh

ARGUMENTS:

type(ESMF_LocStream), intent(in) :: locstream

type(ESMF_Mesh), intent(in) :: background

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_UnmappedAction_Flag), intent(in), optional :: unmappedaction

character (len=*), intent(in), optional :: name

integer, intent(out),optional :: rc

DESCRIPTION:

Create an location stream from an existing one in accordance with the distribution of the background Mesh. The
entries in the new location stream are redistributed, so that they lie on the same PET as the piece of Mesh which
contains the coordinates of the entries. The coordinates of the entries are the data in the keys named ESMF:Lon,
ESMF:Lat, ESMF:Radius in the case of a spherical system and ESMF:X, ESMF:Y, ESMF:Z for cartesian. To
copy data in Fields or FieldBundles built on locstream to the new one simply use ESMF_FieldRedist()

or ESMF_FieldBundleRedist().

The arguments are:

locstream Location stream from which the new location stream is to be created

background Background Mesh which determines the distribution of entries in the new locatiion stream.

[unmappedaction] Specifies what should happen if there are destination points that can’t be
mapped to a source cell. Please see Section 52.60 for a list of valid options. If not
specified, unmappedaction defaults to ESMF_UNMAPPEDACTION_ERROR. [NOTE: the
unmappedaction=ESMF_UNMAPPEDACTION_IGNORE option is currently not implemented.]

[name] Name of the resulting location stream

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

32.4.9 ESMF_LocStreamCreate - Create a new LocStream from a distgrid

INTERFACE:

! Private name: call using ESMF_LocStreamCreate()

function ESMF_LocStreamCreateFromDG(distgrid, &

indexflag, coordSys, name, vm, rc)

812

RETURN VALUE:

type(ESMF_LocStream) :: ESMF_LocStreamCreateFromDG

ARGUMENTS:

type(ESMF_DistGrid), intent(in) :: distgrid

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Index_Flag), intent(in), optional :: indexflag

type(ESMF_CoordSys_Flag), intent(in), optional :: coordSys

character (len=*), intent(in), optional :: name

type(ESMF_VM), intent(in), optional :: vm

integer, intent(out), optional :: rc

DESCRIPTION:

Allocates memory for a new ESMF_LocStream object, constructs its internal derived types.

The arguments are:

distgrid Distgrid specifying size and distribution. Only 1D distgrids are allowed.

[indexflag] Flag that indicates how the DE-local indices are to be defined. Defaults to ESMF_INDEX_DELOCAL,
which indicates that the index range on each DE starts at 1. See Section 52.27 for the full range of options.

[coordSys] The coordinate system of the location stream coordinate data. For a full list of options, please see Sec-
tion 52.11. If not specified then defaults to ESMF_COORDSYS_SPH_DEG.

[name] Name of the location stream

[vm] If present, the LocStream object is created on the specified ESMF_VM object. The default is to create on the VM
of the current context.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

32.4.10 ESMF_LocStreamCreate - Create a new LocStream from an irregular distribution

INTERFACE:

! Private name: call using ESMF_LocStreamCreate()

function ESMF_LocStreamCreateIrreg(minIndex, countsPerDE, &

indexflag, coordSys, name, rc)

RETURN VALUE:

type(ESMF_LocStream) :: ESMF_LocStreamCreateIrreg

ARGUMENTS:

813

integer, intent(in), optional :: minIndex

integer, intent(in) :: countsPerDE(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Index_Flag), intent(in), optional :: indexflag

type(ESMF_CoordSys_Flag), intent(in), optional :: coordSys

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

Allocates memory for a new ESMF_LocStream object, constructs its internal derived types. The ESMF_DistGrid
is set up, indicating how the LocStream is distributed.

The arguments are:

[minIndex] If indexflag=ESMF_INDEX_DELOCAL, this setting is used to indicate the number to start the index
ranges at. If not present, defaults to 1.

countsPerDE This array has an element for each DE, specifying the number of locations for that DE.

[indexflag] Flag that indicates how the DE-local indices are to be defined. Defaults to ESMF_INDEX_DELOCAL,
which indicates that the index range on each DE starts at 1. See Section 52.27 for the full range of options.

[coordSys] The coordinate system of the location stream coordinate data. For a full list of options, please see Sec-
tion 52.11. If not specified then defaults to ESMF_COORDSYS_SPH_DEG.

[name] Name of the location stream

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

32.4.11 ESMF_LocStreamCreate - Create a new LocStream from a local count

INTERFACE:

! Private name: call using ESMF_LocStreamCreate()

function ESMF_LocStreamCreateFromLocal(localCount, &

indexflag, coordSys, name, rc)

RETURN VALUE:

type(ESMF_LocStream) :: ESMF_LocStreamCreateFromLocal

ARGUMENTS:

integer, intent(in) :: localCount

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Index_Flag), intent(in), optional :: indexflag

type(ESMF_CoordSys_Flag), intent(in), optional :: coordSys

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

814

DESCRIPTION:

Allocates memory for a new ESMF_LocStream object, constructs its internal derived types. The ESMF_DistGrid
is set up, indicating how the LocStream is distributed. The assumed layout is one DE per PET.

The arguments are:

localCount Number of grid cells to be distributed to this DE/PET.

[indexflag] Flag that indicates how the DE-local indices are to be defined. Defaults to ESMF_INDEX_DELOCAL,
which indicates that the index range on each DE starts at 1. See Section 52.27 for the full range of options.

[coordSys] The coordinate system of the location stream coordinate data. For a full list of options, please see Sec-
tion 52.11. If not specified then defaults to ESMF_COORDSYS_SPH_DEG.

[name] Name of the location stream

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

32.4.12 ESMF_LocStreamCreate - Create a new LocStream from an old one and a distgrid

INTERFACE:

! Private name: call using ESMF_LocStreamCreate()

function ESMF_LocStreamCreateFromNewDG(locstream, distgrid, &

name, rc)

RETURN VALUE:

type(ESMF_LocStream) :: ESMF_LocStreamCreateFromNewDG

ARGUMENTS:

type(ESMF_LocStream), intent(in) :: locstream

type(ESMF_DistGrid), intent(in) :: distgrid

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

Create a new location stream that is a copy of an old one, but with a new distribution. The new distribution is given
by a distgrid passed into the call. Key and other class information is copied from the old locstream to the new one.
Information contained in Fields build on the location streams can be copied over by using the Field redistribution calls
(e.g. ESMF_FieldRedistStore() and ESMF_FieldRedist()).

The arguments are:

815

locstream Location stream from which the new location stream is to be created

distgrid Distgrid for new distgrid

[name] Name of the resulting location stream

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

32.4.13 ESMF_LocStreamCreate - Create a new LocStream using a regular distribution

INTERFACE:

! Private name: call using ESMF_LocStreamCreate()

function ESMF_LocStreamCreateReg(regDecomp, decompFlag, &

minIndex, maxIndex, &

coordSys, indexflag, name, rc)

RETURN VALUE:

type(ESMF_LocStream) :: ESMF_LocStreamCreateReg

ARGUMENTS:

integer, intent(in), optional :: regDecomp

type(ESMF_Decomp_Flag), intent(in), optional :: decompflag

integer, intent(in), optional :: minIndex

integer, intent(in) :: maxIndex

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_CoordSys_Flag), intent(in), optional :: coordSys

type(ESMF_Index_Flag), intent(in), optional :: indexflag

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

Allocates memory for a new ESMF_LocStream object, constructs its internal derived types. The ESMF_DistGrid
is set up, indicating how the LocStream is distributed.

The arguments are:

[regDecomp] Specify into how many chunks to divide the locations. If not specified, defaults to the number of PETs.

[decompFlag] Specify what to do with leftover locations after division. If not specified, defaults to
ESMF_DECOMP_BALANCED. Please see Section 52.13 for a full description of the possible options.

[minIndex] If indexflag=ESMF_INDEX_DELOCAL, this setting is used to indicate the number to start the index
ranges at. If not present, defaults to 1.

816

maxIndex The maximum index across all PETs.

[coordSys] The coordinate system of the location stream coordinate data. For a full list of options, please see Sec-
tion 52.11. If not specified then defaults to ESMF_COORDSYS_SPH_DEG.

[indexflag] Flag that indicates how the DE-local indices are to be defined. Defaults to ESMF_INDEX_DELOCAL,
which indicates that the index range on each DE starts at 1. See Section 52.27 for the full range of options.

[name] Name of the location stream

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

32.4.14 ESMF_LocStreamCreate - Create a new LocStream from a grid file

INTERFACE:

! Private name: call using ESMF_LocStreamCreate()

function ESMF_LocStreamCreateFromFile(filename, &

fileformat, varname, indexflag, centerflag, name, rc)

RETURN VALUE:

type(ESMF_LocStream) :: ESMF_LocStreamCreateFromFile

ARGUMENTS:

character (len=*), intent(in) :: filename

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_FileFormat_Flag), intent(in), optional :: fileformat

character(len=*), intent(in), optional :: varname

type(ESMF_Index_Flag), intent(in), optional :: indexflag

logical, intent(in), optional :: centerflag

character (len=*), intent(in), optional :: name

integer, intent(out),optional :: rc

DESCRIPTION:

Create a new ESMF_LocStream object and add the coordinate keys and mask key to the LocStream using the
coordinates defined in a grid file. Currently, it supports the SCRIP format, the ESMF unstructured grid format and
the UGRID format. For a 2D or 3D grid in ESMF or UGRID format, it can construct the LocStream using either the
center coordinates or the corner coordinates. For a SCRIP format grid file, the LocStream can only be constructed
using the center coordinates. In addition, it supports 1D network topology in UGRID format. When construction a
LocStream using a 1D UGRID, it always uses node coordinates (i.e., corner coordinates).

The arguments are:

filename Name of grid file to be used to create the location stream.

817

[fileformat] The file format. The valid options are ESMF_FILEFORMAT_SCRIP,
ESMF_FILEFORMAT_ESMFMESH, and ESMF_FILEFORMAT_UGRID. Please see section 52.19 for a
detailed description of the options. If not specified, the default is ESMF_FILEFORMAT_SCRIP.

[varname] An optional variable name stored in the UGRID file to be used to generate the mask using the missing
value of the data value of this variable. The first two dimensions of the variable has to be the the longitude and
the latitude dimension and the mask is derived from the first 2D values of this variable even if this data is 3D, or
4D array. If not specified, no mask is used for a UGRID file.

[indexflag] Flag that indicates how the DE-local indices are to be defined. Defaults to ESMF_INDEX_DELOCAL,
which indicates that the index range on each DE starts at 1. See Section 52.27 for the full range of options.

[centerflag] Flag that indicates whether to use the center coordinates to construct the location stream. If true, use
center coordinates, otherwise, use the corner coordinates. If not specified, use center coordinates as default. For
SCRIP files, only center coordinate is supported.

[name] Name of the location stream

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

32.4.15 ESMF_LocStreamDestroy - Release resources associated with a LocStream

INTERFACE:

subroutine ESMF_LocStreamDestroy(locstream, noGarbage, rc)

ARGUMENTS:

type(ESMF_LocStream), intent(inout) :: locstream

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: noGarbage

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

8.1.0 Added argument noGarbage. The argument provides a mechanism to override the default garbage
collection mechanism when destroying an ESMF object.

DESCRIPTION:

Deallocate an ESMF_LocStream object and appropriate internal structures.

The arguments are:

818

locstream locstream to destroy

[noGarbage] If set to .TRUE. the object will be fully destroyed and removed from the ESMF garbage collection
system. Note however that under this condition ESMF cannot protect against accessing the destroyed object
through dangling aliases – a situation which may lead to hard to debug application crashes.

It is generally recommended to leave the noGarbage argument set to .FALSE. (the default), and to take
advantage of the ESMF garbage collection system which will prevent problems with dangling aliases or incorrect
sequences of destroy calls. However this level of support requires that a small remnant of the object is kept in
memory past the destroy call. This can lead to an unexpected increase in memory consumption over the course
of execution in applications that use temporary ESMF objects. For situations where the repeated creation and
destruction of temporary objects leads to memory issues, it is recommended to call with noGarbage set to
.TRUE., fully removing the entire temporary object from memory.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

32.4.16 ESMF_LocStreamGet - Return object-wide information from a LocStream

INTERFACE:

subroutine ESMF_LocStreamGet(locstream, &

distgrid, keyCount, keyNames, localDECount, indexflag, &

coordSys, name, rc)

ARGUMENTS:

type(ESMF_Locstream), intent(in) :: locstream

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_DistGrid), intent(out), optional :: distgrid

integer, intent(out), optional :: keyCount

character(len=ESMF_MAXSTR), optional :: keyNames(:)

integer, intent(out), optional :: localDECount

type(ESMF_Index_Flag), intent(out), optional :: indexflag

type(ESMF_CoordSys_Flag), intent(out), optional :: coordSys

character(len=*), intent(out), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

Query an ESMF_LocStream for various information. All arguments after the locstream are optional.

The arguments are:

locstream The ESMF_LocStream object to query.

[distgrid] The ESMF_DistGrid object that describes

[keyCount] Number of keys in the locstream.

819

[keyNames] The names of the keys in the locstream. Keynames should be an array of character strings. The
character strings should be of length ESMF_MAXSTR and the array’s length should be at least keyCount.

[localDECount] Number of DEs on this PET in the locstream.

[indexflag] The indexflag for this indexflag.

[coordSys] The coordinate system for this location stream.

[name] Name of queried item.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

32.4.17 ESMF_LocStreamGetBounds - Get DE-local bounds of a LocStream

INTERFACE:

subroutine ESMF_LocStreamGetBounds(locstream, &

localDE, exclusiveLBound, exclusiveUBound, exclusiveCount, &

computationalLBound, computationalUBound, computationalCount,&

rc)

ARGUMENTS:

type(ESMF_LocStream), intent(in) :: locstream

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: localDE

integer, intent(out), optional :: exclusiveLBound

integer, intent(out), optional :: exclusiveUBound

integer, intent(out), optional :: exclusiveCount

integer, intent(out), optional :: computationalLBound

integer, intent(out), optional :: computationalUBound

integer, intent(out), optional :: computationalCount

integer, intent(out), optional :: rc

DESCRIPTION:

This method gets the bounds of a localDE for a locstream.

The arguments are:

locstream LocStream to get the information from.

localDE The local DE for which information is requested. [0,..,localDECount-1]. For
localDECount==1 the localDE argument may be omitted, in which case it will default to localDE=0.

[exclusiveLBound] Upon return this holds the lower bounds of the exclusive region.

[exclusiveUBound] Upon return this holds the upper bounds of the exclusive region.

[exclusiveCount] ! Upon return this holds the number of items in the exclusive region
(i.e. exclusiveUBound-exclusiveLBound+1). exclusiveCount.

820

[computationalLBound] Upon return this holds the lower bounds of the computational region.

[computationalUBound] Upon return this holds the upper bounds of the computational region.

[computationalCount] Upon return this holds the number of items in the computational region
(i.e. computationalUBound-computationalLBound+1). computationalCount.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

32.4.18 ESMF_LocStreamGetKey - Get an Array associated with a key

INTERFACE:

! Private name; call using ESMF_LocStreamGetKey()

subroutine ESMF_LocStreamGetKeyArray(locstream, keyName, keyArray, &

rc)

ARGUMENTS:

type(ESMF_Locstream), intent(in) :: locstream

character (len=*), intent(in) :: keyName

type(ESMF_Array), intent(out) :: keyArray

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Get ESMF Array associated with key.

The arguments are:

locstream The ESMF_LocStream object to get key from.

keyName The name of the key to get.

keyArray Array associated with key.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

32.4.19 ESMF_LocStreamGetKey - Get info associated with a key

INTERFACE:

! Private name; call using ESMF_LocStreamGetKey()

subroutine ESMF_LocStreamGetKeyInfo(locstream, keyName, &

keyUnits, keyLongName, typekind, isPresent, rc)

821

ARGUMENTS:

type(ESMF_Locstream), intent(in) :: locstream

character (len=*), intent(in) :: keyName

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character (len=*), intent(out), optional :: keyUnits

character (len=*), intent(out), optional :: keyLongName

type(ESMF_TypeKind_Flag), intent(out), optional :: typekind

logical, intent(out), optional :: isPresent

integer, intent(out), optional :: rc

DESCRIPTION:

Get ESMF Array associated with key.

The arguments are:

locstream The ESMF_LocStream object to get key from.

keyName The name of the key to get.

[keyUnits] The units of the key data. If not specified, then the item remains blank.

[keyLongName] The long name of the key data. If not specified, then the item remains blank.

[typekind] The typekind of the key data

[isPresent] Whether or not the keyname is present

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

32.4.20 ESMF_LocStreamGetKey - Get a DE-local Fortran array pointer to key values

INTERFACE:

! Private name; call using ESMF_LocStreamGetKey()

subroutine ESMF_LocStreamGetKey(locstream, keyName, &

localDE, exclusiveLBound, exclusiveUBound, exclusiveCount, &

computationalLBound, computationalUBound, computationalCount, &

totalLBound, totalUBound, totalCount, &

farray, datacopyflag, rc)

ARGUMENTS:

type(ESMF_LocStream), intent(in) :: locstream

character (len=*), intent(in) :: keyName

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: localDE

integer, intent(out), optional :: exclusiveLBound

integer, intent(out), optional :: exclusiveUBound

integer, intent(out), optional :: exclusiveCount

822

integer, intent(out), optional :: computationalLBound

integer, intent(out), optional :: computationalUBound

integer, intent(out), optional :: computationalCount

integer, intent(out), optional :: totalLBound

integer, intent(out), optional :: totalUBound

integer, intent(out), optional :: totalCount

<farray>

type(ESMF_DataCopy_Flag), intent(in), optional :: datacopyflag

integer, intent(out), optional :: rc

DESCRIPTION:

This method gets a Fortran pointer to the piece of memory which holds the key data for a particular key on the given
local DE. This is useful, for example, for setting the key values in a LocStream, or for reading the values.

Supported values for <farray> are:

integer(ESMF_KIND_I4), pointer :: farray(:)

real(ESMF_KIND_R4), pointer :: farray(:)

real(ESMF_KIND_R8), pointer :: farray(:)

The arguments are:

locstream LocStream to get the information from.

keyName The key to get the information from.

[localDE] The local DE for which information is requested. [0,..,localDECount-1]. For
localDECount==1 the localDE argument may be omitted, in which case it will default to localDE=0.

[exclusiveLBound] Upon return this holds the lower bounds of the exclusive region.

[exclusiveUBound] Upon return this holds the upper bounds of the exclusive region.

[exclusiveCount] Upon return this holds the number of items in the exclusive region
(i.e. exclusiveUBound-exclusiveLBound+1). exclusiveCount.

[computationalLBound] Upon return this holds the lower bounds of the computational region.

[computationalUBound] Upon return this holds the upper bounds of the computational region.

[computationalCount] Upon return this holds the number of items in the computational region
(i.e. computationalUBound-computationalLBound+1).

[totalLBound] Upon return this holds the lower bounds of the total region.

[totalUBound] Upon return this holds the upper bounds of the total region.

[totalCount] Upon return this holds the number of items in the total region (i.e.
totalUBound-totalLBound+1).

farray The pointer to the coordinate data.

[datacopyflag] If not specified, default to ESMF_DATACOPY_REFERENCE, in this case farray is a reference to the
data in the Grid coordinate arrays. Please see Section 52.12 for further description and a list of valid values.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

823

32.4.21 ESMF_LocStreamIsCreated - Check whether a LocStream object has been created

INTERFACE:

function ESMF_LocStreamIsCreated(locstream, rc)

RETURN VALUE:

logical :: ESMF_LocStreamIsCreated

ARGUMENTS:

type(ESMF_LocStream), intent(in) :: locstream

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Return .true. if the locstream has been created. Otherwise return .false.. If an error occurs, i.e. rc /=

ESMF_SUCCESS is returned, the return value of the function will also be .false..

The arguments are:

locstream ESMF_LocStream queried.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

32.4.22 ESMF_LocStreamPrint - Print the contents of a LocStream

INTERFACE:

subroutine ESMF_LocStreamPrint(locstream, options, rc)

ARGUMENTS:

type(ESMF_LocStream), intent(in) :: locstream

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character (len = *), intent(in), optional :: options

integer, intent(out), optional :: rc

DESCRIPTION:

Prints information about the locstream to stdout. This subroutine goes through the internal data members of a
locstream ! data type and prints information of each data member.

The arguments are:

824

locstream

[options] Print options are not yet supported.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

32.4.23 ESMF_LocStreamValidate - Check validity of a LocStream

INTERFACE:

subroutine ESMF_LocStreamValidate(locstream, rc)

ARGUMENTS:

type(ESMF_LocStream), intent(in) :: locstream

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Validates that the locstream is internally consistent. Currently this method determines if the locstream is
uninitialized or already destroyed.

The method returns an error code if problems are found.

The arguments are:

locstream ESMF_LocStream to validate.

[rc] Return code; equals ESMF_SUCCESS if the locstream is valid.

33 Mesh Class

33.1 Description

Unstructured grids are commonly used in the computational solution of partial differential equations. These are es-

pecially useful for problems that involve complex geometry, where using the less flexible structured grids can result

in grid representation of regions where no computation is needed. Finite element and finite volume methods map

naturally to unstructured grids and are used commonly in hydrology, ocean modeling, and many other applications.

In order to provide support for application codes using unstructured grids, the ESMF library provides a class for repre-

senting unstructured grids called the Mesh. Fields can be created on a Mesh to hold data. Fields created on a Mesh can

also be used as either the source or destination or both of an interpolation (i.e. an ESMF_FieldRegridStore()

call) which allows data to be moved between unstructured grids. This section describes the Mesh and how to create

and use them in ESMF.

825

33.1.1 Mesh representation in ESMF

A Mesh in ESMF is constructed of nodes and elements.

A node, also known as a vertex or corner, is a part of a Mesh which represents a single point. Coordinate information

is set in a node.

An element, also known as a cell, is a part of a mesh which represents a small region of space. Elements are described

in terms of a connected set of nodes which represent locations along their boundaries.

Field data may be located on either the nodes or elements of a Mesh.

The dimension of a Mesh in ESMF is specified with two parameters: the parametric dimension and the spatial

dimension.

The parametric dimension of a Mesh is the dimension of the topology of the Mesh. This can be thought of as

the dimension of the elements which make up the Mesh. For example, a Mesh composed of triangles would have a

parametric dimension of 2, whereas a Mesh composed of tetrahedra would have a parametric dimension of 3.

The spatial dimension of a Mesh is the dimension of the space the Mesh is embedded in. In other words, it is the

number of coordinate dimensions needed to describe the location of the nodes making up the Mesh.

For example, a Mesh constructed of squares on a plane would have a parametric dimension of 2 and a spatial dimension

of 2. If that same Mesh were used to represent the 2D surface of a sphere, then the Mesh would still have a parametric

dimension of 2, but now its spatial dimension would be 3.

33.1.2 Supported Meshes

The range of Meshes supported by ESMF are defined by several factors: dimension, element types, and distribution.

ESMF currently only supports Meshes whose number of coordinate dimensions (spatial dimension) is 2 or 3. The

dimension of the elements in a Mesh (parametric dimension) must be less than or equal to the spatial dimension, but

also must be either 2 or 3. This means that a Mesh may be either 2D elements in 2D space, 3D elements in 3D space,

or a manifold constructed of 2D elements embedded in 3D space.

ESMF supports a range of elements for each Mesh parametric dimension. For a parametric dimension of 2, the

native supported element types are triangles and quadrilaterals. In addition to these, ESMF supports 2D polygons

with any number of sides. Internally these are represented as sets of triangles, but to the user should behave like

any other element. For a parametric dimension of 3, the supported element types are tetrahedrons and hexahedrons.

See Section 33.2.1 for diagrams of these. The Mesh supports any combination of element types within a particular

dimension, but types from different dimensions may not be mixed. For example, a Mesh cannot be constructed of both

quadrilaterals and tetrahedra.

ESMF currently only supports distributions where every node on a PET must be a part of an element on that PET. In

other words, there must not be nodes without a corresponding element on any PET.

33.2 Constants

33.2.1 ESMF_MESHELEMTYPE

DESCRIPTION:

An ESMF Mesh can be constructed from a combination of different elements. The type of elements that can be used

826

in a Mesh depends on the Mesh’s parameteric dimension, which is set during Mesh creation. The following are the

valid Mesh element types for each valid Mesh parametric dimension (2D or 3D) .

3 4 ---------- 3

/ \ | |

/ \ | |

/ \ | |

/ \ | |

/ \ | |

1 --------- 2 1 ---------- 2

ESMF_MESHELEMTYPE_TRI ESMF_MESHELEMTYPE_QUAD

2D element types (numbers are the order for elementConn during Mesh create)

For a Mesh with parametric dimension of 2 ESMF supports two native element types (illustrated above), but also

supports polygons with more sides. Internally these polygons are represented as a set of triangles, but to the user

should behave like other elements. To specify the non-native polygons in the elementType argument use the

number of corners of the polygon (e.g. for a pentagon use 5). The connectivity for a polygon should be specified in

counterclockwise order. The following table summarizes this information:

Element Type Number of Nodes Description

ESMF_MESHELEMTYPE_TRI 3 A triangle

ESMF_MESHELEMTYPE_QUAD 4 A quadrilateral (e.g. a rectangle)

N N An N-gon (e.g. if N=5 a pentagon)

3 8---------------7

/|\ /| /|

/ | \ / | / |

/ | \ / | / |

/ | \ / | / |

/ | \ 5---------------6 |

4-----|-----2 | | | |

\ | / | 4----------|----3

\ | / | / | /

\ | / | / | /

\ | / | / | /

\|/ |/ |/

1 1---------------2

ESMF_MESHELEMTYPE_TETRA ESMF_MESHELEMTYPE_HEX

3D element types (numbers are the order for elementConn during Mesh create)

For a Mesh with parametric dimension of 3 the valid element types (illustrated above) are:

827

Element Type Number of Nodes Description

ESMF_MESHELEMTYPE_TETRA 4 A tetrahedron (NOT VALID IN BILINEAR OR PATCH REGRID)

ESMF_MESHELEMTYPE_HEX 8 A hexahedron (e.g. a cube)

33.3 Use and Examples

This section describes the use of the ESMF Mesh class. It starts with an explanation and examples of creating a Mesh
and then goes through other Mesh methods. This set of sections covers the use of the Mesh class interfaces. For further
detail which applies to creating a Field on a Mesh, please see Section 26.3.19.

33.3.1 Mesh creation

To create a Mesh we need to set some properties of the Mesh as a whole, some properties of each node in the mesh
and then some properties of each element which connects the nodes (for a definition of node and element please see
Section 33.1.1).

For the Mesh as a whole we set its parametric dimension (parametricDim) and spatial dimension (spatialDim).
A Mesh’s parametric dimension can be thought of as the dimension of the elements which make up the Mesh. A Mesh’s
spatial dimension, on the other hand, is the is the number of coordinate dimensions needed to describe the location of
the nodes making up the Mesh. (For a fuller definition of these terms please see Section 33.1.1.)

The structure of the per node and element information used to create a Mesh is influenced by the Mesh distribution
strategy. The Mesh class is distributed by elements. This means that a node must be present on any PET that contains
an element associated with that node, but not on any other PET (a node can’t be on a PET without an element "home").
Since a node may be used by two or more elements located on different PETs, a node may be duplicated on multiple
PETs. When a node is duplicated in this manner, one and only one of the PETs that contain the node must "own" the
node. The user sets this ownership when they define the nodes during Mesh creation. When a Field is created on a
Mesh (i.e. on the Mesh nodes), on each PET the Field is only created on the nodes which are owned by that PET.
This means that the size of the Field memory on the PET can be smaller than the number of nodes used to create the
Mesh on that PET. Please see Section 26.3.19 in Field for further explanation and examples of this issue and others in
working with Fields on Meshes.

For each node in the Mesh we set three properties: the global id of the node (nodeIds), node coordinates
(nodeCoords), and which PET owns the node (nodeOwners). The node id is a unique (across all PETs) inte-
ger attached to the particular node. It is used to indicate which nodes are the same when connecting together pieces
of the Mesh on different processors. The node coordinates indicate the location of a node in space and are used in the
ESMF_FieldRegrid() functionality when interpolating. The node owner indicates which PET is in charge of the
node. This is used when creating a Field on the Mesh to indicate which PET should contain a Field location for the
data.

For each element in the Mesh we set three properties: the global id of the element (elementIds), the topology type
of the element (elementTypes), and which nodes are connected together to form the element (elementConn).
The element id is a unique (across all PETs) integer attached to the particular element. The element type describes
the topology of the element (e.g. a triangle vs. a quadrilateral). The range of choices for the topology of the elements
in a Mesh are restricted by the Mesh’s parametric dimension (e.g. a Mesh can’t contain a 2D element like a triangle,
when its parametric dimension is 3D), but it can contain any combination of elements appropriate to its dimension.
In particular, in 2D ESMF supports two native element types triangle and quadrilateral, but also provides support for
polygons with any number of sides. These polygons are represented internally as sets of triangles, but to the user
should behave like other elements. To specify a polygon with more than four sides, the element type should be set to
the number of corners of the polygon (e.g. element type=6 for a hexagon). The element connectivity indicates which
nodes are to be connected together to form the element. The number of nodes connected together for each element is
implied by the elements topology type (elementTypes). It is IMPORTANT to note, that the entries in this list are
NOT the global ids of the nodes, but are indices into the PET local lists of node info used in the Mesh Create. In other
words, the element connectivity isn’t specified in terms of the global list of nodes, but instead is specified in terms of

828

the locally described node info. One other important point about connectivities is that the order of the nodes in the
connectivity list of an element is important. Please see Section 33.2.1 for diagrams illustrating the correct order of
nodes in an element. In general, when specifying an element with parametric dimension 2, the nodes should be given
in counterclockwise order around the element.

Mesh creation may either be performed as a one step process using the full ESMF_MeshCreate() call, or may
be done in three steps. The three step process starts with a more minimal ESMF_MeshCreate() call. It is
then followed by the ESMF_MeshAddNodes() to specify nodes, and then the ESMF_MeshAddElements()

call to specify elements. This three step sequence is useful to conserve memory because the node arrays be-
ing used for the ESMF_MeshAddNodes() call can be deallocated before creating the arrays to be used in the
ESMF_MeshAddElements() call.

33.3.2 Create a small single PET Mesh in one step

2.0 7 ------- 8 ------- 9

| | |

| 4 | 5 |

| | |

1.0 4 ------- 5 ------- 6

| | \ 3 |

| 1 | \ |

| | 2 \ |

0.0 1 ------- 2 ------- 3

0.0 1.0 2.0

Node Id labels at corners

Element Id labels in centers

(Everything owned by PET 0)

This example is intended to illustrate the creation of a small Mesh on one PET. The reason for starting with a single
PET case is so that the user can start to familiarize themselves with the concepts of Mesh creation without the added
complication of multiple processors. Later examples illustrate the multiple processor case. This example creates the
small 2D Mesh which can be seen in the figure above. Note that this Mesh consists of 9 nodes and 5 elements, where
the elements are a mixture of quadrilaterals and triangles. The coordinates of the nodes in the Mesh range from 0.0 to
2.0 in both dimensions. The node ids are in the corners of the elements whereas the element ids are in the centers. The
following section of code illustrates the creation of this Mesh.

! Set number of nodes

numNodes=9

! Allocate and fill the node id array.

allocate(nodeIds(numNodes))

nodeIds=(/1,2,3,4,5,6,7,8,9/)

! Allocate and fill node coordinate array.

! Since this is a 2D Mesh the size is 2x the

! number of nodes.

allocate(nodeCoords(2*numNodes))

829

nodeCoords=(/0.0,0.0, & ! node id 1

1.0,0.0, & ! node id 2

2.0,0.0, & ! node id 3

0.0,1.0, & ! node id 4

1.0,1.0, & ! node id 5

2.0,1.0, & ! node id 6

0.0,2.0, & ! node id 7

1.0,2.0, & ! node id 8

2.0,2.0 /) ! node id 9

! Allocate and fill the node owner array.

! Since this Mesh is all on PET 0, it’s just set to all 0.

allocate(nodeOwners(numNodes))

nodeOwners=0 ! everything on PET 0

! Set the number of each type of element, plus the total number.

numQuadElems=3

numTriElems=2

numTotElems=numQuadElems+numTriElems

! Allocate and fill the element id array.

allocate(elemIds(numTotElems))

elemIds=(/1,2,3,4,5/)

! Allocate and fill the element topology type array.

allocate(elemTypes(numTotElems))

elemTypes=(/ESMF_MESHELEMTYPE_QUAD, & ! elem id 1

ESMF_MESHELEMTYPE_TRI, & ! elem id 2

ESMF_MESHELEMTYPE_TRI, & ! elem id 3

ESMF_MESHELEMTYPE_QUAD, & ! elem id 4

ESMF_MESHELEMTYPE_QUAD/) ! elem id 5

! Allocate and fill the element connection type array.

! Note that entries in this array refer to the

! positions in the nodeIds, etc. arrays and that

! the order and number of entries for each element

! reflects that given in the Mesh options

! section for the corresponding entry

! in the elemTypes array. The number of

! entries in this elemConn array is the

! number of nodes in a quad. (4) times the

! number of quad. elements plus the number

! of nodes in a triangle (3) times the number

! of triangle elements.

allocate(elemConn(4*numQuadElems+3*numTriElems))

elemConn=(/1,2,5,4, & ! elem id 1

2,3,5, & ! elem id 2

3,6,5, & ! elem id 3

4,5,8,7, & ! elem id 4

5,6,9,8/) ! elem id 5

830

! Create Mesh structure in 1 step

mesh=ESMF_MeshCreate(parametricDim=2,spatialDim=2, &

coordSys=ESMF_COORDSYS_CART, &

nodeIds=nodeIds, nodeCoords=nodeCoords, &

nodeOwners=nodeOwners, elementIds=elemIds,&

elementTypes=elemTypes, elementConn=elemConn, &

rc=localrc)

! After the creation we are through with the arrays, so they may be

! deallocated.

deallocate(nodeIds)

deallocate(nodeCoords)

deallocate(nodeOwners)

deallocate(elemIds)

deallocate(elemTypes)

deallocate(elemConn)

! At this point the mesh is ready to use. For example, as is

! illustrated here, to have a field created on it. Note that

! the Field only contains data for nodes owned by the current PET.

! Please see Section "Create a Field from a Mesh" under Field

! for more information on creating a Field on a Mesh.

field = ESMF_FieldCreate(mesh, ESMF_TYPEKIND_R8, rc=localrc)

33.3.3 Create a small single PET Mesh in three steps

This example is intended to illustrate the creation of a small Mesh in three steps on one PET. The Mesh being created
is exactly the same one as in the last example (Section 33.3.2), but the three step process allows the creation to occur
in a more memory efficient manner.

! Create the mesh structure setting the dimensions

! and coordinate system

mesh = ESMF_MeshCreate(parametricDim=2,spatialDim=2, &

coordSys=ESMF_COORDSYS_CART, &

rc=localrc)

! Set number of nodes

numNodes=9

! Allocate and fill the node id array.

allocate(nodeIds(numNodes))

nodeIds=(/1,2,3,4,5,6,7,8,9/)

! Allocate and fill node coordinate array.

! Since this is a 2D Mesh the size is 2x the

! number of nodes.

allocate(nodeCoords(2*numNodes))

nodeCoords=(/0.0,0.0, & ! node id 1

831

1.0,0.0, & ! node id 2

2.0,0.0, & ! node id 3

0.0,1.0, & ! node id 4

1.0,1.0, & ! node id 5

2.0,1.0, & ! node id 6

0.0,2.0, & ! node id 7

1.0,2.0, & ! node id 8

2.0,2.0 /) ! node id 9

! Allocate and fill the node owner array.

! Since this Mesh is all on PET 0, it’s just set to all 0.

allocate(nodeOwners(numNodes))

nodeOwners=0 ! everything on PET 0

! Add the nodes to the Mesh

call ESMF_MeshAddNodes(mesh, nodeIds=nodeIds, &

nodeCoords=nodeCoords, nodeOwners=nodeOwners, rc=localrc)

!!!

! HERE IS THE POINT OF THE THREE STEP METHOD

! WE CAN DELETE THESE NODE ARRAYS BEFORE

! ALLOCATING THE ELEMENT ARRAYS, THEREBY

! REDUCING THE AMOUNT OF MEMORY NEEDED

! AT ONE TIME.

!!!

deallocate(nodeIds)

deallocate(nodeCoords)

deallocate(nodeOwners)

! Set the number of each type of element, plus the total number.

numQuadElems=3

numTriElems=2

numTotElems=numQuadElems+numTriElems

! Allocate and fill the element id array.

allocate(elemIds(numTotElems))

elemIds=(/1,2,3,4,5/)

! Allocate and fill the element topology type array.

allocate(elemTypes(numTotElems))

elemTypes=(/ESMF_MESHELEMTYPE_QUAD, & ! elem id 1

ESMF_MESHELEMTYPE_TRI, & ! elem id 2

ESMF_MESHELEMTYPE_TRI, & ! elem id 3

ESMF_MESHELEMTYPE_QUAD, & ! elem id 4

ESMF_MESHELEMTYPE_QUAD/) ! elem id 5

! Allocate and fill the element connection type array.

! Note that entries in this array refer to the

! positions in the nodeIds, etc. arrays and that

! the order and number of entries for each element

! reflects that given in the Mesh options

! section for the corresponding entry

! in the elemTypes array. The number of

832

! entries in this elemConn array is the

! number of nodes in a quad. (4) times the

! number of quad. elements plus the number

! of nodes in a triangle (3) times the number

! of triangle elements.

allocate(elemConn(4*numQuadElems+3*numTriElems))

elemConn=(/1,2,5,4, & ! elem id 1

2,3,5, & ! elem id 2

3,6,5, & ! elem id 3

4,5,8,7, & ! elem id 4

5,6,9,8/) ! elem id 5

! Finish the creation of the Mesh by adding the elements

call ESMF_MeshAddElements(mesh, elementIds=elemIds,&

elementTypes=elemTypes, elementConn=elemConn, &

rc=localrc)

! After the creation we are through with the arrays, so they may be

! deallocated.

deallocate(elemIds)

deallocate(elemTypes)

deallocate(elemConn)

! At this point the mesh is ready to use. For example, as is

! illustrated here, to have a field created on it. Note that

! the Field only contains data for nodes owned by the current PET.

! Please see Section "Create a Field from a Mesh" under Field

! for more information on creating a Field on a Mesh.

field = ESMF_FieldCreate(mesh, ESMF_TYPEKIND_R8, rc=localrc)

833

33.3.4 Create a small Mesh on 4 PETs in one step

2.0 7 ------- 8 [8] ------ 9

| | | |

| 4 | | 5 |

| | | |

1.0 [4] ----- [5] [5] ----- [6]

0.0 1.0 1.0 2.0

PET 2 PET 3

1.0 4 ------- 5 [5] ------ 6

| | | \ 3 |

| 1 | | \ |

| | | 2 \ |

0.0 1 ------- 2 [2] ------ 3

0.0 1.0 1.0 2.0

PET 0 PET 1

Node Id labels at corners

Element Id labels in centers

This example is intended to illustrate the creation of a small Mesh on multiple PETs. This example creates the same
small 2D Mesh as the previous two examples (See Section 33.3.2 for a diagram), however, in this case the Mesh is
broken up across 4 PETs. The figure above illustrates the distribution of the Mesh across the PETs. As in the previous
diagram, the node ids are in the corners of the elements and the element ids are in the centers. In this figure ’[’ and ’]’
around a character indicate a node which is owned by another PET. The nodeOwner parameter indicates which PET
owns the node. Note that the three step creation illustrated in Section 33.3.3 could also be used in a parallel Mesh
creation such as this by simply interleaving the three calls in the appropriate places between the node and element
array definitions.

! Break up what’s being set by PET

if (localPET .eq. 0) then !!! This part only for PET 0

! Set number of nodes

numNodes=4

! Allocate and fill the node id array.

allocate(nodeIds(numNodes))

nodeIds=(/1,2,4,5/)

! Allocate and fill node coordinate array.

! Since this is a 2D Mesh the size is 2x the

! number of nodes.

allocate(nodeCoords(2*numNodes))

nodeCoords=(/0.0,0.0, & ! node id 1

834

1.0,0.0, & ! node id 2

0.0,1.0, & ! node id 4

1.0,1.0 /) ! node id 5

! Allocate and fill the node owner array.

allocate(nodeOwners(numNodes))

nodeOwners=(/0, & ! node id 1

0, & ! node id 2

0, & ! node id 4

0/) ! node id 5

! Set the number of each type of element, plus the total number.

numQuadElems=1

numTriElems=0

numTotElems=numQuadElems+numTriElems

! Allocate and fill the element id array.

allocate(elemIds(numTotElems))

elemIds=(/1/)

! Allocate and fill the element topology type array.

allocate(elemTypes(numTotElems))

elemTypes=(/ESMF_MESHELEMTYPE_QUAD/) ! elem id 1

! Allocate and fill the element connection type array.

! Note that entry are local indices

allocate(elemConn(4*numQuadElems+3*numTriElems))

elemConn=(/1,2,4,3/) ! elem id 1

else if (localPET .eq. 1) then !!! This part only for PET 1

! Set number of nodes

numNodes=4

! Allocate and fill the node id array.

allocate(nodeIds(numNodes))

nodeIds=(/2,3,5,6/)

! Allocate and fill node coordinate array.

! Since this is a 2D Mesh the size is 2x the

! number of nodes.

allocate(nodeCoords(2*numNodes))

nodeCoords=(/1.0,0.0, & ! node id 2

2.0,0.0, & ! node id 3

1.0,1.0, & ! node id 5

2.0,1.0 /) ! node id 6

! Allocate and fill the node owner array.

allocate(nodeOwners(numNodes))

nodeOwners=(/0, & ! node id 2

1, & ! node id 3

0, & ! node id 5

1/) ! node id 6

! Set the number of each type of element, plus the total number.

numQuadElems=0

835

numTriElems=2

numTotElems=numQuadElems+numTriElems

! Allocate and fill the element id array.

allocate(elemIds(numTotElems))

elemIds=(/2,3/)

! Allocate and fill the element topology type array.

allocate(elemTypes(numTotElems))

elemTypes=(/ESMF_MESHELEMTYPE_TRI, & ! elem id 2

ESMF_MESHELEMTYPE_TRI/) ! elem id 3

! Allocate and fill the element connection type array.

allocate(elemConn(4*numQuadElems+3*numTriElems))

elemConn=(/1,2,3, & ! elem id 2

2,4,3/) ! elem id 3

else if (localPET .eq. 2) then !!! This part only for PET 2

! Set number of nodes

numNodes=4

! Allocate and fill the node id array.

allocate(nodeIds(numNodes))

nodeIds=(/4,5,7,8/)

! Allocate and fill node coordinate array.

! Since this is a 2D Mesh the size is 2x the

! number of nodes.

allocate(nodeCoords(2*numNodes))

nodeCoords=(/0.0,1.0, & ! node id 4

1.0,1.0, & ! node id 5

0.0,2.0, & ! node id 7

1.0,2.0 /) ! node id 8

! Allocate and fill the node owner array.

! Since this Mesh is all on PET 0, it’s just set to all 0.

allocate(nodeOwners(numNodes))

nodeOwners=(/0, & ! node id 4

0, & ! node id 5

2, & ! node id 7

2/) ! node id 8

! Set the number of each type of element, plus the total number.

numQuadElems=1

numTriElems=0

numTotElems=numQuadElems+numTriElems

! Allocate and fill the element id array.

allocate(elemIds(numTotElems))

elemIds=(/4/)

! Allocate and fill the element topology type array.

allocate(elemTypes(numTotElems))

elemTypes=(/ESMF_MESHELEMTYPE_QUAD/) ! elem id 4

836

! Allocate and fill the element connection type array.

allocate(elemConn(4*numQuadElems+3*numTriElems))

elemConn=(/1,2,4,3/) ! elem id 4

else if (localPET .eq. 3) then !!! This part only for PET 3

! Set number of nodes

numNodes=4

! Allocate and fill the node id array.

allocate(nodeIds(numNodes))

nodeIds=(/5,6,8,9/)

! Allocate and fill node coordinate array.

! Since this is a 2D Mesh the size is 2x the

! number of nodes.

allocate(nodeCoords(2*numNodes))

nodeCoords=(/1.0,1.0, & ! node id 5

2.0,1.0, & ! node id 6

1.0,2.0, & ! node id 8

2.0,2.0 /) ! node id 9

! Allocate and fill the node owner array.

allocate(nodeOwners(numNodes))

nodeOwners=(/0, & ! node id 5

1, & ! node id 6

2, & ! node id 8

3/) ! node id 9

! Set the number of each type of element, plus the total number.

numQuadElems=1

numTriElems=0

numTotElems=numQuadElems+numTriElems

! Allocate and fill the element id array.

allocate(elemIds(numTotElems))

elemIds=(/5/)

! Allocate and fill the element topology type array.

allocate(elemTypes(numTotElems))

elemTypes=(/ESMF_MESHELEMTYPE_QUAD/) ! elem id 5

! Allocate and fill the element connection type array.

allocate(elemConn(4*numQuadElems+3*numTriElems))

elemConn=(/1,2,4,3/) ! elem id 5

endif

! Create Mesh structure in 1 step

mesh=ESMF_MeshCreate(parametricDim=2, spatialDim=2, &

coordSys=ESMF_COORDSYS_CART, &

nodeIds=nodeIds, nodeCoords=nodeCoords, &

nodeOwners=nodeOwners, elementIds=elemIds,&

elementTypes=elemTypes, elementConn=elemConn, &

rc=localrc)

837

! After the creation we are through with the arrays, so they may be

! deallocated.

deallocate(nodeIds)

deallocate(nodeCoords)

deallocate(nodeOwners)

deallocate(elemIds)

deallocate(elemTypes)

deallocate(elemConn)

! At this point the mesh is ready to use. For example, as is

! illustrated here, to have a field created on it. Note that

! the Field only contains data for nodes owned by the current PET.

! Please see Section "Create a Field from a Mesh" under Field

! for more information on creating a Field on a Mesh.

field = ESMF_FieldCreate(mesh, ESMF_TYPEKIND_R8, rc=localrc)

33.3.5 Create a copy of a Mesh with a new distribution

2.0 7 -------[8] 8 ------- 9

| | | |

| 4 | | 5 |

| | | |

1.0 4 ------ [5] 5 ------- 6

0.0 1.0 1.0 2.0

PET 1 PET 0

1.0 [4] ----- [5] [5] ----- [6]

| | \ \ |

| 1 | 2 \ \ 3 |

| | \ \ |

0.0 1 ------- 2 -----[3] 3

0.0 1.0 1.0 2.0

PET 2 PET 3

Node Id labels at corners

Element Id labels in centers

This example demonstrates the creation of a new Mesh which is a copy of an existing Mesh with a new distribution of
the original Mesh’s nodes and elements. To create the new Mesh in this manner the user needs two DistGrids. One to
describe the new distribution of the nodes. The other to describe the new distribution of the elements. In this example
we create new DistGrids from a list of indices. The DistGrids are then used in the redistribution Mesh create interface

838

which is overloaded to ESMF_MeshCreate(). In this example we redistribute the Mesh created in the previous
example (Section 33.3.4) to the distribution pictured above. Note that for simplicity’s sake, the position of the Mesh
in the diagram is basically the same, but the PET positions and node owners have been changed.

! Setup the new location of nodes and elements depending on the processor

if (localPet .eq. 0) then !!! This part only for PET 0

allocate(elemIds(1))

elemIds=(/5/)

allocate(nodeIds(4))

nodeIds=(/5,6,8,9/)

else if (localPet .eq. 1) then !!! This part only for PET 1

allocate(elemIds(1))

elemIds=(/4/)

allocate(nodeIds(2))

nodeIds=(/7,4/)

else if (localPet .eq. 2) then !!! This part only for PET 2

allocate(elemIds(2))

elemIds=(/1,2/)

allocate(nodeIds(2))

nodeIds=(/1,2/)

else if (localPet .eq. 3) then !!! This part only for PET 3

allocate(elemIds(1))

elemIds=(/3/)

allocate(nodeIds(1))

nodeIds=(/3/)

endif

! Create new node DistGrid

nodedistgrid=ESMF_DistGridCreate(nodeIds, rc=localrc)

if (localrc .ne. ESMF_SUCCESS) rc=ESMF_FAILURE

! Create new element DistGrid

elemdistgrid=ESMF_DistGridCreate(elemIds, rc=localrc)

if (localrc .ne. ESMF_SUCCESS) rc=ESMF_FAILURE

! Can now deallocate distribution lists

deallocate(elemIds)

deallocate(nodeIds)

! Create new redisted Mesh based on DistGrids

mesh2=ESMF_MeshCreate(mesh, &

nodalDistgrid=nodedistgrid, &

839

elementDistgrid=elemdistgrid, &

rc=localrc)

if (localrc .ne. ESMF_SUCCESS) rc=ESMF_FAILURE

! At this point the mesh is ready to use. For example, as is

! illustrated here, to have a field created on it. Note that

! the Field only contains data for nodes owned by the current PET.

! Please see Section "Create a Field from a Mesh" under Field

! for more information on creating a Field on a Mesh.

field = ESMF_FieldCreate(mesh2, ESMF_TYPEKIND_R8, rc=localrc)

33.3.6 Create a small Mesh of all one element type on 4 PETs using easy element method

2.0 * ------- * * ------- *
| | | |

| 3 | | 4 |

| | | |

1.0 * ------- * * ------- *

0.0 1.0 1.0 2.0

PET 2 PET 3

1.0 * ------- * * ------- *
| | | |

| 1 | | 2 |

| | | |

0.0 * ------- * * ------- *

0.0 1.0 1.0 2.0

PET 0 PET 1

Element Id labels in centers

This example is intended to illustrate the creation of a small Mesh on multiple PETs using the easy element creation
interface. Here the Mesh consists of only one type of element, so we can use a slightly more convenient interface. In
this interface the user only needs to specify the element type once and the elementCornerCoords argument has three
dimensions. This means that the corners for all elements are not collapsed into a 1D list as happens with the next
example.

The figure above shows the Mesh to be created and it’s distribution across the PETs. As in the previous diagrams, the
element ids are in the centers. Note that in the example code below the user doesn’t specify the element ids. In this
case, they are assigned sequentially through the local elements on each PET starting with 1 for the first element on
PET 0. (It isn’t shown in the example below, but there is an optional argument that enables the user to set the element
ids if they wish.) Unlike some of the previous examples of Mesh creation, here the user doesn’t specify node ids or
ownership, so that information is shown by a "*" in the diagram.

840

! Break up what’s being set by PET

if (localPET .eq. 0) then !!! This part only for PET 0

! Set the number of elements on this PET

numTotElems=1

! Allocate and fill element corner coordinate array.

allocate(elemCornerCoords3(2,4,numTotElems))

elemCornerCoords3(:,1,1)=(/0.0,0.0/) ! elem id 1 corner 1

elemCornerCoords3(:,2,1)=(/1.0,0.0/) ! elem id 1 corner 2

elemCornerCoords3(:,3,1)=(/1.0,1.0/) ! elem id 1 corner 3

elemCornerCoords3(:,4,1)=(/0.0,1.0/) ! elem id 1 corner 4

else if (localPET .eq. 1) then !!! This part only for PET 1

! Set the number of elements on this PET

numTotElems=1

! Allocate and fill element corner coordinate array.

allocate(elemCornerCoords3(2,4,numTotElems))

elemCornerCoords3(:,1,1)=(/1.0,0.0/) ! elem id 2 corner 1

elemCornerCoords3(:,2,1)=(/2.0,0.0/) ! elem id 2 corner 2

elemCornerCoords3(:,3,1)=(/2.0,1.0/) ! elem id 2 corner 3

elemCornerCoords3(:,4,1)=(/1.0,1.0/) ! elem id 2 corner 4

else if (localPET .eq. 2) then !!! This part only for PET 2

! Set the number of elements on this PET

numTotElems=1

! Allocate and fill element corner coordinate array.

allocate(elemCornerCoords3(2,4,numTotElems))

elemCornerCoords3(:,1,1)=(/0.0,1.0/) ! elem id 3 corner 1

elemCornerCoords3(:,2,1)=(/1.0,1.0/) ! elem id 3 corner 2

elemCornerCoords3(:,3,1)=(/1.0,2.0/) ! elem id 3 corner 3

elemCornerCoords3(:,4,1)=(/0.0,2.0/) ! elem id 3 corner 4

else if (localPET .eq. 3) then !!! This part only for PET 3

! Set the number of elements on this PET

numTotElems=1

! Allocate and fill element corner coordinate array.

allocate(elemCornerCoords3(2,4,numTotElems))

elemCornerCoords3(:,1,1)=(/1.0,1.0/) ! elem id 4 corner 1

elemCornerCoords3(:,2,1)=(/2.0,1.0/) ! elem id 4 corner 2

elemCornerCoords3(:,3,1)=(/2.0,2.0/) ! elem id 4 corner 3

elemCornerCoords3(:,4,1)=(/1.0,2.0/) ! elem id 4 corner 4

endif

! Create Mesh structure in 1 step

841

mesh=ESMF_MeshCreate(parametricDim=2, &

coordSys=ESMF_COORDSYS_CART, &

elementType=ESMF_MESHELEMTYPE_QUAD, &

elementCornerCoords=elemCornerCoords3, &

rc=localrc)

! After the creation we are through with the arrays, so they may be

! deallocated.

deallocate(elemCornerCoords3)

! At this point the mesh is ready to use. For example, as is

! illustrated here, to have a field created on it. Note that

! the Field only contains data for elements owned by the current PET.

! Please see Section "Create a Field from a Mesh" under Field

! for more information on creating a Field on a Mesh.

field = ESMF_FieldCreate(mesh, ESMF_TYPEKIND_R8, &

meshloc=ESMF_MESHLOC_ELEMENT, rc=localrc)

33.3.7 Create a small Mesh of multiple element types on 4 PETs using easy element method

2.0 * ------- * * ------- *
| | | |

| 4 | | 5 |

| | | |

1.0 * ------- * * ------- *

0.0 1.0 1.0 2.0

PET 2 PET 3

1.0 * ------- * * ------- *
| | | \ 3 |

| 1 | | \ |

| | | 2 \ |

0.0 * ------- * * ------- *

0.0 1.0 1.0 2.0

PET 0 PET 1

Element Id labels in centers

This example is intended to illustrate the creation of a small Mesh on multiple PETs using the easy element creation
interface. In this example, the Mesh being created contains elements of multiple types. To support the specification of
a set of elements containing different types and thus different numbers of corners, the elementCornerCoords argument
has the corner and element dimensions collapsed together into one dimension.

842

The figure above shows the Mesh to be created and it’s distribution across the PETs. As in the previous diagrams, the
element ids are in the centers. Note that in the example code below the user doesn’t specify the element ids. In this
case, they are assigned sequentially through the local elements on each PET starting with 1 for the first element on
PET 0. (It isn’t shown in the example below, but there is an optional argument that enables the user to set the element
ids if they wish.) Unlike some of the previous examples of Mesh creation, here the user doesn’t specify node ids or
ownership, so that information is shown by a "*" in the diagram.

! Break up what’s being set by PET

if (localPET .eq. 0) then !!! This part only for PET 0

! Set the number of each type of element, plus the total number.

numQuadElems=1

numTriElems=0

numTotElems=numQuadElems+numTriElems

numElemCorners=4*numQuadElems+3*numTriElems

! Allocate and fill the element type array.

allocate(elemTypes(numTotElems))

elemTypes=(/ESMF_MESHELEMTYPE_QUAD/) ! elem id 1

! Allocate and fill element corner coordinate array.

allocate(elemCornerCoords2(2,numElemCorners))

elemCornerCoords2(:,1)=(/0.0,0.0/) ! elem id 1 corner 1

elemCornerCoords2(:,2)=(/1.0,0.0/) ! elem id 1 corner 2

elemCornerCoords2(:,3)=(/1.0,1.0/) ! elem id 1 corner 3

elemCornerCoords2(:,4)=(/0.0,1.0/) ! elem id 1 corner 4

else if (localPET .eq. 1) then !!! This part only for PET 1

! Set the number of each type of element, plus the total number.

numQuadElems=0

numTriElems=2

numTotElems=numQuadElems+numTriElems

numElemCorners=4*numQuadElems+3*numTriElems

! Allocate and fill the element type array.

allocate(elemTypes(numTotElems))

elemTypes=(/ESMF_MESHELEMTYPE_TRI, & ! elem id 2

ESMF_MESHELEMTYPE_TRI/) ! elem id 3

! Allocate and fill element corner coordinate array.

allocate(elemCornerCoords2(2,numElemCorners))

elemCornerCoords2(:,1)=(/1.0,0.0/) ! elem id 2 corner 1

elemCornerCoords2(:,2)=(/2.0,0.0/) ! elem id 2 corner 2

elemCornerCoords2(:,3)=(/1.0,1.0/) ! elem id 2 corner 3

elemCornerCoords2(:,4)=(/2.0,0.0/) ! elem id 3 corner 1

elemCornerCoords2(:,5)=(/2.0,1.0/) ! elem id 3 corner 2

elemCornerCoords2(:,6)=(/1.0,1.0/) ! elem id 3 corner 3

else if (localPET .eq. 2) then !!! This part only for PET 2

! Set the number of each type of element, plus the total number.

numQuadElems=1

numTriElems=0

843

numTotElems=numQuadElems+numTriElems

numElemCorners=4*numQuadElems+3*numTriElems

! Allocate and fill the element type array.

allocate(elemTypes(numTotElems))

elemTypes=(/ESMF_MESHELEMTYPE_QUAD/) ! elem id 4

! Allocate and fill element corner coordinate array.

allocate(elemCornerCoords2(2,numElemCorners))

elemCornerCoords2(:,1)=(/0.0,1.0/) ! elem id 4 corner 1

elemCornerCoords2(:,2)=(/1.0,1.0/) ! elem id 4 corner 2

elemCornerCoords2(:,3)=(/1.0,2.0/) ! elem id 4 corner 3

elemCornerCoords2(:,4)=(/0.0,2.0/) ! elem id 4 corner 4

else if (localPET .eq. 3) then !!! This part only for PET 3

! Set the number of each type of element, plus the total number.

numQuadElems=1

numTriElems=0

numTotElems=numQuadElems+numTriElems

numElemCorners=4*numQuadElems+3*numTriElems

! Allocate and fill the element type array.

allocate(elemTypes(numTotElems))

elemTypes=(/ESMF_MESHELEMTYPE_QUAD/) ! elem id 5

! Allocate and fill element corner coordinate array.

allocate(elemCornerCoords2(2,numElemCorners))

elemCornerCoords2(:,1)=(/1.0,1.0/) ! elem id 5 corner 1

elemCornerCoords2(:,2)=(/2.0,1.0/) ! elem id 5 corner 2

elemCornerCoords2(:,3)=(/2.0,2.0/) ! elem id 5 corner 3

elemCornerCoords2(:,4)=(/1.0,2.0/) ! elem id 5 corner 4

endif

! Create Mesh structure in 1 step

mesh=ESMF_MeshCreate(parametricDim=2, &

coordSys=ESMF_COORDSYS_CART, &

elementTypes=elemTypes, &

elementCornerCoords=elemCornerCoords2, &

rc=localrc)

! After the creation we are through with the arrays, so they may be

! deallocated.

deallocate(elemTypes)

deallocate(elemCornerCoords2)

! At this point the mesh is ready to use. For example, as is

! illustrated here, to have a field created on it. Note that

! the Field only contains data for elements owned by the current PET.

! Please see Section "Create a Field from a Mesh" under Field

! for more information on creating a Field on a Mesh.

844

field = ESMF_FieldCreate(mesh, ESMF_TYPEKIND_R8, &

meshloc=ESMF_MESHLOC_ELEMENT, rc=localrc)

33.3.8 Create a Mesh from an unstructured grid file

ESMF supports the creation of a Mesh from three grid file formats: the SCRIP format 12.8.1, the ESMF format 12.8.2
or the proposed CF unstructured grid UGRID format 12.8.4. All three of these grid file formats are NetCDF files.

When creating a Mesh from a SCRIP format file, there are a number of options to control the output Mesh. The data
is located at the center of the grid cell in a SCRIP grid; whereas the data is located at the corner of a cell in an ESMF
Mesh object. Therefore, we create a Mesh object by default by constructing a "dual" mesh using the coordinates in the
file. If the user wishes to not construct the dual mesh, the optional argument convertToDualmay be used to control
this behavior. When comvertToDual is set to .false. the Mesh constructed from the file will not be the dual. This is
necessary when using the Mesh as part of a conservative regridding operation in the ESMF_FieldRegridStore()
call, so the weights are properly generated for the cell centers in the file.

The following example code depicts how to create a Mesh using a SCRIP file. Note that you have to set the
fileformat to ESMF_FILEFORMAT_SCRIP.

mesh = ESMF_MeshCreate(filename="data/ne4np4-pentagons.nc", &

fileformat=ESMF_FILEFORMAT_SCRIP, rc=localrc)

As mentioned above ESMF also supports creating Meshes from the ESMF format. The ESMF format works better with
the methods used to create an ESMF Mesh object, so less conversion needs to be done to create a Mesh, and thus this
format is more efficient than SCRIP to use within ESMF. The ESMF format is also more general than the SCRIP format
because it supports higher dimension coordinates and more general topologies. Currently, ESMF_MeshCreate() does
not support conversion to a dual mesh for this format. All regrid methods are supported on Meshes in this format.

Here is an example of creating a Mesh from an ESMF unstructured grid file. Note that you have to set the
fileformat to ESMF_FILEFORMAT_ESMFMESH.

mesh = ESMF_MeshCreate(filename="data/ne4np4-esmf.nc", &

fileformat=ESMF_FILEFORMAT_ESMFMESH, &

rc=localrc)

33.3.9 Create a Mesh representation of a cubed sphere grid

This example demostrates how to create a ESMF_Mesh object representing a cubed sphere grid with identical regular
decomposition for every tile. In this example, the tile resolution is 45, so there will be a total 45x45x6=12150 elements
in the mesh. nx and ny are the regular decomposition of each tile. The total number of DEs is nx x ny x 6. If the
number of PETs are less than the total number of DEs, the DEs will be distributed to the PETs using the default cyclic
distribution.

! Decompose each tile into 2 x 1 blocks

nx=2

ny=1

! Create Mesh

mesh = ESMF_MeshCreateCubedSphere(tileSize=45, nx=nx,ny=ny, rc=localrc)

845

33.3.10 Remove Mesh memory

There are two different levels that the memory in a Mesh can be removed. The first of these is the standard destroy
call, ESMF_MeshDestroy(). As with other classes, this call removes all memory associated with the object, and
afterwards the object can not be used further (i.e. should not be used in any methods). The second, which is unique
to Mesh, is the ESMF_MeshFreeMemory() call. This call removes the connection and coordinate information
associated with the Mesh, but leaves the distgrid information. The coordinate and connection information held in the
Mesh can consume a large amount of memory for a big Mesh, so using this call can very significantly reduce the
amount of memory used. However, once this method has been used on a Mesh there are some restriction on what may
be done with it. Once a Mesh has had its memory freed using this method, any Field built on the Mesh can no longer
be used as part of an ESMF_FieldRegridStore() call. However, because the distgrid information is still part of
the Mesh, Fields built on such a Mesh can still be part of an ESMF_FieldRegrid() call (where the routehandle
was generated previous to the ESMF_MeshFreeMemory() operation). Fields may also still be created on these
Meshes. The following short piece of code illustrates the use of this call.

! Here a Field built on a mesh may be used

! as part of a ESMF_FieldRegridStore() call

! This call removes connection and coordinate

! information, significantly reducing the memory used by

! mesh, but limiting what can be done with it.

call ESMF_MeshFreeMemory(mesh, rc=localrc)

! Here a new Field may be built on mesh, or

! a field built on a mesh may be used as part

! of an ESMF_FieldRegrid() call

! Destroy the mesh

call ESMF_MeshDestroy(mesh, rc=localrc)

! Here mesh can’t be used for anything

33.3.11 Mesh Masking

There are two types of masking available in Mesh: node masking and element masking. These both work in a similar
manner, but vary slightly in the details of setting the mask information during mesh creation.

For node masking, the mask information is set using the nodeMask argument to either ESMF_MeshCreate()
or ESMF_MeshAddNodes(). When a regrid store method is called (e.g. ESMF_FieldRegridStore())
the mask values arguments (srcMaskValues and dstMaskValues) can then be used to indicate which par-
ticular values set in the nodeMask array indicate that the node should be masked. For example, when calling
ESMF_FieldRegridStore() if dstMaskValues has been set to 1, then any node in the destination Mesh
whose corresponding nodeMask value is 1 will be masked out (a node with any other value than 1 will not be
masked).

For element masking, the mask information is set using the elementMask argument to either
ESMF_MeshCreate() or ESMF_MeshAddElements(). In a similar manner to node masking, when a
regrid store method is called (e.g. ESMF_FieldRegridStore()) the mask values arguments (srcMaskValues
and dstMaskValues) can then be used to indicate which particular values set in the elementMask array
indicate that the element should be masked. For example, when calling ESMF_FieldRegridStore() if
dstMaskValues has been set to 1, then any element in the destination Mesh whose corresponding elementMask
value is 1 will be masked out (an element with any other value than 1 will not be masked).

846

33.3.12 Mesh Halo Communication

2.0 7 ------- 8 [8] ------ 9

| | | |

| 4 | | 5 |

| | | |

1.0 [4] ----- [5] [5] ----- [6]

0.0 1.0 1.0 2.0

PET 2 PET 3

1.0 4 ------- 5 [5] ------ 6

| | | \ 3 |

| 1 | | \ |

| | | 2 \ |

0.0 1 ------- 2 [2] ------ 3

0.0 1.0 1.0 2.0

PET 0 PET 1

Node Id labels at corners

Element Id labels in centers

This section illustrates the process of setting up halo communication for a Field built on the nodes of a Mesh. The
Mesh used in this example is the one that was created in section 33.3.4. The diagram for that Mesh is repeated above
for convenience’s sake. The halo method used here is the one described in section 28.2.16, but made more specific to
the case of a Mesh. This example shows how to set up haloing for nodes which are owned by another processor (e.g.
the node with id 5 on PET 1 above). However, it could be expanded to halo other nodes simply by including them in
the halo arrays below on the PET where their values are needed.

The first step in setting up the halo communication is to create arrays containing the ids of the haloed nodes on the
PETs where they are needed.

The following illustrates that for the Mesh diagramed above.

! Create halo lists based on PET id.

if (localPET .eq. 0) then !!! This part only for PET 0

! Allocate and fill the halo list.

allocate(haloSeqIndexList(0)) ! There are no haloed points on PET 0

else if (localPET .eq. 1) then !!! This part only for PET 1

! Allocate and fill the halo list.

allocate(haloSeqIndexList(2))

haloSeqIndexList=(/2,5/)

else if (localPET .eq. 2) then !!! This part only for PET 2

847

! Allocate and fill the halo list.

allocate(haloSeqIndexList(2))

haloSeqIndexList=(/4,5/)

else if (localPET .eq. 3) then !!! This part only for PET 3

! Allocate and fill the halo list.

allocate(haloSeqIndexList(3))

haloSeqIndexList=(/5,6,8/)

endif

The next step is to create an ESMF Array with a halo region to hold the data being haloed.

! Get node DistGrid from the Mesh.

call ESMF_MeshGet(mesh, nodalDistgrid=nodeDistgrid, rc=localrc)

! Create an ESMF Array with a halo region from a node DistGrid.

array=ESMF_ArrayCreate(nodeDistgrid, typekind=ESMF_TYPEKIND_R8, &

haloSeqIndexList=haloSeqIndexList, rc=localrc)

Note that currently the halo data is stored at the end of the Array data on each PET in the order specified by the
haloSeqIndexList argument (e.g. for PET 3 the halo information will be in the order 5,6,8 at the end of the piece of
array on PET 3). This means that if the halo information needs to be in the order of nodes specified when you create
the Mesh, then the nodes owned by another processor need to be at the end of the node information when the Mesh is
created (e.g. when creating the piece of the Mesh on PET 3, then nodes 5,6,8 would need to be at the end of the node
information lists).

At this point haloing could be done on the ESMF Array by using the ESMF_ArrayHaloStore() call followed by
ESMF_ArrayHalo(). However, in this example we wrap the Array in an ESMF Field. This allows it to be used in
Field specific calls (e.g. ESMF_FieldRegridStore()) as well as for haloing.

! Wrap the ESMF Array in a Field created on the nodes of the Mesh.

field=ESMF_FieldCreate(mesh, array=array, &

meshLoc=ESMF_MESHLOC_NODE, rc=localrc)

We can now proceed with haloing the Field by using the ESMF_FieldHaloStore() call to create a RouteHandle,
and then the ESMF_FieldHalo() call to apply the RouteHandle. Note that once the RouteHandle has been created
it can be applied repeatedly to redo the halo communication as data changes in the Field.

! Create the RouteHandle for the halo communication.

call ESMF_FieldHaloStore(field, routehandle=haloHandle, rc=localrc)

! Can repeatedly do halo as data in field changes.

848

! do t=...

! Data set in non-halo field locations.

! Do the halo communication.

call ESMF_FieldHalo(field, routehandle=haloHandle, rc=localrc)

! Halo locations now filled in field.

! enddo

! After its last use the RouteHandle can be released.

call ESMF_FieldHaloRelease(haloHandle, rc=localrc)

! The Field can now be destroyed.

call ESMF_FieldDestroy(field, rc=localrc)

! The Array can now be destroyed.

call ESMF_ArrayDestroy(array, rc=localrc)

33.4 Class API

33.4.1 ESMF_MeshAssignment(=) - Mesh assignment

INTERFACE:

interface assignment(=)

mesh1 = mesh2

ARGUMENTS:

type(ESMF_Mesh) :: mesh1

type(ESMF_Mesh) :: mesh2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Assign mesh1 as an alias to the same ESMF Mesh object in memory as mesh2. If mesh2 is invalid, then mesh1 will
be equally invalid after the assignment.

The arguments are:

mesh1 The ESMF_Mesh object on the left hand side of the assignment.

mesh2 The ESMF_Mesh object on the right hand side of the assignment.

849

33.4.2 ESMF_MeshOperator(==) - Mesh equality operator

INTERFACE:

interface operator(==)

if (mesh1 == mesh2) then ... endif

OR

result = (mesh1 == mesh2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_Mesh), intent(in) :: mesh1

type(ESMF_Mesh), intent(in) :: mesh2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Test whether mesh1 and mesh2 are valid aliases to the same ESMF Mesh object in memory. For a more general
comparison of two ESMF Meshes, going beyond the simple alias test, the ESMF_MeshMatch() function (not yet
implemented) must be used.

The arguments are:

mesh1 The ESMF_Mesh object on the left hand side of the equality operation.

mesh2 The ESMF_Mesh object on the right hand side of the equality operation.

33.4.3 ESMF_MeshOperator(/=) - Mesh not equal operator

INTERFACE:

interface operator(/=)

if (mesh1 /= mesh2) then ... endif

OR

result = (mesh1 /= mesh2)

RETURN VALUE:

logical :: result

850

ARGUMENTS:

type(ESMF_Mesh), intent(in) :: mesh1

type(ESMF_Mesh), intent(in) :: mesh2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Test whether mesh1 and mesh2 are not valid aliases to the same ESMF Mesh object in memory. For a more general
comparison of two ESMF Meshes, going beyond the simple alias test, the ESMF_MeshMatch() function (not yet
implemented) must be used.

The arguments are:

mesh1 The ESMF_Mesh object on the left hand side of the non-equality operation.

mesh2 The ESMF_Mesh object on the right hand side of the non-equality operation.

33.4.4 ESMF_MeshAddElements - Add elements to a Mesh

INTERFACE:

subroutine ESMF_MeshAddElements(mesh, elementIds, elementTypes, &

elementConn, elementMask, elementArea, elementCoords, &

elementDistgrid, rc)

ARGUMENTS:

type(ESMF_Mesh), intent(inout) :: mesh

integer, intent(in) :: elementIds(:)

integer, intent(in) :: elementTypes(:)

integer, intent(in) :: elementConn(:)

integer, intent(in), optional :: elementMask(:)

real(ESMF_KIND_R8), intent(in), optional :: elementArea(:)

real(ESMF_KIND_R8), intent(in), optional :: elementCoords(:)

type(ESMF_DistGrid), intent(in), optional :: elementDistgrid

integer, intent(out), optional :: rc

DESCRIPTION:

This call is the third and last part of the three part mesh create sequence and should be called after the mesh is created
with ESMF_MeshCreate() (33.4.6) and after the nodes are added with ESMF_MeshAddNodes() (33.4.5). This
call adds the elements to the mesh and finalizes the create. After this call the Mesh is usable, for example a Field may
be built on the created Mesh object and this Field may be used in a ESMF_FieldRegridStore() call.

851

The parameters to this call elementIds, elementTypes, and elementConn describe the elements to be cre-
ated. The description for a particular element lies at the same index location in elementIds and elementTypes.
Each entry in elementConn consists of the list of nodes used to create that element, so the connections for element e
in the elementIds array will start at number_of_nodes_in_element(1)+number_of_nodes_in_element(2)+
· · ·+ number_of_nodes_in_element(e− 1) + 1 in elementConn.

This call is collective across the current VM.

elementIds An array containing the global ids of the elements to be created on this PET. This input consists of a 1D
array the size of the number of elements on this PET. Each element id must be a number equal to or greater than
1. An id should be unique in the sense that different elements must have different ids (the same element that
appears on different processors must have the same id). There may be gaps in the sequence of ids, but if these
gaps are the same scale as the length of the sequence it can lead to inefficiencies when the Mesh is used (e.g. in
ESMF_FieldRegridStore()).

elementTypes An array containing the types of the elements to be created on this PET. The types used must be
appropriate for the parametric dimension of the Mesh. Please see Section 33.2.1 for the list of options. This
input consists of a 1D array the size of the number of elements on this PET.

elementConn An array containing the indexes of the sets of nodes to be connected together to form the elements to
be created on this PET. The entries in this list are NOT node global ids, but rather each entry is a local index
(1 based) into the list of nodes which were created on this PET by the previous ESMF_MeshAddNodes()
call. In other words, an entry of 1 indicates that this element contains the node described by nodeIds(1),
nodeCoords(1), etc. passed into the ESMF_MeshAddNodes() call on this PET. It is also important to
note that the order of the nodes in an element connectivity list matters. Please see Section 33.2.1 for diagrams
illustrating the correct order of nodes in a element. This input consists of a 1D array with a total size equal to the
sum of the number of nodes in each element on this PET. The number of nodes in each element is implied by its
element type in elementTypes. The nodes for each element are in sequence in this array (e.g. the nodes for
element 1 are elementConn(1), elementConn(2), etc.).

[elementMask] An array containing values which can be used for element masking. Which values indicate masking
are chosen via the srcMaskValues or dstMaskValues arguments to ESMF_FieldRegridStore()

call. This input consists of a 1D array the size of the number of elements on this PET.

[elementArea] An array containing element areas. If not specified, the element areas are internally calculated. This
input consists of a 1D array the size of the number of elements on this PET. NOTE: ESMF doesn’t currently do
unit conversion on areas. If these areas are going to be used in a process that also involves the areas of another
Grid or Mesh (e.g. conservative regridding), then it is the user’s responsibility to make sure that the area units
are consistent between the two sides. If ESMF calculates an area on the surface of a sphere, then it is in units of
square radians. If it calculates the area for a Cartesian grid, then it is in the same units as the coordinates, but
squared.

[elementCoords] An array containing the physical coordinates of the elements to be created on this PET. This input
consists of a 1D array the size of the number of elements on this PET times the Mesh’s spatial dimension
(spatialDim). The coordinates in this array are ordered so that the coordinates for an element lie in sequence
in memory. (e.g. for a Mesh with spatial dimension 2, the coordinates for element 1 are in elementCoords(1)
and elementCoords(2), the coordinates for element 2 are in elementCoords(3) and elementCoords(4), etc.).

[elementDistgrid] If present, use this as the element Distgrid for the Mesh. The passed in Distgrid needs to contain
a local set of sequence indices matching the set of local element ids (i.e. those in elementIds). However,
specifying an externally created Distgrid gives the user more control over aspects of the Distgrid containing
those sequence indices (e.g. how they are broken into DEs). If not present, a 1D Distgrid will be created
internally consisting of one DE per PET.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

852

33.4.5 ESMF_MeshAddNodes - Add nodes to a Mesh

INTERFACE:

subroutine ESMF_MeshAddNodes(mesh, nodeIds, nodeCoords, nodeOwners, &

nodeMask, nodalDistgrid, rc)

ARGUMENTS:

type(ESMF_Mesh), intent(inout) :: mesh

integer, intent(in) :: nodeIds(:)

real(ESMF_KIND_R8), intent(in) :: nodeCoords(:)

integer, intent(in) :: nodeOwners(:)

integer, intent(in), optional :: nodeMask(:)

type(ESMF_DistGrid), intent(in), optional :: nodalDistgrid

integer, intent(out), optional :: rc

DESCRIPTION:

This call is the second part of the three part mesh create sequence and should be called after the mesh’s dimen-
sions are set using ESMF_MeshCreate() (33.4.6). This call adds the nodes to the mesh. The next step is to call
ESMF_MeshAddElements() (33.4.4).

The parameters to this call nodeIds, nodeCoords, and nodeOwners describe the nodes to be created on this
PET. The description for a particular node lies at the same index location in nodeIds and nodeOwners. Each entry
in nodeCoords consists of spatial dimension coordinates, so the coordinates for node n in the nodeIds array will
start at (n− 1) ∗ spatialDim+ 1.

nodeIds An array containing the global ids of the nodes to be created on this PET. This input consists of a 1D
array the size of the number of nodes on this PET. Each node id must be a number equal to or greater than 1.
An id should be unique in the sense that different nodes must have different ids (the same node that appears
on different processors must have the same id). There may be gaps in the sequence of ids, but if these gaps
are the same scale as the length of the sequence it can lead to inefficiencies when the Mesh is used (e.g. in
ESMF_FieldRegridStore()).

nodeCoords An array containing the physical coordinates of the nodes to be created on this PET. This input consists
of a 1D array the size of the number of nodes on this PET times the Mesh’s spatial dimension (spatialDim).
The coordinates in this array are ordered so that the coordinates for a node lie in sequence in memory. (e.g.
for a Mesh with spatial dimension 2, the coordinates for node 1 are in nodeCoords(1) and nodeCoords(2), the
coordinates for node 2 are in nodeCoords(3) and nodeCoords(4), etc.).

nodeOwners An array containing the PETs that own the nodes to be created on this PET. If the node is shared with
another PET, the value may be a PET other than the current one. Only nodes owned by this PET will have PET
local entries in a Field created on the Mesh. This input consists of a 1D array the size of the number of nodes
on this PET.

[nodeMask] An array containing values which can be used for node masking. Which values indicate masking are
chosen via the srcMaskValues or dstMaskValues arguments to ESMF_FieldRegridStore() call.
This input consists of a 1D array the size of the number of nodes on this PET.

[nodalDistgrid] If present, use this as the node Distgrid for the Mesh. The passed in Distgrid needs to contain a local
set of sequence indices matching the set of local node ids (i.e. the ids in nodeIds with nodeOwners equal to
the current PET). However, specifying an externally created Distgrid gives the user more control over aspects of
the Distgrid containing those sequence indices (e.g. how they are broken into DEs). If not present, a 1D Distgrid
will be created internally consisting of one DE per PET.

853

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

33.4.6 ESMF_MeshCreate - Create a Mesh as a 3 step process

INTERFACE:

! Private name; call using ESMF_MeshCreate()

function ESMF_MeshCreate3Part(parametricDim, spatialDim, coordSys, name, rc)

RETURN VALUE:

type(ESMF_Mesh) :: ESMF_MeshCreate3Part

ARGUMENTS:

integer, intent(in) :: parametricDim

integer, intent(in) :: spatialDim

type(ESMF_CoordSys_Flag), intent(in), optional :: coordSys

character(len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

This call is the first part of the three part mesh create sequence. This call sets the dimension of the elements in the
mesh (parametricDim) and the number of coordinate dimensions in the mesh (spatialDim). The next step is to
call ESMF_MeshAddNodes() (33.4.5) to add the nodes and then ESMF_MeshAddElements() (33.4.4) to add
the elements and finalize the mesh.

This call is collective across the current VM.

parametricDim Dimension of the topology of the Mesh. (E.g. a mesh constructed of squares would have a parametric
dimension of 2, whereas a Mesh constructed of cubes would have one of 3.)

spatialDim The number of coordinate dimensions needed to describe the locations of the nodes making up the Mesh.
For a manifold, the spatial dimension can be larger than the parametric dim (e.g. the 2D surface of a sphere in
3D space), but it can’t be smaller.

[coordSys] The coordinate system of the grid coordinate data. For a full list of options, please see Section 52.11. If
not specified then defaults to ESMF_COORDSYS_SPH_DEG.

[name] The name of the Mesh.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

854

33.4.7 ESMF_MeshCreate - Create a Mesh all at once

INTERFACE:

! Private name; call using ESMF_MeshCreate()

function ESMF_MeshCreate1Part(parametricDim, spatialDim, &

nodeIds, nodeCoords, nodeOwners, nodeMask, nodalDistgrid, &

elementIds, elementTypes, elementConn, &

elementMask, elementArea, elementCoords, &

elementDistgrid, coordSys, name, rc)

RETURN VALUE:

type(ESMF_Mesh) :: ESMF_MeshCreate1Part

ARGUMENTS:

integer, intent(in) :: parametricDim

integer, intent(in) :: spatialDim

integer, intent(in) :: nodeIds(:)

real(ESMF_KIND_R8), intent(in) :: nodeCoords(:)

integer, intent(in) :: nodeOwners(:)

integer, intent(in), optional :: nodeMask(:)

type(ESMF_DistGrid), intent(in), optional :: nodalDistgrid

integer, intent(in) :: elementIds(:)

integer, intent(in) :: elementTypes(:)

integer, intent(in) :: elementConn(:)

integer, intent(in), optional :: elementMask(:)

real(ESMF_KIND_R8), intent(in), optional :: elementArea(:)

real(ESMF_KIND_R8), intent(in), optional :: elementCoords(:)

type(ESMF_DistGrid), intent(in), optional :: elementDistgrid

type(ESMF_CoordSys_Flag), intent(in), optional :: coordSys

character(len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

Create a Mesh object in one step. After this call the Mesh is usable, for example, a Field may be built on the created
Mesh object and this Field may be used in a ESMF_FieldRegridStore() call.

This call sets the dimension of the elements in the mesh (parametricDim) and the number of coordinate dimensions
in the mesh (spatialDim). It then creates the nodes, and then creates the elements by connecting together the nodes.

The parameters to this call nodeIds, nodeCoords, and nodeOwners describe the nodes to be created on this
PET. The description for a particular node lies at the same index location in nodeIds and nodeOwners. Each entry
in nodeCoords consists of spatial dimension coordinates, so the coordinates for node n in the nodeIds array will
start at (n− 1) ∗ spatialDim+ 1.

The parameters to this call elementIds, elementTypes, and elementConn describe the elements to be cre-
ated. The description for a particular element lies at the same index location in elementIds and elementTypes.
Each entry in elementConn consists of the list of nodes used to create that element, so the connections for element e
in the elementIds array will start at number_of_nodes_in_element(1)+number_of_nodes_in_element(2)+
· · ·+ number_of_nodes_in_element(e− 1) + 1 in elementConn.

This call is collective across the current VM.

855

parametricDim Dimension of the topology of the Mesh. (E.g. a mesh constructed of squares would have a parametric
dimension of 2, whereas a Mesh constructed of cubes would have one of 3.)

spatialDim The number of coordinate dimensions needed to describe the locations of the nodes making up the Mesh.
For a manifold, the spatial dimension can be larger than the parametric dim (e.g. the 2D surface of a sphere in
3D space), but it can’t be smaller.

nodeIds An array containing the global ids of the nodes to be created on this PET. This input consists of a 1D
array the size of the number of nodes on this PET. Each node id must be a number equal to or greater than 1.
An id should be unique in the sense that different nodes must have different ids (the same node that appears
on different processors must have the same id). There may be gaps in the sequence of ids, but if these gaps
are the same scale as the length of the sequence it can lead to inefficiencies when the Mesh is used (e.g. in
ESMF_FieldRegridStore()).

nodeCoords An array containing the physical coordinates of the nodes to be created on this PET. This input consists
of a 1D array the size of the number of nodes on this PET times the Mesh’s spatial dimension (spatialDim).
The coordinates in this array are ordered so that the coordinates for a node lie in sequence in memory. (e.g.
for a Mesh with spatial dimension 2, the coordinates for node 1 are in nodeCoords(1) and nodeCoords(2), the
coordinates for node 2 are in nodeCoords(3) and nodeCoords(4), etc.).

nodeOwners An array containing the PETs that own the nodes to be created on this PET. If the node is shared with
another PET, the value may be a PET other than the current one. Only nodes owned by this PET will have PET
local entries in a Field created on the Mesh. This input consists of a 1D array the size of the number of nodes
on this PET.

[nodeMask] An array containing values which can be used for node masking. Which values indicate masking are
chosen via the srcMaskValues or dstMaskValues arguments to ESMF_FieldRegridStore() call.
This input consists of a 1D array the size of the number of nodes on this PET.

[nodalDistgrid] If present, use this as the node Distgrid for the Mesh. The passed in Distgrid needs to contain a local
set of sequence indices matching the set of local node ids (i.e. the ids in nodeIds with nodeOwners equal to
the current PET). However, specifying an externally created Distgrid gives the user more control over aspects of
the Distgrid containing those sequence indices (e.g. how they are broken into DEs). If not present, a 1D Distgrid
will be created internally consisting of one DE per PET.

elementIds An array containing the global ids of the elements to be created on this PET. This input consists of a 1D
array the size of the number of elements on this PET. Each element id must be a number equal to or greater than
1. An id should be unique in the sense that different elements must have different ids (the same element that
appears on different processors must have the same id). There may be gaps in the sequence of ids, but if these
gaps are the same scale as the length of the sequence it can lead to inefficiencies when the Mesh is used (e.g. in
ESMF_FieldRegridStore()).

elementTypes An array containing the types of the elements to be created on this PET. The types used must be
appropriate for the parametric dimension of the Mesh. Please see Section 33.2.1 for the list of options. This
input consists of a 1D array the size of the number of elements on this PET.

elementConn An array containing the indexes of the sets of nodes to be connected together to form the elements to
be created on this PET. The entries in this list are NOT node global ids, but rather each entry is a local index
(1 based) into the list of nodes to be created on this PET by this call. In other words, an entry of 1 indicates
that this element contains the node described by nodeIds(1), nodeCoords(1), etc. on this PET. It is also
important to note that the order of the nodes in an element connectivity list matters. Please see Section 33.2.1
for diagrams illustrating the correct order of nodes in a element. This input consists of a 1D array with a total
size equal to the sum of the number of nodes contained in each element on this PET. The number of nodes in
each element is implied by its element type in elementTypes. The nodes for each element are in sequence
in this array (e.g. the nodes for element 1 are elementConn(1), elementConn(2), etc.).

[elementMask] An array containing values which can be used for element masking. Which values indicate masking
are chosen via the srcMaskValues or dstMaskValues arguments to ESMF_FieldRegridStore()

call. This input consists of a 1D array the size of the number of elements on this PET.

856

[elementArea] An array containing element areas. If not specified, the element areas are internally calculated. This
input consists of a 1D array the size of the number of elements on this PET. NOTE: ESMF doesn’t currently do
unit conversion on areas. If these areas are going to be used in a process that also involves the areas of another
Grid or Mesh (e.g. conservative regridding), then it is the user’s responsibility to make sure that the area units
are consistent between the two sides. If ESMF calculates an area on the surface of a sphere, then it is in units of
square radians. If it calculates the area for a Cartesian grid, then it is in the same units as the coordinates, but
squared.

[elementCoords] An array containing the physical coordinates of the elements to be created on this PET. This input
consists of a 1D array the size of the number of elements on this PET times the Mesh’s spatial dimension
(spatialDim). The coordinates in this array are ordered so that the coordinates for an element lie in sequence
in memory. (e.g. for a Mesh with spatial dimension 2, the coordinates for element 1 are in elementCoords(1)
and elementCoords(2), the coordinates for element 2 are in elementCoords(3) and elementCoords(4), etc.).

[elementDistgrid] If present, use this as the element Distgrid for the Mesh. The passed in Distgrid needs to contain
a local set of sequence indices matching the set of local element ids (i.e. those in elementIds). However,
specifying an externally created Distgrid gives the user more control over aspects of the Distgrid containing
those sequence indices (e.g. how they are broken into DEs). If not present, a 1D Distgrid will be created
internally consisting of one DE per PET.

[coordSys] The coordinate system of the grid coordinate data. For a full list of options, please see Section 52.11. If
not specified then defaults to ESMF_COORDSYS_SPH_DEG.

[name] The name of the Mesh.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

33.4.8 ESMF_MeshCreate - Create a Mesh from a Grid

INTERFACE:

! Private name; call using ESMF_MeshCreate()

function ESMF_MeshCreateFromGrid(grid, name, rc)

RETURN VALUE:

type(ESMF_Mesh) :: ESMF_MeshCreateFromGrid

ARGUMENTS:

type(ESMF_Grid), intent(in) :: grid

character(len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

Create an ESMF Mesh from an ESMF Grid. This method creates the elements of the Mesh from the cells of the Grid,
and the nodes of the Mesh from the corners of the Grid. Corresponding locations in the Grid and new Mesh will have
the same coordinates, sequence indices, masking, and area information.

This method currently only works for 2D Grids. In addition, this method requires the input Grid to have coordinates
in the corner stagger location.

857

grid The ESMF Grid from which to create the Mesh.

[name] The name of the Mesh.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

33.4.9 ESMF_MeshCreate - Create a Mesh from a file

INTERFACE:

! Private name; call using ESMF_MeshCreate()

function ESMF_MeshCreateFromFile(filename, fileformat, &

convertToDual, addUserArea, maskFlag, varname, &

nodalDistgrid, elementDistgrid, name, rc)

RETURN VALUE:

type(ESMF_Mesh) :: ESMF_MeshCreateFromFile

ARGUMENTS:

character(len=*), intent(in) :: filename

type(ESMF_FileFormat_Flag), intent(in) :: fileformat

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: convertToDual

logical, intent(in), optional :: addUserArea

type(ESMF_MeshLoc), intent(in), optional :: maskFlag

character(len=*), intent(in), optional :: varname

type(ESMF_DistGrid), intent(in), optional :: nodalDistgrid

type(ESMF_DistGrid), intent(in), optional :: elementDistgrid

character(len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

Create a Mesh from a file. Provides options to convert to 3D and in the case of SCRIP format files, allows the dual of
the mesh to be created.

This call is collective across the current VM.

filename The name of the grid file

fileformat The file format. The valid options are ESMF_FILEFORMAT_SCRIP,
ESMF_FILEFORMAT_ESMFMESH and ESMF_FILEFORMAT_UGRID. Please see Section 52.19 for a
detailed description of the options.

[convertToDual] if .true., the mesh will be converted to its dual. If not specified, defaults to .false..

[addUserArea] if .true., the cell area will be read in from the GRID file. This feature is only supported when the
grid file is in the SCRIP or ESMF format. If not specified, defaults to .false..

858

[maskFlag] If maskFlag is present, generate the mask using the missing_value attribute defined in ’varname’ This flag
is only supported when the grid file is in the UGRID format. The value could be either ESMF_MESHLOC_NODE
or ESMF_MESHLOC_ELEMENT. If the value is ESMF_MESHLOC_NODE, the node mask will be generated
and the variable has to be defined on the "node" (specified by its location attribute). If the value is
ESMF_MESHLOC_ELEMENT, the element mask will be generated and the variable has to be defined on the
"face" of the mesh. If the variable is not defined on the right location, no mask will be generated. If not
specified, no mask will be generated.

[varname] If maskFlag is present, provide a variable name stored in the UGRID file and the mask will be generated
using the missing value of the data value of this variable. The first two dimensions of the variable has to be the
the longitude and the latitude dimension and the mask is derived from the first 2D values of this variable even if
this data is 3D, or 4D array. If not specified, defaults to empty string.

[nodalDistgrid] A Distgrid describing the user-specified distribution of the nodes across the PETs.

[elementDistgrid] A Distgrid describing the user-specified distribution of the elements across the PETs.

[name] The name of the Mesh.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

33.4.10 ESMF_MeshCreate - Create a copy of a Mesh with a new distribution

INTERFACE:

! Private name; call using ESMF_MeshCreate()

function ESMF_MeshCreateRedist(mesh, nodalDistgrid, &

elementDistgrid, vm, name, rc)

RETURN VALUE:

type(ESMF_Mesh) :: ESMF_MeshCreateRedist

ARGUMENTS:

type(ESMF_Mesh), intent(in) :: mesh

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_DistGrid), intent(in), optional :: nodalDistgrid

type(ESMF_DistGrid), intent(in), optional :: elementDistgrid

type(ESMF_VM), intent(in), optional :: vm

character(len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

Create a copy of an existing Mesh with a new distribution. Information in the Mesh such as connections, co-
ordinates, areas, masks, etc. are automatically redistributed to the new Mesh. To redistribute data in Fields
built on the original Mesh create a Field on the new Mesh and then use the Field redistribution functionality
(ESMF_FieldRedistStore(), etc.). The equivalent methods can also be used for data in FieldBundles.

859

mesh The source Mesh to be redistributed.

[nodalDistgrid] A Distgrid describing the new distribution of the nodes across the PETs.

[elementDistgrid] A Distgrid describing the new distribution of the elements across the PETs.

[vm] If present, the Mesh object is created on the specified ESMF_VM object. The default is to create on the VM of
the current context.

[name] The name of the Mesh.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

33.4.11 ESMF_MeshCreate - Create a Mesh of just one element type using corner coordinates

INTERFACE:

! Private name; call using ESMF_MeshCreate()

function ESMF_MeshCreateEasyElems1Type(parametricDim, coordSys, &

elementIds, elementType, elementCornerCoords, &

elementMask, elementArea, elementCoords, &

elementDistgrid, rc)

RETURN VALUE:

type(ESMF_Mesh) :: ESMF_MeshCreateEasyElems1Type

ARGUMENTS:

integer, intent(in) :: parametricDim

type(ESMF_CoordSys_Flag), intent(in), optional :: coordSys

integer, intent(in), optional :: elementIds(:)

integer, intent(in) :: elementType

real(ESMF_KIND_R8), intent(in) :: elementCornerCoords(:,:,:)

integer, intent(in), optional :: elementMask(:)

real(ESMF_KIND_R8), intent(in), optional :: elementArea(:)

real(ESMF_KIND_R8), intent(in), optional :: elementCoords(:,:)

type(ESMF_DistGrid), intent(in), optional :: elementDistgrid

integer, intent(out), optional :: rc

DESCRIPTION:

Create a Mesh object in one step by just specifying the corner coordinates of each element. Internally these corners
are turned into nodes forming the outside edges of the elements. This call assumes that each element is the same type
to make the specification of the elements a bit easier. After this call the Mesh is usable, for example, a Field may be
built on the created Mesh object and this Field may be used in a ESMF_FieldRegridStore() call.

This call sets the dimension of the elements in the Mesh via parametricDim and the number of coordinate dimen-
sions in the mesh is determined from the first dimension of elementCornerCoords.

860

The parameters to this call elementIds, elementTypes, and elementCornerCoords describe the ele-
ments to be created. The description for a particular element lies at the same index location in elementIds

and elementTypes. The argument elementCornerCoords contains the coordinates of the corners used to
create each element. The first dimension of this argument are across the coordinate dimensions. The second di-
mension of this argument is across the corners of a particular element. The last dimension of this argument is
across the list of elements on this PET, so the coordinates of corner c in element e on this PET would be in
elementCornerCoords(:,c,e).

This call is collective across the current VM.

parametricDim Dimension of the topology of the Mesh. (E.g. a mesh constructed of squares would have a parametric
dimension of 2, whereas a Mesh constructed of cubes would have one of 3.)

[coordSys] The coordinate system of the grid coordinate data. For a full list of options, please see Section 52.11. If
not specified then defaults to ESMF_COORDSYS_SPH_DEG.

[elementIds] An array containing the global ids of the elements to be created on this PET. This input consists of a 1D
array the size of the number of elements on this PET. Each element id must be a number equal to or greater than
1. An id should be unique in the sense that different elements must have different ids (the same element that
appears on different processors must have the same id). There may be gaps in the sequence of ids, but if these
gaps are the same scale as the length of the sequence it can lead to inefficiencies when the Mesh is used (e.g. in
ESMF_FieldRegridStore()). If not specified, then elements are numbered in sequence starting with the
first element on PET 0.

elementType An variable containing the type of the elements to be created in this Mesh. The type used must be
appropriate for the parametric dimension of the Mesh. Please see Section 33.2.1 for the list of options.

elementCornerCoords A 3D array containing the coordinates of the corners of the elements to be created on this
PET. The first dimension of this array is for the coordinates and should be of size 2 or 3. The size of this
dimension will be used to determine the spatialDim of the Mesh. The second dimension is the number of
corners for an element. The 3rd dimension is a list of all the elements on this PET.

[elementMask] An array containing values which can be used for element masking. Which values indicate masking
are chosen via the srcMaskValues or dstMaskValues arguments to ESMF_FieldRegridStore()

call. This input consists of a 1D array the size of the number of elements on this PET.

[elementArea] An array containing element areas. If not specified, the element areas are internally calculated. This
input consists of a 1D array the size of the number of elements on this PET. NOTE: ESMF doesn’t currently do
unit conversion on areas. If these areas are going to be used in a process that also involves the areas of another
Grid or Mesh (e.g. conservative regridding), then it is the user’s responsibility to make sure that the area units
are consistent between the two sides. If ESMF calculates an area on the surface of a sphere, then it is in units of
square radians. If it calculates the area for a Cartesian grid, then it is in the same units as the coordinates, but
squared.

[elementCoords] An array containing the physical coordinates of the elements to be created on this PET.
This input consists of a 2D array with the first dimension that same size as the first dimension of
elementCornerCoords. The second dimension should be the same size as the elementTypes argu-
ment.

[elementDistgrid] If present, use this as the element Distgrid for the Mesh. The passed in Distgrid needs to contain
a local set of sequence indices matching the set of local element ids (i.e. those in elementIds). However,
specifying an externally created Distgrid gives the user more control over aspects of the Distgrid containing
those sequence indices (e.g. how they are broken into DEs). If not present, a 1D Distgrid will be created
internally consisting of one DE per PET.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

861

33.4.12 ESMF_MeshCreate - Create a Mesh using element corner coordinates

INTERFACE:

! Private name; call using ESMF_MeshCreate()

function ESMF_MeshCreateEasyElemsGen(parametricDim, coordSys, &

elementIds, elementTypes, elementCornerCoords, &

elementMask, elementArea, elementCoords, &

elementDistgrid, rc)

RETURN VALUE:

type(ESMF_Mesh) :: ESMF_MeshCreateEasyElemsGen

ARGUMENTS:

integer, intent(in) :: parametricDim

type(ESMF_CoordSys_Flag), intent(in), optional :: coordSys

integer, intent(in), optional :: elementIds(:)

integer, intent(in) :: elementTypes(:)

real(ESMF_KIND_R8), intent(in) :: elementCornerCoords(:,:)

integer, intent(in), optional :: elementMask(:)

real(ESMF_KIND_R8), intent(in), optional :: elementArea(:)

real(ESMF_KIND_R8), intent(in), optional :: elementCoords(:,:)

type(ESMF_DistGrid), intent(in), optional :: elementDistgrid

integer, intent(out), optional :: rc

DESCRIPTION:

Create a Mesh object in one step by just specifying the corner coordinates of each element. Internally these corners
are turned into nodes forming the outside edges of the elements. After this call the Mesh is usable, for example, a
Field may be built on the created Mesh object and this Field may be used in a ESMF_FieldRegridStore() call.

This call sets the dimension of the elements in the Mesh via parametricDim and the number of coordinate dimen-
sions in the mesh is determined from the first dimension of elementCornerCoords.

The parameters to this call elementIds, elementTypes, and elementCornerCoords describe the
elements to be created. The description for a particular element lies at the same index location in
elementIds and elementTypes. The argument elementCornerCoords consists of a list of all
the corners used to create all the elements, so the corners for element e in the elementTypes

array will start at number_of_corners_in_element(1) + number_of_corners_in_element(2) + · · · +
number_of_corners_in_element(e− 1) + 1 in elementCornerCoords.

This call is collective across the current VM.

parametricDim Dimension of the topology of the Mesh. (E.g. a mesh constructed of squares would have a parametric
dimension of 2, whereas a Mesh constructed of cubes would have one of 3.)

[coordSys] The coordinate system of the grid coordinate data. For a full list of options, please see Section 52.11. If
not specified then defaults to ESMF_COORDSYS_SPH_DEG.

[elementIds] An array containing the global ids of the elements to be created on this PET. This input consists of a 1D
array the size of the number of elements on this PET. Each element id must be a number equal to or greater than

862

1. An id should be unique in the sense that different elements must have different ids (the same element that
appears on different processors must have the same id). There may be gaps in the sequence of ids, but if these
gaps are the same scale as the length of the sequence it can lead to inefficiencies when the Mesh is used (e.g. in
ESMF_FieldRegridStore()). If not specified, then elements are numbered in sequence starting with the
first element on PET 0.

elementTypes An array containing the types of the elements to be created on this PET. The types used must be
appropriate for the parametric dimension of the Mesh. Please see Section 33.2.1 for the list of options. This
input consists of a 1D array the size of the number of elements on this PET.

elementCornerCoords A 2D array containing the coordinates of the corners of the elements to be created on this
PET. The first dimension of this array is for the coordinates and should be of size 2 or 3. The size of this
dimension will be used to determine the spatialDim of the Mesh. The second dimension is a collapsed list of all
the corners in all the elements. The list of corners has been collapsed to 1D to enable elements with different
number of corners to be supported in the same list without wasting space. The number of corners in each
element is implied by its element type in elementTypes. The corners for each element are in sequence in
this array (e.g. If element 1 has 3 corners then they are in elementCornerCoords(:,1), elementCornerCoords(:,2),
elementCornerCoords(:,3) and the corners for the next element start in elementCornerCoords(:,4)).

[elementMask] An array containing values which can be used for element masking. Which values indicate masking
are chosen via the srcMaskValues or dstMaskValues arguments to ESMF_FieldRegridStore()

call. This input consists of a 1D array the size of the number of elements on this PET.

[elementArea] An array containing element areas. If not specified, the element areas are internally calculated. This
input consists of a 1D array the size of the number of elements on this PET. NOTE: ESMF doesn’t currently do
unit conversion on areas. If these areas are going to be used in a process that also involves the areas of another
Grid or Mesh (e.g. conservative regridding), then it is the user’s responsibility to make sure that the area units
are consistent between the two sides. If ESMF calculates an area on the surface of a sphere, then it is in units of
square radians. If it calculates the area for a Cartesian grid, then it is in the same units as the coordinates, but
squared.

[elementCoords] An array containing the physical coordinates of the elements to be created on this PET.
This input consists of a 2D array with the first dimension that same size as the first dimension of
elementCornerCoords. The second dimension should be the same size as the elementTypes argu-
ment.

[elementDistgrid] If present, use this as the element Distgrid for the Mesh. The passed in Distgrid needs to contain
a local set of sequence indices matching the set of local element ids (i.e. those in elementIds). However,
specifying an externally created Distgrid gives the user more control over aspects of the Distgrid containing
those sequence indices (e.g. how they are broken into DEs). If not present, a 1D Distgrid will be created
internally consisting of one DE per PET.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

33.4.13 ESMF_MeshCreateCubedSphere - Create a Mesh representation of a cubed sphere grid

INTERFACE:

function ESMF_MeshCreateCubedSphere(tileSize, nx, ny, name, rc)

RETURN VALUE:

863

type(ESMF_Mesh) :: ESMF_MeshCreateCubedSphere

ARGUMENTS:

integer, intent(in) :: tileSize

integer, intent(in) :: nx

integer, intent(in) :: ny

character(len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

Create a ESMF_Mesh object for a cubed sphere grid using identical regular decomposition for every tile. The grid
coordinates are generated based on the algorithm used by GEOS-5, The tile resolution is defined by tileSize. Each
tile is decomposed into nx x ny blocks and the total number of DEs used is nx x ny x 6. If the total PET is not equal
to the number of DEs, the DEs are distributed into PETs in the default cyclic distribution. Internally, the nodes and
the elements from multiple DEs are collapsed into a 1D array. Therefore, the nodal distgrid or the element distgrid
attached to the Mesh object is always a one DE arbitrarily distributed distgrid. The sequential indices of the nodes and
the elements are derived based on the location of the point in the Cubed Sphere grid. If an element is located at (x,
y) of tile n. Its sequential index would be (n-1)*tileSize*tileSize+(y-1)*tileSize+x. If it is a node,
its sequential index would be (n-1)*(tileSize+1)*(tileSize+1)+(y-1)*(tileSize+1)+x.

The arguments are:

tilesize The number of elements on each side of the tile of the Cubed Sphere grid

nx The number of blocks on the horizontal size of each tile

ny The number of blocks on the vertical size of each tile

[name] The name of the Mesh.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

33.4.14 ESMF_MeshDestroy - Release resources associated with a Mesh

INTERFACE:

subroutine ESMF_MeshDestroy(mesh, noGarbage, rc)

RETURN VALUE:

ARGUMENTS:

864

type(ESMF_Mesh), intent(inout) :: mesh

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: noGarbage

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

8.1.0 Added argument noGarbage. The argument provides a mechanism to override the default garbage
collection mechanism when destroying an ESMF object.

DESCRIPTION:

This call removes internal memory associated with mesh. After this call mesh will no longer be usable. ! ! The
arguments are:

mesh Mesh object to be destroyed.

[noGarbage] If set to .TRUE. the object will be fully destroyed and removed from the ESMF garbage collection
system. Note however that under this condition ESMF cannot protect against accessing the destroyed object
through dangling aliases – a situation which may lead to hard to debug application crashes.

It is generally recommended to leave the noGarbage argument set to .FALSE. (the default), and to take
advantage of the ESMF garbage collection system which will prevent problems with dangling aliases or incorrect
sequences of destroy calls. However this level of support requires that a small remnant of the object is kept in
memory past the destroy call. This can lead to an unexpected increase in memory consumption over the course
of execution in applications that use temporary ESMF objects. For situations where the repeated creation and
destruction of temporary objects leads to memory issues, it is recommended to call with noGarbage set to
.TRUE., fully removing the entire temporary object from memory.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

33.4.15 ESMF_MeshEmptyCreate - Create a Mesh to hold Distgrid information

INTERFACE:

function ESMF_MeshEmptyCreate(nodalDistgrid, elementDistgrid, name, rc)

RETURN VALUE:

type(ESMF_Mesh) :: ESMF_MeshEmptyCreate

865

ARGUMENTS:

type(ESMF_DistGrid), intent(in), optional :: elementdistgrid

type(ESMF_DistGrid), intent(in), optional :: nodalDistgrid

character(len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

Create a Mesh to hold distribution information (i.e. Distgrids). Such a mesh will have no coordinate or connectivity in-
formation stored. Aside from holding distgrids the Mesh created by this call can’t be used in other ESMF functionality
(e.g. it can’t be used to create a Field or in regridding).

[nodalDistgrid] The nodal distgrid.

[elementDistgrid] The elemental distgrid.

[name] The name of the Mesh.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

33.4.16 ESMF_MeshFreeMemory - Remove a Mesh and its memory

INTERFACE:

subroutine ESMF_MeshFreeMemory(mesh, rc)

RETURN VALUE:

ARGUMENTS:

type(ESMF_Mesh), intent(inout) :: mesh

integer, intent(out), optional :: rc

DESCRIPTION:

This call removes the portions of mesh which contain connection and coordinate information. After this call, Fields
build on mesh will no longer be usable as part of an ESMF_FieldRegridStore() operation. However, after this
call Fields built on mesh can still be used in an ESMF_FieldRegrid() operation if the routehandle was generated
beforehand. New Fields may also be built on mesh after this call.

The arguments are:

mesh Mesh object whose memory is to be freed.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

866

33.4.17 ESMF_MeshGet - Get Mesh information

INTERFACE:

subroutine ESMF_MeshGet(mesh, parametricDim, spatialDim, &

nodeCount, nodeIds, nodeCoords, nodeOwners, &

nodeMaskIsPresent, nodeMask,&

elementCount, elementIds, elementTypes, &

elementConnCount, elementConn, &

elementMaskIsPresent,elementMask, &

elementAreaIsPresent, elementArea, &

elementCoordsIsPresent, elementCoords, &

nodalDistgridIsPresent, nodalDistgrid, &

elementDistgridIsPresent, elementDistgrid, &

numOwnedNodes, ownedNodeCoords, &

numOwnedElements, ownedElemCoords, &

elemMaskArray, elemAreaArray, &

isMemFreed, coordSys, status, name, rc)

RETURN VALUE:

ARGUMENTS:

type(ESMF_Mesh), intent(in) :: mesh

integer, intent(out), optional :: parametricDim

integer, intent(out), optional :: spatialDim

integer, intent(out), optional :: nodeCount

integer, intent(out), optional :: nodeIds(:)

real(ESMF_KIND_R8), intent(out), optional :: nodeCoords(:)

integer, intent(out), optional :: nodeOwners(:)

logical, intent(out), optional :: nodeMaskIsPresent

integer, intent(out), optional :: nodeMask(:)

integer, intent(out), optional :: elementCount

integer, intent(out), optional :: elementIds(:)

integer, intent(out), optional :: elementTypes(:)

integer, intent(out), optional :: elementConnCount

integer, intent(out), optional :: elementConn(:)

logical, intent(out), optional :: elementMaskIsPresent

integer, intent(out), optional :: elementMask(:)

logical, intent(out), optional :: elementAreaIsPresent

real(ESMF_KIND_R8), intent(out), optional :: elementArea(:)

logical, intent(out), optional :: elementCoordsIsPresent

real(ESMF_KIND_R8), intent(out), optional :: elementCoords(:)

logical, intent(out), optional :: nodalDistgridIsPresent

type(ESMF_DistGrid), intent(out), optional :: nodalDistgrid

logical, intent(out), optional :: elementDistgridIsPresent

type(ESMF_DistGrid), intent(out), optional :: elementDistgrid

integer, intent(out), optional :: numOwnedNodes

real(ESMF_KIND_R8), intent(out), optional :: ownedNodeCoords(:)

integer, intent(out), optional :: numOwnedElements

real(ESMF_KIND_R8), intent(out), optional :: ownedElemCoords(:)

867

logical, intent(out), optional :: isMemFreed

type(ESMF_Array), intent(inout), optional :: elemMaskArray

type(ESMF_Array), intent(inout), optional :: elemAreaArray

type(ESMF_CoordSys_Flag), intent(out), optional :: coordSys

type(ESMF_MeshStatus_Flag),intent(out), optional :: status

character(len=*), intent(out), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

Get various information from a mesh.

The arguments are:

mesh Mesh object to retrieve information from.

[parametricDim] Dimension of the topology of the Mesh. (E.g. a mesh constructed of squares would have a para-
metric dimension of 2, whereas a Mesh constructed of cubes would have one of 3.)

[spatialDim] The number of coordinate dimensions needed to describe the locations of the nodes making up the
Mesh. For a manifold, the spatial dimension can be larger than the parametric dim (e.g. the 2D surface of a
sphere in 3D space), but it can’t be smaller.

[nodeCount] The number of local nodes in the mesh (both owned and shared with another PET).

[nodeIds] An array of ids for each local node in the mesh. The nodeIds array should be of size nodeCount.

[nodeCoords] An array of coordinates for each local node in the mesh. The nodeCoords array should be of size
(spatialDim*nodeCount).

[nodeOwners] An array of the PET numbers that own each local node in the mesh. The nodeOwners array should be
of size nodeCount.

[nodeMaskIsPresent] .true. if node masking was set in mesh, .false. otherwise.

[nodeMask] An array of mask values for each local node in the mesh. The nodeOwners array should be of size
nodeCount.

[elementCount] The number of local elements in the mesh (both owned and shared with another PET).

[elementIds] An array of ids for each local element in the mesh. The elementIds array should be of size elementCount.

[elementTypes] An array of types for each local element in the mesh. Please see section 33.2.1 for the list of options.
The elementTypes array should be of size elementCount.

[elementConnCount] The number of entries elementConn array. Provided as a convenience.

elementConn An array containing the indexes of the sets of nodes to be connected together to form the elements to
be created on this PET. The entries in this list are NOT node global ids, but rather each entry is a local index (1
based) into the list of nodes to be created on this PET by this call. In other words, an entry of 1 indicates that this
element contains the node described by nodeIds(1), nodeCoords(1), etc. on this PET. It is also important
to note that the order of the nodes in an element connectivity list matters. Please see Section 33.2.1 for diagrams
illustrating the correct order of nodes in a element. This input consists of a 1D array with a total size equal to
the sum of the number of nodes contained in each element on this PET (also provided by elementConnCount).
The number of nodes in each element is implied by its element type in elementTypes. The nodes for each
element are in sequence in this array (e.g. the nodes for element 1 are elementConn(1), elementConn(2), etc.).

[elementMaskIsPresent] .true. if element masking was set in mesh, .false. otherwise.

868

[elementMask] An array of mask values for each local element in the mesh. The elementMask array should be of
size elementCount.

[elementAreaIsPresent] .true. if element areas were set in mesh, .false. otherwise.

[elementArea] An array of area values for each local element in the mesh. The elementArea array should be of size
elementCount.

[elementCoordsIsPresent] .true. if element coordinates were set in mesh, .false. otherwise.

[elementCoords] An array of coordinate values for each local element in the mesh. The elementCoord array should
be of size (spatialDim*elementCount).

[nodalDistgridIsPresent] .true. if nodalDistgrid was set in Mesh object, .false. otherwise.

[nodalDistgrid] A Distgrid describing the distribution of the nodes across the PETs. Note that on each PET the
distgrid will only contain entries for nodes owned by that PET. This is the DistGrid that would be used to
construct the Array in a Field that is constructed on mesh.

[elementDistgridIsPresent] .true. if elementDistgrid was set in Mesh object, .false. otherwise.

[elementDistgrid] A Distgrid describing the distribution of elements across the PETs. Note that on each PET the
distgrid will only contain entries for elements owned by that PET.

[numOwnedNodes] The number of local nodes which are owned by this PET. This is the number of PET local entries
in the nodalDistgrid.

[ownedNodeCoords] The coordinates for the local nodes. These coordinates will be in the proper order to correspond
with the nodes in the nodalDistgrid returned by this call, and hence with a Field built on mesh. The size
of the input array should be the spatial dim of mesh times numOwnedNodes.

[numOwnedElements] The number of local elements which are owned by this PET. Note that every element is owned
by the PET it resides on, so unlike for nodes, numOwnedElements is identical to the number of elements on
the PET. It is also the number of PET local entries in the elementDistgrid.

[ownedElemCoords] The center coordinates for the local elements. These coordinates will be in the proper order to
correspond with the elements in the elementDistgrid returned by this call, and hence with a Field built on
the center of mesh. The size of the input array should be the spatial dim of mesh times numOwnedElements.

[elemMaskArray] The mask information for elements put into an ESMF Array. The ESMF Array must be build on
a DistGrid which matches the elementDistgrid.

[elemAreaArray] The area information for elements put into an ESMF Array. The ESMF Array must be build on a
DistGrid which matches the elementDistgrid.

[isMemFreed] Indicates if the coordinate and connection memory been freed from mesh. If so, it can no longer be
used as part of an ESMF_FieldRegridStore() call.

[coordSys] The coordinate system of the grid coordinate data.

[status] Flag indicating the status of the Mesh. Please see Section 52.41 for the list of options.

[name] Name of the Mesh object.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

869

33.4.18 ESMF_MeshIsCreated - Check whether a Mesh object has been created

INTERFACE:

function ESMF_MeshIsCreated(mesh, rc)

RETURN VALUE:

logical :: ESMF_MeshIsCreated

ARGUMENTS:

type(ESMF_Mesh), intent(in) :: mesh

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Return .true. if the mesh has been created. Otherwise return .false.. If an error occurs, i.e. rc /=

ESMF_SUCCESS is returned, the return value of the function will also be .false..

The arguments are:

mesh ESMF_Mesh queried.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

33.4.19 ESMF_MeshSet - Set some Mesh information

INTERFACE:

subroutine ESMF_MeshSet(mesh, &

elementMask, elementArea, rc)

RETURN VALUE:

ARGUMENTS:

type(ESMF_Mesh), intent(in) :: mesh

integer, intent(in), optional :: elementMask(:)

real(ESMF_KIND_R8), intent(in), optional :: elementArea(:)

integer, intent(out), optional :: rc

870

DESCRIPTION:

This call allows the user to change the set of information that it’s legal to alter after a mesh has been created. Currently,
this call requires that the information has already been added to the mesh during creation. For example, you can only
change the element mask information, if the mesh was initially created with element masking.

The arguments are:

mesh

[elementMask] An array of mask values for each local element in the mesh. The elementMask array should be of
size elementCount.

[elementArea] An array of area values for each local element in the mesh. The elementArea array should be of size
elementCount.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

33.4.20 ESMF_MeshSetMOAB – Toggle using the MOAB library internally.

INTERFACE:

subroutine ESMF_MeshSetMOAB(moabOn, rc)

ARGUMENTS:

logical, intent(in) :: moabOn

integer, intent(out) , optional :: rc

DESCRIPTION:

This method is only temporary. It was created to enable testing during the stage in ESMF development while we have
two internal mesh implementations. At some point it will be removed.

This method can be employed to turn on or off using the MOAB library to hold the internal structure of the Mesh.
When set to .true. the following Mesh create calls create a Mesh using MOAB internally. When set to .false. the
following Mesh create calls use the ESMF native internal mesh respresentation. Note that ESMF Meshes created on
MOAB are only supported in a limited set of operations and should be used with caution as they haven’t yet been
tested as thoroughly as the native version. Also, operations that use a pair of Meshes (e.g. regrid weight generation)
are only supported between meshes of the same type (e.g. you can regrid between two MOAB meshes, but not between
a MOAB and a native mesh).

moabOn Variable used to turn MOAB on or off

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

871

33.4.21 ESMF_MeshGetMOAB – Check on status of using MOAB library internally.

INTERFACE:

subroutine ESMF_MeshGetMOAB(moabOn, rc)

ARGUMENTS:

logical, intent(out) :: moabOn

integer, intent(out), optional :: rc

DESCRIPTION:

This method is only temporary. It was created to enable testing during the stage in ESMF development while we have
two internal mesh implementations. At some point it will be removed.

This method can be used to check whether the MOAB library is being used to hold the internal structure of the Mesh.
When set to .true. the following Mesh create calls create a Mesh using MOAB internally. When set to .false. the
following Mesh create calls use the ESMF native internal mesh respresentation. Note that ESMF Meshes created on
MOAB are only supported in a limited set of operations and should be used with caution as they haven’t yet been
tested as thoroughly as the native version. Also, operations that use a pair of Meshes (e.g. regrid weight generation)
are only supported between meshes of the same type (e.g. you can regrid between two MOAB meshes, but not between
a MOAB and a native mesh).

moabOn Output variable which indicates current state of MOAB.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

34 XGrid Class

34.1 Description

An exchange grid represents the 2D boundary layer usually between the atmosphere on one side and ocean and land

on the other in an Earth system model. There are dynamical and thermodynamical processes on either side of the

boundary layer and on the boundary layer itself. The boundary layer exchanges fluxes from either side and adjusts

boundary conditions for the model components involved. For climate modeling, it is critical that the fluxes transferred

by the boundary layer are conservative.

The ESMF exchange grid is implemented as the ESMF_XGrid class. Internally it’s represented by a collection of the

intersected cells between atmosphere and ocean/land[17] grids. These polygonal cells can have irregular shapes and

can be broken down into triangles facilitating a finite element approach.

There are two ways to create an ESMF_XGrid object from user supplied information. The first way to create an

ESMF_XGrid takes two lists of ESMF_Grid or ESMF_Mesh that represent the model component grids on either

side of the exchange grid. From the two lists of ESMF_Grid or ESMF_Mesh, information required for flux exchange

calculation between any pair of the model components from either side of the exchange grid is computed. In addition,

the internal representation of the ESMF_XGrid is computed and can be optionally stored as an ESMF_Mesh. This

internal representation is the collection of the intersected polygonal cells as a result of merged ESMF_Meshes from

both sides of the exchange grid. ESMF_Field can be created on the ESMF_XGrid and used for weight generation

872

and regridding as the internal representation in the ESMF_XGrid has a complete geometrical description of the

exchange grid.

The second way to create an ESMF_XGrid requires users to supply all necessary information to compute commu-

nication routehandle. A later call to ESMF_FieldRegridStore() with the xgrid and source and destination

ESMF_Fields computes the ESMF_Routehandle object for matrix multiply operation used in model remapping.

ESMF_XGrid deals with 2 distinctive kinds of fraction for each Grid or Mesh cell involved in its creation. The follow-

ing description applies to both ESMF_Grid and ESMF_Mesh involved in the ESMF_XGrid creation process. The

first fraction quantity f1 is the same as defined in direct Field regrid between a source and destination ESMF_Field

pair, namely the fraction of a total Grid cell area A that is used in weight generation. The second fraction quantity f2
is a result of the Grid merging process when multiple ESMF_Grids or model components exist on one side of the

exchange grid. To compute XGrid, the multiple ESMF_Grids are first merged together to form a super mesh. During

the merging process, Grids that are of a higher priority clips into lower priority Grids, creating fractional cells in the

lower priority Grids. Priority is a mechanism to resolve the claim of a surface region by multiple Grids. To conserve

flux, any surface area can only be claimed by a unique Grid. This is a typical practice in earth system modelling, e.g.

to handle land and ocean boundary.

In addition to the matrix multiply communication routehandle, ESMF_XGrid exports both f1 and f2 to the user

through the ESMF_FieldRegridStore() method because each remapping pair has different f1 and f2 asso-

ciated with it. f2 from source Grid is folded directly in the calculated weight matrices since its used to calculate

destination point flux density F . The global source flux is defined as
∑g=n_srcgrid

g=1

∑s=n_srccell
s=1

f1sf2sAsFs. The

global destination flux is defined as:
∑g=n_dstgrid

g=1

∑d=n_dstcell
d=1

∑s=n_intersect
s=1

(wsdFs)f2dAd, wsd is the f2 modi-

fied weight intersecting s-th source Grid cell with d-th destination Grid cell. It can be proved that this formulation of

the fractions and weight calculation ensures first order global conservation of flux F transferred from source grids to

exchange grid, and from exchange grid to destination grids.

34.2 Constants

34.2.1 ESMF_XGRIDSIDE

DESCRIPTION:

Specify which side of the ESMF_XGrid the current operation is taking place.

The type of this flag is:

type(ESMF_XGridSide_Flag)

The valid values are:

ESMF_XGRIDSIDE_A A side of the eXchange Grid, corresponding to the A side of the Grids used to create an

XGrid.

ESMF_XGRIDSIDE_B B side of the eXchange Grid, corresponding to the B side of the Grids used to create an

XGrid.

ESMF_XGRIDSIDE_BALANCED The internally generated balanced side of the eXchange Grid in the middle.

873

34.3 Use and Examples

34.3.1 Create an XGrid from Grids then use it for regridding

An ESMF_XGrid object can be created from Grids on either side of the exchange grid. Internally the weight matrices
and index mapping are computed and stored in the XGrid, along with other necessary information for flux exchange
calculation between any pair of model components used for the XGrid creation.

In this example, we create an XGrid from overlapping Grids on either side of the XGrid. Then we perform a flux
exchange from one side to the other side of the XGrid.

We start by creating the Grids on both sides and associate coordinates with the Grids on the corner stagger. The Grids
use global indexing and padding for coordinates on the corner stagger.

For details of Grid creation and coordinate use, please refer to Grid class documentation: 31.3.2.

! First Grid on side A

sideA(1) = ESMF_GridCreateNoPeriDim(maxIndex=(/20, 20/), &

indexflag=ESMF_INDEX_GLOBAL, &

gridEdgeLWidth=(/0,0/), gridEdgeUWidth=(/1,1/), &

name=’source Grid 1 on side A’, rc=localrc)

! Second Grid on side A

sideA(2) = ESMF_GridCreateNoPeriDim(maxIndex=(/20, 10/), &

indexflag=ESMF_INDEX_GLOBAL, &

gridEdgeLWidth=(/0,0/), gridEdgeUWidth=(/1,1/), &

name=’source Grid 2 on side A’, rc=localrc)

! Allocate coordinates for Grid corner stagger

do i = 1, 2

call ESMF_GridAddCoord(sideA(i), staggerloc=ESMF_STAGGERLOC_CORNER, &

rc=localrc)

enddo

Assign coordinate for the Grids on sideA at corner stagger.

! SideA first grid spans (0-20, 0-20) with 1.0x1.0 degree resolution

! X corner

call ESMF_GridGetCoord(sideA(1), localDE=0, &

staggerLoc=ESMF_STAGGERLOC_CORNER, coordDim=1, &

farrayPtr=coordX, rc=localrc)

! Y corner

call ESMF_GridGetCoord(sideA(1), localDE=0, &

staggerLoc=ESMF_STAGGERLOC_CORNER, coordDim=2, &

farrayPtr=coordY, rc=localrc)

874

do i = lbound(coordX,1), ubound(coordX,1)

do j = lbound(coordX, 2), ubound(coordX, 2)

coordX(i,j) = (i-1)*1.0

coordY(i,j) = (j-1)*1.0

enddo

enddo

! SideA second grid spans (14.3-24.3, 14.2-24.2) with 0.5x1.0 degree

! resolution X corner

call ESMF_GridGetCoord(sideA(2), localDE=0, &

staggerLoc=ESMF_STAGGERLOC_CORNER, coordDim=1, &

farrayPtr=coordX, rc=localrc)

! Y corner

call ESMF_GridGetCoord(sideA(2), localDE=0, &

staggerLoc=ESMF_STAGGERLOC_CORNER, coordDim=2, &

farrayPtr=coordY, rc=localrc)

do i = lbound(coordX,1), ubound(coordX,1)

do j = lbound(coordX, 2), ubound(coordX, 2)

coordX(i,j) = 14.3+(i-1)*0.5

coordY(i,j) = 14.2+(j-1)*1.0

enddo

enddo

Create the destination grid on side B, only one Grid exists on side B. Also associate coordinate with the Grid:

sideB(1) = ESMF_GridCreateNoPeriDim(maxIndex=(/30, 30/), &

indexflag=ESMF_INDEX_GLOBAL, &

gridEdgeLWidth=(/0,0/), gridEdgeUWidth=(/1,1/), &

name=’source Grid 1 on side B’, rc=localrc)

do i = 1, 1

call ESMF_GridAddCoord(sideB(i), staggerloc=ESMF_STAGGERLOC_CORNER, &

rc=localrc)

enddo

! SideB grid spans (0-30, 0-30) with 1.0x1.0 degree resolution

! X corner

call ESMF_GridGetCoord(sideB(1), localDE=0, &

staggerLoc=ESMF_STAGGERLOC_CORNER, coordDim=1, &

farrayPtr=coordX, rc=localrc)

875

! Y corner

call ESMF_GridGetCoord(sideB(1), localDE=0, &

staggerLoc=ESMF_STAGGERLOC_CORNER, coordDim=2, &

farrayPtr=coordY, rc=localrc)

do i = lbound(coordX,1), ubound(coordX,1)

do j = lbound(coordX, 2), ubound(coordX, 2)

coordX(i,j) = (i-1)*1.0

coordY(i,j) = (j-1)*1.0

enddo

enddo

Create an ESMF_XGrid object from the two lists of Grids on side A and B. In this example both Grids on side A
overlaps with the Grid on side B. It’s an error to have a Grid on either side that is spatially disjoint with the XGrid.
Neither of the Grid on side A is identical to the Grid on side B. Calling the ESMF_XGridCreate() method is
straightforward:

xgrid = ESMF_XGridCreate(sideAGrid=sideA, sideBGrid=sideB, rc=localrc)

Create an ESMF_Field on the XGrid:

field = ESMF_FieldCreate(xgrid, typekind=ESMF_TYPEKIND_R8, &

rc=localrc)

Query the Field for its Fortran data pointer and its exclusive bounds:

call ESMF_FieldGet(field, farrayPtr=xfarrayPtr, &

exclusiveLBound=xlb, exclusiveUBound=xub, rc=localrc)

Create src and dst Fields on side A and side B Grids.

do i = 1, 2

srcField(i) = ESMF_FieldCreate(sideA(i), &

typekind=ESMF_TYPEKIND_R8, rc=localrc)

enddo

do i = 1, 1

dstField(i) = ESMF_FieldCreate(sideB(i), &

typekind=ESMF_TYPEKIND_R8, rc=localrc)

enddo

876

The current implementation requires that Grids used to generate the XGrid must not match, i.e. they are different
either topologically or geometrically or both. In this example, the first source Grid is topologically identical to the
destination Grid but their geometric coordinates are different.

First we compute the regrid routehandles, these routehandles can be used repeatedly afterwards. Then we initialize the
values in the Fields. Finally we execute the Regrid.

! Compute regrid routehandles. The routehandles can be used

! repeatedly afterwards.

! From A -> X

do i = 1, 2

call ESMF_FieldRegridStore(xgrid, srcField(i), field, &

routehandle=rh_src2xgrid(i), rc = localrc)

enddo

! from X -> B, retrieve the destination fraction Fields.

do i = 1, 1

call ESMF_FieldRegridStore(xgrid, field, dstField(i), &

dstFracField=dstFrac, dstMergeFracField=dstFrac2, &

routehandle=rh_xgrid2dst(i), rc = localrc)

enddo

! Initialize values in the source Fields on side A

do i = 1, 2

call ESMF_FieldGet(srcField(i), farrayPtr=farrayPtr, rc=localrc)

farrayPtr = i

enddo

! Initialize values in the destination Field on XGrid

xfarrayPtr = 0.0

! Initialize values in the destination Field on Side B

do i = 1, 1

call ESMF_FieldGet(dstField(i), farrayPtr=farrayPtr, rc=localrc)

farrayPtr = 0.0

enddo

First we regrid from the Fields on side A to the Field on the XGrid:

! Execute regrid from A -> X

do i = 1, 2

call ESMF_FieldRegrid(srcField(i), field, &

routehandle=rh_src2xgrid(i), &

zeroregion=ESMF_REGION_SELECT, rc = localrc)

enddo

877

Next we regrid from the Field on XGrid to the destination Field on side B:

! Execute the regrid store

do i = 1, 1

call ESMF_FieldRegrid(field, dstField(i), &

routehandle=rh_xgrid2dst(i), &

rc = localrc)

enddo

After the regridding calls, the routehandle can be released by calling the ESMF_FieldRegridRelease()method.

do i = 1, 2

call ESMF_FieldRegridRelease(routehandle=rh_src2xgrid(i), rc=localrc)

enddo

call ESMF_FieldRegridRelease(routehandle=rh_xgrid2dst(1), rc=localrc)

In the above example, we first set up all the required parameters to create an XGrid from user supplied input. Then
we create Fields on the XGrid and the Grids on either side. Finally we use the ESMF_FieldRegrid() interface to
perform a flux exchange from the source side to the destination side.

34.3.2 Using XGrid in Earth System modeling

A typical application in Earth System Modeling is to calculate flux exchange through the planetary boundary layer
that can be represented by ESMF_XGrid. Atmosphere is above the planetary boundary layer while land and ocean
are below the boundary layer. To create an XGrid, the land and ocean Grids that are usually different in resolution
need to be merged first to create a super Mesh. This merging process is enabled through the support of masking.

The global land and ocean Grids need to be created with masking enabled. In practice, each Grid cell has an integer
masking value attached to it. For examples using masking in ESMF_Grid please refer to section 31.3.17.

When calling the ESMF_XGridCreate() method, user can supply the optional arguments sideAMaskValues and
sideBMaskValues. These arguments are one dimensional Fortran integer arrays. If any of the sideAMaskValues entry
matches the masking value used in sideA Grid, the sideA Grid cell is masked out, vice versa for sideB. Thus by
specifying different regions of a land and ocean Grids to be masked out, the two global Grids can be merged into a
new global Mesh covering the entire Earth.

The following call shows how to use the ESMF_XGridCreate() method with the optional arguments sideA-
MaskValues and sideBMaskValues.

xgrid = ESMF_XGridCreate(sideAGrid=sideA, sideBGrid=sideB, &

sideAMaskValues=(/2/), sideBMaskValues=(/3,4/), rc=localrc)

878

1

2

3

4

5

6

7

8

9

10

11

12

1

2

3

4

1

2

3

4

(0,0) (0,3)

(2,0) (2,3)

(1.5,1.5)

1

2

Figure 20: Grid layout for simple XGrid creation example. Overlapping of 3 Grids (Green 2x2, Red 2x1, Blue 2x2).

Green and red Grids on side A, blue Grid on side B, black indicates the resulting XGrid. Color coded sequence indices

are shown. Physical coordinates are the tuples in parenthesis, e.g. at the four corners of rectangular computational

domain.

34.3.3 Create an XGrid from user input data then use it for regridding

Alternatively, XGrid can be created from Grids on either side, area and centroid information of XGrid cells, sparse
matrix matmul information. The functionalities provided by the XGrid object is constrained by the user supplied input
during its creation time.

In this example, we will set up a simple XGrid from overlapping Grids on either side of the XGrid. Then we perform
a flux exchange from one side to the other side of the XGrid. The Grids are laid out in the following figure:

We start by creating the Grids on both sides and associate coordinates with the Grids. For details of Grid creation and
coordinate use, please refer to Grid class documentation.

sideA(1) = ESMF_GridCreateNoPeriDim(minIndex=(/1,1/), maxIndex=(/2,2/), &

coordDep1=(/1/), &

coordDep2=(/2/), &

name=’source Grid 1 on side A’, rc=localrc)

sideA(2) = ESMF_GridCreateNoPeriDim(minIndex=(/1,1/), maxIndex=(/2,1/), &

coordDep1=(/1/), &

coordDep2=(/2/), &

879

name=’source Grid 2 on side A’, rc=localrc)

do i = 1, 2

call ESMF_GridAddCoord(sideA(i), staggerloc=ESMF_STAGGERLOC_CENTER, &

rc=localrc)

enddo

Coordinate for the Grids on sideA, refer to the Grid layout diagram for the interpretation of the coordinate values:

! SideA first grid

centroidA1X=(/0.5, 1.5/)

centroidA1Y=(/0.5, 1.5/)

call ESMF_GridGetCoord(sideA(1), localDE=0, &

staggerLoc=ESMF_STAGGERLOC_CENTER, coordDim=1, &

farrayPtr=coordX, rc=localrc)

coordX = centroidA1X

call ESMF_GridGetCoord(sideA(1), localDE=0, &

staggerLoc=ESMF_STAGGERLOC_CENTER, coordDim=2, &

farrayPtr=coordY, rc=localrc)

coordY = centroidA1Y

! SideA second grid

centroidA2X=(/0.5, 1.5/)

centroidA2Y=(/2.5/)

call ESMF_GridGetCoord(sideA(2), localDE=0, &

staggerLoc=ESMF_STAGGERLOC_CENTER, coordDim=1, &

farrayPtr=coordX, rc=localrc)

coordX = centroidA2X

call ESMF_GridGetCoord(sideA(2), localDE=0, &

staggerLoc=ESMF_STAGGERLOC_CENTER, coordDim=2, &

farrayPtr=coordY, rc=localrc)

coordY = centroidA2Y

Create the destination grid on side B, only one Grid exists on side B. Also associate coordinate with the Grid:

sideB(1) = ESMF_GridCreateNoPeriDim(minIndex=(/1,1/), maxIndex=(/2,2/), &

coordDep1=(/1/), coordDep2=(/2/), &

name=’destination Grid on side B’, rc=localrc)

880

do i = 1, 1

call ESMF_GridAddCoord(sideB(i), staggerloc=ESMF_STAGGERLOC_CENTER, &

rc=localrc)

enddo

! SideB grid

centroidBX=(/0.75, 1.75/)

centroidBY=(/0.75, 2.25/)

call ESMF_GridGetCoord(sideB(1), localDE=0, &

staggerLoc=ESMF_STAGGERLOC_CENTER, coordDim=1, farrayPtr=coordX, &

rc=localrc)

coordX = centroidBX

call ESMF_GridGetCoord(sideB(1), localDE=0, &

staggerLoc=ESMF_STAGGERLOC_CENTER, coordDim=2, farrayPtr=coordY, &

rc=localrc)

coordY = centroidBY

Set up the mapping indices and weights from A side to the XGrid. For details of sequence indices, factorIndexList,
and factorList, please see section 28.2.18 in the reference manual. Please refer to the figure above for interpretation of
the sequence indices used here.

In order to compute the destination flux on sideB through the XGrid as an mediator, we need to set up the fac-
torList (weights) and factorIndexList (indices) for sparse matrix multiplication in this formulation: dst_flux =
W’*W*src_flux, where W’ is the weight matrix from the XGrid to destination; and W is the weight matrix from
source to the XGrid. The weight matrix is generated using destination area weighted algorithm. Please refer to figure
20 for details.

! Set up mapping from A1 -> X

sparseMatA2X(1)%factorIndexList(1,1)=1 ! src seq index (green)

sparseMatA2X(1)%factorIndexList(1,2)=2 ! src seq index (green)

sparseMatA2X(1)%factorIndexList(1,3)=2 ! src seq index (green)

sparseMatA2X(1)%factorIndexList(1,4)=3 ! src seq index (green)

sparseMatA2X(1)%factorIndexList(1,5)=4 ! src seq index (green)

sparseMatA2X(1)%factorIndexList(1,6)=4 ! src seq index (green)

sparseMatA2X(1)%factorIndexList(1,7)=3 ! src seq index (green)

sparseMatA2X(1)%factorIndexList(1,8)=4 ! src seq index (green)

sparseMatA2X(1)%factorIndexList(1,9)=4 ! src seq index (green)

sparseMatA2X(1)%factorIndexList(2,1)=1 ! dst seq index (black)

sparseMatA2X(1)%factorIndexList(2,2)=2 ! dst seq index (black)

sparseMatA2X(1)%factorIndexList(2,3)=3 ! dst seq index (black)

sparseMatA2X(1)%factorIndexList(2,4)=4 ! dst seq index (black)

sparseMatA2X(1)%factorIndexList(2,5)=5 ! dst seq index (black)

sparseMatA2X(1)%factorIndexList(2,6)=6 ! dst seq index (black)

sparseMatA2X(1)%factorIndexList(2,7)=7 ! dst seq index (black)

sparseMatA2X(1)%factorIndexList(2,8)=8 ! dst seq index (black)

sparseMatA2X(1)%factorIndexList(2,9)=9 ! dst seq index (black)

881

! Set up mapping from A2 -> X

sparseMatA2X(2)%factorIndexList(1,1)=1 ! src seq index (red)

sparseMatA2X(2)%factorIndexList(1,2)=2 ! src seq index (red)

sparseMatA2X(2)%factorIndexList(1,3)=2 ! src seq index (red)

sparseMatA2X(2)%factorIndexList(2,1)=10 ! dst seq index (black)

sparseMatA2X(2)%factorIndexList(2,2)=11 ! dst seq index (black)

sparseMatA2X(2)%factorIndexList(2,3)=12 ! dst seq index (black)

Set up the mapping weights from side A to the XGrid:

! Note that the weights are dest area weighted, they are ratio

! of areas with destination area as the denominator.

! Set up mapping weights from A1 -> X

sparseMatA2X(1)%factorList(:)=1.

! Set up mapping weights from A2 -> X

sparseMatA2X(2)%factorList(:)=1.

Set up the mapping indices and weights from the XGrid to B side:

! Set up mapping from X -> B

sparseMatX2B(1)%factorIndexList(1,1)=1 ! src seq index (black)

sparseMatX2B(1)%factorIndexList(1,2)=2 ! src seq index (black)

sparseMatX2B(1)%factorIndexList(1,3)=3 ! src seq index (black)

sparseMatX2B(1)%factorIndexList(1,4)=4 ! src seq index (black)

sparseMatX2B(1)%factorIndexList(1,5)=5 ! src seq index (black)

sparseMatX2B(1)%factorIndexList(1,6)=6 ! src seq index (black)

sparseMatX2B(1)%factorIndexList(1,7)=7 ! src seq index (black)

sparseMatX2B(1)%factorIndexList(1,8)=8 ! src seq index (black)

sparseMatX2B(1)%factorIndexList(1,9)=9 ! src seq index (black)

sparseMatX2B(1)%factorIndexList(1,10)=10 ! src seq index (black)

sparseMatX2B(1)%factorIndexList(1,11)=11 ! src seq index (black)

sparseMatX2B(1)%factorIndexList(1,12)=12 ! src seq index (black)

sparseMatX2B(1)%factorIndexList(2,1)=1 ! dst seq index (blue)

sparseMatX2B(1)%factorIndexList(2,2)=1 ! dst seq index (blue)

sparseMatX2B(1)%factorIndexList(2,3)=2 ! dst seq index (blue)

sparseMatX2B(1)%factorIndexList(2,4)=1 ! dst seq index (blue)

sparseMatX2B(1)%factorIndexList(2,5)=1 ! dst seq index (blue)

sparseMatX2B(1)%factorIndexList(2,6)=2 ! dst seq index (blue)

sparseMatX2B(1)%factorIndexList(2,7)=3 ! dst seq index (blue)

sparseMatX2B(1)%factorIndexList(2,8)=3 ! dst seq index (blue)

sparseMatX2B(1)%factorIndexList(2,9)=4 ! dst seq index (blue)

sparseMatX2B(1)%factorIndexList(2,10)=3 ! dst seq index (blue)

sparseMatX2B(1)%factorIndexList(2,11)=3 ! dst seq index (blue)

sparseMatX2B(1)%factorIndexList(2,12)=4 ! dst seq index (blue)

! Set up mapping weights from X -> B

sparseMatX2B(1)%factorList(1)=4./9.

sparseMatX2B(1)%factorList(2)=2./9.

882

sparseMatX2B(1)%factorList(3)=2./3.

sparseMatX2B(1)%factorList(4)=2./9.

sparseMatX2B(1)%factorList(5)=1./9.

sparseMatX2B(1)%factorList(6)=1./3.

sparseMatX2B(1)%factorList(7)=2./9.

sparseMatX2B(1)%factorList(8)=1./9.

sparseMatX2B(1)%factorList(9)=1./3.

sparseMatX2B(1)%factorList(10)=4./9.

sparseMatX2B(1)%factorList(11)=2./9.

sparseMatX2B(1)%factorList(12)=2./3.

Optionally the area can be setup to compute surface area weighted flux integrals:

! Set up destination areas to adjust weighted flux

xgrid_area(1) = 1.

xgrid_area(2) = 0.5

xgrid_area(3) = 0.5

xgrid_area(4) = 0.5

xgrid_area(5) = 0.25

xgrid_area(6) = 0.25

xgrid_area(7) = 0.5

xgrid_area(8) = 0.25

xgrid_area(9) = 0.25

xgrid_area(10) = 1.

xgrid_area(11) = 0.5

xgrid_area(12) = 0.5

Create an XGrid based on the user supplied regridding parameters:

xgrid = ESMF_XGridCreateFromSparseMat(sideAGrid=sideA, &

sideBGrid=sideB, area=xgrid_area, &

centroid=centroid, sparseMatA2X=sparseMatA2X, &

sparseMatX2B=sparseMatX2B, rc=localrc)

Create an ESMF_Field on the XGrid:

field = ESMF_FieldCreate(xgrid, typekind=ESMF_TYPEKIND_R8, &

rc=localrc)

Query the Field for its Fortran data pointer and its exclusive bounds:

call ESMF_FieldGet(field, farrayPtr=xfarrayPtr, &

exclusiveLBound=xlb, exclusiveUBound=xub, rc=localrc)

Setup and initialize src and dst Fields on side A and side B Grids, source Fields have different source flux:

883

do i = 1, 2

srcField(i) = ESMF_FieldCreate(sideA(i), &

typekind=ESMF_TYPEKIND_R8, rc=localrc)

call ESMF_FieldGet(srcField(i), farrayPtr=farrayPtr, rc=localrc)

farrayPtr = i

enddo

do i = 1, 1

dstField(i) = ESMF_FieldCreate(sideB(i), &

typekind=ESMF_TYPEKIND_R8, rc=localrc)

call ESMF_FieldGet(dstField(i), farrayPtr=farrayPtr, rc=localrc)

farrayPtr = 0.0

enddo

The current implementation requires that Grids used to generate the XGrid must not match, i.e. they are different
either topologically or geometrically or both. In this example, the first source Grid is topologically identical to the
destination Grid but their geometric coordinates are different. This requirement will be relaxed in a future release.

First we compute the regrid routehandles, these routehandles can be used repeatedly afterwards. Then we initialize the
values in the Fields. Finally we execute the Regrid.

! Compute regrid routehandles. The routehandles can be used

! repeatedly afterwards.

! From A -> X

do i = 1, 2

call ESMF_FieldRegridStore(xgrid, srcField(i), field, &

routehandle=rh_src2xgrid(i), rc = localrc)

enddo

! from X -> B

do i = 1, 1

call ESMF_FieldRegridStore(xgrid, field, dstField(i), &

routehandle=rh_xgrid2dst(i), rc = localrc)

enddo

! Initialize values in the source Fields on side A

do i = 1, 2

call ESMF_FieldGet(srcField(i), farrayPtr=farrayPtr, rc=localrc)

farrayPtr = i

884

enddo

! Initialize values in the destination Field on XGrid

xfarrayPtr = 0.0

! Initialize values in the destination Field on Side B

do i = 1, 1

call ESMF_FieldGet(dstField(i), farrayPtr=farrayPtr, rc=localrc)

farrayPtr = 0.0

enddo

First we regrid from the Fields on side A to the Field on the XGrid:

! Execute regrid from A -> X

do i = 1, 2

call ESMF_FieldRegrid(srcField(i), field, &

routehandle=rh_src2xgrid(i), &

zeroregion=ESMF_REGION_SELECT, rc = localrc)

enddo

Next we regrid from the Field on XGrid to the destination Field on side B:

! Execute the regrid store

do i = 1, 1

call ESMF_FieldRegrid(field, dstField(i), &

routehandle=rh_xgrid2dst(i), rc = localrc)

enddo

In the above example, we first set up all the required parameters to create an XGrid from user supplied input. Then
we create Fields on the XGrid and the Grids on either side. Finally we use the ESMF_FieldRegrid() interface to
perform a flux exchange from the source side to the destination side.

34.3.4 Query the XGrid for its internal information

One can query the XGrid for its internal information:

call ESMF_XGridGet(xgrid, &

sideAGridCount=ngridA, & ! number of Grids on side A

sideBGridCount=ngridB, & ! number of Grids on side B

sideAGrid=l_sideA, & ! list of Grids on side A

sideBGrid=l_sideB, & ! list of Grids on side B

area=l_area, & ! list of area of XGrid

centroid=l_centroid, & ! list of centroid of XGrid

885

distgridA=l_sideAdg, & ! list of Distgrids on side A

distgridM = distgrid, & ! balanced distgrid

sparseMatA2X=l_sparseMatA2X, & !sparse matrix matmul parameters A to X

sparseMatX2B=l_sparseMatX2B, & !sparse matrix matmul parameters X to B

rc=localrc)

call ESMF_XGridGet(xgrid, localDe=0, &

elementCount=eleCount, & ! elementCount on the localDE

exclusiveCount=ec, & ! exclusive count

exclusiveLBound=elb, & ! exclusive lower bound

exclusiveUBound=eub, & ! exclusive upper bound

rc=localrc)

call ESMF_XGridGet(xgrid, &

xgridSide=ESMF_XGRIDSIDE_A, & ! side of the XGrid to query

gridIndex=1, & ! index of the distgrid

distgrid=distgrid, & ! the distgrid returned

rc=localrc)

34.3.5 Destroying the XGrid and other resources

Clean up the resources by destroying the XGrid and other objects:

! After the regridding is successful.

! Clean up all the allocated resources:

call ESMF_FieldDestroy(field, rc=localrc)

call ESMF_XGridDestroy(xgrid, rc=localrc)

do i = 1, 2

call ESMF_FieldDestroy(srcField(i), rc = localrc)

call ESMF_GridDestroy(sideA(i), rc = localrc)

enddo

do i = 1, 1

call ESMF_FieldDestroy(dstField(i), rc = localrc)

call ESMF_GridDestroy(sideB(i), rc = localrc)

886

enddo

deallocate(sparseMatA2X(1)%factorIndexList, sparseMatA2X(1)%factorList)

deallocate(sparseMatA2X(2)%factorIndexList, sparseMatA2X(2)%factorList)

deallocate(sparseMatX2B(1)%factorIndexList, sparseMatX2B(1)%factorList)

34.4 Restrictions and Future Work

34.4.1 Restrictions and Future Work

1. CAUTION: Any Grid or Mesh pair picked from the A side and B side of the XGrid cannot point to the same

Grid or Mesh in memory on a local PET. This prevents Regrid from selecting the right source and destination

grid automatically to calculate the regridding routehandle. It’s okay for the Grid and Mesh to have identical

topological and geographical properties as long as they are stored in different memory.

34.5 Design and Implementation Notes

1. The XGrid class is implemented in Fortran, and as such is defined inside the framework by a XGrid derived

type and a set of subprograms (functions and subroutines) which operate on that derived type. The XGrid class

contains information needed to create Grid, Field, and communication routehandle.

2. XGrid follows the framework-wide convention of the unison creation and operation rule: All PETs which are

part of the currently executing VM must create the same XGrids at the same point in their execution. In addition

to the unison rule, XGrid creation also performs inter-PET communication within the current executing VM.

34.6 Class API

34.6.1 ESMF_XGridAssignment(=) - XGrid assignment

INTERFACE:

interface assignment(=)

xgrid1 = xgrid2

ARGUMENTS:

type(ESMF_XGrid) :: xgrid1

type(ESMF_XGrid) :: xgrid2

DESCRIPTION:

Assign xgrid1 as an alias to the same ESMF XGrid object in memory as xgrid2. If xgrid2 is invalid, then xgrid1 will
be equally invalid after the assignment.

The arguments are:

xgrid1 The ESMF_XGrid object on the left hand side of the assignment.

887

xgrid2 The ESMF_XGrid object on the right hand side of the assignment.

34.6.2 ESMF_XGridOperator(==) - XGrid equality operator

INTERFACE:

interface operator(==)

if (xgrid1 == xgrid2) then ... endif

OR

result = (xgrid1 == xgrid2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_XGrid), intent(in) :: xgrid1

type(ESMF_XGrid), intent(in) :: xgrid2

DESCRIPTION:

Test whether xgrid1 and xgrid2 are valid aliases to the same ESMF XGrid object in memory. For a more general
comparison of two ESMF XGrids, going beyond the simple alias test, the ESMF_XGridMatch() function (not yet
implemented) must be used.

The arguments are:

xgrid1 The ESMF_XGrid object on the left hand side of the equality operation.

xgrid2 The ESMF_XGrid object on the right hand side of the equality operation.

34.6.3 ESMF_XGridOperator(/=) - XGrid not equal operator

INTERFACE:

interface operator(/=)

if (xgrid1 /= xgrid2) then ... endif

OR

result = (xgrid1 /= xgrid2)

RETURN VALUE:

logical :: result

888

ARGUMENTS:

type(ESMF_XGrid), intent(in) :: xgrid1

type(ESMF_XGrid), intent(in) :: xgrid2

DESCRIPTION:

Test whether xgrid1 and xgrid2 are not valid aliases to the same ESMF XGrid object in memory. For a more general
comparison of two ESMF XGrids, going beyond the simple alias test, the ESMF_XGridMatch() function (not yet
implemented) must be used.

The arguments are:

xgrid1 The ESMF_XGrid object on the left hand side of the non-equality operation.

xgrid2 The ESMF_XGrid object on the right hand side of the non-equality operation.

34.6.4 ESMF_XGridCreate - Create an XGrid from lists of Grids and Meshes

INTERFACE:

function ESMF_XGridCreate(&

sideAGrid, sideAMesh, &

sideBGrid, sideBMesh, &

sideAGridPriority, sideAMeshPriority, &

sideBGridPriority, sideBMeshPriority, &

sideAMaskValues, sideBMaskValues, &

storeOverlay, &

name, rc)

RETURN VALUE:

type(ESMF_XGrid) :: ESMF_XGridCreate

ARGUMENTS:

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Grid), intent(in), optional :: sideAGrid(:)

type(ESMF_Mesh), intent(in), optional :: sideAMesh(:)

type(ESMF_Grid), intent(in), optional :: sideBGrid(:)

type(ESMF_Mesh), intent(in), optional :: sideBMesh(:)

integer, intent(in), optional :: sideAGridPriority(:)

integer, intent(in), optional :: sideAMeshPriority(:)

integer, intent(in), optional :: sideBGridPriority(:)

integer, intent(in), optional :: sideBMeshPriority(:)

integer(ESMF_KIND_I4),intent(in), optional :: sideAMaskValues(:)

integer(ESMF_KIND_I4),intent(in), optional :: sideBMaskValues(:)

logical, intent(in), optional :: storeOverlay

character(len=*), intent(in), optional :: name

integer, intent(out),optional :: rc

889

DESCRIPTION:

Create an XGrid from user supplied input: the list of Grids or Meshes on side A and side B, and other optional
arguments. A user can supply both Grids and Meshes on one side to create the XGrid. By default, the Grids have a
higher priority over Meshes but the order of priority can be adjusted by the optional GridPriority and MeshPriority
arguments. The priority order of Grids and Meshes can also be interleaved by rearranging the optional GridPriority
and MeshPriority arguments accordingly.

Sparse matrix multiplication coefficients are internally computed and uniquely determined by the Grids or Meshes
provided in sideA and sideB. User can supply a single ESMF_Grid or an array of ESMF_Grid on either side
of the ESMF_XGrid. For an array of ESMF_Grid or ESMF_Mesh in sideA or sideB, a merging process con-
catenates all the ESMF_Grids and ESMF_Meshes into a super mesh represented by ESMF_Mesh. The super mesh
is then used to compute the XGrid. Grid or Mesh objects in sideA and sideB arguments must have coordinates
defined for the corners of a Grid or Mesh cell. XGrid creation can be potentially memory expensive given the size of
the input Grid and Mesh objects. By default, the super mesh is not stored to reduce memory usage. Once communica-
tion routehandles are computed using ESMF_FieldRegridStore() method through XGrid, all memory can be
released by destroying the XGrid.

If sideA and sideB have a single Grid or Mesh object, it’s erroneous if the two Grids or Meshes are spatially
disjoint. It is also erroneous to specify a Grid or Mesh object in sideA or sideB that is spatially disjoint from the
ESMF_XGrid.

This call is collective across the current VM. For more details please refer to the description 34.1 of the XGrid class.
For an example and associated documentation using this method see section 34.3.1

The arguments are:

[sideAGrid] Parametric 2D Grids on side A, for example, these Grids can be either Cartesian 2D or Spherical.

[sideAMesh] Parametric 2D Meshes on side A, for example, these Meshes can be either Cartesian 2D or Spherical.

[sideBGrid] Parametric 2D Grids on side B, for example, these Grids can be either Cartesian 2D or Spherical.

[sideBMesh] Parametric 2D Meshes on side B, for example, these Meshes can be either Cartesian 2D or Spherical.

[sideAGridPriority] Priority array of Grids on sideA during overlay generation. The priority arrays describe the
priorities of Grids at the overlapping region. Flux contributions at the overlapping region are computed in the
order from the Grid of the highest priority to the lowest priority.

[sideAMeshPriority] Priority array of Meshes on sideA during overlay generation. The priority arrays describe the
priorities of Meshes at the overlapping region. Flux contributions at the overlapping region are computed in the
order from the Mesh of the highest priority to the lowest priority.

[sideBGridPriority] Priority of Grids on sideB during overlay generation The priority arrays describe the priorities
of Grids at the overlapping region. Flux contributions at the overlapping region are computed in the order from
the Grid of the highest priority to the lowest priority.

[sideBMeshPriority] Priority array of Meshes on sideB during overlay generation. The priority arrays describe the
priorities of Meshes at the overlapping region. Flux contributions at the overlapping region are computed in the
order from the Mesh of the highest priority to the lowest priority.

[sideAMaskValues] Mask information can be set in the Grid (see 31.3.17) or Mesh (see 33.3.11) upon which the
Field is built. The sideAMaskValues argument specifies the values in that mask information which indi-
cate a point should be masked out. In other words, a location is masked if and only if the value for that location
in the mask information matches one of the values listed in sideAMaskValues. If sideAMaskValues is
not specified, no masking on side A will occur.

[sideBMaskValues] Mask information can be set in the Grid (see 31.3.17) or Mesh (see 33.3.11) upon which the
Field is built. The sideBMaskValues argument specifies the values in that mask information which indi-
cate a point should be masked out. In other words, a location is masked if and only if the value for that location

890

in the mask information matches one of the values listed in sideBMaskValues. If sideBMaskValues is
not specified, no masking on side B will occur.

[storeOverlay] Setting the storeOverlay optional argument to .false. (default) allows a user to bypass storage
of the ESMF_Mesh used to represent the XGrid. Only a ESMF_DistGrid is stored to allow Field to be built
on the XGrid. If the temporary mesh object is of interest, storeOverlay can be set to .true. so a user can
retrieve it for future use.

[name] name of the xgrid object.

[rc] Return code; equals ESMF_SUCCESS only if the ESMF_XGrid is created.

34.6.5 ESMF_XGridCreateFromSparseMat an XGrid from raw input parameters

INTERFACE:

function ESMF_XGridCreateFromSparseMat(&

sideAGrid, sideAMesh, &

sideBGrid, sideBMesh, &

sideAGridPriority, sideAMeshPriority, &

sideBGridPriority, sideBMeshPriority, &

sparseMatA2X, sparseMatX2A, sparseMatB2X, sparseMatX2B, &

area, centroid, &

name, &

rc)

RETURN VALUE:

type(ESMF_XGrid) :: ESMF_XGridCreateFromSparseMat

ARGUMENTS:

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Grid), intent(in), optional :: sideAGrid(:)

type(ESMF_Mesh), intent(in), optional :: sideAMesh(:)

type(ESMF_Grid), intent(in), optional :: sideBGrid(:)

type(ESMF_Mesh), intent(in), optional :: sideBMesh(:)

integer, intent(in), optional :: sideAGridPriority(:)

integer, intent(in), optional :: sideAMeshPriority(:)

integer, intent(in), optional :: sideBGridPriority(:)

integer, intent(in), optional :: sideBMeshPriority(:)

type(ESMF_XGridSpec), intent(in), optional :: sparseMatA2X(:)

type(ESMF_XGridSpec), intent(in), optional :: sparseMatX2A(:)

type(ESMF_XGridSpec), intent(in), optional :: sparseMatB2X(:)

type(ESMF_XGridSpec), intent(in), optional :: sparseMatX2B(:)

real(ESMF_KIND_R8), intent(in), optional :: area(:)

real(ESMF_KIND_R8), intent(in), optional :: centroid(:,:)

character (len=*), intent(in), optional :: name

integer, intent(out),optional :: rc

891

DESCRIPTION:

Create an XGrid directly from user supplied sparse matrix parameters. User is responsible to supply all information
necessary for communication calculation. For an example and associated documentation using this method see section
34.3.3

The arguments are:

[sideAGrid] Parametric 2D Grids on side A, for example, these Grids can be either Cartesian 2D or Spherical.

[sideAMesh] Parametric 2D Meshes on side A, for example, these Meshes can be either Cartesian 2D or Spherical.

[sideBGrid] Parametric 2D Grids on side B, for example, these Grids can be either Cartesian 2D or Spherical.

[sideBMesh] Parametric 2D Meshes on side B, for example, these Meshes can be either Cartesian 2D or Spherical.

[sideAGridPriority] Priority array of Grids on sideA during overlay generation. The priority arrays describe the
priorities of Grids at the overlapping region. Flux contributions at the overlapping region are computed in the
order from the Grid of the highest priority to the lowest priority.

[sideAMeshPriority] Priority array of Meshes on sideA during overlay generation. The priority arrays describe the
priorities of Meshes at the overlapping region. Flux contributions at the overlapping region are computed in the
order from the Mesh of the highest priority to the lowest priority.

[sideBGridPriority] Priority of Grids on sideB during overlay generation The priority arrays describe the priorities
of Grids at the overlapping region. Flux contributions at the overlapping region are computed in the order from
the Grid of the highest priority to the lowest priority.

[sideBMeshPriority] Priority array of Meshes on sideB during overlay generation. The priority arrays describe the
priorities of Meshes at the overlapping region. Flux contributions at the overlapping region are computed in the
order from the Mesh of the highest priority to the lowest priority.

[sparseMatA2X] indexlist from a Grid index space on side A to xgrid index space; indexFactorlist from a Grid index
space on side A to xgrid index space.

[sparseMatX2A] indexlist from xgrid index space to a Grid index space on side A; indexFactorlist from xgrid index
space to a Grid index space on side A.

[sparseMatB2X] indexlist from a Grid index space on side B to xgrid index space; indexFactorlist from a Grid index
space on side B to xgrid index space.

[sparseMatX2B] indexlist from xgrid index space to a Grid index space on side B; indexFactorlist from xgrid index
space to a Grid index space on side B.

[area] area of the xgrid cells.

[centroid] coordinates at the area weighted center of the xgrid cells.

[name] name of the xgrid object.

[rc] Return code; equals ESMF_SUCCESS only if the ESMF_XGrid is created.

892

34.6.6 ESMF_XGridIsCreated - Check whether a XGrid object has been created

INTERFACE:

function ESMF_XGridIsCreated(xgrid, rc)

RETURN VALUE:

logical :: ESMF_XGridIsCreated

ARGUMENTS:

type(ESMF_XGrid), intent(in) :: xgrid

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Return .true. if the xgrid has been created. Otherwise return .false.. If an error occurs, i.e. rc /=

ESMF_SUCCESS is returned, the return value of the function will also be .false..

The arguments are:

xgrid ESMF_XGrid queried.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

34.6.7 ESMF_XGridDestroy - Release resources associated with an XGrid

INTERFACE:

subroutine ESMF_XGridDestroy(xgrid, noGarbage, rc)

ARGUMENTS:

type(ESMF_XGrid), intent(inout) :: xgrid

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: noGarbage

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

893

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

8.1.0 Added argument noGarbage. The argument provides a mechanism to override the default garbage
collection mechanism when destroying an ESMF object.

DESCRIPTION:

Destroys an ESMF_XGrid, releasing the resources associated with the object.

The arguments are:

xgrid ESMF_XGrid object.

[noGarbage] If set to .TRUE. the object will be fully destroyed and removed from the ESMF garbage collection
system. Note however that under this condition ESMF cannot protect against accessing the destroyed object
through dangling aliases – a situation which may lead to hard to debug application crashes.

It is generally recommended to leave the noGarbage argument set to .FALSE. (the default), and to take
advantage of the ESMF garbage collection system which will prevent problems with dangling aliases or incorrect
sequences of destroy calls. However this level of support requires that a small remnant of the object is kept in
memory past the destroy call. This can lead to an unexpected increase in memory consumption over the course
of execution in applications that use temporary ESMF objects. For situations where the repeated creation and
destruction of temporary objects leads to memory issues, it is recommended to call with noGarbage set to
.TRUE., fully removing the entire temporary object from memory.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

34.6.8 ESMF_XGridGet - Get object-wide information from an XGrid

INTERFACE:

! Private name; call using ESMF_XGridGet()

subroutine ESMF_XGridGetDefault(xgrid, &

sideAGridCount, sideBGridCount, sideAMeshCount, sideBMeshCount, &

dimCount, elementCount, &

sideAGrid, sideBGrid, sideAMesh, sideBMesh, &

mesh, &

area, centroid, &

distgridA, distgridB, distgridM, &

sparseMatA2X, sparseMatX2A, sparseMatB2X, sparseMatX2B, &

name, &

rc)

ARGUMENTS:

type(ESMF_XGrid), intent(in) :: xgrid

894

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: sideAGridCount, sideBGridCount

integer, intent(out), optional :: sideAMeshCount, sideBMeshCount

integer, intent(out), optional :: dimCount

integer, intent(out), optional :: elementCount

type(ESMF_Grid), intent(out), optional :: sideAGrid(:), sideBGrid(:)

type(ESMF_Mesh), intent(out), optional :: sideAMesh(:), sideBMesh(:)

type(ESMF_Mesh), intent(out), optional :: mesh

real(ESMF_KIND_R8), intent(out), optional :: area(:)

real(ESMF_KIND_R8), intent(out), optional :: centroid(:,:)

type(ESMF_DistGrid), intent(out), optional :: distgridA(:)

type(ESMF_DistGrid), intent(out), optional :: distgridB(:)

type(ESMF_DistGrid), intent(out), optional :: distgridM

type(ESMF_XGridSpec), intent(out), optional :: sparseMatA2X(:)

type(ESMF_XGridSpec), intent(out), optional :: sparseMatX2A(:)

type(ESMF_XGridSpec), intent(out), optional :: sparseMatB2X(:)

type(ESMF_XGridSpec), intent(out), optional :: sparseMatX2B(:)

character (len=*), intent(out), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

Get information about XGrid

The arguments are:

xgrid The ESMF_XGrid object used to retrieve information from.

[sideAGridCount] Total Number of Grids on the A side.

[sideBGridCount] Total Number of Grids on the B side.

[sideAMeshCount] Total Number of Meshes on the A side.

[sideBMeshCount] Total Number of Meshes on the B side.

[dimCount] Number of dimension of the xgrid.

[elementCount] Number of elements in exclusive region of the xgrid on this PET.

[sideAGrid] List of 2D Grids on side A. Must enter with shape(sideAGrid)=(/sideAGridCount/).

[sideBGrid] List of 2D Grids on side B. Must enter with shape(sideBGrid)=(/sideBGridCount/).

[sideAMesh] List of 2D Meshes on side A. Must enter with shape(sideAMesh)=(/sideAMeshCount/).

[sideBMesh] List of 2D Meshes on side B. Must enter with shape(sideBMesh)=(/sideBMeshCount/).

[mesh] Super mesh stored in XGrid when storeOverlay is set true during XGrid creation.

[area] Area of the xgrid cells on this PET. Must enter with shape(area)=(/elementCount/).

[centroid] Coordinates at the area weighted center of the xgrid cells on this PET. Must enter with
shape(centroid)=(/elementCount, dimCount/).

[distgridA] List of distgrids whose sequence index list is an overlap between a Grid on sideA and the xgrid object.
Must enter with shape(distgridA)=(/sideAGridCount+sideAMeshCount/).

[distgridB] List of distgrids whose sequence index list is an overlap between a Grid on sideB and the xgrid object.
Must enter with shape(distgridB)=(/sideBGridCount+sideBMeshCount/).

895

[distgridM] The distgrid whose sequence index list fully describes the xgrid object.

[sparseMatA2X] Indexlist from a Grid index space on side A to xgrid index space; index-
Factorlist from a Grid index space on side A to xgrid index space. Must enter with
shape(sparsematA2X)=(/sideAGridCount+sideAMeshCount/).

[sparseMatX2A] Indexlist from xgrid index space to a Grid index space on side A; index-
Factorlist from xgrid index space to a Grid index space on side A. Must enter with
shape(sparsematX2A)=(/sideAGridCount+sideAMeshCount/).

[sparseMatB2X] Indexlist from a Grid index space on side B to xgrid index space; index-
Factorlist from a Grid index space on side B to xgrid index space. Must enter with
shape(sparsematB2X)=(/sideBGridCount+sideBMeshCount/).

[sparseMatX2B] Indexlist from xgrid index space to a Grid index space on side B; index-
Factorlist from xgrid index space to a Grid index space on side B. Must enter with
shape(sparsematX2B)=(/sideBGridCount+sideBMeshCount/).

[name] Name of the xgrid object.

[rc] Return code; equals ESMF_SUCCESS only if the ESMF_XGrid is created.

35 DistGrid Class

35.1 Description

The ESMF DistGrid class sits on top of the DELayout class and holds domain information in index space. A DistGrid

object captures the index space topology and describes its decomposition in terms of DEs. Combined with DELayout

and VM the DistGrid defines the data distribution of a domain decomposition across the computational resources of

an ESMF Component.

The global domain is defined as the union of logically rectangular (LR) sub-domains or tiles. The DistGrid create

methods allow the specification of such a multi-tile global domain and its decomposition into exclusive, DE-local LR

regions according to various degrees of user specified constraints. Complex index space topologies can be constructed

by specifying connection relationships between tiles during creation.

The DistGrid class holds domain information for all DEs. Each DE is associated with a local LR region. No overlap of

the regions is allowed. The DistGrid offers query methods that allow DE-local topology information to be extracted,

e.g. for the construction of halos by higher classes.

A DistGrid object only contains decomposable dimensions. The minimum rank for a DistGrid object is 1. A maximum

rank does not exist for DistGrid objects, however, ranks greater than 7 may lead to difficulties with respect to the

Fortran API of higher classes based on DistGrid. The rank of a DELayout object contained within a DistGrid object

must be equal to the DistGrid rank. Higher class objects that use the DistGrid, such as an Array object, may be of

different rank than the associated DistGrid object. The higher class object will hold the mapping information between

its dimensions and the DistGrid dimensions.

35.2 Constants

35.2.1 ESMF_DISTGRIDMATCH

DESCRIPTION:

Indicates the level to which two DistGrid variables match.

896

The type of this flag is:

type(ESMF_DistGridMatch_Flag)

The valid values are:

ESMF_DISTGRIDMATCH_INVALID: Indicates a non-valid matching level. One or both DistGrid objects are

invalid.

ESMF_DISTGRIDMATCH_NONE: The lowest valid level of DistGrid matching. This indicates that the DistGrid

objects don’t match at any of the higher levels.

ESMF_DISTGRIDMATCH_INDEXSPACE: The index space covered by the two DistGrid objects is identical.

However, differences between the two objects prevents a higher matching level.

ESMF_DISTGRIDMATCH_TOPOLOGY: The topology (i.e. index space and connections) defined by the two

DistGrid objects is identical. However, differences between the two objects prevents a higher matching level.

ESMF_DISTGRIDMATCH_DECOMP: The index space decomposition defined by the two DistGrid objects is

identical. However, differences between the two objects prevents a higher matching level.

ESMF_DISTGRIDMATCH_EXACT: The two DistGrid objects match in all aspects, including sequence indices.

The only aspect that may differ between the two objects is their name.

ESMF_DISTGRIDMATCH_ALIAS: Both DistGrid variables are aliases to the exact same DistGrid object in mem-

ory.

35.3 Use and Examples

The following examples demonstrate how to create, use and destroy DistGrid objects. In order to produce complete

and valid DistGrid objects all of the ESMF_DistGridCreate() calls require to be called in unison i.e. on all

PETs of a component with a complete set of valid arguments.

35.3.1 Single tile DistGrid with regular decomposition

The minimum information required to create an ESMF_DistGrid object for a single tile with default decomposition
are the min and max of the tile in index space. The following call creates a DistGrid for a 1D index space tile with
elements from 1 through 1000.

distgrid = ESMF_DistGridCreate(minIndex=(/1/), maxIndex=(/1000/), rc=rc)

A default DELayout with 1 DE per PET will be created during the ESMF_DistGridCreate() call. The 1000
elements of the specified 1D tile are then block decomposed into the available DEs, and distributed across the PETs
(same number as DEs by default). Assuming execution on 4 PETs, the (min) ∼ (max) indices of the DE-local blocks
will be:

DE 0 - (1) ~ (250)

DE 1 - (251) ~ (500)

DE 2 - (501) ~ (750)

DE 3 - (751) ~ (1000)

897

DistGrids with rank > 1 can also be created with default decompositions, specifying only the min and max indices of
the tile. The following creates a 2D DistGrid for a 5x5 tile with default decomposition.

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIndex=(/5,5/), rc=rc)

The default decomposition for a DistGrid of rank N will be (nDEs× 1× ...× 1), where nDEs is the number of DEs
in the DELayout and there are N −1 factors of 1. For the 2D example above this means a 4×1 regular decomposition
if executed on 4 PETs and will result in the following DE-local LR regions:

DE 0 - (1,1) ~ (2,5)

DE 1 - (3,1) ~ (3,5)

DE 2 - (4,1) ~ (4,5)

DE 3 - (5,1) ~ (5,5)

In many cases the default decomposition will not suffice for higher rank DistGrids (rank > 1). For this reason a
decomposition descriptor regDecomp argument is available during ESMF_DistGridCreate(). The following
call creates a DistGrid on the same 2D tile as before, but now with a user specified regular decomposition of 2×3 = 6
DEs.

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIndex=(/5,5/), &

regDecomp=(/2,3/), rc=rc)

The default DE labeling sequence follows column major order for the regDecomp argument:

-----------> 2nd dimension

| 0 2 4

| 1 3 5

v

1st dimension

By default grid points along all dimensions are homogeneously divided between the DEs. The maximum element
count difference between DEs along any dimension is 1. The (min) ∼ (max) indices of the DE-local blocks of the
above example are as follows:

DE 0 - (1,1) ~ (3,2)

DE 1 - (4,1) ~ (5,2)

DE 2 - (1,3) ~ (3,4)

DE 3 - (4,3) ~ (5,4)

DE 4 - (1,5) ~ (3,5)

DE 5 - (4,5) ~ (5,5)

The specifics of the tile decomposition into DE-local LR domains can be modified by the optional decompflag
argument. The following line shows how this argument is used to keep ESMF’s default decomposition in the first
dimension but move extra grid points of the second dimension to the last DEs in that direction. Extra elements occur
if the number of DEs for a certain dimension does not evenly divide its extent. In this example there are 2 extra grid
points for the second dimension because its extent is 5 but there are 3 DEs along this index space axis.

898

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIndex=(/5,5/), &

regDecomp=(/2,3/), decompflag=(/ESMF_DECOMP_BALANCED, &

ESMF_DECOMP_RESTLAST/), rc=rc)

Now DE 4 and DE 5 will hold the extra elements along the 2nd dimension.

DE 0 - (1,1) ~ (3,1)

DE 1 - (4,1) ~ (5,1)

DE 2 - (1,2) ~ (3,2)

DE 3 - (4,2) ~ (5,2)

DE 4 - (1,3) ~ (3,5)

DE 5 - (4,3) ~ (5,5)

An alternative way of indicating the DE-local LR regions is to list the index space coordinate as given by the associated
DistGrid tile for each dimension. For this 2D example there are two lists (dim 1) / (dim 2) for each DE:

DE 0 - (1,2,3) / (1)

DE 1 - (4,5) / (1)

DE 2 - (1,2,3) / (2)

DE 3 - (4,5) / (2)

DE 4 - (1,2,3) / (3,4,5)

DE 5 - (4,5) / (3,4,5)

Information about DE-local LR regions in the latter format can be obtained from the DistGrid object by use of
ESMF_DistGridGet() methods:

allocate(dimExtent(2, 0:5)) ! (dimCount, deCount)

call ESMF_DistGridGet(distgrid, delayout=delayout, &

indexCountPDe=dimExtent, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

call ESMF_DELayoutGet(delayout, localDeCount=localDeCount, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

allocate(localDeToDeMap(0:localDeCount-1))

call ESMF_DELayoutGet(delayout, localDeToDeMap=localDeToDeMap, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

do localDe=0, localDeCount-1

de = localDeToDeMap(localDe)

do dim=1, 2

allocate(localIndexList(dimExtent(dim, de))) ! allocate list

! to hold indices

call ESMF_DistGridGet(distgrid, localDe=localDe, dim=dim, &

indexList=localIndexList, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

print *, "local DE ", localDe," - DE ",de, &

" localIndexList along dim=", dim," :: ", localIndexList

deallocate(localIndexList)

enddo

enddo

deallocate(localDeToDeMap)

deallocate(dimExtent)

899

The advantage of the localIndexList format over the minIndex/maxIndex format is that it can be used directly
for DE-local to tile index dereferencing. Furthermore the localIndexList allows to express very general decom-
positions such as the cyclic decompositions in the first dimension generated by the following call:

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIndex=(/5,5/), &

regDecomp=(/2,3/), &

decompflag=(/ESMF_DECOMP_CYCLIC,ESMF_DECOMP_RESTLAST/), rc=rc)

with decomposition:

DE 0 - (1,3,5) / (1)

DE 1 - (2,4) / (1)

DE 2 - (1,3,5) / (2)

DE 3 - (2,4) / (2)

DE 4 - (1,3,5) / (3,4,5)

DE 5 - (2,4) / (3,4,5)

Finally, a DistGrid object is destroyed by calling

call ESMF_DistGridDestroy(distgrid, rc=rc)

35.3.2 DistGrid and DELayout

The examples of this section use the 2D DistGrid of the previous section to show the interplay between DistGrid and
DELayout. By default, i.e. without specifying the delayout argument, a DELayout will be created during DistGrid
creation that provides as many DEs as the DistGrid object requires. The implicit call to ESMF_DELayoutCreate()
is issued with a fixed number of DEs and default settings in all other aspects. The resulting DE to PET mapping
depends on the number of PETs of the current VM context. Assuming 6 PETs in the VM

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIndex=(/5,5/), &

regDecomp=(/2,3/), rc=rc)

will result in the following domain decomposition in terms of DEs

0 2 4

1 3 5

and their layout or distribution over the available PETs:

DE 0 -> PET 0

DE 1 -> PET 1

DE 2 -> PET 2

DE 3 -> PET 3

DE 4 -> PET 4

DE 5 -> PET 5

900

Running the same example on a 4 PET VM will not change the domain decomposition into 6 DEs as specified by

0 2 4

1 3 5

but the layout across PETs will now contain multiple DE-to-PET mapping with default cyclic distribution:

DE 0 -> PET 0

DE 1 -> PET 1

DE 2 -> PET 2

DE 3 -> PET 3

DE 4 -> PET 0

DE 5 -> PET 1

Sometimes it may be desirable for performance tuning to construct a DELayout with specific characteristics. For
instance, if the 6 PETs of the above example are running on 3 nodes of a dual-SMP node cluster and there is a higher
communication load along the first dimension of the model than along the second dimension it would be sensible to
place DEs according to this knowledge.

The following example first creates a DELayout with 6 DEs where groups of 2 DEs are to be in fast connection. This
DELayout is then used to create a DistGrid.

delayout = ESMF_DELayoutCreate(deCount=6, deGrouping=(/(i/2,i=0,5)/), rc=rc)

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIndex=(/5,5/), &

regDecomp=(/2,3/), delayout=delayout, rc=rc)

This will ensure a distribution of DEs across the cluster resource in the following way:

0 2 4

1 3 5

SMP SMP SMP

The interplay between DistGrid and DELayout may at first seem complicated. The simple but important rule to
understand is that DistGrid describes a domain decomposition and each domain is labeled with a DE number. The
DELayout describes how these DEs are laid out over the compute resources of the VM, i.e. PETs. The DEs are purely
logical elements of decomposition and may be relabeled to fit the algorithm or legacy code better. The following
example demonstrates this by describing the exact same distribution of the domain data across the fictitious cluster of
SMP-nodes with a different choice of DE labeling:

delayout = ESMF_DELayoutCreate(deCount=6, deGrouping=(/(mod(i,3),i=0,5)/), &

rc=rc)

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIndex=(/5,5/), &

regDecomp=(/2,3/), deLabelList=(/0,3,1,4,2,5/), delayout=delayout, rc=rc)

901

Here the deLabelList argument changes the default DE label sequence from column major to row major. The
DELayout compensates for this change in DE labeling by changing the deGrouping argument to map the first
dimension to SMP nodes as before. The decomposition and layout now looks as follows:

0 1 2

3 4 5

SMP SMP SMP

Finally, in order to achieve a completely user-defined distribution of the domain data across the PETs of the VM a
DELayout may be created from a petMap before using it in the creation of a DistGrid. If for instance the desired
distribution of a 2 x 3 decomposition puts the DEs of the first row onto 3 separate PETs (PET 0, 1, 2) and groups
the DEs of the second row onto PET 3 a petMap must first be setup that takes the DE labeling of the DistGrid into
account.The following lines of code result in the desired distribution using column major DE labeling by first create a
DELayout and then using it in the DistGrid creation.

delayout = ESMF_DELayoutCreate(petMap=(/0,3,1,3,2,3/), rc=rc)

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIndex=(/5,5/), &

regDecomp=(/2,3/), delayout=delayout, rc=rc)

This decomposes the global domain into

0 2 4

1 3 5

and associates the DEs to the following PETs:

DE 0 -> PET 0

DE 1 -> PET 3

DE 2 -> PET 1

DE 3 -> PET 3

DE 4 -> PET 2

DE 5 -> PET 3

35.3.3 Single tile DistGrid with decomposition by DE blocks

In the previous examples the DistGrid objects were created with regular decompositions. In some cases a regular
decomposition may not be the most natural choice to decompose and distribute the index space. The DE block version
of ESMF_DistGridCreate() offers more control over the precise decomposition. The following example shows
how the deBlockList argument is used to determine exactly what index space block ends up on each DE.

A single 5x5 tile is decomposed into 6 DEs. To this end a list is constructed that holds the min and max indices of all
six DE blocks. The DE blocks must be constructed to cover the index space without overlapping each other. It is okay
to leave holes in the index space, i.e. the DE blocks do not completely cover the index space tile.

allocate(deBlockList(2, 2, 6)) ! (dimCount, 2, deCount)

902

deBlockList(:,1,1) = (/1,1/) ! minIndex 1st deBlock

deBlockList(:,2,1) = (/3,2/) ! maxIndex 1st deBlock

deBlockList(:,1,2) = (/4,1/) ! minIndex 2nd deBlock

deBlockList(:,2,2) = (/5,2/) ! maxIndex 2nd deBlock

deBlockList(:,1,3) = (/1,3/)

deBlockList(:,2,3) = (/2,4/)

deBlockList(:,1,4) = (/3,3/)

deBlockList(:,2,4) = (/5,4/)

deBlockList(:,1,5) = (/1,5/)

deBlockList(:,2,5) = (/3,5/)

deBlockList(:,1,6) = (/4,5/) ! minIndex 6th deBlock

deBlockList(:,2,6) = (/5,5/) ! maxInbex 6th deBlock

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIndex=(/5,5/), &

deBlockList=deBlockList, rc=rc)

35.3.4 2D multi-tile DistGrid with regular decomposition

Creating a DistGrid from a list of LR tiles is a straightforward extension of the single tile case. The first four arguments
of ESMF_DistGridCreate() are promoted to rank 2 where the second dimension is the tile index.

The following 2D multi-tile domain consisting of 3 LR tiles will be used in the examples of this section:

--> 2nd dim

|

| (1,11)-----(1,20)

| | |

| | |

| | |

| | |

| | |

| (10,11)---(10,20)

| (11,1)----(11,10)(11,11)---(11,20)

| | || |

| | || |

| | || |

| | || |

| | || |

| (20,1)----(20,10)(20,11)---(20,20)

|

|

v

1st dim

The first step in creating a multi-tile global domain is to construct the minIndex and maxIndex arrays.

allocate(minIndexPTile(2,3)) ! (dimCount, tileCount)

allocate(maxIndexPTile(2,3)) ! (dimCount, tileCount)

minIndexPTile(:,1) = (/11,1/)

903

maxIndexPTile(:,1) = (/20,10/)

minIndexPTile(:,2) = (/11,11/)

maxIndexPTile(:,2) = (/20,20/)

minIndexPTile(:,3) = (/1,11/)

maxIndexPTile(:,3) = (/10,20/)

Next the regular decomposition for each tile is set up in the regDecomp array. In this example each tile is associated
with a single DE.

allocate(regDecompPTile(2,3)) ! (dimCount, tileCount)

regDecompPTile(:,1) = (/1,1/) ! one DE

regDecompPTile(:,2) = (/1,1/) ! one DE

regDecompPTile(:,3) = (/1,1/) ! one DE

Finally the DistGrid can be created by calling

distgrid = ESMF_DistGridCreate(minIndexPTile=minIndexPTile, &

maxIndexPTile=maxIndexPTile, regDecompPTile=regDecompPTile, rc=rc)

The default DE labeling sequence is identical to the tile labeling sequence and follows the sequence in which the tiles
are defined during the create call. However, DE labels start at 0 whereas tile labels start at 1. In this case the DE labels
look as:

2

0 1

Each tile can be decomposed differently into DEs. The default DE labeling follows the column major order for each
tile. This is demonstrated in the following case where the multi-tile global domain is decomposed into 9 DEs,

regDecompPTile(:,1) = (/2,2/) ! 4 DEs

regDecompPTile(:,2) = (/1,3/) ! 3 DEs

regDecompPTile(:,3) = (/2,1/) ! 2 DEs

distgrid = ESMF_DistGridCreate(minIndexPTile=minIndexPTile, &

maxIndexPTile=maxIndexPTile, regDecompPTile=regDecompPTile, rc=rc)

resulting in the following decomposition:

+-------+

| 7 |

| |

| 8 |

+-------+-------+

| 0 2 | |

| | 4 5 6 |

| 1 3 | |

+-------+-------+

904

DE 0 - (11,1) ~ (15,5)

DE 1 - (16,1) ~ (20,5)

DE 2 - (11,6) ~ (15,10)

DE 3 - (16,6) ~ (20,10)

DE 4 - (11,11) ~ (20,14)

DE 5 - (11,15) ~ (20,17)

DE 6 - (11,18) ~ (20,20)

DE 7 - (1,11) ~ (5,20)

DE 8 - (6,11) ~ (10,20)

The decompflag and deLabelList arguments can be used much like in the single LR domain case to overwrite
the default grid decomposition (per tile) and to change the overall DE labeling sequence, respectively.

35.3.5 Arbitrary DistGrids with user-supplied sequence indices

The third, and most flexible way of creating an ESMF DistGrid object is by specifying the arbitrary sequence indices
of all the index space elements associated with a particular DE. The concept of sequence index comes into the DistGrid
class through the support it implements for the communication methods of higher classes: Arrays and Fields. This
support is based by associating a unique sequence index with each DistGrid index tuple. The sequence index can
be used to address every Array or Field element. By default, the DistGrid does not actually generate and store the
sequence index of each element. Instead a default sequence through the elements is implemented in the DistGrid code.
This default sequence is used internally when needed.

The DistGrid class provides two ESMF_DistGridCreate() calls that allow the user to specify arbitrary sequence
indices, overriding the use of the default sequence index scheme. The user sequence indices are passed to the DistGrid
in form of 1d Fortran arrays, one array on each PET. The local size of this array on each PET determines the number
of DistGrid elements on the PET. The supplied sequence indices must be unique across all PETs.

allocate(arbSeqIndexList(10)) ! each PET will have 10 elements

do i=1, 10

arbSeqIndexList(i) = (i-1)*petCount + localPet ! initialize unique

! seq. indices

enddo

A default DELayout will be created automatically during ESMF_DistGridCreate(), associating 1 DE per PET.

distgrid = ESMF_DistGridCreate(arbSeqIndexList=arbSeqIndexList, rc=rc)

The user provided sequence index array can be deallocated once it has been used.

deallocate(arbSeqIndexList)

The distgrid object can be used just like any other DistGrid object. The "arbitrary" nature of distgrid will only
become visible during Array or Field communication methods, where source and destination objects map elements
according to the sequence indices provided by the associated DistGrid objects.

call ESMF_DistGridDestroy(distgrid, rc=rc)

905

The second ESMF_DistGridCreate() call, that accepts the arbSeqIndexList argument, allows the user to
specify additional, regular DistGrid dimensions. These additional DistGrid dimensions are not decomposed across
DEs, but instead are simply "added" or "multiplied" to the 1D arbitrary dimension.

The same arbSeqIndexList array as before is used to define the user supplied sequence indices.

allocate(arbSeqIndexList(10)) ! each PET will have 10 elements

do i=1, 10

arbSeqIndexList(i) = (i-1)*petCount + localPet ! initialize unique

! seq. indices

enddo

The additional DistGrid dimensions are specified in the usual manner using minIndex and maxIndex arguments.
The dimCount of the resulting DistGrid is the size of the minIndex and maxIndex arguments plus 1 for the arbi-
trary dimension. The arbDim argument is used to indicate which or the resulting DistGrid dimensions is associated
with the arbitrary sequence indices provided by the user.

distgrid = ESMF_DistGridCreate(arbSeqIndexList=arbSeqIndexList, &

arbDim=1, minIndexPTile=(/1,1/), maxIndexPTile=(/5,7/), rc=rc)

deallocate(arbSeqIndexList)

call ESMF_DistGridDestroy(distgrid, rc=rc)

35.3.6 DistGrid Connections - Definition

By default all of the edges of the index space tiles making up a DistGrid are open. There is no sense of connectedness
between the tiles. This situation is shown for a simple 2 tile DistGrid.

allocate(minIndexPTile(2,2)) ! (dimCount, tileCount)

allocate(maxIndexPTile(2,2)) ! (dimCount, tileCount)

minIndexPTile(:,1) = (/1,1/)

maxIndexPTile(:,1) = (/10,10/)

minIndexPTile(:,2) = (/11,1/)

maxIndexPTile(:,2) = (/20,10/)

distgrid = ESMF_DistGridCreate(minIndexPTile=minIndexPTile, &

maxIndexPTile=maxIndexPTile, rc=rc)

Connections between index space tiles are specified during DistGrid creation through the connectionList argu-
ment. This argument takes a list of elements of type(ESMF_DistGridConnection). Each element refers to
one specific connection between any two tiles.

Each connection is defined by 4 parameters:

• tileIndexA - The tile index of the "A" side of the connection.

906

Figure 21: Two 10x10 index space tiles next to each other without connections. Both tiles operate in the same global

index space chosen by ESMF_INDEX_GLOBAL when creating the DistGrid object. The index tuples held by the

DistGrid are represented by the vertices of the shown grid structure. The index tuple (11,3), which is referenced in the

text, is marked by a black circle.

• tileIndexB - The tile index of the "B" side of the connection.

• positionVector - A vector containing information about the translation of the index space of tile "B"
relative to tile "A". This vector has as many components as there are index space dimensions.

• orientationVector - A vector containing information about the rotation of the index space of tile "B"
relative to tile "A". This vector has as many components as there are index space dimensions.

The underlying principle of the DistGrid connections is that all supported connections can be written as a forward
transformation of the form

~a → ~b = R̂~a+ ~P . (4)

This transform takes the index space tuple ~a of a point in the reference frame of tile "A" and expresses it as tuple ~b

in terms of the index space defined by tile "B". Here R̂ is a general rotation operator, and ~P is a translation vector in

index space. R̂ and ~P correspond to the orientationVector and positionVector, respectively.

As an example consider the index space point marked by the black circle in figure 21. In the reference frame of tile 1
the point has an index tuple of (11,3). Because of the global index space (ESMF_INDEX_GLOBAL), the point has the
same index tuple of (11,3) in the reference frame of tile 2. Therefore, the connection that connects the right edge of

tile 1 with the left edge of tile 2 has R̂ = 11 (default orientation) and ~P = (0, 0). Therefore the connection can be set
by the following code. The resulting situation is shown in figure 22.

allocate(connectionList(1))

call ESMF_DistGridConnectionSet(connection=connectionList(1), &

tileIndexA=1, tileIndexB=2, positionVector=(/0,0/), rc=rc)

907

distgrid = ESMF_DistGridCreate(minIndexPTile=minIndexPTile, &

maxIndexPTile=maxIndexPTile, connectionList=connectionList, &

rc=rc) ! defaults to ESMF_INDEX_GLOBAL

The same topology can be defined for ESMF_INDEX_DELOCAL indexing. However, the positionVector must
be adjusted for the fact that now the same point in index space has different index tuples depending on what tile’s
reference frame is used.

With local indexing both tiles start at (1,1) and end at (10,10).

allocate(minIndexPTile(2,2)) ! (dimCount, tileCount)

allocate(maxIndexPTile(2,2)) ! (dimCount, tileCount)

minIndexPTile(:,1) = (/1,1/)

maxIndexPTile(:,1) = (/10,10/)

minIndexPTile(:,2) = (/1,1/)

maxIndexPTile(:,2) = (/10,10/)

To see the impact that the index scheme has on the positionVector, again consider the same highlighted index
space point. The index tuple for this point is still (11,3) in the reference frame of tile 1 (tile "A" of the connection).
However, in the reference frame of of tile 2 (tile "B" of the connection)) it has changed to (1,3) due to local indexing.

Therefore, using form (4), we find that the position vector must be ~P = ~b− ~a = (1, 3)− (11, 3) = (−10, 0).

allocate(connectionList(1))

call ESMF_DistGridConnectionSet(connection=connectionList(1), &

tileIndexA=1, tileIndexB=2, positionVector=(/-10,0/), rc=rc)

distgrid = ESMF_DistGridCreate(minIndexPTile=minIndexPTile, &

maxIndexPTile=maxIndexPTile, connectionList=connectionList, &

indexflag=ESMF_INDEX_DELOCAL, rc=rc)

Further note that every forward transformation has an associated inverse, or backward transformation from tile "B"
into the reference frame of tile "A". Inverting the forward transform yields the backward transform as

~b → ~a = R̂−1~b− R̂−1 ~P . (5)

The DistGrid implicitly considers the corresponding backward connection for every forward connection that is speci-
fied explicitly. In other words, DistGrid connections are bidirectional.

Before going into the details of how the orientationVector and positionVector arguments correspond to

R̂ and ~P for more complex cases, it is useful to explore what class of connections are covered by the above introduced

form (4) of ~a → ~b.

First consider the case where tile "A" is rotated by R̂ relative to tile "B" around a general pivot point ~p given in terms
of the index space of tile "A":

~a → ~b = R̂(~a− ~p) + ~p

= R̂~a+ (11− R̂)~p (6)

908

Figure 22: Two 10x10 index space tiles next to each other with a single connection between the right edge of tile 1

and the left edge of tile 2. The index tuple (11,3), which is referenced in the text, is marked by a black circle.

With substitution
~P = (11− R̂)~p (7)

form (4) is recovered.

Next consider transform (6) followed by a translation ~t of tile "B" relative to tile "A":

~a → ~b = R̂~a+ (11− R̂)~p+ ~t. (8)

Again form (4) is recovered with the appropriate subsitution:

~P = (11− R̂)~p+ ~t. (9)

Equation (9) is the general definition of the positionVector argument for DistGrid connections. It allows two
tiles to be connected according to the relationship expressed by (8). Note that this formualation of tile connections is
more general than connecting an edge of a tile to the edge of another tile. Instead a DistGrid connection is specified as
a general relationship between the two index spaces, accounting for possible rotation and translation. This formuation
supports situations where some elements of the connected tiles overlap with each other in index space. The ESMF
DistGrid class leverages this feature when representing topologies that lead to redundancies of elements. Examples
for this are the bipolar cut line in a tripole grid, or the edges of a cubed sphere.

By definition, DistGrid connections associate an index tuple of one tile with exactly one index tuple expressed in the

reference frame of another tile. This restricts the supported rotations R̂ to multiples of 90◦. Also allowing invesion of
index space dimensions leads to 8 unique operations in two dimension shown in table 3.

The orientationVector is simply a more compact format holding the same information provided by the 8
rotational matrices. The first (or top) element of the orientation vector indicates which dimension of the tile "A" index
tuple is used for the first dimension of the tile "B" tuple. The second (or bottom) element of the orientation vector

909

Table 3: The 8 unique rotational operations in 2 dimensional index space. The associated orientationVector

argument for each operation is also shown.

R̂ orientationVector

0◦
(

1 0
0 1

) (

1
2

)

90◦
(

0 −1
1 0

) (

−2
1

)

180◦
(

−1 0
0 −1

) (

−1
−2

)

270◦
(

0 1
−1 0

) (

2
−1

)

0◦ + inversion dim 1

(

−1 0
0 1

) (

−1
2

)

0◦ + inversion dim 2

(

1 0
0 −1

) (

1
−2

)

90◦ + inversion dim 1

(

0 1
1 0

) (

2
1

)

90◦ + inversion dim 2

(

0 −1
−1 0

) (

−2
−1

)

indicates which dimension of the tile "A" index tuple is used for the second dimenson of the tile "B" tuple. If an
orientation vector entry is negative, the sign of the associated tuple element is inverted when going from tile "A" to
tile "B" reference frame. Table 3 provides the corresponding orientationVector argument for each of the 8 2D
rotational operations.

35.3.7 DistGrid Connections - Single tile periodic and pole connections

The concept of DistGrid connections is not limited to cases with multiple tiles. Even a single tile DistGrid can have
connections. In this instance tileA and tileB simply reference the same tile. A very common case is that of a
single tile with periodic boundary conditions.

First consider a single tile DistGrid without connections.

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIndex=(/50,20/), rc=rc)

In order to better visualize the topology, the first index space dimension is associated with the longitude (0◦..360◦),
and the second dimension with latitude (−80◦.. + 80◦) of the unit sphere (using an ESMF_Grid object) as shown in
figure 23.

A single DistGrid connection is needed to connect the right edge of the index space tile with its left edge. Connecting
a tile with itself in such manner leads to a periodic topology.

First the connectionList needs to be allocated for a single connection. Then the connection is defined with both
tileIndexA and tileIndexB set to 1, referring to the first, and only tile in this case.

allocate(connectionList(1))

call ESMF_DistGridConnectionSet(connection=connectionList(1), &

tileIndexA=1, tileIndexB=1, positionVector=(/-50,0/), rc=rc)

910

Figure 23: A single 50x20 index space tile without connections. For better visualization the index space points are

plotted on the unit circle. The gap between the right and left edge of the tile is visible. Further the top and the bottom

edges of the tile are visibly without connection.

The positionVector is determined by transformation (4), the fact that there is no rotation involved, and that

stepping over the right edge needs to connect back to the left edge. Therefore ~P = ~b−~a = (1, j)−(51, j) = (−50, 0).
Here j stands for an arbitrary value along the second index space dimension.

Creating a DistGrid on the same index space tile, but with this connection, results in a periodic boundary condition
along the first dimension. This is shown in figure 24.

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIndex=(/50,20/), &

connectionList=connectionList, rc=rc)

In general it is more useful to express the position vector of a connection in terms of the tile minIndex and maxIndex
components. For this we define the same index space tile in a set of variables.

allocate(minIndex(2)) ! (dimCount)

allocate(maxIndex(2)) ! (dimCount)

minIndex(:) = (/1,1/)

maxIndex(:) = (/50,20/)

Now we can code any connection on this tile in terms of minIndex and maxIndex. For purpose of demonstration

911

Figure 24: A single 50x20 index space tile with periodic connection along the first dimension.

we define periodic boundary conditions along both index space dimensions. The resulting torus topology is depicted
in figure 25.

allocate(connectionList(2))

call ESMF_DistGridConnectionSet(connection=connectionList(1), & ! 1st connection

tileIndexA=1, tileIndexB=1, & ! periodic along i

positionVector=(/ -(maxIndex(1)-minIndex(1)+1) , 0/), &

rc=rc)

call ESMF_DistGridConnectionSet(connection=connectionList(2), & ! 2nd connection

tileIndexA=1, tileIndexB=1, & ! periodic along j

positionVector=(/ 0 , -(maxIndex(2)-minIndex(2)+1) /), &

rc=rc)

distgrid = ESMF_DistGridCreate(minIndex=minIndex, maxIndex=maxIndex, &

connectionList=connectionList, rc=rc)

While the topology shown in figure 25 is that of a torus, the coordinates chosen are actually those of a sphere. Next we
replace the periodic connection along j (i.e. the second index space dimension) with a more fitting pole connection at
the top of the sphere (i.e. at jmax).

912

Figure 25: A single 50x20 index space tile with periodic connections along both directions. The topology is that of

a torus, however, because of the chosen spherical coordinates the connection through the middle has the shape of a

cylinder.

For the orientation vector associated with a regular pole connection at jmax we first look at how the two index space
directions are affected. Looking at a point with i along the first dimension, and a second point i + 1 that is just to
the right of the first point, we see that as the pole is being crossed, the second point maps just right of the first point.
Therefore, the orientation of the first index space dimension is unaffected by the pole connection. However, for the
second dimension we find that increasing j on one side corresponds to a dereasing j across the pole. We thus have
found the general fact that orientationVector=(1,-2) for a pole connection across the j direction.

In order to find the position vector of the polar connection we consider starting at a general point (i,jmax) at the top
edge of the tile. Crossing the pole this takes us to a point that is again right on the top edge with j = jmax, and is 180◦

rotated along the first dimension. This means i = mod(i+ isize/2, isize), with isize = imax − imin + 1. In practice
the modulo operation is automatically taken care of by the periodic connection along i. We can therefore write:

~a =

(

i
jmax + 1

)

→ ~b =

(

i+ isize/2
jmax

)

. (10)

Using this observation, together with table 3 to translate the polar orientationVector into a standard rotation

operation R̂, we get the position vector from equation (4):

~P = ~b− R̂~a

913

=

(

i+ isize/2
jmax

)

−

(

1 0
0 −1

)(

i
jmax + 1

)

=

(

isize/2
2jmax + 1

)

. (11)

allocate(connectionList(2))

call ESMF_DistGridConnectionSet(connection=connectionList(1), & ! 1st connection

tileIndexA=1, tileIndexB=1, & ! periodic along i

positionVector=(/-(maxIndex(1)-minIndex(1)+1),0/), &

rc=rc)

call ESMF_DistGridConnectionSet(connection=connectionList(2), & ! 2nd connection

tileIndexA=1, tileIndexB=1, & ! pole at j_max

orientationVector=(/1,-2/), &

positionVector=(/ (maxIndex(1)-minIndex(1)+1)/2 , 2*maxIndex(2)+1 /), &

rc=rc)

distgrid = ESMF_DistGridCreate(minIndex=minIndex, maxIndex=maxIndex, &

connectionList=connectionList, rc=rc)

The pole connection at jmax can clearly be seen in figure 26. Note that the chosen perspective hides the fact that the
lower edge of the index space tile remains open. In other words there is still a hole at the bottom of the sphere that
cannot be seen. Only three of the four sides have been connected so far: The first connection connects the left and the
right tile edges. The second connection connects the top edge to itself to form the pole. A third connection would be
needed, e.g. to form a pole at the bottom edge much like the top edge. This would then complete a perfectly spherical
topology with a single tile.

The final single tile topology discussed in this section is that of a tripole. A tripolar sphere has the typical spherical
periodic boundary condition along one direction (e.g. connecting the left and the right tile edge), and a regular
monopole at one of the other edges of the tile. However, instead of defining a second monopole at the opposite edge,
a bipole connection is chosen.

Topologically a bipole connection can be thought of folding the respective edge at the middle point back onto itself. As-
suming the bipole at the top edge, i.e. at jmax, we get mappings across the bipole of (imin, jmax+1) → (imax, jmax),
(imin +1, jmax +1) → (imax − 1, jmax), and so forth. This means that compared to the regular pole connection, the
bipolar orientation vector reverses the i direction in addition to the j direction: orientationVector=(-1,-2).

Using the bipolar mapping just mentioned for a point at imin, together with table 3 to translate the polar

orientationVector into a standard rotation operation R̂, we can solve for the position vector according to
equation (4):

~P = ~b− R̂~a

=

(

imax

jmax

)

−

(

−1 0
0 −1

)(

imin

jmax + 1

)

=

(

imax + imin

2jmax + 1

)

. (12)

Figure 27 visualizes the bipolar topology at the top edge of the tile. Note, however, that the coordinates are perfectly
spherical. Consequently there is no "drawing shut" of the cut line as would be expected for a true bipolar geometry.

914

Figure 26: A single 50x20 index space tile with periodic connection along i, and pole at jmax. The hole at jmin is

hidden from sight.

Still, the two poles are becoming visible at the two opposing ends of the top circle, where the distance between the
connection lines is starting to go to zero.

allocate(connectionList(3))

call ESMF_DistGridConnectionSet(connection=connectionList(1), & ! 1st connection

tileIndexA=1, tileIndexB=1, & ! periodic along i

positionVector=(/-(maxIndex(1)-minIndex(1)+1),0/), &

rc=rc)

call ESMF_DistGridConnectionSet(connection=connectionList(2), & ! 2nd connection

tileIndexA=1, tileIndexB=1, & ! pole at j_min

orientationVector=(/1,-2/), &

positionVector=(/ (maxIndex(1)-minIndex(1)+1)/2 , 2*minIndex(2)+1 /), &

rc=rc)

call ESMF_DistGridConnectionSet(connection=connectionList(3), & ! 3rd connection

tileIndexA=1, tileIndexB=1, & ! bi-pole at j_max

orientationVector=(/-1,-2/), &

positionVector=(/ maxIndex(1)+minIndex(1) , 2*maxIndex(2)+1 /), &

915

Figure 27: A single 50x20 index space tile with periodic connection along i, and bi-pole at jmax. The regular pole

connection at jmin is hidden from sight.

rc=rc)

distgrid = ESMF_DistGridCreate(minIndex=minIndex, maxIndex=maxIndex, &

connectionList=connectionList, rc=rc)

35.3.8 DistGrid Connections - Multi tile connections

Starting point of the multi-tile connection examples will be the six tile case shown in figure 28. All six tiles are
identical squares of size 10x10.

One geometrical interpretation of the six tiles shown is that of an unfolded cube. In fact, the way that the tiles are
arranged in the 2D plane does suggest the cubic interpretation. In order to turn the six tiles into a cubic topology, each
tile must be connected to its neighbors on all four sides. In total there will be 12 connections that need to be made.

Choosing global indexing, the depicted six tile case can be created in the following way:

allocate(minIndexPTile(2,6)) ! (dimCount, tileCount)

allocate(maxIndexPTile(2,6)) ! (dimCount, tileCount)

size = 10 ! number of index space points along tile sides

916

Figure 28: Six 10x10 square index space tiles without connections. The tile number is indicated by color as indicated

by the legend.

!- tile 1

tile=1

minIndexPTile(1,tile)=1

minIndexPTile(2,tile)=1

maxIndexPTile(1,tile)=minIndexPTile(1,tile)+size-1

maxIndexPTile(2,tile)=minIndexPTile(2,tile)+size-1

!- tile 2

tile=2

minIndexPTile(1,tile)=maxIndexPTile(1,tile-1)+1

minIndexPTile(2,tile)=minIndexPTile(2,tile-1)

maxIndexPTile(1,tile)=minIndexPTile(1,tile)+size-1

maxIndexPTile(2,tile)=minIndexPTile(2,tile)+size-1

!- tile 3

tile=3

minIndexPTile(1,tile)=minIndexPTile(1,tile-1)

minIndexPTile(2,tile)=maxIndexPTile(2,tile-1)+1

maxIndexPTile(1,tile)=minIndexPTile(1,tile)+size-1

maxIndexPTile(2,tile)=minIndexPTile(2,tile)+size-1

!- tile 4

tile=4

minIndexPTile(1,tile)=maxIndexPTile(1,tile-1)+1

minIndexPTile(2,tile)=minIndexPTile(2,tile-1)

maxIndexPTile(1,tile)=minIndexPTile(1,tile)+size-1

maxIndexPTile(2,tile)=minIndexPTile(2,tile)+size-1

917

!- tile 5

tile=5

minIndexPTile(1,tile)=minIndexPTile(1,tile-1)

minIndexPTile(2,tile)=maxIndexPTile(2,tile-1)+1

maxIndexPTile(1,tile)=minIndexPTile(1,tile)+size-1

maxIndexPTile(2,tile)=minIndexPTile(2,tile)+size-1

!- tile 6

tile=6

minIndexPTile(1,tile)=maxIndexPTile(1,tile-1)+1

minIndexPTile(2,tile)=minIndexPTile(2,tile-1)

maxIndexPTile(1,tile)=minIndexPTile(1,tile)+size-1

maxIndexPTile(2,tile)=minIndexPTile(2,tile)+size-1

distgrid = ESMF_DistGridCreate(minIndexPTile=minIndexPTile, &

maxIndexPTile=maxIndexPTile, rc=rc)

The five connections between tiles 1&2, 2&3, 3&4, 4&5, 5&6 are trivial. There are no rotations, which means that the
orientationVector argument can be ommitted in these connections. Further, because of the global index space,
there are no translations either, which means that positionVector=(0,0) for these five connections. The resulting
topology is shown in figure 29.

allocate(connectionList(5))

!- connection 1

conn=1

call ESMF_DistGridConnectionSet(connection=connectionList(conn), &

tileIndexA=1, tileIndexB=2, positionVector=(/0, 0/), rc=rc)

!- connection 2

conn=2

call ESMF_DistGridConnectionSet(connection=connectionList(conn), &

tileIndexA=2, tileIndexB=3, positionVector=(/0, 0/), rc=rc)

!- connection 3

conn=3

call ESMF_DistGridConnectionSet(connection=connectionList(conn), &

tileIndexA=3, tileIndexB=4, positionVector=(/0, 0/), rc=rc)

!- connection 4

conn=4

call ESMF_DistGridConnectionSet(connection=connectionList(conn), &

tileIndexA=4, tileIndexB=5, positionVector=(/0, 0/), rc=rc)

!- connection 5

conn=5

call ESMF_DistGridConnectionSet(connection=connectionList(conn), &

tileIndexA=5, tileIndexB=6, positionVector=(/0, 0/), rc=rc)

distgrid = ESMF_DistGridCreate(minIndexPTile=minIndexPTile, &

maxIndexPTile=maxIndexPTile, connectionList=connectionList, rc=rc)

The sixth connection that does not involve a rotation is that between tile 1&6. While there is no rotation involved,
it does include a translation because the bottom edge of tile 1 must reach all the way to the top edge of tile 6. This
involves a translation along both the i and the j dimension.

Using the same procedure introduced in the previous section, we chose an arbitrary index space point close to the
connection and write it in terms of both tiles that we want to connect. E.g. the first point of the top edge of tile 6 is

(minIndexPTile(1,6) , maxIndexPTile(2,6))

918

Figure 29: The six tiles of an unfolded cube with five connections defined.

in terms of tile 6. However, in terms of tile 1, going through the connection, it is

(minIndexPTile(1,1) , minIndexPTile(2,1)-1).

According to the general transformation relationship (4) the position vector ~P for the forward transform tile 1 → tile
6 is then given as the difference between these two representations. Figure 30 visualizes the situation.

!- connection 6

conn=6

call ESMF_DistGridConnectionSet(connection=connectionList(conn), &

tileIndexA=1, tileIndexB=6, &

positionVector=(/minIndexPTile(1,6)-minIndexPTile(1,1), &

maxIndexPTile(2,6)-minIndexPTile(2,1)+1/), &

rc=rc)

distgrid = ESMF_DistGridCreate(minIndexPTile=minIndexPTile, &

maxIndexPTile=maxIndexPTile, connectionList=connectionList, rc=rc)

The six remaining connections all involve rotations. The procedure for finding the correct orientationVector
and positionVector arguments still remains the same: First determine the direction of the connection to be
formulated. This is important because for the forward connection the rotation applies to tile "A". Once the correct

rotation operation R̂ is pinned down, an arbitrary point close to the connection is chosen. This point can either be
on tile "A" or "B". It is written then written in terms of tile "A" index space ~a, and in terms of tile "B" index space
~b. Obviously one of those formulations (either ~a or ~b) will take advantage of the connection, i.e. it will actually

919

Figure 30: The six tiles of an unfolded cube with all six connections that do not involve any rotation of tiles.

step outside the reference tile in order to reach the chosen point. Finally the position vector ~P of the connection is
determined by expression (4) as the difference:

~P = ~b− R̂~a. (13)

Following the above outlined procedure for connection tile 1 → tile 3, we find first that tile 1 needs to be rotated clock-
wise by 90◦. This rotation lines up the top edge of tile 1 with the left edge of tile 3. A clockwise rotation of 90◦ corre-
sponds to a counterclockwise rotation by 270◦ given in table 3. We therefore know that orientationVector=(2,-

1) for this connection, and the associated operation is R̂ =

(

0 1
−1 0

)

.

Next we chose the first point on the top edge of tile 1 as a reference point. In terms of tile 1 this point has coordinates

~a = (minIndexPTile(1,1) , maxIndexPTile(2,1)).

The same point in terms of tile 3 (going through the connection) has coordinates

~b = (minIndexPTile(1,3)-1 , maxIndexPTile(2,3)).

Using equation (13) we find the position vector and can write down the connection:

allocate(connectionList(2))

!- connection 1

conn=1

call ESMF_DistGridConnectionSet(connection=connectionList(conn), &

tileIndexA=1, tileIndexB=3, &

920

orientationVector=(/2,-1/), & ! 270 degree rotation of tile A

positionVector=(/minIndexPTile(1,3)-1-maxIndexPTile(2,1), &

maxIndexPTile(2,3)+minIndexPTile(1,1)/), &

rc=rc)

For greater clarity figure 31 only shows two connections. Besides the connection just defined between tile 1 and 3,
the other connection shown is between tile 4 and 6. Defining the connection as forward going from tile 4 to tile 6
means that tile 4 needs to be rotated in such a way that its right edge meets up with the bottom edge of tile 6. This
requires a counterclockwise rotation of tile 4 by 90◦. From table 3 we then get orientationVector=(-2,1), and

R̂ =

(

0 −1
1 0

)

.

Choosing the left most point on the bottom edge of tile 6 as the reference point, we find the coordinates in terms of
tile 4 (through the connection)

~a = (maxIndexPTile(1,4)+1 , maxIndexPTile(2,4)),

and in terms of tile 6

~b = (minIndexPTile(1,6) , minIndexPTile(2,6)).

Again using equation (13) we find the position vector and can implement the second connection:

!- connection 2

conn=2

call ESMF_DistGridConnectionSet(connection=connectionList(conn), &

tileIndexA=4, tileIndexB=6, &

orientationVector=(/-2,1/), & ! 90 degree rotation of tile A

positionVector=(/minIndexPTile(1,6)+maxIndexPTile(2,4), &

minIndexPTile(2,6)-maxIndexPTile(1,4)-1/), &

rc=rc)

distgrid = ESMF_DistGridCreate(minIndexPTile=minIndexPTile, &

maxIndexPTile=maxIndexPTile, connectionList=connectionList, rc=rc)

The remaining four connections with rotations can be determined following the exact same recipe. The following code
finally defines all 12 connections needed to connect the six index space tiles into a cubic topology.

allocate(connectionList(12))

!- connection 1: tile 1 -> tile 2

conn=1

call ESMF_DistGridConnectionSet(connection=connectionList(conn), &

tileIndexA=1, tileIndexB=2, positionVector=(/0, 0/), rc=rc)

!- connection 2: tile 2 -> tile 3

conn=2

call ESMF_DistGridConnectionSet(connection=connectionList(conn), &

tileIndexA=2, tileIndexB=3, positionVector=(/0, 0/), rc=rc)

!- connection 3: tile 3 -> tile 4

conn=3

call ESMF_DistGridConnectionSet(connection=connectionList(conn), &

tileIndexA=3, tileIndexB=4, positionVector=(/0, 0/), rc=rc)

921

Figure 31: The six tiles of an unfolded cube with two connections that involve rotation of tiles.

!- connection 4: tile 4 -> tile 5

conn=4

call ESMF_DistGridConnectionSet(connection=connectionList(conn), &

tileIndexA=4, tileIndexB=5, positionVector=(/0, 0/), rc=rc)

!- connection 5: tile 5 -> tile 6

conn=5

call ESMF_DistGridConnectionSet(connection=connectionList(conn), &

tileIndexA=5, tileIndexB=6, positionVector=(/0, 0/), rc=rc)

!- connection 6: tile 1 -> tile 6

conn=6

call ESMF_DistGridConnectionSet(connection=connectionList(conn), &

tileIndexA=1, tileIndexB=6, &

positionVector=(/minIndexPTile(1,6)-minIndexPTile(1,1), &

maxIndexPTile(2,6)-minIndexPTile(2,1)+1/), &

rc=rc)

!- connection 7: tile 1 -> tile 3

conn=7

call ESMF_DistGridConnectionSet(connection=connectionList(conn), &

tileIndexA=1, tileIndexB=3, &

orientationVector=(/2,-1/), & ! 270 degree rotation of tile A

positionVector=(/minIndexPTile(1,3)-1-maxIndexPTile(2,1), &

922

maxIndexPTile(2,3)+minIndexPTile(1,1)/), &

rc=rc)

!- connection 8: tile 3 -> tile 5

conn=8

call ESMF_DistGridConnectionSet(connection=connectionList(conn), &

tileIndexA=3, tileIndexB=5, &

orientationVector=(/2,-1/), & ! 270 degree rotation of tile A

positionVector=(/minIndexPTile(1,5)-1-maxIndexPTile(2,3), &

maxIndexPTile(2,5)+minIndexPTile(1,3)/), &

rc=rc)

!- connection 9: tile 5 -> tile 1

conn=9

call ESMF_DistGridConnectionSet(connection=connectionList(conn), &

tileIndexA=5, tileIndexB=1, &

orientationVector=(/2,-1/), & ! 270 degree rotation of tile A

positionVector=(/minIndexPTile(1,1)-1-maxIndexPTile(2,5), &

maxIndexPTile(2,1)+minIndexPTile(1,5)/), &

rc=rc)

!- connection 10: tile 2 -> tile 4

conn=10

call ESMF_DistGridConnectionSet(connection=connectionList(conn), &

tileIndexA=2, tileIndexB=4, &

orientationVector=(/-2,1/), & ! 90 degree rotation of tile A

positionVector=(/minIndexPTile(1,4)+maxIndexPTile(2,2), &

minIndexPTile(2,4)-maxIndexPTile(1,2)-1/), &

rc=rc)

!- connection 11: tile 4 -> tile 6

conn=11

call ESMF_DistGridConnectionSet(connection=connectionList(conn), &

tileIndexA=4, tileIndexB=6, &

orientationVector=(/-2,1/), & ! 90 degree rotation of tile A

positionVector=(/minIndexPTile(1,6)+maxIndexPTile(2,4), &

minIndexPTile(2,6)-maxIndexPTile(1,4)-1/), &

rc=rc)

!- connection 12: tile 6 -> tile 2

conn=12

call ESMF_DistGridConnectionSet(connection=connectionList(conn), &

tileIndexA=6, tileIndexB=2, &

orientationVector=(/-2,1/), & ! 90 degree rotation of tile A

positionVector=(/minIndexPTile(1,2)+maxIndexPTile(2,6), &

minIndexPTile(2,2)-maxIndexPTile(1,6)-1/), &

rc=rc)

! - create the DistGrid with 6 tiles and 12 connections

distgrid = ESMF_DistGridCreate(minIndexPTile=minIndexPTile, &

maxIndexPTile=maxIndexPTile, connectionList=connectionList, rc=rc)

For better visualization the resulting cubic topology is plotted in 3D. Each index space point is associated with a
longitude and latitude value of the unit sphere. Combined with the cubic topology formed by the six index space tiles,

923

this results in a cubed sphere representation shown in figure 32.

Figure 32: Six index space tiles with all 12 connections to form a cubic topology. The coordinates at every index space

point are chosen to form a spherical geometry, resulting in a cubed sphere.

35.4 Restrictions and Future Work

• Multi-tile DistGrids from deBlockList are not yet supported.

• The fastAxis feature has not been implemented yet.

35.5 Design and Implementation Notes

This section will be updated as the implementation of the DistGrid class nears completion.

35.6 Class API

35.6.1 ESMF_DistGridAssignment(=) - DistGrid assignment

INTERFACE:

924

interface assignment(=)

distgrid1 = distgrid2

ARGUMENTS:

type(ESMF_DistGrid) :: distgrid1

type(ESMF_DistGrid) :: distgrid2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Assign distgrid1 as an alias to the same ESMF DistGrid object in memory as distgrid2. If distgrid2 is invalid, then
distgrid1 will be equally invalid after the assignment.

The arguments are:

distgrid1 The ESMF_DistGrid object on the left hand side of the assignment.

distgrid2 The ESMF_DistGrid object on the right hand side of the assignment.

35.6.2 ESMF_DistGridOperator(==) - DistGrid equality operator

INTERFACE:

interface operator(==)

if (distgrid1 == distgrid2) then ... endif

OR

result = (distgrid1 == distgrid2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_DistGrid), intent(in) :: distgrid1

type(ESMF_DistGrid), intent(in) :: distgrid2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

925

DESCRIPTION:

Test whether distgrid1 and distgrid2 are valid aliases to the same ESMF DistGrid object in memory. For a more general
comparison of two ESMF DistGrids, going beyond the simple alias test, the ESMF_DistGridMatch() function
(not yet fully implemented) must be used.

The arguments are:

distgrid1 The ESMF_DistGrid object on the left hand side of the equality operation.

distgrid2 The ESMF_DistGrid object on the right hand side of the equality operation.

35.6.3 ESMF_DistGridOperator(/=) - DistGrid not equal operator

INTERFACE:

interface operator(/=)

if (distgrid1 /= distgrid2) then ... endif

OR

result = (distgrid1 /= distgrid2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_DistGrid), intent(in) :: distgrid1

type(ESMF_DistGrid), intent(in) :: distgrid2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Test whether distgrid1 and distgrid2 are not valid aliases to the same ESMF DistGrid object in memory. For a more
general comparison of two ESMF DistGrids, going beyond the simple alias test, the ESMF_DistGridMatch()
function (not yet fully implemented) must be used.

The arguments are:

distgrid1 The ESMF_DistGrid object on the left hand side of the non-equality operation.

distgrid2 The ESMF_DistGrid object on the right hand side of the non-equality operation.

926

35.6.4 ESMF_DistGridCreate - Create DistGrid object from DistGrid

INTERFACE:

! Private name; call using ESMF_DistGridCreate()

function ESMF_DistGridCreateDG(distgrid, &

firstExtra, lastExtra, indexflag, connectionList, balanceflag, &

delayout, vm, rc)

RETURN VALUE:

type(ESMF_DistGrid) :: ESMF_DistGridCreateDG

ARGUMENTS:

type(ESMF_DistGrid), intent(in) :: distgrid

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, target, intent(in), optional :: firstExtra(:)

integer, target, intent(in), optional :: lastExtra(:)

type(ESMF_Index_Flag), intent(in), optional :: indexflag

type(ESMF_DistGridConnection), intent(in), optional :: connectionList(:)

logical, intent(in), optional :: balanceflag

type(ESMF_DELayout), intent(in), optional :: delayout

type(ESMF_VM), intent(in), optional :: vm

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

6.3.0r Added argument vm to support object creation on a different VM than that of the current context.

8.0.0 Added argument delayout to support changing the layout of DEs across PETs.
Added argument balanceflag to support rebalancing of the incoming DistGrids decomposition.

DESCRIPTION:

Create a new DistGrid from an existing DistGrid, keeping the decomposition unchanged. The firstExtra and
lastExtra arguments allow extra elements to be added at the first/last edge DE in each dimension. The method
also allows the indexflag to be set. Further, if the connectionList argument is provided it will be used to set
connections in the newly created DistGrid, otherwise the connections of the incoming DistGrid will be used. If neither
firstExtra, lastExtra, indexflag, nor connectionList arguments are specified, the method reduces
to a deep copy of the incoming DistGrid object.

The arguments are:

927

distgrid Incoming DistGrid object.

[firstExtra] Extra elements added to the first DE along each dimension. This increases the size of the index space
compared to that of the incoming distgrid. The decomposition of the enlarged index space is constructed to
align with the original index space provided by distgrid. The default is a zero vector.

[lastExtra] Extra elements added to the last DE along each dimension. This increases the size of the index space
compared to that of the incoming distgrid. The decomposition of the enlarged index space is constructed to
align with the original index space provided by distgrid. The default is a zero vector.

[indexflag] If present, override the indexflag setting of the incoming distgrid. See section 52.27 for a complete
list of options. By default use the indexflag setting of distgrid.

[connectionList] If present, override the connections of the incoming distgrid. See section 35.7.2 for the associ-
ated Set() method. By default use the connections defined in distgrid.

[balanceflag] If set to .true, rebalance the incoming distgrid decompositon. The default is .false..

[delayout] If present, override the DELayout of the incoming distgrid. By default use the DELayout defined in
distgrid.

[vm] If present, the DistGrid object and the DELayout object are created on the specified ESMF_VM object. The
default is to use the VM of the current context.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

35.6.5 ESMF_DistGridCreate - Create DistGrid object from DistGrid (multi-tile version)

INTERFACE:

! Private name; call using ESMF_DistGridCreate()

function ESMF_DistGridCreateDGT(distgrid, firstExtraPTile, &

lastExtraPTile, indexflag, connectionList, balanceflag, &

delayout, vm, rc)

RETURN VALUE:

type(ESMF_DistGrid) :: ESMF_DistGridCreateDGT

ARGUMENTS:

type(ESMF_DistGrid), intent(in) :: distgrid

integer, target, intent(in) :: firstExtraPTile(:,:)

integer, target, intent(in) :: lastExtraPTile(:,:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Index_Flag), intent(in), optional :: indexflag

type(ESMF_DistGridConnection), intent(in), optional :: connectionList(:)

logical, intent(in), optional :: balanceflag

type(ESMF_DELayout), intent(in), optional :: delayout

type(ESMF_VM), intent(in), optional :: vm

integer, intent(out), optional :: rc

928

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

6.3.0r Added argument vm to support object creation on a different VM than that of the current context.

8.0.0 Added argument delayout to support changing the layout of DEs across PETs.
Added argument balanceflag to support rebalancing of the incoming DistGrids decomposition.

DESCRIPTION:

Create a new DistGrid from an existing DistGrid, keeping the decomposition unchanged. The firstExtraPTile
and lastExtraPTile arguments allow extra elements to be added at the first/last edge DE in each dimension. The
method also allows the indexflag to be set. Further, if the connectionList argument provided in it will be
used to set connections in the newly created DistGrid, otherwise the connections of the incoming DistGrid will be
used. If neither firstExtraPTile, lastExtraPTile, indexflag, nor connectionList arguments are
specified, the method reduces to a deep copy of the incoming DistGrid object.

The arguments are:

distgrid Incoming DistGrid object.

firstExtraPTile Extra elements added to the first DE along each dimension for each tile. This increases the size of
the index space compared to that of the incoming distgrid. The decomposition of the enlarged index space
is constructed to align with the original index space provided by distgrid. The default is a zero vector.

lastExtraPTile Extra elements added to the last DE along each dimension for each tile. This increases the size of the
index space compared to that of the incoming distgrid. The decomposition of the enlarged index space is
constructed to align with the original index space provided by distgrid. The default is a zero vector.

[indexflag] If present, override the indexflag setting of the incoming distgrid. See section 52.27 for a complete
list of options. By default use the indexflag setting of distgrid.

[connectionList] If present, override the connections of the incoming distgrid. See section 35.7.2 for the associ-
ated Set() method. By default use the connections defined in distgrid.

[balanceflag] If set to .true, rebalance the incoming distgrid decompositon. The default is .false..

[delayout] If present, override the DELayout of the incoming distgrid. By default use the DELayout defined in
distgrid.

[vm] If present, the DistGrid object and the DELayout object are created on the specified ESMF_VM object. The
default is to use the VM of the current context.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

929

35.6.6 ESMF_DistGridCreate - Create DistGrid object with regular decomposition

INTERFACE:

! Private name; call using ESMF_DistGridCreate()

function ESMF_DistGridCreateRD(minIndex, maxIndex, regDecomp, &

decompflag, regDecompFirstExtra, regDecompLastExtra, deLabelList, &

indexflag, connectionList, delayout, vm, indexTK, rc)

RETURN VALUE:

type(ESMF_DistGrid) :: ESMF_DistGridCreateRD

ARGUMENTS:

integer, intent(in) :: minIndex(:)

integer, intent(in) :: maxIndex(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, target, intent(in), optional :: regDecomp(:)

type(ESMF_Decomp_Flag), target, intent(in), optional :: decompflag(:)

integer, target, intent(in), optional :: regDecompFirstExtra(:)

integer, target, intent(in), optional :: regDecompLastExtra(:)

integer, target, intent(in), optional :: deLabelList(:)

type(ESMF_Index_Flag), intent(in), optional :: indexflag

type(ESMF_DistGridConnection), intent(in), optional :: connectionList(:)

type(ESMF_DELayout), intent(in), optional :: delayout

type(ESMF_VM), intent(in), optional :: vm

type(ESMF_TypeKind_Flag), intent(in), optional :: indexTK

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

8.1.0 Added argument indexTK to support explicit selection between 32-bit and 64-bit sequence indices.

DESCRIPTION:

Create an ESMF_DistGrid from a single logically rectangular tile. The tile has a regular decomposition, where
the tile is decomposed into a fixed number of DEs along each dimension. A regular decomposition of a single tile is
expressed by a single regDecomp list of DE counts in each dimension.

The arguments are:

minIndex Index space tuple of the lower corner of the single tile.

930

maxIndex Index space tuple of the upper corner of the single tile.

[regDecomp] List of DE counts for each dimension. The total deCount is determined as the product of regDecomp
elements. By default regDecomp = (/deCount,1,...,1/), where deCount is the number of DEs in the
delayout. If the default delayout is used, the deCount is equal to petCount. This leads to a sim-
ple 1 DE per PET distribution, where the decompsition is only along the first dimension.

[decompflag] List of decomposition flags indicating how each dimension of the tile is to be divided between the
DEs. The default setting is ESMF_DECOMP_BALANCED in all dimensions. See section 52.13 for a list of valid
decomposition options.

[regDecompFirstExtra] Specify how many extra elements on the first DEs along each dimension to consider when
applying the regular decomposition algorithm. This does not add extra elements to the index space defined by
minIndex and maxIndex. Instead regDecompFirstExtra is used to correctly interpret the specified
index space: The regDecomp is first applied to the index space without the extra elements. The extra elements
are then added back in to arrive at the final decomposition. This is useful when aligning the decomposition
of index spaces that only differ in extra elements along the edges, e.g. when dealing with different stagger
locations. The default is a zero vector, assuming no extra elements.

[regDecompLastExtra] Specify how many extra elements on the last DEs along each dimension to consider when
applying the regular decomposition algorithm. This does not add extra elements to the index space defined
by minIndex and maxIndex. Instead regDecompLastExtra is used to correctly interpret the specified
index space: The regDecomp is first applied to the index space without the extra elements. The extra elements
are then added back in to arrive at the final decomposition. This is useful when aligning the decomposition
of index spaces that only differ in extra elements along the edges, e.g. when dealing with different stagger
locations. The default is a zero vector, assuming no extra elements.

[deLabelList] List assigning DE labels to the default sequence of DEs. The default sequence is given by the column
major order of the regDecomp argument.

[indexflag] Indicates whether the indices provided by the minIndex and maxIndex arguments are forming a global
index space or not. This does not affect the indices held by the DistGrid object, which are always identical to
what was specified by minIndex and maxIndex, regardless of the indexflag setting. However, it does
affect whether an ESMF_Array object created on the DistGrid can choose global indexing or not. The default
is ESMF_INDEX_DELOCAL. See section 52.27 for a complete list of options.

[connectionList] List of ESMF_DistGridConnection objects, defining connections between DistGrid tiles in
index space. See section 35.7.2 for the associated Set() method.

[delayout] ESMF_DELayout object to be used. If a DELayout object is specified its deCount must match the
number indicated by regDecomp. By default a new DELayout object will be created with the correct number
of DEs.

[vm] If present, the DistGrid object (and the DELayout object if not provided) are created on the specified ESMF_VM
object. The default is to use the VM of the current context.

[indexTK] Typekind used for global sequence indexing. See section 52.59 for a list of typekind options. Only integer
types are supported. The default is to have ESMF automatically choose between ESMF_TYPEKIND_I4 and
ESMF_TYPEKIND_I8, depending on whether the global number of elements held by the DistGrid is below or
above the 32-bit limit, respectively. Because of the use of signed integers for sequence indices, element counts
of > 231 − 1 = 2, 147, 483, 647 will switch to 64-bit indexing.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

931

35.6.7 ESMF_DistGridCreate - Create DistGrid object with regular decomposition (multi-tile version)

INTERFACE:

! Private name; call using ESMF_DistGridCreate()

function ESMF_DistGridCreateRDT(minIndexPTile, maxIndexPTile, &

regDecompPTile, decompflagPTile, regDecompFirstExtraPTile,&

regDecompLastExtraPTile, deLabelList, indexflag, connectionList, &

delayout, vm, indexTK, rc)

RETURN VALUE:

type(ESMF_DistGrid) :: ESMF_DistGridCreateRDT

ARGUMENTS:

integer, intent(in) :: minIndexPTile(:,:)

integer, intent(in) :: maxIndexPTile(:,:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: regDecompPTile(:,:)

type(ESMF_Decomp_Flag), target, intent(in), optional :: decompflagPTile(:,:)

integer, target, intent(in), optional :: regDecompFirstExtraPTile(:,:)

integer, target, intent(in), optional :: regDecompLastExtraPTile(:,:)

integer, intent(in), optional :: deLabelList(:)

type(ESMF_Index_Flag), intent(in), optional :: indexflag

type(ESMF_DistGridConnection), intent(in), optional :: connectionList(:)

type(ESMF_DELayout), intent(in), optional :: delayout

type(ESMF_VM), intent(in), optional :: vm

type(ESMF_TypeKind_Flag), intent(in), optional :: indexTK

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

8.1.0 Added argument indexTK to support explicit selection between 32-bit and 64-bit sequence indices.

DESCRIPTION:

Create an ESMF_DistGrid from multiple logically rectangular tiles. Each tile has a regular decomposition, where
the tile is decomposed into a fixed number of DEs along each dimension. A regular decomposition of a multi-tile
DistGrid is expressed by a list of DE count vectors, one vector for each tile. If a DELayout is specified, it must contain
at least as many DEs as there are tiles.

The arguments are:

932

minIndexPTile The first index provides the index space tuple of the lower corner of a tile. The second index indicates
the tile number.

maxIndexPTile The first index provides the index space tuple of the upper corner of a tile. The second index indicates
the tile number.

[regDecompPTile] List of DE counts for each dimension. The second index steps through the tiles. The total
deCount is determined as ths sum over the products of regDecomp elements for each tile. By default each
tile is decomposed only along the first dimension. The default number of DEs per tile is at least 1, but may be
greater for the leading tiles if the deCount is greater than the tileCount. If no DELayout is specified, the
deCount is by default set equal to the number of PETs (petCount), or the number of tiles (tileCount),
which ever is greater. This means that as long as petCount > tileCount, the resulting default distribution
will be 1 DE per PET. Notice that some tiles may be decomposed into more DEs than other tiles.

[decompflagPTile] List of decomposition flags indicating how each dimension of each tile is to be divided between
the DEs. The default setting is ESMF_DECOMP_BALANCED in all dimensions for all tiles. See section 52.13
for a list of valid decomposition flag options. The second index indicates the tile number.

[regDecompFirstExtraPTile] Specify how many extra elements on the first DEs along each dimension to consider
when applying the regular decomposition algorithm. This does not add extra elements to the index space defined
by minIndex and maxIndex. Instead regDecompFirstExtraPTile is used to correctly interpret the
specified index space: The regDecomp is first applied to the index space without the extra elements. The
extra elements are then added back in to arrive at the final decomposition. This is useful when aligning the
decomposition of index spaces that only differ in extra elements along the edges, e.g. when dealing with different
stagger locations. The default is a zero vector, assuming no extra elements.

[regDecompLastExtraPTile] Specify how many extra elements on the last DEs along each dimension to consider
when applying the regular decomposition algorithm. This does not add extra elements to the index space defined
by minIndex and maxIndex. Instead regDecompLastExtraPTile is used to correctly interpret the
specified index space: The regDecomp is first applied to the index space without the extra elements. The
extra elements are then added back in to arrive at the final decomposition. This is useful when aligning the
decomposition of index spaces that only differ in extra elements along the edges, e.g. when dealing with different
stagger locations. The default is a zero vector, assuming no extra elements.

[deLabelList] List assigning DE labels to the default sequence of DEs. The default sequence is given by the column
major order of the regDecompPTile elements in the sequence as they appear following the tile index.

[indexflag] Indicates whether the indices provided by the minIndexPTile and maxIndexPTile arguments are
forming a global index space or not. This does not affect the indices held by the DistGrid object, which
are always identical to what was specified by minIndexPTile and maxIndexPTile, regardless of the
indexflag setting. However, it does affect whether an ESMF_Array object created on the DistGrid can
choose global indexing or not. The default is ESMF_INDEX_DELOCAL. See section 52.27 for a complete list
of options.

[connectionList] List of ESMF_DistGridConnection objects, defining connections between DistGrid tiles in
index space. See section 35.7.2 for the associated Set() method.

[delayout] Optional ESMF_DELayout object to be used. By default a new DELayout object will be created with
as many DEs as there are PETs, or tiles, which ever is greater. If a DELayout object is specified, the number
of DEs must match regDecompPTile, if present. In the case that regDecompPTile was not specified,
the deCount must be at least that of the default DELayout. The regDecompPTile will be constructed
accordingly.

[vm] Optional ESMF_VM object of the current context. Providing the VM of the current context will lower the
method’s overhead.

[indexTK] Typekind used for global sequence indexing. See section 52.59 for a list of typekind options. Only integer
types are supported. The default is to have ESMF automatically choose between ESMF_TYPEKIND_I4 and
ESMF_TYPEKIND_I8, depending on whether the global number of elements held by the DistGrid is below or

933

above the 32-bit limit, respectively. Because of the use of signed integers for sequence indices, element counts
of > 231 − 1 = 2, 147, 483, 647 will switch to 64-bit indexing.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

35.6.8 ESMF_DistGridCreate - Create DistGrid object with DE blocks

INTERFACE:

! Private name; call using ESMF_DistGridCreate()

function ESMF_DistGridCreateDB(minIndex, maxIndex, deBlockList, &

deLabelList, indexflag, connectionList, delayout, vm, &

indexTK, rc)

RETURN VALUE:

type(ESMF_DistGrid) :: ESMF_DistGridCreateDB

ARGUMENTS:

integer, intent(in) :: minIndex(:)

integer, intent(in) :: maxIndex(:)

integer, intent(in) :: deBlockList(:,:,:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: deLabelList(:)

type(ESMF_Index_Flag), intent(in), optional :: indexflag

type(ESMF_DistGridConnection), intent(in), optional :: connectionList(:)

type(ESMF_DELayout), intent(in), optional :: delayout

type(ESMF_VM), intent(in), optional :: vm

type(ESMF_TypeKind_Flag), intent(in), optional :: indexTK

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

7.1.0r Added argument indexTK to support selecting between 32-bit and 64-bit sequence indices.

DESCRIPTION:

Create an ESMF_DistGrid from a single logically rectangular tile with decomposition specified by deBlockList.

The arguments are:

934

minIndex Index space tuple of the lower corner of the single tile.

maxIndex Index space tuple of the upper corner of the single tile.

deBlockList List of DE-local blocks. The third index of deBlockList steps through the deBlock elements (i.e.
deCount), which are defined by the first two indices. The first index must be of size dimCount and the second
index must be of size 2. Each element of deBlockList defined by the first two indices hold the following
information.

+---------------------------------------> 2nd index

| 1 2

| 1 minIndex(1) maxIndex(1)

| 2 minIndex(2) maxIndex(2)

| . minIndex(.) maxIndex(.)

| .

v

1st index

It is required that there be no overlap between the DE blocks.

[deLabelList] List assigning DE labels to the default sequence of DEs. The default sequence is given by the order of
DEs in the deBlockList argument.

[indexflag] Indicates whether the indices provided by the minIndex and maxIndex arguments are forming a global
index space or not. This does not affect the indices held by the DistGrid object, which are always identical to
what was specified by minIndex and maxIndex, regardless of the indexflag setting. However, it does
affect whether an ESMF_Array object created on the DistGrid can choose global indexing or not. The default
is ESMF_INDEX_DELOCAL. See section 52.27 for a complete list of options.

[connectionList] List of ESMF_DistGridConnection objects, defining connections between DistGrid tiles in
index space. See section 35.7.2 for the associated Set() method.

[delayout] Optional ESMF_DELayout object to be used. By default a new DELayout object will be created with the
correct number of DEs. If a DELayout object is specified its number of DEs must match the number indicated
by regDecomp.

[vm] Optional ESMF_VM object of the current context. Providing the VM of the current context will lower the
method’s overhead.

[indexTK] Typekind used for global sequence indexing. See section 52.59 for a list of typekind options. Only integer
types are supported. The default is to have ESMF automatically choose between ESMF_TYPEKIND_I4 and
ESMF_TYPEKIND_I8, depending on whether the global number of elements held by the DistGrid is below or
above the 32-bit limit, respectively. Because of the use of signed integers for sequence indices, element counts
of > 231 − 1 = 2, 147, 483, 647 will switch to 64-bit indexing.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

35.6.9 ESMF_DistGridCreate - Create DistGrid object with DE blocks (multi-tile version)

INTERFACE:

935

! Private name; call using ESMF_DistGridCreate()

function ESMF_DistGridCreateDBT(minIndexPTile, maxIndexPTile, deBlockList, &

deToTileMap, deLabelList, indexflag, connectionList, &

delayout, vm, indexTK, rc)

RETURN VALUE:

type(ESMF_DistGrid) :: ESMF_DistGridCreateDBT

ARGUMENTS:

integer, intent(in) :: minIndexPTile(:,:)

integer, intent(in) :: maxIndexPTile(:,:)

integer, intent(in) :: deBlockList(:,:,:)

integer, intent(in) :: deToTileMap(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: deLabelList(:)

type(ESMF_Index_Flag), intent(in), optional :: indexflag

type(ESMF_DistGridConnection), intent(in), optional :: connectionList(:)

type(ESMF_DELayout), intent(in), optional :: delayout

type(ESMF_VM), intent(in), optional :: vm

type(ESMF_TypeKind_Flag), intent(in), optional :: indexTK

integer, intent(out), optional :: rc

DESCRIPTION:

Create an ESMF_DistGrid on multiple logically rectangular tiles with decomposition specified by deBlockList.

The arguments are:

minIndexPTile The first index provides the index space tuple of the lower corner of a tile. The second index indicates
the tile number.

maxIndexPTile The first index provides the index space tuple of the upper corner of a tile. The second index indicates
the tile number.

deBlockList List of DE-local blocks. The third index of deBlockList steps through the deBlock elements (i.e.
deCount), which are defined by the first two indices. The first index must be of size dimCount and the second
index must be of size 2. Each element of deBlockList defined by the first two indices hold the following
information.

+---------------------------------------> 2nd index

| 1 2

| 1 minIndex(1) maxIndex(1)

| 2 minIndex(2) maxIndex(2)

| . minIndex(.) maxIndex(.)

| .

v

1st index

It is required that there be no overlap between the DE blocks.

936

deToTileMap List assigning each DE to a specific tile. The size of deToTileMap must be equal to deCount. The
order of DEs is the same as in deBlockList.

[deLabelList] List assigning DE labels to the default sequence of DEs. The default sequence is given by the order of
DEs in the deBlockList argument.

[indexflag] Indicates whether the indices provided by the minIndexPTile and maxIndexPTile arguments are
forming a global index space or not. This does not affect the indices held by the DistGrid object, which
are always identical to what was specified by minIndexPTile and maxIndexPTile, regardless of the
indexflag setting. However, it does affect whether an ESMF_Array object created on the DistGrid can
choose global indexing or not. The default is ESMF_INDEX_DELOCAL. See section 52.27 for a complete list
of options.

[connectionList] List of ESMF_DistGridConnection objects, defining connections between DistGrid tiles in
index space. See section 35.7.2 for the associated Set() method.

[delayout] Optional ESMF_DELayout object to be used. By default a new DELayout object will be created with the
correct number of DEs. If a DELayout object is specified its number of DEs must match the number indicated
by regDecomp.

[vm] Optional ESMF_VM object of the current context. Providing the VM of the current context will lower the
method’s overhead.

[indexTK] Typekind used for global sequence indexing. See section 52.59 for a list of typekind options. Only integer
types are supported. The default is to have ESMF automatically choose between ESMF_TYPEKIND_I4 and
ESMF_TYPEKIND_I8, depending on whether the global number of elements held by the DistGrid is below or
above the 32-bit limit, respectively. Because of the use of signed integers for sequence indices, element counts
of > 231 − 1 = 2, 147, 483, 647 will switch to 64-bit indexing.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

35.6.10 ESMF_DistGridCreate - Create 1D DistGrid object from user’s arbitrary sequence index list 1 DE

per PET

INTERFACE:

! Private name; call using ESMF_DistGridCreate()

function ESMF_DistGridCreateDBAI1D1DE(arbSeqIndexList, rc)

RETURN VALUE:

type(ESMF_DistGrid) :: ESMF_DistGridCreateDBAI1D1DE

ARGUMENTS:

integer, intent(in) :: arbSeqIndexList(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

937

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Create an ESMF_DistGrid of dimCount 1 from a PET-local list of sequence indices. The PET-local size of
the arbSeqIndexList argument determines the number of local elements in the created DistGrid. The sequence
indices must be unique across all PETs. A default DELayout with 1 DE per PET across all PETs of the current VM is
automatically created.

This is a collective method across the current VM.

The arguments are:

arbSeqIndexList List of arbitrary sequence indices that reside on the local PET.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

35.6.11 ESMF_DistGridCreate - Create 1D DistGrid object from user’s arbitrary 64-bit sequence index list 1

DE per PET

INTERFACE:

! Private name; call using ESMF_DistGridCreate()

function ESMF_DistGridCreateDBAI1D1DEI8(arbSeqIndexList, rc)

RETURN VALUE:

type(ESMF_DistGrid) :: ESMF_DistGridCreateDBAI1D1DEI8

ARGUMENTS:

integer(ESMF_KIND_I8), intent(in) :: arbSeqIndexList(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Create an ESMF_DistGrid of dimCount 1 from a PET-local list of sequence indices. The PET-local size of
the arbSeqIndexList argument determines the number of local elements in the created DistGrid. The sequence
indices must be unique across all PETs. A default DELayout with 1 DE per PET across all PETs of the current VM is
automatically created.

This is a collective method across the current VM.

The arguments are:

arbSeqIndexList List of arbitrary sequence indices that reside on the local PET.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

938

35.6.12 ESMF_DistGridCreate - Create 1D DistGrid object from user’s arbitrary sequence index list multiple

DE/PET

INTERFACE:

! Private name; call using ESMF_DistGridCreate()

function ESMF_DistGridCreateDBAI1D(arbSeqIndexList, rc)

RETURN VALUE:

type(ESMF_DistGrid) :: ESMF_DistGridCreateDBAI1D

ARGUMENTS:

type(ESMF_PtrInt1D), intent(in) :: arbSeqIndexList(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Create an ESMF_DistGrid of dimCount 1 from a PET-local list of sequence index lists. The PET-local size of
the arbSeqIndexList argument determines the number of local DEs in the created DistGrid. Each of the local
DEs is associated with as many index space elements as there are arbitrary sequence indices in the associated list. The
sequence indices must be unique across all DEs. A default DELayout with the correct number of DEs per PET is
automatically created.

This is a collective method across the current VM.

The arguments are:

arbSeqIndexList List of arbitrary sequence index lists that reside on the local PET.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

35.6.13 ESMF_DistGridCreate - Create (1+n)D DistGrid object from user’s arbitrary sequence index list and

minIndexPTile/maxIndexPTile

INTERFACE:

! Private name; call using ESMF_DistGridCreate()

function ESMF_DistGridCreateDBAI(arbSeqIndexList, arbDim, &

minIndexPTile, maxIndexPTile, rc)

RETURN VALUE:

type(ESMF_DistGrid) :: ESMF_DistGridCreateDBAI

939

ARGUMENTS:

integer, intent(in) :: arbSeqIndexList(:)

integer, intent(in) :: arbDim

integer, intent(in) :: minIndexPTile(:)

integer, intent(in) :: maxIndexPTile(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Create an ESMF_DistGrid of dimCount 1 + n, where n = size(minIndexPTile) =
size(maxIndexPTile).

The resulting DistGrid will have a 1D distribution determined by the PET-local arbSeqIndexList. The PET-local
size of the arbSeqIndexList argument determines the number of local elements along the arbitrarily distributed
dimension in the created DistGrid. The sequence indices must be unique across all PETs. The associated, automati-
cally created DELayout will have 1 DE per PET across all PETs of the current VM.

In addition to the arbitrarily distributed dimension, regular DistGrid dimensions can be specified in minIndexPTile
and maxIndexPTile. The n dimensional subspace spanned by the regular dimensions is "multiplied" with the
arbitrary dimension on each DE, to form a 1 + n dimensional total index space described by the DistGrid object.
The arbDim argument allows to specify which dimension in the resulting DistGrid corresponds to the arbitrarily
distributed one.

This is a collective method across the current VM.

The arguments are:

arbSeqIndexList List of arbitrary sequence indices that reside on the local PET.

arbDim Dimension of the arbitrary distribution.

minIndexPTile Index space tuple of the lower corner of the tile. The arbitrary dimension is not included in this tile

maxIndexPTile Index space tuple of the upper corner of the tile. The arbitrary dimension is not included in this tile

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

35.6.14 ESMF_DistGridDestroy - Release resources associated with a DistGrid

INTERFACE:

subroutine ESMF_DistGridDestroy(distgrid, noGarbage, rc)

ARGUMENTS:

940

type(ESMF_DistGrid), intent(inout) :: distgrid

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: noGarbage

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

7.0.0 Added argument noGarbage. The argument provides a mechanism to override the default garbage
collection mechanism when destroying an ESMF object.

DESCRIPTION:

Destroys an ESMF_DistGrid, releasing the resources associated with the object.

By default a small remnant of the object is kept in memory in order to prevent problems with dangling aliases. The
default garbage collection mechanism can be overridden with the noGarbage argument.

The arguments are:

distgrid ESMF_DistGrid object to be destroyed.

[noGarbage] If set to .TRUE. the object will be fully destroyed and removed from the ESMF garbage collection
system. Note however that under this condition ESMF cannot protect against accessing the destroyed object
through dangling aliases – a situation which may lead to hard to debug application crashes.

It is generally recommended to leave the noGarbage argument set to .FALSE. (the default), and to take
advantage of the ESMF garbage collection system which will prevent problems with dangling aliases or incorrect
sequences of destroy calls. However this level of support requires that a small remnant of the object is kept in
memory past the destroy call. This can lead to an unexpected increase in memory consumption over the course
of execution in applications that use temporary ESMF objects. For situations where the repeated creation and
destruction of temporary objects leads to memory issues, it is recommended to call with noGarbage set to
.TRUE., fully removing the entire temporary object from memory.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

35.6.15 ESMF_DistGridGet - Get object-wide DistGrid information

INTERFACE:

! Private name; call using ESMF_DistGridGet()

subroutine ESMF_DistGridGetDefault(distgrid, delayout, &

dimCount, tileCount, deCount, localDeCount, minIndexPTile, maxIndexPTile, &

941

elementCountPTile, elementCountPTileI8, minIndexPDe, maxIndexPDe, &

elementCountPDe, elementCountPDeI8, localDeToDeMap, deToTileMap, &

indexCountPDe, collocation, regDecompFlag, indexTK, indexflag, &

connectionCount, connectionList, rc)

ARGUMENTS:

type(ESMF_DistGrid), intent(in) :: distgrid

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_DELayout), intent(out), optional :: delayout

integer, intent(out), optional :: dimCount

integer, intent(out), optional :: tileCount

integer, intent(out), optional :: deCount

integer, intent(out), optional :: localDeCount

integer, target, intent(out), optional :: minIndexPTile(:,:)

integer, target, intent(out), optional :: maxIndexPTile(:,:)

integer, target, intent(out), optional :: elementCountPTile(:)

integer(ESMF_KIND_I8),target, intent(out), optional :: elementCountPTileI8(:)

integer, target, intent(out), optional :: minIndexPDe(:,:)

integer, target, intent(out), optional :: maxIndexPDe(:,:)

integer, target, intent(out), optional :: elementCountPDe(:)

integer(ESMF_KIND_I8),target, intent(out), optional :: elementCountPDeI8(:)

integer, target, intent(out), optional :: localDeToDeMap(:)

integer, target, intent(out), optional :: deToTileMap(:)

integer, target, intent(out), optional :: indexCountPDe(:,:)

integer, target, intent(out), optional :: collocation(:)

logical, intent(out), optional :: regDecompFlag

type(ESMF_TypeKind_Flag), intent(out), optional :: indexTK

type(ESMF_Index_Flag), intent(out), optional :: indexflag

integer, intent(out), optional :: connectionCount

type(ESMF_DistGridConnection), &

target, intent(out), optional :: connectionList(:)

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

7.0.0 Added argument deCount to simplify access to this variable.
Added arguments connectionCount and connectionList to provide user access to the explicitly
defined connections in a DistGrid.

8.0.0 Added arguments localDeCount and localDeToDeMap to simplify access to these variables.

8.1.0 Added argument indexTK to allow query of the sequence index typekind.
Added arguments elementCountPTileI8 and elementCountPDeI8 to provide 64-bit access.
Added argument indexflag to allow user to query this setting.

942

DESCRIPTION:

Access internal DistGrid information.

The arguments are:

distgrid Queried ESMF_DistGrid object.

[delayout] ESMF_DELayout object associated with distgrid.

[dimCount] Number of dimensions (rank) of distgrid.

[tileCount] Number of tiles in distgrid.

[deCount] Number of DEs in the DELayout in distgrid.

[localDeCount] Number of local DEs in the DELayout in distgrid on this PET.

[minIndexPTile] Lower index space corner per tile. Must enter allocated with shape(minIndexPTile) ==

(/dimCount, tileCount/).

[maxIndexPTile] Upper index space corner per tile. Must enter allocated with shape(maxIndexPTile) ==

(/dimCount, tileCount/).

[elementCountPTile] Number of elements in the exclusive region per tile. Must enter allocated with
shape(elementCountPTile) == (/tileCount/). An error will be returned if any of the counts
goes above the 32-bit limit.

[elementCountPTileI8] Same as elementCountPTile, but of 64-bit integer kind.

[minIndexPDe] Lower index space corner per DE. Must enter allocated with shape(minIndexPDe) ==

(/dimCount, deCount/).

[maxIndexPDe] Upper index space corner per DE. Must enter allocated with shape(maxIndexPDe) ==

(/dimCount, deCount/).

[elementCountPDe] Number of elements in the exclusive region per DE. Must enter allocated with
shape(elementCountPDe) == (/deCount/). An error will be returned if any of the counts goes
above the 32-bit limit.

[elementCountPDeI8] Same as elementCountPDe, but of 64-bit integer kind.

[localDeToDeMap] Global DE index for each local DE. Must enter allocated with shape(localDeToDeMap)

== (/localDeCount/). It is recommended to use a lower bound of 0 for localDeToDeMap, in order to
support direct indexing into this map with a zero-based localDe variable.

[deToTileMap] Map each DE uniquely to a tile. Must enter allocated with shape(deToTileMap) ==

(/deCount/). It is recommended to use a lower bound of 0 for deToTileMap, in order to support di-
rect indexing into this map with a zero-based de variable.

[indexCountPDe] Number of indices for each dimension per DE. Must enter allocated with
shape(indexCountPDe) == (/dimCount, deCount/).

[collocation] Collocation identifier for each dimension. Must enter allocated with shape(collocation) ==

(/dimCount/).

[regDecompFlag] Decomposition scheme. A return value of .true. indicates a regular decomposition, i.e. the
decomposition is based on a logically rectangular scheme with specific number of DEs along each dimension.
A return value of .false. indicates that the decomposition was not generated from a regular decomposition
description, e.g. a deBlockList was used instead.

943

[indexTK] Typekind used by the global sequence indexing. See section 52.59 for a list of typekind options. Only the
integer types are supported for sequence indices.

[indexflag] Return the indexing option used by the distgrid object. See section 52.27 for a complete list of
options.

[connectionCount] Number of explicitly defined connections in distgrid.

[connectionList] List of explicitly defined connections in distgrid. Must enter allocated with
shape(connectionList) == (/connectionCount/).

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

35.6.16 ESMF_DistGridGet - Get DE-local DistGrid information

INTERFACE:

! Private name; call using ESMF_DistGridGet()

subroutine ESMF_DistGridGetPLocalDe(distgrid, localDe, &

de, tile, collocation, arbSeqIndexFlag, seqIndexList, seqIndexListI8, &

elementCount, elementCountI8, rc)

ARGUMENTS:

type(ESMF_DistGrid), intent(in) :: distgrid

integer, intent(in) :: localDe

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: de

integer, intent(out), optional :: tile

integer, intent(in), optional :: collocation

logical, intent(out), optional :: arbSeqIndexFlag

integer, target, intent(out), optional :: seqIndexList(:)

integer(ESMF_KIND_I8),target, intent(out), optional :: seqIndexListI8(:)

integer, intent(out), optional :: elementCount

integer, intent(out), optional :: elementCountI8

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

8.0.0 Added arguments de and tile to simplify usage.

8.1.0 Added arguments seqIndexListI8 and elementCountI8 to provide 64-bit access.

944

DESCRIPTION:

Access internal DistGrid information.

The arguments are:

distgrid Queried ESMF_DistGrid object.

localDe Local DE for which information is requested. [0,..,localDeCount-1]

[de] The global DE associated with the localDe. DE indexing starts at 0.

[tile] The tile on which the localDe is located. Tile indexing starts at 1.

[collocation] Collocation for which information is requested. Default to first collocation in collocation list.

[arbSeqIndexFlag] A returned value of .true. indicates that the collocation is associated with arbitrary
sequence indices. For .false., canoncial sequence indices are used.

[seqIndexList] The sequence indices associated with the localDe. This argument must enter allocated with a size
equal to elementCountPDe(localDeToDeMap(localDe)). An error will be returned if any of the
sequence indices are above the 32-bit limit.

[seqIndexListI8] Same as seqIndexList, but of 64-bit integer kind.

[elementCount] Number of elements in the localDe, i.e. identical to elementCountPDe(localDeToDeMap(localDe)).
An error will be returned if the count is above the 32-bit limit.

[elementCountI8] Same as elementCount, but of 64-bit integer kind.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

35.6.17 ESMF_DistGridGet - Get DE-local DistGrid information for a specific dimension

INTERFACE:

! Private name; call using ESMF_DistGridGet()

subroutine ESMF_DistGridGetPLocalDePDim(distgrid, localDe, dim, &

indexList, rc)

ARGUMENTS:

type(ESMF_DistGrid), intent(in) :: distgrid

integer, intent(in) :: localDe

integer, intent(in) :: dim

integer, target, intent(out) :: indexList(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

945

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Access internal DistGrid information.

The arguments are:

distgrid Queried ESMF_DistGrid object.

localDe Local DE for which information is requested. [0,..,localDeCount-1]

dim Dimension for which information is requested. [1,..,dimCount]

indexList Upon return this holds the list of DistGrid tile-local indices for localDe along dimension dim. The
supplied variable must be at least of size indexCountPDe(dim, localDeToDeMap(localDe)).

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

35.6.18 ESMF_DistGridIsCreated - Check whether a DistGrid object has been created

INTERFACE:

function ESMF_DistGridIsCreated(distgrid, rc)

RETURN VALUE:

logical :: ESMF_DistGridIsCreated

ARGUMENTS:

type(ESMF_DistGrid), intent(in) :: distgrid

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Return .true. if the distgrid has been created. Otherwise return .false.. If an error occurs, i.e. rc /=

ESMF_SUCCESS is returned, the return value of the function will also be .false..

The arguments are:

distgrid ESMF_DistGrid queried.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

946

35.6.19 ESMF_DistGridMatch - Check if two DistGrid objects match

INTERFACE:

function ESMF_DistGridMatch(distgrid1, distgrid2, rc)

RETURN VALUE:

type(ESMF_DistGridMatch_Flag) :: ESMF_DistGridMatch

ARGUMENTS:

type(ESMF_DistGrid), intent(in) :: distgrid1

type(ESMF_DistGrid), intent(in) :: distgrid2

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Determine to which level distgrid1 and distgrid2 match.

Returns a range of values of type ESMF_DistGridMatch_Flag, indicating how closely the DistGrids match. For
a description of the possible return values, see 35.2.1. Note that this call only performs PET local matching. Different
return values may be returned on different PETs for the same DistGrid pair.

The arguments are:

distgrid1 ESMF_DistGrid object.

distgrid2 ESMF_DistGrid object.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

35.6.20 ESMF_DistGridPrint - Print DistGrid information

INTERFACE:

subroutine ESMF_DistGridPrint(distgrid, rc)

ARGUMENTS:

type(ESMF_DistGrid), intent(in) :: distgrid

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

947

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Prints internal information about the specified ESMF_DistGrid object to stdout.

The arguments are:

distgrid Specified ESMF_DistGrid object.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

35.6.21 ESMF_DistGridSet - Set arbitrary sequence for a specific local DE

INTERFACE:

! Private name; call using ESMF_DistGridSet()

subroutine ESMF_DistGridSetPLocalDe(distgrid, localDe, collocation, &

seqIndexList, seqIndexListI8, rc)

ARGUMENTS:

type(ESMF_DistGrid), intent(inout) :: distgrid

integer, intent(in) :: localDe

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: collocation

integer, target, intent(in), optional :: seqIndexList(:)

integer(ESMF_KIND_I8),target, intent(in), optional :: seqIndexListI8(:)

integer, intent(out), optional :: rc

DESCRIPTION:

Set DistGrid information for a specific local DE.

The arguments are:

distgrid Queried ESMF_DistGrid object.

localDe Local DE for which information is set. [0,..,localDeCount-1]

[collocation] Collocation for which information is set. Default to first collocation in collocation list.

[seqIndexList] Sequence indices for the elements on localDe. The seqIndexList must provide exactly
elementCountPDe(localDeToDeMap(localDe) many entries. When this argument is present, the
indexTK of distgrid will be set to ESMF_TYPEKIND_I4. This argument is mutually exclusive with
seqIndexListI8. Only one or the other must be provided. An error will be returned otherwise.

948

[seqIndexListI8] Same as seqIndexList, but of 64-bit integer kind. When this argument is present, the
indexTK of distgrid will be set to ESMF_TYPEKIND_I8. This argument is mutually exclusive with
seqIndexList. Only one or the other must be provided. An error will be returned otherwise.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

35.6.22 ESMF_DistGridValidate - Validate DistGrid internals

INTERFACE:

subroutine ESMF_DistGridValidate(distgrid, rc)

ARGUMENTS:

type(ESMF_DistGrid), intent(in) :: distgrid

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Validates that the distgrid is internally consistent. The method returns an error code if problems are found.

The arguments are:

distgrid Specified ESMF_DistGrid object.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

35.7 Class API: DistGridConnection Methods

35.7.1 ESMF_DistGridConnectionGet - Get DistGridConnection

INTERFACE:

subroutine ESMF_DistGridConnectionGet(connection, &

tileIndexA, tileIndexB, dimCount, positionVector, orientationVector, rc)

ARGUMENTS:

949

type(ESMF_DistGridConnection), intent(in) :: connection

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: tileIndexA

integer, intent(out), optional :: tileIndexB

integer, intent(out), optional :: dimCount

integer, intent(out), optional :: positionVector(:)

integer, intent(out), optional :: orientationVector(:)

integer, intent(out), optional :: rc

DESCRIPTION:

Get connection parameters from an ESMF_DistGridConnection object. This interface provides access to all
variables required to create a new connection using the ESMF_DistGridConnectionSet() method.

The arguments are:

connection DistGridConnection object.

[tileIndexA] Index of one of the two connected tiles.

[tileIndexB] Index of the other connected tile.

[dimCount] Number of dimensions of positionVector.

[positionVector] Position of tile B’s minIndex with respect to tile A’s minIndex. This array’s size should be at least
equal to dimCount.

[orientationVector] Lists which dimension of tile A is associated to which dimension of tile B. Negative index values
may be used to indicate a reversal in index orientation. Should be at least of size dimCount.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

35.7.2 ESMF_DistGridConnectionSet - Set DistGridConnection

INTERFACE:

subroutine ESMF_DistGridConnectionSet(connection, tileIndexA, tileIndexB, &

positionVector, orientationVector, rc)

ARGUMENTS:

type(ESMF_DistGridConnection),intent(out) :: connection

integer, intent(in) :: tileIndexA

integer, intent(in) :: tileIndexB

integer, intent(in) :: positionVector(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: orientationVector(:)

integer, intent(out), optional:: rc

STATUS:

950

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Set an ESMF_DistGridConnection object to represent a connection according to the provided index space in-
formation.

The arguments are:

connection DistGridConnection object.

tileIndexA Index of one of the two tiles that are to be connected.

tileIndexB Index of one of the two tiles that are to be connected.

positionVector Position of tile B’s minIndex with respect to tile A’s minIndex.

[orientationVector] Associates each dimension of tile A with a dimension in tile B’s index space. Negative index
values may be used to indicate a reversal in index orientation. It is erroneous to associate multiple dimensions
of tile A with the same index in tile B. By default orientationVector = (/1,2,3,.../), i.e. same
orientation as tile A.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

35.8 Class API: DistGridRegDecomp Methods

35.8.1 ESMF_DistGridRegDecompSetCubic - Construct a DistGrid regDecomp

INTERFACE:

subroutine ESMF_DistGridRegDecompSetCubic(regDecomp, deCount, rc)

ARGUMENTS:

integer, target, intent(out) :: regDecomp(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: deCount

integer, intent(out), optional :: rc

DESCRIPTION:

Construct a regular decomposition argument for DistGrid that is most cubic in dimCount dimensions, and multiplies
out to deCount DEs. The factorization is stable monotonic decreasing, ensuring that earlier entries in regDecomp
are larger or equal to the later entires.

The arguments are:

regDecomp The regular decomposition description being constructed.

[deCount] The number of DEs. Defaults to petCount.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

951

36 RouteHandle Class

36.1 Description

The ESMF RouteHandle class provides a unified interface for all route-based communication methods across the Field,

FieldBundle, Array, and ArrayBundle classes. All route-based communication methods implement a pre-computation

step, returning a RouteHandle, an execution step, and a release step. Typically the pre-computation, or Store() step

will be a lot more expensive (both in memory and time) than the execution step. The idea is that once precomputed,

a RouteHandle will be executed many times over during a model run, making the execution time a very performance

critical piece of code. In ESMF, Regridding, Redisting, and Haloing are implemented as route-based communication

methods. The following sections discuss the RouteHandle concepts that apply uniformly to all route-based communi-

cation methods, across all of the above mentioned classes.

36.2 Use and Examples

The user interacts with the RouteHandle class through the route-based communication methods of Field, FieldBundle,

Array, and ArrayBundle. The usage of these methods are described in detail under their respective class documentation

section. The following examples focus on the RouteHandle aspects common across classes and methods.

36.2.1 Bit-for-bit reproducibility

Bit-for-bit (bfb) reproducibility is at the core of the regression testing schemes of many scientific model codes. The
bfb requirement makes it possible to easily compare the numerical results of simulation runs using standard binary
diff tools.

While bfb reproducibility is desirable (and often required) for regression testing, it does limit the available performance
optimization opportunities. Especially in highly parallelized code, best performance is often achieved by allowing
operations to occur in a flexible order. Under some conditions, however, a change in the order of numerical operations
leads to small numerical differences in the results, breaking bfb reproducibility.

ESMF provides the following three levels of bfb reproducibility support, with the associated performance optimization
implications:

• Strict bit-for-bit reproducibility: Results are guaranteed to be bit-for-bit identical even when executing across
different numbers of PETs. The optimization options are limited to memory layout and message aggregation.

• Relaxed bit-for-bit reproducibility: Results are only guaranteed to be bit-for-bit identical when running across
an unchanged number of PETs. The optimization options include partial sums, allowing computational load to
be balanced between source and destination PETs, and message sizes to be reduced.

• No guarantee for bit-for-bit reproducibility: Results may differ by numerical round-off. The optimization op-
tions include dynamic out-of-order summation of partial sums.

The following discussion uses very simple numerical examples to demonstrate how the order of terms in a sum can
lead to results that are not bit-for-bit identical. The examples use single precision, ESMF_KIND_R4 numbers, but the
concepts apply the same to double precision, ESMF_KIND_R8; only that the decimals, for which bfb differences in
the sums occur, are different ones.

With sumA, sumB, sumC, sumD, and sumE all of type real(ESMF_KIND_R4), one finds the following bfb dif-
ferences:

952

sumA = (0.5 + 0.1) + 0.1 ! results in 0.700000048

sumB = 0.5 + (0.1 + 0.1) ! results in 0.699999988

sumC = 0.5 + 0.2 + 0.1 + 0.1 ! results in 0.900000036

sumD = 0.5 + (0.2 + 0.1) + 0.1 ! results in 0.900000036

sumE = 0.5 + (0.2 + 0.1 + 0.1) ! results in 0.899999976

These differences result from the fact that many decimals (even very simple ones like 0.1 or 0.2) lead to periodic
binary floating point numbers. Periodic floating point numbers must be truncated when represented by a finite number
of bits, leading to small rounding errors. Further truncation occurs when the radix point of two numbers must be
aligned during floating point arithmetic, resulting in bit shifts for one of the numbers. The resulting truncation error
depends on the precise numbers that need alignment. As a result, executing the "same" sum in a different order can
lead to different truncation steps and consequently in results that are not bit-for-bit identical.

In order to help users with the implementation of their bfb requirement, ESMF provides different levels of control
over the term order in sparse matrix multiplications, while at the same time offering performance optimization op-
tions. In all there are three arguments that will be introduced in the following paragraphs: srcTermProcessing,
termorderflag, and pipelineDepth.

For the purpose of demonstration, a one-dimensional, arbitrarily distributed source Array is constructed. There are
three Array elements on each of the four PETs. Their local storage indices, sequence indices, and data values are as
follows:

+-----+-------+----------------+------------+

| PET | index | sequence index | data value |

+-----+-------+----------------+------------+

| 0 | 1 | 1 | 0.5 |

| 0 | 2 | 6 | 0.1 |

| 0 | 3 | 9 | 0.1 |

+-----+-------+----------------+------------+

| 1 | 1 | 4 | 0.5 |

| 1 | 2 | 3 | 0.1 |

| 1 | 3 | 10 | 0.1 |

+-----+-------+----------------+------------+

| 2 | 1 | 11 | 0.5 |

| 2 | 2 | 7 | 0.1 |

| 2 | 3 | 5 | 0.1 |

+-----+-------+----------------+------------+

| 3 | 1 | 8 | 0.1 |

| 3 | 2 | 2 | 0.2 |

| 3 | 3 | 12 | 0.1 |

+-----+-------+----------------+------------+

The destination Array consists of only a single element, located on PET 0:

+-----+-------+----------------+------------+

| PET | index | sequence index | data value |

+-----+-------+----------------+------------+

| 0 | 1 | 1 | n/a |

+-----+-------+----------------+------------+

953

As a first example consider the following sparse matrix with three entries:

factorIndexList(1,1) = 1 ! src seq index

factorIndexList(2,1) = 1 ! dst seq index

factorList(1) = 1.

factorIndexList(1,2) = 6 ! src seq index

factorIndexList(2,2) = 1 ! dst seq index

factorList(2) = 1.

factorIndexList(1,3) = 9 ! src seq index

factorIndexList(2,3) = 1 ! dst seq index

factorList(3) = 1.

In ESMF, the order in which the sparse matrix entries are specified in factorIndexList and factorList, or
on which PET they are provided, is completely irrelevant. The term order in the resulting sparse matrix sums is not
affected by it.

There is one aspect of the sparse matrix format, however, that is relevant to the bfb considerations: When multiple
entries for the same (src, dst) pair are present in a sparse matrix definition, the entries are summed into a single (src,
dst) entry. Therefore, even if there are multiple sparse matrix entries for the same (src, dst) pair, there will only be a
single term for it in the resulting expression.

Going back to the three term sparse matrix definition above, the canonical term order is defined by the source sequence
indices in ascending order. With (src,dst) denoting the sparse matrix factors, and s(src) and d(dst) denoting
source and destination Array elements, respectively, for src and dst sequence indices, the sum in canonical order is:

d(1) = (1,1)*s(1) + (6,1)*s(6) + (9,1)*s(9)

For simplicity, the factors in all of the examples are set to 1.0, allowing us to drop them in the expressions. This helps
focus on the critical issue – term order:

d(1) = s(1) + s(6) + s(9)

There are two parameters that affect term order in the ESMF sparse matrix multiplication (SMM), and therefore
must be considered in the context of bfb reproducibility. First there is the srcTermProcessing parameter
which controls grouping of source terms located on the same PET. The value of the srcTermProcessing pa-
rameter indicates the maximum number of terms that may be grouped into partial sums on the source PET. Set-
ting srcTermProcessing to 1 means that no partial sums are formed on the source side, however, the source
terms are multiplied with their respective sparse matrix factor before being sent to the destination PET. Setting
srcTermProcessing to 0 prevents these products from being carried out on the source side, and the source
Array elements are sent unmodified. Depending on the distribution of the source Array, values greater than 1 for
srcTermProcessing can lead to partial sums and thus may have impact on the bfb reproducibility of the SMM.

The second parameter that may have bfb effects comes into play at execution-time of a precomputed RouteHandle. It
is accessible via the termorderflag argument; a typed flag with the following values:

• ESMF_TERMORDER_SRCSEQ – Strictly enforces the canonical order of the source terms according to the
source sequence index. However, terms that are grouped together in the RouteHandle at store-time, as a conse-
quence of srcTermProcessing, are treated as single entities with a sequence index equal to the lowest origi-
nal sequence index in the group. Use ESMF_TERMORDER_SRCSEQ together with srcTermProcessing=0
or srcTermProcessing=1 when strict bfb reproducibility is required independent of the source Array dis-
tribution, e.g. for different number of PETs.

• ESMF_TERMORDER_SRCPET – The source terms in the sum are first arranged according to the relative position
of the PET on which they reside with respect to the destination PET. Second, all the terms coming from the same

954

PET are sorted in canonical sequence index order and summed into partial sums. Again, terms that are grouped
together in the RouteHandle at store-time are treated as single entities with a sequence index equal to the lowest
original sequence index in the group. The final result for each destination element is determined by adding the
partial sums in an order that is fixed by the position of the partial sums’ source PETs relative to the destination
PET. This ensures bfb reproducibility of the result as long as the number of PETs remains unchanged.

• ESMF_TERMORDER_FREE – For this option there are no restrictions on the term order. Terms can be summed
in any order, and the order may change each time the RouteHandle is executed. This option grants great-
est flexibility to the RouteHandle execution implementation. It is available for all the methods that take the
termorderflag argument. Without a guaranteed source term order, the ESMF_TERMORDER_FREE option
is not suitable for situations that require bfb reproducibility.

ESMF_TERMORDER_SRCSEQ

First using srcTermProcessing=0 at store time and termorderflag=ESMF_TERMORDER_SRCSEQ at exe-
cution time, the canonical term order is expected:

d(1) = s(1) + s(6) + s(9) = 0.5 + 0.1 + 0.1 = sumA

! forced srcTermProcessing

srcTermProcessing = 0

call ESMF_ArraySMMStore(srcArray, dstArray, &

factorIndexList=factorIndexList, factorList=factorList, &

routehandle=rh, srcTermProcessing=srcTermProcessing, rc=rc)

call ESMF_ArraySMM(srcArray, dstArray, routehandle=rh, &

termorderflag=ESMF_TERMORDER_SRCSEQ, rc=rc)

if (localPet == 0) then

print *, "result SRCSEQ#1 = ", farrayPtr(1), " expect: ", sumA

if (farrayPtr(1) /= sumA) &

finalrc = ESMF_FAILURE

endif

The order of source terms across PETs is expected to have no effect on the bfb reproducibility of the result for
ESMF_TERMORDER_SRCSEQ. To test this, a sparse matrix is used where the source terms originate from different
PETs.

factorIndexList(1,1) = 4 ! src seq index

factorIndexList(2,1) = 1 ! dst seq index

factorList(1) = 1.

factorIndexList(1,2) = 5 ! src seq index

factorIndexList(2,2) = 1 ! dst seq index

factorList(2) = 1.

factorIndexList(1,3) = 12 ! src seq index

factorIndexList(2,3) = 1 ! dst seq index

factorList(3) = 1.

Again the srcTermProcessing argument is kept at 0, ensuring that none of the source terms are grouped into
partial sums.

955

! forced srcTermProcessing

srcTermProcessing = 0

call ESMF_ArraySMMStore(srcArray, dstArray, &

factorIndexList=factorIndexList, factorList=factorList, &

routehandle=rh, srcTermProcessing=srcTermProcessing, rc=rc)

call ESMF_ArraySMM(srcArray, dstArray, routehandle=rh, &

termorderflag=ESMF_TERMORDER_SRCSEQ, rc=rc)

Under ESMF_TERMORDER_SRCSEQ it does not matter on which PET a source term is located, the order of source
terms is strictly defined by the order of source sequence indices:

d(1) = s(4) + s(5) + s(12) = 0.5 + 0.1 + 0.1 = sumA

if (localPet == 0) then

print *, "result SRCSEQ#2 = ", farrayPtr(1), " expect: ", sumA

if (farrayPtr(1) /= sumA) &

finalrc = ESMF_FAILURE

endif

The same sparse matrix leads to bfb differences in the result when executed with the ESMF_TERMORDER_SRCPET
option. This is demonstrated further down in result SRCPET#4.

ESMF_TERMORDER_SRCPET

All source terms coming from the same PET

In the following examples the srcTermProcessing argument at store-time is first set to 0, forcing all of the source
terms to be sent to the destination PET unmodified. We start by going back to the initial sparse matrix where all of the
source terms are located on the same PET.

factorIndexList(1,1) = 1 ! src seq index

factorIndexList(2,1) = 1 ! dst seq index

factorList(1) = 1.

factorIndexList(1,2) = 6 ! src seq index

factorIndexList(2,2) = 1 ! dst seq index

factorList(2) = 1.

factorIndexList(1,3) = 9 ! src seq index

factorIndexList(2,3) = 1 ! dst seq index

factorList(3) = 1.

! forced srcTermProcessing

srcTermProcessing=0

call ESMF_ArraySMMStore(srcArray, dstArray, &

factorIndexList=factorIndexList, factorList=factorList, &

routehandle=rh, srcTermProcessing=srcTermProcessing, rc=rc)

Then, at execution time, the ESMF_TERMORDER_SRCPET option is used.

956

call ESMF_ArraySMM(srcArray, dstArray, routehandle=rh, &

termorderflag=ESMF_TERMORDER_SRCPET, rc=rc)

Here all of the source elements originate from the same PET (PET 0). This fact, together with the
ESMF_TERMORDER_SRCPET execution-time option, results in the following canonical term order:

d(1) = s(1) + s(6) + s(9) = 0.5 + 0.1 + 0.1 = sumA

This is exactly the same term order that was used above to produce the result stored in sumA.

if (localPet == 0) then

print *, "result SRCPET#1 = ", farrayPtr(1), " expect: ", sumA

if (farrayPtr(1) /= sumA) &

finalrc = ESMF_FAILURE

endif

The sequence indices of the source terms are the only relevant aspect in determining the source term order. Consider,
for example, the following sparse matrix, where again all source terms are located on the same PET (PET 2):

factorIndexList(1,1) = 11 ! src seq index

factorIndexList(2,1) = 1 ! dst seq index

factorList(1) = 1.

factorIndexList(1,2) = 5 ! src seq index

factorIndexList(2,2) = 1 ! dst seq index

factorList(2) = 1.

factorIndexList(1,3) = 7 ! src seq index

factorIndexList(2,3) = 1 ! dst seq index

factorList(3) = 1.

This time the source term order in memory is not the same as their sequence index order. Specifically, the sequence
indices of the source terms, in the order they are stored in memory, is 11, 7, 5 (see the source Array diagram above
for reference). Further, as mentioned already, the order of entries in the sparse matrix also have not bearing on the
term order in the SMM sums. Then, for the ESMF_TERMORDER_SRCPET option, and because all source terms are
located on the same PET, the resulting source term order is the canonical one determined by the source term sequence
indices alone:

d(1) = s(5) + s(7) + s(11)

Filling in the source element data, we find

d(1) = 0.1 + 0.1 + 0.5,

which is expected to be bfb equivalent to the result stored in sumB from above.

! forced srcTermProcessing

srcTermProcessing=0

call ESMF_ArraySMMStore(srcArray, dstArray, &

factorIndexList=factorIndexList, factorList=factorList, &

routehandle=rh, srcTermProcessing=srcTermProcessing, rc=rc)

957

call ESMF_ArraySMM(srcArray, dstArray, routehandle=rh, &

termorderflag=ESMF_TERMORDER_SRCPET, rc=rc)

if (localPet == 0) then

print *, "result SRCPET#2 = ", farrayPtr(1), " expect: ", sumB

if (farrayPtr(1) /= sumB) &

finalrc = ESMF_FAILURE

endif

Source terms coming from different PETs

When the source terms are distributed across multiple PETs, the ESMF_TERMORDER_SRCPET option first bundles
the terms according to the PET on which they are stored. These source term "bundles" are then arranged in an order
that depends on the source PET position relative to the destination PET: starting with the bundle for which the source
PET is the same as the destination PET, the source term bundles are placed in descending order with respect to their
source PET, modulo petCount. The terms within each source term bundle are further sorted in the canonical order
according to their sequence index.

The following sparse matrix demonstrates the effect of the ESMF_TERMORDER_SRCPET option.

factorIndexList(1,1) = 1 ! src seq index

factorIndexList(2,1) = 1 ! dst seq index

factorList(1) = 1.

factorIndexList(1,2) = 3 ! src seq index

factorIndexList(2,2) = 1 ! dst seq index

factorList(2) = 1.

factorIndexList(1,3) = 7 ! src seq index

factorIndexList(2,3) = 1 ! dst seq index

factorList(3) = 1.

Here the source terms are located on PETs 0, 1, and 2. Using a [] notion to indicate the source PET of each term, the
term order under ESMF_TERMORDER_SRCPET is given by:

d(1) = s(1)[0] + s(7)[2] + s(3)[1] = 0.5 + 0.1 + 0.1

This is again the same order of terms that was used to produce the result stored in sumA above.

! forced srcTermProcessing

srcTermProcessing=0

call ESMF_ArraySMMStore(srcArray, dstArray, &

factorIndexList=factorIndexList, factorList=factorList, &

routehandle=rh, srcTermProcessing=srcTermProcessing, rc=rc)

call ESMF_ArraySMM(srcArray, dstArray, routehandle=rh, &

termorderflag=ESMF_TERMORDER_SRCPET, rc=rc)

if (localPet == 0) then

print *, "result SRCPET#3 = ", farrayPtr(1), " expect: ", sumA

958

if (farrayPtr(1) /= sumA) &

finalrc = ESMF_FAILURE

endif

In the above example, the fact that the terms were ordered by source PET first, did not lead to numerical bfb differences
compared to the canonical source term order. However, this was purely coincidental in the way the numbers worked
out for this example. The following case looks at a situation where the source PET order does lead to a result that
shows bfb differences compared to the canonical term order.

factorIndexList(1,1) = 4 ! src seq index

factorIndexList(2,1) = 1 ! dst seq index

factorList(1) = 1.

factorIndexList(1,2) = 5 ! src seq index

factorIndexList(2,2) = 1 ! dst seq index

factorList(2) = 1.

factorIndexList(1,3) = 12 ! src seq index

factorIndexList(2,3) = 1 ! dst seq index

factorList(3) = 1.

The canonical source term order of this SMM sum, determined by the source sequence indices alone, is:

d(1) = s(4) + s(5) + s(12) = 0.5 + 0.1 + 0.1,

which again would lead to a result that is bfb identical to sumA. However, this is not the term order resulting from the
ESMF_TERMORDER_SRCPET option. The actual order for this option is:

d(1) = s(12)[3] + s(5)[2] + s(4)[1] = 0.1 + 0.1 + 0.5,

resulting in a sum that is bfb identical to sumB instead.

! forced srcTermProcessing

srcTermProcessing=0

call ESMF_ArraySMMStore(srcArray, dstArray, &

factorIndexList=factorIndexList, factorList=factorList, &

routehandle=rh, srcTermProcessing=srcTermProcessing, rc=rc)

call ESMF_ArraySMM(srcArray, dstArray, routehandle=rh, &

termorderflag=ESMF_TERMORDER_SRCPET, rc=rc)

if (localPet == 0) then

print *, "result SRCPET#4 = ", farrayPtr(1), " expect: ", sumB

if (farrayPtr(1) /= sumB) &

finalrc = ESMF_FAILURE

endif

Grouping of source terms coming from the same PET

So far the srcTermProcessing argument was kept at 0, and therefore source term grouping had not to be consid-
ered. Source term grouping is only possible for terms that originate from the same PET. In preparation for a closer

959

look at the bfb effects of source term grouping, consider a sparse matrix where two of the source terms are located on
the same PET.

factorIndexList(1,1) = 1 ! src seq index

factorIndexList(2,1) = 1 ! dst seq index

factorList(1) = 1.

factorIndexList(1,2) = 5 ! src seq index

factorIndexList(2,2) = 1 ! dst seq index

factorList(2) = 1.

factorIndexList(1,3) = 7 ! src seq index

factorIndexList(2,3) = 1 ! dst seq index

factorList(3) = 1.

Here one of the source terms is located on PET 0 while the other two source terms are originating on PET 2. Keeping
the srcTermProcessing argument at 0 first, the term order under ESMF_TERMORDER_SRCPET is given by:

d(1) = s(1)[0] + s(5)[2] + s(7)[2] = 0.5 + 0.1 + 0.1

And again the result is expected to be bfb identical to the number stored in sumA.

! forced srcTermProcessing

srcTermProcessing=0

call ESMF_ArraySMMStore(srcArray, dstArray, &

factorIndexList=factorIndexList, factorList=factorList, &

routehandle=rh, srcTermProcessing=srcTermProcessing, rc=rc)

call ESMF_ArraySMM(srcArray, dstArray, routehandle=rh, &

termorderflag=ESMF_TERMORDER_SRCPET, rc=rc)

if (localPet == 0) then

print *, "result SRCPET#5 = ", farrayPtr(1), " expect: ", sumA

if (farrayPtr(1) /= sumA) &

finalrc = ESMF_FAILURE

endif

The same result is also expected with srcTermProcessing set to 1. A value of 1 indicates that the multiplication
of the source term with its sparse matrix factor is carried out on the source side before being sent to the destination
PET. The final sum is still carried out in the same order on the destination PET, essentially resulting in the exact same
bfb identical sum as for srcTermProcessing set to 0.

! forced srcTermProcessing

srcTermProcessing=1

call ESMF_ArraySMMStore(srcArray, dstArray, &

factorIndexList=factorIndexList, factorList=factorList, &

routehandle=rh, srcTermProcessing=srcTermProcessing, rc=rc)

960

call ESMF_ArraySMM(srcArray, dstArray, routehandle=rh, &

termorderflag=ESMF_TERMORDER_SRCPET, rc=rc)

if (localPet == 0) then

print *, "result SRCPET#6 = ", farrayPtr(1), " expect: ", sumA

if (farrayPtr(1) /= sumA) &

finalrc = ESMF_FAILURE

endif

Increasing the srcTermProcessing argument to 2 (or higher) results in source term grouping of the terms (up to
the number specified in srcTermProcessing) that are on the same source PET.

d(1) = s(1)[0] + (s(5)[2] + s(7)[2]) = 0.5 + (0.1 + 0.1)

This result is bfb identical to first adding 0.1 and 0.1 into a partial sum, and then adding this sum to 0.5. This is the
exact grouping of terms that was used to obtain the result stored in sumB from above.

! forced srcTermProcessing

srcTermProcessing=2

call ESMF_ArraySMMStore(srcArray, dstArray, &

factorIndexList=factorIndexList, factorList=factorList, &

routehandle=rh, srcTermProcessing=srcTermProcessing, rc=rc)

call ESMF_ArraySMM(srcArray, dstArray, routehandle=rh, &

termorderflag=ESMF_TERMORDER_SRCPET, rc=rc)

if (localPet == 0) then

print *, "result SRCPET#7 = ", farrayPtr(1), " expect: ", sumB

if (farrayPtr(1) /= sumB) &

finalrc = ESMF_FAILURE

endif

In order to explore the effects of the srcTermProcessing argument further, more terms on the same source PET
are needed in the SMM sum. The following sparse matrix has four entries, three of which originate from the same
PET (PET 3).

factorIndexList(1,1) = 1 ! src seq index

factorIndexList(2,1) = 1 ! dst seq index

factorList(1) = 1.

factorIndexList(1,2) = 2 ! src seq index

factorIndexList(2,2) = 1 ! dst seq index

factorList(2) = 1.

factorIndexList(1,3) = 8 ! src seq index

factorIndexList(2,3) = 1 ! dst seq index

factorList(3) = 1.

factorIndexList(1,4) = 12 ! src seq index

factorIndexList(2,4) = 1 ! dst seq index

factorList(4) = 1.

961

Setting the srcTermProcessing argument back to 0 puts the terms in PET order, and canonical order for each
PET bundle.

d(1) = s(1)[0] + s(2)[3] + s(8)[3] + s(12)[3] = 0.5 + 0.2 + 0.1 + 0.1

The bfb identical result for this sum was calculated and stored in variable sumC above.

! forced srcTermProcessing

srcTermProcessing=0

call ESMF_ArraySMMStore(srcArray, dstArray, &

factorIndexList=factorIndexList, factorList=factorList, &

routehandle=rh, srcTermProcessing=srcTermProcessing, rc=rc)

call ESMF_ArraySMM(srcArray, dstArray, routehandle=rh, &

termorderflag=ESMF_TERMORDER_SRCPET, rc=rc)

if (localPet == 0) then

print *, "result SRCPET#8 = ", farrayPtr(1), " expect: ", sumC

if (farrayPtr(1) /= sumC) &

finalrc = ESMF_FAILURE

endif

Setting the srcTermProcessing argument to a value of 2 results in the following source term grouping:

d(1) = s(1)[0] + (s(2)[3] + s(8)[3]) + s(12)[3] = 0.5 + (0.2 + 0.1) + 0.1,

where the (0.2 + 0.1) partial sum is carried out on source PET 3, and then sent to the destination PET (PET 0), together
with the unmodified data from source element 8 (0.1). The final sum is performed on PET 0. The result is identical
to the precomputed value stored in sumD. The numbers work out in a way where this result is bfb identical to the
previous result, i.e. sumC. However, this bfb match is purely coincidental.

! forced srcTermProcessing

srcTermProcessing=2

call ESMF_ArraySMMStore(srcArray, dstArray, &

factorIndexList=factorIndexList, factorList=factorList, &

routehandle=rh, srcTermProcessing=srcTermProcessing, rc=rc)

call ESMF_ArraySMM(srcArray, dstArray, routehandle=rh, &

termorderflag=ESMF_TERMORDER_SRCPET, rc=rc)

if (localPet == 0) then

print *, "result SRCPET#9 = ", farrayPtr(1), " expect: ", sumD

if (farrayPtr(1) /= sumD) &

finalrc = ESMF_FAILURE

endif

962

Increasing the srcTermProcessing argument up to 3 results in a three term partial sum on PET 3:

d(1) = s(1)[0] + (s(2)[3] + s(8)[3] + s(12)[3]) = 0.5 + (0.2 + 0.1 + 0.1).

Again the final sum is performed on PET 0. The result is bfb identical to the number stored in sumE, which, for the
chosen numbers, works out to have a bfb difference compared to sumC and sumD.

! forced srcTermProcessing

srcTermProcessing=3

call ESMF_ArraySMMStore(srcArray, dstArray, &

factorIndexList=factorIndexList, factorList=factorList, &

routehandle=rh, srcTermProcessing=srcTermProcessing, rc=rc)

call ESMF_ArraySMM(srcArray, dstArray, routehandle=rh, &

termorderflag=ESMF_TERMORDER_SRCPET, rc=rc)

if (localPet == 0) then

print *, "result SRCPET#10 = ", farrayPtr(1), " expect: ", sumE

if (farrayPtr(1) /= sumE) &

finalrc = ESMF_FAILURE

endif

Reproducibility and Performance

The above examples show how bit-for-bit (bfb) reproducibility is a result of controlling the term order. ESMF offers
several options to control the term order in the sparse matrix multiplication (SMM) implementation:

• To guarantee bfb reproducibility between consecutive executions of the same RouteHandle object, the
ESMF_TERMORDER_SRCPET execution-time option suffices.

• If bfb reproducibility is required between different RouteHandles, e.g. a RouteHandle that is precomputed each
time the application starts, then it must be further ensured that the same value of srcTermProcessing is
specified during the store call. Under these conditions the ESMF SMM implementation guarantees bfb identical
results between runs, as long as the number of PETs does not change.

• To guarantee bfb reproducibility between different runs, even when the number of PETs, and therefore the
data distribution changes, the execution option ESMF_TERMORDER_SRCSEQ must be chosen together with
srcTermProcessing equal to 0 or 1 (in order to prevent partial sums).

The term order in a SMM operation does not only affect the bfb reproducibility of the result, but also affects the SMM
performance. The precise performance implications of a specific term order are complicated and strongly depend on
the exact problem structure, as well as on the details of the compute hardware. ESMF implements an auto-tuning
mechanism that can be used to conveniently determine a close to optimal set of SMM performance parameters.

There are two SMM performance parameters in ESMF that are encoded into a RouteHandle during store-time:
srcTermProcessing and pipelineDepth. The first one affects the term order in the SMM sums and has
been discussed in detail above. The second parameter, pipelineDepth, determines how many in- and out-bound
messages may be outstanding on each PET. It has no effect on the term order and does not lead to bfb differences in
the SMM results. However, in order to achieve good performance reproducibility, the user has the option to pass in a
fixed value of the pipelineDepth argument when precomputing RouteHandles.

963

Store calls that take the srcTermProcessing and/or pipelineDepth argument specify them as optional
with intent(inout). Omitting the argument when calling, or passing a variable that is set to a negative number,
indicates that the respective parameter needs to be determined by the library. Further, if a variable with a negative
value was passed in, then the variable is overwritten and replaced by the auto-tuned value on return. Through this
mechanism a user can leverage the built-in auto-tuning feature of ESMF to obtain the best possible performance for a
specific problem on a particular compute hardware, while still ensuring bfb and performance reproducibility between
runs. The following example shows code that first checks if previously stored SMM performance parameters are
available in a file on disk, and then either reads and uses them, or else uses auto-tuning to determine the parameters
before writing them to file. For simplicity the same sparse matrix as in the previous example is used.

! precondition the arguments for auto-tuning and overwriting

srcTermProcessing = -1 ! init negative value

pipelineDepth = -1 ! init negative value

! get a free Fortran i/o unit

call ESMF_UtilIOUnitGet(unit=iounit, rc=rc)

! try to open the file that holds the SMM parameters

open(unit=iounit, file="smmParameters.dat", status="old", action="read", &

form="unformatted", iostat=iostat)

if (iostat == 0) then

! the file was present -> read from it and close it again

read(unit=iounit, iostat=iostat) srcTermProcessing, pipelineDepth, &

sumCompare

close(unit=iounit)

endif

if ((localPet == 0) .and. (iostat == 0)) then

print *, "SMM parameters successfully read from file"

print *, " srcTermProcessing=", srcTermProcessing, " pipelineDepth=", &

pipelineDepth, " ==>> sumCompare=", sumCompare

endif

call ESMF_ArraySMMStore(srcArray, dstArray, &

factorIndexList=factorIndexList, factorList=factorList, &

routehandle=rh, srcTermProcessing=srcTermProcessing, &

pipelineDepth=pipelineDepth, rc=rc)

call ESMF_ArraySMM(srcArray, dstArray, routehandle=rh, &

termorderflag=ESMF_TERMORDER_SRCPET, rc=rc)

if ((localPet == 0) .and. (iostat /= 0)) then

print *, "SMM parameters determined via auto-tuning -> dump to file"

open(unit=iounit, file="smmParameters.dat", status="unknown", &

action="write", form="unformatted")

write(unit=iounit) srcTermProcessing, pipelineDepth, farrayPtr(1)

close(unit=iounit)

endif

if (localPet == 0) then

964

if (iostat /= 0) then

! cannot do bfb comparison of the result without reference

print *, "result SRCPET#11 = ", farrayPtr(1)

else

! do bfb comparison of the result against reference

print *, "result SRCPET#11 = ", farrayPtr(1), " expect: ", sumCompare

if (farrayPtr(1) /= sumCompare) then

finalrc = ESMF_FAILURE

write (msg, *) "Numerical difference detected: ", &

farrayPtr(1)-sumCompare

call ESMF_LogWrite(msg, ESMF_LOGMSG_INFO)

endif

endif

endif

Running this example for the first time exercises the auto-tuning branch. The auto-tuned srcTermProcessing

and pipelineDepth parameters are then used in the SMM execution, as well as written to file. The SMM result

variable is also written to the same file for test purposes. Any subsequent execution of the same example branches into

the code that reads the previously determined SMM execution parameters from file, re-using them during store-time.

This ensures bfb reproducibility of the SMM result, which is tested in this example by comparing to the previously

stored value.

36.2.2 Creating a RouteHandle from an existing RouteHandle – Transfer to a different set of PETs

Typically a RouteHandle object is created indirectly, i.e. without explicitly calling the
ESMF_RouteHandleCreate() method. The RouteHandle object is a byproduct of calling communication
Store() methods like ESMF_FieldRegridStore().

One exception to this rule is when creating a duplicate RouteHandle from an existing RouteHandle object. In this
case the ESMF_RouteHandleCreate() method is used explicitly. While this method allows to create a duplicate
RouteHandle on the exact same set of PETs as the original RouteHandle, the real purpose of duplication is the transfer
of a precomputed RouteHandle to a different set of PETs. This is an efficient way to reduce the total time spent in
Store() calls, for situations where the same communication pattern repeats for multiple components.

This example demonstrates the transfer of a RouteHandle from one set of PETs to another by first introducing three
components. Component A is defined on the first half of available PETs.

petCountA = petCount/2 ! component A gets half the PETs

allocate(petListA(petCountA))

do i=1, petCountA

petListA(i) = i-1 ! PETs are base 0

enddo

compA = ESMF_GridCompCreate(petList=petListA, rc=rc)

if (ESMF_LogFoundError(rcToCheck=rc, msg=ESMF_LOGERR_PASSTHRU, &

line=__LINE__, &

file=__FILE__)) &

call ESMF_Finalize(endflag=ESMF_END_ABORT)

The other two components, B1 and B2, split the remaining PETs evenly.

965

petCountR = petCount - petCountA

petCountB1 = petCountR / 2

allocate(petListB1(petCountB1))

do i=1, petCountB1

petListB1(i) = petCountA + i-1 ! PETs are base 0

enddo

allocate(petListB2(petCountR-petCountB1))

do i=1, petCountR-petCountB1

petListB2(i) = petCountA + petCountB1 + i-1 ! PETs are base 0

enddo

compB1 = ESMF_GridCompCreate(petList=petListB1, rc=rc)

if (ESMF_LogFoundError(rcToCheck=rc, msg=ESMF_LOGERR_PASSTHRU, &

line=__LINE__, &

file=__FILE__)) &

call ESMF_Finalize(endflag=ESMF_END_ABORT)

compB2 = ESMF_GridCompCreate(petList=petListB2, rc=rc)

if (ESMF_LogFoundError(rcToCheck=rc, msg=ESMF_LOGERR_PASSTHRU, &

line=__LINE__, &

file=__FILE__)) &

call ESMF_Finalize(endflag=ESMF_END_ABORT)

Skipping all of the standard superstructure code, assume that fieldA has been created by component A, has been
reconciled across all PETs via a StateReconcile() call, and accessed via a StateGet(). The same is true for fieldB1
and fieldB2 from components B1 and B2, respectively.

Now the RouteHandle rh1 for a Redist operation is precomputed between fieldA and fieldB1.

call ESMF_FieldRedistStore(srcField=fieldA, dstField=fieldB1, &

routehandle=rh1, rc=rc)

if (ESMF_LogFoundError(rcToCheck=rc, msg=ESMF_LOGERR_PASSTHRU, &

line=__LINE__, &

file=__FILE__)) &

call ESMF_Finalize(endflag=ESMF_END_ABORT)

The communication pattern stored in rh1 is between the PETs associated with component A and those associated
with component B1. Now component B2 is simply a second instance of the same component code as B1, but on a
different set of PETs. The ESMF_RouteHandleCreate() method can be used to transfer rh1 to the set of PETs
that is consistent with fieldA to fieldB2 communication.

In order to transfer a RouteHandle to a different set of PETs, the originPetList and targetPetList must be
constructed. The originPetList is the union of source and destination PETs (in that order) for which rh1 was
explicitly computed via the Store() call:

allocate(originPetList(size(petListA)+size(petListB1)))

originPetList(1:size(petListA)) = petListA(:)

originPetList(size(petListA)+1:) = petListB1(:)

The targetPetList is the union of source and destination PETs (in that order) for which the target RouteHandle
(i.e. rh2) will be defined:

966

allocate(targetPetList(size(petListA)+size(petListB2)))

targetPetList(1:size(petListA)) = petListA(:)

targetPetList(size(petListA)+1:) = petListB2(:)

Now the new RouteHandle rh2 can be created easily from the exising RouteHandle rh1, suppling the origin and
target petLists.

rh2 = ESMF_RouteHandleCreate(rh1, originPetList=originPetList, &

targetPetList=targetPetList, rc=rc)

if (ESMF_LogFoundError(rcToCheck=rc, msg=ESMF_LOGERR_PASSTHRU, &

line=__LINE__, &

file=__FILE__)) &

call ESMF_Finalize(endflag=ESMF_END_ABORT)

The new RouteHandle rh2 is completely independent of the original RouteHandle. In fact, it is perfectly fine to
destroy (or release) rh1 while holding on to rh2.

call ESMF_RouteHandleDestroy(rh1, noGarbage=.true., rc=rc)

if (ESMF_LogFoundError(rcToCheck=rc, msg=ESMF_LOGERR_PASSTHRU, &

line=__LINE__, &

file=__FILE__)) &

call ESMF_Finalize(endflag=ESMF_END_ABORT)

Finally the rh2 object can be used to redistribute data from fieldA to fieldB2.

call ESMF_FieldRedist(srcField=fieldA, dstField=fieldB2, &

routehandle=rh2, rc=rc)

if (ESMF_LogFoundError(rcToCheck=rc, msg=ESMF_LOGERR_PASSTHRU, &

line=__LINE__, &

file=__FILE__)) &

call ESMF_Finalize(endflag=ESMF_END_ABORT)

The communication pattern held by rh2 is idential to what whould have been created by an explicit

ESMF_FieldRedistStore() call. However, the ESMF_RouteHandleCreate() call used to create rh2

from rh1 is much faster than the full RedistStore() operation.

36.2.3 Write a RouteHandle to file and creating a RouteHandle from file

Communication Store() methods, like ESMF_FieldRegridStore(), are used to create RouteHandles. These
methods can be expensive, both with respect to temporary memory requirements as well as the time they require
to execute. Often the associated cost is acceptable because Store() calls are typically used during the initialization
phase of the application. The cost of RouteHandle generation is therefore armorized over the entire run phase of the
application, where the RouteHandle is applied over and over to transfer data according to the same communication
pattern.

However, especially for short production runs, an expensive initialization time can become problematic. In such cases
it is useful to write the RouteHandle to file. Subsequent application runs can then re-create the RouteHandle during
initialization, simply from file at a fraction of the time of the original Store() call.

First a RouteHandle must be created using one of the ESMF Store() methods.

967

call ESMF_FieldRedistStore(srcField=fieldA, dstField=fieldB, &

routehandle=rh1, rc=rc)

Now the RouteHandle object rh1 can be written to file using the collective ESMF_RouteHandleWrite()method.

call ESMF_RouteHandleWrite(rh1, fileName="testWrite.RH", rc=rc)

This creates a single binary file with name testWrite.RH. The information from across all PETs that define rh1
is contained in this file.

At this point, the original RouteHandle is no longer needed and can be destroyed.

call ESMF_RouteHandleDestroy(rh1, noGarbage=.true., rc=rc)

The RouteHandle just deleted can easily be re-created using the ESMF_RouteHandleCreate() method that ac-
cepts the file name as an argument. This is a collective method that must be called on exactly the same number of
PETs that was used for the original Store() and Write() calls that generated the file.

rh2 = ESMF_RouteHandleCreate(fileName="testWrite.RH", rc=rc)

Finally the re-created RouteHandle, rh2, can be used to execute the communication pattern originally computed in
rh1.

call ESMF_FieldRedist(srcField=fieldA, dstField=fieldB, &

routehandle=rh2, rc=rc)

Once done with rh2, the RouteHandle can be destroyed as usual.

call ESMF_RouteHandleDestroy(rh2, noGarbage=.true., rc=rc)

36.2.4 Reusablity of RouteHandles and interleaved distributed and undistributed dimensions

A RouteHandle object is typically created during a communication Store() call, e.g. an
ESMF_FieldRegridStore(). Other communication methods with Store() are Halo, Redist, and
SMM. The primary input objects of a Store() call are either Fields, Arrays, FieldBundles, or ArrayBundles. There
will be an object for the source side, and another object for the destination side. Both objects must be of the same
type.

srcField = ESMF_FieldCreate(srcGrid, ESMF_TYPEKIND_R8, rc=rc)

dstField = ESMF_FieldCreate(dstGrid, ESMF_TYPEKIND_R8, rc=rc)

968

call ESMF_FieldRegridStore(srcField=srcField, dstField=dstField, &

routehandle=routehandle, rc=rc)

The purpose of the explicit Store() call is to separate out the expensive part of creating the RouteHandle object for
a specific communication patter, from the less expensive part of applying it. Applying the RouteHandle results in data
movement between the source and destination objects. Once a RouteHandle is available, it is reusable. This means it
can be applied over and over again to communicate data from the source to the destination object.

do i=1, 10

! repeatedly applying the routehandle

call ESMF_FieldRegrid(srcField=srcField, dstField=dstField, &

routehandle=routehandle, rc=rc)

enddo

Reusability of a RouteHandle object extends beyond re-applying it to the same source/destination object pair that was
used during Store(). The same RouteHandle can be applied to a different object pair, as long as these criterial are
met:

• The new pair matches the original pair with respect to type, and kind.

• The memory layout of the distributed (i.e. gridded) dimensions of the new pair is congruent with the original
pair. This means the DistGrids must match, as well as any extra padding on the distributed/gridded dimensions.

• Size, number, and position (i.e. index order) of potentially present undistributed (i.e. ungridded) dimensions
does not affect the reusability of a RouteHandle.

The following examples will discuss in detail what this means in practice.

First consider the case where a second pair of source and destination Fields is created identical to the first set. The
precomputed RouteHandle is immediatly reusable for this new Field pair to carry out the regrid operation.

srcField2 = ESMF_FieldCreate(srcGrid, ESMF_TYPEKIND_R8, rc=rc)

dstField2 = ESMF_FieldCreate(dstGrid, ESMF_TYPEKIND_R8, rc=rc)

! applying the same routehandle to a different pair of fields

call ESMF_FieldRegrid(srcField=srcField2, dstField=dstField2, &

routehandle=routehandle, rc=rc)

The same RouteHandle stays re-usable even for a Field pair where source and destination have one or more additional
undistributed dimensions. Here a single undistributed dimension is added. By default all undistributed dimensions
will be ordered after the distributed dimensions provided by the Grid object.

srcField3 = ESMF_FieldCreate(srcGrid, ESMF_TYPEKIND_R8, &

ungriddedLBound=(/1/), ungriddedUBound=(/10/), & ! undistributed dim last

rc=rc)

969

dstField3 = ESMF_FieldCreate(dstGrid, ESMF_TYPEKIND_R8, &

ungriddedLBound=(/1/), ungriddedUBound=(/10/), & ! undistributed dim last

rc=rc)

! applying the same routehandle to a different pair of fields

call ESMF_FieldRegrid(srcField=srcField3, dstField=dstField3, &

routehandle=routehandle, rc=rc)

The undistributed dimension can also be moved into the first position, and the same RouteHandle can still be re-used.
Specifying the order of dimensions in a Field is accomplished by providing the gridToFieldMap. Here the Grid
dimensions are mapped to 2nd and 3rd Field dimensions, moving the undistributed dimension into the leading position.

srcField4 = ESMF_FieldCreate(srcGrid, ESMF_TYPEKIND_R8, &

ungriddedLBound=(/1/), ungriddedUBound=(/10/), &

gridToFieldMap=(/2,3/), rc=rc) ! undistributed dim 1st

dstField4 = ESMF_FieldCreate(dstGrid, ESMF_TYPEKIND_R8, &

ungriddedLBound=(/1/), ungriddedUBound=(/10/), &

gridToFieldMap=(/2,3/), rc=rc) ! undistributed dim 1st

! applying the same routehandle to a different pair of fields

call ESMF_FieldRegrid(srcField=srcField4, dstField=dstField4, &

routehandle=routehandle, rc=rc)

It is not necessary that the undistributed dimension is in the same position on the source and destination Field. The only
criteria that needs to be satisfied is that both source and destination have the same number of undistributed elements.
Here the RouteHandle is re-used for a Field pair where the destination Field interleaves the undistributed dimension
between the two distributed dimensions. At the same time the source Field keeps the undistributed dimension in
leading position.

srcField5 = ESMF_FieldCreate(srcGrid, ESMF_TYPEKIND_R8, &

ungriddedLBound=(/1/), ungriddedUBound=(/10/), &

gridToFieldMap=(/2,3/), rc=rc) ! undistributed dim 1st

dstField5 = ESMF_FieldCreate(dstGrid, ESMF_TYPEKIND_R8, &

ungriddedLBound=(/1/), ungriddedUBound=(/10/), &

gridToFieldMap=(/1,3/), rc=rc) ! undistributed dim 2nd

! applying the same routehandle to a different pair of fields

call ESMF_FieldRegrid(srcField=srcField5, dstField=dstField5, &

routehandle=routehandle, rc=rc)

In the following example the undistributed elements on the source side are spread across two undistributed dimensions.
Of course the product of the two dimension sizes must equal the number of undistributed elements on the destination

970

side, in order to fulfil the element count criteria. Here this number is 10. At two undistributed dimension on the source
side are placed in first and fourth position using the gridToFieldMap. The same RouteHandle is applied to this
Field pair, resulting in the desired regrid operation.

srcField6 = ESMF_FieldCreate(srcGrid, ESMF_TYPEKIND_R8, &

ungriddedLBound=(/1,1/), ungriddedUBound=(/2,5/), &

gridToFieldMap=(/2,3/), rc=rc) ! undistributed dims 1st and 4th

dstField6 = ESMF_FieldCreate(dstGrid, ESMF_TYPEKIND_R8, &

ungriddedLBound=(/1/), ungriddedUBound=(/10/), &

gridToFieldMap=(/1,3/), rc=rc) ! undistributed dim 2nd

! applying the same routehandle to a different pair of fields

call ESMF_FieldRegrid(srcField=srcField6, dstField=dstField6, &

routehandle=routehandle, rc=rc)

While the RouteHandle was precomputed using a specific source/destination Field pair, we have seen how it can be re-
used as long as the memory layout associated with the distributed (i.e. gridded) dimensions does not change. A natural
extension of this feature is to allow the same RouteHandle to be re-used when source and destination are FieldBundles
instead of Fields. The only requirement here is that both sides contain the same number of elements, and that each pair
constructed from the source and destination side is compatible with the original pair used as shown in the examples
above. Here this criteria is simply met by constructing the source and destination FieldBundles from the exact Fields
used in the previous examples.

srcFieldBundle = ESMF_FieldBundleCreate(fieldList=(/srcField, &

srcField2, srcField3, srcField4, srcField5, srcField6/), rc=rc)

dstFieldBundle = ESMF_FieldBundleCreate(fieldList=(/dstField, &

dstField2, dstField3, dstField4, dstField5, dstField6/), rc=rc)

! applying the same routehandle to a pair of FieldBundles

call ESMF_FieldBundleRegrid(srcFieldBundle, dstFieldBundle, &

routehandle=routehandle, rc=rc)

On a fundamental level, RouteHandles are re-usable across objects that have the same memory layout for their dis-
tributed dimensions. Since ESMF Fields are built on top of ESMF Arrays, it is possible to re-use the same RouteHandle
that was precomputed for a Field pair and apply it to a matching Array pair.

For this example, the easiest way to create Arrays with the same memory layout in the distributed dimensions is to
query the source and destination Grid objects for their DistGrids. Then source and destination Arrays can be easily
constructed.

call ESMF_GridGet(srcGrid, distgrid=srcDistGrid, rc=rc)

call ESMF_GridGet(dstGrid, distgrid=dstDistGrid, rc=rc)

971

srcArray = ESMF_ArrayCreate(srcDistGrid, ESMF_TYPEKIND_R8, rc=rc)

dstArray = ESMF_ArrayCreate(dstDistGrid, ESMF_TYPEKIND_R8, rc=rc)

! applying the same routehandle to an Array pair

call ESMF_ArraySMM(srcArray=srcArray, dstArray=dstArray, &

routehandle=routehandle, rc=rc)

Finally the resources associated with the RouteHandle object are released. The recommended way to do this is by
calling into the Release() method associated with the Store() method used to create the RouteHandle.

call ESMF_FieldRegridRelease(routehandle, rc=rc)

36.2.5 Dynamic Masking

When a RouteHandle object is created during an ESMF_FieldRegridStore() call, masking information can be
provided by the user. This type of masking is said to be static, and is described in section 24.2.10. It is static, because
the masks set the maximum limits of the regrid operation, which cannot be changed later. All subsequent executions
of the same RouteHandle can only use elements - source or destination - that were not masked during the Store() call.

Once a RouteHandle object is available, whether it was created with or without static masking, the associated regrid
operation can further be masking during RouteHandle execution . This is called dynamic masking, because it can
dynamically change between subsequent RouteHandle executions. The RouteHandle itself remains unchange during
this process. The dynamic masking information is processed on the fly as the RouteHandle is applied.

The following example demonstrates dynamic masking for a regrid operation between two Field objects. Although it
is supported, here the regrid operation between srcField and dstField is computed without static masking.

Note that since the intention is to later use the generated RouteHandle for dynamic masking, it is important to provide
the srcTermProcessing argument, which must be set equal to 0. Doing this ensures that all of the multiplying
with interpolation weights, and summing of terms, is carried out on the destination side. This is critical for dynamic
masking.

srcTermProcessing=0

call ESMF_FieldRegridStore(srcField=srcField, dstField=dstField, &

srcTermProcessing=srcTermProcessing, routehandle=routehandle, rc=rc)

Now that routehandle is available, it can be used to execute the regrid operation over and over during the course
of the simualtion run.

call ESMF_FieldRegrid(srcField=srcField, dstField=dstField, &

routehandle=routehandle, rc=rc)

972

Assume that during the course of the simulation the srcField becomes partially masked. This masking may be dy-
namically changing, as would be the case for the ice cover over the arctic ocean. Then the regrid operation represented
by routehandle should dynamically adjust to only use unmasked source elements.

The dynamic masking behavior can be achieved in ESMF by setting srcField elements to a special value.

call ESMF_FieldGet(srcField, farrayPtr=farrayPtr, rc=rc)

! setting an arbitrary local source element to special value ’srcMaskValue’

farrayPtr(lbound(farrayPtr,1)+3,lbound(farrayPtr,2)+3) = srcMaskValue

Then set up an ESMF_DynamicMask object that holds information about the special mask value. The dynamic mask
object further holds a pointer to the routine that will be called in order to handle dynamically masked elements.

call ESMF_DynamicMaskSetR8R8R8(dynamicMask, &

dynamicSrcMaskValue=srcMaskValue, &

dynamicMaskRoutine=simpleDynMaskProc, &

rc=rc)

The names of the specific DynamicMaskSet methods all carry a typekind-triplet suffix. Here the suffix
is R8R8R8. This indicates that the dynamicMaskRoutine argument provided is expected to deal with
real(ESMF_KIND_R8) destination data (first R8 typekind), real(ESMF_KIND_R8) factors (second R8 type-
kind), and real(ESMF_KIND_R8) source data (third R8 typekind).

Now when the routehandle is executed, and the dynamicMask object is passed into the
ESMF_FieldRegrid() call,

call ESMF_FieldRegrid(srcField=srcField, dstField=dstField, &

routehandle=routehandle, dynamicMask=dynamicMask, rc=rc)

ESMF will scan the srcField for elements that have data equal to that set by dynamicSrcMaskValue. If any
are found, they are passed into the routine provided via the dynamicMaskRoutine argument.

The procedure passed through the dynamicMaskRoutine argument must satisfy exactly the following predefined
interface:

interface

subroutine ESMF_DynamicMaskRoutineR8R8R8(dynMaskList, &

dynamicSrcMaskValue, dynamicDstMaskValue, rc)

use ESMF_UtilTypesMod

implicit none

type(ESMF_DynamicMaskElementR8R8R8), pointer :: dynMaskList(:)

real(ESMF_KIND_R8), intent(in), optional :: dynamicSrcMaskValue

real(ESMF_KIND_R8), intent(in), optional :: dynamicDstMaskValue

integer, intent(out) :: rc

end subroutine

end interface

973

The first argument accepted according to this interface is an array of type ESMF_DynamicMaskElement. Each
element of this array corresponds to a single element in the dstField that is affected by dynamic masking. For each
such dstElement the complete interpolation stencile is provided by the ESMF_DynamicMaskElement derived
type:

type ESMF_DynamicMaskElementR8R8R8

real(ESMF_KIND_R8), pointer :: dstElement

real(ESMF_KIND_R8), allocatable :: factor(:)

real(ESMF_KIND_R8), allocatable :: srcElement(:)

end type

Here the dstElement is a pointer to the actual element in the dstField. Thus, assigning dstElement to
a value, immediately results in a value change of the element inside the dstField object. Further, the size of
the factor(:) and srcElement(:) arrays is identical to each other and corresponds to the number of source
elements in the interpolation stencile. Without dynamic masking, the dstElement would simply be calculated as
the scalar product of factor(:) and srcElement(:).

By providing the dynamicMaskRoutine, the user has full control as to what exactly happens to destination ele-
ments that are affected by dynamic masking. For the current example, where some source elements may be marked by
a special masking value, a simple scheme could be to only use non-masked source elements to calculate destination
elements. The result then needs to be renormalized in order to account for the missing source elements. This could be
implemented similar to the following subroutine:

subroutine simpleDynMaskProc(dynamicMaskList, dynamicSrcMaskValue, &

dynamicDstMaskValue, rc)

type(ESMF_DynamicMaskElementR8R8R8), pointer :: dynamicMaskList(:)

real(ESMF_KIND_R8), intent(in), optional :: dynamicSrcMaskValue

real(ESMF_KIND_R8), intent(in), optional :: dynamicDstMaskValue

integer, intent(out) :: rc

integer :: i, j

real(ESMF_KIND_R8) :: renorm

if (associated(dynamicMaskList)) then

do i=1, size(dynamicMaskList)

dynamicMaskList(i)%dstElement = 0.d0 ! set to zero

renorm = 0.d0 ! reset

do j=1, size(dynamicMaskList(i)%factor)

if (.not. &

match(dynamicSrcMaskValue,dynamicMaskList(i)%srcElement(j))) then

dynamicMaskList(i)%dstElement = dynamicMaskList(i)%dstElement &

+ dynamicMaskList(i)%factor(j) &

* dynamicMaskList(i)%srcElement(j)

renorm = renorm + dynamicMaskList(i)%factor(j)

endif

enddo

if (renorm > 0.d0) then

dynamicMaskList(i)%dstElement = dynamicMaskList(i)%dstElement / renorm

else if (present(dynamicSrcMaskValue)) then

dynamicMaskList(i)%dstElement = dynamicSrcMaskValue

else

rc = ESMF_RC_ARG_BAD ! error detected

return

endif

enddo

endif

974

! return successfully

rc = ESMF_SUCCESS

end subroutine

So far in the example only the srcField had been dynamically masked. However, elements in the dstField can
be masked as well, following exactly the same manner.

First ensure that the dstField is in a well defined condition. This can be achived by reseting it, e.g. to zero, using
the ESMF_FieldFill() method.

call ESMF_FieldFill(dstField, dataFillScheme="const", const1=0.d0, rc=rc)

Now some of the destination elements are set to a defined masking value.

call ESMF_FieldGet(dstField, farrayPtr=farrayPtr, rc=rc)

! setting an arbitrary local destination element to special value ’dstMaskValue’

farrayPtr(lbound(farrayPtr,1)+1,lbound(farrayPtr,2)+1) = dstMaskValue

The dynamicMask is reset using the same DynamicMaskSet method as before, but in addition to the previous
arguments, dynamicDstMaskValue is also specified.

call ESMF_DynamicMaskSetR8R8R8(dynamicMask, &

dynamicSrcMaskValue=srcMaskValue, &

dynamicDstMaskValue=dstMaskValue, &

dynamicMaskRoutine=simpleDynMaskProc, &

rc=rc)

Passing the reset dynamicMask object into ESMF_FieldRegrid() causes ESMF to not only look for source ele-
ments that match dynamicSrcMaskValue, but also destination elements that match dynamicDstMaskValue.

call ESMF_FieldRegrid(srcField=srcField, dstField=dstField, &

routehandle=routehandle, zeroregion=ESMF_REGION_EMPTY, &

dynamicMask=dynamicMask, rc=rc)

Again an adequate procedure is supplied through dynamicMaskRoutine. For the current case, however, a suitable
procedure would be inspecting the dstElement as well as all the dstElements provided via the dynMaskList
argument.

Notice the zeroregion = ESMF_REGION_EMPTY specification in the ESMF_FieldRegrid() call. This set-
ting ensures that values in the dstField remain unchanged until they are checked for dynamicDstMaskValue.

The DynamicMaskSet methods provide an argument of logical type, called handleAllElements. By de-
fault it is set to .false., which means that only elements affected by dynamic masking – as described above –
are passed to the dynamicMaskRoutine. However, when handleAllElements is set to .true., all local
elements on each PET are made available to the dynamicMaskRoutine. This allows the user supplied procedure

975

to implement fully customized handling of the interpolation from source to destination, using the information supplied
by ESMF.

To demonstrate this, a custom routine simpleHandleAllProc() is passed in as dynamicMaskRoutine, and
handleAllElements is set to .true.. All other aspects of the user interface remain unchanged.

call ESMF_DynamicMaskSetR8R8R8(dynamicMask, &

dynamicSrcMaskValue=srcMaskValue, &

dynamicDstMaskValue=-2.d0, &

dynamicMaskRoutine=simpleHandleAllProc, &

handleAllElements=.true., &

rc=rc)

call ESMF_FieldRegrid(srcField=srcField, dstField=dstField, &

routehandle=routehandle, zeroregion=ESMF_REGION_EMPTY, &

dynamicMask=dynamicMask, rc=rc)

Dynamic masking is also available for source and destination fields that contain leading undistributed dimensions.
When ESMF applies the regridding weights, it interprets the product space of leading undistributed dimensions of
a Field or Array as the elements of a vector. In this approach the interpolation becomes a vector operation. When
applying the concept of dynamic masking to such a vector operation, without making further assumptions, it must be
assumed that different vector elements may be affected differently by the dynamic mask. ESMF therefore unrolls the
vector dimension when constructing the information passed to the dynamicMaskRoutine. As a consequence of
this, masking routines do not generally have to consider vectorization explicitly.

The concept is demonstrated by creating source and destination fields with one leading undistributed dimension.

srcField = ESMF_FieldCreate(srcGrid, ESMF_TYPEKIND_R8, &

gridToFieldMap=(/2,3/), ungriddedLBound=(/1/), ungriddedUBound=(/20/), &

rc=rc)

dstField = ESMF_FieldCreate(dstGrid, ESMF_TYPEKIND_R8, &

gridToFieldMap=(/2,3/), ungriddedLBound=(/1/), ungriddedUBound=(/20/), &

rc=rc)

A regrid operation is computed in the usual manner. In order to make the resulting RouteHandle object suitable for
dynamic masking, computations are pushed completely onto the destination PETs, as in previous examples, by setting
the srcTermProcessing argument to zero.

srcTermProcessing=0

call ESMF_FieldRegridStore(srcField=srcField, dstField=dstField, &

srcTermProcessing=srcTermProcessing, routehandle=routehandle, rc=rc)

The same dynamicMaskRoutine as before can be used when setting up the ESMF_DynamicMask object. How-
ever, the source and destination Fields now contain 20 undistributed elements at each distributed location, and the
dynamic mask routine will handle all elements that are affected by the dynamic mask conditions.

976

call ESMF_DynamicMaskSetR8R8R8(dynamicMask, &

dynamicSrcMaskValue=srcMaskValue, &

dynamicDstMaskValue=dstMaskValue, &

dynamicMaskRoutine=simpleDynMaskProc, &

rc=rc)

call ESMF_FieldRegrid(srcField=srcField, dstField=dstField, &

routehandle=routehandle, zeroregion=ESMF_REGION_EMPTY, &

dynamicMask=dynamicMask, rc=rc)

Setting the handleAllElements to .true. will pass all elements to the dynamicMaskRoutine. There are
20 times as many elements on the source and destination side, and therefore the dynamic masking routine will handle
exactly 20 times as many elements compared to the case without undistributed dimension.

call ESMF_DynamicMaskSetR8R8R8(dynamicMask, &

dynamicSrcMaskValue=srcMaskValue, &

dynamicDstMaskValue=-2.d0, &

dynamicMaskRoutine=simpleHandleAllProc, &

handleAllElements=.true., &

rc=rc)

call ESMF_FieldRegrid(srcField=srcField, dstField=dstField, &

routehandle=routehandle, zeroregion=ESMF_REGION_EMPTY, &

dynamicMask=dynamicMask, rc=rc)

For the case with handleAllElements=.true., where the entire vector of undistributed elements is passed
to dynamicMaskRoutine at every distributed location, an alternative implementation option exists for the dy-
namic masking routine. In some cases this alternative may result in more efficient code because it allows to
vectorize over the undistributed elements when summing up the interpolation terms. The alternative interface for
dynamicMaskRoutine is:

interface

subroutine ESMF_DynamicMaskRoutineR8R8R8V(dynMaskList, &

dynamicSrcMaskValue, dynamicDstMaskValue, rc)

use ESMF_UtilTypesMod

implicit none

type(ESMF_DynamicMaskElementR8R8R8V), pointer :: dynMaskList(:)

real(ESMF_KIND_R8), intent(in), optional :: dynamicSrcMaskValue

real(ESMF_KIND_R8), intent(in), optional :: dynamicDstMaskValue

integer, intent(out) :: rc

end subroutine

end interface

The difference compared to the previously used interface is that the first argument now is of type
ESMF_DynamicMaskElementR8R8R8V. This type is declared as follows:

type ESMF_DynamicMaskElementR8R8R8V

977

real(ESMF_KIND_R8), pointer :: dstElement(:)

real(ESMF_KIND_R8), allocatable :: factor(:)

type(ESMF_PtrR8D1), allocatable :: srcElement(:)

end type

Here size(dstElement) for every element in dynMaskList is identical to the vector size, i.e. the number of
undistributed elements to be handled. The same is true for size(srcElement(j)%ptr)), for every element j
of the interpolation stencile.

call ESMF_DynamicMaskSetR8R8R8V(dynamicMask, &

dynamicSrcMaskValue=srcMaskValue, &

dynamicDstMaskValue=-2.d0, &

dynamicMaskRoutine=simpleHandleAllProcV, &

handleAllElements=.true., &

rc=rc)

call ESMF_FieldRegrid(srcField=srcField, dstField=dstField, &

routehandle=routehandle, zeroregion=ESMF_REGION_EMPTY, &

dynamicMask=dynamicMask, rc=rc)

Applying dynamic masking to source and destination fields of other typekind than R8 only requires that the correct
DynamicMaskSet method is chosen. Here we create real(ESMF_KIND_R4) source and destination fields.

srcField = ESMF_FieldCreate(srcGrid, ESMF_TYPEKIND_R4, rc=rc)

dstField = ESMF_FieldCreate(dstGrid, ESMF_TYPEKIND_R4, rc=rc)

Computing a suitable RouteHandle is unchanged.

srcTermProcessing=0

call ESMF_FieldRegridStore(srcField=srcField, dstField=dstField, &

srcTermProcessing=srcTermProcessing, routehandle=routehandle, rc=rc)

Now setting some source and destination elements to defined special values of the correct typekind.

call ESMF_FieldGet(srcField, farrayPtr=farrayPtrR4, rc=rc)

farrayPtrR4(lbound(farrayPtrR4,1)+3,lbound(farrayPtrR4,2)+3) = srcMaskValueR4

call ESMF_FieldFill(dstField, dataFillScheme="const", const1=0.d0, rc=rc)

978

call ESMF_FieldGet(dstField, farrayPtr=farrayPtrR4, rc=rc)

farrayPtrR4(lbound(farrayPtrR4,1)+1,lbound(farrayPtrR4,2)+1) = dstMaskValueR4

Setting up the ESMF_DynamicMask object is practically the same as before, just that the correct typekind-triplet
suffix for the DynamicMaskSet method must be selected, indicating that the destination data is of typekind R4, the
factors are still of typekind R8, and the source data is of typekind R4.

call ESMF_DynamicMaskSetR4R8R4(dynamicMask, &

dynamicSrcMaskValue=srcMaskValueR4, &

dynamicDstMaskValue=dstMaskValueR4, &

dynamicMaskRoutine=simpleDynMaskProcR4R8R4, &

rc=rc)

Finally calling into ESMF_FieldRegrid() with the dynamicMask object is unchanged.

call ESMF_FieldRegrid(srcField=srcField, dstField=dstField, &

routehandle=routehandle, zeroregion=ESMF_REGION_EMPTY, &

dynamicMask=dynamicMask, rc=rc)

36.3 Restrictions and Future Work

• Non-blocking communication via the routesyncflag option is implemented for Fields and Arrays. It is not

yet available for FieldBundles and ArrayBundles.

• The dynamic masking feature currently has the following limitations:

– Only available for ESMF_TYPEKIND_R8 and ESMF_TYPEKIND_R4 Fields and Arrays.

– Only available through the ESMF_FieldRegrid() and ESMF_ArraySMM() methods.

– Destination objects that have undistributed dimensions after any distributed dimension are not supported.

– No check is implemented to ensure the provided RouteHandle object is suitable for dynamic masking.

36.4 Design and Implementation Notes

Internally all route-based communication calls are implemented as sparse matrix multiplications. The precompute step

for all of the supported communication methods can be broken up into three steps:

1. Construction of the sparse matrix for the specific communication method.

2. Generation of the communication pattern according to the sparse matrix.

3. Encoding of the communication pattern for each participating PET in form of an XXE stream.

979

36.5 Class API

36.5.1 ESMF_RouteHandleCreate - Create a new RouteHandle from RouteHandle

INTERFACE:

! Private name; call using ESMF_RouteHandleCreate()

function ESMF_RouteHandleCreateRH(routehandle, &

originPetList, targetPetList, rc)

RETURN VALUE:

type(ESMF_RouteHandle) :: ESMF_RouteHandleCreateRH

ARGUMENTS:

type(ESMF_RouteHandle), intent(in) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: originPetList(:)

integer, intent(in), optional :: targetPetList(:)

integer, intent(out), optional :: rc

DESCRIPTION:

Create a new ESMF_RouteHandle object from and existing RouteHandle. The new RouteHandle can be created to
function on a different petList than the incoming RouteHandle.

The arguments are:

routehandle The RouteHandle object to be duplicated.

[originPetList] The petList on which the incoming routehandle is defined to operate. If present, then
targetPetList must also be present and of the same size. The petLists are used to map origin PETs to
target PETs. By convention the petLists are constructed to first list the PETs of the source component, followed
by the PETs of the destination component. Defaults, to the petList of the current component context, meaning
that the PETs in the RouteHandle are not modified.

[targetPetList] The petList on which the newly created RouteHandle is defined to operate. If present, then
originPetList must also be present and of the same size. The petLists are used to map origin PETs to
target PETs. By convention the petLists are constructed to first list the PETs of the source component, followed
by the PETs of the destination component. Defaults, to the petList of the current component context, meaning
that the PETs in the RouteHandle are not modified.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

36.5.2 ESMF_RouteHandleCreate - Create a new RouteHandle from file

INTERFACE:

980

! Private name; call using ESMF_RouteHandleCreate()

function ESMF_RouteHandleCreateFile(fileName, rc)

RETURN VALUE:

type(ESMF_RouteHandle) :: ESMF_RouteHandleCreateFile

ARGUMENTS:

character(*), intent(in) :: fileName

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Create a new ESMF_RouteHandle object from a file. This method must be called from a VM context that holds
exactly as many PETs as were used when generating the file.

The arguments are:

fileName The name of the RouteHandle file to be read in.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

36.5.3 ESMF_RouteHandleDestroy - Release resources associated with a RouteHandle

INTERFACE:

subroutine ESMF_RouteHandleDestroy(routehandle, &

noGarbage, rc)

ARGUMENTS:

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: noGarbage

integer, intent(out), optional :: rc

DESCRIPTION:

Destroys an ESMF_RouteHandle, releasing the resources associated with the object.

The arguments are:

routehandle The ESMF_RouteHandle to be destroyed.

981

[noGarbage] If set to .TRUE. the object will be fully destroyed and removed from the ESMF garbage collection
system. Note however that under this condition ESMF cannot protect against accessing the destroyed object
through dangling aliases – a situation which may lead to hard to debug application crashes.

It is generally recommended to leave the noGarbage argument set to .FALSE. (the default), and to take
advantage of the ESMF garbage collection system which will prevent problems with dangling aliases or incorrect
sequences of destroy calls. However this level of support requires that a small remnant of the object is kept in
memory past the destroy call. This can lead to an unexpected increase in memory consumption over the course
of execution in applications that use temporary ESMF objects. For situations where the repeated creation and
destruction of temporary objects leads to memory issues, it is recommended to call with noGarbage set to
.TRUE., fully removing the entire temporary object from memory.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

36.5.4 ESMF_RouteHandleGet - Get values from a RouteHandle

INTERFACE:

! Private name; call using ESMF_RouteHandleGet()

subroutine ESMF_RouteHandleGetP(routehandle, name, rc)

ARGUMENTS:

type(ESMF_RouteHandle), intent(in) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character(len=*), intent(out), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

Returns information about an ESMF_RouteHandle.

The arguments are:

routehandle ESMF_RouteHandle to be queried.

[name] Name of the RouteHandle object.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

36.5.5 ESMF_RouteHandleIsCreated - Check whether a RouteHandle object has been created

INTERFACE:

function ESMF_RouteHandleIsCreated(routehandle, rc)

982

RETURN VALUE:

logical :: ESMF_RouteHandleIsCreated

ARGUMENTS:

type(ESMF_RouteHandle), intent(in) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Return .true. if the routehandle has been created. Otherwise return .false.. If an error occurs, i.e. rc /=

ESMF_SUCCESS is returned, the return value of the function will also be .false..

The arguments are:

routehandle ESMF_RouteHandle queried.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

36.5.6 ESMF_RouteHandlePrint - Print the contents of a RouteHandle

INTERFACE:

subroutine ESMF_RouteHandlePrint(routehandle, rc)

ARGUMENTS:

type(ESMF_RouteHandle), intent(in) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Print information about an ESMF_RouteHandle.

The arguments are:

routehandle ESMF_RouteHandle to print contents of.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

983

36.5.7 ESMF_RouteHandleSet - Set values in a RouteHandle

INTERFACE:

! Private name; call using ESMF_RouteHandleSet()

subroutine ESMF_RouteHandleSetP(routehandle, name, rc)

ARGUMENTS:

type(ESMF_RouteHandle), intent(inout) :: routehandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character(len = *), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

Set an ESMF_RouteHandle attribute with the given value.

The arguments are:

routehandle ESMF_RouteHandle to be modified.

[name] The RouteHandle name.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

36.5.8 ESMF_RouteHandleWrite - Write the RouteHandle to file

INTERFACE:

subroutine ESMF_RouteHandleWrite(routehandle, fileName, rc)

ARGUMENTS:

type(ESMF_RouteHandle), intent(inout) :: routehandle

character(*), intent(in) :: fileName

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Write the RouteHandle to file. The generated file can then be used to re-create the same RouteHandle, on the same
number of PETs, using the ESMF_RouteHandleCreate(fileName=...) method.

The arguments are:

routehandle The ESMF_RouteHandle to be written.

fileName The name of the output file to which the RouteHandle is written.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

984

37 I/O Capability

37.1 Description

The ESMF I/O provides an unified interface for input and output of high level ESMF objects such as Fields. ESMF

I/O capability is integrated with third-party software such as Parallel I/O (PIO) to read and write Fortran array data

in MPI_IO binary or NetCDF format, and JSON for Modern C++ Library to read Info attribute data in JSON format.

Other file I/O functionalities, such as writing of error and log messages, input of configuration parameters from an

ASCII file, and lower-level I/O utilities are covered in different sections of this document. See the Log Class 47.1, the

Config Class 46.1, and the Fortran I/O Utilities, 51.1 respectively.

37.2 Data I/O

ESMF provides interfaces for high performance, parallel I/O using ESMF data objects such as Arrays and Fields.

Currently ESMF supports I/O of binary and NetCDF files. The current ESMF implementation relies on the

Parallel I/O (PIO) library developed as a collaboration between NCAR and DOE laboratories. PIO is built as part

of the ESMF build when the environment variable ESMF_PIO is set to "internal"; by default it is not set. When PIO is

built with ESMF, the ESMF methods internally call the PIO interfaces. When PIO is not built with ESMF, the ESMF

methods are non-operable (no-op) stubs that simply return with a return code of ESMF_RC_LIB_NOT_PRESENT.

Details about the environment variables can be found in ESMF User Guide, "Building and Installing the ESMF",

"Third Party Libraries".

The following methods support parallel data I/O using PIO:

ESMF_FieldBundleRead(), section 25.5.19.

ESMF_FieldBundleWrite(), section 25.5.39.

ESMF_FieldRead(), section 26.6.53.

ESMF_FieldWrite(), section 26.6.75.

ESMF_ArrayBundleRead(), section 27.5.16.

ESMF_ArrayBundleWrite(), section 27.5.27.

ESMF_ArrayRead(), section 28.5.27.

ESMF_ArrayWrite(), section 28.5.47.

37.3 Data formats

Two formats are supported, namely, NetCDF and binary (through MPI_IO). The environment variables that are enabled

when ESMF is built determine the format. The environment variables ESMF_NETCDF or/and ESMF_PNETCDF

should be set as appropriate to enable NetCDF I/O format. If neither ESMF_NETCDF nor ESMF_PNETCDF are set,

and MPI_IO is enabled in MPI, the format will be binary. Details about the environment variables can be found in

ESMF User Guide, "Building and Installing the ESMF", "Third Party Libraries".

NetCDF Network Common Data Form (NetCDF) is an interface for array-oriented data access. The NetCDF library

provides an implementation of the interface. It also defines a machine-independent format for representing

985

https://github.com/NCAR/ParallelIO
https://github.com/nlohmann/json
https://github.com/NCAR/ParallelIO

scientific data. Together, the interface, library, and format support the creation, access, and sharing of scientific

data. The NetCDF software was developed at the Unidata Program Center in Boulder, Colorado. See [16]. In

geoscience, NetCDF can be naturally used to represent fields defined on logically rectangular grids. NetCDF

use in geosciences is specified by CF conventions mentioned above [15].

To the extent that data on unstructured grids (or even observations) can be represented as one-dimensional arrays,

NetCDF can also be used to store these data. However, it does not provide a high-level abstraction for this type

of data.

IEEE Binary Streams A natural way for a machine to represent data is to use a native binary data representation.

There are two choices of ordering of bytes (so-called Big Endian and Little Endian), and a lot of ambiguity

in representing floating point data. The latter, however, is specified, if IEEE Floating Point Standard 754 is

satisfied. ([23], [27]). [21].

37.4 Restrictions and Future Work

Currently a small fraction of the anticipated data formats is implemented by ESMF. The data I/O uses NetCDF and

MPI_IO binary formats, and ESMF Attribute I/O uses XML format. Different libraries are employed for these different

formats. In future development, a more centralized I/O technique will likely be defined to provide efficient utilities

with a set of standard APIs that will allow manipulation of multiple standard formats. Also, the ability to automatically

detect file formats at runtime will be developed.

37.5 Design and Implementation Notes

For data I/O, the ESMF I/O capability relies on the PIO, NetCDF, PNetCDF and MPI_IO libraries. For Info attribute

I/O, the ESMF I/O capability uses the JSON for Modern C++ library to perform reading of JSON files. PIO is included

with the ESMF distribution; the other libraries must be installed on the machine of interest.

986

https://github.com/NCAR/ParallelIO
http://www.unidata.ucar.edu/software/netcdf
http://trac.mcs.anl.gov/projects/parallel-netcdf
https://github.com/nlohmann/json

Part V

Infrastructure: Utilities

987

38 Overview of Infrastructure Utility Classes

The ESMF utilities are a set of tools for quickly assembling modeling applications.

The ESMF Info class enables models to be self-describing via metadata, which are instances of JSON-compatible

key-value pairs.

The Time Management Library provides utilities for time and time interval representation and calculation, and higher-

level utilities that control model time stepping, via clocks, as well as alarming.

The ESMF Config class provides configuration management based on NASA DAO’s Inpak package, a collection of

methods for accessing files containing input parameters stored in an ASCII format.

The ESMF LogErr class consists of a variety of methods for writing error, warning, and informational messages to log

files. A default Log is created during ESMF initialization. Other Logs can be created later in the code by the user.

The DELayout class provides a layer of abstraction on top of the Virtual Machine (VM) layer. DELayout does this

by introducing DEs (Decomposition Elements) as logical resource units. The DELayout object keeps track of the

relationship between its DEs and the resources of the associated VM object. A DELayout can be shaped by the user

at creation time to best match the computational problem or other design criteria.

The ESMF VM (Virtual Machine) class is a generic representation of hardware and system software resources. There

is exactly one VM object per ESMF Component, providing the execution environment for the Component code. The

VM class handles all resource management tasks for the Component class and provides a description of the underlying

configuration of the compute resources used by a Component. In addition to resource description and management,

the VM class offers the lowest level of ESMF communication methods.

The ESMF Fortran I/O utilities provide portable methods to access capabilities which are often implemented in differ-

ent ways amongst different environments. Currently, two utility methods are implemented: one to find an unopened

unit number, and one to flush an I/O buffer.

988

39 Info Class (Object Attributes)

All ESMF base objects (i.e. Array, ArrayBundle, Field, FieldBundle, Grid, Mesh, DistGrid) contain a key-value

attribute storage object called ESMF_Info. ESMF_Info objects may also be created independent of a base object.

ESMF_Info supports setting and getting key-value pairs where the key is a string and the value is a scalar or a list of

common data types. An ESMF_Info object may have a flat or nested data structure. The purpose of ESMF_Info is

to support I/O-compatible metadata structures (i.e. netCDF), internal record-keeping for model execution (NUOPC),

and provide a mechanism for custom user metadata attributes.

ESMF_Info is designed for interoperability. To achieve this goal, ESMF_Info adopted the JSON (Javascript Object

Notation) specification. Internally, ESMF_Info uses JSON for Modern C++ [1] to manage its storage map. There

are numerous resources for JSON on the web [11]. Quoting from the json.org site [11] when it introduces the format:

JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is easy for humans to

read and write. It is easy for machines to parse and generate. It is based on a subset of the JavaScript

Programming Language Standard ECMA-262 3rd Edition - December 1999. JSON is a text format that is

completely language independent but uses conventions that are familiar to programmers of the C-family

of languages, including C, C++, C#, Java, JavaScript, Perl, Python, and many others. These properties

make JSON an ideal data-interchange language. JSON is built on two structures:

• A collection of name/value pairs. In various languages, this is realized as an object, record, struct,

dictionary, hash table, keyed list, or associative array.

• An ordered list of values. In most languages, this is realized as an array, vector, list, or sequence.

These are universal data structures. Virtually all modern programming languages support them in one

form or another. It makes sense that a data format that is interchangeable with programming languages

also be based on these structures.

By adopting JSON compliance for ESMF_Info, ESMF made its core metadata capabilities explicitly interoperable

with a widely used data structure. If data may be represented with JSON, then it is compatible with ESMF_Info.

There are some aspects of the ESMF_Info implementation related to JSON and JSON for Modern C++ that

should be noted:

1. JSON supports 64-bit data types for integers and reals ([3], [2]). I4/R4 is converted to I8/R8 and vice versa.

ESMF_Info internally tracks 32-bit sets to ensure the data type may be appropriately queried.

2. The memory overhead per JSON object (e.g. a key-value pair) requires an additional allocator pointer for type

generalization [6]. Hence, the JSON map is not suited for big data storage, offering flexibility in exchange.

3. Keys are stored in an unordered map sorted in lexicographical order.

39.1 Migrating from Attribute

The ESMF_Info class is a replacement for the ESMF_Attribute class and is the preferred way of managing

metadata attributes in ESMF moving forward. It is recommended that users migrate existing ESMF_Attribute

calls to the new ESMF_InfoAPI. The ESMF_Info class provides the backend for ESMF_Attribute since ESMF

version 8.1. The ESMF_Attribute docs are located in appendix 55. In practice, users should experience no friction

when migrating client code. Please email ESMF support in the case of a migration issue. Some structural changes to

ESMF_Attribute did occur:

989

• Changed behavior when getting fixed-size lists. List size in storage must match the size of the outgoing list.

• Removed ability to use a default value with list gets.

• Removed attPackInstanceName from all interfaces.

• Removed attcopyFlag from all interfaces.

• Removed ESMF_Attribute-managed object linking.

• Modified ESMF_AttributeAdd to set the target key to a null JSON value.

• Modified ESMF_AttributeSet to not require an attribute added to an ESMF_AttPack be added through

ESMF_AttributeAdd before setting.

• Removed support for attribute XML I/O.

• Removed ability to add multiple nested Attribute packages.

• Removed retrieval of "internal" ESMF object Attributes.

Below are examples for setting and getting an attribute using ESMF_Info and the legacy ESMF_Attribute. The

ESMF_Info interfaces are not overloaded for ESMF object types but rather work off a handle retrieved via a get call.

39.1.1 Setting an Attribute

With ESMF_Attribute:

call ESMF_AttributeSet(array, "aKey", 15, rc=rc)

With ESMF_Info:

call ESMF_InfoGetFromHost(array, info, rc=rc)

call ESMF_InfoSet(info, "aKey", 15, rc=rc)

39.1.2 Getting an Attribute

With ESMF_Attribute:

call ESMF_AttributeGet(array, "aKey", aKeyValue, rc=rc)

With ESMF_Info:

call ESMF_InfoGetFromHost(array, info, rc=rc)

call ESMF_InfoGet(info, "aKey", aKeyValue, rc=rc)

990

39.2 Key Format Overview

A key in the ESMF_Info interface provides the location of a value to retrieve from the key-value storage. Keys in the

ESMF_Info class use the JSON Pointer syntax [5]. A forward slash is prepended to string keys if it does not exist.

Hence, "aKey" and "/aKey" are equivalent. Note the indexing aspect of the JSON Pointer syntax is not supported.

Every "key" argument in the ESMF_Info class uses pathing following the JSON Pointer syntax [6]. A forward slash

is prepended to string keys if it does not exist. Hence, "aKey" and "/aKey" are equivalent. Note the indexing aspect of

the JSON Pointer syntax is not supported (i.e. "/my_list 1").

Some examples for valid "key" arguments:

• altitude :: A simple key argument with no nesting.

• /altitude :: A simple key argument with no nesting with the prepended pointer forward slash.

• /altitude/height_above_mean_sea_level :: A key for an attribute

"height_above_mean_sea_level" nested in a map identified with key "altitude".

39.3 Usage and Examples

39.3.1 Retrieve an Info Handle

This example demonstrates how to retrieve an ESMF_Info object handle from an ESMF object. ESMF_Info handles
are a view into the object’s ESMF_Info storage and should not be created/destroyed as the ESMF_Info’s lifetime
is determined by its host object’s lifetime. Destroying the host object will leave a handle in an undefined state.

Variable declarations:

type(ESMF_DistGrid) :: distgrid

type(ESMF_Array) :: array

type(ESMF_Info) :: infoh

real(ESMF_KIND_R8), dimension(10,10) :: farray

integer :: rc

Create an ESMF Array.

distgrid = ESMF_DistGridCreate(minIndex=(/1,1/), maxIndex=(/10,10/), rc=rc)

array = ESMF_ArrayCreate(distgrid, farray, indexflag=ESMF_INDEX_DELOCAL, rc=rc)

Get the ESMF_Info handle from the object. See example 39.3.2 for additional usage examples.

call ESMF_InfoGetFromHost(array, infoh, rc=rc)

991

Destroy everything except the ESMF_Info object. Attempting to destroy the ESMF_Info handle will result in an
error.

call ESMF_ArrayDestroy(array, rc=rc)

call ESMF_DistGridDestroy(distgrid, rc=rc)

39.3.2 General Usage Examples

General usage examples for the ESMF_Info class. The demonstrated capabilities are:

• Creating an ESMF_Info object.

• Setting/getting a key-value pair.

• Setting/getting a list value and a list value by index.

• Printing and dumping ESMF_Info contents.

• Checking for key presence and set state (null value check).

• Setting/getting with nesting (hierarchies).

• Inquiring the ESMF_Info object for general item metadata and iteration purposes.

• Copying ESMF_Info contents.

• Removing a key-value pair from the ESMF_Info storage.

• Destroying the ESMF_Info object.

Variable declarations:

type(ESMF_Info) :: info, infoCopy, infoFromCh

type(ESMF_TypeKind_Flag) :: typekind

character(len=ESMF_MAXSTR) :: ikey

character(:), allocatable :: output, getCh

real(ESMF_KIND_R8), dimension(4) :: realList

real(ESMF_KIND_R8), dimension(:), allocatable :: realListAlloc

integer(ESMF_KIND_I4) :: getInt

real(ESMF_KIND_R8) :: getReal

integer :: rc, infoSize, ii

logical :: isPresent, isSet

Create an ESMF_Info object. This object contains an empty key-value store called a JSON object [8].

An ESMF_Info handle may also be retrieved from an ESMF object as opposed to creating a standalone ESMF_Info
object. See example 39.3.1.

info = ESMF_InfoCreate(rc=rc)

992

Add an integer value.

call ESMF_InfoSet(info, "myIntegerKey", 54, rc=rc)

Get the integer value we just set.

call ESMF_InfoGet(info, "myIntegerKey", getInt, rc=rc)

Set a list of reals.

call ESMF_InfoSet(info, "myListOfReals", (/ 33.3, 44.4, 0.0, 99.0 /), rc=rc)

Set an index in the new list then retrieve the value.

call ESMF_InfoSet(info, "myListOfReals", 1234.0, idx=3, rc=rc)

call ESMF_InfoGet(info, "myListOfReals", getReal, idx=3, rc=rc)

Get the values from a list.

call ESMF_InfoGet(info, "myListOfReals", realList, rc=rc)

Allocatable lists may be used through a specific interface.

call ESMF_InfoGetAlloc(info, "myListOfReals", realListAlloc, rc=rc)

The storage contents may be printed directly or dumped to a character.

call ESMF_InfoPrint(info, indent=4, rc=rc)

output = ESMF_InfoDump(info, rc=rc)

print *, "the Info dump: "//output

Check if a key is present.

isPresent = ESMF_InfoIsPresent(info, "myIntegerKey", rc=rc)

993

if (.not. isPresent) call ESMF_Finalize(endflag=ESMF_END_ABORT)

Add a null value and check if it is set (has a non-null value).

call ESMF_InfoSetNULL(info, "aNullKey", rc=rc)

isSet = ESMF_InfoIsSet(info, "aNullKey", rc=rc)

if (isSet) call ESMF_Finalize(endflag=ESMF_END_ABORT)

isSet = ESMF_InfoIsSet(info, "myIntegerKey", rc=rc)

if (.not. isSet) call ESMF_Finalize(endflag=ESMF_END_ABORT)

The force flag, when set to false, will cause an error if the key exists in the map. The force flag is set to true by default.

call ESMF_InfoSet(info, "myIntegerKey", 33, force=.false., rc=rc)

if (rc .ne. ESMC_RC_CANNOT_SET) call ESMF_Finalize(endflag=ESMF_END_ABORT)

Nesting uses the JSON Pointer 39.2 syntax. All key arguments in ESMF_Info may use this syntax unless noted
otherwise. When creating a nested object, objects are created if they do not exist. Hence, it is not necessary to create
the individual nested elements for deep hierarchies.

call ESMF_InfoSet(info, "/Universe/Galaxy/Star/Planet", "Venus", rc=rc)

Using the get interface, it is possible to iterate over the storage contents. In the call below, we are retrieving the number
of elements (key-value pairs) that exist in our root storage object. We then select the target element in root using an
index and retrieve some additional metadata for the target object.

call ESMF_InfoGet(info, size=infoSize, rc=rc)

do ii=1,infoSize

call ESMF_InfoGet(info, idx=ii, ikey=ikey, typekind=typekind, rc=rc)

if (localPet == 0) then

print *, "ESMF_Info inquire loop: "

print *, " idx= ", ii

print *, " ikey= ", trim(ikey)

print *, " typekind= ", typekind

endif

enddo

994

Copying the ESMF_Info object requires the copy to be destroyed/deallocated.

infoCopy = ESMF_InfoCreate(info, rc=rc)

Comparison operators = and /= are implemented for ESMF_Info objects.

if (infoCopy /= info) call ESMF_Finalize(endflag=ESMF_END_ABORT)

After removing a key from the copied ESMF_Info object, the two objects will no longer be equal.

call ESMF_InfoRemove(infoCopy, "myIntegerKey", rc=rc)

if (infoCopy == info) call ESMF_Finalize(endflag=ESMF_END_ABORT)

Destroy the copied object.

call ESMF_InfoDestroy(infoCopy, rc=rc)

An ESMF_Info object may be created from a JSON string. Note the usage of quotes is required as below.

infoFromCh = ESMF_InfoCreate(’{"hello":"world"}’, rc=rc)

The contents of an ESMF_Info object may be set in another ESMF_Info object.

call ESMF_InfoSet(info, "infoFromCh", infoFromCh, rc=rc)

call ESMF_InfoDestroy(infoFromCh, rc=rc)

An allocatable character get interface is available.

call ESMF_InfoGetCharAlloc(info, "/infoFromCh/hello", getCh, rc=rc)

Destroy the ESMF_Info object.

call ESMF_InfoDestroy(info, rc=rc)

995

39.4 Class API

39.4.1 ESMF_InfoAssignment(=) - Info assignment

INTERFACE:

interface assignment(=)

info1 = info2

ARGUMENTS:

type(ESMF_Info) :: info1

type(ESMF_Info) :: info2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Assign info1 as an alias to the same ESMF Info object in memory as info2. If info2 is invalid, then info1 will be
equally invalid after the assignment.

The arguments are:

info1 The ESMF_Info object on the left hand side of the assignment.

info2 The ESMF_Info object on the right hand side of the assignment.

39.4.2 ESMF_InfoOperator(==) - Info equality operator

INTERFACE:

interface operator(==)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_Info), intent(in) :: info1

type(ESMF_Info), intent(in) :: info2

996

DESCRIPTION:

Test if the contents of two ESMF_Info objects are equal.

The arguments are:

info1 The ESMF_Info object on the left hand side of the operation.

info1 The ESMF_Info object on the right hand side of the operation.

39.4.3 ESMF_InfoOperator(/=) - Info not equal operator

INTERFACE:

interface operator(/=)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_Info), intent(in) :: info1

type(ESMF_Info), intent(in) :: info2

DESCRIPTION:

Test if the contents of two ESMF_Info objects are not equal.

The arguments are:

info1 The ESMF_Info object on the left hand side of the operation.

info1 The ESMF_Info object on the right hand side of the operation.

39.4.4 ESMF_InfoBroadcast - Broadcast Info contents

INTERFACE:

subroutine ESMF_InfoBroadcast(info, rootPet, rc)

ARGUMENTS:

997

type(ESMF_Info), intent(inout) :: info

integer, intent(in) :: rootPet

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Broadcast an ESMF_Info object collectively across the current VM.

Users wishing to synchronize via broadcast an attribute hierarchy associated with an ESMF object should consult the
ESMF_InfoSync documentation 39.4.28

The arguments are:

info The ESMF_Info object that is the source (on rootPet) or the destination object to populate (on all other PETs).
On destination PETs, the structure of info is overwritten with data from rootPet.

rootPet The root PET identifier.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

39.4.5 ESMF_InfoCreate - Create a new Info object

INTERFACE:

! Private name; call using ESMF_InfoCreate()

function ESMF_InfoCreateEmpty(rc)

ARGUMENTS:

integer, intent(out), optional :: rc

RETURN VALUE:

type(ESMF_Info) :: ESMF_InfoCreateEmpty

DESCRIPTION:

Create an ESMF_Info object. This object must be destroyed using ESMF_InfoDestroy to free its memory
allocation

The arguments are:

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

998

39.4.6 ESMF_InfoCreate - Create a new Info object using a key

INTERFACE:

! Private name; call using ESMF_InfoCreate()

function ESMF_InfoCreateByKey(info, key, rc)

ARGUMENTS:

type(ESMF_Info), intent(in) :: info

character(len=*), intent(in) :: key

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

RETURN VALUE:

type(ESMF_Info) :: ESMF_InfoCreateByKey

DESCRIPTION:

Create an ESMF_Info object from a location in info defined by key. Returned object is a deep copy. The value
associated with key must be a nested object (i.e. a collection of key/value pairs).

The arguments are:

info The ESMF_Info object providing source data.

key String key to access in ESMF_Info storage. See section 39.2 for an overview of the key format.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

39.4.7 ESMF_InfoCreate - Create an Info object from another Info object

INTERFACE:

! Private name; call using ESMF_InfoCreate()

function ESMF_InfoCreateFromInfo(info, rc)

ARGUMENTS:

type(ESMF_Info), intent(in) :: info

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

RETURN VALUE:

type(ESMF_Info) :: ESMF_InfoCreateFromInfo

999

DESCRIPTION:

Create an ESMF_Info object from another ESMF_Info object. The returned object is a deep copy of the source
object.

The arguments are:

info The ESMF_Info object acting as the source data.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

39.4.8 ESMF_InfoCreate - Create a new Info object by string parsing

INTERFACE:

! Private name; call using ESMF_InfoCreate()

function ESMF_InfoCreateByParse(jsonString, rc)

ARGUMENTS:

character(len=*), intent(in) :: jsonString

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

RETURN VALUE:

type(ESMF_Info) :: ESMF_InfoCreateByParse

DESCRIPTION:

Create an ESMF_Info object by parsing a JSON-formatted string.

The arguments are:

jsonString The string to parse.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

39.4.9 ESMF_InfoDestroy - Destroy an Info object

INTERFACE:

subroutine ESMF_InfoDestroy(info, rc)

1000

ARGUMENTS:

type(ESMF_Info), intent(inout) :: info

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Destroy an ESMF_Info object. Destroying an ESMF_Info object created internally by an ESMF object results in
an error

The arguments are:

info Target ESMF_Info object.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

39.4.10 ESMF_InfoDump - Dump Info contents to string

INTERFACE:

function ESMF_InfoDump(info, key, indent, rc) result(output)

ARGUMENTS:

type(ESMF_Info), intent(in) :: info

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character(*), intent(in), optional :: key

integer, intent(in), optional :: indent

integer, intent(out), optional :: rc

RESULT:

character(:), allocatable :: output

DESCRIPTION:

Dump the contents of an ESMF_Info object as a JSON string.

The arguments are:

info Target ESMF_Info object.

[key] String key to access in ESMF_Info storage. See section 39.2 for an overview of the key format.

[indent] Default is 0. Specifying an indentation greater than 0 will result in a "pretty print" for JSON output string
(string includes new line breaks).

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

1001

39.4.11 ESMF_InfoGet - Get a numeric, logical, or fixed-size character value

INTERFACE:

subroutine ESMF_InfoGet(info, key, value, default, idx, attnestflag, rc)

ARGUMENTS:

type(ESMF_Info), intent(in) :: info

character(len=*), intent(in) :: key

<value>, see below for supported value

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

<default, optional> see below for supported default value

integer, intent(in), optional :: idx

type(ESMF_AttNest_Flag), intent(in), optional :: attnestflag

integer, intent(out), optional :: rc

DESCRIPTION:

Get a value from an ESMF_Info object using a key. If the key is not found, rc will not equal ESMF_SUCCESS. The
returned value is always a copy including gets with a default.

Overloaded value for the following types:

• integer(kind=ESMF_KIND_I4)

• integer(kind=ESMF_KIND_I8)

• real(kind=ESMF_KIND_R4)

• real(kind=ESMF_KIND_R8)

• logical

• character(:)

The arguments are:

info Target ESMF_Info object.

key String key to access in ESMF_Info storage. See section 39.2 for an overview of the key format.

value The output value associated with the key.

[default] A default value to use if the key is not present in the target ESMF_Info object. Must be the same typekind
and size as value.

[idx] An integer index to get if the target key’s value is a list.

[attnestflag] Setting to ESMF_ATTNEST_ON triggers a recursive search. The first instance of the key (searching by
depth) will be found in the hierarchy. Default is ESMF_ATTNEST_OFF.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

1002

39.4.12 ESMF_InfoGetCharAlloc - Get an allocatable character value

INTERFACE:

subroutine ESMF_InfoGetCharAlloc(info, key, value, default, idx, attnestflag, rc)

ARGUMENTS:

type(ESMF_Info), intent(in) :: info

character(len=*), intent(in) :: key

character(:), allocatable, intent(out) :: value

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character(len=*), intent(in), optional :: default

integer, intent(in), optional :: idx

type(ESMF_AttNest_Flag), intent(in), optional :: attnestflag

integer, intent(out), optional :: rc

DESCRIPTION:

Get a value from an ESMF_Info object using a key. If the key is not found, rc will not equal ESMF_SUCCESS. The
returned value is always a copy including gets with a default.

The arguments are:

info Target ESMF_Info object.

key String key to access in ESMF_Info storage. See section 39.2 for an overview of the key format.

value The output value associated with the key.

[default] A default value to use if the key is not present in the target ESMF_Info object. Must be the same typekind
and size as value.

[idx] An integer index to get if the target key’s value is a list.

[attnestflag] Setting to ESMF_ATTNEST_ON triggers a recursive search. The first instance of the key (searching by
depth) will be found in the hierarchy. Default is ESMF_ATTNEST_OFF.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

39.4.13 ESMF_InfoGet - Get a list

INTERFACE:

subroutine ESMF_InfoGet(info, key, values, itemCount, attnestflag, scalarToArray, rc)

ARGUMENTS:

1003

type(ESMF_Info), intent(in) :: info

character(len=*), intent(in) :: key

<values>, see below for supported values

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: itemCount

type(ESMF_AttNest_Flag), intent(in), optional :: attnestflag

logical, intent(in), optional :: scalarToArray

integer, intent(out), optional :: rc

DESCRIPTION:

Get a value list from an ESMF_Info object using a key. If the key is not found, rc will not equal ESMF_SUCCESS.
The returned value is always a copy.

The length of values must match its length in storage.

Overloaded values for the following types:

• integer(kind=ESMF_KIND_I4), dimension(:)

• integer(kind=ESMF_KIND_I8), dimension(:)

• real(kind=ESMF_KIND_R4), dimension(:)

• real(kind=ESMF_KIND_R8), dimension(:)

• logical, dimension(:)

• character(:), dimension(:)

The arguments are:

info Target ESMF_Info object.

key String key to access in ESMF_Info storage. See section 39.2 for an overview of the key format.

values The output value list associated with the key.

[itemCount] The number of items in values.

[attnestflag] Default is ESMF_ATTNEST_OFF. Setting to ESMF_ATTNEST_ON triggers a recursive search. The
first instance of the key will be found in the hierarchy.

[scalarToArray] Default is false. If true, allow conversion of scalar values in storage to single-valued lists.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

39.4.14 ESMF_InfoGetAlloc - Get an allocatable list

INTERFACE:

subroutine ESMF_InfoGetAlloc(info, key, values, itemCount, attnestflag, scalarToArray, rc)

1004

ARGUMENTS:

type(ESMF_Info), intent(in) :: info

character(len=*), intent(in) :: key

<values>, see below for supported values

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: itemCount

type(ESMF_AttNest_Flag), intent(in), optional :: attnestflag

logical, intent(in), optional :: scalarToArray

integer, intent(out), optional :: rc

DESCRIPTION:

Get a value list from an ESMF_Info object using a key. If the key is not found, rc will not equal ESMF_SUCCESS.
The returned value is always a copy.

Overloaded values for the following types:

• integer(kind=ESMF_KIND_I4), dimension(:), allocatable

• integer(kind=ESMF_KIND_I8), dimension(:), allocatable

• real(kind=ESMF_KIND_R4), dimension(:), allocatable

• real(kind=ESMF_KIND_R8), dimension(:), allocatable

• logical, dimension(:), allocatable

• character(:), dimension(:), allocatable

The arguments are:

info Target ESMF_Info object.

key String key to access in ESMF_Info storage. See section 39.2 for an overview of the key format.

values The output value list associated with the key.

[itemCount] The number of items in values.

[attnestflag] Default is ESMF_ATTNEST_OFF. Setting to ESMF_ATTNEST_ON triggers a recursive search. The
first instance of the key will be found in the hierarchy.

[scalarToArray] Default is false. If true, allow conversion of scalar values in storage to single-valued lists.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

39.4.15 ESMF_InfoGet - Inquire an Info object for metadata

INTERFACE:

1005

! Private name; call using ESMF_InfoGet()

subroutine ESMF_InfoInquire(info, size, key, jsonType, isArray, &

isDirty, idx, typekind, ikey, isPresent, isStructured, isNull, rc)

ARGUMENTS:

type(ESMF_Info), intent(in) :: info

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: size

character(len=*), intent(in), optional :: key

character(len=*), intent(out), optional :: jsonType

logical, intent(out), optional :: isArray

logical, intent(out), optional :: isDirty

integer, intent(in), optional :: idx

type(ESMF_TypeKind_Flag), intent(out), optional :: typekind

character(len=*), intent(out), optional :: ikey

logical, intent(out), optional :: isPresent

logical, intent(out), optional :: isStructured

logical, intent(out), optional :: isNull

integer, intent(out), optional :: rc

DESCRIPTION:

Inquire an ESMF_Info object for metadata.

The arguments are:

info Target ESMF_Info object.

[size] Returns the size of the target. The following rules apply:

• If the target is an object, return the number of key-value pairs.

• If the target is a scalar, return 1.

• If the target is an array, return its length.

[key] If provided, use this location as the origin instead of root. See section 39.2 for an overview of the key format.

[jsonType] Returns the JSON object type name [9].

[isArray] Returns true if the target is an array.

[isDirty] Returns true if the ESMF_Info object should be synchronized during an ESMF_InfoSync operation.

[idx] An integer index to use. This will index into an object type providing the primary mechanism for iteration.

[typekind] Get the ESMF typekind for the target. The minimum typekind required to hold the value is returned.

[ikey] If present, this will be set to the key’s name for the current inquire. Useful when iterating using an index. This
does not return the full key path if nested.

[isPresent] Returns true if the key exists in storage. If no key is provided, this will return true.

[isStructured] Returns true if the target is structured [4]. This means it is either an object (a map) or an array.

[isNull] Returns true if the target is null [7].

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

1006

39.4.16 ESMF_InfoGetFromHost - Get an Info handle from an ESMF object

INTERFACE:

subroutine ESMF_InfoGetFromHost(host, info, rc)

ARGUMENTS:

type(ESMF_*), intent(inout) :: host

type(ESMF_Info), intent(out) :: info

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Get an ESMF_Info object handle from a host ESMF object. The returned handle should not be destroyed.

The arguments are:

host Target ESMF object. Overloaded for:

• ESMF_Array

• ESMF_ArrayBundle

• ESMF_CplComp

• ESMF_GridComp

• ESMF_SciComp

• ESMF_DistGrid

• ESMF_Field

• ESMF_FieldBundle

• ESMF_Grid

• ESMF_State

• ESMF_LocStream

• ESMF_Mesh

info Outgoing ESMF_Info object.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

39.4.17 ESMF_InfoGetTK - Retrieve the ESMF TypeKind for a key

INTERFACE:

function ESMF_InfoGetTK(info, key, attnestflag, rc) result(typekind)

ARGUMENTS:

1007

type(ESMF_Info), intent(in) :: info

character(len=*), intent(in) :: key

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_AttNest_Flag), intent(in), optional :: attnestflag

integer, intent(out), optional :: rc

RETURN VALUE:

type(ESMF_TypeKind_Flag) :: typekind

DESCRIPTION:

Return a value’s ESMF TypeKind using a key.

The arguments are:

info Target ESMF_Info object.

key String key to access in ESMF_Info storage. See section 39.2 for an overview of the key format.

[attnestflag] Setting to ESMF_ATTNEST_ON triggers a recursive search for keyParent. The first instance of the key
will be found in the hierarchy. Default is ESMF_ATTNEST_OFF.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

39.4.18 ESMF_InfoGetArrayMeta - Retrieve array metadata information

INTERFACE:

subroutine ESMF_InfoGetArrayMeta(info, key, isArray, size, attnestflag, rc)

ARGUMENTS:

type(ESMF_Info), intent(in) :: info

character(len=*), intent(in) :: key

logical, intent(out) :: isArray

integer(C_INT), intent(out) :: size

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_AttNest_Flag), intent(in), optional :: attnestflag

integer, intent(out), optional :: rc

DESCRIPTION:

Return a value’s array status and size using a key.

The arguments are:

info Target ESMF_Info object.

1008

key String key to access in ESMF_Info storage. See section 39.2 for an overview of the key format.

isArray Set to true if the target is an array in storage.

size Set to the size of the target object in storage (i.e. length of the array).

[attnestflag] Setting to ESMF_ATTNEST_ON triggers a recursive search for keyParent. The first instance of the key
will be found in the hierarchy. Default is ESMF_ATTNEST_OFF.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

39.4.19 ESMF_InfoIsPresent - Check for key presence

INTERFACE:

function ESMF_InfoIsPresent(info, key, attnestflag, isPointer, rc) result(is_present)

ARGUMENTS:

type(ESMF_Info), intent(in) :: info

character(len=*), intent(in) :: key

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_AttNest_Flag), intent(in), optional :: attnestflag

logical, intent(in), optional :: isPointer

integer, intent(out), optional :: rc

RETURN VALUE:

logical :: is_present

DESCRIPTION:

Return true if key exists in ESMF_Info’s storage.

The arguments are:

info Target ESMF_Info object.

key String key to access in ESMF_Info storage. See section 39.2 for an overview of the key format.

[attnestflag] Setting to ESMF_ATTNEST_ON triggers a recursive search for keyParent. The first instance of the key
will be found in the hierarchy. Default is ESMF_ATTNEST_OFF.

[isPointer] Default is true. If true, expect the key is using JSON Pointer syntax (see section 39.2). Setting to false
will trigger a slightly faster search.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

1009

39.4.20 ESMF_InfoIsSet - Check if a value is null

INTERFACE:

function ESMF_InfoIsSet(info, key, rc) result(is_set)

ARGUMENTS:

type(ESMF_Info), intent(in) :: info

character(len=*), intent(in) :: key

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

RETURN VALUE:

logical :: is_set

DESCRIPTION:

Returns true if the target value is not null [7].

The arguments are:

info Target ESMF_Info object.

key String key to access in ESMF_Info storage. See section 39.2 for an overview of the key format.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

39.4.21 ESMF_InfoPrint - Print contents of an Info object

INTERFACE:

subroutine ESMF_InfoPrint(info, indent, preString, unit, rc)

ARGUMENTS:

type(ESMF_Info), intent(in) :: info

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character(*), intent(in), optional :: preString

character(*), intent(out), optional :: unit

integer, intent(in), optional :: indent

integer, intent(out), optional :: rc

DESCRIPTION:

Print ESMF_Info contents in JSON format.

The arguments are:

1010

info Target ESMF_Info object.

[indent] Default is 0. Specify a "pretty print" indentation for the JSON output string.

[preString] Optionally prepended string. Default to empty string.

[unit] Internal unit, i.e. a string. Default to printing to stdout.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

39.4.22 ESMF_InfoReadJSON - Read JSON data from file

INTERFACE:

function ESMF_InfoReadJSON(filename, rc) result(info_r)

ARGUMENTS:

character(len=*), intent(in) :: filename

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

RETURN VALUE:

type(ESMF_Info) :: info_r

DESCRIPTION:

Read JSON data from a file and return a new ESMF_Info object.

The arguments are:

filename Path to the input file.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

39.4.23 ESMF_InfoRemove - Remove a key-value pair from an Info object

INTERFACE:

subroutine ESMF_InfoRemove(info, keyParent, keyChild, attnestflag, rc)

ARGUMENTS:

1011

type(ESMF_Info), intent(inout) :: info

character(len=*), intent(in) :: keyParent

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character(len=*), intent(in), optional :: keyChild

type(ESMF_AttNest_Flag), intent(in), optional :: attnestflag

integer, intent(out), optional :: rc

DESCRIPTION:

Remove a key-value pair from an ESMF_Info object.

The arguments are:

info Target ESMF_Info object.

keyParent String key to identify the parent location for the removal. If no keyChild is specified, then the root location
is assumed. See section 39.2 for an overview of the key format.

[keyChild] String key to identify the value for the removal. This may not be a path.

[attnestflag] Setting to ESMF_ATTNEST_ON triggers a recursive search for keyParent. The first instance of the key
will be found in the hierarchy. Default is ESMF_ATTNEST_OFF.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

39.4.24 ESMF_InfoSet - Set a value

INTERFACE:

subroutine ESMF_InfoSet(info, key, value, force, idx, pkey, rc)

ARGUMENTS:

type(ESMF_Info), intent(inout) :: info

character(len=*), intent(in) :: key

<value>, see below for supported value

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: force

integer, intent(in), optional :: idx

character(len=*), intent(in), optional :: pkey

integer, intent(out), optional :: rc

DESCRIPTION:

Set a value in an ESMF_Info object using a key.

Overloaded value for the following types:

• integer(kind=ESMF_KIND_I4)

1012

• integer(kind=ESMF_KIND_I8)

• real(kind=ESMF_KIND_R4)

• real(kind=ESMF_KIND_R8)

• logical

• character(:)

The arguments are:

info Target ESMF_Info object.

key String key to access in ESMF_Info storage. See section 39.2 for an overview of the key format.

value The input value associated with the key.

[force] Default is true. When true, insert the key even if it already exists in storage. If false, rc will not return
ESMF_SUCCESS if the key already exists.

[idx] An integer index to set if the target key’s value is a list.

[pkey] Use this key’s location as the origin for the set call.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

39.4.25 ESMF_InfoSet - Set a key to the contents of an Info object

INTERFACE:

! Private name; call using ESMF_InfoSet

subroutine ESMF_InfoSetINFO(info, key, value, force, rc)

ARGUMENTS:

type(ESMF_Info), intent(inout) :: info

character(len=*), intent(in) :: key

type(ESMF_Info), intent(in) :: value

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: force

integer, intent(out), optional :: rc

DESCRIPTION:

Set a value to the contents of an ESMF_Info object. A copy of the source contents is made.

The arguments are:

info Target ESMF_Info object.

key String key to access in ESMF_Info storage. See section 39.2 for an overview of the key format.

1013

value The ESMF_Info object to use as source data.

[force] Default is true. When true, insert the key even if it already exists in storage. If false, rc will not return
ESMF_SUCCESS if the key already exists.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

39.4.26 ESMF_InfoSet - Set a value list

INTERFACE:

subroutine ESMF_InfoSet(info, key, values, force, pkey, rc)

ARGUMENTS:

type(ESMF_Info), intent(inout) :: info

character(len=*), intent(in) :: key

<values>, see below for supported values

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: force

character(len=*), intent(in), optional :: pkey

integer, intent(out), optional :: rc

DESCRIPTION:

Set a value list in an ESMF_Info object using a key. List values are initialized to null.

Overloaded values for the following types:

• integer(kind=ESMF_KIND_I4), dimension(:)

• integer(kind=ESMF_KIND_I8), dimension(:)

• real(kind=ESMF_KIND_R4), dimension(:)

• real(kind=ESMF_KIND_R8), dimension(:)

• logical, dimension(:)

• character(:), dimension(:)

The arguments are:

info Target ESMF_Info object.

key String key to access in ESMF_Info storage. See section 39.2 for an overview of the key format.

values The input value list associated with the key.

[force] Default is true. When true, insert the key even if it already exists in storage. If false, rc will not return
ESMF_SUCCESS if the key already exists.

1014

[pkey] Use this key’s location as the origin for the set call. Used primarily for recursive requirements related to
ESMF_Attribute.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

39.4.27 ESMF_InfoSetNULL - Set a value to null

INTERFACE:

subroutine ESMF_InfoSetNULL(info, key, force, rc)

ARGUMENTS:

type(ESMF_Info), intent(inout) :: info

character(len=*), intent(in) :: key

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: force

integer, intent(out), optional :: rc

DESCRIPTION:

Set a value to null [7].

The arguments are:

info Target ESMF_Info object.

key String key to access in ESMF_Info storage. See section 39.2 for an overview of the key format.

[force] Default is true. When true, insert the key even if it already exists in storage. If false, rc will not return
ESMF_SUCCESS if the key already exists.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

39.4.28 ESMF_InfoSync - Synchronize Info contents across a VM

INTERFACE:

subroutine ESMF_InfoSync(host, rootPet, vm, markClean, &

rc)

ARGUMENTS:

1015

type(ESMF_*), intent(inout) :: host

integer, intent(in) :: rootPet

type(ESMF_VM), intent(in) :: vm

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: markClean

integer, intent(out), optional :: rc

DESCRIPTION:

Synchronize ESMF_Info contents collectively across the current VM. Contents on the rootPet are set as the contents
on matching objects sharing the VM. An attempt is made to optimize by only communicating updated contents (i.e.
something set or modified). This subroutine will traverse the ESMF object hierarchy associated with host (i.e. Arrays
in an ArrayBundle, Fields in a FieldBundle, etc.).

Users interested in broadcasting only the ESMF_Info object should consult the ESMF_InfoBroadcast docu-
mentation 39.4.4.

The arguments are:

host Target ESMF object. Overloaded for:

• ESMF_State

• ESMF_CplComp

• ESMF_GridComp

• ESMF_SciComp

• ESMF_Field

• ESMF_FieldBundle

rootPet The root PET to use for the synchronization.

vm The VM to synchronize across.

[markClean] Default is false. If true, mark changed ESMF_Info contents as clean once synchronized. These
contents will no longer be broadcast in consecutive calls to ESMF_InfoSync.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

39.4.29 ESMF_InfoUpdate - Update the contents of an Info object

INTERFACE:

subroutine ESMF_InfoUpdate(lhs, rhs, recursive, overwrite, rc)

ARGUMENTS:

type(ESMF_Info), intent(inout) :: lhs

type(ESMF_Info), intent(in) :: rhs

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: recursive

logical, intent(in), optional :: overwrite

integer, intent(out), optional :: rc

1016

DESCRIPTION:

Update the contents of lhs using the contents of rhs. The operation inserts or overwrites any key in lhs if it exists in
rhs. Otherwise, the contents of lhs is left unaltered. See the JSON documentation for implementation details [10]. If
recursive is .true. (default is .false.), nested objects will be updated by their component key/values. Otherwise,
the first instance or top-level key is replaced without the child contents being updated element-by-element.

The arguments are:

lhs The ESMF_Info object to update.

rhs The ESMF_Info object whose contents are used to update lhs.

[recursive] Default is .false.. If .true., descend into nested objects and recursively update the contents.

[overwrite] Default is .false.. If .true., key-values that exist in lhs will be overwritten by key-values in rhs.
Flag is only applicable when recursive is .true..

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

39.4.30 ESMF_InfoWriteJSON - Write Info contents to file

INTERFACE:

subroutine ESMF_InfoWriteJSON(info, filename, rc)

ARGUMENTS:

type(ESMF_Info), intent(in) :: info

character(len=*), intent(in) :: filename

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Write ESMF_Info contents to file using the JSON format.

The arguments are:

info Target ESMF_Info object.

filename Path to the output file.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

40 Time Manager Utility

The ESMF Time Manager utility includes software for time and date representation and calculations, model time

advancement, and the identification of unique and periodic events. Since multi-component geophysical applications

often require synchronization across the time management schemes of the individual components, the Time Manager’s

standard calendars and consistent time representation promote component interoperability.

1017

Key Features

Drift-free timekeeping through an integer-based internal time representation. Both integers and reals can be

specified at the interface.

The ability to represent time as a rational fraction, to support exact timekeeping in applications that involve

grid refinement.

Support for many calendar kinds, including user-customized calendars.

Support for both concurrent and sequential modes of component execution.

Support for varying and negative time steps.

40.1 Time Manager Classes

There are five ESMF classes that represent time concepts:

• Calendar A Calendar can be used to keep track of the date as an ESMF Gridded Component advances in time.

Standard calendars (such as Gregorian and 360-day) and user-specified calendars are supported. Calendars can

be queried for quantities such as seconds per day, days per month, and days per year.

• Time A Time represents a time instant in a particular calendar, such as November 28, 1964, at 7:31pm EST in

the Gregorian calendar. The Time class can be used to represent the start and stop time of a time integration.

• TimeInterval TimeIntervals represent a period of time, such as 300 milliseconds. Time steps can be represented

using TimeIntervals.

• Clock Clocks collect the parameters and methods used for model time advancement into a convenient package.

A Clock can be queried for quantities such as start time, stop time, current time, and time step. Clock methods

include incrementing the current time, and determining if it is time to stop.

• Alarm Alarms identify unique or periodic events by “ringing” - returning a true value - at specified times. For

example, an Alarm might be set to ring on the day of the year when leaves start falling from the trees in a climate

model.

August 2003

S
 M
 T
 W
 T
 F
 S

1
 2

3
 4
 5
 6
 7
 8
 9

10
 11
 12
 13
 14
 15
 16

17
 18
 19
 20
 21
 22
 23

24
 25
 26
 27
 28
 29
 30

31

The ESMF Time Manager utility includes software to manage model calendars, advance

model time, and perform time and date calculations. The software classes that handle

these functions are
 Times
,
TimeIntervals
,
Clocks
,
Alarms
, and
Calendars
.

1018

In the remainder of this section, we briefly summarize the functionality that the Time Manager classes provide. De-

tailed descriptions and usage examples precede the API listing for each class.

40.2 Calendar

An ESMF Calendar can be queried for seconds per day, days per month and days per year. The flexible definition of

Calendars allows them to be defined for planetary bodies other than Earth. The set of supported calendars includes:

Gregorian The standard Gregorian calendar.

no-leap The Gregorian calendar with no leap years.

Julian The standard Julian date calendar.

Julian Day The standard Julian days calendar.

Modified Julian Day The Modified Julian days calendar.

360-day A 30-day-per-month, 12-month-per-year calendar.

no calendar Tracks only elapsed model time in hours, minutes, seconds.

See Section 41.1 for more details on supported standard calendars, and how to create a customized ESMF Calendar.

40.3 Time Instants and TimeIntervals

TimeIntervals and Time instants (simply called Times) are the computational building blocks of the Time Manager

utility. TimeIntervals support operations such as add, subtract, compare size, reset value, copy value, and subdivide

by a scalar. Times, which are moments in time associated with specific Calendars, can be incremented or decremented

by TimeIntervals, compared to determine which of two Times is later, differenced to obtain the TimeInterval between

two Times, copied, reset, and manipulated in other useful ways. Times support a host of different queries, both for

values of individual Time components such as year, month, day, and second, and for derived values such as day of

year, middle of current month and Julian day. It is also possible to retrieve the value of the hardware realtime clock in

the form of a Time. See Sections 42.1 and 43.1, respectively, for use and examples of Times and TimeIntervals.

Since climate modeling, numerical weather prediction and other Earth and space applications have widely varying time

scales and require different sorts of calendars, Times and TimeIntervals must support a wide range of time specifiers,

spanning nanoseconds to years. The interfaces to these time classes are defined so that the user can specify a time

using a combination of units selected from the list shown in Table 40.4.

40.4 Clocks and Alarms

Although it is possible to repeatedly step a Time forward by a TimeInterval using arithmetic on these basic types, it is

useful to identify a higher-level concept to represent this function. We refer to this capability as a Clock, and include

in its required features the ability to store the start and stop times of a model run, to check when time advancement

should cease, and to query the value of quantities such as the current time and the time at the previous time step. The

Time Manager includes a class with methods that return a true value when a periodic or unique event has taken place;

we refer to these as Alarms. Applications may contain temporary or multiple Clocks and Alarms. Sections 44.1 and

45.1 describe the use of Clocks and Alarms in detail.

1019

Table 4: Specifiers for Times and TimeIntervals

Unit Meaning

<yy|yy_i8> Year.

mm Month of the year.

dd Day of the month.

<d|d_i8|d_r8> Julian or Modified Julian day.

<h|h_r8> Hour.

<m|m_r8> Minute.

<s|s_i8|s_r8> Second.

<ms|ms_r8> Millisecond.

<us|us_r8> Microsecond.

<ns|ns_r8> Nanosecond.

O Time zone offset in integer number of hours and minutes.

<sN|sN_i8> Numerator for times of the form s + sN

sD
, where s is seconds and

s, sN, and sD are integers. This format provides a mechanism

for supporting exact behavior.

<sD|sD_i8 Denominator for times of the form s + sN

sD
, where s is seconds

and s, sN, and sD are integers.

40.5 Design and Implementation Notes

1. Base TimeIntervals and Times on the same integer representation. It is useful to allow both TimeIntervals

and Times to inherit from a single class, BaseTime. In C++, this can be implemented by using inheritance.

In Fortran, it can be implemented by having the derived types TimeIntervals and Times contain a derived type

BaseTime. In both cases, the BaseTime class can be made private and invisible to the user.

The result of this strategy is that Time Intervals and Times gain a consistent core representation of time as well

a set of basic methods.

The BaseTime class can be designed with a minimum number of elements to represent any required time. The

design is based on the idea used in the real-time POSIX 1003.1b-1993 standard. That is, to represent time simply

as a pair of integers: one for seconds (whole) and one for nanoseconds (fractional). These can then be converted

at the interface level to any desired format.

For ESMF, this idea can be modified and extended, in order to handle the requirements for a large time range

(> 200,000 years) and to exactly represent any rational fraction, not just nanoseconds. To handle the large time

range, a 64-bit or greater integer is used for whole seconds. Any rational fractional second is expressed using

two additional integers: a numerator and a denominator. Both the whole seconds and fractional numerator are

signed to handle negative time intervals and instants. For arithmetic consistency both must carry the same sign

(both positive or both negative), except, of course, for zero values. The fractional seconds element (numerator)

is bounded with respect to whole seconds. If the absolute value of the numerator becomes greater than or equal

to the denominator, whole seconds are incremented or decremented accordingly and the numerator is reset to

the remainder. Conversions are performed upon demand by interface methods within the TimeInterval and Time

classes. This is done because different applications require different representations of time intervals and time

instances. Floating point values as well as integers can be specified for the various time units in the interfaces,

see Table 40.4. Floating point values are represented internally as integer-based rational fractions.

The BaseTime class defines increment and decrement methods for basic TimeInterval calculations between

Time instants. It is done here rather than in the Calendar class because it can be done with simple second-based

1020

arithmetic that is calendar independent.

Comparison methods can also be defined in the BaseTime class. These perform equality/inequality, less than,

and greater than comparisons between any two TimeIntervals or Times. These methods capture the common

comparison logic between TimeIntervals and Times and hence are defined here for sharing.

2. The Time class depends on a calendar. The Time class contains an internal Calendar class. Upon demand by

a user, the results of an increment or decrement operation are converted to user units, which may be calendar-

dependent, via methods obtained from their internal Calendar.

1021

40.6 Object Model

The following is a simplified UML diagram showing the structure of the Time Manager utility. See Appendix A, A

Brief Introduction to UML, for a translation table that lists the symbols in the diagram and their meaning.

Alarm

Clock
TimeInterval
 Time
Time

Time
BaseTime

Time
Calendar

0..n

0..n

2
 2

0..n

0..n

1

0..n
 0..n

5
 1

0..n

1022

41 Calendar Class

41.1 Description

The Calendar class represents the standard calendars used in geophysical modeling: Gregorian, Julian, Julian Day,

Modified Julian Day, no-leap, 360-day, and no-calendar. It also supports a user-customized calendar. Brief descriptions

are provided for each calendar below. For more information on standard calendars, see [33] and [29].

41.2 Constants

41.2.1 ESMF_CALKIND

DESCRIPTION:

Supported calendar kinds.

The type of this flag is:

type(ESMF_CalKind_Flag)

The valid values are:

ESMF_CALKIND_360DAY Valid range: machine limits

In the 360-day calendar, there are 12 months, each of which has 30 days. Like the no-leap calendar, this is a

simple approximation to the Gregorian calendar sometimes used by modelers.

ESMF_CALKIND_CUSTOM Valid range: machine limits

The user can set calendar parameters in the generic calendar.

ESMF_CALKIND_GREGORIAN Valid range: 3/1/4801 BC to 10/29/292,277,019,914

The Gregorian calendar is the calendar currently in use throughout Western countries. Named after Pope Gre-

gory XIII, it is a minor correction to the older Julian calendar. In the Gregorian calendar every fourth year is a

leap year in which February has 29 and not 28 days; however, years divisible by 100 are not leap years unless

they are also divisible by 400. As in the Julian calendar, days begin at midnight.

ESMF_CALKIND_JULIAN Valid range: 3/1/4713 BC to 4/24/292,271,018,333

The Julian calendar was introduced by Julius Caesar in 46 B.C., and reached its final form in 4 A.D. The Julian

calendar differs from the Gregorian only in the determination of leap years, lacking the correction for years

divisible by 100 and 400 in the Gregorian calendar. In the Julian calendar, any year is a leap year if divisible by

4. Days are considered to begin at midnight.

ESMF_CALKIND_JULIANDAY Valid range: +/- 1x1014

Julian days simply enumerate the days and fraction of a day which have elapsed since the start of the Julian

era, defined as beginning at noon on Monday, 1st January of year 4713 B.C. in the Julian calendar. Julian days,

unlike the dates in the Julian and Gregorian calendars, begin at noon.

ESMF_CALKIND_MODJULIANDAY Valid range: +/- 1x1014

The Modified Julian Day (MJD) was introduced by space scientists in the late 1950’s. It is defined as an offset

from the Julian Day (JD):

MJD = JD - 2400000.5

The half day is subtracted so that the day starts at midnight.

1023

ESMF_CALKIND_NOCALENDAR Valid range: machine limits

The no-calendar option simply tracks the elapsed model time in seconds.

ESMF_CALKIND_NOLEAP Valid range: machine limits

The no-leap calendar is the Gregorian calendar with no leap years - February is always assumed to have 28 days.

Modelers sometimes use this calendar as a simple, close approximation to the Gregorian calendar.

41.3 Use and Examples

In most multi-component Earth system applications, the timekeeping in each component must refer to the same stan-

dard calendar in order for the components to properly synchronize. It therefore makes sense to create as few ESMF

Calendars as possible, preferably one per application. A typical strategy would be to create a single Calendar at the

start of an application, and use that Calendar in all subsequent calls that accept a Calendar, such as ESMF_TimeSet.

The following example shows how to set up an ESMF Calendar.

! !PROGRAM: ESMF_CalendarEx - Calendar creation examples

!

! !DESCRIPTION:

!

! This program shows examples of how to create different calendar kinds

!---

#include "ESMF.h"

! ESMF Framework module

use ESMF

use ESMF_TestMod

implicit none

! instantiate calendars

type(ESMF_Calendar) :: gregorianCalendar

type(ESMF_Calendar) :: julianDayCalendar

type(ESMF_Calendar) :: marsCalendar

! local variables for Get methods

integer :: sols

integer(ESMF_KIND_I8) :: dl

type(ESMF_Time) :: time, marsTime

type(ESMF_TimeInterval) :: marsTimeStep

! return code

integer:: rc

! initialize ESMF framework

call ESMF_Initialize(defaultlogfilename="CalendarEx.Log", &

logkindflag=ESMF_LOGKIND_MULTI, rc=rc)

41.3.1 Calendar creation

This example shows how to create three ESMF_Calendars.

1024

! create a Gregorian calendar

gregorianCalendar = ESMF_CalendarCreate(ESMF_CALKIND_GREGORIAN, &

name="Gregorian", rc=rc)

! create a Julian Day calendar

julianDayCalendar = ESMF_CalendarCreate(ESMF_CALKIND_JULIANDAY, &

name="JulianDay", rc=rc)

! create a Custom calendar for the planet Mars

! 1 Mars solar day = 24 hours, 39 minutes, 35 seconds = 88775 seconds

! 1 Mars solar year = 668.5921 Mars solar days = 668 5921/10000 sols/year

! http://www.giss.nasa.gov/research/briefs/allison_02

! http://www.giss.nasa.gov/tools/mars24/help/notes.html

marsCalendar = ESMF_CalendarCreate(secondsPerDay=88775, &

daysPerYear=668, &

daysPerYearDn=5921, &

daysPerYearDd=10000, &

name="MarsCalendar", rc=rc)

41.3.2 Calendar comparison

This example shows how to compare an ESMF_Calendar with a known calendar kind.

! compare calendar kind against a known type

if (gregorianCalendar == ESMF_CALKIND_GREGORIAN) then

print *, "gregorianCalendar is of type ESMF_CALKIND_GREGORIAN."

else

print *, "gregorianCalendar is not of type ESMF_CALKIND_GREGORIAN."

end if

41.3.3 Time conversion between Calendars

This example shows how to convert a time from one ESMF_Calendar to another.

call ESMF_TimeSet(time, yy=2004, mm=4, dd=17, &

calendar=gregorianCalendar, rc=rc)

! switch time’s calendar to perform conversion

call ESMF_TimeSet(time, calendar=julianDayCalendar, rc=rc)

call ESMF_TimeGet(time, d_i8=dl, rc=rc)

print *, "Gregorian date 2004/4/17 is ", dl, &

" days in the Julian Day calendar."

1025

41.3.4 Add a time interval to a time on a Calendar

This example shows how to increment a time using a custom ESMF_Calendar.

! Set a time to Mars solar year 3, sol 100

call ESMF_TimeSet(marsTime, yy=3, d=100, &

calendar=marsCalendar, rc=rc)

! Set a 1 solar year time step

call ESMF_TimeIntervalSet(marsTimeStep, yy=1, rc=rc)

! Perform the increment

marsTime = marsTime + marsTimeStep

! Get the result in sols (2774 = (3+1)*668.5921 + 100)

call ESMF_TimeGet(marsTime, d=sols, rc=rc)

print *, "For Mars, 3 solar years, 100 sols + 1 solar year = ", &

sols, "sols."

41.3.5 Calendar destruction

This example shows how to destroy three ESMF_Calendars.

call ESMF_CalendarDestroy(julianDayCalendar, rc=rc)

call ESMF_CalendarDestroy(gregorianCalendar, rc=rc)

call ESMF_CalendarDestroy(marsCalendar, rc=rc)

! finalize ESMF framework

call ESMF_Finalize(rc=rc)

end program ESMF_CalendarEx

41.4 Restrictions and Future Work

1. Months per year set to 12. Due to the requirement of only Earth modeling, the number of months per

year is hard-coded at 12. However, for easy modification, this is implemented via a C preprocessor #define

MONTHS_PER_YEAR in ESMCI_Calendar.h.

1026

2. Calendar date conversions. Date conversions are currently defined between the Gregorian, Julian, Julian Day,

and Modified Julian Day calendars. Further research and work would need to be done to determine conversion

algorithms with and between the other calendars: No Leap, 360 Day, and Custom.

3. ESMF_CALKIND_CUSTOM. Currently, there is no provision for a custom calendar to define a leap year

rule, so ESMF_CalendarIsLeapYear() will always return .false. in this case. However, the

arguments daysPerYear, daysPerYearDn, and daysPerYearDd in ESMF_CalendarCreate()

and ESMF_CalendarSet() can be used to set a fractional number of days per year, for example,

365.25 = 365 25/100. Also, if further timekeeping precision is required, fractional and/or floating point

secondsPerDay and secondsPerYear could be added to the interfaces ESMF_CalendarCreate(),

ESMF_CalendarSet(), and ESMF_CalendarGet() and implemented.

41.5 Class API

41.5.1 ESMF_CalendarAssignment(=) - Assign a Calendar to another Calendar

INTERFACE:

interface assignment(=)

calendar1 = calendar2

ARGUMENTS:

type(ESMF_Calendar) :: calendar1

type(ESMF_Calendar) :: calendar2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Assign calendar1 as an alias to the same ESMF_Calendar object in memory as calendar2. If calendar2
is invalid, then calendar1 will be equally invalid after the assignment.

The arguments are:

calendar1 The ESMF_Calendar object on the left hand side of the assignment.

calendar2 The ESMF_Calendar object on the right hand side of the assignment.

41.5.2 ESMF_CalendarOperator(==) - Test if Calendar argument 1 is equal to Calendar argument 2

INTERFACE:

1027

interface operator(==)

if (<calendar argument 1> == <calendar argument 2>) then ... endif

OR

result = (<calendar argument 1> == <calendar argument 2>)

RETURN VALUE:

logical :: result

ARGUMENTS:

<calendar argument 1>, see below for supported values

<calendar argument 2>, see below for supported values

DESCRIPTION:

Overloads the (==) operator for the ESMF_Calendar class. Compare an ESMF_Calendar object or
ESMF_CalKind_Flag with another calendar object or calendar kind for equality. Return .true. if equal,
.false. otherwise. Comparison is based on calendar kind, which is a property of a calendar object.

If both arguments are ESMF_Calendar objects, and both are of type ESMF_CALKIND_CUSTOM, then all the cal-
endar’s properties, except name, are compared.

If both arguments are ESMF_Calendar objects, and either of them is not in the ESMF_INIT_CREATED status, an
error will be logged. However, this does not affect the return value, which is .true. when both arguments are in the
same status, and .false. otherwise.

If one argument is an ESMF_Calendar object, and the other is an ESMF_CalKind_Flag, and the calendar object
is not in the ESMF_INIT_CREATED status, an error will be logged and .false. will be returned.

Supported values for <calendar argument 1> are:

type(ESMF_Calendar), intent(in) :: calendar1

type(ESMF_CalKind_Flag), intent(in) :: calkindflag1

Supported values for <calendar argument 2> are:

type(ESMF_Calendar), intent(in) :: calendar2

type(ESMF_CalKind_Flag), intent(in) :: calkindflag2

The arguments are:

<calendar argument 1> The ESMF_Calendar object or ESMF_CalKind_Flag on the left hand side of the
equality operation.

<calendar argument 2> The ESMF_Calendar object or ESMF_CalKind_Flag on the right hand side of the
equality operation.

1028

41.5.3 ESMF_CalendarOperator(/=) - Test if Calendar argument 1 is not equal to Calendar argument 2

INTERFACE:

interface operator(/=)

if (<calendar argument 1> /= <calendar argument 2>) then ... endif

OR

result = (<calendar argument 1> /= <calendar argument 2>)

RETURN VALUE:

logical :: result

ARGUMENTS:

<calendar argument 1>, see below for supported values

<calendar argument 2>, see below for supported values

DESCRIPTION:

Overloads the (/=) operator for the ESMF_Calendar class. Compare a ESMF_Calendar object or
ESMF_CalKind_Flag with another calendar object or calendar kind for inequality. Return .true. if not equal,
.false. otherwise. Comparison is based on calendar kind, which is a property of a calendar object.

If both arguments are ESMF_Calendar objects, and both are of type ESMF_CALKIND_CUSTOM, then all the cal-
endar’s properties, except name, are compared.

If both arguments are ESMF_Calendar objects, and either of them is not in the ESMF_INIT_CREATED status, an
error will be logged. However, this does not affect the return value, which is .true. when both arguments are not in
the same status, and .false. otherwise.

If one argument is an ESMF_Calendar object, and the other is an ESMF_CalKind_Flag, and the calendar object
is not in the ESMF_INIT_CREATED status, an error will be logged and .true. will be returned.

Supported values for <calendar argument 1> are:

type(ESMF_Calendar), intent(in) :: calendar1

type(ESMF_CalKind_Flag), intent(in) :: calkindflag1

Supported values for <calendar argument 2> are:

type(ESMF_Calendar), intent(in) :: calendar2

type(ESMF_CalKind_Flag), intent(in) :: calkindflag2

The arguments are:

<calendar argument 1> The ESMF_Calendar object or ESMF_CalKind_Flag on the left hand side of the non-
equality operation.

<calendar argument 2> The ESMF_Calendar object or ESMF_CalKind_Flag on the right hand side of the
non-equality operation.

1029

41.5.4 ESMF_CalendarCreate - Create a new ESMF Calendar of built-in type

INTERFACE:

! Private name; call using ESMF_CalendarCreate()

function ESMF_CalendarCreateBuiltIn(calkindflag, &

name, rc)

RETURN VALUE:

type(ESMF_Calendar) :: ESMF_CalendarCreateBuiltIn

ARGUMENTS:

type(ESMF_CalKind_Flag), intent(in) :: calkindflag

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Creates and sets a calendar to the given built-in ESMF_CalKind_Flag.

The arguments are:

calkindflag The built-in ESMF_CalKind_Flag. Valid values are:
ESMF_CALKIND_360DAY,
ESMF_CALKIND_GREGORIAN,
ESMF_CALKIND_JULIAN,
ESMF_CALKIND_JULIANDAY,
ESMF_CALKIND_MODJULIANDAY,
ESMF_CALKIND_NOCALENDAR,
and ESMF_CALKIND_NOLEAP.
See Section 41.2 for a description of each calendar kind.

[name] The name for the newly created calendar. If not specified, a default unique name will be generated: "Calen-
darNNN" where NNN is a unique sequence number from 001 to 999.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

1030

41.5.5 ESMF_CalendarCreate - Create a copy of an ESMF Calendar

INTERFACE:

! Private name; call using ESMF_CalendarCreate()

function ESMF_CalendarCreateCopy(calendar, rc)

RETURN VALUE:

type(ESMF_Calendar) :: ESMF_CalendarCreateCopy

ARGUMENTS:

type(ESMF_Calendar), intent(in) :: calendar

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Creates a complete (deep) copy of a given ESMF_Calendar.

The arguments are:

calendar The ESMF_Calendar to copy.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

41.5.6 ESMF_CalendarCreate - Create a new custom ESMF Calendar

INTERFACE:

! Private name; call using ESMF_CalendarCreate()

function ESMF_CalendarCreateCustom(&

daysPerMonth, secondsPerDay, &

daysPerYear, daysPerYearDn, daysPerYearDd, name, rc)

RETURN VALUE:

1031

type(ESMF_Calendar) :: ESMF_CalendarCreateCustom

ARGUMENTS:

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: daysPerMonth(:)

integer(ESMF_KIND_I4), intent(in), optional :: secondsPerDay

integer(ESMF_KIND_I4), intent(in), optional :: daysPerYear

integer(ESMF_KIND_I4), intent(in), optional :: daysPerYearDn

integer(ESMF_KIND_I4), intent(in), optional :: daysPerYearDd

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

DESCRIPTION:

Creates a custom ESMF_Calendar and sets its properties.

The arguments are:

[daysPerMonth] Integer array of days per month, for each month of the year. The number of months per year is
variable and taken from the size of the array. If unspecified, months per year = 0, with the days array undefined.

[secondsPerDay] Integer number of seconds per day. Defaults to 0 if not specified.

[daysPerYear] Integer number of days per year. Use with daysPerYearDn and daysPerYearDd (see below) to specify
a days-per-year calendar for any planetary body. Default = 0.

[daysPerYearDn] Integer numerator portion of fractional number of days per year (daysPerYearDn/daysPerYearDd).
Use with daysPerYear (see above) and daysPerYearDd (see below) to specify a days-per-year calendar for any
planetary body. Default = 0.

[daysPerYearDd] Integer denominator portion of fractional number of days per year
(daysPerYearDn/daysPerYearDd). Use with daysPerYear and daysPerYearDn (see above) to specify a
days-per-year calendar for any planetary body. Default = 1.

[name] The name for the newly created calendar. If not specified, a default unique name will be generated: "Calen-
darNNN" where NNN is a unique sequence number from 001 to 999.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

41.5.7 ESMF_CalendarDestroy - Release resources associated with a Calendar

INTERFACE:

subroutine ESMF_CalendarDestroy(calendar, rc)

ARGUMENTS:

1032

type(ESMF_Calendar), intent(inout) :: calendar

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Releases resources associated with this ESMF_Calendar.

The arguments are:

calendar Release resources associated with this ESMF_Calendar and mark the object as invalid. It is an error to
pass this object into any other routines after being destroyed.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

41.5.8 ESMF_CalendarGet - Get Calendar properties

INTERFACE:

subroutine ESMF_CalendarGet(calendar, &

name, calkindflag, daysPerMonth, monthsPerYear, &

secondsPerDay, secondsPerYear, &

daysPerYear, daysPerYearDn, daysPerYearDd, rc)

ARGUMENTS:

type(ESMF_Calendar), intent(in) :: calendar

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_CalKind_Flag),intent(out), optional :: calkindflag

integer, intent(out), optional :: daysPerMonth(:)

integer, intent(out), optional :: monthsPerYear

integer(ESMF_KIND_I4), intent(out), optional :: secondsPerDay

integer(ESMF_KIND_I4), intent(out), optional :: secondsPerYear

integer(ESMF_KIND_I4), intent(out), optional :: daysPerYear

integer(ESMF_KIND_I4), intent(out), optional :: daysPerYearDn

integer(ESMF_KIND_I4), intent(out), optional :: daysPerYearDd

character (len=*), intent(out), optional :: name

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

1033

DESCRIPTION:

Gets one or more of an ESMF_Calendar’s properties.

The arguments are:

calendar The object instance to query.

[calkindflag] The CalKind_Flag ESMF_CALKIND_GREGORIAN, ESMF_CALKIND_JULIAN, etc.

[daysPerMonth] Integer array of days per month, for each month of the year.

[monthsPerYear] Integer number of months per year; the size of the daysPerMonth array.

[secondsPerDay] Integer number of seconds per day.

[secondsPerYear] Integer number of seconds per year.

[daysPerYear] Integer number of days per year. For calendars with intercalations, daysPerYear is the number of days
for years without an intercalation. For other calendars, it is the number of days in every year.

[daysPerYearDn] Integer fractional number of days per year (numerator). For calendars with intercalations,
daysPerYearDn/daysPerYearDd is the average fractional number of days per year (e.g. 25/100 for Julian 4-
year intercalation). For other calendars, it is zero.

[daysPerYearDd] Integer fractional number of days per year (denominator). See daysPerYearDn above.

[name] The name of this calendar.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

41.5.9 ESMF_CalendarIsCreated - Check whether a Calendar object has been created

INTERFACE:

function ESMF_CalendarIsCreated(calendar, rc)

RETURN VALUE:

logical :: ESMF_CalendarIsCreated

ARGUMENTS:

type(ESMF_Calendar), intent(in) :: calendar

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Return .true. if the calendar has been created. Otherwise return .false.. If an error occurs, i.e. rc /=

ESMF_SUCCESS is returned, the return value of the function will also be .false..

The arguments are:

1034

calendar ESMF_Calendar queried.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

41.5.10 ESMF_CalendarIsLeapYear - Determine if given year is a leap year

INTERFACE:

! Private name; call using ESMF_CalendarIsLeapYear()

function ESMF_CalendarIsLeapYear<kind>(calendar, yy, rc)

RETURN VALUE:

logical :: ESMF_CalendarIsLeapYear<kind>

ARGUMENTS:

type(ESMF_Calendar), intent(in) :: calendar

integer(ESMF_KIND_<kind>), intent(in) :: yy

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Returns .true. if the given year is a leap year within the given calendar, and .false. otherwise. Custom
calendars do not define leap years, so .false. will always be returned in this case; see Section 41.4. See also
ESMF_TimeIsLeapYear().

The arguments are:

calendar ESMF_Calendar to determine leap year within.

yy Year to check for leap year. The type is integer and the <kind> can be either I4 or I8: ESMF_KIND_I4 or
ESMF_KIND_I8.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

41.5.11 ESMF_CalendarPrint - Print Calendar information

INTERFACE:

1035

subroutine ESMF_CalendarPrint(calendar, options, rc)

ARGUMENTS:

type(ESMF_Calendar), intent(in) :: calendar

character (len=*), intent(in), optional :: options

integer, intent(out), optional :: rc

DESCRIPTION:

Prints out an ESMF_Calendar’s properties to stdio, in support of testing and debugging. The options control the
type of information and level of detail.

The arguments are:

calendar ESMF_Calendar to be printed out.

[options] Print options. If none specified, prints all calendar property values.
"calkindflag" - print the calendar’s type (e.g. ESMF_CALKIND_GREGORIAN).
"daysPerMonth" - print the array of number of days for each month.
"daysPerYear" - print the number of days per year (integer and fractional parts).
"monthsPerYear" - print the number of months per year.
"name" - print the calendar’s name.
"secondsPerDay" - print the number of seconds in a day.
"secondsPerYear" - print the number of seconds in a year.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

41.5.12 ESMF_CalendarSet - Set a Calendar to a built-in type

INTERFACE:

! Private name; call using ESMF_CalendarSet()

subroutine ESMF_CalendarSetBuiltIn(calendar, calkindflag, &

name, rc)

ARGUMENTS:

type(ESMF_Calendar), intent(inout) :: calendar

type(ESMF_CalKind_Flag), intent(in) :: calkindflag

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

1036

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Sets calendar to the given built-in ESMF_CalKind_Flag.

The arguments are:

calendar The object instance to initialize.

calkindflag The built-in CalKind_Flag. Valid values are:
ESMF_CALKIND_360DAY,
ESMF_CALKIND_GREGORIAN,
ESMF_CALKIND_JULIAN,
ESMF_CALKIND_JULIANDAY,
ESMF_CALKIND_MODJULIANDAY,
ESMF_CALKIND_NOCALENDAR,
and ESMF_CALKIND_NOLEAP.
See Section 41.2 for a description of each calendar kind.

[name] The new name for this calendar.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

41.5.13 ESMF_CalendarSet - Set properties of a custom Calendar

INTERFACE:

! Private name; call using ESMF_CalendarSet()

subroutine ESMF_CalendarSetCustom(calendar, &

daysPerMonth, secondsPerDay, &

daysPerYear, daysPerYearDn, daysPerYearDd, name, rc)

ARGUMENTS:

type(ESMF_Calendar), intent(inout) :: calendar

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: daysPerMonth(:)

integer(ESMF_KIND_I4),intent(in), optional :: secondsPerDay

integer(ESMF_KIND_I4),intent(in), optional :: daysPerYear

integer(ESMF_KIND_I4),intent(in), optional :: daysPerYearDn

integer(ESMF_KIND_I4),intent(in), optional :: daysPerYearDd

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

1037

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Sets properties in a custom ESMF_Calendar.

The arguments are:

calendar The object instance to initialize.

[daysPerMonth] Integer array of days per month, for each month of the year. The number of months per year is
variable and taken from the size of the array. If unspecified, months per year = 0, with the days array undefined.

[secondsPerDay] Integer number of seconds per day. Defaults to 0 if not specified.

[daysPerYear] Integer number of days per year. Use with daysPerYearDn and daysPerYearDd (see below) to specify
a days-per-year calendar for any planetary body. Default = 0.

[daysPerYearDn] Integer numerator portion of fractional number of days per year (daysPerYearDn/daysPerYearDd).
Use with daysPerYear (see above) and daysPerYearDd (see below) to specify a days-per-year calendar for any
planetary body. Default = 0.

[daysPerYearDd] Integer denominator portion of fractional number of days per year
(daysPerYearDn/daysPerYearDd). Use with daysPerYear and daysPerYearDn (see above) to specify a
days-per-year calendar for any planetary body. Default = 1.

[name] The new name for this calendar.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

41.5.14 ESMF_CalendarSetDefault - Set the default Calendar kind

INTERFACE:

! Private name; call using ESMF_CalendarSetDefault()

subroutine ESMF_CalendarSetDefaultKind(calkindflag, rc)

ARGUMENTS:

type(ESMF_CalKind_Flag), intent(in) :: calkindflag

integer, intent(out), optional :: rc

DESCRIPTION:

Sets the default calendar to the given type. Subsequent Time Manager operations requiring a calendar where one
isn’t specified will use the internal calendar of this type.

The arguments are:

1038

calkindflag The calendar kind to be the default.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

41.5.15 ESMF_CalendarSetDefault - Set the default Calendar

INTERFACE:

! Private name; call using ESMF_CalendarSetDefault()

subroutine ESMF_CalendarSetDefaultCal(calendar, rc)

ARGUMENTS:

type(ESMF_Calendar), intent(in) :: calendar

integer, intent(out), optional :: rc

DESCRIPTION:

Sets the default calendar to the one given. Subsequent Time Manager operations requiring a calendar where one
isn’t specified will use this calendar.

The arguments are:

calendar The object instance to be the default.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

41.5.16 ESMF_CalendarValidate - Validate a Calendar’s properties

INTERFACE:

subroutine ESMF_CalendarValidate(calendar, rc)

ARGUMENTS:

type(ESMF_Calendar), intent(in) :: calendar

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

1039

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Checks whether a calendar is valid. Must be one of the defined calendar kinds. daysPerMonth, daysPerYear,
secondsPerDay must all be greater than or equal to zero.

The arguments are:

calendar ESMF_Calendar to be validated.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

1040

42 Time Class

42.1 Description

A Time represents a specific point in time. In order to accommodate the range of time scales in Earth system applica-

tions, Times in the ESMF can be specified in many different ways, from years to nanoseconds. The Time interface is

designed so that you select one or more options from a list of time units in order to specify a Time. The options for

specifying a Time are shown in Table 40.4.

There are Time methods defined for setting and getting a Time, incrementing and decrementing a Time by a TimeIn-

terval, taking the difference between two Times, and comparing Times. Special quantities such as the middle of the

month and the day of the year associated with a particular Time can be retrieved. There is a method for returning the

Time value as a string in the ISO 8601 format YYYY-MM-DDThh:mm:ss [26].

A Time that is specified in hours, minutes, seconds, or subsecond intervals does not need to be associated with a stan-

dard calendar; a Time whose specification includes time units of a day and greater must be. The ESMF representation

of a calendar, the Calendar class, is described in Section 41.1. The ESMF_TimeSet method is used to initialize a

Time as well as associate it with a Calendar. If a Time method is invoked in which a Calendar is necessary and one

has not been set, the ESMF method will return an error condition.

In the ESMF the TimeInterval class is used to represent time periods. This class is frequently used in combination

with the Time class. The Clock class, for example, advances model time by incrementing a Time with a TimeInterval.

42.2 Use and Examples

Times are most frequently used to represent start, stop, and current model times. The following examples show how

to create, initialize, and manipulate Time.

! !PROGRAM: ESMF_TimeEx - Time initialization and manipulation examples

!

! !DESCRIPTION:

!

! This program shows examples of Time initialization and manipulation

!---

#include "ESMF.h"

! ESMF Framework module

use ESMF

use ESMF_TestMod

implicit none

! instantiate two times

type(ESMF_Time) :: time1, time2

type(ESMF_VM) :: vm

! instantiate a time interval

type(ESMF_TimeInterval) :: timeinterval1

! local variables for Get methods

integer :: YY, MM, DD, H, M, S

1041

! return code

integer:: rc

! initialize ESMF framework

call ESMF_Initialize(vm=vm, defaultCalKind=ESMF_CALKIND_GREGORIAN, &

defaultlogfilename="TimeEx.Log", &

logkindflag=ESMF_LOGKIND_MULTI, rc=rc)

42.2.1 Time initialization

This example shows how to initialize an ESMF_Time.

! initialize time1 to 2/28/2000 2:24:45

call ESMF_TimeSet(time1, yy=2000, mm=2, dd=28, h=2, m=24, s=45, rc=rc)

print *, "Time1 = "

call ESMF_TimePrint(time1, options="string", rc=rc)

42.2.2 Time increment

This example shows how to increment an ESMF_Time by an ESMF_TimeInterval.

! initialize a time interval to 2 days, 8 hours, 36 minutes, 15 seconds

call ESMF_TimeIntervalSet(timeinterval1, d=2, h=8, m=36, s=15, rc=rc)

print *, "Timeinterval1 = "

call ESMF_TimeIntervalPrint(timeinterval1, options="string", rc=rc)

! increment time1 with timeinterval1

time2 = time1 + timeinterval1

call ESMF_TimeGet(time2, yy=YY, mm=MM, dd=DD, h=H, m=M, s=S, rc=rc)

print *, "time2 = time1 + timeinterval1 = ", YY, "/", MM, "/", DD, &

" ", H, ":", M, ":", S

42.2.3 Time comparison

This example shows how to compare two ESMF_Times.

if (time2 > time1) then

print *, "time2 is larger than time1"

else

1042

print *, "time1 is smaller than or equal to time2"

endif

! finalize ESMF framework

call ESMF_Finalize(rc=rc)

end program ESMF_TimeEx

42.3 Restrictions and Future Work

1. Limits on size and resolution of Time. The limits on the size and resolution of the time representation are

based on the 64-bit integer types used. For seconds, a signed 64-bit integer will have a range of +/- 263-1, or

+/- 9,223,372,036,854,775,807. This corresponds to a maximum size of +/- (263-1)/(86400 * 365.25) or +/-

292,271,023,045 years.

For fractional seconds, a signed 64-bit integer will handle a resolution of +/- 231-1, or +/-

9,223,372,036,854,775,807 parts of a second.

42.4 Class API

42.4.1 ESMF_TimeAssignment(=) - Assign a Time to another Time

INTERFACE:

interface assignment(=)

time1 = time2

ARGUMENTS:

type(ESMF_Time) :: time1

type(ESMF_Time) :: time2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Set time1 equal to time2. This is the default Fortran assignment, which creates a complete, independent copy
of time2 as time1. If time2 is an invalid ESMF_Time object then time1 will be equally invalid after the
assignment.

The arguments are:

1043

time1 The ESMF_Time to be set.

time2 The ESMF_Time to be copied.

42.4.2 ESMF_TimeOperator(+) - Increment a Time by a TimeInterval

INTERFACE:

interface operator(+)

time2 = time1 + timeinterval

RETURN VALUE:

type(ESMF_Time) :: time2

ARGUMENTS:

type(ESMF_Time), intent(in) :: time1

type(ESMF_TimeInterval), intent(in) :: timeinterval

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Overloads the (+) operator for the ESMF_Time class to increment time1with timeinterval and return the result
as an ESMF_Time.

The arguments are:

time1 The ESMF_Time to increment.

timeinterval The ESMF_TimeInterval to add to the given ESMF_Time.

42.4.3 ESMF_TimeOperator(-) - Decrement a Time by a TimeInterval

INTERFACE:

interface operator(-)

time2 = time1 - timeinterval

1044

RETURN VALUE:

type(ESMF_Time) :: time2

ARGUMENTS:

type(ESMF_Time), intent(in) :: time1

type(ESMF_TimeInterval), intent(in) :: timeinterval

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Overloads the (-) operator for the ESMF_Time class to decrement time1 with timeinterval, and return the
result as an ESMF_Time.

The arguments are:

time1 The ESMF_Time to decrement.

timeinterval The ESMF_TimeInterval to subtract from the given ESMF_Time.

42.4.4 ESMF_TimeOperator(-) - Return the difference between two Times

INTERFACE:

interface operator(-)

timeinterval = time1 - time2

RETURN VALUE:

type(ESMF_TimeInterval) :: timeinterval

ARGUMENTS:

type(ESMF_Time), intent(in) :: time1

type(ESMF_Time), intent(in) :: time2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

1045

DESCRIPTION:

Overloads the (-) operator for the ESMF_Time class to return the difference between time1 and time2 as an
ESMF_TimeInterval. It is assumed that time1 is later than time2; if not, the resulting ESMF_TimeInterval
will have a negative value.

The arguments are:

time1 The first ESMF_Time in comparison.

time2 The second ESMF_Time in comparison.

42.4.5 ESMF_TimeOperator(==) - Test if Time 1 is equal to Time 2

INTERFACE:

interface operator(==)

if (time1 == time2) then ... endif

OR

result = (time1 == time2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_Time), intent(in) :: time1

type(ESMF_Time), intent(in) :: time2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Overloads the (==) operator for the ESMF_Time class to return .true. if time1 and time2 represent the same
instant in time, and .false. otherwise.

The arguments are:

time1 First ESMF_Time in comparison.

time2 Second ESMF_Time in comparison.

1046

42.4.6 ESMF_TimeOperator(/=) - Test if Time 1 is not equal to Time 2

INTERFACE:

interface operator(/=)

if (time1 /= time2) then ... endif

OR

result = (time1 /= time2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_Time), intent(in) :: time1

type(ESMF_Time), intent(in) :: time2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Overloads the (/=) operator for the ESMF_Time class to return .true. if time1 and time2 do not represent the
same instant in time, and .false. otherwise.

The arguments are:

time1 First ESMF_Time in comparison.

time2 Second ESMF_Time in comparison.

42.4.7 ESMF_TimeOperator(<) - Test if Time 1 is less than Time 2

INTERFACE:

interface operator(<)

if (time1 < time2) then ... endif

OR

result = (time1 < time2)

RETURN VALUE:

logical :: result

1047

ARGUMENTS:

type(ESMF_Time), intent(in) :: time1

type(ESMF_Time), intent(in) :: time2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Overloads the (<) operator for the ESMF_Time class to return .true. if time1 is earlier in time than time2, and
.false. otherwise.

The arguments are:

time1 First ESMF_Time in comparison.

time2 Second ESMF_Time in comparison.

42.4.8 ESMF_TimeOperator(<=) - Test if Time 1 is less than or equal to Time 2

INTERFACE:

interface operator(<=)

if (time1 <= time2) then ... endif

OR

result = (time1 <= time2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_Time), intent(in) :: time1

type(ESMF_Time), intent(in) :: time2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Overloads the (<=) operator for the ESMF_Time class to return .true. if time1 is earlier in time or the same time
as time2, and .false. otherwise.

The arguments are:

1048

time1 First ESMF_Time in comparison.

time2 Second ESMF_Time in comparison.

42.4.9 ESMF_TimeOperator(>) - Test if Time 1 is greater than Time 2

INTERFACE:

interface operator(>)

if (time1 > time2) then ... endif

OR

result = (time1 > time2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_Time), intent(in) :: time1

type(ESMF_Time), intent(in) :: time2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Overloads the (>) operator for the ESMF_Time class to return .true. if time1 is later in time than time2, and
.false. otherwise.

The arguments are:

time1 First ESMF_Time in comparison.

time2 Second ESMF_Time in comparison.

42.4.10 ESMF_TimeOperator(>=) - Test if Time 1 is greater than or equal to Time 2

INTERFACE:

interface operator(>=)

if (time1 >= time2) then ... endif

OR

result = (time1 >= time2)

1049

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_Time), intent(in) :: time1

type(ESMF_Time), intent(in) :: time2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Overloads the (>=) operator for the ESMF_Time class to return .true. if time1 is later in time or the same time
as time2, and .false. otherwise.

The arguments are:

time1 First ESMF_Time in comparison.

time2 Second ESMF_Time in comparison.

42.4.11 ESMF_TimeGet - Get a Time value

INTERFACE:

subroutine ESMF_TimeGet(time, &

yy, yy_i8, &

mm, dd, &

d, d_i8, &

h, m, &

s, s_i8, &

ms, us, ns, &

d_r8, h_r8, m_r8, s_r8, &

ms_r8, us_r8, ns_r8, &

sN, sN_i8, sD, sD_i8, &

calendar, calkindflag, timeZone, &

timeString, timeStringISOFrac, &

dayOfWeek, midMonth, &

dayOfYear, dayOfYear_r8, &

dayOfYear_intvl, rc)

ARGUMENTS:

1050

type(ESMF_Time), intent(in) :: time

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer(ESMF_KIND_I4), intent(out), optional :: yy

integer(ESMF_KIND_I8), intent(out), optional :: yy_i8

integer, intent(out), optional :: mm

integer, intent(out), optional :: dd

integer(ESMF_KIND_I4), intent(out), optional :: d

integer(ESMF_KIND_I8), intent(out), optional :: d_i8

integer(ESMF_KIND_I4), intent(out), optional :: h

integer(ESMF_KIND_I4), intent(out), optional :: m

integer(ESMF_KIND_I4), intent(out), optional :: s

integer(ESMF_KIND_I8), intent(out), optional :: s_i8

integer(ESMF_KIND_I4), intent(out), optional :: ms

integer(ESMF_KIND_I4), intent(out), optional :: us

integer(ESMF_KIND_I4), intent(out), optional :: ns

real(ESMF_KIND_R8), intent(out), optional :: d_r8

real(ESMF_KIND_R8), intent(out), optional :: h_r8

real(ESMF_KIND_R8), intent(out), optional :: m_r8

real(ESMF_KIND_R8), intent(out), optional :: s_r8

real(ESMF_KIND_R8), intent(out), optional :: ms_r8

real(ESMF_KIND_R8), intent(out), optional :: us_r8

real(ESMF_KIND_R8), intent(out), optional :: ns_r8

integer(ESMF_KIND_I4), intent(out), optional :: sN

integer(ESMF_KIND_I8), intent(out), optional :: sN_i8

integer(ESMF_KIND_I4), intent(out), optional :: sD

integer(ESMF_KIND_I8), intent(out), optional :: sD_i8

type(ESMF_Calendar), intent(out), optional :: calendar

type(ESMF_CalKind_Flag), intent(out), optional :: calkindflag

integer, intent(out), optional :: timeZone ! not imp

character (len=*), intent(out), optional :: timeString

character (len=*), intent(out), optional :: timeStringISOFrac

integer, intent(out), optional :: dayOfWeek

type(ESMF_Time), intent(out), optional :: midMonth

integer(ESMF_KIND_I4), intent(out), optional :: dayOfYear

real(ESMF_KIND_R8), intent(out), optional :: dayOfYear_r8

type(ESMF_TimeInterval), intent(out), optional :: dayOfYear_intvl

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Gets the value of time in units specified by the user via Fortran optional arguments. See ESMF_TimeSet() above
for a description of time units and calendars.

The ESMF Time Manager represents and manipulates time internally with integers to maintain precision. Hence,
user-specified floating point values are converted internally from integers. For example, if a time value is 5 and 3/8
seconds (s=5, sN=3, sD=8), and you want to get it as floating point seconds, you would get 5.375 (s_r8=5.375).

Units are bound (normalized) by the next larger unit specified. For example, if a time is defined to be 2:00 am on
February 2, 2004, then ESMF_TimeGet(dd=day, h=hours, s=seconds) would return day = 2, hours

1051

= 2, seconds = 0, whereas ESMF_TimeGet(dd = day, s=seconds)would return day = 2, seconds
= 7200. Note that hours and seconds are bound by a day. If bound by a month, ESMF_TimeGet(mm=month,
h=hours, s=seconds)would return month = 2, hours = 26, seconds = 0, and ESMF_TimeGet(mm
= month, s=seconds) would return month = 2, seconds = 93600 (26 * 3600). Similarly, if bound to
a year, ESMF_TimeGet(yy=year, h=hours, s=seconds) would return year = 2004, hours = 770

(32*24 + 2), seconds = 0, and ESMF_TimeGet(yy = year, s=seconds) would return year = 2004,
seconds = 2772000 (770 * 3600).

For timeString, timeStringISOFrac, dayOfWeek, midMonth, dayOfYear, dayOfYear_intvl, and
dayOfYear_r8 described below, valid calendars are Gregorian, Julian, No Leap, 360 Day and Custom calendars.
Not valid for Julian Day, Modified Julian Day, or No Calendar.

For timeString and timeStringISOFrac, YYYY format returns at least 4 digits; years <= 999 are padded on
the left with zeroes and years >= 10000 return the number of digits required.

For timeString, convert ESMF_Time’s value into partial ISO 8601 format YYYY-MM-DDThh:mm:ss[:n/d]. See [26]
and [14]. See also method ESMF_TimePrint().

For timeStringISOFrac, convert ESMF_Time’s value into full ISO 8601 format YYYY-MM-DDThh:mm:ss[.f]. See
[26] and [14]. See also method ESMF_TimePrint().

For dayOfWeek, gets the day of the week the given ESMF_Time instant falls on. ISO 8601 standard: Monday = 1
through Sunday = 7. See [26] and [14].

For midMonth, gets the middle time instant of the month that the given ESMF_Time instant falls on.

For dayOfYear, gets the day of the year that the given ESMF_Time instant falls on. See range discussion in argument
list below. Return as an integer value.

For dayOfYear_r8, gets the day of the year the given ESMF_Time instant falls on. See range discussion in argument
list below. Return as floating point value; fractional part represents the time of day.

For dayOfYear_intvl, gets the day of the year the given ESMF_Time instant falls on. Return as an
ESMF_TimeInterval.

The arguments are:

time The object instance to query.

[yy] Integer year (32-bit).

[yy_i8] Integer year (large, 64-bit).

[mm] Integer month.

[dd] Integer day of the month.

[d] Integer Julian date, or Modified Julian date (32-bit).

[d_i8] Integer Julian date, or Modified Julian date (large, 64-bit).

[h] Integer hour.

[m] Integer minute.

[s] Integer second (32-bit).

[s_i8] Integer second (large, 64-bit).

[ms] Integer millisecond.

[us] Integer microsecond.

1052

[ns] Integer nanosecond.

[d_r8] Double precision day.

[h_r8] Double precision hour.

[m_r8] Double precision minute.

[s_r8] Double precision second.

[ms_r8] Double precision millisecond.

[us_r8] Double precision microsecond.

[ns_r8] Double precision nanosecond.

[sN] Integer numerator of fractional second (sN/sD).

[sN_i8] Integer numerator of fractional second (sN_i8/sD_i8) (large, <= 64-bit).

[sD] Integer denominator of fractional second (sN/sD).

[sD_i8] Integer denominator of fractional second (sN_i8/sD_i8) (large, <= 64-bit).

[calendar] Associated Calendar.

[calkindflag] Associated CalKind_Flag.

[timeZone] Associated timezone (hours offset from UCT, e.g. EST = -5). (Not implemented yet).

[timeString] Convert time value to format string YYYY-MM-DDThh:mm:ss[:n/d], where n/d is numera-
tor/denominator of any fractional seconds and all other units are in ISO 8601 format. See [26] and [14].
See also method ESMF_TimePrint().

[timeStringISOFrac] Convert time value to strict ISO 8601 format string YYYY-MM-DDThh:mm:ss[.f], where f is
decimal form of any fractional seconds. See [26] and [14]. See also method ESMF_TimePrint().

[dayOfWeek] The time instant’s day of the week [1-7].

[MidMonth] The given time instant’s middle-of-the-month time instant.

[dayOfYear] The ESMF_Time instant’s integer day of the year. [1-366] for Gregorian and Julian calendars, [1-365]
for No-Leap calendar. [1-360] for 360-Day calendar. User-defined range for Custom calendar.

[dayOfYear_r8] The ESMF_Time instant’s floating point day of the year. [1.x-366.x] for Gregorian and Julian
calendars, [1.x-365.x] for No-Leap calendar. [1.x-360.x] for 360-Day calendar. User-defined range for Custom
calendar.

[dayOfYear_intvl] The ESMF_Time instant’s day of the year as an ESMF_TimeInterval.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

1053

42.4.12 ESMF_TimeIsLeapYear - Determine if a Time is in a leap year

INTERFACE:

function ESMF_TimeIsLeapYear(time, rc)

RETURN VALUE:

logical :: ESMF_TimeIsLeapYear

ARGUMENTS:

type(ESMF_Time), intent(in) :: time

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Returns .true. if given time is in a leap year, and .false. otherwise. See also
ESMF_CalendarIsLeapYear().

The arguments are:

time The ESMF_Time to check for leap year.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

42.4.13 ESMF_TimeIsSameCalendar - Compare Calendars of two Times

INTERFACE:

function ESMF_TimeIsSameCalendar(time1, time2, rc)

RETURN VALUE:

logical :: ESMF_TimeIsSameCalendar

1054

ARGUMENTS:

type(ESMF_Time), intent(in) :: time1

type(ESMF_Time), intent(in) :: time2

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Returns .true. if the Calendars in these Times are the same, .false. otherwise.

The arguments are:

time1 The first ESMF_Time in comparison.

time2 The second ESMF_Time in comparison.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

42.4.14 ESMF_TimePrint - Print Time information

INTERFACE:

subroutine ESMF_TimePrint(time, options, preString, unit, rc)

ARGUMENTS:

type(ESMF_Time), intent(in) :: time

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character (len=*), intent(in), optional :: options

character(*), intent(in), optional :: preString

character(*), intent(out), optional :: unit

integer, intent(out), optional :: rc

DESCRIPTION:

Prints out the contents of an ESMF_Time to stdout, in support of testing and debugging. The options control the
type of information and level of detail. For options "string" and "string isofrac", YYYY format returns at least 4
digits; years <= 999 are padded on the left with zeroes and years >= 10000 return the number of digits required.

The arguments are:

1055

time The ESMF_Time to be printed out.

[options] Print options. If none specified, prints all Time property values.
"string" - prints time’s value in ISO 8601 format for all units through seconds. For any non-zero fractional
seconds, prints in integer rational fraction form n/d. Format is YYYY-MM-DDThh:mm:ss[:n/d], where [:n/d]
is the integer numerator and denominator of the fractional seconds value, if present. See [26] and [14]. See
also method ESMF_TimeGet(..., timeString= , ...)

"string isofrac" - prints time’s value in strict ISO 8601 format for all units, including any fractional sec-
onds part. Format is YYYY-MM-DDThh:mm:ss[.f] where [.f] represents fractional seconds in decimal form,
if present. See [26] and [14]. See also method ESMF_TimeGet(..., timeStringISOFrac= , ...)

[preString] Optionally prepended string. Default to empty string.

[unit] Internal unit, i.e. a string. Default to printing to stdout.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

42.4.15 ESMF_TimeSet - Initialize or set a Time

INTERFACE:

! Private name; call using ESMF_TimeSet()

subroutine ESMF_TimeSetDefault(time, &

yy, yy_i8, &

mm, dd, &

d, d_i8, &

h, m, &

s, s_i8, &

ms, us, ns, &

d_r8, h_r8, m_r8, s_r8, &

ms_r8, us_r8, ns_r8, &

sN, sN_i8, sD, sD_i8, &

calendar, calkindflag, &

timeZone, rc)

ARGUMENTS:

type(ESMF_Time), intent(inout) :: time

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer(ESMF_KIND_I4), intent(in), optional :: yy

integer(ESMF_KIND_I8), intent(in), optional :: yy_i8

integer, intent(in), optional :: mm

integer, intent(in), optional :: dd

integer(ESMF_KIND_I4), intent(in), optional :: d

integer(ESMF_KIND_I8), intent(in), optional :: d_i8

integer(ESMF_KIND_I4), intent(in), optional :: h

integer(ESMF_KIND_I4), intent(in), optional :: m

integer(ESMF_KIND_I4), intent(in), optional :: s

integer(ESMF_KIND_I8), intent(in), optional :: s_i8

1056

integer(ESMF_KIND_I4), intent(in), optional :: ms

integer(ESMF_KIND_I4), intent(in), optional :: us

integer(ESMF_KIND_I4), intent(in), optional :: ns

real(ESMF_KIND_R8), intent(in), optional :: d_r8

real(ESMF_KIND_R8), intent(in), optional :: h_r8

real(ESMF_KIND_R8), intent(in), optional :: m_r8

real(ESMF_KIND_R8), intent(in), optional :: s_r8

real(ESMF_KIND_R8), intent(in), optional :: ms_r8

real(ESMF_KIND_R8), intent(in), optional :: us_r8

real(ESMF_KIND_R8), intent(in), optional :: ns_r8

integer(ESMF_KIND_I4), intent(in), optional :: sN

integer(ESMF_KIND_I8), intent(in), optional :: sN_i8

integer(ESMF_KIND_I4), intent(in), optional :: sD

integer(ESMF_KIND_I8), intent(in), optional :: sD_i8

type(ESMF_Calendar), intent(in), optional :: calendar

type(ESMF_CalKind_Flag), intent(in), optional :: calkindflag

integer, intent(in), optional :: timeZone ! not imp

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Initializes an ESMF_Time with a set of user-specified units via Fortran optional arguments.

The range of valid values for mm and dd depend on the calendar used. For Gregorian, Julian, and No-Leap calendars,
mm is [1-12] and dd is [1-28,29,30, or 31], depending on the value of mm and whether yy or yy_i8 is a leap year.
For the 360-day calendar, mm is [1-12] and dd is [1-30]. For Julian Day, Modified Julian Day, and No-Calendar, yy,
yy_i8, mm, and dd are invalid inputs, since these calendars do not define them. When valid, the yy and yy_i8 argu-
ments should be fully specified, e.g. 2003 instead of 03. yy and yy_i8 ranges are only limited by machine word size,
except for the Gregorian and Julian calendars, where the lowest (proleptic) date limits are 3/1/-4800 and 3/1/-4712,
respectively. This is a limitation of the Gregorian date-to-Julian day and Julian date-to-Julian day conversion algo-
rithms used to convert Gregorian and Julian dates to the internal representation of seconds. See [22] for a description
of the Gregorian date-to-Julian day algorithm and [25] for a description of the Julian date-to-Julian day algorithm. The
Custom calendar will have user-defined values for yy, yy_i8, mm, and dd.

The Julian day specifier, d or d_i8, can only be used with the Julian Day and Modified Julian Day calendars, and has
a valid range depending on the word size. For a signed 32-bit d, the range for Julian day is [+/- 24855]. For a signed
64-bit d_i8, the valid range for Julian day is [+/- 106,751,991,167,300]. The Julian day number system adheres to the
conventional standard where the reference day of d=0 corresponds to 11/24/-4713 in the proleptic Gregorian calendar
and 1/1/-4712 in the proleptic Julian calendar. See [30] and [12].

The Modified Julian Day system, introduced by space scientists in the late 1950’s, is defined as Julian Day - 2400000.5.
See [34].

Note that d and d_i8 are not valid for the No-Calendar. To remain consistent with non-Earth calendars added to ESMF
in the future, ESMF requires a calendar to be planet-specific. Hence the No-Calendar does not know what a day is; it
cannot assume an Earth day of 86400 seconds.

Hours, minutes, seconds, and sub-seconds can be used with any calendar, since they are standardized units that are the
same for any planet.

Time manager represents and manipulates time internally with integers to maintain precision. Hence, user-specified

1057

floating point values are converted internally to integers. Sub-second values are represented internally with an integer
numerator and denominator fraction (sN/sD). The smallest required resolution is nanoseconds (denominator). For
example, pi can be represented as s=3, sN=141592654, sD=1000000000. However, via sN_i8 and sD_i8, larger
values can be used. If specifying a constant floating point value, be sure to provide at least 16 digits to take full
advantage of double precision, for example s_r8=2.718281828459045d0 for ’e’ seconds.

The arguments are:

time The object instance to initialize.

[yy] Integer year (32-bit). Default = 0.

[yy_i8] Integer year (large, 64-bit). Default = 0.

[mm] Integer month. Default = 1.

[dd] Integer day of the month. Default = 1.

[d] Integer Julian Day, or Modified Julian Day (32-bit). Must not be specified with Gregorian calendars. Default = 0.

[d_i8] Integer Julian Day, or Modified Julian Day (large, 64-bit). Must not be specified with Gregorian calendars.
Default = 0.

[h] Integer hour. Default = 0.

[m] Integer minute. Default = 0.

[s] Integer second (32-bit). Default = 0.

[s_i8] Integer second (large, 64-bit). Default = 0.

[ms] Integer millisecond. Default = 0.

[us] Integer microsecond. Default = 0.

[ns] Integer nanosecond. Default = 0.

[d_r8] Double precision day. Default = 0.0.

[h_r8] Double precision hour. Default = 0.0.

[m_r8] Double precision minute. Default = 0.0.

[s_r8] Double precision second. Default = 0.0.

[ms_r8] Double precision millisecond. Default = 0.0.

[us_r8] Double precision microsecond. Default = 0.0.

[ns_r8] Double precision nanosecond. Default = 0.0.

[sN] Integer numerator of fractional second (sN/sD). Default = 0.

[sN_i8] Integer numerator of fractional second (sN_i8/sD_i8) (large, 64-bit). Default = 0.

[sD] Integer denominator of fractional second (sN/sD). Default = 1.

[sD_i8] Integer denominator of fractional second (sN_i8/sD_i8) (large, 64-bit). Default = 1.

[calendar] Associated Calendar. Defaults to calendar ESMF_CALKIND_NOCALENDAR or default specified in
ESMF_Initialize() or ESMF_CalendarSetDefault(). Alternate to, and mutually exclusive with,
calkindflag below. Primarily for specifying a custom calendar kind.

1058

[calkindflag] Alternate to, and mutually exclusive with, calendar above. More convenient way of specifying a built-in
calendar kind.

[timeZone] Associated timezone (hours offset from UTC, e.g. EST = -5). Default = 0 (UTC). (Not implemented yet).

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

42.4.16 ESMF_TimeSet - Initialize or set a Time from ISO format string

INTERFACE:

! Private name; call using ESMF_TimeSet()

subroutine ESMF_TimeSetString(time, timeString, rc)

ARGUMENTS:

type(ESMF_Time), intent(inout) :: time

character(*), intent(in) :: timeString

integer, intent(out), optional :: rc

DESCRIPTION:

Initializes an ESMF_Time with a set of user-specified string.

The arguments are:

time The object instance to initialize.

timeString ISO format time string. E.g. 2012-10-24T18:00:00.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

42.4.17 ESMF_TimeSyncToRealTime - Get system real time (wall clock time)

INTERFACE:

subroutine ESMF_TimeSyncToRealTime(time, rc)

ARGUMENTS:

type(ESMF_Time), intent(inout) :: time

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

1059

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Gets the system real time (wall clock time), and returns it as an ESMF_Time. Accurate to the nearest second.

The arguments are:

time The object instance to receive the real time.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

42.4.18 ESMF_TimeValidate - Validate a Time

INTERFACE:

subroutine ESMF_TimeValidate(time, options, rc)

ARGUMENTS:

type(ESMF_Time), intent(in) :: time

character (len=*), intent(in), optional :: options

integer, intent(out), optional :: rc

DESCRIPTION:

Checks whether an ESMF_Time is valid. Must be a valid date/time on a valid calendar. The options control the type
of validation.

The arguments are:

time ESMF_Time instant to be validated.

[options] Validation options. If none specified, validates all time property values.
"calendar" - validate only the time’s calendar.
"timezone" - validate only the time’s timezone.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

1060

43 TimeInterval Class

43.1 Description

A TimeInterval represents a period between time instants. It can be either positive or negative. Like the Time interface,

the TimeInterval interface is designed so that you can choose one or more options from a list of time units in order to

specify a TimeInterval. See Section 40.3, Table 40.4 for the available options.

There are TimeInterval methods defined for setting and getting a TimeInterval, for incrementing and decrementing a

TimeInterval by another TimeInterval, and for multiplying and dividing TimeIntervals by integers, reals, fractions and

other TimeIntervals. Methods are also defined to take the absolute value and negative absolute value of a TimeInterval,

and for comparing the length of two TimeIntervals.

The class used to represent time instants in ESMF is Time, and this class is frequently used in operations along with

TimeIntervals. For example, the difference between two Times is a TimeInterval.

When a TimeInterval is used in calculations that involve an absolute reference time, such as incrementing a Time with a

TimeInterval, calendar dependencies may be introduced. The length of the time period that the TimeInterval represents

will depend on the reference Time and the standard calendar that is associated with it. The calendar dependency

becomes apparent when, for example, adding a TimeInterval of 1 day to the Time of February 28, 1996, at 4:00pm

EST. In a 360 day calendar, the resulting date would be February 29, 1996, at 4:00pm EST. In a no-leap calendar, the

result would be March 1, 1996, at 4:00pm EST.

TimeIntervals are used by other parts of the ESMF timekeeping system, such as Clocks (Section 44.1) and Alarms

(Section 45.1).

43.2 Use and Examples

A typical use for a TimeInterval in a geophysical model is representation of the time step by which the model is

advanced. Some models change the size of their time step as the model run progresses; this could be done by incre-

menting or decrementing the original time step by another TimeInterval, or by dividing or multiplying the time step

by an integer value. An example of advancing model time using a TimeInterval representation of a time step is shown

in Section 44.1.

The following brief example shows how to create, initialize and manipulate TimeInterval.

! !PROGRAM: ESMF_TimeIntervalEx - Time Interval initialization and

! manipulation examples

!

! !DESCRIPTION:

!

! This program shows examples of Time Interval initialization and manipulation

!---

#include "ESMF.h"

! ESMF Framework module

use ESMF

use ESMF_TestMod

implicit none

! instantiate some time intervals

type(ESMF_TimeInterval) :: timeinterval1, timeinterval2, timeinterval3

1061

! local variables

integer :: d, h, m, s

! return code

integer:: rc

! initialize ESMF framework

call ESMF_Initialize(defaultCalKind=ESMF_CALKIND_GREGORIAN, &

defaultlogfilename="TimeIntervalEx.Log", &

logkindflag=ESMF_LOGKIND_MULTI, rc=rc)

43.2.1 TimeInterval initialization

This example shows how to initialize two ESMF_TimeIntervals.

! initialize time interval1 to 1 day

call ESMF_TimeIntervalSet(timeinterval1, d=1, rc=rc)

call ESMF_TimeIntervalPrint(timeinterval1, options="string", rc=rc)

! initialize time interval2 to 4 days, 1 hour, 30 minutes, 10 seconds

call ESMF_TimeIntervalSet(timeinterval2, d=4, h=1, m=30, s=10, rc=rc)

call ESMF_TimeIntervalPrint(timeinterval2, options="string", rc=rc)

43.2.2 TimeInterval conversion

This example shows how to convert ESMF_TimeIntervals into different units.

call ESMF_TimeIntervalGet(timeinterval1, s=s, rc=rc)

print *, "Time Interval1 = ", s, " seconds."

call ESMF_TimeIntervalGet(timeinterval2, h=h, m=m, s=s, rc=rc)

print *, "Time Interval2 = ", h, " hours, ", m, " minutes, ", &

s, " seconds."

43.2.3 TimeInterval difference

This example shows how to calculate the difference between two ESMF_TimeIntervals.

1062

! difference between two time intervals

timeinterval3 = timeinterval2 - timeinterval1

call ESMF_TimeIntervalGet(timeinterval3, d=d, h=h, m=m, s=s, rc=rc)

print *, "Difference between TimeInterval2 and TimeInterval1 = ", &

d, " days, ", h, " hours, ", m, " minutes, ", s, " seconds."

43.2.4 TimeInterval multiplication

This example shows how to multiply an ESMF_TimeInterval.

! multiply time interval by an integer

timeinterval3 = timeinterval2 * 3

call ESMF_TimeIntervalGet(timeinterval3, d=d, h=h, m=m, s=s, rc=rc)

print *, "TimeInterval2 multiplied by 3 = ", d, " days, ", h, &

" hours, ", m, " minutes, ", s, " seconds."

43.2.5 TimeInterval comparison

This example shows how to compare two ESMF_TimeIntervals.

! comparison

if (timeinterval1 < timeinterval2) then

print *, "TimeInterval1 is smaller than TimeInterval2"

else

print *, "TimeInterval1 is larger than or equal to TimeInterval2"

end if

end program ESMF_TimeIntervalEx

43.3 Restrictions and Future Work

1. Limits on time span. The limits on the time span that can be represented are based on the 64-bit integer types

used. For seconds, a signed 64-bit integer will have a range of +/- 263-1, or +/- 9,223,372,036,854,775,807. This

corresponds to a range of +/- (263-1)/(86400 * 365.25) or +/- 292,271,023,045 years.

For fractional seconds, a signed 64-bit integer will handle a resolution of +/- 231-1, or +/-

9,223,372,036,854,775,807 parts of a second.

43.4 Class API

43.4.1 ESMF_TimeIntervalAssignment(=) - Assign a TimeInterval to another TimeInterval

INTERFACE:

1063

interface assignment(=)

timeinterval1 = timeinterval2

ARGUMENTS:

type(ESMF_TimeInterval) :: timeinterval1

type(ESMF_TimeInterval) :: timeinterval2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Set timeinterval1 equal to timeinterval2. This is the default Fortran assignment, which creates a
complete, independent copy of timeinterval2 as timeinterval1. If timeinterval2 is an invalid
ESMF_TimeInterval object then timeinterval1 will be equally invalid after the assignment.

The arguments are:

timeinterval1 The ESMF_TimeInterval to be set.

timeinterval2 The ESMF_TimeInterval to be copied.

43.4.2 ESMF_TimeIntervalOperator(+) - Add two TimeIntervals

INTERFACE:

interface operator(+)

sum = timeinterval1 + timeinterval2

RETURN VALUE:

type(ESMF_TimeInterval) :: sum

ARGUMENTS:

type(ESMF_TimeInterval), intent(in) :: timeinterval1

type(ESMF_TimeInterval), intent(in) :: timeinterval2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

1064

DESCRIPTION:

Overloads the (+) operator for the ESMF_TimeInterval class to add timeinterval1 to timeinterval2

and return the sum as an ESMF_TimeInterval.

The arguments are:

timeinterval1 The augend.

timeinterval2 The addend.

43.4.3 ESMF_TimeIntervalOperator(-) - Subtract one TimeInterval from another

INTERFACE:

interface operator(-)

difference = timeinterval1 - timeinterval2

RETURN VALUE:

type(ESMF_TimeInterval) :: difference

ARGUMENTS:

type(ESMF_TimeInterval), intent(in) :: timeinterval1

type(ESMF_TimeInterval), intent(in) :: timeinterval2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Overloads the (-) operator for the ESMF_TimeInterval class to subtract timeinterval2 from
timeinterval1 and return the difference as an ESMF_TimeInterval.

The arguments are:

timeinterval1 The minuend.

timeinterval2 The subtrahend.

1065

43.4.4 ESMF_TimeIntervalOperator(-) - Perform unary negation on a TimeInterval

INTERFACE:

interface operator(-)

timeinterval = -timeinterval

RETURN VALUE:

type(ESMF_TimeInterval) :: -timeInterval

ARGUMENTS:

type(ESMF_TimeInterval), intent(in) :: timeinterval

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Overloads the (-) operator for the ESMF_TimeInterval class to perform unary negation on timeinterval and
return the result.

The arguments are:

timeinterval The time interval to be negated.

43.4.5 ESMF_TimeIntervalOperator(/) - Divide two TimeIntervals, return double precision quotient

INTERFACE:

interface operator(/)

quotient = timeinterval1 / timeinterval2

RETURN VALUE:

real(ESMF_KIND_R8) :: quotient

ARGUMENTS:

type(ESMF_TimeInterval), intent(in) :: timeinterval1

type(ESMF_TimeInterval), intent(in) :: timeinterval2

STATUS:

1066

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Overloads the (/) operator for the ESMF_TimeInterval class to return timeinterval1 divided by
timeinterval2 as a double precision quotient.

The arguments are:

timeinterval1 The dividend.

timeinterval2 The divisor.

43.4.6 ESMF_TimeIntervalOperator(/) - Divide a TimeInterval by an integer, return TimeInterval quotient

INTERFACE:

interface operator(/)

quotient = timeinterval / divisor

RETURN VALUE:

type(ESMF_TimeInterval) :: quotient

ARGUMENTS:

type(ESMF_TimeInterval), intent(in) :: timeinterval

integer(ESMF_KIND_I4), intent(in) :: divisor

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Overloads the (/) operator for the ESMF_TimeInterval class to divide a timeinterval by an integer
divisor, and return the quotient as an ESMF_TimeInterval.

The arguments are:

timeinterval The dividend.

divisor Integer divisor.

1067

43.4.7 ESMF_TimeIntervalFunction(MOD) - Divide two TimeIntervals, return TimeInterval remainder

INTERFACE:

interface MOD

function MOD(timeinterval1, timeinterval2)

RETURN VALUE:

type(ESMF_TimeInterval) :: MOD

ARGUMENTS:

type(ESMF_TimeInterval), intent(in) :: timeinterval1

type(ESMF_TimeInterval), intent(in) :: timeinterval2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Overloads the Fortran intrinsic MOD() function for the ESMF_TimeInterval class to return the remainder of
timeinterval1 divided by timeinterval2 as an ESMF_TimeInterval.

The arguments are:

timeinterval1 The dividend.

timeinterval2 The divisor.

43.4.8 ESMF_TimeIntervalOperator(*) - Multiply a TimeInterval by an integer

INTERFACE:

interface operator(*)

product = timeinterval * multiplier

OR

product = multiplier * timeinterval

RETURN VALUE:

type(ESMF_TimeInterval) :: product

ARGUMENTS:

1068

type(ESMF_TimeInterval), intent(in) :: timeinterval

integer(ESMF_KIND_I4), intent(in) :: multiplier

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Overloads the (*) operator for the ESMF_TimeInterval class to multiply a timeinterval by an integer
multiplier, and return the product as an ESMF_TimeInterval.

The arguments are:

timeinterval The multiplicand.

multiplier The integer multiplier.

43.4.9 ESMF_TimeIntervalOperator(==) - Test if TimeInterval 1 is equal to TimeInterval 2

INTERFACE:

interface operator(==)

if (timeinterval1 == timeinterval2) then ... endif

OR

result = (timeinterval1 == timeinterval2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_TimeInterval), intent(in) :: timeinterval1

type(ESMF_TimeInterval), intent(in) :: timeinterval2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Overloads the (==) operator for the ESMF_TimeInterval class to return .true. if timeinterval1 and
timeinterval2 represent an equal duration of time, and .false. otherwise.

The arguments are:

1069

timeinterval1 First ESMF_TimeInterval in comparison.

timeinterval2 Second ESMF_TimeInterval in comparison.

43.4.10 ESMF_TimeIntervalOperator(/=) - Test if TimeInterval 1 is not equal to TimeInterval 2

INTERFACE:

interface operator(/=)

if (timeinterval1 /= timeinterval2) then ... endif

OR

result = (timeinterval1 /= timeinterval2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_TimeInterval), intent(in) :: timeinterval1

type(ESMF_TimeInterval), intent(in) :: timeinterval2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Overloads the (/=) operator for the ESMF_TimeInterval class to return .true. if timeinterval1 and
timeinterval2 do not represent an equal duration of time, and .false. otherwise.

The arguments are:

timeinterval1 First ESMF_TimeInterval in comparison.

timeinterval2 Second ESMF_TimeInterval in comparison.

43.4.11 ESMF_TimeIntervalOperator(<) - Test if TimeInterval 1 is less than TimeInterval 2

INTERFACE:

interface operator(<)

if (timeinterval1 < timeinterval2) then ... endif

OR

result = (timeinterval1 < timeinterval2)

1070

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_TimeInterval), intent(in) :: timeinterval1

type(ESMF_TimeInterval), intent(in) :: timeinterval2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Overloads the (<) operator for the ESMF_TimeInterval class to return .true. if timeinterval1 is a lesser
duration of time than timeinterval2, and .false. otherwise.

The arguments are:

timeinterval1 First ESMF_TimeInterval in comparison.

timeinterval2 Second ESMF_TimeInterval in comparison.

43.4.12 ESMF_TimeIntervalOperator(<=) - Test if TimeInterval 1 is less than or equal to TimeInterval 2

INTERFACE:

interface operator(<=)

if (timeinterval1 <= timeinterval2) then ... endif

OR

result = (timeinterval1 <= timeinterval2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_TimeInterval), intent(in) :: timeinterval1

type(ESMF_TimeInterval), intent(in) :: timeinterval2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

1071

DESCRIPTION:

Overloads the (<=) operator for the ESMF_TimeInterval class to return .true. if timeinterval1 is a lesser
or equal duration of time than timeinterval2, and .false. otherwise.

The arguments are:

timeinterval1 First ESMF_TimeInterval in comparison.

timeinterval2 Second ESMF_TimeInterval in comparison.

43.4.13 ESMF_TimeIntervalOperator(>) - Test if TimeInterval 1 is greater than TimeInterval 2

INTERFACE:

interface operator(>)

if (timeinterval1 > timeinterval2) then ... endif

OR

result = (timeinterval1 > timeinterval2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_TimeInterval), intent(in) :: timeinterval1

type(ESMF_TimeInterval), intent(in) :: timeinterval2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Overloads the (>) operator for the ESMF_TimeInterval class to return .true. if timeinterval1 is a greater
duration of time than timeinterval2, and .false. otherwise.

The arguments are:

timeinterval1 First ESMF_TimeInterval in comparison.

timeinterval2 Second ESMF_TimeInterval in comparison.

1072

43.4.14 ESMF_TimeIntervalOperator(>=) - Test if TimeInterval 1 is greater than or equal to TimeInterval 2

INTERFACE:

interface operator(>=)

if (timeinterval1 >= timeinterval2) then ... endif

OR

result = (timeinterval1 >= timeinterval2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_TimeInterval), intent(in) :: timeinterval1

type(ESMF_TimeInterval), intent(in) :: timeinterval2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Overloads the (>=) operator for the ESMF_TimeInterval class to return .true. if timeinterval1 is a
greater or equal duration of time than timeinterval2, and .false. otherwise.

The arguments are:

timeinterval1 First ESMF_TimeInterval in comparison.

timeinterval2 Second ESMF_TimeInterval in comparison.

43.4.15 ESMF_TimeIntervalAbsValue - Get the absolute value of a TimeInterval

INTERFACE:

function ESMF_TimeIntervalAbsValue(timeinterval)

RETURN VALUE:

type(ESMF_TimeInterval) :: ESMF_TimeIntervalAbsValue

ARGUMENTS:

1073

type(ESMF_TimeInterval), intent(in) :: timeinterval

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Returns the absolute value of timeinterval.

The argument is:

timeinterval The object instance to take the absolute value of. Absolute value is returned as the value of the function.

43.4.16 ESMF_TimeIntervalGet - Get a TimeInterval value

INTERFACE:

! Private name; call using ESMF_TimeIntervalGet()

subroutine ESMF_TimeIntervalGetDur(timeinterval, &

yy, yy_i8, &

mm, mm_i8, &

d, d_i8, &

h, m, &

s, s_i8, &

ms, us, ns, &

d_r8, h_r8, m_r8, s_r8, &

ms_r8, us_r8, ns_r8, &

sN, sN_i8, sD, sD_i8, &

startTime, calendar, calkindflag, &

timeString, timeStringISOFrac, rc)

ARGUMENTS:

type(ESMF_TimeInterval), intent(in) :: timeinterval

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer(ESMF_KIND_I4), intent(out), optional :: yy

integer(ESMF_KIND_I8), intent(out), optional :: yy_i8

integer(ESMF_KIND_I4), intent(out), optional :: mm

integer(ESMF_KIND_I8), intent(out), optional :: mm_i8

integer(ESMF_KIND_I4), intent(out), optional :: d

integer(ESMF_KIND_I8), intent(out), optional :: d_i8

integer(ESMF_KIND_I4), intent(out), optional :: h

integer(ESMF_KIND_I4), intent(out), optional :: m

integer(ESMF_KIND_I4), intent(out), optional :: s

integer(ESMF_KIND_I8), intent(out), optional :: s_i8

1074

integer(ESMF_KIND_I4), intent(out), optional :: ms

integer(ESMF_KIND_I4), intent(out), optional :: us

integer(ESMF_KIND_I4), intent(out), optional :: ns

real(ESMF_KIND_R8), intent(out), optional :: d_r8

real(ESMF_KIND_R8), intent(out), optional :: h_r8

real(ESMF_KIND_R8), intent(out), optional :: m_r8

real(ESMF_KIND_R8), intent(out), optional :: s_r8

real(ESMF_KIND_R8), intent(out), optional :: ms_r8

real(ESMF_KIND_R8), intent(out), optional :: us_r8

real(ESMF_KIND_R8), intent(out), optional :: ns_r8

integer(ESMF_KIND_I4), intent(out), optional :: sN

integer(ESMF_KIND_I8), intent(out), optional :: sN_i8

integer(ESMF_KIND_I4), intent(out), optional :: sD

integer(ESMF_KIND_I8), intent(out), optional :: sD_i8

type(ESMF_Time), intent(out), optional :: startTime

type(ESMF_Calendar), intent(out), optional :: calendar

type(ESMF_CalKind_Flag), intent(out), optional :: calkindflag

character (len=*), intent(out), optional :: timeString

character (len=*), intent(out), optional :: timeStringISOFrac

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Gets the value of timeinterval in units specified by the user via Fortran optional arguments.

The ESMF Time Manager represents and manipulates time internally with integers to maintain precision. Hence,
user-specified floating point values are converted internally from integers.

Units are bound (normalized) to the next larger unit specified. For example, if a time interval is defined to be one
day, then ESMF_TimeIntervalGet(d = days, s = seconds) would return days = 1, seconds =

0, whereas ESMF_TimeIntervalGet(s = seconds) would return seconds = 86400.

For timeString, converts ESMF_TimeInterval’s value into partial ISO 8601 format PyYmMdDThHmMs[:n/d]S.
See [26] and [14]. See also method ESMF_TimeIntervalPrint().

For timeStringISOFrac, converts ESMF_TimeInterval’s value into full ISO 8601 format PyYmMdDThH-
mMs[.f]S. See [26] and [14]. See also method ESMF_TimeIntervalPrint().

The arguments are:

timeinterval The object instance to query.

[yy] Integer year (32-bit).

[yy_i8] Integer year (large, 64-bit).

[mm] Integer month (32-bit).

[mm_i8] Integer month (large, 64-bit).

[d] Integer Julian day, or Modified Julian day (32-bit).

1075

[d_i8] Integer Julian day, or Modified Julian day (large, 64-bit).

[h] Integer hour.

[m] Integer minute.

[s] Integer second (32-bit).

[s_i8] Integer second (large, 64-bit).

[ms] Integer millisecond.

[us] Integer microsecond.

[ns] Integer nanosecond.

[d_r8] Double precision day.

[h_r8] Double precision hour.

[m_r8] Double precision minute.

[s_r8] Double precision second.

[ms_r8] Double precision millisecond.

[us_r8] Double precision microsecond.

[ns_r8] Double precision nanosecond.

[sN] Integer numerator of fractional second (sN/sD).

[sN_i8] Integer numerator of fractional second (sN_i8/sD_i8) (large, 64-bit).

[sD] Integer denominator of fractional second (sN/sD).

[sD_i8] Integer denominator of fractional second (sN_i8/sD_i8) (large, 64-bit).

[startTime] Starting time, if set, of an absolute calendar interval (yy, mm, and/or d).

[calendar] Associated Calendar, if any.

[calkindflag] Associated CalKind_Flag, if any.

[timeString] Convert time interval value to format string PyYmMdDThHmMs[:n/d]S, where n/d is numera-
tor/denominator of any fractional seconds and all other units are in ISO 8601 format. See [26] and [14].
See also method ESMF_TimeIntervalPrint().

[timeStringISOFrac] Convert time interval value to strict ISO 8601 format string PyYmMdDThHmMs[.f],
where f is decimal form of any fractional seconds. See [26] and [14]. See also method
ESMF_TimeIntervalPrint().

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

1076

43.4.17 ESMF_TimeIntervalGet - Get a TimeInterval value

INTERFACE:

! Private name; call using ESMF_TimeIntervalGet()

subroutine ESMF_TimeIntervalGetDurStart(timeinterval, startTimeIn, &

&

yy, yy_i8, &

mm, mm_i8, &

d, d_i8, &

h, m, &

s, s_i8, &

ms, us, ns, &

d_r8, h_r8, m_r8, s_r8, &

ms_r8, us_r8, ns_r8, &

sN, sN_i8, sD, sD_i8, &

startTime, &

calendar, calkindflag, &

timeString, timeStringISOFrac, rc)

ARGUMENTS:

type(ESMF_TimeInterval), intent(in) :: timeinterval

type(ESMF_Time), intent(in) :: startTimeIn ! Input

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer(ESMF_KIND_I4), intent(out), optional :: yy

integer(ESMF_KIND_I8), intent(out), optional :: yy_i8

integer(ESMF_KIND_I4), intent(out), optional :: mm

integer(ESMF_KIND_I8), intent(out), optional :: mm_i8

integer(ESMF_KIND_I4), intent(out), optional :: d

integer(ESMF_KIND_I8), intent(out), optional :: d_i8

integer(ESMF_KIND_I4), intent(out), optional :: h

integer(ESMF_KIND_I4), intent(out), optional :: m

integer(ESMF_KIND_I4), intent(out), optional :: s

integer(ESMF_KIND_I8), intent(out), optional :: s_i8

integer(ESMF_KIND_I4), intent(out), optional :: ms

integer(ESMF_KIND_I4), intent(out), optional :: us

integer(ESMF_KIND_I4), intent(out), optional :: ns

real(ESMF_KIND_R8), intent(out), optional :: d_r8

real(ESMF_KIND_R8), intent(out), optional :: h_r8

real(ESMF_KIND_R8), intent(out), optional :: m_r8

real(ESMF_KIND_R8), intent(out), optional :: s_r8

real(ESMF_KIND_R8), intent(out), optional :: ms_r8

real(ESMF_KIND_R8), intent(out), optional :: us_r8

real(ESMF_KIND_R8), intent(out), optional :: ns_r8

integer(ESMF_KIND_I4), intent(out), optional :: sN

integer(ESMF_KIND_I8), intent(out), optional :: sN_i8

integer(ESMF_KIND_I4), intent(out), optional :: sD

integer(ESMF_KIND_I8), intent(out), optional :: sD_i8

type(ESMF_Time), intent(out), optional :: startTime

type(ESMF_Calendar), intent(out), optional :: calendar

type(ESMF_CalKind_Flag), intent(out), optional :: calkindflag

character (len=*), intent(out), optional :: timeString

1077

character (len=*), intent(out), optional :: timeStringISOFrac

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Gets the value of timeinterval in units specified by the user via Fortran optional arguments.

The ESMF Time Manager represents and manipulates time internally with integers to maintain precision. Hence,
user-specified floating point values are converted internally from integers.

Units are bound (normalized) to the next larger unit specified. For example, if a time interval is defined to be one
day, then ESMF_TimeIntervalGet(d = days, s = seconds) would return days = 1, seconds =

0, whereas ESMF_TimeIntervalGet(s = seconds) would return seconds = 86400.

For timeString, converts ESMF_TimeInterval’s value into partial ISO 8601 format PyYmMdDThHmMs[:n/d]S.
See [26] and [14]. See also method ESMF_TimeIntervalPrint().

For timeStringISOFrac, converts ESMF_TimeInterval’s value into full ISO 8601 format PyYmMdDThH-
mMs[.f]S. See [26] and [14]. See also method ESMF_TimeIntervalPrint().

The arguments are:

timeinterval The object instance to query.

startTimeIn INPUT argument: pins a calendar interval to a specific point in time to allow conversion between relative
units (yy, mm, d) and absolute units (d, h, m, s). Overrides any startTime and/or endTime previously set.
Mutually exclusive with endTimeIn and calendarIn.

[yy] Integer year (32-bit).

[yy_i8] Integer year (large, 64-bit).

[mm] Integer month (32-bit).

[mm_i8] Integer month (large, 64-bit).

[d] Integer Julian day, or Modified Julian day (32-bit).

[d_i8] Integer Julian day, or Modified Julian day (large, 64-bit).

[h] Integer hour.

[m] Integer minute.

[s] Integer second (32-bit).

[s_i8] Integer second (large, 64-bit).

[ms] Integer millisecond.

[us] Integer microsecond.

[ns] Integer nanosecond.

1078

[d_r8] Double precision day.

[h_r8] Double precision hour.

[m_r8] Double precision minute.

[s_r8] Double precision second.

[ms_r8] Double precision millisecond.

[us_r8] Double precision microsecond.

[ns_r8] Double precision nanosecond.

[sN] Integer numerator of fractional second (sN/sD).

[sN_i8] Integer numerator of fractional second (sN_i8/sD_i8) (large, 64-bit).

[sD] Integer denominator of fractional second (sN/sD).

[sD_i8] Integer denominator of fractional second (sN_i8/sD_i8) (large, 64-bit).

[startTime] Starting time, if set, of an absolute calendar interval (yy, mm, and/or d).

[calendar] Associated Calendar, if any.

[calkindflag] Associated CalKind_Flag, if any.

[timeString] Convert time interval value to format string PyYmMdDThHmMs[:n/d]S, where n/d is numera-
tor/denominator of any fractional seconds and all other units are in ISO 8601 format. See [26] and [14].
See also method ESMF_TimeIntervalPrint().

[timeStringISOFrac] Convert time interval value to strict ISO 8601 format string PyYmMdDThHmMs[.f],
where f is decimal form of any fractional seconds. See [26] and [14]. See also method
ESMF_TimeIntervalPrint().

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

43.4.18 ESMF_TimeIntervalGet - Get a TimeInterval value

INTERFACE:

! Private name; call using ESMF_TimeIntervalGet()

subroutine ESMF_TimeIntervalGetDurCal(timeinterval, calendarIn, &

&

yy, yy_i8, &

mm, mm_i8, &

d, d_i8, &

h, m, &

s, s_i8, &

ms, us, ns, &

d_r8, h_r8, m_r8, s_r8, &

ms_r8, us_r8, ns_r8, &

sN, sN_i8, sD, sD_i8, &

startTime, &

calendar, calkindflag, &

timeString, timeStringISOFrac, rc)

1079

ARGUMENTS:

type(ESMF_TimeInterval), intent(in) :: timeinterval

type(ESMF_Calendar), intent(in) :: calendarIn ! Input

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer(ESMF_KIND_I4), intent(out), optional :: yy

integer(ESMF_KIND_I8), intent(out), optional :: yy_i8

integer(ESMF_KIND_I4), intent(out), optional :: mm

integer(ESMF_KIND_I8), intent(out), optional :: mm_i8

integer(ESMF_KIND_I4), intent(out), optional :: d

integer(ESMF_KIND_I8), intent(out), optional :: d_i8

integer(ESMF_KIND_I4), intent(out), optional :: h

integer(ESMF_KIND_I4), intent(out), optional :: m

integer(ESMF_KIND_I4), intent(out), optional :: s

integer(ESMF_KIND_I8), intent(out), optional :: s_i8

integer(ESMF_KIND_I4), intent(out), optional :: ms

integer(ESMF_KIND_I4), intent(out), optional :: us

integer(ESMF_KIND_I4), intent(out), optional :: ns

real(ESMF_KIND_R8), intent(out), optional :: d_r8

real(ESMF_KIND_R8), intent(out), optional :: h_r8

real(ESMF_KIND_R8), intent(out), optional :: m_r8

real(ESMF_KIND_R8), intent(out), optional :: s_r8

real(ESMF_KIND_R8), intent(out), optional :: ms_r8

real(ESMF_KIND_R8), intent(out), optional :: us_r8

real(ESMF_KIND_R8), intent(out), optional :: ns_r8

integer(ESMF_KIND_I4), intent(out), optional :: sN

integer(ESMF_KIND_I8), intent(out), optional :: sN_i8

integer(ESMF_KIND_I4), intent(out), optional :: sD

integer(ESMF_KIND_I8), intent(out), optional :: sD_i8

type(ESMF_Time), intent(out), optional :: startTime

type(ESMF_Calendar), intent(out), optional :: calendar

type(ESMF_CalKind_Flag), intent(out), optional :: calkindflag

character (len=*), intent(out), optional :: timeString

character (len=*), intent(out), optional :: timeStringISOFrac

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Gets the value of timeinterval in units specified by the user via Fortran optional arguments.

The ESMF Time Manager represents and manipulates time internally with integers to maintain precision. Hence,
user-specified floating point values are converted internally from integers.

Units are bound (normalized) to the next larger unit specified. For example, if a time interval is defined to be one
day, then ESMF_TimeIntervalGet(d = days, s = seconds) would return days = 1, seconds =

0, whereas ESMF_TimeIntervalGet(s = seconds) would return seconds = 86400.

For timeString, converts ESMF_TimeInterval’s value into partial ISO 8601 format PyYmMdDThHmMs[:n/d]S.
See [26] and [14]. See also method ESMF_TimeIntervalPrint().

1080

For timeStringISOFrac, converts ESMF_TimeInterval’s value into full ISO 8601 format PyYmMdDThH-
mMs[.f]S. See [26] and [14]. See also method ESMF_TimeIntervalPrint().

The arguments are:

timeinterval The object instance to query.

calendarIn INPUT argument: pins a calendar interval to a specific calendar to allow conversion between relative
units (yy, mm, d) and absolute units (d, h, m, s). Mutually exclusive with startTimeIn and endTimeIn since they
contain a calendar. Alternate to, and mutually exclusive with, calkindflagIn below. Primarily for specifying a
custom calendar kind.

[yy] Integer year (32-bit).

[yy_i8] Integer year (large, 64-bit).

[mm] Integer month (32-bit).

[mm_i8] Integer month (large, 64-bit).

[d] Integer Julian day, or Modified Julian day (32-bit).

[d_i8] Integer Julian day, or Modified Julian day (large, 64-bit).

[h] Integer hour.

[m] Integer minute.

[s] Integer second (32-bit).

[s_i8] Integer second (large, 64-bit).

[ms] Integer millisecond.

[us] Integer microsecond.

[ns] Integer nanosecond.

[d_r8] Double precision day.

[h_r8] Double precision hour.

[m_r8] Double precision minute.

[s_r8] Double precision second.

[ms_r8] Double precision millisecond.

[us_r8] Double precision microsecond.

[ns_r8] Double precision nanosecond.

[sN] Integer numerator of fractional second (sN/sD).

[sN_i8] Integer numerator of fractional second (sN_i8/sD_i8) (large, 64-bit).

[sD] Integer denominator of fractional second (sN/sD).

[sD_i8] Integer denominator of fractional second (sN_i8/sD_i8) (large, 64-bit).

[startTime] Starting time, if set, of an absolute calendar interval (yy, mm, and/or d).

[calendar] Associated Calendar, if any.

1081

[calkindflag] Associated CalKind_Flag, if any.

[timeString] Convert time interval value to format string PyYmMdDThHmMs[:n/d]S, where n/d is numera-
tor/denominator of any fractional seconds and all other units are in ISO 8601 format. See [26] and [14].
See also method ESMF_TimeIntervalPrint().

[timeStringISOFrac] Convert time interval value to strict ISO 8601 format string PyYmMdDThHmMs[.f],
where f is decimal form of any fractional seconds. See [26] and [14]. See also method
ESMF_TimeIntervalPrint().

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

43.4.19 ESMF_TimeIntervalGet - Get a TimeInterval value

INTERFACE:

! Private name; call using ESMF_TimeIntervalGet()

subroutine ESMF_TimeIntervalGetDurCalTyp(timeinterval, calkindflagIn, &

&

yy, yy_i8, &

mm, mm_i8, &

d, d_i8, &

h, m, &

s, s_i8, &

ms, us, ns, &

d_r8, h_r8, m_r8, s_r8, &

ms_r8, us_r8, ns_r8, &

sN, sN_i8, sD, sD_i8, &

startTime, &

calendar, calkindflag, &

timeString, &

timeStringISOFrac, rc)

ARGUMENTS:

type(ESMF_TimeInterval), intent(in) :: timeinterval

type(ESMF_CalKind_Flag), intent(in) :: calkindflagIn ! Input

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer(ESMF_KIND_I4), intent(out), optional :: yy

integer(ESMF_KIND_I8), intent(out), optional :: yy_i8

integer(ESMF_KIND_I4), intent(out), optional :: mm

integer(ESMF_KIND_I8), intent(out), optional :: mm_i8

integer(ESMF_KIND_I4), intent(out), optional :: d

integer(ESMF_KIND_I8), intent(out), optional :: d_i8

integer(ESMF_KIND_I4), intent(out), optional :: h

integer(ESMF_KIND_I4), intent(out), optional :: m

integer(ESMF_KIND_I4), intent(out), optional :: s

integer(ESMF_KIND_I8), intent(out), optional :: s_i8

integer(ESMF_KIND_I4), intent(out), optional :: ms

integer(ESMF_KIND_I4), intent(out), optional :: us

1082

integer(ESMF_KIND_I4), intent(out), optional :: ns

real(ESMF_KIND_R8), intent(out), optional :: d_r8

real(ESMF_KIND_R8), intent(out), optional :: h_r8

real(ESMF_KIND_R8), intent(out), optional :: m_r8

real(ESMF_KIND_R8), intent(out), optional :: s_r8

real(ESMF_KIND_R8), intent(out), optional :: ms_r8

real(ESMF_KIND_R8), intent(out), optional :: us_r8

real(ESMF_KIND_R8), intent(out), optional :: ns_r8

integer(ESMF_KIND_I4), intent(out), optional :: sN

integer(ESMF_KIND_I8), intent(out), optional :: sN_i8

integer(ESMF_KIND_I4), intent(out), optional :: sD

integer(ESMF_KIND_I8), intent(out), optional :: sD_i8

type(ESMF_Time), intent(out), optional :: startTime

type(ESMF_Calendar), intent(out), optional :: calendar

type(ESMF_CalKind_Flag), intent(out), optional :: calkindflag

character (len=*), intent(out), optional :: timeString

character (len=*), intent(out), optional :: timeStringISOFrac

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Gets the value of timeinterval in units specified by the user via Fortran optional arguments.

The ESMF Time Manager represents and manipulates time internally with integers to maintain precision. Hence,
user-specified floating point values are converted internally from integers.

Units are bound (normalized) to the next larger unit specified. For example, if a time interval is defined to be one
day, then ESMF_TimeIntervalGet(d = days, s = seconds) would return days = 1, seconds =

0, whereas ESMF_TimeIntervalGet(s = seconds) would return seconds = 86400.

For timeString, converts ESMF_TimeInterval’s value into partial ISO 8601 format PyYmMdDThHmMs[:n/d]S.
See [26] and [14]. See also method ESMF_TimeIntervalPrint().

For timeStringISOFrac, converts ESMF_TimeInterval’s value into full ISO 8601 format PyYmMdDThH-
mMs[.f]S. See [26] and [14]. See also method ESMF_TimeIntervalPrint().

The arguments are:

timeinterval The object instance to query.

calkindflagIn INPUT argument: Alternate to, and mutually exclusive with, calendarIn above. More convenient way
of specifying a built-in calendar kind.

[yy] Integer year (32-bit).

[yy_i8] Integer year (large, 64-bit).

[mm] Integer month (32-bit).

[mm_i8] Integer month (large, 64-bit).

[d] Integer Julian day, or Modified Julian day (32-bit).

1083

[d_i8] Integer Julian day, or Modified Julian day (large, 64-bit).

[h] Integer hour.

[m] Integer minute.

[s] Integer second (32-bit).

[s_i8] Integer second (large, 64-bit).

[ms] Integer millisecond.

[us] Integer microsecond.

[ns] Integer nanosecond.

[d_r8] Double precision day.

[h_r8] Double precision hour.

[m_r8] Double precision minute.

[s_r8] Double precision second.

[ms_r8] Double precision millisecond.

[us_r8] Double precision microsecond.

[ns_r8] Double precision nanosecond.

[sN] Integer numerator of fractional second (sN/sD).

[sN_i8] Integer numerator of fractional second (sN_i8/sD_i8) (large, 64-bit).

[sD] Integer denominator of fractional second (sN/sD).

[sD_i8] Integer denominator of fractional second (sN_i8/sD_i8) (large, 64-bit).

[startTime] Starting time, if set, of an absolute calendar interval (yy, mm, and/or d).

[calendar] Associated Calendar, if any.

[calkindflag] Associated CalKind_Flag, if any.

[timeString] Convert time interval value to format string PyYmMdDThHmMs[:n/d]S, where n/d is numera-
tor/denominator of any fractional seconds and all other units are in ISO 8601 format. See [26] and [14].
See also method ESMF_TimeIntervalPrint().

[timeStringISOFrac] Convert time interval value to strict ISO 8601 format string PyYmMdDThHmMs[.f],
where f is decimal form of any fractional seconds. See [26] and [14]. See also method
ESMF_TimeIntervalPrint().

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

1084

43.4.20 ESMF_TimeIntervalNegAbsValue - Return the negative absolute value of a TimeInterval

INTERFACE:

function ESMF_TimeIntervalNegAbsValue(timeinterval)

RETURN VALUE:

type(ESMF_TimeInterval) :: ESMF_TimeIntervalNegAbsValue

ARGUMENTS:

type(ESMF_TimeInterval), intent(in) :: timeinterval

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Returns the negative absolute value of timeinterval.

The argument is:

timeinterval The object instance to take the negative absolute value of. Negative absolute value is returned as the
value of the function.

43.4.21 ESMF_TimeIntervalPrint - Print TimeInterval information

INTERFACE:

subroutine ESMF_TimeIntervalPrint(timeinterval, options, rc)

ARGUMENTS:

type(ESMF_TimeInterval), intent(in) :: timeinterval

character (len=*), intent(in), optional :: options

integer, intent(out), optional :: rc

1085

DESCRIPTION:

Prints out the contents of an ESMF_TimeInterval to stdout, in support of testing and debugging. The options
control the type of information and level of detail.

The arguments are:

timeinterval Time interval to be printed out.

[options] Print options. If none specified, prints all timeinterval property values.
"string" - prints timeinterval’s value in ISO 8601 format for all units through seconds. For any non-zero
fractional seconds, prints in integer rational fraction form n/d. Format is PyYmMdDThHmMs[:n/d]S, where
[:n/d] is the integer numerator and denominator of the fractional seconds value, if present. See [26] and [14].
See also method ESMF_TimeIntervalGet(..., timeString= , ...)

"string isofrac" - prints timeinterval’s value in strict ISO 8601 format for all units, including any fractional
seconds part. Format is PyYmMdDThHmMs[.f]S, where [.f] represents fractional seconds in decimal form, if
present. See [26] and [14]. See also method ESMF_TimeIntervalGet(..., timeStringISOFrac=

, ...)

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

43.4.22 ESMF_TimeIntervalSet - Initialize or set a TimeInterval

INTERFACE:

! Private name; call using ESMF_TimeIntervalSet()

subroutine ESMF_TimeIntervalSetDur(timeinterval, &

yy, yy_i8, &

mm, mm_i8, &

d, d_i8, &

h, m, &

s, s_i8, &

ms, us, ns, &

d_r8, h_r8, m_r8, s_r8, &

ms_r8, us_r8, ns_r8, &

sN, sN_i8, sD, sD_i8, rc)

ARGUMENTS:

type(ESMF_TimeInterval), intent(inout) :: timeinterval

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer(ESMF_KIND_I4), intent(in), optional :: yy

integer(ESMF_KIND_I8), intent(in), optional :: yy_i8

integer(ESMF_KIND_I4), intent(in), optional :: mm

integer(ESMF_KIND_I8), intent(in), optional :: mm_i8

integer(ESMF_KIND_I4), intent(in), optional :: d

integer(ESMF_KIND_I8), intent(in), optional :: d_i8

1086

integer(ESMF_KIND_I4), intent(in), optional :: h

integer(ESMF_KIND_I4), intent(in), optional :: m

integer(ESMF_KIND_I4), intent(in), optional :: s

integer(ESMF_KIND_I8), intent(in), optional :: s_i8

integer(ESMF_KIND_I4), intent(in), optional :: ms

integer(ESMF_KIND_I4), intent(in), optional :: us

integer(ESMF_KIND_I4), intent(in), optional :: ns

real(ESMF_KIND_R8), intent(in), optional :: d_r8

real(ESMF_KIND_R8), intent(in), optional :: h_r8

real(ESMF_KIND_R8), intent(in), optional :: m_r8

real(ESMF_KIND_R8), intent(in), optional :: s_r8

real(ESMF_KIND_R8), intent(in), optional :: ms_r8

real(ESMF_KIND_R8), intent(in), optional :: us_r8

real(ESMF_KIND_R8), intent(in), optional :: ns_r8

integer(ESMF_KIND_I4), intent(in), optional :: sN

integer(ESMF_KIND_I8), intent(in), optional :: sN_i8

integer(ESMF_KIND_I4), intent(in), optional :: sD

integer(ESMF_KIND_I8), intent(in), optional :: sD_i8

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Sets the value of the ESMF_TimeInterval in units specified by the user via Fortran optional arguments.

The ESMF Time Manager represents and manipulates time internally with integers to maintain precision. Hence,
user-specified floating point values are converted internally to integers.

Ranges are limited only by machine word size. Numeric defaults are 0, except for sD, which is 1.

The arguments are:

timeinterval The object instance to initialize.

[yy] Integer year (32-bit). Default = 0.

[yy_i8] Integer year (large, 64-bit). Default = 0.

[mm] Integer month (32-bit). Default = 0.

[mm_i8] Integer month (large, 64-bit). Default = 0.

[d] Integer Julian day, or Modified Julian day (32-bit). Default = 0.

[d_i8] Integer Julian day, or Modified Julian day (large, 64-bit). Default = 0.

[h] Integer hour. Default = 0.

[m] Integer minute. Default = 0.

[s] Integer second (32-bit). Default = 0.

[s_i8] Integer second (large, 64-bit). Default = 0.

1087

[ms] Integer millisecond. Default = 0.

[us] Integer microsecond. Default = 0.

[ns] Integer nanosecond. Default = 0.

[d_r8] Double precision day. Default = 0.0.

[h_r8] Double precision hour. Default = 0.0.

[m_r8] Double precision minute. Default = 0.0.

[s_r8] Double precision second. Default = 0.0.

[ms_r8] Double precision millisecond. Default = 0.0.

[us_r8] Double precision microsecond. Default = 0.0.

[ns_r8] Double precision nanosecond. Default = 0.0.

[sN] Integer numerator of fractional second (sN/sD). Default = 0.

[sN_i8] Integer numerator of fractional second (sN_i8/sD_i8) (large, 64-bit). Default = 0.

[sD] Integer denominator of fractional second (sN/sD). Default = 1.

[sD_i8] Integer denominator of fractional second (sN_i8/sD_i8) (large, 64-bit). Default = 1.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

43.4.23 ESMF_TimeIntervalSet - Initialize or set a TimeInterval

INTERFACE:

! Private name; call using ESMF_TimeIntervalSet()

subroutine ESMF_TimeIntervalSetDurStart(timeinterval, startTime, &

&

yy, yy_i8, &

mm, mm_i8, &

d, d_i8, &

h, m, &

s, s_i8, &

ms, us, ns, &

d_r8, h_r8, m_r8, s_r8, &

ms_r8, us_r8, ns_r8, &

sN, sN_i8, sD, sD_i8, &

rc)

ARGUMENTS:

1088

type(ESMF_TimeInterval), intent(inout) :: timeinterval

type(ESMF_Time), intent(in) :: startTime

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer(ESMF_KIND_I4), intent(in), optional :: yy

integer(ESMF_KIND_I8), intent(in), optional :: yy_i8

integer(ESMF_KIND_I4), intent(in), optional :: mm

integer(ESMF_KIND_I8), intent(in), optional :: mm_i8

integer(ESMF_KIND_I4), intent(in), optional :: d

integer(ESMF_KIND_I8), intent(in), optional :: d_i8

integer(ESMF_KIND_I4), intent(in), optional :: h

integer(ESMF_KIND_I4), intent(in), optional :: m

integer(ESMF_KIND_I4), intent(in), optional :: s

integer(ESMF_KIND_I8), intent(in), optional :: s_i8

integer(ESMF_KIND_I4), intent(in), optional :: ms

integer(ESMF_KIND_I4), intent(in), optional :: us

integer(ESMF_KIND_I4), intent(in), optional :: ns

real(ESMF_KIND_R8), intent(in), optional :: d_r8

real(ESMF_KIND_R8), intent(in), optional :: h_r8

real(ESMF_KIND_R8), intent(in), optional :: m_r8

real(ESMF_KIND_R8), intent(in), optional :: s_r8

real(ESMF_KIND_R8), intent(in), optional :: ms_r8

real(ESMF_KIND_R8), intent(in), optional :: us_r8

real(ESMF_KIND_R8), intent(in), optional :: ns_r8

integer(ESMF_KIND_I4), intent(in), optional :: sN

integer(ESMF_KIND_I8), intent(in), optional :: sN_i8

integer(ESMF_KIND_I4), intent(in), optional :: sD

integer(ESMF_KIND_I8), intent(in), optional :: sD_i8

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Sets the value of the ESMF_TimeInterval in units specified by the user via Fortran optional arguments.

The ESMF Time Manager represents and manipulates time internally with integers to maintain precision. Hence,
user-specified floating point values are converted internally to integers.

Ranges are limited only by machine word size. Numeric defaults are 0, except for sD, which is 1.

The arguments are:

timeinterval The object instance to initialize.

startTime Starting time of an absolute calendar interval (yy, mm, and/or d); pins a calendar interval to a specific point
in time. If not set, and calendar also not set, calendar interval "floats" across all calendars and times.

[yy] Integer year (32-bit). Default = 0.

[yy_i8] Integer year (large, 64-bit). Default = 0.

[mm] Integer month (32-bit). Default = 0.

1089

[mm_i8] Integer month (large, 64-bit). Default = 0.

[d] Integer Julian day, or Modified Julian day (32-bit). Default = 0.

[d_i8] Integer Julian day, or Modified Julian day (large, 64-bit). Default = 0.

[h] Integer hour. Default = 0.

[m] Integer minute. Default = 0.

[s] Integer second (32-bit). Default = 0.

[s_i8] Integer second (large, 64-bit). Default = 0.

[ms] Integer millisecond. Default = 0.

[us] Integer microsecond. Default = 0.

[ns] Integer nanosecond. Default = 0.

[d_r8] Double precision day. Default = 0.0.

[h_r8] Double precision hour. Default = 0.0.

[m_r8] Double precision minute. Default = 0.0.

[s_r8] Double precision second. Default = 0.0.

[ms_r8] Double precision millisecond. Default = 0.0.

[us_r8] Double precision microsecond. Default = 0.0.

[ns_r8] Double precision nanosecond. Default = 0.0.

[sN] Integer numerator of fractional second (sN/sD). Default = 0.

[sN_i8] Integer numerator of fractional second (sN_i8/sD_i8) (large, 64-bit). Default = 0.

[sD] Integer denominator of fractional second (sN/sD). Default = 1.

[sD_i8] Integer denominator of fractional second (sN_i8/sD_i8). (large, 64-bit). Default = 1.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

43.4.24 ESMF_TimeIntervalSet - Initialize or set a TimeInterval

INTERFACE:

! Private name; call using ESMF_TimeIntervalSet()

subroutine ESMF_TimeIntervalSetDurCal(timeinterval, calendar, &

&

yy, yy_i8, &

mm, mm_i8, &

d, d_i8, &

h, m, &

s, s_i8, &

ms, us, ns, &

1090

d_r8, h_r8, m_r8, s_r8, &

ms_r8, us_r8, ns_r8, &

sN, sN_i8, sD, sD_i8, rc)

ARGUMENTS:

type(ESMF_TimeInterval), intent(inout) :: timeinterval

type(ESMF_Calendar), intent(in) :: calendar

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer(ESMF_KIND_I4), intent(in), optional :: yy

integer(ESMF_KIND_I8), intent(in), optional :: yy_i8

integer(ESMF_KIND_I4), intent(in), optional :: mm

integer(ESMF_KIND_I8), intent(in), optional :: mm_i8

integer(ESMF_KIND_I4), intent(in), optional :: d

integer(ESMF_KIND_I8), intent(in), optional :: d_i8

integer(ESMF_KIND_I4), intent(in), optional :: h

integer(ESMF_KIND_I4), intent(in), optional :: m

integer(ESMF_KIND_I4), intent(in), optional :: s

integer(ESMF_KIND_I8), intent(in), optional :: s_i8

integer(ESMF_KIND_I4), intent(in), optional :: ms

integer(ESMF_KIND_I4), intent(in), optional :: us

integer(ESMF_KIND_I4), intent(in), optional :: ns

real(ESMF_KIND_R8), intent(in), optional :: d_r8

real(ESMF_KIND_R8), intent(in), optional :: h_r8

real(ESMF_KIND_R8), intent(in), optional :: m_r8

real(ESMF_KIND_R8), intent(in), optional :: s_r8

real(ESMF_KIND_R8), intent(in), optional :: ms_r8

real(ESMF_KIND_R8), intent(in), optional :: us_r8

real(ESMF_KIND_R8), intent(in), optional :: ns_r8

integer(ESMF_KIND_I4), intent(in), optional :: sN

integer(ESMF_KIND_I8), intent(in), optional :: sN_i8

integer(ESMF_KIND_I4), intent(in), optional :: sD

integer(ESMF_KIND_I8), intent(in), optional :: sD_i8

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Sets the value of the ESMF_TimeInterval in units specified by the user via Fortran optional arguments.

The ESMF Time Manager represents and manipulates time internally with integers to maintain precision. Hence,
user-specified floating point values are converted internally to integers.

Ranges are limited only by machine word size. Numeric defaults are 0, except for sD, which is 1.

The arguments are:

timeinterval The object instance to initialize.

1091

calendar Calendar used to give better definition to calendar interval (yy, mm, and/or d) for arithmetic, comparison,
and conversion operations. Allows calendar interval to "float" across all times on a specific calendar. Default
= NULL; if startTime also not specified, calendar interval "floats" across all calendars and times. Mutually
exclusive with startTime since it contains a calendar. Alternate to, and mutually exclusive with, calkindflag
below. Primarily for specifying a custom calendar kind.

[yy] Integer year (32-bit). Default = 0.

[yy_i8] Integer year (large, 64-bit). Default = 0.

[mm] Integer month (32-bit). Default = 0.

[mm_i8] Integer month (large, 64-bit). Default = 0.

[d] Integer Julian day, or Modified Julian day (32-bit). Default = 0.

[d_i8] Integer Julian day, or Modified Julian day (large, 64-bit). Default = 0.

[h] Integer hour. Default = 0.

[m] Integer minute. Default = 0.

[s] Integer second (32-bit). Default = 0.

[s_i8] Integer second (large, 64-bit). Default = 0.

[ms] Integer millisecond. Default = 0.

[us] Integer microsecond. Default = 0.

[ns] Integer nanosecond. Default = 0.

[d_r8] Double precision day. Default = 0.0.

[h_r8] Double precision hour. Default = 0.0.

[m_r8] Double precision minute. Default = 0.0.

[s_r8] Double precision second. Default = 0.0.

[ms_r8] Double precision millisecond. Default = 0.0.

[us_r8] Double precision microsecond. Default = 0.0.

[ns_r8] Double precision nanosecond. Default = 0.0.

[sN] Integer numerator of fractional second (sN/sD). Default = 0.

[sN_i8] Integer numerator of fractional second (sN_i8/sD_i8). (large, 64-bit). Default = 0.

[sD] Integer denominator of fractional second (sN/sD). Default = 1.

[sD_i8] Integer denominator of fractional second (sN_i8/sD_i8). (large, 64-bit). Default = 1.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

1092

43.4.25 ESMF_TimeIntervalSet - Initialize or set a TimeInterval

INTERFACE:

! Private name; call using ESMF_TimeIntervalSet()

subroutine ESMF_TimeIntervalSetDurCalTyp(timeinterval, calkindflag, &

&

yy, yy_i8, &

mm, mm_i8, &

d, d_i8, &

h, m, &

s, s_i8, &

ms, us, ns, &

d_r8, h_r8, m_r8, s_r8, &

ms_r8, us_r8, ns_r8, &

sN, sN_i8, sD, sD_i8, &

rc)

ARGUMENTS:

type(ESMF_TimeInterval), intent(inout) :: timeinterval

type(ESMF_CalKind_Flag), intent(in) :: calkindflag

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer(ESMF_KIND_I4), intent(in), optional :: yy

integer(ESMF_KIND_I8), intent(in), optional :: yy_i8

integer(ESMF_KIND_I4), intent(in), optional :: mm

integer(ESMF_KIND_I8), intent(in), optional :: mm_i8

integer(ESMF_KIND_I4), intent(in), optional :: d

integer(ESMF_KIND_I8), intent(in), optional :: d_i8

integer(ESMF_KIND_I4), intent(in), optional :: h

integer(ESMF_KIND_I4), intent(in), optional :: m

integer(ESMF_KIND_I4), intent(in), optional :: s

integer(ESMF_KIND_I8), intent(in), optional :: s_i8

integer(ESMF_KIND_I4), intent(in), optional :: ms

integer(ESMF_KIND_I4), intent(in), optional :: us

integer(ESMF_KIND_I4), intent(in), optional :: ns

real(ESMF_KIND_R8), intent(in), optional :: d_r8

real(ESMF_KIND_R8), intent(in), optional :: h_r8

real(ESMF_KIND_R8), intent(in), optional :: m_r8

real(ESMF_KIND_R8), intent(in), optional :: s_r8

real(ESMF_KIND_R8), intent(in), optional :: ms_r8

real(ESMF_KIND_R8), intent(in), optional :: us_r8

real(ESMF_KIND_R8), intent(in), optional :: ns_r8

integer(ESMF_KIND_I4), intent(in), optional :: sN

integer(ESMF_KIND_I8), intent(in), optional :: sN_i8

integer(ESMF_KIND_I4), intent(in), optional :: sD

integer(ESMF_KIND_I8), intent(in), optional :: sD_i8

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

1093

DESCRIPTION:

Sets the value of the ESMF_TimeInterval in units specified by the user via Fortran optional arguments.

The ESMF Time Manager represents and manipulates time internally with integers to maintain precision. Hence,
user-specified floating point values are converted internally to integers.

Ranges are limited only by machine word size. Numeric defaults are 0, except for sD, which is 1.

The arguments are:

timeinterval The object instance to initialize.

calkindflag Alternate to, and mutually exclusive with, calendar above. More convenient way of specifying a built-in
calendar kind.

[yy] Integer year (32-bit). Default = 0.

[yy_i8] Integer year (large, 64-bit). Default = 0.

[mm] Integer month (32-bit). Default = 0.

[mm_i8] Integer month (large, 64-bit). Default = 0.

[d] Integer Julian day, or Modified Julian day (32-bit). Default = 0.

[d_i8] Integer Julian day, or Modified Julian day (large, 64-bit). Default = 0.

[h] Integer hour. Default = 0.

[m] Integer minute. Default = 0.

[s] Integer second (32-bit). Default = 0.

[s_i8] Integer second (large, 64-bit). Default = 0.

[ms] Integer millisecond. Default = 0.

[us] Integer microsecond. Default = 0.

[ns] Integer nanosecond. Default = 0.

[d_r8] Double precision day. Default = 0.0.

[h_r8] Double precision hour. Default = 0.0.

[m_r8] Double precision minute. Default = 0.0.

[s_r8] Double precision second. Default = 0.0.

[ms_r8] Double precision millisecond. Default = 0.0.

[us_r8] Double precision microsecond. Default = 0.0.

[ns_r8] Double precision nanoseconds. Default = 0.0.

[sN] Integer numerator of fractional second (sN/sD). Default = 0.

[sN_i8] Integer numerator of fractional second (sN_i8/sD_i8) (large, 64-bit). Default = 0.

[sD] Integer denominator of fractional second (sN/sD). Default = 1.

[sD_i8] Integer denominator of fractional second (sN_i8/sD_i8) (large, 64-bit). Default = 1.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

1094

43.4.26 ESMF_TimeIntervalValidate - Validate a TimeInterval

INTERFACE:

subroutine ESMF_TimeIntervalValidate(timeinterval, rc)

ARGUMENTS:

type(ESMF_TimeInterval), intent(in) :: timeinterval

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Checks whether a timeinterval is valid. If fractional value, denominator must be non-zero.

The arguments are:

timeinterval ESMF_TimeInterval to be validated.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

1095

44 Clock Class

44.1 Description

The Clock class advances model time and tracks its associated date on a specified Calendar. It stores start time, stop

time, current time, previous time, and a time step. It can also store a reference time, typically the time instant at

which a simulation originally began. For a restart run, the reference time can be different than the start time, when the

application execution resumes.

A user can call the ESMF_ClockSet method and reset the time step as desired.

A Clock also stores a list of Alarms, which can be set to flag events that occur at a specified time instant or at a

specified time interval. See Section 45.1 for details on how to use Alarms.

There are methods for setting and getting the Times and Alarms associated with a Clock. Methods are defined for

advancing the Clock’s current time, checking if the stop time has been reached, reversing direction, and synchronizing

with a real clock.

44.2 Constants

44.2.1 ESMF_DIRECTION

DESCRIPTION:

Specifies the time-stepping direction of a clock. Use with "direction" argument to methods ESMF_ClockSet()

and ESMF_ClockGet(). Cannot be used with method ESMF_ClockCreate(), since it only initializes a

clock in the default forward mode; a clock must be advanced (timestepped) at least once before reversing di-

rection via ESMF_ClockSet(). This also holds true for negative timestep clocks which are initialized (cre-

ated) with stopTime < startTime, since "forward" means timestepping from startTime towards stopTime (see

ESMF_DIRECTION_FORWARD below).

"Forward" and "reverse" directions are distinct from positive and negative timesteps. "Forward" means timestepping

in the direction established at ESMF_ClockCreate(), from startTime towards stopTime, regardless of the timestep

sign. "Reverse" means timestepping in the opposite direction, back towards the clock’s startTime, regardless of the

timestep sign.

Clocks and alarms run in reverse in such a way that the state of a clock and its alarms after each time step is precisely

replicated as it was in forward time-stepping mode. All methods which query clock and alarm state will return the

same result for a given timeStep, regardless of the direction of arrival.

The type of this flag is:

type(ESMF_Direction_Flag)

The valid values are:

ESMF_DIRECTION_FORWARD Upon calling ESMF_ClockAdvance(), the clock will timestep from its start-

Time toward its stopTime. This is the default direction. A user can use either ESMF_ClockIsStopTime()

or ESMF_ClockIsDone() methods to determine when stopTime is reached. This forward behavior also

holds for negative timestep clocks which are initialized (created) with stopTime < startTime.

ESMF_DIRECTION_REVERSE Upon calling ESMF_ClockAdvance(), the clock will timestep backwards to-

ward its startTime. Use method ESMF_ClockIsDone() to determine when startTime is reached. This reverse

1096

behavior also holds for negative timestep clocks which are initialized (created) with stopTime < startTime.

44.3 Use and Examples

The following is a typical sequence for using a Clock in a geophysical model.

At initialize:

• Set a Calendar.

• Set start time, stop time and time step as Times and Time Intervals.

• Create and Initialize a Clock using the start time, stop time and time step.

• Define Times and Time Intervals associated with special events, and use these to set Alarms.

At run:

• Advance the Clock, checking for ringing alarms as needed.

• Check if it is time to stop.

At finalize:

• Since Clocks and Alarms are deep classes, they need to be explicitly destroyed at finalization. Times and

TimeIntervals are lightweight classes, so they don’t need explicit destruction.

The following code example illustrates Clock usage.

! !PROGRAM: ESMF_ClockEx - Clock initialization and time-stepping

!

! !DESCRIPTION:

!

! This program shows an example of how to create, initialize, advance, and

! examine a basic clock

!---

#include "ESMF.h"

! ESMF Framework module

use ESMF

use ESMF_TestMod

implicit none

! instantiate a clock

type(ESMF_Clock) :: clock

! instantiate time_step, start and stop times

type(ESMF_TimeInterval) :: timeStep

type(ESMF_Time) :: startTime

type(ESMF_Time) :: stopTime

! local variables for Get methods

1097

type(ESMF_Time) :: currTime

integer(ESMF_KIND_I8) :: advanceCount

integer :: YY, MM, DD, H, M, S

! return code

integer :: rc

! initialize ESMF framework

call ESMF_Initialize(defaultCalKind=ESMF_CALKIND_GREGORIAN, &

defaultlogfilename="ClockEx.Log", &

logkindflag=ESMF_LOGKIND_MULTI, rc=rc)

44.3.1 Clock creation

This example shows how to create and initialize an ESMF_Clock.

! initialize time interval to 2 days, 4 hours (6 timesteps in 13 days)

call ESMF_TimeIntervalSet(timeStep, d=2, h=4, rc=rc)

! initialize start time to 4/1/2003 2:24:00 (1/10 of a day)

call ESMF_TimeSet(startTime, yy=2003, mm=4, dd=1, h=2, m=24, rc=rc)

! initialize stop time to 4/14/2003 2:24:00 (1/10 of a day)

call ESMF_TimeSet(stopTime, yy=2003, mm=4, dd=14, h=2, m=24, rc=rc)

! initialize the clock with the above values

clock = ESMF_ClockCreate(timeStep, startTime, stopTime=stopTime, &

name="Clock 1", rc=rc)

44.3.2 Clock advance

This example shows how to time-step an ESMF_Clock.

! time step clock from start time to stop time

do while (.not.ESMF_ClockIsStopTime(clock, rc=rc))

call ESMF_ClockPrint(clock, options="currTime string", rc=rc)

call ESMF_ClockAdvance(clock, rc=rc)

end do

1098

44.3.3 Clock examination

This example shows how to examine an ESMF_Clock.

! get the clock’s final current time

call ESMF_ClockGet(clock, currTime=currTime, rc=rc)

call ESMF_TimeGet(currTime, yy=YY, mm=MM, dd=DD, h=H, m=M, s=S, rc=rc)

print *, "The clock’s final current time is ", YY, "/", MM, "/", DD, &

" ", H, ":", M, ":", S

! get the number of times the clock was advanced

call ESMF_ClockGet(clock, advanceCount=advanceCount, rc=rc)

print *, "The clock was advanced ", advanceCount, " times."

44.3.4 Clock reversal

This example shows how to time-step an ESMF_Clock in reverse mode.

call ESMF_ClockSet(clock, direction=ESMF_DIRECTION_REVERSE, rc=rc)

! time step clock in reverse from stop time back to start time;

! note use of ESMF_ClockIsDone() rather than ESMF_ClockIsStopTime()

do while (.not.ESMF_ClockIsDone(clock, rc=rc))

call ESMF_ClockPrint(clock, options="currTime string", rc=rc)

call ESMF_ClockAdvance(clock, rc=rc)

end do

44.3.5 Clock destruction

This example shows how to destroy an ESMF_Clock.

! destroy clock

call ESMF_ClockDestroy(clock, rc=rc)

! finalize ESMF framework

call ESMF_Finalize(rc=rc)

1099

end program ESMF_ClockEx

44.4 Restrictions and Future Work

1. Alarm list allocation factor The alarm list within a clock is dynamically allocated automatically, 200 alarm

references at a time. This constant is defined in both Fortran and C++ with a #define for ease of modification.

2. Clock variable timesteps in reverse

In order for a clock with variable timesteps to be run in ESMF_DIRECTION_REVERSE, the user must supply

those timesteps to ESMF_ClockAdvance(). Essentially, the user must save the timesteps while in forward

mode. In a future release, the Time Manager will assume this responsibility by saving the clock state (including

the timeStep) at every timestep while in forward mode.

44.5 Class API

44.5.1 ESMF_ClockAssignment(=) - Assign a Clock to another Clock

INTERFACE:

interface assignment(=)

clock1 = clock2

ARGUMENTS:

type(ESMF_Clock) :: clock1

type(ESMF_Clock) :: clock2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Assign clock1 as an alias to the same ESMF_Clock object in memory as clock2. If clock2 is invalid, then
clock1 will be equally invalid after the assignment.

The arguments are:

clock1 The ESMF_Clock object on the left hand side of the assignment.

clock2 The ESMF_Clock object on the right hand side of the assignment.

1100

44.5.2 ESMF_ClockOperator(==) - Test if Clock 1 is equal to Clock 2

INTERFACE:

interface operator(==)

if (clock1 == clock2) then ... endif

OR

result = (clock1 == clock2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_Clock), intent(in) :: clock1

type(ESMF_Clock), intent(in) :: clock2

DESCRIPTION:

Overloads the (==) operator for the ESMF_Clock class. Compare two clocks for equality; return .true. if equal,
.false. otherwise. Comparison is based on IDs, which are distinct for newly created clocks and identical for clocks
created as copies.

If either side of the equality test is not in the ESMF_INIT_CREATED status an error will be logged. However, this
does not affect the return value, which is .true. when both sides are in the same status, and .false. otherwise.

The arguments are:

clock1 The ESMF_Clock object on the left hand side of the equality operation.

clock2 The ESMF_Clock object on the right hand side of the equality operation.

44.5.3 ESMF_ClockOperator(/=) - Test if Clock 1 is not equal to Clock 2

INTERFACE:

interface operator(/=)

if (clock1 /= clock2) then ... endif

OR

result = (clock1 /= clock2)

RETURN VALUE:

logical :: result

ARGUMENTS:

1101

type(ESMF_Clock), intent(in) :: clock1

type(ESMF_Clock), intent(in) :: clock2

DESCRIPTION:

Overloads the (/=) operator for the ESMF_Clock class. Compare two clocks for inequality; return .true. if not
equal, .false. otherwise. Comparison is based on IDs, which are distinct for newly created clocks and identical
for clocks created as copies.

If either side of the equality test is not in the ESMF_INIT_CREATED status an error will be logged. However,
this does not affect the return value, which is .true. when both sides are not in the same status, and .false.

otherwise.

The arguments are:

clock1 The ESMF_Clock object on the left hand side of the non-equality operation.

clock2 The ESMF_Clock object on the right hand side of the non-equality operation.

44.5.4 ESMF_ClockAdvance - Advance a Clock’s current time by one time step

INTERFACE:

subroutine ESMF_ClockAdvance(clock, &

timeStep, ringingAlarmList, ringingAlarmCount, rc)

ARGUMENTS:

type(ESMF_Clock), intent(inout) :: clock

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_TimeInterval), intent(in), optional :: timeStep

type(ESMF_Alarm), intent(out), optional :: ringingAlarmList(:)

integer, intent(out), optional :: ringingAlarmCount

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Advances the clock’s current time by one time step: either the clock’s, or the passed-in timeStep (see be-
low). When the clock is in ESMF_DIRECTION_FORWARD (default), this method adds the timeStep to the
clock’s current time. In ESMF_DIRECTION_REVERSE, timeStep is subtracted from the current time. In ei-
ther case, timeStep can be positive or negative. See the "direction" argument in method ESMF_ClockSet().
ESMF_ClockAdvance() optionally returns a list and number of ringing ESMF_Alarms. See also method
ESMF_ClockGetRingingAlarms().

The arguments are:

1102

clock The object instance to advance.

[timeStep] Time step is performed with given timeStep, instead of the ESMF_Clock’s. Does not replace the
ESMF_Clock’s timeStep; use ESMF_ClockSet(clock, timeStep, ...) for this purpose. Supports
applications with variable time steps. timeStep can be positive or negative.

[ringingAlarmList] Returns the array of alarms that are ringing after the time step.

[ringingAlarmCount] The number of alarms ringing after the time step.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

44.5.5 ESMF_ClockCreate - Create a new ESMF Clock

INTERFACE:

! Private name; call using ESMF_ClockCreate()

function ESMF_ClockCreateNew(timeStep, startTime, &

stopTime, runDuration, runTimeStepCount, refTime, name, rc)

RETURN VALUE:

type(ESMF_Clock) :: ESMF_ClockCreateNew

ARGUMENTS:

type(ESMF_TimeInterval), intent(in) :: timeStep

type(ESMF_Time), intent(in) :: startTime

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Time), intent(in), optional :: stopTime

type(ESMF_TimeInterval), intent(in), optional :: runDuration

integer, intent(in), optional :: runTimeStepCount

type(ESMF_Time), intent(in), optional :: refTime

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Creates and sets the initial values in a new ESMF_Clock.

The arguments are:

1103

timeStep The ESMF_Clock’s time step interval, which can be positive or negative.

startTime The ESMF_Clock’s starting time. Can be less than or or greater than stopTime, depending on a positive
or negative timeStep, respectively, and whether a stopTime is specified; see below.

[stopTime] The ESMF_Clock’s stopping time. Can be greater than or less than the startTime, depending on
a positive or negative timeStep, respectively. If neither stopTime, runDuration, nor runTimeStepCount is
specified, clock runs "forever"; user must use other means to know when to stop (e.g. ESMF_Alarm or
ESMF_ClockGet(clock, currTime)). Mutually exclusive with runDuration and runTimeStepCount.

[runDuration] Alternative way to specify ESMF_Clock’s stopping time; stopTime = startTime + runDuration. Can
be positive or negative, consistent with the timeStep’s sign. Mutually exclusive with stopTime and runTimeStep-
Count.

[runTimeStepCount] Alternative way to specify ESMF_Clock’s stopping time; stopTime = startTime + (run-
TimeStepCount * timeStep). stopTime can be before startTime if timeStep is negative. Mutually exclusive
with stopTime and runDuration.

[refTime] The ESMF_Clock’s reference time. Provides reference point for simulation time (see currSimTime in
ESMF_ClockGet() below).

[name] The name for the newly created clock. If not specified, a default unique name will be generated: "ClockNNN"
where NNN is a unique sequence number from 001 to 999.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

44.5.6 ESMF_ClockCreate - Create a copy of an existing ESMF Clock

INTERFACE:

! Private name; call using ESMF_ClockCreate()

function ESMF_ClockCreateCopy(clock, rc)

RETURN VALUE:

type(ESMF_Clock) :: ESMF_ClockCreateCopy

ARGUMENTS:

type(ESMF_Clock), intent(in) :: clock

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

1104

DESCRIPTION:

Creates a deep copy of a given ESMF_Clock, but does not copy its list of ESMF_Alarms (pointers), since an
ESMF_Alarm can only be associated with one ESMF_Clock. Hence, the returned ESMF_Clock copy has no
associated ESMF_Alarms, the same as with a newly created ESMF_Clock. If desired, new ESMF_Alarms must
be created and associated with this copied ESMF_Clock via ESMF_AlarmCreate(), or existing ESMF_Alarms
must be re-associated with this copied ESMF_Clock via ESMF_AlarmSet(...clock=...).

The arguments are:

clock The ESMF_Clock to copy.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

44.5.7 ESMF_ClockDestroy - Release resources associated with a Clock

INTERFACE:

subroutine ESMF_ClockDestroy(clock, rc)

ARGUMENTS:

type(ESMF_Clock), intent(inout) :: clock

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Releases resources associated with this ESMF_Clock. This releases the list of associated ESMF_Alarms (point-
ers), but not the ESMF_Alarms themselves; the user must explicitly call ESMF_AlarmDestroy() on each
ESMF_Alarm to release its resources. ESMF_ClockDestroy() and corresponding ESMF_AlarmDestroy()s
can be called in either order.

If ESMF_ClockDestroy() is called before ESMF_AlarmDestroy(), any ESMF_Alarms that
were in the ESMF_Clock’s list will no longer be associated with any ESMF_Clock. If desired,
these "orphaned" ESMF_Alarms can be associated with a different ESMF_Clock via a call to
ESMF_AlarmSet(...clock=...).

The arguments are:

clock Release resources associated with this ESMF_Clock and mark the object as invalid. It is an error to pass this
object into any other routines after being destroyed.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

1105

44.5.8 ESMF_ClockGet - Get a Clock’s properties

INTERFACE:

subroutine ESMF_ClockGet(clock, &

timeStep, startTime, stopTime, &

runDuration, runTimeStepCount, refTime, currTime, prevTime, &

currSimTime, prevSimTime, calendar, calkindflag, timeZone, &

advanceCount, alarmCount, direction, name, rc)

ARGUMENTS:

type(ESMF_Clock), intent(in) :: clock

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_TimeInterval), intent(out), optional :: timeStep

type(ESMF_Time), intent(out), optional :: startTime

type(ESMF_Time), intent(out), optional :: stopTime

type(ESMF_TimeInterval), intent(out), optional :: runDuration

real(ESMF_KIND_R8), intent(out), optional :: runTimeStepCount

type(ESMF_Time), intent(out), optional :: refTime

type(ESMF_Time), intent(out), optional :: currTime

type(ESMF_Time), intent(out), optional :: prevTime

type(ESMF_TimeInterval), intent(out), optional :: currSimTime

type(ESMF_TimeInterval), intent(out), optional :: prevSimTime

type(ESMF_Calendar), intent(out), optional :: calendar

type(ESMF_CalKind_Flag), intent(out), optional :: calkindflag

integer, intent(out), optional :: timeZone

integer(ESMF_KIND_I8), intent(out), optional :: advanceCount

integer, intent(out), optional :: alarmCount

type(ESMF_Direction_Flag), intent(out), optional :: direction

character (len=*), intent(out), optional :: name

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Gets one or more of the properties of an ESMF_Clock.

The arguments are:

clock The object instance to query.

[timeStep] The ESMF_Clock’s time step interval.

[startTime] The ESMF_Clock’s starting time.

[stopTime] The ESMF_Clock’s stopping time.

1106

[runDuration] Alternative way to get ESMF_Clock’s stopping time; runDuration = stopTime - startTime.

[runTimeStepCount] Alternative way to get ESMF_Clock’s stopping time; runTimeStepCount = (stopTime - start-
Time) / timeStep.

[refTime] The ESMF_Clock’s reference time.

[currTime] The ESMF_Clock’s current time.

[prevTime] The ESMF_Clock’s previous time. Equals currTime at the previous time step.

[currSimTime] The current simulation time (currTime - refTime).

[prevSimTime] The previous simulation time. Equals currSimTime at the previous time step.

[calendar] The Calendar on which all the Clock’s times are defined.

[calkindflag] The CalKind_Flag on which all the Clock’s times are defined.

[timeZone] The timezone within which all the Clock’s times are defined.

[advanceCount] The number of times the ESMF_Clock has been advanced. Increments in
ESMF_DIRECTION_FORWARD and decrements in ESMF_DIRECTION_REVERSE; see "direction" ar-
gument below and in ESMF_ClockSet().

[alarmCount] The number of ESMF_Alarms in the ESMF_Clock’s ESMF_Alarm list.

[direction] The ESMF_Clock’s time stepping direction. See also ESMF_ClockIsReverse(), an alternative for
convenient use in "if" and "do while" constructs.

[name] The name of this clock.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

44.5.9 ESMF_ClockGetAlarm - Get an Alarm in a Clock’s Alarm list

INTERFACE:

subroutine ESMF_ClockGetAlarm(clock, alarmname, alarm, &

rc)

ARGUMENTS:

type(ESMF_Clock), intent(in) :: clock

character (len=*), intent(in) :: alarmname

type(ESMF_Alarm), intent(out) :: alarm

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

1107

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Gets the alarm whose name is the value of alarmname in the clock’s ESMF_Alarm list.

The arguments are:

clock The object instance to get the ESMF_Alarm from.

alarmname The name of the desired ESMF_Alarm.

alarm The desired alarm.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

44.5.10 ESMF_ClockGetAlarmList - Get a list of Alarms from a Clock

INTERFACE:

subroutine ESMF_ClockGetAlarmList(clock, alarmlistflag, &

timeStep, alarmList, alarmCount, rc)

ARGUMENTS:

type(ESMF_Clock), intent(in) :: clock

type(ESMF_AlarmList_Flag), intent(in) :: alarmlistflag

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_TimeInterval), intent(in), optional :: timeStep

type(ESMF_Alarm), intent(out), optional :: alarmList(:)

integer, intent(out), optional :: alarmCount

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Gets the clock’s list of alarms and/or number of alarms.

The arguments are:

clock The object instance from which to get an ESMF_Alarm list and/or count of ESMF_Alarms.

1108

alarmlistflag The kind of list to get:

ESMF_ALARMLIST_ALL : Returns the ESMF_Clock’s entire list of alarms.

ESMF_ALARMLIST_NEXTRINGING : Return only those alarms that will ring upon the next clock time
step. Can optionally specify argument timeStep (see below) to use instead of the clock’s. See also method
ESMF_AlarmWillRingNext() for checking a single alarm.

ESMF_ALARMLIST_PREVRINGING :

Return only those alarms that were ringing on the previous ESMF_Clock time step. See also method
ESMF_AlarmWasPrevRinging() for checking a single alarm.

ESMF_ALARMLIST_RINGING : Returns only those clock alarms that are currently ringing. See also method
ESMF_ClockAdvance() for getting the list of ringing alarms subsequent to a time step. See also method
ESMF_AlarmIsRinging() for checking a single alarm.

[timeStep] Optional time step to be used instead of the clock’s. Only used with
ESMF_ALARMLIST_NEXTRINGING alarmlistflag (see above); ignored if specified with other
alarmlistflags.

[alarmList] The array of returned alarms. If given, the array must be large enough to hold the number of alarms of
the specified alarmlistflag in the specified clock.

[alarmCount] If specified, returns the number of ESMF_Alarms of the specified alarmlistflag in the specified
clock.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

44.5.11 ESMF_ClockGetNextTime - Calculate a Clock’s next time

INTERFACE:

subroutine ESMF_ClockGetNextTime(clock, nextTime, &

timeStep, rc)

ARGUMENTS:

type(ESMF_Clock), intent(in) :: clock

type(ESMF_Time), intent(out) :: nextTime

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_TimeInterval), intent(in), optional :: timeStep

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

1109

Calculates what the next time of the clock will be, based on the clock’s current time step or an optionally passed-in
timeStep.

The arguments are:

clock The object instance for which to get the next time.

nextTime The resulting ESMF_Clock’s next time.

[timeStep] The time step interval to use instead of the clock’s.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

44.5.12 ESMF_ClockIsCreated - Check whether a Clock object has been created

INTERFACE:

function ESMF_ClockIsCreated(clock, rc)

RETURN VALUE:

logical :: ESMF_ClockIsCreated

ARGUMENTS:

type(ESMF_Clock), intent(in) :: clock

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Return .true. if the clock has been created. Otherwise return .false.. If an error occurs, i.e. rc /=

ESMF_SUCCESS is returned, the return value of the function will also be .false..

The arguments are:

clock ESMF_Clock queried.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

44.5.13 ESMF_ClockIsDone - Based on its direction, test if the Clock has reached or exceeded its stop time or

start time

INTERFACE:

1110

function ESMF_ClockIsDone(clock, rc)

RETURN VALUE:

logical :: ESMF_ClockIsDone

ARGUMENTS:

type(ESMF_Clock), intent(in) :: clock

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Returns true if currentTime is greater than or equal to stopTime in ESMF_DIRECTION_FORWARD, or if currentTime
is less than or equal to startTime in ESMF_DIRECTION_REVERSE. It returns false otherwise.

The arguments are:

clock The object instance to check.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

44.5.14 ESMF_ClockIsReverse - Test if the Clock is in reverse mode

INTERFACE:

function ESMF_ClockIsReverse(clock, rc)

RETURN VALUE:

logical :: ESMF_ClockIsReverse

ARGUMENTS:

type(ESMF_Clock), intent(in) :: clock

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

1111

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Returns true if clock is in ESMF_DIRECTION_REVERSE, and false if in ESMF_DIRECTION_FORWARD. Allows
convenient use in "if" and "do while" constructs. Alternative to ESMF_ClockGet(...direction=...).

The arguments are:

clock The object instance to check.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

44.5.15 ESMF_ClockIsStopTime - Test if the Clock has reached or exceeded its stop time

INTERFACE:

function ESMF_ClockIsStopTime(clock, rc)

RETURN VALUE:

logical :: ESMF_ClockIsStopTime

ARGUMENTS:

type(ESMF_Clock), intent(in) :: clock

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Returns true if the clock has reached or exceeded its stop time, and false otherwise.

The arguments are:

clock The object instance to check.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

1112

44.5.16 ESMF_ClockIsStopTimeEnabled - Test if the Clock’s stop time is enabled

INTERFACE:

function ESMF_ClockIsStopTimeEnabled(clock, rc)

RETURN VALUE:

logical :: ESMF_ClockIsStopTimeEnabled

ARGUMENTS:

type(ESMF_Clock), intent(in) :: clock

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Returns true if the clock’s stop time is set and enabled, and false otherwise.

The arguments are:

clock The object instance to check.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

44.5.17 ESMF_ClockPrint - Print Clock information

INTERFACE:

subroutine ESMF_ClockPrint(clock, options, preString, unit, rc)

ARGUMENTS:

type(ESMF_Clock), intent(in) :: clock

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character (len=*), intent(in), optional :: options

character(*), intent(in), optional :: preString

character(*), intent(out), optional :: unit

integer, intent(out), optional :: rc

1113

DESCRIPTION:

Prints out an ESMF_Clock’s properties to stdout, in support of testing and debugging. The options control the
type of information and level of detail.

The arguments are:

clock ESMF_Clock to be printed out.

[options] Print options. If none specified, prints all clock property values.
"advanceCount" - print the number of times the clock has been advanced.
"alarmCount" - print the number of alarms in the clock’s list.
"alarmList" - print the clock’s alarm list.
"currTime" - print the current clock time.
"direction" - print the clock’s timestep direction.
"name" - print the clock’s name.
"prevTime" - print the previous clock time.
"refTime" - print the clock’s reference time.
"startTime" - print the clock’s start time.
"stopTime" - print the clock’s stop time.
"timeStep" - print the clock’s time step.

[preString] Optionally prepended string. Default to empty string.

[unit] Internal unit, i.e. a string. Default to printing to stdout.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

44.5.18 ESMF_ClockSet - Set one or more properties of a Clock

INTERFACE:

subroutine ESMF_ClockSet(clock, &

timeStep, startTime, stopTime, &

runDuration, runTimeStepCount, refTime, currTime, advanceCount, &

direction, name, rc)

ARGUMENTS:

type(ESMF_Clock), intent(inout) :: clock

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_TimeInterval), intent(in), optional :: timeStep

type(ESMF_Time), intent(in), optional :: startTime

type(ESMF_Time), intent(in), optional :: stopTime

type(ESMF_TimeInterval), intent(in), optional :: runDuration

integer, intent(in), optional :: runTimeStepCount

type(ESMF_Time), intent(in), optional :: refTime

type(ESMF_Time), intent(in), optional :: currTime

1114

integer(ESMF_KIND_I8), intent(in), optional :: advanceCount

type(ESMF_Direction_Flag), intent(in), optional :: direction

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Sets/resets one or more of the properties of an ESMF_Clock that was previously initialized via
ESMF_ClockCreate().

The arguments are:

clock The object instance to set.

[timeStep] The ESMF_Clock’s time step interval, which can be positive or negative. This is used to change a clock’s
timestep property for those applications that need variable timesteps. See ESMF_ClockAdvance() below
for specifying variable timesteps that are NOT saved as the clock’s internal time step property. See "direction"
argument below for behavior with
t ESMF_DIRECTION_REVERSE direction.

[startTime] The ESMF_Clock’s starting time. Can be less than or or greater than stopTime, depending on a positive
or negative timeStep, respectively, and whether a stopTime is specified; see below.

[stopTime] The ESMF_Clock’s stopping time. Can be greater than or less than the startTime, depending on
a positive or negative timeStep, respectively. If neither stopTime, runDuration, nor runTimeStepCount is
specified, clock runs "forever"; user must use other means to know when to stop (e.g. ESMF_Alarm or
ESMF_ClockGet(clock, currTime)). Mutually exclusive with runDuration and runTimeStepCount.

[runDuration] Alternative way to specify ESMF_Clock’s stopping time; stopTime = startTime + runDuration. Can
be positive or negative, consistent with the timeStep’s sign. Mutually exclusive with stopTime and runTimeStep-
Count.

[runTimeStepCount] Alternative way to specify ESMF_Clock’s stopping time; stopTime = startTime + (run-
TimeStepCount * timeStep). stopTime can be before startTime if timeStep is negative. Mutually exclusive
with stopTime and runDuration.

[refTime] The ESMF_Clock’s reference time. See description in ESMF_ClockCreate() above.

[currTime] The current time.

[advanceCount] The number of times the clock has been timestepped.

[direction] Sets the clock’s time-stepping direction. If called with ESMF_DIRECTION_REVERSE, sets
the clock in "reverse" mode, causing it to timestep back towards its startTime. If called with
ESMF_DIRECTION_FORWARD, sets the clock in normal, "forward" mode, causing it to timestep in the di-
rection of its startTime to stopTime. This holds true for negative timestep clocks as well, which are initial-
ized (created) with stopTime < startTime. The default mode is ESMF_DIRECTION_FORWARD, established at
ESMF_ClockCreate(). timeStep can also be specified as an argument at the same time, which allows for a
change in magnitude and/or sign of the clock’s timeStep. If not specified with ESMF_DIRECTION_REVERSE,
the clock’s current timeStep is effectively negated. If timeStep is specified, its sign is used as speci-
fied; it is not negated internally. E.g., if the specified timeStep is negative and the clock is placed in
ESMF_DIRECTION_REVERSE, subsequent calls to ESMF_ClockAdvance() will cause the clock’s cur-
rent time to be decremented by the new timeStep’s magnitude.

1115

[name] The new name for this clock.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

44.5.19 ESMF_ClockStopTimeDisable - Disable a Clock’s stop time

INTERFACE:

subroutine ESMF_ClockStopTimeDisable(clock, rc)

ARGUMENTS:

type(ESMF_Clock), intent(inout) :: clock

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Disables a ESMF_Clock’s stop time; ESMF_ClockIsStopTime() will always return false, allowing a clock to
run past its stopTime.

The arguments are:

clock The object instance whose stop time to disable.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

44.5.20 ESMF_ClockStopTimeEnable - Enable an Clock’s stop time

INTERFACE:

subroutine ESMF_ClockStopTimeEnable(clock, stopTime, rc)

ARGUMENTS:

1116

type(ESMF_Clock), intent(inout) :: clock

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Time), intent(in), optional :: stopTime

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Enables a ESMF_Clock’s stop time, allowing ESMF_ClockIsStopTime() to respect the stopTime.

The arguments are:

clock The object instance whose stop time to enable.

[stopTime] The stop time to set or reset.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

44.5.21 ESMF_ClockSyncToRealTime - Set Clock’s current time to wall clock time

INTERFACE:

subroutine ESMF_ClockSyncToRealTime(clock, rc)

ARGUMENTS:

type(ESMF_Clock), intent(inout) :: clock

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Sets a clock’s current time to the wall clock time. It is accurate to the nearest second.

The arguments are:

clock The object instance to be synchronized with wall clock time.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

1117

44.5.22 ESMF_ClockValidate - Validate a Clock’s properties

INTERFACE:

subroutine ESMF_ClockValidate(clock, rc)

ARGUMENTS:

type(ESMF_Clock), intent(in) :: clock

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Checks whether a clock is valid. Must have a valid startTime and timeStep. If clock has a stopTime, its currTime
must be within startTime to stopTime, inclusive; also startTime’s and stopTime’s calendars must be the same.

The arguments are:

clock ESMF_Clock to be validated.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

1118

45 Alarm Class

45.1 Description

The Alarm class identifies events that occur at specific Times or specific TimeIntervals by returning a true value at

those times or subsequent times, and a false value otherwise.

45.2 Constants

45.2.1 ESMF_ALARMLIST

DESCRIPTION:

Specifies the characteristics of Alarms that populate a retrieved Alarm list.

The type of this flag is:

type(ESMF_AlarmList_Flag)

The valid values are:

ESMF_ALARMLIST_ALL All alarms.

ESMF_ALARMLIST_NEXTRINGING Alarms that will ring before or at the next timestep.

ESMF_ALARMLIST_PREVRINGING Alarms that rang at or since the last timestep.

ESMF_ALARMLIST_RINGING Only ringing alarms.

45.3 Use and Examples

Alarms are used in conjunction with Clocks (see Section 44.1). Multiple Alarms can be associated with a Clock.

During the ESMF_ClockAdvance() method, a Clock iterates over its internal Alarms to determine if any are

ringing. Alarms ring when a specified Alarm time is reached or exceeded, taking into account whether the time step

is positive or negative. In ESMF_DIRECTION_REVERSE (see Section 44.1), alarms ring in reverse, i.e., they begin

ringing when they originally ended, and end ringing when they originally began. On completion of the time advance

call, the Clock optionally returns a list of ringing alarms.

Each ringing Alarm can then be processed using Alarm methods for identifying, turning off, disabling or resetting the

Alarm.

Alarm methods are defined for obtaining the ringing state, turning the ringer on/off, enabling/disabling the Alarm, and

getting/setting associated times.

The following example shows how to set and process Alarms.

! !PROGRAM: ESMF_AlarmEx - Alarm examples

!

! !DESCRIPTION:

!

! This program shows an example of how to create, initialize, and process

! alarms associated with a clock.

!---

1119

#include "ESMF.h"

! ESMF Framework module

use ESMF

use ESMF_TestMod

implicit none

! instantiate time_step, start, stop, and alarm times

type(ESMF_TimeInterval) :: timeStep, alarmInterval

type(ESMF_Time) :: alarmTime, startTime, stopTime

! instantiate a clock

type(ESMF_Clock) :: clock

! instantiate Alarm lists

integer, parameter :: NUMALARMS = 2

type(ESMF_Alarm) :: alarm(NUMALARMS)

! local variables for Get methods

integer :: ringingAlarmCount ! at any time step (0 to NUMALARMS)

! name, loop counter, result code

character (len=ESMF_MAXSTR) :: name

integer :: i, rc, result

! initialize ESMF framework

call ESMF_Initialize(defaultCalKind=ESMF_CALKIND_GREGORIAN, &

defaultlogfilename="AlarmEx.Log", &

logkindflag=ESMF_LOGKIND_MULTI, rc=rc)

45.3.1 Clock initialization

This example shows how to create and initialize an ESMF_Clock.

! initialize time interval to 1 day

call ESMF_TimeIntervalSet(timeStep, d=1, rc=rc)

! initialize start time to 9/1/2003

call ESMF_TimeSet(startTime, yy=2003, mm=9, dd=1, rc=rc)

! initialize stop time to 9/30/2003

call ESMF_TimeSet(stopTime, yy=2003, mm=9, dd=30, rc=rc)

! create & initialize the clock with the above values

clock = ESMF_ClockCreate(timeStep, startTime, stopTime=stopTime, &

name="The Clock", rc=rc)

1120

45.3.2 Alarm initialization

This example shows how to create and initialize two ESMF_Alarms and associate them with the clock.

! Initialize first alarm to be a one-shot on 9/15/2003 and associate

! it with the clock

call ESMF_TimeSet(alarmTime, yy=2003, mm=9, dd=15, rc=rc)

alarm(1) = ESMF_AlarmCreate(clock, &

ringTime=alarmTime, name="Example alarm 1", rc=rc)

! Initialize second alarm to ring on a 1 week interval starting 9/1/2003

! and associate it with the clock

call ESMF_TimeSet(alarmTime, yy=2003, mm=9, dd=1, rc=rc)

call ESMF_TimeIntervalSet(alarmInterval, d=7, rc=rc)

! Alarm gets default name "Alarm002"

alarm(2) = ESMF_AlarmCreate(clock=clock, ringTime=alarmTime, &

ringInterval=alarmInterval, rc=rc)

45.3.3 Clock advance and Alarm processing

This example shows how to advance an ESMF_Clock and process any resulting ringing alarms.

! time step clock from start time to stop time

do while (.not.ESMF_ClockIsStopTime(clock, rc=rc))

! perform time step and get the number of any ringing alarms

call ESMF_ClockAdvance(clock, ringingAlarmCount=ringingAlarmCount, &

rc=rc)

call ESMF_ClockPrint(clock, options="currTime string", rc=rc)

! check if alarms are ringing

if (ringingAlarmCount > 0) then

print *, "number of ringing alarms = ", ringingAlarmCount

do i = 1, NUMALARMS

if (ESMF_AlarmIsRinging(alarm(i), rc=rc)) then

1121

call ESMF_AlarmGet(alarm(i), name=name, rc=rc)

print *, trim(name), " is ringing!"

! after processing alarm, turn it off

call ESMF_AlarmRingerOff(alarm(i), rc=rc)

end if ! this alarm is ringing

end do ! each ringing alarm

endif ! ringing alarms

end do ! timestep clock

45.3.4 Alarm and Clock destruction

This example shows how to destroy ESMF_Alarms and ESMF_Clocks.

call ESMF_AlarmDestroy(alarm(1), rc=rc)

call ESMF_AlarmDestroy(alarm(2), rc=rc)

call ESMF_ClockDestroy(clock, rc=rc)

! finalize ESMF framework

call ESMF_Finalize(rc=rc)

end program ESMF_AlarmEx

45.4 Restrictions and Future Work

1. Alarm list allocation factor The alarm list within a clock is dynamically allocated automatically, 200 alarm

references at a time. This constant is defined in both Fortran and C++ with a #define for ease of modification.

2. Sticky alarm end times in reverse For sticky alarms, there is an implicit limitation that in order to properly re-

verse timestep through a ring end time, that time must have already been traversed in the forward direction. This

is due to the fact that the Time Manager cannot predict when user code will call ESMF_AlarmRingerOff().

An error message will be logged when this limitation is not satisfied.

3. Sticky alarm ring interval in reverse

For repeating sticky alarms, it is currently assumed that the ringInterval is constant, so that only the time of

the last call to ESMF_AlarmRingerOff() is saved. In ESMF_DIRECTION_REVERSE, this information is

used to turn sticky alarms back on. In a future release, ringIntervals will be allowed to be variable, by saving

alarm state at every timestep.

1122

45.5 Design and Implementation Notes

The Alarm class is designed as a deep, dynamically allocatable class, based on a pointer type. This allows for both

indirect and direct manipulation of alarms. Indirect alarm manipulation is where ESMF_Alarm API methods, such

as ESMF_AlarmRingerOff(), are invoked on alarm references (pointers) returned from ESMF_Clock queries such as

"return ringing alarms." Since the method is performed on an alarm reference, the actual alarm held by the clock is

affected, not just a user’s local copy. Direct alarm manipulation is the more common case where alarm API methods

are invoked on the original alarm objects created by the user.

For consistency, the ESMF_Clock class is also designed as a deep, dynamically allocatable class.

An additional benefit from this approach is that Clocks and Alarms can be created and used from anywhere in a user’s

code without regard to the scope in which they were created. In contrast, statically created Alarms and Clocks would

disappear if created within a user’s routine that returns, whereas dynamically allocated Alarms and Clocks will persist

until explicitly destroyed by the user.

45.6 Class API

45.6.1 ESMF_AlarmAssignment(=) - Assign an Alarm to another Alarm

INTERFACE:

interface assignment(=)

alarm1 = alarm2

ARGUMENTS:

type(ESMF_Alarm) :: alarm1

type(ESMF_Alarm) :: alarm2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Assign alarm1 as an alias to the same ESMF_Alarm object in memory as alarm2. If alarm2 is invalid, then
alarm1 will be equally invalid after the assignment.

The arguments are:

alarm1 The ESMF_Alarm object on the left hand side of the assignment.

alarm2 The ESMF_Alarm object on the right hand side of the assignment.

1123

45.6.2 ESMF_AlarmOperator(==) - Test if Alarm 1 is equal to Alarm 2

INTERFACE:

interface operator(==)

if (alarm1 == alarm2) then ... endif

OR

result = (alarm1 == alarm2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_Alarm), intent(in) :: alarm1

type(ESMF_Alarm), intent(in) :: alarm2

DESCRIPTION:

Overloads the (==) operator for the ESMF_Alarm class. Compare two alarms for equality; return .true. if equal,
.false. otherwise. Comparison is based on IDs, which are distinct for newly created alarms and identical for
alarms created as copies.

If either side of the equality test is not in the ESMF_INIT_CREATED status an error will be logged. However, this
does not affect the return value, which is .true. when both sides are in the same status, and .false. otherwise.

The arguments are:

alarm1 The ESMF_Alarm object on the left hand side of the equality operation.

alarm2 The ESMF_Alarm object on the right hand side of the equality operation.

45.6.3 ESMF_AlarmOperator(/=) - Test if Alarm 1 is not equal to Alarm 2

INTERFACE:

interface operator(/=)

if (alarm1 /= alarm2) then ... endif

OR

result = (alarm1 /= alarm2)

RETURN VALUE:

logical :: result

ARGUMENTS:

1124

type(ESMF_Alarm), intent(in) :: alarm1

type(ESMF_Alarm), intent(in) :: alarm2

DESCRIPTION:

Overloads the (/=) operator for the ESMF_Alarm class. Compare two alarms for inequality; return .true. if not
equal, .false. otherwise. Comparison is based on IDs, which are distinct for newly created alarms and identical
for alarms created as copies.

If either side of the equality test is not in the ESMF_INIT_CREATED status an error will be logged. However,
this does not affect the return value, which is .true. when both sides are not in the same status, and .false.

otherwise.

The arguments are:

alarm1 The ESMF_Alarm object on the left hand side of the non-equality operation.

alarm2 The ESMF_Alarm object on the right hand side of the non-equality operation.

45.6.4 ESMF_AlarmCreate - Create a new ESMF Alarm

INTERFACE:

! Private name; call using ESMF_AlarmCreate()

function ESMF_AlarmCreateNew(clock, &

ringTime, ringInterval, stopTime, ringDuration, ringTimeStepCount, &

refTime, enabled, sticky, name, rc)

RETURN VALUE:

type(ESMF_Alarm) :: ESMF_AlarmCreateNew

ARGUMENTS:

type(ESMF_Clock), intent(in) :: clock

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Time), intent(in), optional :: ringTime

type(ESMF_TimeInterval), intent(in), optional :: ringInterval

type(ESMF_Time), intent(in), optional :: stopTime

type(ESMF_TimeInterval), intent(in), optional :: ringDuration

integer, intent(in), optional :: ringTimeStepCount

type(ESMF_Time), intent(in), optional :: refTime

logical, intent(in), optional :: enabled

logical, intent(in), optional :: sticky

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

1125

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Creates and sets the initial values in a new ESMF_Alarm.

In ESMF_DIRECTION_REVERSE (see Section 44.1), alarms ring in reverse, i.e., they begin ringing when they
originally ended, and end ringing when they originally began.

The arguments are:

clock The clock with which to associate this newly created alarm.

[ringTime] The ring time for a one-shot alarm or the first ring time for a repeating (interval) alarm. Must specify at
least one of ringTime or ringInterval.

[ringInterval] The ring interval for repeating (interval) alarms. If ringTime is not also specified (first ring time), it
will be calculated as the clock’s current time plus ringInterval. Must specify at least one of ringTime or
ringInterval.

[stopTime] The stop time for repeating (interval) alarms. If not specified, an interval alarm will repeat forever.

[ringDuration] The absolute ring duration. If not sticky (see argument below), alarms rings for ringDuration, then
turns itself off. Default is zero (unused). Mutually exclusive with ringTimeStepCount (below); used only
if set to a non-zero duration and ringTimeStepCount is 1 (see below). See also ESMF_AlarmSticky(),
ESMF_AlarmNotSticky().

[ringTimeStepCount] The relative ring duration. If not sticky (see argument below), alarms rings for ringTimeStep-
Count, then turns itself off. Default is 1: a non-sticky alarm will ring for one clock time step. Mutually
exclusive with ringDuration (above); used if ringTimeStepCount > 1. If ringTimeStepCount is 1 (default) and
ringDuration is non-zero, ringDuration is used (see above), otherwise ringTimeStepCount is used. See also
ESMF_AlarmSticky(), ESMF_AlarmNotSticky().

[refTime] The reference (i.e. base) time for an interval alarm.

[enabled] Sets the enabled state; default is on (true). If disabled, an alarm will not function at all. See also
ESMF_AlarmEnable(), ESMF_AlarmDisable().

[sticky] Sets the sticky state; default is on (true). If sticky, once an alarm is ringing, it will remain ringing until turned
off manually via a user call to ESMF_AlarmRingerOff(). If not sticky, an alarm will turn itself off after a
certain ring duration specified by either ringDuration or ringTimeStepCount (see above). There is an implicit
limitation that in order to properly reverse timestep through a ring end time in ESMF_DIRECTION_REVERSE,
that time must have already been traversed in the forward direction. This is due to the fact that the Time Manager
cannot predict when user code will call ESMF_AlarmRingerOff(). An error message will be logged when
this limitation is not satisfied. See also ESMF_AlarmSticky(), ESMF_AlarmNotSticky().

[name] The name for the newly created alarm. If not specified, a default unique name will be generated: "AlarmNNN"
where NNN is a unique sequence number from 001 to 999.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

1126

45.6.5 ESMF_AlarmCreate - Create a copy of an existing ESMF Alarm

INTERFACE:

! Private name; call using ESMF_AlarmCreate()

function ESMF_AlarmCreateCopy(alarm, rc)

RETURN VALUE:

type(ESMF_Alarm) :: ESMF_AlarmCreateCopy

ARGUMENTS:

type(ESMF_Alarm), intent(in) :: alarm

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Creates a complete (deep) copy of a given ESMF_Alarm. The returned ESMF_Alarm copy is associated with the
same ESMF_Clock as the original ESMF_Alarm. If desired, use ESMF_AlarmSet(...clock=...) to re-
associate the ESMF_Alarm copy with a different ESMF_Clock.

The arguments are:

alarm The ESMF_Alarm to copy.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

45.6.6 ESMF_AlarmDestroy - Release resources associated with an Alarm

INTERFACE:

subroutine ESMF_AlarmDestroy(alarm, rc)

ARGUMENTS:

type(ESMF_Alarm), intent(inout) :: alarm

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

1127

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Releases resources associated with this ESMF_Alarm. Also removes this ESMF_Alarm from its associated
ESMF_Clock’s list of ESMF_Alarms (removes the ESMF_Alarm pointer from the list).

The arguments are:

alarm Release resources associated with this ESMF_Alarm and mark the object as invalid. It is an error to pass this
object into any other routines after being destroyed.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

45.6.7 ESMF_AlarmDisable - Disable an Alarm

INTERFACE:

subroutine ESMF_AlarmDisable(alarm, rc)

ARGUMENTS:

type(ESMF_Alarm), intent(inout) :: alarm

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Disables an ESMF_Alarm.

The arguments are:

alarm The object instance to disable.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

1128

45.6.8 ESMF_AlarmEnable - Enable an Alarm

INTERFACE:

subroutine ESMF_AlarmEnable(alarm, rc)

ARGUMENTS:

type(ESMF_Alarm), intent(inout) :: alarm

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Enables an ESMF_Alarm to function.

The arguments are:

alarm The object instance to enable.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

45.6.9 ESMF_AlarmGet - Get Alarm properties

INTERFACE:

subroutine ESMF_AlarmGet(alarm, &

clock, ringTime, prevRingTime, ringInterval, stopTime, ringDuration, &

ringTimeStepCount, timeStepRingingCount, ringBegin, ringEnd, &

refTime, ringing, ringingOnPrevTimeStep, enabled, sticky, name, rc)

ARGUMENTS:

type(ESMF_Alarm), intent(in) :: alarm

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Clock), intent(out), optional :: clock

type(ESMF_Time), intent(out), optional :: ringTime

type(ESMF_Time), intent(out), optional :: prevRingTime

type(ESMF_TimeInterval), intent(out), optional :: ringInterval

1129

type(ESMF_Time), intent(out), optional :: stopTime

type(ESMF_TimeInterval), intent(out), optional :: ringDuration

integer, intent(out), optional :: ringTimeStepCount

integer, intent(out), optional :: timeStepRingingCount

type(ESMF_Time), intent(out), optional :: ringBegin

type(ESMF_Time), intent(out), optional :: ringEnd

type(ESMF_Time), intent(out), optional :: refTime

logical, intent(out), optional :: ringing

logical, intent(out), optional :: ringingOnPrevTimeStep

logical, intent(out), optional :: enabled

logical, intent(out), optional :: sticky

character (len=*), intent(out), optional :: name

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Gets one or more of an ESMF_Alarm’s properties.

The arguments are:

alarm The object instance to query.

[clock] The associated clock.

[ringTime] The ring time for a one-shot alarm or the next repeating alarm.

[prevRingTime] The previous ring time.

[ringInterval] The ring interval for repeating (interval) alarms.

[stopTime] The stop time for repeating (interval) alarms.

[ringDuration] The ring duration. Mutually exclusive with ringTimeStepCount (see below).

[ringTimeStepCount] The number of time steps comprising the ring duration. Mutually exclusive with ringDuration
(see above).

[timeStepRingingCount] The number of time steps for which the alarm has been ringing thus far. Used internally
for tracking ringTimeStepCount ring durations (see above). Mutually exclusive with ringBegin (see below).
Increments in ESMF_DIRECTION_FORWARD and decrements in ESMF_DIRECTION_REVERSE; see Sec-
tion 44.1.

[ringBegin] The time when the alarm began ringing. Used internally for tracking ringDuration (see above). Mutually
exclusive with timeStepRingingCount (see above).

[ringEnd] The time when the alarm ended ringing. Used internally for re-ringing alarm in
ESMF_DIRECTION_REVERSE.

[refTime] The reference (i.e. base) time for an interval alarm.

[ringing] The current ringing state. See also ESMF_AlarmRingerOn(), ESMF_AlarmRingerOff().

1130

[ringingOnPrevTimeStep] The ringing state upon the previous time step. Same as
ESMF_AlarmWasPrevRinging().

[enabled] The enabled state. See also ESMF_AlarmEnable(), ESMF_AlarmDisable().

[sticky] The sticky state. See also ESMF_AlarmSticky(), ESMF_AlarmNotSticky().

[name] The name of this alarm.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

45.6.10 ESMF_AlarmIsCreated - Check whether a Alarm object has been created

INTERFACE:

function ESMF_AlarmIsCreated(alarm, rc)

RETURN VALUE:

logical :: ESMF_AlarmIsCreated

ARGUMENTS:

type(ESMF_Alarm), intent(in) :: alarm

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Return .true. if the alarm has been created. Otherwise return .false.. If an error occurs, i.e. rc /=

ESMF_SUCCESS is returned, the return value of the function will also be .false..

The arguments are:

alarm ESMF_Alarm queried.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

45.6.11 ESMF_AlarmIsEnabled - Check if Alarm is enabled

INTERFACE:

function ESMF_AlarmIsEnabled(alarm, rc)

RETURN VALUE:

1131

logical :: ESMF_AlarmIsEnabled

ARGUMENTS:

type(ESMF_Alarm), intent(in) :: alarm

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Check if ESMF_Alarm is enabled.

The arguments are:

alarm The object instance to check for enabled state.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

45.6.12 ESMF_AlarmIsRinging - Check if Alarm is ringing

INTERFACE:

function ESMF_AlarmIsRinging(alarm, rc)

RETURN VALUE:

logical :: ESMF_AlarmIsRinging

ARGUMENTS:

type(ESMF_Alarm), intent(in) :: alarm

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

1132

DESCRIPTION:

Check if ESMF_Alarm is ringing.

See also method ESMF_ClockGetAlarmList(clock, ESMF_ALARMLIST_RINGING, ...) to get a list
of all ringing alarms belonging to an ESMF_Clock.

The arguments are:

alarm The alarm to check for ringing state.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

45.6.13 ESMF_AlarmIsSticky - Check if Alarm is sticky

INTERFACE:

function ESMF_AlarmIsSticky(alarm, rc)

RETURN VALUE:

logical :: ESMF_AlarmIsSticky

ARGUMENTS:

type(ESMF_Alarm), intent(in) :: alarm

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Check if alarm is sticky.

The arguments are:

alarm The object instance to check for sticky state.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

1133

45.6.14 ESMF_AlarmNotSticky - Unset an Alarm’s sticky flag

INTERFACE:

subroutine ESMF_AlarmNotSticky(alarm, &

ringDuration, ringTimeStepCount, rc)

ARGUMENTS:

type(ESMF_Alarm), intent(inout) :: alarm

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_TimeInterval), intent(in), optional :: ringDuration

integer, intent(in), optional :: ringTimeStepCount

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Unset an ESMF_Alarm’s sticky flag; once alarm is ringing, it turns itself off after ringDuration.

The arguments are:

alarm The object instance to unset sticky.

[ringDuration] If not sticky, alarms rings for ringDuration, then turns itself off. Mutually exclu-
sive with ringTimeStepCount (see below and full description in method ESMF_AlarmCreate() or
ESMF_AlarmSet()).

[ringTimeStepCount] If not sticky, alarms rings for ringTimeStepCount, then turns itself off. Mutually
exclusive with ringDuration (see above and full description in method ESMF_AlarmCreate() or
ESMF_AlarmSet()).

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

45.6.15 ESMF_AlarmPrint - Print Alarm information

INTERFACE:

subroutine ESMF_AlarmPrint(alarm, options, rc)

ARGUMENTS:

1134

type(ESMF_Alarm), intent(in) :: alarm

character (len=*), intent(in), optional :: options

integer, intent(out), optional :: rc

DESCRIPTION:

Prints out an ESMF_Alarm’s properties to stdout, in support of testing and debugging. The options control the
type of information and level of detail.

The arguments are:

alarm ESMF_Alarm to be printed out.

[options] Print options. If none specified, prints all alarm property values.
"clock" - print the associated clock’s name.
"enabled" - print the alarm’s ability to ring.
"name" - print the alarm’s name.
"prevRingTime" - print the alarm’s previous ring time.
"ringBegin" - print time when the alarm actually begins to ring.
"ringDuration" - print how long this alarm is to remain ringing.
"ringEnd" - print time when the alarm actually ends ringing.
"ringing" - print the alarm’s current ringing state.
"ringingOnPrevTimeStep" - print whether the alarm was ringing immediately after the previous clock time step.
"ringInterval" - print the alarm’s periodic ring interval.
"ringTime" - print the alarm’s next time to ring.
"ringTimeStepCount" - print how long this alarm is to remain ringing, in terms of a number of clock time steps.
"refTime" - print the alarm’s interval reference (base) time.
"sticky" - print whether the alarm must be turned off manually.
"stopTime" - print when alarm intervals end.
"timeStepRingingCount" - print the number of time steps the alarm has been ringing thus far.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

45.6.16 ESMF_AlarmRingerOff - Turn off an Alarm

INTERFACE:

subroutine ESMF_AlarmRingerOff(alarm, rc)

ARGUMENTS:

type(ESMF_Alarm), intent(inout) :: alarm

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

1135

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Turn off an ESMF_Alarm; unsets ringing state. For a sticky alarm, this method must be called to turn off its ring-
ing state. This is true for either ESMF_DIRECTION_FORWARD (default) or ESMF_DIRECTION_REVERSE. See
Section 44.1.

The arguments are:

alarm The object instance to turn off.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

45.6.17 ESMF_AlarmRingerOn - Turn on an Alarm

INTERFACE:

subroutine ESMF_AlarmRingerOn(alarm, rc)

ARGUMENTS:

type(ESMF_Alarm), intent(inout) :: alarm

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Turn on an ESMF_Alarm; sets ringing state.

The arguments are:

alarm The object instance to turn on.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

1136

45.6.18 ESMF_AlarmSet - Set Alarm properties

INTERFACE:

subroutine ESMF_AlarmSet(alarm, &

clock, ringTime, ringInterval, stopTime, ringDuration, &

ringTimeStepCount, refTime, ringing, enabled, sticky, name, rc)

ARGUMENTS:

type(ESMF_Alarm), intent(inout) :: alarm

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Clock), intent(in), optional :: clock

type(ESMF_Time), intent(in), optional :: ringTime

type(ESMF_TimeInterval), intent(in), optional :: ringInterval

type(ESMF_Time), intent(in), optional :: stopTime

type(ESMF_TimeInterval), intent(in), optional :: ringDuration

integer, intent(in), optional :: ringTimeStepCount

type(ESMF_Time), intent(in), optional :: refTime

logical, intent(in), optional :: ringing

logical, intent(in), optional :: enabled

logical, intent(in), optional :: sticky

character (len=*), intent(in), optional :: name

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Sets/resets one or more of the properties of an ESMF_Alarm that was previously initialized via
ESMF_AlarmCreate().

The arguments are:

alarm The object instance to set.

[clock] Re-associates this alarm with a different clock.

[ringTime] The next ring time for a one-shot alarm or a repeating (interval) alarm.

[ringInterval] The ring interval for repeating (interval) alarms.

[stopTime] The stop time for repeating (interval) alarms.

[ringDuration] The absolute ring duration. If not sticky (see argument below), alarms rings for ringDuration, then
turns itself off. Default is zero (unused). Mutually exclusive with ringTimeStepCount (below); used only
if set to a non-zero duration and ringTimeStepCount is 1 (see below). See also ESMF_AlarmSticky(),
ESMF_AlarmNotSticky().

1137

[ringTimeStepCount] The relative ring duration. If not sticky (see argument below), alarms rings for ringTimeStep-
Count, then turns itself off. Default is 1: a non-sticky alarm will ring for one clock time step. Mutually
exclusive with ringDuration (above); used if ringTimeStepCount > 1. If ringTimeStepCount is 1 (default) and
ringDuration is non-zero, ringDuration is used (see above), otherwise ringTimeStepCount is used. See also
ESMF_AlarmSticky(), ESMF_AlarmNotSticky().

[refTime] The reference (i.e. base) time for an interval alarm.

[ringing] Sets the ringing state. See also ESMF_AlarmRingerOn(), ESMF_AlarmRingerOff().

[enabled] Sets the enabled state. If disabled, an alarm will not function at all. See also ESMF_AlarmEnable(),
ESMF_AlarmDisable().

[sticky] Sets the sticky state. If sticky, once an alarm is ringing, it will remain ringing until turned off manually via a
user call to ESMF_AlarmRingerOff(). If not sticky, an alarm will turn itself off after a certain ring duration
specified by either ringDuration or ringTimeStepCount (see above). There is an implicit limitation that in order
to properly reverse timestep through a ring end time in ESMF_DIRECTION_REVERSE, that time must have
already been traversed in the forward direction. This is due to the fact that the Time Manager cannot predict
when user code will call ESMF_AlarmRingerOff(). An error message will be logged when this limitation
is not satisfied. See also ESMF_AlarmSticky(), ESMF_AlarmNotSticky().

[name] The new name for this alarm.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

45.6.19 ESMF_AlarmSticky - Set an Alarm’s sticky flag

INTERFACE:

subroutine ESMF_AlarmSticky(alarm, rc)

ARGUMENTS:

type(ESMF_Alarm), intent(inout) :: alarm

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Set an ESMF_Alarm’s sticky flag; once alarm is ringing, it remains ringing until ESMF_AlarmRingerOff()
is called. There is an implicit limitation that in order to properly reverse timestep through a ring end time in
ESMF_DIRECTION_REVERSE, that time must have already been traversed in the forward direction. This is due
to the fact that an ESMF_Alarm cannot predict when user code will call ESMF_AlarmRingerOff(). An error
message will be logged when this limitation is not satisfied.

The arguments are:

1138

alarm The object instance to be set sticky.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

45.6.20 ESMF_AlarmValidate - Validate an Alarm’s properties

INTERFACE:

subroutine ESMF_AlarmValidate(alarm, rc)

ARGUMENTS:

type(ESMF_Alarm), intent(in) :: alarm

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Performs a validation check on an ESMF_Alarm’s properties. Must have a valid ringTime, set either directly or
indirectly via ringInterval. See ESMF_AlarmCreate().

The arguments are:

alarm ESMF_Alarm to be validated.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

45.6.21 ESMF_AlarmWasPrevRinging - Check if Alarm was ringing on the previous Clock timestep

INTERFACE:

function ESMF_AlarmWasPrevRinging(alarm, rc)

RETURN VALUE:

logical :: ESMF_AlarmWasPrevRinging

1139

ARGUMENTS:

type(ESMF_Alarm), intent(in) :: alarm

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Check if ESMF_Alarm was ringing on the previous clock timestep.

See also method ESMF_ClockGetAlarmList(clock, ESMF_ALARMLIST_PREVRINGING, ...) get a
list of all alarms belonging to a ESMF_Clock that were ringing on the previous time step.

The arguments are:

alarm The object instance to check for previous ringing state.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

45.6.22 ESMF_AlarmWillRingNext - Check if Alarm will ring upon the next Clock timestep

INTERFACE:

function ESMF_AlarmWillRingNext(alarm, timeStep, rc)

RETURN VALUE:

logical :: ESMF_AlarmWillRingNext

ARGUMENTS:

type(ESMF_Alarm), intent(in) :: alarm

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_TimeInterval), intent(in), optional :: timeStep

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

1140

DESCRIPTION:

Check if ESMF_Alarm will ring on the next clock timestep, either the current clock timestep or a passed-in timestep.

See also method ESMF_ClockGetAlarmList(clock, ESMF_ALARMLIST_NEXTRINGING, ...) to get
a list of all alarms belonging to a ESMF_Clock that will ring on the next time step.

The arguments are:

alarm The alarm to check for next ringing state.

[timeStep] Optional timestep to use instead of the clock’s.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

46 Config Class

46.1 Description

ESMF Configuration Management is based on NASA DAO’s Inpak 90 package, a Fortran 90 collection of rou-

tines/functions for accessing Resource Files in ASCII format.The package is optimized for minimizing formatted I/O,

performing all of its string operations in memory using Fortran intrinsic functions.

46.1.1 Package history

The ESMF Configuration Management Package was evolved by Leonid Zaslavsky and Arlindo da Silva from Ipack90

package created by Arlindo da Silva at NASA DAO.

Back in the 70’s Eli Isaacson wrote IOPACK in Fortran 66. In June of 1987 Arlindo da Silva wrote Inpak77 using For-

tran 77 string functions; Inpak 77 is a vastly simplified IOPACK, but has its own goodies not found in IOPACK. Inpak

90 removes some obsolete functionality in Inpak77, and parses the whole resource file in memory for performance.

46.1.2 Resource files

A Resource File (RF) is a text file consisting of list of label-value pairs. There is a limit of 250 characters per line and

the Resource File can contain a maximum of 200 records. Each label should be followed by some data, the value. An

example Resource File follows. It is the file used in the example below.

This is an example Resource File.

It contains a list of <label,value> pairs.

The colon after the label is required.

The values after the label can be an list.

Multiple types are authorized.

my_file_names: jan87.dat jan88.dat jan89.dat # all strings

constants: 3.1415 25 # float and integer

my_favorite_colors: green blue 022

1141

Or, the data can be a list of single value pairs.

It is simplier to retrieve data in this format:

radius_of_the_earth: 6.37E6

parameter_1: 89

parameter_2: 78.2

input_file_name: dummy_input.netcdf

Or, the data can be located in a table using the following

syntax:

my_table_name::

1000 3000 263.0

925 3000 263.0

850 3000 263.0

700 3000 269.0

500 3000 287.0

400 3000 295.8

300 3000 295.8

::

Note that the colon after the label is required and that the double colon is required to declare tabular data.

Resource files are intended for random access (except between ::’s in a table definition). This means that order in which

a particular label-value pair is retrieved is not dependent upon the original order of the pairs. The only exception to

this, however, is when the same label appears multiple times within the Resource File.

46.2 Use and Examples

This example/test code performs simple Config/Resource File routines. It does not include attaching a Config to a
component. The important thing to remember there is that you can have one Config per component.

There are two methodologies for accessing data in a Resource File. This example will demonstrate both.

Note the API section contains a complete description of arguments in the methods/functions demonstrated in this
example.

46.2.1 Variable declarations

The following are the variable declarations used as arguments in the following code fragments. They represent the
locals names for the variables listed in the Resource File (RF). Note they do not need to be the same.

character(ESMF_MAXPATHLEN) :: fname ! config file name

character(ESMF_MAXPATHLEN) :: fn1, fn2, fn3, input_file ! strings to be read in

integer :: rc ! error return code (0 is OK)

integer :: i_n ! the first constant in the RF

real :: param_1 ! the second constant in the RF

1142

real :: radius ! radius of the earth

real :: table(7,3) ! an array to hold the table in the RF

type(ESMF_Config) :: cf ! the Config itself

46.2.2 Creation of a Config

While there are two methodologies for accessing the data within a Resource File, there is only one way to create the
initial Config and load its ASCII text into memory. This is the first step in the process.

Note that subsequent calls to ESMF_ConfigLoadFile will OVERWRITE the current Config NOT append to it.
There is no means of appending to a Config.

cf = ESMF_ConfigCreate(rc=rc) ! Create the empty Config

fname = "myResourceFile.rc" ! Name the Resource File

call ESMF_ConfigLoadFile(cf, fname, rc=rc) ! Load the Resource File

! into the empty Config

46.2.3 How to retrieve a label with a single value

The first method for retrieving information from the Resource File takes advantage of the <label,value> relationship
within the file and access the data in a dictionary-like manner. This is the simplest methodology, but it does imply the
use of only one value per label in the Resource File.

Remember, that the order in which a particular label/value pair is retrieved is not dependent upon the order which they
exist within the Resource File.

call ESMF_ConfigGetAttribute(cf, radius, label=’radius_of_the_earth:’, &

default=1.0, rc=rc)

Note that the colon must be included in the label string when using this methodology. It is also important to provide a
default value in case the label does not exist in the file

This methodology works for all types. The following is an example of retrieving a string:

call ESMF_ConfigGetAttribute(cf, input_file, label=’input_file_name:’, &

default="./default.nc", rc=rc)

The same code fragment can be used to demonstrate what happens when the label is not present. Note that "file_name"
does not exist in the Resource File. The result of its absence is the default value provided in the call.

call ESMF_ConfigGetAttribute(cf, input_file, label=’file_name:’, &

default="./default.nc", rc=rc)

1143

46.2.4 How to retrieve a label with multiple values

When there are multiple, mixed-typed values associated with a label, the values can be retrieved in two steps: 1)
Use ESMF_ConfigFindLabel() to find the label in the Config class; 2) use ESMF_ConfigGetAttribute() without the
optional ’label’ argument to retrieve the values one at a time, reading from left to right in the record.

A second reminder that the order in which a particular label/value pair is retrieved is not dependent upon the order
which they exist within the Resource File. The label used in this method allows the user to skip to any point in the file.

call ESMF_ConfigFindLabel(cf, ’constants:’, rc=rc) ! Step a) Find the

! label

Two constants, radius and i_n, can now be retrieved without having to specify their label or use an array. They are also
different types.

call ESMF_ConfigGetAttribute(cf, param_1, rc=rc) ! Step b) read in the

! first constant in

! the sequence

call ESMF_ConfigGetAttribute(cf, i_n, rc=rc) ! Step c) read in the

! second constant in

! the sequence

This methodology also works with strings.

call ESMF_ConfigFindLabel(cf, ’my_file_names:’, &

rc=rc) ! Step a) find the label

call ESMF_ConfigGetAttribute(cf, fn1, &

rc=rc) ! Step b) retrieve the 1st filename

call ESMF_ConfigGetAttribute(cf, fn2, &

rc=rc) ! Step c) retrieve the 2nd filename

call ESMF_ConfigGetAttribute(cf, fn3, &

rc=rc) ! Step d) retrieve the 3rd filename

46.2.5 How to retrieve a table

To access tabular data, the user must use the multi-value method.

call ESMF_ConfigFindLabel(cf, ’my_table_name::’, &

rc=rc) ! Step a) Set the label location to the

! beginning of the table

Subsequently, call ESMF_ConfigNextLine() is used to move the location to the next row of the table. The
example table in the Resource File contains 7 rows and 3 columns (7,3).

1144

do i = 1, 7

call ESMF_ConfigNextLine(cf, rc=rc) ! Step b) Increment the rows

do j = 1, 3 ! Step c) Fill in the table

call ESMF_ConfigGetAttribute(cf, table(i,j), rc=rc)

enddo

enddo

46.2.6 Destruction of a Config

The work with the configuration file cf is finalized by call to ESMF_ConfigDestroy():

call ESMF_ConfigDestroy(cf, rc=rc) ! Destroy the Config

46.3 Class API

46.3.1 ESMF_ConfigAssignment(=) - Config assignment

INTERFACE:

interface assignment(=)

config1 = config2

ARGUMENTS:

type(ESMF_Config) :: config1

type(ESMF_Config) :: config2

DESCRIPTION:

Assign config1 as an alias to the same ESMF_Config object in memory as config2. If config2 is invalid,
then config1 will be equally invalid after the assignment.

The arguments are:

config1 The ESMF_Config object on the left hand side of the assignment.

config2 The ESMF_Config object on the right hand side of the assignment.

46.3.2 ESMF_ConfigOperator(==) - Test if Config objects are equivalent

INTERFACE:

1145

interface operator(==)

if (config1 == config2) then ... endif

OR

result = (config1 == config2)

RETURN VALUE:

configical :: result

ARGUMENTS:

type(ESMF_Config), intent(in) :: config1

type(ESMF_Config), intent(in) :: config2

DESCRIPTION:

Overloads the (==) operator for the ESMF_Config class. Compare two configs for equality; return .true. if equal,
.false. otherwise. Comparison is based on whether the objects are distinct, as with two newly created objects, or
are simply aliases to the same object as would be the case when assignment was involved.

The arguments are:

config1 The ESMF_Config object on the left hand side of the equality operation.

config2 The ESMF_Config object on the right hand side of the equality operation.

46.3.3 ESMF_ConfigOperator(/=) - Test if Config objects are not equivalent

INTERFACE:

interface operator(/=)

if (config1 /= config2) then ... endif

OR

result = (config1 /= config2)

RETURN VALUE:

configical :: result

ARGUMENTS:

type(ESMF_Config), intent(in) :: config1

type(ESMF_Config), intent(in) :: config2

DESCRIPTION:

Overloads the (/=) operator for the ESMF_Config class. Compare two configs for equality; return .true. if not
equivalent, .false. otherwise. Comparison is based on whether the Config objects are distinct, as with two newly
created objects, or are simply aliases to the same object as would be the case when assignment was involved.

The arguments are:

1146

config1 The ESMF_Config object on the left hand side of the equality operation.

config2 The ESMF_Config object on the right hand side of the equality operation.

46.3.4 ESMF_ConfigCreate - Instantiate a Config object

INTERFACE:

! Private name; call using ESMF_ConfigCreate()

type(ESMF_Config) function ESMF_ConfigCreateEmpty(rc)

ARGUMENTS:

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer,intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Instantiates an ESMF_Config object for use in subsequent calls.

The arguments are:

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

46.3.5 ESMF_ConfigCreate - Instantiate a new Config object from a Config section

INTERFACE:

! Private name; call using ESMF_ConfigCreate()

type(ESMF_Config) function ESMF_ConfigCreateFromSection(config, &

openlabel, closelabel, rc)

ARGUMENTS:

type(ESMF_Config) :: config

character(len=*), intent(in) :: openlabel, closelabel

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer,intent(out), optional :: rc

1147

DESCRIPTION:

Instantiates an ESMF_Config object from a section of an existing ESMF_Config object delimited by openlabel
and closelabel. An error is returned if neither of the input labels is found in input config.

Note that a section is intended as the content of a given ESMF_Config object delimited by two distinct labels. Such
content, as well as each of the surrounding labels, are still within the scope of the parent ESMF_Config object.
Therefore, including in a section labels used outside that section should be done carefully to prevent parsing conflicts.

The arguments are:

config The input ESMF_Config object.

openlabel Label marking the beginning of a section in config.

closelabel Label marking the end of a section in config.

[rc] Return code; equals ESMF_SUCCESS if a section is found and a new ESMF_Config object returned.

46.3.6 ESMF_ConfigDestroy - Destroy a Config object

INTERFACE:

subroutine ESMF_ConfigDestroy(config, rc)

ARGUMENTS:

type(ESMF_Config), intent(inout) :: config

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Destroys the config object.

The arguments are:

config Already created ESMF_Config object.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

1148

46.3.7 ESMF_ConfigFindLabel - Find a label in a Config object

INTERFACE:

subroutine ESMF_ConfigFindLabel(config, label, isPresent, rc)

ARGUMENTS:

type(ESMF_Config), intent(inout) :: config

character(len=*), intent(in) :: label

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(out), optional :: isPresent

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

6.1.0 Added the isPresent argument. Allows detection of end-of-line condition to be separate from the rc.

DESCRIPTION:

Finds the label (key) string in the config object starting from the beginning of its content.

Since the search is done by looking for a string, possibly multi-worded, in the whole Config object, it is important
to use special conventions to distinguish labels from other words. This is done in the Resource File by using the
NASA/DAO convention to finish line labels with a colon (:) and table labels with a double colon (::).

The arguments are:

config Already created ESMF_Config object.

label Identifying label.

[isPresent] Set to .true. if the item is found.

[rc] Return code; equals ESMF_SUCCESS if there are no errors. If the label is not found, and the isPresent
argument is not present, an error is returned.

1149

46.3.8 ESMF_ConfigFindNextLabel - Find a label in Config object starting from current position

INTERFACE:

subroutine ESMF_ConfigFindNextLabel(config, label, isPresent, rc)

ARGUMENTS:

type(ESMF_Config), intent(inout) :: config

character(len=*), intent(in) :: label

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(out), optional :: isPresent

integer, intent(out), optional :: rc

DESCRIPTION:

Finds the label (key) string in the config object, starting from the current position pointer.

This method is equivalent to ESMF_ConfigFindLabel, but the search is performed starting from the current
position pointer.

The arguments are:

config Already created ESMF_Config object.

label Identifying label.

[isPresent] Set to .true. if the item is found.

[rc] Return code; equals ESMF_SUCCESS if there are no errors. If the label is not found, and the isPresent
argument is not present, an error is returned.

46.3.9 ESMF_ConfigGetAttribute - Get an attribute value from Config object

INTERFACE:

subroutine ESMF_ConfigGetAttribute(config, <value>, &

label, default, rc)

ARGUMENTS:

type(ESMF_Config), intent(inout) :: config

<value argument>, see below for supported values

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character(len=*), intent(in), optional :: label

character(len=*), intent(in), optional :: default

integer, intent(out), optional :: rc

1150

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Gets a value from the config object. When the value is a sequence of characters it will be terminated by the first
white space.

Supported values for <value argument> are:

character(len=*), intent(out) :: value

real(ESMF_KIND_R4), intent(out) :: value

real(ESMF_KIND_R8), intent(out) :: value

integer(ESMF_KIND_I4), intent(out) :: value

integer(ESMF_KIND_I8), intent(out) :: value

logical, intent(out) :: value

The arguments are:

config Already created ESMF_Config object.

<value argument> Returned value.

[label] Identifing label.

[default] Default value if label is not found in config object.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

46.3.10 ESMF_ConfigGetAttribute - Get a list of attribute values from Config object

INTERFACE:

subroutine ESMF_ConfigGetAttribute(config, <value list argument>, &

count, label, default, rc)

ARGUMENTS:

type(ESMF_Config), intent(inout) :: config

<value list argument>, see below for values

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in) optional :: count

character(len=*), intent(in), optional :: label

character(len=*), intent(in), optional :: default

integer, intent(out), optional :: rc

1151

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Gets a list of values from the config object.

Supported values for <value list argument> are:

character(len=*), intent(out) :: valueList(:)

real(ESMF_KIND_R4), intent(inout) :: valueList(:)

real(ESMF_KIND_R8), intent(inout) :: valueList(:)

integer(ESMF_KIND_I4), intent(inout) :: valueList(:)

integer(ESMF_KIND_I8), intent(inout) :: valueList(:)

logical, intent(inout) :: valueList(:)

The arguments are:

config Already created ESMF_Config object.

<value list argument> Returned value.

count Number of returned values expected.

[label] Identifing label.

[default] Default value if label is not found in config object.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

46.3.11 ESMF_ConfigGetChar - Get a character attribute value from Config object

INTERFACE:

subroutine ESMF_ConfigGetChar(config, value, &

label, default, rc)

ARGUMENTS:

type(ESMF_Config), intent(inout) :: config

character, intent(out) :: value

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character(len=*), intent(in), optional :: label

character, intent(in), optional :: default

integer, intent(out), optional :: rc

1152

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Gets a character value from the config object.

The arguments are:

config Already created ESMF_Config object.

value Returned value.

[label] Identifying label.

[default] Default value if label is not found in configuration object.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

46.3.12 ESMF_ConfigGetDim - Get table sizes from Config object

INTERFACE:

subroutine ESMF_ConfigGetDim(config, lineCount, columnCount, &

label, rc)

ARGUMENTS:

type(ESMF_Config), intent(inout) :: config

integer, intent(out) :: lineCount

integer, intent(out) :: columnCount

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character(len=*), intent(in), optional :: label

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Returns the number of lines in the table in lineCount and the maximum number of words in a table line in
columnCount.

After the call, the line pointer is positioned to the end of the table. To reset it to the beginning of the table, use
ESMF_ConfigFindLabel.

The arguments are:

1153

config Already created ESMF_Config object.

lineCount Returned number of lines in the table.

columnCount Returned maximum number of words in a table line.

[label] Identifying label (if present), otherwise current line.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

46.3.13 ESMF_ConfigGetLen - Get the length of the line in words from Config object

INTERFACE:

integer function ESMF_ConfigGetLen(config, label, rc)

ARGUMENTS:

type(ESMF_Config), intent(inout) :: config

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character(len=*), intent(in), optional :: label

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Gets the length of the line in words by counting words disregarding types. Returns the word count as an integer.

The arguments are:

config Already created ESMF_Config object.

[label] Identifying label. If not specified, use the current line.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

46.3.14 ESMF_ConfigIsCreated - Check whether a Config object has been created

INTERFACE:

function ESMF_ConfigIsCreated(config, rc)

1154

RETURN VALUE:

logical :: ESMF_ConfigIsCreated

ARGUMENTS:

type(ESMF_Config), intent(in) :: config

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Return .true. if the config has been created. Otherwise return .false.. If an error occurs, i.e. rc /=

ESMF_SUCCESS is returned, the return value of the function will also be .false..

The arguments are:

config ESMF_Config queried.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

46.3.15 ESMF_ConfigLoadFile - Load resource file into Config object memory

INTERFACE:

subroutine ESMF_ConfigLoadFile(config, filename, &

delayout, unique, rc)

ARGUMENTS:

type(ESMF_Config), intent(inout) :: config

character(len=*), intent(in) :: filename

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_DELayout), intent(in), optional :: delayout

logical, intent(in), optional :: unique

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Resource file with filename is loaded into memory.

The arguments are:

1155

config Already created ESMF_Config object.

filename Configuration file name.

[delayout] ESMF_DELayout associated with this config object.

[unique] If specified as true, uniqueness of labels are checked and error code set if duplicates found.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

46.3.16 ESMF_ConfigNextLine - Find next line in a Config object

INTERFACE:

subroutine ESMF_ConfigNextLine(config, tableEnd, rc)

ARGUMENTS:

type(ESMF_Config), intent(inout) :: config

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(out), optional :: tableEnd

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Selects the next line (for tables).

The arguments are:

config Already created ESMF_Config object.

[tableEnd] Returns .true. if end of table mark (::) is encountered.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

46.3.17 ESMF_ConfigPrint - Write content of Config object to unit

INTERFACE:

1156

subroutine ESMF_ConfigPrint(config, unit, rc)

ARGUMENTS:

type(ESMF_Config), intent(in) :: config

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, optional, intent(in) :: unit

integer, optional, intent(out) :: rc

DESCRIPTION:

Write content of input ESMF_Config object to unit unit. If unit not provided, writes to standard output.

The arguments are:

config The input ESMF_Config object.

[unit] Output unit.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

46.3.18 ESMF_ConfigSetAttribute - Set a value in Config object

INTERFACE:

subroutine ESMF_ConfigSetAttribute(config, <value argument>, &

label, rc)

ARGUMENTS:

type(ESMF_Config), intent(inout) :: config

<value argument>, see below for supported values

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character(len=*), intent(in), optional :: label

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Sets a value in the config object.

Supported values for <value argument> are:

integer(ESMF_KIND_I4), intent(in) :: value

1157

The arguments are:

config Already created ESMF_Config object.

<value argument> Value to set.

[label] Identifying attribute label.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

46.3.19 ESMF_ConfigValidate - Validate a Config object

INTERFACE:

subroutine ESMF_ConfigValidate(config, &

options, rc)

ARGUMENTS:

type(ESMF_Config), intent(inout) :: config

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character (len=*), intent(in), optional :: options

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Checks whether a config object is valid.

The arguments are:

config ESMF_Config object to be validated.

[options] If none specified: simply check that the buffer is not full and the pointers are within
range. "unusedAttributes" - Report to the default logfile all attributes not retrieved via a call to
ESMF_ConfigGetAttribute() or ESMF_ConfigGetChar(). The attribute name (label) will be
logged via ESMF_LogErr with the WARNING log message type. For an array-valued attribute, retrieving
at least one value via ESMF_ConfigGetAttribute() or ESMF_ConfigGetChar() constitutes being
"used."

[rc] Return code; equals ESMF_SUCCESS if there are no errors. Equals ESMF_RC_ATTR_UNUSED if any unused
attributes are found with option "unusedAttributes" above.

1158

47 Log Class

47.1 Description

The Log class consists of a variety of methods for writing error, warning, and informational messages to files. A

default Log is created at ESMF initialization. Other Logs can be created later in the code by the user. Most Log

methods take a Log as an optional argument and apply to the default Log when another Log is not specified. A set of

standard return codes and associated messages are provided for error handling.

Log provides capabilities to store message entries in a buffer, which is flushed to a file, either when the buffer is full,

or when the user calls an ESMF_LogFlush() method. Currently, the default is for the Log to flush after every ten

entries. This can easily be changed by using the ESMF_LogSet() method and setting the maxElements property

to another value. The ESMF_LogFlush() method is automatically called when the program exits by any means

(program completion, halt on error, or when the Log is closed).

The user has the capability to abort the program on conditions such as an error or on a warning by using the

ESMF_LogSet() method with the logmsgAbort argument. For example if the logmsgAbort array is set to

(ESMF_LOGMSG_ERROR,ESMF_LOGMSG_WARNING), the program will stop on any and all warning or errors.

When the logmsgAbort argument is set to ESMF_LOGMSG_ERROR, the program will only abort on errors. Lastly,

the user can choose to never abort by using ESMF_LOGMSG_NONE; this is the default.

Log will automatically put the PET number into the Log. Also, the user can either specify ESMF_LOGKIND_SINGLE

which writes all the entries to a single Log or ESMF_LOGKIND_MULTI which writes entries to multiple Logs accord-

ing to the PET number. To distinguish Logs from each other when using ESMF_LOGKIND_MULTI, the PET number

(in the format PETx.) will be prepended to the file name where x is the PET number.

Opening multiple log files and writing log messages from all the processors may affect the application performance

while running on a large number of processors. For that reason, ESMF_LOGKIND_NONE is provided to switch off the

Log capability. All the Log methods have no effect in the ESMF_LOGKIND_NONE mode.

A tracing capability may be enabled by setting the trace flag by using the ESMF_LogSet() method. When

tracing is enabled, calls to methods such as ESMF_LogFoundError, ESMF_LogFoundAllocError, and

ESMF_LogFoundDeallocError are logged in the default log file. This can result in voluminous output. It is

typically used only around areas of code which are being debugged.

Other options that are planned for Log are to adjust the verbosity of output, and to optionally write to stdout instead

of file(s).

47.2 Constants

47.2.1 ESMF_LOGERR

The valid values are:

ESMF_LOGERR_PASSTHRU A named character constant, with a predefined generic error message, that can be

used for the msg argument in any ESMF_Log routine. The message indicated by this named constant is “Passing

error in return code."

47.2.2 ESMF_LOGKIND

DESCRIPTION:

1159

Specifies a single log file, multiple log files (one per PET), or no log files.

The type of this flag is:

type(ESMF_LogKind_Flag)

The valid values are:

ESMF_LOGKIND_SINGLE Use a single log file, combining messages from all of the PETs. Not supported on

some platforms.

ESMF_LOGKIND_MULTI Use multiple log files — one per PET.

ESMF_LOGKIND_MULTI_ON_ERROR Use multiple log files — one per PET. A log file is only opened when a

message of type ESMF_LOGMSG_ERROR is encountered.

ESMF_LOGKIND_NONE Do not issue messages to a log file.

47.2.3 ESMF_LOGMSG

DESCRIPTION:

Specifies a message level

The type of this flag is:

type(ESMF_LogMsg_Flag)

The valid values are:

ESMF_LOGMSG_INFO Informational messages

ESMF_LOGMSG_WARNING Warning messages

ESMF_LOGMSG_ERROR Error messages

ESMF_LOGMSG_TRACE Trace messages

ESMF_LOGMSG_DEBUG DEBUG messages

ESMF_LOGMSG_JSON JSON format messages

Valid predefined named array constant values are:

ESMF_LOGMSG_ALL All messages

ESMF_LOGMSG_NONE No messages

ESMF_LOGMSG_NOTRACE All messages EXCEPT trace messages

1160

47.3 Use and Examples

By default ESMF_Initialize() opens a default Log in ESMF_LOGKIND_MULTI mode. ESMF handles the

initialization and finalization of the default Log so the user can immediately start using it. If additional Log objects

are desired, they must be explicitly created or opened using ESMF_LogOpen().

ESMF_LogOpen() requires a Log object and filename argument. Additionally, the user can specify single or multi

Logs by setting the logkindflag property to ESMF_LOGKIND_SINGLE or ESMF_LOGKIND_MULTI. This is

useful as the PET numbers are automatically added to the Log entries. A single Log will put all entries, regardless

of PET number, into a single log while a multi Log will create multiple Logs with the PET number prepended to the

filename and all entries will be written to their corresponding Log by their PET number.

By default, the Log file is not truncated at the start of a new run; it just gets appended each time. Future functionality

may include an option to either truncate or append to the Log file.

In all cases where a Log is opened, a Fortran unit number is assigned to a specific Log. A Log is assigned an unused

unit number using the algorithm described in the ESMF_IOUnitGet() method.

The user can then set or get options on how the Log should be used with the ESMF_LogSet() and

ESMF_LogGet() methods. These are partially implemented at this time.

Depending on how the options are set, ESMF_LogWrite() either writes user messages directly to a Log file or

writes to a buffer that can be flushed when full or by using the ESMF_LogFlush() method. The default is to flush

after every ten entries because maxElements is initialized to ten (which means the buffer reaches its full state after

every ten writes and then flushes).

A message filtering option may be set with ESMF_LogSet() so that only selected message types are actually written

to the log. One key use of this feature is to allow placing informational log write requests into the code for debugging

or tracing. Then, when the informational entries are not needed, the messages at that level may be turned off — leaving

only warning and error messages in the logs.

For every ESMF_LogWrite(), a time and date stamp is prepended to the Log entry. The time is given in microsec-

ond precision. The user can call other methods to write to the Log. In every case, all methods eventually make a call

implicitly to ESMF_LogWrite() even though the user may never explicitly call it.

When calling ESMF_LogWrite(), the user can supply an optional line, file and method. These arguments can be

passed in explicitly or with the help of cpp macros. In the latter case, a define for an ESMF_FILENAME must be

placed at the beginning of a file and a define for ESMF_METHOD must be placed at the beginning of each method. The

user can then use the ESMF_CONTEXT cpp macro in place of line, file and method to insert the parameters into the

method. The user does not have to specify line number as it is a value supplied by cpp.

An example of Log output is given below running with logkindflag property set to ESMF_LOGKIND_MULTI

(default) using the default Log:

(Log file PET0.ESMF_LogFile)

20041105 163418.472210 INFO PET0 Running with ESMF Version 2.2.1

(Log file PET1.ESMF_LogFile)

20041105 163419.186153 ERROR PET1 ESMF_Field.F90 812

ESMF_FieldGet No Grid or Bad Grid attached to Field

The first entry shows date and time stamp. The time is given in microsecond precision. The next item shown is the

type of message (INFO in this case). Next, the PET number is added. Lastly, the content is written.

1161

The second entry shows something slightly different. In this case, we have an ERROR. The method name

(ESMF_Field.F90) is automatically provided from the cpp macros as well as the line number (812). Then the content

of the message is written.

When done writing messages, the default Log is closed by calling ESMF_LogFinalize() or ESMF_LogClose()

for user created Logs. Both methods will release the assigned unit number.

! !PROGRAM: ESMF_LogErrEx - Log Error examples

!

! !DESCRIPTION:

!

! This program shows examples of Log Error writing

!---

! Macros for cpp usage

! File define

#define ESMF_FILENAME "ESMF_LogErrEx.F90"

! Method define

#define ESMF_METHOD "program ESMF_LogErrEx"

#include "ESMF_LogMacros.inc"

! ESMF Framework module

use ESMF

use ESMF_TestMod

implicit none

! return variables

integer :: rc1, rc2, rc3, rcToTest, allocRcToTest, result

type(ESMF_LOG) :: alog ! a log object that is not the default log

type(ESMF_LogKind_Flag) :: logkindflag

type(ESMF_Time) :: time

type(ESMF_VM) :: vm

integer, pointer :: intptr(:)

47.3.1 Default Log

This example shows how to use the default Log. This example does not use cpp macros but does use multi Logs. A
separate Log will be created for each PET.

! Initialize ESMF to initialize the default Log

call ESMF_Initialize(vm=vm, defaultlogfilename="LogErrEx.Log", &

logkindflag=ESMF_LOGKIND_MULTI, rc=rc1)

! LogWrite

call ESMF_LogWrite("Log Write 2", ESMF_LOGMSG_INFO, rc=rc2)

! LogMsgSetError

1162

call ESMF_LogSetError(ESMF_RC_OBJ_BAD, msg="Convergence failure", &

rcToReturn=rc2)

! LogMsgFoundError

call ESMF_TimeSet(time, calkindflag=ESMF_CALKIND_NOCALENDAR)

call ESMF_TimeSyncToRealTime(time, rc=rcToTest)

if (ESMF_LogFoundError(rcToTest, msg="getting wall clock time", &

rcToReturn=rc2)) then

! Error getting time. The previous call will have printed the error

! already into the log file. Add any additional error handling here.

! (This call is expected to provoke an error from the Time Manager.)

endif

! LogMsgFoundAllocError

allocate(intptr(10), stat=allocRcToTest)

if (ESMF_LogFoundAllocError(allocRcToTest, msg="integer array", &

rcToReturn=rc2)) then

! Error during allocation. The previous call will have logged already

! an error message into the log.

endif

deallocate(intptr)

47.3.2 User created Log

This example shows how to use a user created Log. This example uses cpp macros.

! Open a Log named "Testlog.txt" associated with alog.

call ESMF_LogOpen(alog, "TestLog.txt", rc=rc1)

%///

\begin{verbatim}

! LogWrite

call ESMF_LogWrite("Log Write 2", ESMF_LOGMSG_INFO, &

line=__LINE__, file=ESMF_FILENAME, &

method=ESMF_METHOD, log=alog, rc=rc2)

! LogMsgSetError

call ESMF_LogSetError(ESMF_RC_OBJ_BAD, msg="Interpolation Failure", &

line=__LINE__, file=ESMF_FILENAME, &

method=ESMF_METHOD, rcToReturn=rc2, log=alog)

47.3.3 Get and Set

This example shows how to use Get and Set routines, on both the default Log and the user created Log from the
previous examples.

1163

! This is an example showing a query of the default Log. Please note that

! no Log is passed in the argument list, so the default Log will be used.

call ESMF_LogGet(logkindflag=logkindflag, rc=rc3)

! This is an example setting a property of a Log that is not the default.

! It was opened in a previous example, and the handle for it must be

! passed in the argument list.

call ESMF_LogSet(log=alog, logmsgAbort=(/ESMF_LOGMSG_ERROR/), rc=rc2)

! Close the user log.

call ESMF_LogClose(alog, rc=rc3)

! Finalize ESMF to close the default log

call ESMF_Finalize(rc=rc1)

47.4 Restrictions and Future Work

1. Line, file and method are only available when using the C preprocessor Message writing methods are

expanded using the ESMF macro ESMF_CONTEXT that adds the predefined symbolic constants __LINE__

and __FILE__ (or the ESMF constant ESMF_FILENAME if defined) and the ESMF constant ESMF_METHOD

to the argument list. Using these constants, we can associate a file name, line number and method name with

the message. If the CPP preprocessor is not used, this expansion will not be done and hence the ESMF macro

ESMF_CONTEXT can not be used, leaving the file name, line number and method out of the Log text.

2. Get and set methods are partially implemented. Currently, the ESMF_LogGet() and ESMF_LogSet()

methods are partially implemented.

3. Log only appends entries. All writing to the Log is appended rather than overwriting the Log. Future enhance-

ments include the option to either append to an existing Log or overwrite the existing Log.

4. Avoiding conflicts with the default Log.

The private methods ESMF_LogInitialize() and ESMF_LogFinalize() are called during

ESMF_Initialize() and ESMF_Finalize() respectively, so they do not need to be called if the de-

fault Log is used. If a new Log is required, ESMF_LogOpen() is used with a new Log object passed in so that

there are no conflicts with the default Log.

5. ESMF_LOGKIND_SINGLE does not work properly. When the ESMF_LogKind_Flag is set to

ESMF_LOGKIND_SINGLE, different system may behave differently. The log messages from some proces-

sors may be lost or overwritten by other processors. Users are advised not to use this mode. The MPI-based I/O

will be implemented to fix the problem in the future release.

47.5 Design and Implementation Notes

1. The Log class was implemented in Fortran and uses the Fortran I/O libraries when the class methods

are called from Fortran. The C/C++ Log methods use the Fortran I/O library by calling utility functions

that are written in Fortran. These utility functions call the standard Fortran write, open and close func-

tions. At initialization an ESMF_LOG is created. The ESMF_LOG stores information for a specific Log

1164

file. When working with more than one Log file, multiple ESMF_LOG’s are required (one ESMF_LOG

for each Log file). For each Log, a handle is returned through the ESMF_LogInitialize method

for the default log or ESMF_LogOpen for a user created log. The user can specify single or multi

logs by setting the logkindflag property in the ESMF_LogInitialize or ESMF_Open method to

ESMF_LOGKIND_SINGLE or ESMF_LOGKIND_MULTI. Similarly, the user can set the logkindflag

property for the default Log with the ESMF_Initialize method call. The logkindflag is useful as

the PET numbers are automatically added to the log entries. A single log will put all entries, regardless of PET

number, into a single log while a multi log will create multiple logs with the PET number prepended to the

filename and all entries will be written to their corresponding log by their PET number.

The properties for a Log are set with the ESMF_LogSet() method and retrieved with the ESMF_LogGet()

method.

Additionally, buffering is enabled. Buffering allows ESMF to manage output data streams in a desired way.

Writing to the buffer is transparent to the user because all the Log entries are handled automatically by the

ESMF_LogWrite() method. All the user has to do is specify the buffer size (the default is ten) by setting

the maxElements property. Every time the ESMF_LogWrite() method is called, a LogEntry element is

populated with the ESMF_LogWrite() information. When the buffer is full (i.e., when all the LogEntry

elements are populated), the buffer will be flushed and all the contents will be written to file. If buffering

is not needed, that is maxElements=1 or flushImmediately=ESMF_TRUE, the ESMF_LogWrite()

method will immediately write to the Log file(s).

47.6 Object Model

The following is a simplified UML diagram showing the structure of the Log class. See Appendix A, A Brief Intro-

duction to UML, for a translation table that lists the symbols in the diagram and their meaning.

1

Log

Time
LogArray

1..n

1

0..n

LogEntry

1165

47.7 Class API

47.7.1 ESMF_LogAssignment(=) - Log assignment

INTERFACE:

interface assignment(=)

log1 = log2

ARGUMENTS:

type(ESMF_Log) :: log1

type(ESMF_Log) :: log2

DESCRIPTION:

Assign log1 as an alias to the same ESMF_Log object in memory as log2. If log2 is invalid, then log1 will be
equally invalid after the assignment.

The arguments are:

log1 The ESMF_Log object on the left hand side of the assignment.

log2 The ESMF_Log object on the right hand side of the assignment.

47.7.2 ESMF_LogOperator(==) - Test if Log 1 is equivalent to Log 2

INTERFACE:

interface operator(==)

if (log1 == log2) then ... endif

OR

result = (log1 == log2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_Log), intent(in) :: log1

type(ESMF_Log), intent(in) :: log2

DESCRIPTION:

Overloads the (==) operator for the ESMF_Log class. Compare two logs for equality; return .true. if equal,
.false. otherwise. Comparison is based on whether the objects are distinct, as with two newly created logs, or are
simply aliases to the same log as would be the case when assignment was involved.

The arguments are:

1166

log1 The ESMF_Log object on the left hand side of the equality operation.

log2 The ESMF_Log object on the right hand side of the equality operation.

47.7.3 ESMF_LogOperator(/=) - Test if Log 1 is not equivalent to Log 2

INTERFACE:

interface operator(/=)

if (log1 /= log2) then ... endif

OR

result = (log1 /= log2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_Log), intent(in) :: log1

type(ESMF_Log), intent(in) :: log2

DESCRIPTION:

Overloads the (/=) operator for the ESMF_Log class. Compare two logs for inequality; return .true. if equal,
.false. otherwise. Comparison is based on whether the objects are distinct, as with two newly created logs, or are
simply aliases to the same log as would be the case when assignment was involved.

The arguments are:

log1 The ESMF_Log object on the left hand side of the non-equality operation.

log2 The ESMF_Log object on the right hand side of the non-equality operation.

47.7.4 ESMF_LogClose - Close Log file(s)

INTERFACE:

subroutine ESMF_LogClose(log, rc)

ARGUMENTS:

type(ESMF_Log), intent(inout), optional :: log

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

1167

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

This routine closes the log file(s) associated with log. If the log is not explicitly closed, it will be closed by
ESMF_Finalize.

The arguments are:

[log] An ESMF_Log object. If not specified, the default log is closed.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

47.7.5 ESMF_LogFlush - Flush the Log file(s)

INTERFACE:

subroutine ESMF_LogFlush(log, rc)

ARGUMENTS:

type(ESMF_Log), intent(inout), optional :: log

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

This subroutine flushes the file buffer associated with log.

The arguments are:

[log] An optional ESMF_Log object that can be used instead of the default Log.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

1168

47.7.6 ESMF_LogFoundAllocError - Check Fortran allocation status error and write message

INTERFACE:

function ESMF_LogFoundAllocError(statusToCheck, &

msg,line,file, &

method,rcToReturn,log)

RETURN VALUE:

logical :: ESMF_LogFoundAllocError

ARGUMENTS:

integer, intent(in) :: statusToCheck

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character(len=*), intent(in), optional :: msg

integer, intent(in), optional :: line

character(len=*), intent(in), optional :: file

character(len=*), intent(in), optional :: method

integer, intent(inout), optional :: rcToReturn

type(ESMF_Log), intent(inout), optional :: log

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

This function returns .true. when statusToCheck indicates an allocation error, otherwise it returns .false..
The status value is typically returned from a Fortran ALLOCATE statement. If an error is indicated, a ESMF memory
allocation error message will be written to the ESMF_Log along with a user added msg, line, file and method.

The arguments are:

statusToCheck Fortran allocation status to check. Fortran specifies that a status of 0 (zero) indicates success.

[msg] User-provided message string.

[line] Integer source line number. Expected to be set by using the preprocessor __LINE__ macro.

[file] User-provided source file name.

[method] User-provided method string.

[rcToReturn] If specified, when the allocation status indicates an error, set the rcToReturn value to
ESMF_RC_MEM. Otherwise, rcToReturn is not modified.

[log] An optional ESMF_Log object that can be used instead of the default Log.

1169

47.7.7 ESMF_LogFoundDeallocError - Check Fortran deallocation status error and write message

INTERFACE:

function ESMF_LogFoundDeallocError(statusToCheck, &

msg,line,file, &

method,rcToReturn,log)

RETURN VALUE:

logical ::ESMF_LogFoundDeallocError

ARGUMENTS:

integer, intent(in) :: statusToCheck

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character(len=*), intent(in), optional :: msg

integer, intent(in), optional :: line

character(len=*), intent(in), optional :: file

character(len=*), intent(in), optional :: method

integer, intent(inout), optional :: rcToReturn

type(ESMF_Log), intent(inout), optional :: log

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

This function returns .true. when statusToCheck indicates a deallocation error, otherwise it returns .false..
The status value is typically returned from a Fortran DEALLOCATE statement. If an error is indicated, a ESMF
memory allocation error message will be written to the ESMF_Log along with a user added msg, line, file and
method.

The arguments are:

statusToCheck Fortran deallocation status to check. Fortran specifies that a status of 0 (zero) indicates success.

[msg] User-provided message string.

[line] Integer source line number. Expected to be set by using the preprocessor __LINE__ macro.

[file] User-provided source file name.

[method] User-provided method string.

[rcToReturn] If specified, when the deallocation status indicates an error, set the rcToReturn value to
ESMF_RC_MEM. Otherwise, rcToReturn is not modified.

[log] An optional ESMF_Log object that can be used instead of the default Log.

1170

47.7.8 ESMF_LogFoundError - Check ESMF return code for error and write message

INTERFACE:

recursive function ESMF_LogFoundError(rcToCheck, &

msg, line, file, method, &

rcToReturn, log) result (LogFoundError)

RETURN VALUE:

logical :: LogFoundError

ARGUMENTS:

integer, intent(in), optional :: rcToCheck

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character(len=*), intent(in), optional :: msg

integer, intent(in), optional :: line

character(len=*), intent(in), optional :: file

character(len=*), intent(in), optional :: method

integer, intent(inout), optional :: rcToReturn

type(ESMF_Log), intent(inout), optional :: log

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

This function returns .true. when rcToCheck indicates an return code other than ESMF_SUCCESS, otherwise it
returns .false.. If an error is indicated, a ESMF predefined error message will be written to the ESMF_Log along
with a user added msg, line, file and method.

The arguments are:

[rcToCheck] Return code to check. Default is ESMF_SUCCESS.

[msg] User-provided message string.

[line] Integer source line number. Expected to be set by using the preprocessor __LINE__ macro.

[file] User-provided source file name.

[method] User-provided method string.

[rcToReturn] If specified, when rcToCheck indicates an error, set the rcToReturn to the value of rcToCheck.
Otherwise, rcToReturn is not modified. This is not the return code for this function; it allows the calling
code to do an assignment of the error code at the same time it is testing the value.

[log] An optional ESMF_Log object that can be used instead of the default Log.

1171

47.7.9 ESMF_LogFoundNetCDFError - Check NetCDF status code for success or log the associated NetCDF

error message.

INTERFACE:

function ESMF_LogFoundNetCDFError(ncerrToCheck, msg, line, &

file, method, rcToReturn, log)

#if defined ESMF_NETCDF

use netcdf

#elif defined ESMF_PNETCDF

use pnetcdf

#endif

RETURN VALUE:

logical :: ESMF_LogFoundNetCDFError

ARGUMENTS:

integer, intent(in) :: ncerrToCheck

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character(len=*), intent(in), optional :: msg

integer, intent(in), optional :: line

character(len=*), intent(in), optional :: file

character(len=*), intent(in), optional :: method

integer, intent(inout), optional :: rcToReturn

type(ESMF_Log), intent(inout), optional :: log

DESCRIPTION:

This function returns .true. when ncerrToCheck indicates an return code other than 0 (the success code from
NetCDF Fortran) or NF_NOERR (the success code for PNetCDF). Otherwise it returns .false.. If an error is
indicated, a predefined ESMF error message will be written to the ESMF_Log along with a user added msg, line,
file and method. The NetCDF string error representation will also be logged.

The arguments are:

[ncerrToCheck] NetCDF error code to check.

[msg] User-provided message string.

[line] Integer source line number. Expected to be set by using the preprocessor __LINE__ macro.

[file] User-provided source file name.

[method] User-provided method string.

[rcToReturn] If specified, when ncerrToCheck indicates an error, set rcToReturn to
ESMF_RC_NETCDF_ERROR. The string representation for the error code will be retrieved from the
NetCDF Fortran library and logged alongside any user-provided message string. Otherwise, rcToReturn is
not modified. This is not the return code for this function; it allows the calling code to do an assignment of the
error code at the same time it is testing the value.

1172

[log] An optional ESMF_Log object that can be used instead of the default Log.

47.7.10 ESMF_LogGet - Return information about a log object

INTERFACE:

subroutine ESMF_LogGet(log, &

flush, &

logmsgAbort, logkindflag, &

maxElements, trace, fileName, &

highResTimestampFlag, indentCount, &

noPrefix, rc)

ARGUMENTS:

type(ESMF_Log), intent(in), optional :: log

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(out), optional :: flush

type(ESMF_LogMsg_Flag), pointer, optional :: logmsgAbort(:)

type(ESMF_LogKind_Flag), intent(out), optional :: logkindflag

integer, intent(out), optional :: maxElements

logical, intent(out), optional :: trace

character(*), intent(out), optional :: fileName

logical, intent(out), optional :: highResTimestampFlag

integer, intent(out), optional :: indentCount

logical, intent(out), optional :: noPrefix

integer, intent(out), optional :: rc

DESCRIPTION:

This subroutine returns properties about a Log object.

The arguments are:

[log] An optional ESMF_Log object that can be used instead of the default Log.

[flush] Flush flag.

[logmsgAbort] Returns an array containing current message halt settings. If the array is not pre-allocated,
ESMF_LogGet will allocate an array of the correct size. If no message types are defined, an array of length
zero is returned. It is the callers responsibility to deallocate the array.

[logkindflag] Defines either single or multilog.

[maxElements] Maximum number of elements in the Log.

[trace] Current setting of the Log call tracing flag.

[fileName] Current file name. When the log has been opened with ESMF_LOGKIND_MULTI, the filename has a
PET number prefix.

1173

[highResTimestampFlag] Current setting of the extended elapsed timestamp flag.

[indentCount] Current setting of the leading white space padding.

[noPrefix] Current setting of the message prefix enable/disable flag.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

47.7.11 ESMF_LogOpen - Open Log file(s)

INTERFACE:

subroutine ESMF_LogOpen(log, filename, &

appendflag, logkindflag, noPrefix, rc)

ARGUMENTS:

type(ESMF_Log), intent(inout) :: log

character(len=*), intent(in) :: filename

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: appendFlag

type(ESMF_LogKind_Flag), intent(in), optional :: logkindFlag

logical, intent(in), optional :: noPrefix

integer, intent(out), optional :: rc

DESCRIPTION:

This routine opens a file named filename and associates it with the ESMF_Log. When logkindflag is set to
ESMF_LOGKIND_MULTI or ESMF_LOGKIND_MULTI_ON_ERROR the file name is prepended with PET number
identification. If the incoming log is already open, an error is returned.

The arguments are:

log An ESMF_Log object.

filename Name of log file to be opened.

[appendFlag] If the log file exists, setting to .false. will set the file position to the beginning of the file. Otherwise,
new records will be appended to the end of the file. If not specified, defaults to .true..

[logkindFlag] Set the logkindflag. See section 47.2.2 for a list of valid options. When the
ESMF_LOGKIND_MULTI_ON_ERROR is selected, the log opening is deferred until a ESMF_LogWrite with
log message of type ESMF_LOGMSG_ERROR is written. If not specified, defaults to ESMF_LOGKIND_MULTI.

[noPrefix] Set the noPrefix flag. If set to .false., log messages are prefixed with time stamps, message type, and
PET number. If set to .true. the messages will be written without prefixes. If not specified, defaults to
.false..

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

1174

47.7.12 ESMF_LogOpen - Open Default Log file(s)

INTERFACE:

! Private name; call using ESMF_LogOpen ()

subroutine ESMF_LogOpenDefault (filename, &

appendflag, logkindflag, rc)

ARGUMENTS:

character(len=*), intent(in) :: filename

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: appendflag

type(ESMF_LogKind_Flag), intent(in), optional :: logkindflag

integer, intent(out), optional :: rc

DESCRIPTION:

This routine opens a file named filename and associates it with the default log. When logkindflag is set to
ESMF_LOGKIND_MULTI the file name is prepended with PET number identification. If the incoming default log is
already open, an error is returned.

The arguments are:

filename Name of DEFAULT log file to be opened.

[appendflag] If the log file exists, setting to .false. will set the file position to the beginning of the file. Otherwise,
new records will be appended to the end of the file. If not specified, defaults to .true..

[logkindflag] Set the logkindflag. See section 47.2.2 for a list of valid options. If not specified, defaults to
ESMF_LOGKIND_MULTI.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

47.7.13 ESMF_LogSet - Set Log parameters

INTERFACE:

subroutine ESMF_LogSet(log, &

flush, &

logmsgAbort, maxElements, logmsgList, &

errorMask, trace, highResTimestampFlag, indentCount, &

noPrefix, rc)

ARGUMENTS:

1175

type(ESMF_Log), intent(inout), optional :: log

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: flush

type(ESMF_LogMsg_Flag), intent(in), optional :: logmsgAbort(:)

integer, intent(in), optional :: maxElements

type(ESMF_LogMsg_Flag), intent(in), optional :: logmsgList(:)

integer, intent(in), optional :: errorMask(:)

logical, intent(in), optional :: trace

logical, intent(in), optional :: highResTimestampFlag

integer, intent(in), optional :: indentCount

logical, intent(in), optional :: noPrefix

integer, intent(out), optional :: rc

DESCRIPTION:

This subroutine sets the properties for the Log object.

The arguments are:

[log] An optional ESMF_Log object. The default is to use the default log that was opened at ESMF_Initialize
time.

[flush] If set to .true., flush log messages immediately, rather than buffering them. Default is to flush after
maxElements messages.

[logmsgAbort] Sets the condition on which ESMF aborts. The array can contain any combination of ESMF_LOGMSG
named constants. These named constants are described in section 47.2.3. Default is to always continue process-
ing.

[maxElements] Maximum number of elements in the Log buffer before flushing occurs. Default is to flush when 10
messages have been accumulated.

[logmsgList] An array of message types that will be logged. Log write requests not matching the list will be ignored.
If an empty array is provided, no messages will be logged. See section 47.2.3 for a list of valid message types.
By default, all non-trace messages will be logged.

[errorMask] List of error codes that will not be logged as errors. Default is to log all error codes.

[trace] If set to .true., calls such as ESMF_LogFoundError(), ESMF_LogFoundAllocError(), and
ESMF_LogFoundDeallocError() will be logged in the default log files. This option is intended to be
used as a tool for debugging and program flow tracing within the ESMF library. Voluminous output may appear
in the log, with a consequent slowdown in performance. Therefore, it is recommended that this option only be
enabled before a problematic call to a ESMF method, and disabled afterwards. Default is to not trace these calls.

[highResTimestampFlag] Sets the extended elapsed timestamp flag. If set to .true., a timestamp from
ESMF_VMWtime will be included in each log message. Default is to not add the additional timestamps.

[indentCount] Number of leading white spaces.

[noPrefix] If set to .false., log messages are prefixed with time stamps, message type and PET number. If set to
.true. the messages will be written without the prefixes.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

1176

47.7.14 ESMF_LogSetError - Set ESMF return code for error and write msg

INTERFACE:

subroutine ESMF_LogSetError(rcToCheck, &

msg, line, file, method, &

rcToReturn, log)

ARGUMENTS:

integer, intent(in) :: rcToCheck

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character(len=*), intent(in), optional :: msg

integer, intent(in), optional :: line

character(len=*), intent(in), optional :: file

character(len=*), intent(in), optional :: method

integer, intent(out), optional :: rcToReturn

type(ESMF_Log), intent(inout), optional :: log

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

This subroutine sets the rcToReturn value to rcToCheck if rcToReturn is present and writes this error code
to the ESMF_Log if an error is generated. A predefined error message will added to the ESMF_Log along with a user
added msg, line, file and method.

The arguments are:

rcToCheck rc value for set

[msg] User-provided message string.

[line] Integer source line number. Expected to be set by using the preprocessor macro __LINE__ macro.

[file] User-provided source file name.

[method] User-provided method string.

[rcToReturn] If specified, copy the rcToCheck value to rcToreturn. This is not the return code for this function;
it allows the calling code to do an assignment of the error code at the same time it is testing the value.

[log] An optional ESMF_Log object that can be used instead of the default Log.

1177

47.7.15 ESMF_LogWrite - Write to Log file(s)

INTERFACE:

recursive subroutine ESMF_LogWrite(msg, logmsgFlag, &

logmsgList, & ! DEPRECATED ARGUMENT

line, file, method, log, rc)

ARGUMENTS:

character(len=*), intent(in) :: msg

type(ESMF_LogMsg_Flag),intent(in),optional :: logmsgFlag

type(ESMF_LogMsg_Flag),intent(in),optional::logmsgList ! DEPRECATED ARG

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: line

character(len=*), intent(in), optional :: file

character(len=*), intent(in), optional :: method

type(ESMF_Log), intent(inout),optional :: log

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

5.2.0rp1 Added argument logmsgFlag. Started to deprecate argument logmsgList. This corrects incon-
sistent use of the List suffix on the argument name. In ESMF this suffix indicates one–dimensional array
arguments.

DESCRIPTION:

This subroutine writes to the file associated with an ESMF_Log. A message is passed in along with the logmsgFlag,
line, file and method. If the write to the ESMF_Log is successful, the function will return a logical true. This
function is the base function used by all the other ESMF_Log writing methods.

The arguments are:

msg User-provided message string.

[logmsgFlag] The type of message. See Section 47.2.3 for possible values. If not specified, the default is
ESMF_LOGMSG_INFO.

[logmsgList] DEPRECATED ARGUMENT! Please use the argument logmsgFlag instead.

[line] Integer source line number. Expected to be set by using the preprocessor macro __LINE__ macro.

[file] User-provided source file name.

1178

[method] User-provided method string.

[log] An optional ESMF_Log object that can be used instead of the default Log.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

48 DELayout Class

48.1 Description

The DELayout class provides an additional layer of abstraction on top of the Virtual Machine (VM) layer. DELayout

does this by introducing DEs (Decomposition Elements) as logical resource units. The DELayout object keeps track

of the relationship between its DEs and the resources of the associated VM object.

The relationship between DEs and VM resources (PETs (Persistent Execution Threads) and VASs (Virtual Address

Spaces)) contained in a DELayout object is defined during its creation and cannot be changed thereafter. There are,

however, a number of hint and specification arguments that can be used to shape the DELayout during its creation.

Contrary to the number of PETs and VASs contained in a VM object, which are fixed by the available resources, the

number of DEs contained in a DELayout can be chosen freely to best match the computational problem or other design

criteria. Creating a DELayout with less DEs than there are PETs in the associated VM object can be used to share

resources between decomposed objects within an ESMF component. Creating a DELayout with more DEs than there

are PETs in the associated VM object can be used to evenly partition the computation over the available resources.

The simplest case, however, is where the DELayout contains the same number of DEs as there are PETs in the associ-

ated VM context. In this case the DELayout may be used to re-label the hardware and operating system resources held

by the VM. For instance, it is possible to order the resources so that specific DEs have best available communication

paths. The DELayout will map the DEs to the PETs of the VM according to the resource details provided by the VM

instance.

Furthermore, general DE to PET mapping can be used to offer computational resources with finer granularity than

the VM does. The DELayout can be queried for computational and communication capacities of DEs and DE pairs,

respectively. This information can be used to best utilize the DE resources when partitioning the computational

problem. In combination with other ESMF classes, general DE to PET mapping can be used to realize cache blocking,

communication hiding and dynamic load balancing.

Finally, the DELayout layer offers primitives that allow a work queue style dynamic load balancing between DEs.

48.2 Constants

48.2.1 ESMF_PIN

DESCRIPTION:

Specifies which VM resource DEs are pinned to (PETs, VASs, SSIs).

The type of this flag is:

type(ESMF_Pin_Flag)

The valid values are:

ESMF_PIN_DE_TO_PET Pin DEs to PETs. Only the owning PET has access to a DE.

1179

ESMF_PIN_DE_TO_VAS Pin DEs to virtual address spaces (VAS). DEs are accessible from all PETs within the

same VAS.

ESMF_PIN_DE_TO_SSI Pin DEs to single system images (SSI) - typically shared memory nodes. DEs are ac-

cessible from all PETs within the same SSI. The memory allocation between different DEs is allowed to be

non-contiguous.

ESMF_PIN_DE_TO_SSI_CONTIG Same as ESMF_PIN_DE_TO_SSI, but the shared memory allocation across

DEs located on the same SSI must be contigous throughout.

48.2.2 ESMF_SERVICEREPLY

DESCRIPTION:

Reply when a PET offers to service a DE.

The type of this flag is:

type(ESMF_ServiceReply_Flag)

The valid values are:

ESMF_SERVICEREPLY_ACCEPT The service offer has been accepted. The PET is expected to service the DE.

ESMF_SERVICEREPLY_DENY The service offer has been denied. The PET is expected to not service the DE.

48.3 Use and Examples

The following examples demonstrate how to create, use and destroy DELayout objects.

48.3.1 Default DELayout

Without specifying any of the optional parameters the created ESMF_DELayout defaults into having as many DEs
as there are PETs in the associated VM object. Consequently the resulting DELayout describes a simple 1-to-1 DE to
PET mapping.

delayout = ESMF_DELayoutCreate(rc=rc)

The default DE to PET mapping is simply:

DE 0 -> PET 0

DE 1 -> PET 1

...

DELayout objects that are not used any longer should be destroyed.

call ESMF_DELayoutDestroy(delayout, rc=rc)

1180

The optional vm argument can be provided to DELayoutCreate() to lower the method’s overhead by the amount it
takes to determine the current VM.

delayout = ESMF_DELayoutCreate(vm=vm, rc=rc)

By default all PETs of the associated VM will be considered. However, if the optional argument petList is present
DEs will only be mapped against the PETs contained in the list. When the following example is executed on four
PETs it creates a DELayout with four DEs by default that are mapped to the provided PETs in their given order. It is
erroneous to specify PETs that are not part of the VM context on which the DELayout is defined.

delayout = ESMF_DELayoutCreate(petList=(/(i,i=petCount-1,1,-1)/), rc=rc)

Once the end of the petList has been reached the DE to PET mapping continues from the beginning of the list. For a 4
PET VM the above created DELayout will end up with the following DE to PET mapping:

DE 0 -> PET 3

DE 1 -> PET 2

DE 2 -> PET 1

DE 2 -> PET 3

48.3.2 DELayout with specified number of DEs

The deCount argument can be used to specify the number of DEs. In this example a DELayout is created that
contains four times as many DEs as there are PETs in the VM.

delayout = ESMF_DELayoutCreate(deCount=4*petCount, rc=rc)

Cyclic DE to PET mapping is the default. For 4 PETs this means:

DE 0, 4, 8, 12 -> PET 0

DE 1, 5, 9, 13 -> PET 1

DE 2, 6, 10, 14 -> PET 2

DE 3, 7, 11, 15 -> PET 3

The default DE to PET mapping can be overridden by providing the deGrouping argument. This argument provides
a positive integer group number for each DE in the DELayout. All of the DEs of a group will be mapped against the
same PET. The actual group index is arbitrary (but must be positive) and its value is of no consequence.

delayout = ESMF_DELayoutCreate(deCount=4*petCount, &

deGrouping=(/(i/4,i=0,4*petCount-1)/), rc=rc)

This will achieve blocked DE to PET mapping. For 4 PETs this means:

DE 0, 1, 2, 3 -> PET 0

DE 4, 5, 6, 7 -> PET 1

DE 8, 9, 10, 11 -> PET 2

DE 12, 13, 14, 15 -> PET 3

1181

48.3.3 DELayout with computational and communication weights

The quality of the partitioning expressed by the DE to PET mapping depends on the amount and quality of information
provided during DELayout creation. In the following example the compWeights argument is used to specify relative
computational weights for all DEs and communication weights for DE pairs are provided by the commWeights
argument. The example assumes four DEs.

allocate(compWeights(4))

allocate(commWeights(4, 4))

! setup compWeights and commWeights according to computational problem

delayout = ESMF_DELayoutCreate(deCount=4, compWeights=compWeights, &

commWeights=commWeights, rc=rc)

deallocate(compWeights, commWeights)

The resulting DE to PET mapping depends on the specifics of the VM object and the provided compWeights and
commWeights arrays.

48.3.4 DELayout from petMap

Full control over the DE to PET mapping is provided via the petMap argument. This example maps the DEs to PETs
in reverse order. In the 4-PET case this will result in the following mapping:

DE 0 -> PET 3

DE 1 -> PET 2

DE 2 -> PET 1

DE 3 -> PET 0

delayout = ESMF_DELayoutCreate(petMap=(/(i,i=petCount-1,0,-1)/), rc=rc)

48.3.5 DELayout from petMap with multiple DEs per PET

The petMap argument gives full control over DE to PET mapping. The following example run on 4 or more PETs
maps DEs to PETs according to the following table:

DE 0 -> PET 3

DE 1 -> PET 3

DE 2 -> PET 1

DE 3 -> PET 0

DE 4 -> PET 2

DE 5 -> PET 1

DE 6 -> PET 3

DE 7 -> PET 1

delayout = ESMF_DELayoutCreate(petMap=(/3, 3, 1, 0, 2, 1, 3, 1/), rc=rc)

1182

48.3.6 Working with a DELayout - simple 1-to-1 DE-to-PET mapping

The simplest case is a DELayout where there is exactly one DE for every PET. Of course this implies that the number
of DEs equals the number of PETs. This special 1-to-1 DE-to-PET mapping is very common and many applications
assume it. The following example shows how a DELayout can be queried about its mapping.

First a default DELayout is created where the number of DEs equals the number of PETs, and are associated 1-to-1.

delayout = ESMF_DELayoutCreate(rc=rc)

Next the DELayout is queried for the oneToOneFlag, and the user code makes a decision based on its value.

call ESMF_DELayoutGet(delayout, oneToOneFlag=oneToOneFlag, rc=rc)

if (rc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

if (.not. oneToOneFlag) then

! handle the unexpected case of not dealing with a 1-to-1 mapping

else

1-to-1 mapping is guaranteed in this branch and the following code can work under the simplifying assumption that
every PET holds exactly one DE:

allocate(localDeToDeMap(1))

call ESMF_DELayoutGet(delayout, localDeToDeMap=localDeToDeMap, rc=rc)

if (rc /= ESMF_SUCCESS) finalrc=rc

myDe = localDeToDeMap(1)

deallocate(localDeToDeMap)

if (finalrc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

endif

48.3.7 Working with a DELayout - general DE-to-PET mapping

In general a DELayout may map any number (including zero) of DEs against a single PET. The exact situation can be
detected by querying the DELayout for the oneToOneFlag. If this flag comes back as .true. then the DELayout
maps exactly one DE against each PET, but if it comes back as .false. the DELayout describes a more general
DE-to-PET layout. The following example shows how code can be be written to work for a general DELayout.

First a DELayout is created with two more DEs than there are PETs. The DELayout will consequently map some DEs
to the same PET.

delayout = ESMF_DELayoutCreate(deCount=petCount+2, rc=rc)

The first piece of information needed on each PET is the localDeCount. This number may be different on each
PET and indicates how many DEs are mapped against the local PET.

call ESMF_DELayoutGet(delayout, localDeCount=localDeCount, rc=rc)

1183

The DELayout can further be queried for a list of DEs that are held by the local PET. This information is provided
by the localDeToDeMap argument. In ESMF a localDe is an index that enumerates the DEs that are associated
with the local PET. In many cases the exact bounds of the localDe index range, e.g. [0...localDeCount − 1], or
[1...localDeCount] does not matter, since it only affects how user code indexes into variables the user allocated,
and therefore set the specific bounds. However, there are a few Array and Field level calls that take localDe input
arguments. In all those cases where the localDe index variable is passed into an ESMF call as an input argument, it
must be defined with a range starting at zero, i.e. [0...localDeCount− 1].

For consistency with Array and Field, the following code uses a [0...localDeCount−1] range for the localDe index
variable, although it is not strictly necessary here:

allocate(localDeToDeMap(0:localDeCount-1))

call ESMF_DELayoutGet(delayout, localDeToDeMap=localDeToDeMap, rc=rc)

if (rc /= ESMF_SUCCESS) finalrc=rc

do localDe=0, localDeCount-1

workDe = localDeToDeMap(localDe)

! print *, "I am PET", localPET, " and I am working on DE ", workDe

enddo

deallocate(localDeToDeMap)

if (finalrc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

48.3.8 Work queue dynamic load balancing

The DELayout API includes two calls that can be used to easily implement work queue dynamic load balancing.
The workload is broken up into DEs (more than there are PETs) and processed by the PETs. Load balancing is only
possible for ESMF multi-threaded VMs and requires that DEs are pinned to VASs instead of the PETs (default). The
following example will run for any VM and DELayout, however, load balancing will only occur under the mentioned
conditions.

delayout = ESMF_DELayoutCreate(deCount=petCount+2, &

pinflag=ESMF_PIN_DE_TO_VAS, rc=rc)

call ESMF_DELayoutGet(delayout, vasLocalDeCount=localDeCount, rc=rc)

if (rc /= ESMF_SUCCESS) finalrc=rc

allocate(localDeToDeMap(localDeCount))

call ESMF_DELayoutGet(delayout, vasLocalDeToDeMap=localDeToDeMap, rc=rc)

if (rc /= ESMF_SUCCESS) finalrc=rc

do i=1, localDeCount

workDe = localDeToDeMap(i)

print *, "I am PET", localPET, &

" and I am offering service for DE ", workDe

reply = ESMF_DELayoutServiceOffer(delayout, de=workDe, rc=rc)

if (rc /= ESMF_SUCCESS) finalrc=rc

if (reply == ESMF_SERVICEREPLY_ACCEPT) then

! process work associated with workDe

print *, "I am PET", localPET, ", service offer for DE ", workDe, &

" was accepted."

call ESMF_DELayoutServiceComplete(delayout, de=workDe, rc=rc)

if (rc /= ESMF_SUCCESS) finalrc=rc

endif

enddo

deallocate(localDeToDeMap)

1184

if (finalrc /= ESMF_SUCCESS) call ESMF_Finalize(endflag=ESMF_END_ABORT)

48.4 Restrictions and Future Work

48.5 Design and Implementation Notes

The DELayout class is a light weight object. It stores the DE to PET and VAS mapping for all DEs within all

PET instances and a list of local DEs for each PET instance. The DELayout does not store the computational and

communication weights optionally provided as arguments to the create method. These hints are only used during

create while they are available in user owned arrays.

48.6 Class API

48.6.1 ESMF_DELayoutAssignment(=) - DELayout assignment

INTERFACE:

interface assignment(=)

delayout1 = delayout2

ARGUMENTS:

type(ESMF_DELayout) :: delayout1

type(ESMF_DELayout) :: delayout2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Assign delayout1 as an alias to the same ESMF DELayout object in memory as delayout2. If delayout2 is invalid,
then delayout1 will be equally invalid after the assignment.

The arguments are:

delayout1 The ESMF_DELayout object on the left hand side of the assignment.

delayout2 The ESMF_DELayout object on the right hand side of the assignment.

48.6.2 ESMF_DELayoutOperator(==) - DELayout equality operator

INTERFACE:

1185

interface operator(==)

if (delayout1 == delayout2) then ... endif

OR

result = (delayout1 == delayout2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_DELayout), intent(in) :: delayout1

type(ESMF_DELayout), intent(in) :: delayout2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Test whether delayout1 and delayout2 are valid aliases to the same ESMF DELayout object in memory. For a more
general comparison of two ESMF DELayouts, going beyond the simple alias test, the ESMF_DELayoutMatch() func-
tion (not yet implemented) must be used.

The arguments are:

delayout1 The ESMF_DELayout object on the left hand side of the equality operation.

delayout2 The ESMF_DELayout object on the right hand side of the equality operation.

48.6.3 ESMF_DELayoutOperator(/=) - DELayout not equal operator

INTERFACE:

interface operator(/=)

if (delayout1 /= delayout2) then ... endif

OR

result = (delayout1 /= delayout2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_DELayout), intent(in) :: delayout1

type(ESMF_DELayout), intent(in) :: delayout2

1186

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Test whether delayout1 and delayout2 are not valid aliases to the same ESMF DELayout object in memory. For a
more general comparison of two ESMF DELayouts, going beyond the simple alias test, the ESMF_DELayoutMatch()
function (not yet implemented) must be used.

The arguments are:

delayout1 The ESMF_DELayout object on the left hand side of the non-equality operation.

delayout2 The ESMF_DELayout object on the right hand side of the non-equality operation.

48.6.4 ESMF_DELayoutCreate - Create DELayout object

INTERFACE:

! Private name; call using ESMF_DELayoutCreate()

recursive function ESMF_DELayoutCreateDefault(deCount, &

deGrouping, pinflag, petList, vm, rc)

RETURN VALUE:

type(ESMF_DELayout) :: ESMF_DELayoutCreateDefault

ARGUMENTS:

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: deCount

integer, target, intent(in), optional :: deGrouping(:)

type(ESMF_Pin_Flag), intent(in), optional :: pinflag

integer, target, intent(in), optional :: petList(:)

type(ESMF_VM), intent(in), optional :: vm

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

1187

Create an ESMF_DELayout object on the basis of optionally provided restrictions. By default a DELayout with
deCount equal to petCount will be created, each DE mapped to a single PET. However, the number of DEs as well
grouping of DEs and PETs can be specified via the optional arguments.

The arguments are:

[deCount] Number of DEs to be provided by the created DELayout. By default the number of DEs equals the
number of PETs in the associated VM context. Specifying a deCount smaller than the number of PETs will
result in unassociated PETs. This may be used to share VM resources between DELayouts within the same
ESMF component. Specifying a deCount greater than the number of PETs will result in multiple DE to PET
mapping.

[deGrouping] This optional argument must be of size deCount. Its content assigns a DE group index to each DE of
the DELayout. A group index of -1 indicates that the associated DE isn’t member of any particular group. The
significance of DE groups is that all the DEs belonging to a certain group will be mapped against the same PET.
This does not, however, mean that DEs belonging to different DE groups must be mapped to different PETs.

[pinflag] This flag specifies which type of resource DEs are pinned to. The default is to pin DEs to PETs. Alternatively
it is also possible to pin DEs to VASs. See section 48.2.1 for a list of valid pinning options.

[petList] List specifying PETs to be used by this DELayout. This can be used to control the PET overlap between
DELayouts within the same ESMF component. It is erroneous to specify PETs that are not within the provided
VM context. The default is to include all the PETs of the VM.

[vm] If present, the DELayout object is created on the specified ESMF_VM object. The default is to create on the VM
of the current context.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

48.6.5 ESMF_DELayoutCreate - Create DELayout from petMap

INTERFACE:

! Private name; call using ESMF_DELayoutCreate()

recursive function ESMF_DELayoutCreateFromPetMap(petMap, &

pinflag, vm, rc)

RETURN VALUE:

type(ESMF_DELayout) :: ESMF_DELayoutCreateFromPetMap

ARGUMENTS:

integer, intent(in) :: petMap(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Pin_Flag), intent(in), optional :: pinflag

type(ESMF_VM), intent(in), optional :: vm

integer, intent(out), optional :: rc

STATUS:

1188

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Create an ESMF_DELayout with exactly specified DE to PET mapping.

This ESMF method must be called in unison by all PETs of the VM. Calling this method from a PET not part of the
VM or not calling it from a PET that is part of the VM will result in undefined behavior. ESMF does not guard against
violation of the unison requirement. The call is not collective, there is no communication between PETs.

The arguments are:

petMap List specifying the DE-to-PET mapping. The list elements correspond to DE 0, 1, 2, ... and map against
the specified PET of the VM context. The size of the petMap argument determines the number of DEs in the
created DELayout. It is erroneous to specify a PET identifier that lies outside the VM context.

[pinflag] This flag specifies which type of resource DEs are pinned to. The default is to pin DEs to PETs. Alternatively
it is also possible to pin DEs to VASs. See section 48.2.1 for a list of valid pinning options.

[vm] If present, the DELayout object is created on the specified ESMF_VM object. The default is to create on the VM
of the current context.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

48.6.6 ESMF_DELayoutDestroy - Release resources associated with DELayout object

INTERFACE:

recursive subroutine ESMF_DELayoutDestroy(delayout, noGarbage, rc)

ARGUMENTS:

type(ESMF_DELayout), intent(inout) :: delayout

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: noGarbage

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

7.0.0 Added argument noGarbage. The argument provides a mechanism to override the default garbage
collection mechanism when destroying an ESMF object.

1189

DESCRIPTION:

Destroy an ESMF_DELayout object, releasing the resources associated with the object.

By default a small remnant of the object is kept in memory in order to prevent problems with dangling aliases. The
default garbage collection mechanism can be overridden with the noGarbage argument.

The arguments are:

delayout ESMF_DELayout object to be destroyed.

[noGarbage] If set to .TRUE. the object will be fully destroyed and removed from the ESMF garbage collection
system. Note however that under this condition ESMF cannot protect against accessing the destroyed object
through dangling aliases – a situation which may lead to hard to debug application crashes.

It is generally recommended to leave the noGarbage argument set to .FALSE. (the default), and to take
advantage of the ESMF garbage collection system which will prevent problems with dangling aliases or incorrect
sequences of destroy calls. However this level of support requires that a small remnant of the object is kept in
memory past the destroy call. This can lead to an unexpected increase in memory consumption over the course
of execution in applications that use temporary ESMF objects. For situations where the repeated creation and
destruction of temporary objects leads to memory issues, it is recommended to call with noGarbage set to
.TRUE., fully removing the entire temporary object from memory.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

48.6.7 ESMF_DELayoutGet - Get object-wide DELayout information

INTERFACE:

recursive subroutine ESMF_DELayoutGet(delayout, vm, deCount,&

petMap, vasMap, oneToOneFlag, pinflag, localDeCount, localDeToDeMap, &

localDeList, & ! DEPRECATED ARGUMENT

vasLocalDeCount, vasLocalDeToDeMap, &

vasLocalDeList, & ! DEPRECATED ARGUMENT

rc)

ARGUMENTS:

type(ESMF_DELayout), intent(in) :: delayout

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_VM), intent(out), optional :: vm

integer, intent(out), optional :: deCount

integer, target, intent(out), optional :: petMap(:)

integer, target, intent(out), optional :: vasMap(:)

logical, intent(out), optional :: oneToOneFlag

type(ESMF_Pin_Flag), intent(out), optional :: pinflag

integer, intent(out), optional :: localDeCount

integer, target, intent(out), optional :: localDeToDeMap(:)

integer, target, intent(out), optional :: localDeList(:) !DEPRECATED ARG

integer, intent(out), optional :: vasLocalDeCount

integer, target, intent(out), optional :: vasLocalDeToDeMap(:)

integer, target, intent(out), optional :: vasLocalDeList(:) !DEPRECATED ARG

integer, intent(out), optional :: rc

1190

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

5.2.0rp1 Added arguments localDeToDeMap and vasLocalDeToDeMap. Started to deprecate arguments
localDeList and vasLocalDeList. The new argument names correctly use the Map suffix and
better describe the returned information. This was pointed out by user request.

DESCRIPTION:

Access to DELayout information.

The arguments are:

delayout Queried ESMF_DELayout object.

[vm] The ESMF_VM object on which delayout is defined.

[deCount] The total number of DEs in the DELayout.

[petMap] List of PETs against which the DEs are mapped. The petMap argument must at least be of size deCount.

[vasMap] List of VASs against which the DEs are mapped. The vasMap argument must at least be of size deCount.

[oneToOneFlag] A value of .TRUE. indicates that delayout maps each DE to a single PET, and each PET maps
to a single DE. All other layouts return a value of .FALSE..

[pinflag] The type of DE pinning. See section 48.2.1 for a list of valid pinning options.

[localDeCount] The number of DEs in the DELayout associated with the local PET.

[localDeToDeMap] Mapping between localDe indices and the (global) DEs associated with the local PET. The lo-
calDe index variables are discussed in sections 48.3.7 and 28.2.5. The provided actual argument must be of size
localDeCount.

[localDeList] DEPRECATED ARGUMENT! Please use the argument localDeToDeMap instead.

[vasLocalDeCount] The number of DEs in the DELayout associated with the local VAS.

[vasLocalDeToDeMap] Mapping between localDe indices and the (global) DEs associated with the local VAS. The
localDe index variables are discussed in sections 48.3.7 and 28.2.5. The provided actual argument must be of
size localDeCount.

[vasLocalDeList] DEPRECATED ARGUMENT! Please use the argument vasLocalDeToDeMap instead.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

1191

48.6.8 ESMF_DELayoutIsCreated - Check whether a DELayout object has been created

INTERFACE:

function ESMF_DELayoutIsCreated(delayout, rc)

RETURN VALUE:

logical :: ESMF_DELayoutIsCreated

ARGUMENTS:

type(ESMF_DELayout), intent(in) :: delayout

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Return .true. if the delayout has been created. Otherwise return .false.. If an error occurs, i.e. rc /=

ESMF_SUCCESS is returned, the return value of the function will also be .false..

The arguments are:

delayout ESMF_DELayout queried.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

48.6.9 ESMF_DELayoutPrint - Print DELayout information

INTERFACE:

subroutine ESMF_DELayoutPrint(delayout, rc)

ARGUMENTS:

type(ESMF_DELayout), intent(in) :: delayout

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

1192

DESCRIPTION:

Prints internal information about the specified ESMF_DELayout object to stdout.

The arguments are:

delayout Specified ESMF_DELayout object.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

48.6.10 ESMF_DELayoutServiceComplete - Close service window

INTERFACE:

recursive subroutine ESMF_DELayoutServiceComplete(delayout, de, rc)

ARGUMENTS:

type(ESMF_DELayout), intent(in) :: delayout

integer, intent(in) :: de

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

The PET who’s service offer was accepted for de must use ESMF_DELayoutServiceComplete to close the
service window.

The arguments are:

delayout Specified ESMF_DELayout object.

de DE for which to close service window.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

48.6.11 ESMF_DELayoutServiceOffer - Offer service for a DE in DELayout

INTERFACE:

1193

recursive function ESMF_DELayoutServiceOffer(delayout, de, rc)

RETURN VALUE:

type(ESMF_ServiceReply_Flag) :: ESMF_DELayoutServiceOffer

ARGUMENTS:

type(ESMF_DELayout), intent(in) :: delayout

integer, intent(in) :: de

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Offer service for a DE in the ESMF_DELayout object. This call together with
ESMF_DELayoutServiceComplete() provides the synchronization primitives between the PETs of an
ESMF multi-threaded VM necessary for dynamic load balancing via a work queue approach.

The calling PET will either receive ESMF_SERVICEREPLY_ACCEPT if the service offer has been accepted by
DELayout or ESMF_SERVICEREPLY_DENY if the service offer was denied. The service offer paradigm is dif-
ferent from a simple mutex approach in that the DELayout keeps track of the number of service offers issued for
each DE by each PET and accepts only one PET’s offer for each offer increment. This requires that all PETs use
ESMF_DELayoutServiceOffer() in unison. See section 48.2.2 for the potential return values.

The arguments are:

delayout Specified ESMF_DELayout object.

de DE for which service is offered by the calling PET.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

48.6.12 ESMF_DELayoutValidate - Validate DELayout internals

INTERFACE:

subroutine ESMF_DELayoutValidate(delayout, rc)

ARGUMENTS:

type(ESMF_DELayout), intent(in) :: delayout

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

1194

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Validates that the delayout is internally consistent. The method returns an error code if problems are found.

The arguments are:

delayout Specified ESMF_DELayout object.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

49 VM Class

49.1 Description

The ESMF VM (Virtual Machine) class is a generic representation of hardware and system software resources. There

is exactly one VM object per ESMF Component, providing the execution environment for the Component code. The

VM class handles all resource management tasks for the Component class and provides a description of the underlying

configuration of the compute resources used by a Component.

In addition to resource description and management, the VM class offers the lowest level of ESMF communication

methods. The VM communication calls are very similar to MPI. Data references in VM communication calls must

be provided as raw, language-specific, one-dimensional, contiguous data arrays. The similarity between VM and

MPI communication calls is striking and there are many equivalent point-to-point and collective communication calls.

However, unlike MPI, the VM communication calls support communication between threaded PETs in a completely

transparent fashion.

Many ESMF applications do not interact with the VM class directly very much. The resource management aspect

is wrapped completely transparent into the ESMF Component concept. Often the only reason that user code queries

a Component object for the associated VM object is to inquire about resource information, such as the localPet

or the petCount. Further, for most applications the use of higher level communication APIs, such as provided by

Array and Field, are much more convenient than using the low level VM communication calls.

The basic elements of a VM are called PETs, which stands for Persistent Execution Threads. These are equivalent to

OS threads with a lifetime of at least that of the associated component. All VM functionality is expressed in terms of

PETs. In the simplest, and most common case, a PET is equivalent to an MPI process. However, ESMF also supports

multi-threading, where multiple PETs run as Pthreads inside the same virtual address space (VAS).

The resource management functions of the VM class become visible when a component, or the driver code, creates

sub-components. Section 16.4.8 discusses this aspect from the Superstructure perspective and provides links to the

relevant Component examples in the documentation.

There are two parts to resource management, the parent and the child. When the parent component cre-

ates a child component, the parent VM object provides the resources on which the child is created with

ESMF_GridCompCreate() or ESMF_CplCompCreate(). The optional petList argument to these calls

limits the resources that the parent gives to a specific child. The child component, may specify - during its optional

ESMF_<Grid/Cpl>CompSetVM() method - how it wants to arrange the inherited resources in its own VM. Af-

ter this, all standard ESMF methods of the Component, including ESMF_<Grid/Cpl>CompSetServices(),

1195

will execute in the child VM. Notice that the ESMF_<Grid/Cpl>CompSetVM() routine, although part of the

child Component, must execute before the child VM has been started up. It runs in the parent VM context. The

child VM is created and started up just before the user-written set services routine, specified as an argument to

ESMF_<Grid/Cpl>CompSetServices(), is entered.

49.2 Constants

49.2.1 ESMF_VMEPOCH

DESCRIPTION:

Specifies the kind of VM Epoch being entered.

The type of this flag is:

type(ESMF_VMEpoch_Flag)

The valid values are:

ESMF_VMEPOCH_NONE An epoch wihout special behavior.

ESMF_VMEPOCH_BUFFER This option must only be used for parts of the code with distinct sending and receiv-

ing PETs, i.e. where no PETs are both sender and receiver. All non-blocking messages are being buffered. A

single message is sent between unique pairs of src-dst PETs. This can significantly improve performance for

cases with a large imbalance in the number of sending versus receiving PETs. The extra buffering also improves

the overall asynchronous behavior between the sending and receiving side.

49.3 Use and Examples

The concept of the ESMF Virtual Machine (VM) is so fundamental to the framework that every ESMF application uses

it. However, for many user applications the VM class is transparently hidden behind the ESMF Component concept

and higher data classes (e.g. Array, Field). The interaction between user code and VM is often only indirect. The

following examples provide an overview of where the VM class can come into play in user code.

49.3.1 Global VM

This complete example program demonstrates the simplest ESMF application, consisting of only a main program
without any Components. The global VM, which is automatically created during the ESMF_Initialize() call, is
obtained using two different methods. First the global VM will be returned by ESMF_Initialize() if the optional
vm argument is specified. The example uses the VM object obtained this way to call the VM print method. Second, the
global VM can be obtained anywhere in the user application using the ESMF_VMGetGlobal() call. The identical
VM is returned and several VM query methods are called to inquire about the associated resources.

program ESMF_VMDefaultBasicsEx

#include "ESMF.h"

use ESMF

use ESMF_TestMod

implicit none

1196

! local variables

integer:: rc

type(ESMF_VM):: vm

integer:: localPet, petCount, peCount, ssiId, vas

call ESMF_Initialize(vm=vm, defaultlogfilename="VMDefaultBasicsEx.Log", &

logkindflag=ESMF_LOGKIND_MULTI, rc=rc)

! Providing the optional vm argument to ESMF_Initialize() is one way of

! obtaining the global VM.

call ESMF_VMPrint(vm, rc=rc)

call ESMF_VMGetGlobal(vm=vm, rc=rc)

! Calling ESMF_VMGetGlobal() anywhere in the user application is the other

! way to obtain the global VM object.

call ESMF_VMGet(vm, localPet=localPet, petCount=petCount, peCount=peCount, &

rc=rc)

! The VM object contains information about the associated resources. If the

! user code requires this information it must query the VM object.

print *, "This PET is localPet: ", localPet

print *, "of a total of ",petCount," PETs in this VM."

print *, "There are ", peCount," PEs referenced by this VM"

call ESMF_VMGet(vm, localPet, peCount=peCount, ssiId=ssiId, vas=vas, rc=rc)

print *, "This PET is executing in virtual address space (VAS) ", vas

print *, "located on single system image (SSI) ", ssiId

print *, "and is associated with ", peCount, " PEs."

end program

49.3.2 VM and Components

The following example shows the role that the VM plays in connection with ESMF Components. A single Component
is created in the main program. Through the optional petList argument the driver code specifies that only resources
associated with PET 0 are given to the gcomp object.

When the Component code is invoked through the standard ESMF Component methods Initialize, Run, or Finalize
the Component’s VM is automatically entered. Inside of the user-written Component code the Component VM can
be obtained by querying the Component object. The VM object will indicate that only a single PET is executing the
Component code.

1197

module ESMF_VMComponentEx_gcomp_mod

recursive subroutine mygcomp_init(gcomp, istate, estate, clock, rc)

type(ESMF_GridComp) :: gcomp

type(ESMF_State) :: istate, estate

type(ESMF_Clock) :: clock

integer, intent(out) :: rc

! local variables

type(ESMF_VM):: vm

! get this Component’s vm

call ESMF_GridCompGet(gcomp, vm=vm)

! the VM object contains information about the execution environment of

! the Component

call ESMF_VMPrint(vm, rc=rc)

rc = 0

end subroutine !--

recursive subroutine mygcomp_run(gcomp, istate, estate, clock, rc)

type(ESMF_GridComp) :: gcomp

type(ESMF_State) :: istate, estate

type(ESMF_Clock) :: clock

integer, intent(out) :: rc

! local variables

type(ESMF_VM):: vm

! get this Component’s vm

call ESMF_GridCompGet(gcomp, vm=vm)

! the VM object contains information about the execution environment of

! the Component

call ESMF_VMPrint(vm, rc=rc)

rc = 0

end subroutine !--

recursive subroutine mygcomp_final(gcomp, istate, estate, clock, rc)

type(ESMF_GridComp) :: gcomp

type(ESMF_State) :: istate, estate

type(ESMF_Clock) :: clock

integer, intent(out) :: rc

! local variables

type(ESMF_VM):: vm

! get this Component’s vm

call ESMF_GridCompGet(gcomp, vm=vm)

1198

! the VM object contains information about the execution environment of

! the Component

call ESMF_VMPrint(vm, rc=rc)

rc = 0

end subroutine !--

end module

program ESMF_VMComponentEx

#include "ESMF.h"

use ESMF

use ESMF_TestMod

use ESMF_VMComponentEx_gcomp_mod

implicit none

! local variables

gcomp = ESMF_GridCompCreate(petList=(/0/), rc=rc)

call ESMF_GridCompSetServices(gcomp, userRoutine=mygcomp_register, rc=rc)

call ESMF_GridCompInitialize(gcomp, rc=rc)

call ESMF_GridCompRun(gcomp, rc=rc)

call ESMF_GridCompFinalize(gcomp, rc=rc)

call ESMF_GridCompDestroy(gcomp, rc=rc)

call ESMF_Finalize(rc=rc)

end program

49.3.3 Getting the MPI Communicator from an VM object

Sometimes user code requires access to the MPI communicator, e.g. to support legacy code that contains explict MPI
communication calls. The correct way of wrapping such code into ESMF is to obtain the MPI intra-communicator out

1199

of the VM object. In order not to interfere with ESMF communications it is advisable to duplicate the communicator
before using it in user-level MPI calls. In this example the duplicated communicator is used for a user controlled
MPI_Barrier().

integer:: mpic

integer:: mpic2

call ESMF_VMGet(vm, mpiCommunicator=mpic, rc=rc)

! The returned MPI communicator spans the same MPI processes that the VM

! is defined on.

call MPI_Comm_dup(mpic, mpic2, ierr)

! Duplicate the MPI communicator not to interfere with ESMF communications.

! The duplicate MPI communicator can be used in any MPI call in the user

! code. Here the MPI_Barrier() routine is called.

call MPI_Barrier(mpic2, ierr)

49.3.4 Nesting ESMF inside a user MPI application

It is possible to nest an ESMF application inside a user application that explicitly calls MPI_Init() and
MPI_Finalize(). The ESMF_Initialize() call automatically checks whether MPI has already been ini-
tialized, and if so does not call MPI_Init() internally. On the finalize side, ESMF_Finalize() can be instructed
to not call MPI_Finalize(), making it the responsibility of the outer code to finalize MPI.

! For cases where ESMF resource management is desired (e.g. for threading),

! ESMF_InitializePreMPI() must be called before MPI_Init().

call ESMF_InitializePreMPI(rc=rc)

! User code initializes MPI.

call MPI_Init(ierr)

! ESMF_Initialize() does not call MPI_Init() if it finds MPI initialized.

call ESMF_Initialize(defaultlogfilename="VMUserMpiEx.Log", &

logkindflag=ESMF_LOGKIND_MULTI, rc=rc)

! Use ESMF here...

! Calling ESMF_Finalize() with endflag=ESMF_END_KEEPMPI instructs ESMF

! to keep MPI active.

call ESMF_Finalize(endflag=ESMF_END_KEEPMPI, rc=rc)

1200

! It is the responsibility of the outer user code to finalize MPI.

call MPI_Finalize(ierr)

49.3.5 Nesting ESMF inside a user MPI application on a subset of MPI ranks

The previous example demonstrated that it is possible to nest an ESMF application, i.e.
ESMF_Initialize()...ESMF_Finalize() inside MPI_Init()...MPI_Finalize(). It is not neces-
sary that all MPI ranks enter the ESMF application. The following example shows how the user code can pass an MPI
communicator to ESMF_Initialize(), and enter the ESMF application on a subset of MPI ranks.

! User code initializes MPI.

call MPI_Init(ierr)

! User code determines the local rank.

call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)

! User code prepares MPI communicator "esmfComm", that allows rank 0 and 1

! to be grouped together.

if (rank < 2) then

! first communicator split with color=0

call MPI_Comm_split(MPI_COMM_WORLD, 0, 0, esmfComm, ierr)

else

! second communicator split with color=1

call MPI_Comm_split(MPI_COMM_WORLD, 1, 0, esmfComm, ierr)

endif

if (rank < 2) then

! Only call ESMF_Initialize() on rank 0 and 1, passing the prepared MPI

! communicator that spans these ranks.

call ESMF_Initialize(mpiCommunicator=esmfComm, &

defaultlogfilename="VMUserMpiCommEx.Log", &

logkindflag=ESMF_LOGKIND_MULTI, rc=rc)

! Use ESMF here...

! Calling ESMF_Finalize() with endflag=ESMF_END_KEEPMPI instructs ESMF

! to keep MPI active.

call ESMF_Finalize(endflag=ESMF_END_KEEPMPI, rc=rc)

else

! Ranks 2 and above do non-ESMF work...

1201

endif

! Free the MPI communicator before finalizing MPI.

call MPI_Comm_free(esmfComm, ierr)

! It is the responsibility of the outer user code to finalize MPI.

call MPI_Finalize(ierr)

49.3.6 Multiple concurrent instances of ESMF under separate MPI communicators

Multiple instances of ESMF can run concurrently under the same user main program on separate MPI communicators.
The user program first splits MPI_COMM_WORLD into separate MPI communicators. Each communicator is then used
to run a separate ESMF instance by passing it into ESMF_Initialize() on the appropriate MPI ranks.

Care must be taken to set the defaultlogfilename to be unique on each ESMF instances. This prevents concur-
rent ESMF instances from writing to the same log file. Further, each ESMF instances must call ESMF_Finalize()
with the endflag=ESMF_END_KEEPMPI option in order to hand MPI control back to the user program. The outer
user program is ultimately responsible for destroying the MPI communicators and to cleanly shut down MPI.

! User code initializes MPI.

call MPI_Init(ierr)

! User code determines the local rank and overall size of MPI_COMM_WORLD

call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)

call MPI_Comm_size(MPI_COMM_WORLD, size, ierr)

! User code prepares different MPI communicators.

! Here a single MPI_Comm_split() call is used to split MPI_COMM_WORLD

! into two non-overlapping communicators:

! One communicator for ranks 0 and 1, and the other for ranks 2 and above.

if (rank < 2) then

! first communicator split with color=0

call MPI_Comm_split(MPI_COMM_WORLD, 0, 0, esmfComm, ierr)

else

! second communicator split with color=1

call MPI_Comm_split(MPI_COMM_WORLD, 1, 0, esmfComm, ierr)

endif

if (rank < 2) then

! Ranks 0 and 1 enter ESMF_Initialize() with the prepared communicator.

! Care is taken to set a unique log file name.

call ESMF_Initialize(mpiCommunicator=esmfComm, &

defaultlogfilename="VMUserMpiCommMultiEx1.Log", &

logkindflag=ESMF_LOGKIND_MULTI, rc=rc)

! Use ESMF here...

1202

! Finalize ESMF without finalizing MPI. The user application will call

! MPI_Finalize() on all ranks.

call ESMF_Finalize(endflag=ESMF_END_KEEPMPI, rc=rc)

else

! Ranks 2 and above enter ESMF_Initialize() with the prepared communicator.

! Care is taken to set a unique log file name.

call ESMF_Initialize(mpiCommunicator=esmfComm, &

defaultlogfilename="VMUserMpiCommMultiEx2.Log", &

logkindflag=ESMF_LOGKIND_MULTI, rc=rc)

! Use ESMF here...

! Finalize ESMF without finalizing MPI. The user application will call

! MPI_Finalize() on all ranks.

call ESMF_Finalize(endflag=ESMF_END_KEEPMPI, rc=rc)

endif

! Free the MPI communicator(s) before finalizing MPI.

call MPI_Comm_free(esmfComm, ierr)

! It is the responsibility of the outer user code to finalize MPI.

call MPI_Finalize(ierr)

49.3.7 Communication - Send and Recv

The VM layer provides MPI-like point-to-point communication. Use ESMF_VMSend() and ESMF_VMRecv() to
pass data between two PETs. The following code sends data from PET ’src’ and receives it on PET ’dst’. Both PETs
must be part of the same VM.

Set up the localData array.

count = 10

allocate(localData(count))

do i=1, count

localData(i) = localPet*100 + i

enddo

Carry out the data transfer between src PET and dst PET.

if (localPet==src) then

call ESMF_VMSend(vm, sendData=localData, count=count, dstPet=dst, rc=rc)

endif

1203

if (localPet==dst) then

call ESMF_VMRecv(vm, recvData=localData, count=count, srcPet=src, rc=rc)

endif

Finally, on dst PET, test the received data for correctness.

if (localPet==dst) then

do i=1, count

if (localData(i) /= src*100 + i) then

finalrc = ESMF_RC_VAL_WRONG

endif

enddo

endif

49.3.8 Communication - Scatter and Gather

The VM layer provides MPI-like collective communication. ESMF_VMScatter() scatters data located on root
PET across all the PETs of the VM. ESMF_VMGather() provides the opposite operation, gathering data from all
the PETs of the VM onto root PET.

integer, allocatable:: array1(:), array2(:)

! allocate data arrays

nsize = 2

nlen = nsize * petCount

allocate(array1(nlen))

allocate(array2(nsize))

! prepare data array1

do i=1, nlen

array1(i) = localPet * 100 + i

enddo

call ESMF_VMScatter(vm, sendData=array1, recvData=array2, count=nsize, &

rootPet=scatterRoot, rc=rc)

call ESMF_VMGather(vm, sendData=array2, recvData=array1, count=nsize, &

rootPet=gatherRoot, rc=rc)

49.3.9 Communication - AllReduce and AllFullReduce

Use ESMF_VMAllReduce() to reduce data distributed across the PETs of a VM into a result vector, returned on all
the PETs. Further, use ESMF_VMAllFullReduce() to reduce the data into a single scalar returned on all PETs.

1204

integer, allocatable:: array1(:), array2(:)

! allocate data arrays

nsize = 2

allocate(array1(nsize))

allocate(array2(nsize))

! prepare data array1

do i=1, nsize

array1(i) = localPet * 100 + i

enddo

call ESMF_VMAllReduce(vm, sendData=array1, recvData=array2, count=nsize, &

reduceflag=ESMF_REDUCE_SUM, rc=rc)

! Reduce distributed sendData, element by element into recvData and

! return it on all the PETs.

call ESMF_VMAllFullReduce(vm, sendData=array1, recvData=result, &

count=nsize, reduceflag=ESMF_REDUCE_SUM, rc=rc)

! Fully reduce the distributed sendData into a single scalar and

! return it in recvData on all PETs.

49.3.10 Communication - Non-blocking option and VMEpochs

The VM communication methods offer the option to execute in non-blocking mode. In this mode, both sending and
receving calls return immediatly on each local PET. A separate synchronization call is needed to assure completion of
the data transfer.

The separation of initiation and completion of the data transfer provides the opportunity for the underlying communi-
cation system to progress concurrently with other operations on the same PET. This can be leveraged to have profound
impact on the performance of an algorithm that requires both computation and communication.

Another critical application of the non-blocking communication mode is the prevention of deadlocks. In the default
blocking mode, a receiving method will not return until the data transfer has completed. Sending methods may also not
return, especially if the message being sent is above the implementation dependent internal buffer size. This behavior
makes it often hard, if not impossible, to write safe algorithms that guarantee to not deadlock when communicating
between a group of PETs. Using the communication calls in non-blocking mode simplifies this problem immensely.

The following code shows how ESMF_VMSend() and ESMF_VMRecv() are used in non-blocking mode by passing
in the ESMF_SYNC_NONBLOCKING argument.

Set up the localData array.

do i=1, count

localData(i) = localPet*100 + i

enddo

Initiate the data transfer between src PET and dst PET.

1205

if (localPet==src) then

call ESMF_VMSend(vm, sendData=localData, count=count, dstPet=dst, &

syncflag=ESMF_SYNC_NONBLOCKING, rc=rc)

endif

if (localPet==dst) then

call ESMF_VMRecv(vm, recvData=localData, count=count, srcPet=src, &

syncflag=ESMF_SYNC_NONBLOCKING, rc=rc)

endif

There is no garantee at this point that the data transfer has actually started, let along completed. For this reason it is
unsafe to overwrite the data in the localData array on src PET, or to access the localData array on dst PET.
However both PETs are free to engage in other work while the data transfer my proceed concurrently.

! local computational work here, or other communications

Wait for the completion of all outstanding non-blocking communication calls by issuing the
ESMF_VMCommWaitAll() call.

call ESMF_VMCommWaitAll(vm, rc=rc)

Finally, on dst PET, test the received data for correctness.

if (localPet==dst) then

do i=1, count

if (localData(i) /= src*100 + i) then

finalrc = ESMF_RC_VAL_WRONG

endif

enddo

endif

Sometimes it is necessary to wait for individual outstanding communications specifically. This can be accomplished
by using ESMF_CommHandle objects. To demonstrate this, first re-initialize the localData array.

do i=1, count

localData(i) = localPet*100 + i

localData2(i) = localPet*1000 + i

enddo

Initiate the data transfer between src PET and dst PET, but this time also pass the commhandle variable of type
ESMF_CommHandle. Here send two message between src and dst in order to have different outstanding messages
to wait for.

if (localPet==src) then

call ESMF_VMSend(vm, sendData=localData, count=count, dstPet=dst, &

1206

syncflag=ESMF_SYNC_NONBLOCKING, commhandle=commhandle(1), rc=rc)

call ESMF_VMSend(vm, sendData=localData2, count=count, dstPet=dst, &

syncflag=ESMF_SYNC_NONBLOCKING, commhandle=commhandle(2), rc=rc)

endif

if (localPet==dst) then

call ESMF_VMRecv(vm, recvData=localData, count=count, srcPet=src, &

syncflag=ESMF_SYNC_NONBLOCKING, commhandle=commhandle(1), rc=rc)

call ESMF_VMRecv(vm, recvData=localData2, count=count, srcPet=src, &

syncflag=ESMF_SYNC_NONBLOCKING, commhandle=commhandle(2), rc=rc)

endif

Now it is possible to specifically wait for the first data transfer, e.g. on the dst PET.

if (localPet==dst) then

call ESMF_VMCommWait(vm, commhandle=commhandle(1), rc=rc)

endif

At this point there are still 2 outstanding communications on the src PET, and one outstanding communication
on the dst PET. However, having returned from the specific ESMF_VMCommWait() call guarantees that the first
communication on the dst PET has completed, i.e. the data has been received from the src PET, and can now be
accessed in the localData array.

if (localPet==dst) then

do i=1, count

if (localData(i) /= src*100 + i) then

finalrc = ESMF_RC_VAL_WRONG

endif

enddo

endif

Before accessing data from the second transfer, it is necessary to wait on the associated commhandle for completion.

if (localPet==dst) then

call ESMF_VMCommWait(vm, commhandle=commhandle(2), rc=rc)

endif

if (localPet==dst) then

do i=1, count

if (localData2(i) /= src*1000 + i) then

finalrc = ESMF_RC_VAL_WRONG

endif

enddo

endif

1207

Finally the commhandle elements on the src side need to be cleared by waiting for them. This could be done
using specific ESMF_VMCommWait() calls, similar to the dst side, or simply by waiting for all/any outstanding
communications using ESMF_VMCommWaitAll() as in the previous example. This call can be issued without
commhandle on all of the PETs.

call ESMF_VMCommWaitAll(vm, rc=rc)

For cases where multiple messages are being sent between the same src-dst pairs using non-blocking communi-
cations, performance can often be improved by aggregating individual messages. An extra buffer is needed to hold
the collected messages, resulting in only a single data transfer for each PET pair. In many cases this can significantly
reduce the time spent in communications. The ESMF VM class provides access to such a buffer technique through the
ESMF_VMEpoch API.

The ESMF_VMEpoch API consists of two interfaces: ESMF_VMEpochEnter() and ESMF_VMEpochExit().
When entering an epoch, the user specifies the type of epoch that is to be entered. Currently only
ESMF_VMEPOCH_BUFFER is available. Inside this epoch, non-blocking communication calls are aggregated and
data transfers on the src side are not issued until the epoch is exited. On the dst side a single data transfer is
received, and then divided over the actual non-blocking receive calls.

The following code repeates the previous example with two messages between src and dst. It is important that
every PET only must act either as sender or receiver. A sending PET can send to many different PETs, and a receiving
PET can receive from many PETs, but no PET must send and receive within the same epoch!

First re-initialize the localData array.

do i=1, count

localData(i) = localPet*100 + i

localData2(i) = localPet*1000 + i

enddo

Enter the ESMF_VMEPOCH_BUFFER.

call ESMF_VMEpochEnter(epoch=ESMF_VMEPOCH_BUFFER, rc=rc)

Now issue non-blocking send and receive calls as usual.

if (localPet==src) then

call ESMF_VMSend(vm, sendData=localData, count=count, dstPet=dst, &

syncflag=ESMF_SYNC_NONBLOCKING, commhandle=commhandle(1), rc=rc)

call ESMF_VMSend(vm, sendData=localData2, count=count, dstPet=dst, &

syncflag=ESMF_SYNC_NONBLOCKING, commhandle=commhandle(2), rc=rc)

endif

if (localPet==dst) then

call ESMF_VMRecv(vm, recvData=localData, count=count, srcPet=src, &

syncflag=ESMF_SYNC_NONBLOCKING, commhandle=commhandle(1), rc=rc)

1208

call ESMF_VMRecv(vm, recvData=localData2, count=count, srcPet=src, &

syncflag=ESMF_SYNC_NONBLOCKING, commhandle=commhandle(2), rc=rc)

endif

No data transfer has been initiated at this point due to the fact that this code is inside the ESMF_VMEPOCH_BUFFER.
On the dst side the same methods are used to wait for the data transfer. However, it is not until the exit of the epoch
on the src side that data is transferred to the dst side.

if (localPet==dst) then

call ESMF_VMCommWait(vm, commhandle=commhandle(1), rc=rc)

endif

if (localPet==dst) then

do i=1, count

if (localData(i) /= src*100 + i) then

finalrc = ESMF_RC_VAL_WRONG

endif

enddo

endif

if (localPet==dst) then

call ESMF_VMCommWait(vm, commhandle=commhandle(2), rc=rc)

endif

if (localPet==dst) then

do i=1, count

if (localData2(i) /= src*1000 + i) then

finalrc = ESMF_RC_VAL_WRONG

endif

enddo

endif

Now exit the epoch, to trigger the data transfer on the src side.

call ESMF_VMEpochExit(rc=rc)

Finally clear the outstanding communication handles on the src side. This needs to happen first inside the next
ESMF_VMEPOCH_BUFFER. As before, waits could be issued either for the specific commhandle elements not yet
explicitly cleared, or a general call to ESMF_VMCommWaitAll() can be used for simplicity.

1209

call ESMF_VMEpochEnter(epoch=ESMF_VMEPOCH_BUFFER, rc=rc)

call ESMF_VMCommWaitAll(vm, rc=rc)

call ESMF_VMEpochExit(rc=rc)

49.3.11 Using VM communication methods with data of rank greater than one

In the current implementation of the VM communication methods all the data array arguments are declared as assumed
shape dummy arrays of rank one. The assumed shape flavor was chosen in order to minimize the chance of copy in/out
problems, associated with the other options for declaring the dummy data arguments. However, currently the interfaces
are not overloaded for higher ranks. This restriction requires that users that need to communicate data arrays with rank
greater than one, must only pass the first dimension of the data array into the VM communication calls. Specifying
the full size of the data arrays (considering all dimensions) ensure that the complete data is transferred in or out of the
contiguous array memory.

integer, allocatable:: sendData(:,:)

integer, allocatable:: recvData(:,:,:,:)

count1 = 5

count2 = 8

allocate(sendData(count1,count2)) ! 5 x 8 = 40 elements

do j=1, count2

do i=1, count1

sendData(i,j) = localPet*100 + i + (j-1)*count1

enddo

enddo

count1 = 2

count2 = 5

count3 = 1

count4 = 4

allocate(recvData(count1,count2,count3,count4)) ! 2 x 5 x 1 x 4 = 40 elements

do l=1, count4

do k=1, count3

do j=1, count2

do i=1, count1

recvData(i,j,k,l) = 0

enddo

enddo

enddo

enddo

if (localPet==src) then

call ESMF_VMSend(vm, &

1210

sendData=sendData(:,1), & ! 1st dimension as contiguous array section

count=count1*count2, & ! total count of elements

dstPet=dst, rc=rc)

endif

if (localPet==dst) then

call ESMF_VMRecv(vm, &

recvData=recvData(:,1,1,1), & ! 1st dimension as contiguous array section

count=count1*count2*count3*count4, & ! total count of elements

srcPet=src, rc=rc)

endif

49.4 Restrictions and Future Work

1. Only array section syntax that leads to contiguous sub sections is supported. The source and destination

arguments in VM communication calls must reference contiguous data arrays. Fortran array sections are not

guaranteed to be contiguous in all cases.

2. Non-blocking Reduce() operations not implemented. None of the reduce communication calls have an

implementation for the non-blocking feature. This affects:

• ESMF_VMAllFullReduce(),

• ESMF_VMAllReduce(),

• ESMF_VMReduce().

3. Limitations when using mpiuni mode. In mpiuni mode non-blocking communications are limited to one

outstanding message per source-destination PET pair. Furthermore, in mpiuni mode the message length must

be smaller than the internal ESMF buffer size.

4. Alternative communication paths not accessible. All user accessible VM communication calls are currently

implemented using MPI-1.2. VM’s implementation of alternative communication techniques, such as shared

memory between threaded PETs and POSIX IPC between PETs located on the same single system image, are

currently inaccessible to the user. (One exception to this is the mpiuni case for which the VM automatically

utilizes a shared memory path.)

5. Data arrays in VM comm calls are assumed shape with rank=1. Currently all dummy arrays in VM comm

calls are defined as assumed shape arrays of rank=1. The motivation for this choice is that the use of assumed

shape dummy arrays guards against the Fortran copy in/out problem. However it may not be as flexible as

desired from the user perspective. Alternatively all dummy arrays could be defined as assumed size arrays, as

it is done in most MPI implementations, allowing arrays of various rank to be passed into the comm methods.

Arrays of higher rank can be passed into the current interfaces using Fortran array syntax. This approach is

explained in section 49.3.11.

49.5 Design and Implementation Notes

The VM class provides an additional layer of abstraction on top of the POSIX machine model, making it suitable for

HPC applications. There are four key aspects the VM class deals with.

1211

1. Encapsulation of hardware and operating system details within the concept of Persistent Execution Threads

(PETs).

2. Resource management in terms of PETs with a guard against over-subscription.

3. Topological description of the underlying configuration of the compute resources in terms of PETs.

4. Transparent communication API for point-to-point and collective PET-based primitives, hiding the many differ-

ent communication channels and offering best possible performance.

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

DE

#1

#2

#3

#5

#6

#7
#8

#9

#10
#11

#12
#13

MPI−1, MPI−2, armci

SHMEM, InterCon−lib

ESMF_Field / ESMF_Array ESMF_VM

Core

CPU

SSI

OpenMP or
Pthreads

User TETs

PEPET ~ OS−Instance

ESMF_DELayout

0

1

2

3

4

5

6

7

8

9

10

11

12

0− p0(0)t0

1− p1(1)t0

2− p2(2)t0

3− p4(3)t0

4− p4(3)t1

5− p4(3)t2

6− p7(4)t0

− ESMF_DistGrid

− ESMF_Grid

− ESMF_LocalArray

− ESMF_Array

ESMF_Field

Decomposition

#4

M
PI−

1,
 M

PI−
2,

 a
rm

ci

SH
M

EM
, O

S−I
PC

Pth
re

ad
s

connection weights

P
E

T
s

in
st

a
n

ti
a
te

u
se

r
co

d
e

Definition of terms used in the diagram

• PE: A processing element (PE) is an alias for the smallest physical processing unit available on a particular

hardware platform. In the language of today’s microprocessor architecture technology a PE is identical to a

core, however, if future microprocessor designs change the smallest physical processing unit the mapping of

the PE to actual hardware will change accordingly. Thus the PE layer separates the hardware specific part of

the VM from the hardware-independent part. Each PE is labeled with an id number which identifies it uniquely

within all of the VM instances of an ESMF application.

• Core: A Core is the smallest physical processing unit which typically comprises a register set, an integer arith-

metic unit, a floating-point unit and various control units. Each Core is labeled with an id number which

identifies it uniquely within all of the VM instances of an ESMF application.

1212

• CPU: The central processing unit (CPU) houses single or multiple cores, providing them with the interface to

system memory, interconnects and I/O. Typically the CPU provides some level of caching for the instruction

and data streams in and out of the Cores. Cores in a multi-core CPU typically share some caches. Each CPU is

labeled with an id number which identifies it uniquely within all of the VM instances of an ESMF application.

• SSI: A single system image (SSI) spans all the CPUs controlled by a single running instance of the operating

system. SMP and NUMA are typical multi-CPU SSI architectures. Each SSI is labeled with an id number which

identifies it uniquely within all of the VM instances of an ESMF application.

• TOE: A thread of execution (TOE) executes an instruction sequence. TOE’s come in two flavors: PET and TET.

• PET: A persistent execution thread (PET) executes an instruction sequence on an associated set of data. The PET

has a lifetime at least as long as the associated data set. In ESMF the PET is the central concept of abstraction

provided by the VM class. The PETs of an VM object are labeled from 0 to N-1 where N is the total number of

PETs in the VM object.

• TET: A transient execution thread (TET) executes an instruction sequence on an associated set of data. A TET’s

lifetime might be shorter than that of the associated data set.

• OS-Instance: The OS-Instance of a TOE describes how a particular TOE is instantiated on the OS level. Using

POSIX terminology a TOE will run as a single thread within a single- or multi-threaded process.

• Pthreads: Communication via the POSIX Thread interface.

• MPI-1, MPI-2: Communication via MPI standards 1 and 2.

• armci: Communication via the aggregate remote memory copy interface.

• SHMEM: Communication via the SHMEM interface.

• OS-IPC: Communication via the operating system’s inter process communication interface. Either POSIX IPC

or System V IPC.

• InterCon-lib: Communication via the interconnect’s library native interface. An example is the Elan library for

Quadrics.

The POSIX machine abstraction, while a very powerful concept, needs augmentation when applied to HPC applica-

tions. Key elements of the POSIX abstraction are processes, which provide virtually unlimited resources (memory,

I/O, sockets, ...) to possibly multiple threads of execution. Similarly POSIX threads create the illusion that there is

virtually unlimited processing power available to each POSIX process. While the POSIX abstraction is very suitable

for many multi-user/multi-tasking applications that need to share limited physical resources, it does not directly fit the

HPC workload where over-subscription of resources is one of the most expensive modes of operation.

ESMF’s virtual machine abstraction is based on the POSIX machine model but holds additional information about the

available physical processing units in terms of Processing Elements (PEs). A PE is the smallest physical processing

unit and encapsulates the hardware details (Cores, CPUs and SSIs).

There is exactly one physical machine layout for each application, and all VM instances have access to this infor-

mation. The PE is the smallest processing unit which, in today’s microprocessor technology, corresponds to a single

Core. Cores are arranged in CPUs which in turn are arranged in SSIs. The setup of the physical machine layout is part

of the ESMF initialization process.

On top of the PE concept the key abstraction provided by the VM is the PET. All user code is executed by PETs

while OS and hardware details are hidden. The VM class contains a number of methods which allow the user to

prescribe how the PETs of a desired virtual machine should be instantiated on the OS level and how they should map

onto the hardware. This prescription is kept in a private virtual machine plan object which is created at the same time

1213

the associated component is being created. Each time component code is entered through one of the component’s

registered top–level methods (Initialize/Run/Finalize), the virtual machine plan along with a pointer to the respective

user function is used to instantiate the user code on the PETs of the associated VM in form of single- or multi-threaded

POSIX processes.

The process of starting, entering, exiting and shutting down a VM is very transparent, all spawning and joining of

threads is handled by VM methods "behind the scenes". Furthermore, fundamental synchronization and communica-

tion primitives are provided on the PET level through a uniform API, hiding details related to the actual instantiation

of the participating PETs.

Within a VM object each PE of the physical machine maps to 0 or 1 PETs. Allowing unassigned PEs provides a

means to prevent over-subscription between multiple concurrently running virtual machines. Similarly a maximum of

one PET per PE prevents over-subscription within a single VM instance. However, over-subscription is possible by

subscribing PETs from different virtual machines to the same PE. This type of over-subscription can be desirable for

PETs associated with I/O workloads expected to be used infrequently and to block often on I/O requests.

On the OS level each PET of a VM object is represented by a POSIX thread (Pthread) either belonging to a single– or

multi–threaded process and maps to at least 1 PE of the physical machine, ensuring its execution. Mapping a single

PET to multiple PEs provides resources for user–level multi–threading, in which case the user code inquires how many

PEs are associated with its PET and if there are multiple PEs available the user code can spawn an equal number of

threads (e.g. OpenMP) without risking over-subscription. Typically these user spawned threads are short-lived and

used for fine-grained parallelization in form of TETs. All PEs mapped against a single PET must be part of a unique

SSI in order to allow user–level multi–threading!

In addition to discovering the physical machine the ESMF initialization process sets up the default global virtual

machine. This VM object, which is the ultimate parent of all VMs created during the course of execution, contains as

many PETs as there are PEs in the physical machine. All of its PETs are instantiated in form of single-threaded MPI

processes and a 1:1 mapping of PETs to PEs is used for the default global VM.

The VM design and implementation is based on the POSIX process and thread model as well as the MPI-1.2 standard.

As a consequence of the latter standard the number of processes is static during the course of execution and is deter-

mined at start-up. The VM implementation further requires that the user starts up the ESMF application with as many

MPI processes as there are PEs in the available physical machine using the platform dependent mechanism to ensure

proper process placement.

All MPI processes participating in a VM are grouped together by means of an MPI_Group object and their context

is defined via an MPI_Comm object (MPI intra-communicator). The PET local process id within each virtual ma-

chine is equal to the MPI_Comm_rank in the local MPI_Comm context whereas the PET process id is equal to the

MPI_Comm_rank in MPI_COMM_WORLD. The PET process id is used within the VM methods to determine the

virtual memory space a PET is operating in.

In order to provide a migration path for legacy MPI-applications the VM offers accessor functions to its MPI_Comm

object. Once obtained this object may be used in explicit user-code MPI calls within the same context.

49.6 Class API

49.6.1 ESMF_VMAssignment(=) - VM assignment

INTERFACE:

interface assignment(=)

vm1 = vm2

1214

ARGUMENTS:

type(ESMF_VM) :: vm1

type(ESMF_VM) :: vm2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Assign vm1 as an alias to the same ESMF VM object in memory as vm2. If vm2 is invalid, then vm1 will be equally
invalid after the assignment.

The arguments are:

vm1 The ESMF_VM object on the left hand side of the assignment.

vm2 The ESMF_VM object on the right hand side of the assignment.

49.6.2 ESMF_VMOperator(==) - VM equality operator

INTERFACE:

interface operator(==)

if (vm1 == vm2) then ... endif

OR

result = (vm1 == vm2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_VM), intent(in) :: vm1

type(ESMF_VM), intent(in) :: vm2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Test whether vm1 and vm2 are valid aliases to the same ESMF VM object in memory. For a more general comparison
of two ESMF VMs, going beyond the simple alias test, the ESMF_VMMatch() function (not yet implemented) must
be used.

The arguments are:

1215

vm1 The ESMF_VM object on the left hand side of the equality operation.

vm2 The ESMF_VM object on the right hand side of the equality operation.

49.6.3 ESMF_VMOperator(/=) - VM not equal operator

INTERFACE:

interface operator(/=)

if (vm1 /= vm2) then ... endif

OR

result = (vm1 /= vm2)

RETURN VALUE:

logical :: result

ARGUMENTS:

type(ESMF_VM), intent(in) :: vm1

type(ESMF_VM), intent(in) :: vm2

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Test whether vm1 and vm2 are not valid aliases to the same ESMF VM object in memory. For a more general compar-
ison of two ESMF VMs, going beyond the simple alias test, the ESMF_VMMatch() function (not yet implemented)
must be used.

The arguments are:

vm1 The ESMF_VM object on the left hand side of the non-equality operation.

vm2 The ESMF_VM object on the right hand side of the non-equality operation.

49.6.4 ESMF_VMAllFullReduce - Fully reduce data across VM, result on all PETs

INTERFACE:

subroutine ESMF_VMAllFullReduce(vm, sendData, recvData, &

count, reduceflag, syncflag, commhandle, rc)

1216

ARGUMENTS:

type(ESMF_VM), intent(in) :: vm

<type>(ESMF_KIND_<kind>), target, intent(in) :: sendData(:)

<type>(ESMF_KIND_<kind>), intent(out) :: recvData

integer, intent(in) :: count

type(ESMF_Reduce_Flag), intent(in) :: reduceflag

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Sync_Flag), intent(in), optional :: syncflag

type(ESMF_CommHandle), intent(out), optional :: commhandle

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Collective ESMF_VM communication call that reduces a contiguous data array of <type><kind> across the ESMF_VM
object into a single value of the same <type><kind>. The result is returned on all PETs. Different reduction operations
can be specified.

This method is overloaded for: ESMF_TYPEKIND_I4, ESMF_TYPEKIND_I8, ESMF_TYPEKIND_R4,
ESMF_TYPEKIND_R8.

TODO: The current version of this method does not provide an implementation of the non-blocking feature. When
calling this method with syncflag = ESMF_SYNC_NONBLOCKING, error code ESMF_RC_NOT_IMPL will be
returned and an error will be logged.

The arguments are:

vm ESMF_VM object.

sendData Contiguous data array holding data to be sent. All PETs must specify a valid source array.

recvData Single data variable to be received. All PETs must specify a valid result variable.

count Number of elements in sendData. Allowed to be different across the PETs, as long as count > 0.

reduceflag Reduction operation. See section 52.47 for a list of valid reduce operations.

[syncflag] Flag indicating whether this call behaves blocking or non-blocking. The default is
ESMF_SYNC_BLOCKING. See section 52.57 for a complete list of options.

[commhandle] If present, a communication handle will be returned in case of a non-blocking request (see argument
syncflag). The commhandle can be used in ESMF_VMCommWait() to block the calling PET until the
communication call has finished PET-locally. If no commhandle was supplied to a non-blocking call the VM
method ESMF_VMCommWaitAll() may be used to block on all currently queued communication calls of the
VM context.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

1217

49.6.5 ESMF_VMAllGather - Gather data across VM, result on all PETs

INTERFACE:

subroutine ESMF_VMAllGather(vm, sendData, recvData, count, &

syncflag, commhandle, rc)

ARGUMENTS:

type(ESMF_VM), intent(in) :: vm

<type>(ESMF_KIND_<kind>), target, intent(in) :: sendData(:)

<type>(ESMF_KIND_<kind>), target, intent(out) :: recvData(:)

integer, intent(in) :: count

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Sync_Flag), intent(in), optional :: syncflag

type(ESMF_CommHandle), intent(out), optional :: commhandle

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Collective ESMF_VM communication call that gathers contiguous data of <type><kind> from all PETs of an ESMF_VM
object into an array on each PET. The data received in recvData is identical across all PETs. The count elements
sent from the sendData array on PET i are stored contiguously in the recvData array starting at position i ×

count + 1.

This method is overloaded for: ESMF_TYPEKIND_I4, ESMF_TYPEKIND_I8, ESMF_TYPEKIND_R4,
ESMF_TYPEKIND_R8, ESMF_TYPEKIND_LOGICAL.

The arguments are:

vm ESMF_VM object.

sendData Contiguous data array holding data to be sent. All PETs must specify a valid source array. The first count
elements on each PET are sent.

recvData Contiguous data array for data to be received. All PETs must specify a valid recvData argument large
enough to accommodate the received data.

count Number of elements to be gathered from each PET. Must be the same on all PETs.

[syncflag] Flag indicating whether this call behaves blocking or non-blocking. The default is
ESMF_SYNC_BLOCKING. See section 52.57 for a complete list of options.

[commhandle] If present, a communication handle will be returned in case of a non-blocking request (see argument
syncflag). The commhandle can be used in ESMF_VMCommWait() to block the calling PET until the
communication call has finished PET-locally. If no commhandle was supplied to a non-blocking call the VM
method ESMF_VMCommWaitAll() may be used to block on all currently queued communication calls of the
VM context.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

1218

49.6.6 ESMF_VMAllGatherV - GatherV data across VM, result on all PETs

INTERFACE:

subroutine ESMF_VMAllGatherV(vm, sendData, sendCount, &

recvData, recvCounts, recvOffsets, syncflag, commhandle, rc)

ARGUMENTS:

type(ESMF_VM), intent(in) :: vm

<type>(ESMF_KIND_<kind>), target, intent(in) :: sendData(:)

integer, intent(in) :: sendCount

<type>(ESMF_KIND_<kind>), target, intent(out) :: recvData(:)

integer, intent(in) :: recvCounts(:)

integer, intent(in) :: recvOffsets(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Sync_Flag), intent(in), optional :: syncflag

type(ESMF_CommHandle), intent(out), optional :: commhandle

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Collective ESMF_VM communication call that gathers contiguous data of <type><kind> from all PETs of an ESMF_VM
object into an array on each PET. The data received in recvData is identical across all PETs. The sendCount
elements sent from the sendData array on PET i are stored contiguously in the recvData array starting at position
recvOffsets(i).

This method is overloaded for: ESMF_TYPEKIND_I4, ESMF_TYPEKIND_I8, ESMF_TYPEKIND_R4,
ESMF_TYPEKIND_R8.

TODO: The current version of this method does not provide an implementation of the non-blocking feature. When
calling this method with syncflag = ESMF_SYNC_NONBLOCKING, error code ESMF_RC_NOT_IMPL will be
returned and an error will be logged.

The arguments are:

vm ESMF_VM object.

sendData Contiguous data array holding data to be sent. All PETs must specify a valid source array.

sendCount Number of sendData elements to send from local PET to all other PETs.

recvData Contiguous data array for data to be received. All PETs must specify a valid recvData argument large
enough to accommodate the received data.

recvCounts Number of recvData elements to be received from the corresponding source PET.

recvOffsets Offsets in units of elements in recvData marking the start of element sequence to be received from
source PET.

1219

[syncflag] Flag indicating whether this call behaves blocking or non-blocking. The default is
ESMF_SYNC_BLOCKING. See section 52.57 for a complete list of options.

[commhandle] If present, a communication handle will be returned in case of a non-blocking request (see argument
syncflag). The commhandle can be used in ESMF_VMCommWait() to block the calling PET until the
communication call has finished PET-locally. If no commhandle was supplied to a non-blocking call the VM
method ESMF_VMCommWaitAll() may be used to block on all currently queued communication calls of the
VM context.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

49.6.7 ESMF_VMAllReduce - Reduce data across VM, result on all PETs

INTERFACE:

subroutine ESMF_VMAllReduce(vm, sendData, recvData, count, &

reduceflag, syncflag, commhandle, rc)

ARGUMENTS:

type(ESMF_VM), intent(in) :: vm

<type>(ESMF_KIND_<kind>), target, intent(in) :: sendData(:)

<type>(ESMF_KIND_<kind>), target, intent(out) :: recvData(:)

integer, intent(in) :: count

type(ESMF_Reduce_Flag), intent(in) :: reduceflag

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Sync_Flag), intent(in), optional :: syncflag

type(ESMF_CommHandle), intent(out), optional :: commhandle

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Collective ESMF_VM communication call that reduces a contiguous data array across the ESMF_VM object into a
contiguous data array of the same <type><kind>. The result array is returned on all PETs. Different reduction
operations can be specified.

This method is overloaded for: ESMF_TYPEKIND_I4, ESMF_TYPEKIND_I8, ESMF_TYPEKIND_R4,
ESMF_TYPEKIND_R8.

TODO: The current version of this method does not provide an implementation of the non-blocking feature. When
calling this method with syncflag = ESMF_SYNC_NONBLOCKING, error code ESMF_RC_NOT_IMPL will be
returned and an error will be logged.

The arguments are:

vm ESMF_VM object.

1220

sendData Contiguous data array holding data to be sent. All PETs must specify a valid source array.

recvData Contiguous data array for data to be received. All PETs must specify a valid recvData argument.

count Number of elements in sendData and recvData. Must be the same on all PETs.

reduceflag Reduction operation. See section 52.47 for a list of valid reduce operations.

[syncflag] Flag indicating whether this call behaves blocking or non-blocking. The default is
ESMF_SYNC_BLOCKING. See section 52.57 for a complete list of options.

[commhandle] If present, a communication handle will be returned in case of a non-blocking request (see argument
syncflag). The commhandle can be used in ESMF_VMCommWait() to block the calling PET until the
communication call has finished PET-locally. If no commhandle was supplied to a non-blocking call the VM
method ESMF_VMCommWaitAll() may be used to block on all currently queued communication calls of the
VM context.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

49.6.8 ESMF_VMAllToAll - AllToAll communications across VM

INTERFACE:

subroutine ESMF_VMAllToAll(vm, sendData, sendCount, &

recvData, recvCount, syncflag, &

commhandle, rc)

ARGUMENTS:

type(ESMF_VM), intent(in) :: vm

<type>(ESMF_KIND_<kind>), target, intent(in) :: sendData(:)

integer, intent(in) :: sendCount

<type>(ESMF_KIND_<kind>), target, intent(out) :: recvData(:)

integer, intent(in) :: recvCount

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Sync_Flag), intent(in), optional :: syncflag

type(ESMF_CommHandle), intent(out), optional :: commhandle

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.3.0r. If code using this interface com-
piles with any version of ESMF starting with 5.3.0r, then it will compile with the current version.

DESCRIPTION:

Collective ESMF_VM communication call that performs a total exchange operation on the contiguous data of
<type><kind>. PET i sends contiguous sendCount elements of its sendData array to every PET, including
itself. The sendCount elements sent to PET j are those starting at position j × sendCount + 1, and are stored
in recvData on PET j in position i × recvCount + 1.

1221

This method is overloaded for: ESMF_TYPEKIND_I4, ESMF_TYPEKIND_I8, ESMF_TYPEKIND_R4,
ESMF_TYPEKIND_R8.

TODO: The current version of this method does not provide an implementation of the non-blocking feature. When
calling this method with syncflag = ESMF_SYNC_NONBLOCKING, error code ESMF_RC_NOT_IMPL will be
returned and an error will be logged.

The arguments are:

vm ESMF_VM object.

sendData Contiguous data array holding data to be sent. All PETs must specify a valid source array.

sendCount Number of sendData elements to send from local PET to each destination PET.

recvData Contiguous data array for data to be received. All PETs must specify a valid recvData argument large
enough to accommodate the received data.

recvCount Number of recvData elements to be received by local PET from each source PET.

[syncflag] Flag indicating whether this call behaves blocking or non-blocking. The default is
ESMF_SYNC_BLOCKING. See section 52.57 for a complete list of options.

[commhandle] If present, a communication handle will be returned in case of a non-blocking request (see argument
syncflag). The commhandle can be used in ESMF_VMCommWait() to block the calling PET until the
communication call has finished PET-locally. If no commhandle was supplied to a non-blocking call the VM
method ESMF_VMCommWaitAll() may be used to block on all currently queued communication calls of the
VM context.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

49.6.9 ESMF_VMAllToAllV - AllToAllV communications across VM

INTERFACE:

subroutine ESMF_VMAllToAllV(vm, sendData, sendCounts, &

sendOffsets, recvData, recvCounts, recvOffsets, syncflag, &

commhandle, rc)

ARGUMENTS:

type(ESMF_VM), intent(in) :: vm

<type>(ESMF_KIND_<kind>), target, intent(in) :: sendData(:)

integer, intent(in) :: sendCounts(:)

integer, intent(in) :: sendOffsets(:)

<type>(ESMF_KIND_<kind>), target, intent(out) :: recvData(:)

integer, intent(in) :: recvCounts(:)

integer, intent(in) :: recvOffsets(:)

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Sync_Flag), intent(in), optional :: syncflag

type(ESMF_CommHandle), intent(out), optional :: commhandle

integer, intent(out), optional :: rc

1222

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Collective ESMF_VM communication call that performs a total exchange operation on the contiguous data of
<type><kind>. PET i sends contiguous elements of its sendData array to all PETs, including itself. The
sendCount(j) elements sent to PET j are those starting at position sendOffsets(j), and are stored in
recvData on PET j in position recvOffsets(i).

This method is overloaded for: ESMF_TYPEKIND_I4, ESMF_TYPEKIND_I8, ESMF_TYPEKIND_R4,
ESMF_TYPEKIND_R8, ESMF_TYPEKIND_LOGICAL.

TODO: The current version of this method does not provide an implementation of the non-blocking feature. When
calling this method with syncflag = ESMF_SYNC_NONBLOCKING, error code ESMF_RC_NOT_IMPL will be
returned and an error will be logged.

The arguments are:

vm ESMF_VM object.

sendData Contiguous data array holding data to be sent. All PETs must specify a valid source array.

sendCounts Number of sendData elements to send from local PET to destination PET.

sendOffsets Offsets in units of elements in sendData marking to start of element sequence to be sent from local
PET to destination PET.

recvData Contiguous data array for data to be received. All PETs must specify a valid recvData argument large
enough to accommodate the received data.

recvCounts Number of recvData elements to be received by local PET from source PET.

recvOffsets Offsets in units of elements in recvData marking to start of element sequence to be received by local
PET from source PET.

[syncflag] Flag indicating whether this call behaves blocking or non-blocking. The default is
ESMF_SYNC_BLOCKING. See section 52.57 for a complete list of options.

[commhandle] If present, a communication handle will be returned in case of a non-blocking request (see argument
syncflag). The commhandle can be used in ESMF_VMCommWait() to block the calling PET until the
communication call has finished PET-locally. If no commhandle was supplied to a non-blocking call the VM
method ESMF_VMCommWaitAll() may be used to block on all currently queued communication calls of the
VM context.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

49.6.10 ESMF_VMBarrier - VM wide barrier

INTERFACE:

subroutine ESMF_VMBarrier(vm, rc)

1223

ARGUMENTS:

type(ESMF_VM), intent(in), optional :: vm

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Collective ESMF_VM communication call that blocks calling PET until all PETs of the VM context have issued the
call.

The arguments are:

[vm] ESMF_VM object. Default use current VM.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

49.6.11 ESMF_VMBroadcast - Broadcast data across VM

INTERFACE:

subroutine ESMF_VMBroadcast(vm, bcstData, count, rootPet, &

syncflag, commhandle, rc)

ARGUMENTS:

type(ESMF_VM), intent(in) :: vm

<type>(ESMF_KIND_<kind>), target, intent(inout) :: bcstData(:)

integer, intent(in) :: count

integer, intent(in) :: rootPet

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Sync_Flag), intent(in), optional :: syncflag

type(ESMF_CommHandle), intent(out), optional :: commhandle

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

1224

Collective ESMF_VM communication call that broadcasts a contiguous data array of <type><kind> from rootPet to
all other PETs of the ESMF_VM object. When the call returns, the bcstData array on all PETs contains the same
data as on rootPet.

This method is overloaded for: ESMF_TYPEKIND_I4, ESMF_TYPEKIND_I8, ESMF_TYPEKIND_R4,
ESMF_TYPEKIND_R8, ESMF_TYPEKIND_LOGICAL, ESMF_TYPEKIND_CHARACTER.

The arguments are:

vm ESMF_VM object.

bcstData Contiguous data array. On rootPet bcstData holds data that is to be broadcasted to all other PETs. On
all other PETs bcstData is used to receive the broadcasted data and must be large enough to accommodate
the received data.

count Number of elements in /bcstData. Must be the same on all PETs.

rootPet PET that holds data that is being broadcast.

[syncflag] Flag indicating whether this call behaves blocking or non-blocking. The default is
ESMF_SYNC_BLOCKING. See section 52.57 for a complete list of options.

[commhandle] If present, a communication handle will be returned in case of a non-blocking request (see argument
syncflag). The commhandle can be used in ESMF_VMCommWait() to block the calling PET until the
communication call has finished PET-locally. If no commhandle was supplied to a non-blocking call the VM
method ESMF_VMCommWaitAll() may be used to block on all currently queued communication calls of the
VM context.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

49.6.12 ESMF_VMCommWait - Wait for non-blocking VM communication to complete

INTERFACE:

subroutine ESMF_VMCommWait(vm, commhandle, rc)

ARGUMENTS:

type(ESMF_VM), intent(in) :: vm

type(ESMF_CommHandle), intent(in) :: commhandle

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Wait for non-blocking VM communication specified by the commhandle to complete.

The arguments are:

1225

vm ESMF_VM object.

commhandle Handle specifying a previously issued non-blocking communication request.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

49.6.13 ESMF_VMCommWaitAll - Wait for all non-blocking VM comms to complete

INTERFACE:

subroutine ESMF_VMCommWaitAll(vm, rc)

ARGUMENTS:

type(ESMF_VM), intent(in) :: vm

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Wait for all pending non-blocking VM communication within the specified VM context to complete.

The arguments are:

vm ESMF_VM object.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

49.6.14 ESMF_VMEpochEnter - Enter an ESMF epoch

INTERFACE:

subroutine ESMF_VMEpochEnter(vm, epoch, rc)

ARGUMENTS:

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_VM), intent(in), optional :: vm

type(ESMF_VMEpoch_Flag), intent(in), optional :: epoch

integer, intent(out), optional :: rc

1226

DESCRIPTION:

Enter a specific VM epoch. VM epochs change low level communication behavior which can have significant per-
formance implications. It is an error to call ESMF_VMEpochEnter() again before exiting a previous epoch with
ESMF_VMEpochExit().

The arguments are:

[vm] ESMF_VM object. Defaults to the current VM.

[epoch] The epoch to be entered. See section 49.2.1 for a complete list of options. Defaults to
ESMF_VMEPOCH_NONE.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

49.6.15 ESMF_VMEpochExit - Exit an ESMF epoch

INTERFACE:

subroutine ESMF_VMEpochExit(vm, keepAlloc, rc)

ARGUMENTS:

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_VM), intent(in), optional :: vm

logical, intent(in), optional :: keepAlloc

integer, intent(out), optional :: rc

DESCRIPTION:

Exit the current VM epoch.

The arguments are:

[vm] ESMF_VM object. Defaults to the current VM.

[keepAlloc] For .true., keep internal allocations to be reused during the epoch phase. For .false., deallocate
all internal buffers. The flag only affects the local PET. Defaults to .true..

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

49.6.16 ESMF_VMGather - Gather data from across VM

INTERFACE:

1227

subroutine ESMF_VMGather(vm, sendData, recvData, count, rootPet, &

syncflag, commhandle, rc)

ARGUMENTS:

type(ESMF_VM), intent(in) :: vm

<type>(ESMF_KIND_<kind>), target, intent(in) :: sendData(:)

<type>(ESMF_KIND_<kind>), target, intent(out) :: recvData(:)

integer, intent(in) :: count

integer, intent(in) :: rootPet

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Sync_Flag), intent(in), optional :: syncflag

type(ESMF_CommHandle), intent(out), optional :: commhandle

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Collective ESMF_VM communication call that gathers contiguous data of <type><kind> from all PETs of an ESMF_VM
object (including the rootPet itself) into an array on rootPet. The count elements sent from the sendData
array on PET i are stored contiguously in the recvData array on rootPet starting at position i × count + 1.

This method is overloaded for: ESMF_TYPEKIND_I4, ESMF_TYPEKIND_I8, ESMF_TYPEKIND_R4,
ESMF_TYPEKIND_R8, ESMF_TYPEKIND_LOGICAL.

The arguments are:

vm ESMF_VM object.

sendData Contiguous data array holding data to be sent. All PETs must specify a valid source array.

recvData Contiguous data array for data to be received. Only recvData specified by the rootPet will be used by
this method, and must be large enough to accommodate the received data.

count Number of elements to be sent from each PET to rootPet. Must be the same on all PETs.

rootPet PET on which data is gathereds.

[syncflag] Flag indicating whether this call behaves blocking or non-blocking. The default is
ESMF_SYNC_BLOCKING. See section 52.57 for a complete list of options.

[commhandle] If present, a communication handle will be returned in case of a non-blocking request (see argument
syncflag). The commhandle can be used in ESMF_VMCommWait() to block the calling PET until the
communication call has finished PET-locally. If no commhandle was supplied to a non-blocking call the VM
method ESMF_VMCommWaitAll() may be used to block on all currently queued communication calls of the
VM context.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

1228

49.6.17 ESMF_VMGatherV - GatherV data from across VM

INTERFACE:

subroutine ESMF_VMGatherV(vm, sendData, sendCount, recvData, &

recvCounts, recvOffsets, rootPet, rc)

ARGUMENTS:

type(ESMF_VM), intent(in) :: vm

<type>(ESMF_KIND_<kind>), target, intent(in) :: sendData(:)

integer, intent(in) :: sendCount

<type>(ESMF_KIND_<kind>), target, intent(out) :: recvData(:)

integer, intent(in) :: recvCounts(:)

integer, intent(in) :: recvOffsets(:)

integer, intent(in) :: rootPet

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Collective ESMF_VM communication call that gathers contiguous data of <type><kind> from all PETs of an ESMF_VM
object (including the rootPet itself) into an array on rootPet. The sendCount elements sent from the
sendData array on PET i are stored contiguously in the recvData array on rootPet starting at position
recvOffsets(i).

This method is overloaded for: ESMF_TYPEKIND_I4, ESMF_TYPEKIND_I8, ESMF_TYPEKIND_R4,
ESMF_TYPEKIND_R8.

TODO: The current version of this method does not provide an implementation of the non-blocking feature. When
calling this method with syncflag = ESMF_SYNC_NONBLOCKING, error code ESMF_RC_NOT_IMPL will be
returned and an error will be logged.

The arguments are:

vm ESMF_VM object.

sendData Contiguous data array holding data to be sent. All PETs must specify a valid source array.

sendCount Number of sendData elements to send from local PET to all other PETs.

recvData Contiguous data array for data to be received. Only recvData specified by the rootPet will be used by
this method, and must be large enough to accommodate the received data.

recvCounts An integer array (of length group size, specified in VM object) containing number of recvData ele-
ments to be received from corresponding source PET. This argument is significant only at rootPet.

recvOffsets Offsets in units of elements in recvData marking the start of element sequence to be received from
source PET.

1229

rootPet PET on which data is gathered.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

49.6.18 ESMF_VMGet - Get information from a VM

INTERFACE:

! Private name; call using ESMF_VMGet()

recursive subroutine ESMF_VMGetDefault(vm, localPet, &

currentSsiPe, petCount, peCount, ssiCount, ssiMap, ssiMinPetCount, ssiMaxPetCount, &

ssiLocalPetCount, mpiCommunicator, pthreadsEnabledFlag, openMPEnabledFlag, &

ssiSharedMemoryEnabledFlag, rc)

ARGUMENTS:

type(ESMF_VM), intent(in) :: vm

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: localPet

integer, intent(out), optional :: currentSsiPe

integer, intent(out), optional :: petCount

integer, intent(out), optional :: peCount

integer, intent(out), optional :: ssiCount

integer, allocatable, intent(out), optional :: ssiMap(:)

integer, intent(out), optional :: ssiMinPetCount

integer, intent(out), optional :: ssiMaxPetCount

integer, intent(out), optional :: ssiLocalPetCount

integer, intent(out), optional :: mpiCommunicator

logical, intent(out), optional :: pthreadsEnabledFlag

logical, intent(out), optional :: openMPEnabledFlag

logical, intent(out), optional :: ssiSharedMemoryEnabledFlag

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

8.0.0 Added arguments ssiCount, ssiMinPetCount, ssiMaxPetCount, and ssiLocalPetCount
to provide access to information about how the VM is mapped across the single system images (SSIs) –
typically synonymous to nodes – of the compute environment. This information is useful when construct-
ing custom petLists.
Added argument ssiSharedMemoryEnabledFlag that allows the user to query whether ESMF was
compiled with support for shared memory access between PETs on the same SSI.

1230

8.1.0 Added argument currentSsiPe for easy query of the current PE within the local SSI that is executing
the request.
Added argument ssiMap for a convenient way to obtain a view of the mapping of PETs to single system
images across the entire VM.

DESCRIPTION:

Get internal information about the specified ESMF_VM object.

The arguments are:

vm Queried ESMF_VM object.

[localPet] Upon return this holds the id of the local PET that issued this call. The valid range of localPet is
[0..petCount− 1]. A value of −1 is returned on PETs that are not active under the specified vm.

[currentSsiPe] Upon return this holds the id of the PE within the local SSI on which the calling PET (i.e. localPet) is
currently executing. If the PET is associated with a set of PEs, or PETs are not pinned, the returned value might
change each time the call is made.

[petCount] Upon return this holds the number of PETs running under vm.

[peCount] Upon return this holds the number of PEs referenced by vm.

[ssiCount] Upon return this holds the number of single system images referenced by vm.

[ssiMap] Upon return this array is allocated and holds the single system image id for each PET across the vm. The
size of ssiMap is equal to petCount, with lower bound 0 and upper bound petCount-1.

[ssiMinPetCount] Upon return this holds the smallest number of PETs running in the same single system images
under vm.

[ssiMaxPetCount] Upon return this holds the largest number of PETs running in the same single system images
under vm.

[ssiLocalPetCount] Upon return this holds the number of PETs running in the same single system as localPet.

[mpiCommunicator] Upon return this holds the MPI intra-communicator used by the specified ESMF_VM object.
This communicator may be used for user-level MPI communications. It is recommended that the user duplicates
the communicator via MPI_Comm_Dup() in order to prevent any interference with ESMF communications.
MPI_COMM_NULL is returned on PETs that are not active under the specified vm.

[pthreadsEnabledFlag] .TRUE. ESMF has been compiled with Pthreads, and the MPI environment supports
threading.

.FALSE. ESMF has not been compiled with Pthreads, or the MPI environment does not support threading.

[openMPEnabledFlag] .TRUE. ESMF has been compiled with OpenMP.

.FALSE. ESMF has not been compiled with OpenMP.

[ssiSharedMemoryEnabledFlag] .TRUE. ESMF has been compiled to support shared memory access between
PETs that are on the same single system image (SSI).

.FALSE. ESMF has not been compiled to support shared memory access between PETs that are on the same
single system image (SSI).

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

1231

49.6.19 ESMF_VMGet - Get PET specific VM information

INTERFACE:

! Private name; call using ESMF_VMGet()

subroutine ESMF_VMGetPetSpecific(vm, pet, peCount, &

accDeviceCount, ssiId, threadCount, threadId, vas, rc)

ARGUMENTS:

type(ESMF_VM), intent(in) :: vm

integer, intent(in) :: pet

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: peCount

integer, intent(out), optional :: accDeviceCount

integer, intent(out), optional :: ssiId

integer, intent(out), optional :: threadCount

integer, intent(out), optional :: threadId

integer, intent(out), optional :: vas

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

• This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

7.0.0 Added argument accDeviceCount. The argument provides access to the number of available acceler-
ator devices.

DESCRIPTION:

Get internal information about a specific PET within an ESMF_VM object.

The arguments are:

vm Queried ESMF_VM object.

pet Queried PET id within the specified ESMF_VM object.

[peCount] Upon return this holds the number of PEs associated with the specified PET in the ESMF_VM object.

[accDeviceCount] Upon return this holds the number of accelerated devices accessible from the specified PET in the
ESMF_VM object.

[ssiId] Upon return this holds the id of the single-system image (SSI) the specified PET is running on.

[threadCount] Upon return this holds the number of PETs in the specified PET"s thread group.

[threadId] Upon return this holds the thread id of the specified PET within the PET"s thread group.

1232

[vas] Virtual address space in which this PET operates.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

49.6.20 ESMF_VMGetGlobal - Get Global VM

INTERFACE:

subroutine ESMF_VMGetGlobal(vm, rc)

ARGUMENTS:

type(ESMF_VM), intent(out) :: vm

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Get the global ESMF_VM object. This is the VM object that is created during ESMF_Initialize() and is
the ultimate parent of all VM objects in an ESMF application. It is identical to the VM object returned by
ESMF_Initialize(..., vm=vm, ...).

The ESMF_VMGetGlobal() call provides access to information about the global execution context via
the global VM. This call is necessary because ESMF does not created a global ESMF Component during
ESMF_Initialize() that could be queried for information about the global execution context of an ESMF appli-
cation.

Usage of ESMF_VMGetGlobal() from within Component code is strongly discouraged. ESMF Components should
only access their own VM objects through Component methods. Global information, if required by the Component
user code, should be passed down to the Component from the driver through the Component calling interface.

The arguments are:

vm Upon return this holds the ESMF_VM object of the global execution context.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

49.6.21 ESMF_VMGetCurrent - Get Current VM

INTERFACE:

1233

subroutine ESMF_VMGetCurrent(vm, rc)

ARGUMENTS:

type(ESMF_VM), intent(out) :: vm

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Get the ESMF_VM object of the current execution context. Calling ESMF_VMGetCurrent() within an
ESMF Component, will return the same VM object as ESMF_GridCompGet(..., vm=vm, ...) or
ESMF_CplCompGet(..., vm=vm, ...).

The main purpose of providing ESMF_VMGetCurrent() is to simplify ESMF adoption in legacy code. Specifi-
cally, code that uses MPI_COMM_WORLD deep within its calling tree can easily be modified to use the correct MPI
communicator of the current ESMF execution context. The advantage is that these modifications are very local, and
do not require wide reaching interface changes in the legacy code to pass down the ESMF component object, or the
MPI communicator.

The use of ESMF_VMGetCurrent() is strongly discouraged in newly written Component code. Instead, the ESMF
Component object should be used as the appropriate container of ESMF context information. This object should be
passed between the subroutines of a Component, and be queried for any Component specific information.

Outside of a Component context, i.e. within the driver context, the call to ESMF_VMGetCurrent() is identical to
ESMF_VMGetGlobal().

The arguments are:

vm Upon return this holds the ESMF_VM object of the current execution context.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

49.6.22 ESMF_VMIsCreated - Check whether a VM object has been created

INTERFACE:

function ESMF_VMIsCreated(vm, rc)

RETURN VALUE:

logical :: ESMF_VMIsCreated

ARGUMENTS:

1234

type(ESMF_VM), intent(in) :: vm

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Return .true. if the vm has been created. Otherwise return .false.. If an error occurs, i.e. rc /=

ESMF_SUCCESS is returned, the return value of the function will also be .false..

The arguments are:

vm ESMF_VM queried.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

49.6.23 ESMF_VMLog - Log

INTERFACE:

subroutine ESMF_VMLog(vm, prefix, logMsgFlag, rc)

ARGUMENTS:

type(ESMF_VM), intent(in) :: vm

character(len=*), intent(in), optional :: prefix

type(ESMF_LogMsg_Flag), intent(in), optional :: logMsgFlag

integer, intent(out), optional :: rc

DESCRIPTION:

Log the VM.

The arguments are:

vm ESMF_VM object logged.

[prefix] String to prefix the log message. Default is no prefix.

[logMsgFlag] Type of log message generated. See section 47.2.3 for a list of valid message types. Default is
ESMF_LOGMSG_INFO.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

1235

49.6.24 ESMF_VMLogSystem - LogSystem

INTERFACE:

subroutine ESMF_VMLogSystem(prefix, logMsgFlag, rc)

ARGUMENTS:

character(len=*), intent(in), optional :: prefix

type(ESMF_LogMsg_Flag), intent(in), optional :: logMsgFlag

integer, intent(out), optional :: rc

DESCRIPTION:

Log the VM.

The arguments are:

[prefix] String to prefix the log message. Default is no prefix.

[logMsgFlag] Type of log message generated. See section 47.2.3 for a list of valid message types. Default is
ESMF_LOGMSG_INFO.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

49.6.25 ESMF_VMPrint - Print VM information

INTERFACE:

subroutine ESMF_VMPrint(vm, rc)

ARGUMENTS:

type(ESMF_VM), intent(in) :: vm

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Print internal information about the specified ESMF_VM to stdout.

The arguments are:

1236

vm Specified ESMF_VM object.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

49.6.26 ESMF_VMRecv - Receive data from srcPet

INTERFACE:

subroutine ESMF_VMRecv(vm, recvData, count, srcPet, &

syncflag, commhandle, rc)

ARGUMENTS:

type(ESMF_VM), intent(in) :: vm

<type>(ESMF_KIND_<kind>), target, intent(out) :: recvData(:)

integer, intent(in) :: count

integer, intent(in) :: srcPet

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Sync_Flag), intent(in), optional :: syncflag

type(ESMF_CommHandle), intent(out), optional :: commhandle

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Receive contiguous data from srcPet within the same ESMF_VM object.

This method is overloaded for: ESMF_TYPEKIND_I4, ESMF_TYPEKIND_I8, ESMF_TYPEKIND_R4,
ESMF_TYPEKIND_R8, ESMF_TYPEKIND_LOGICAL, ESMF_TYPEKIND_CHARACTER.

The arguments are:

vm ESMF_VM object.

recvData Contiguous data array for data to be received.

count Number of elements to be received.

srcPet Sending PET.

[syncflag] Flag indicating whether this call behaves blocking or non-blocking. The default is
ESMF_SYNC_BLOCKING. See section 52.57 for a complete list of options.

[commhandle] If present, a communication handle will be returned in case of a non-blocking request (see argument
syncflag). The commhandle can be used in ESMF_VMCommWait() to block the calling PET until the
communication call has finished PET-locally. If no commhandle was supplied to a non-blocking call the VM
method ESMF_VMCommWaitAll() may be used to block on all currently queued communication calls of the
VM context.

1237

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

49.6.27 ESMF_VMReduce - Reduce data from across VM

INTERFACE:

subroutine ESMF_VMReduce(vm, sendData, recvData, count, &

reduceflag, rootPet, syncflag, commhandle, rc)

ARGUMENTS:

type(ESMF_VM), intent(in) :: vm

<type>(ESMF_KIND_<kind>), target, intent(in) :: sendData(:)

<type>(ESMF_KIND_<kind>), target, intent(out) :: recvData(:)

integer, intent(in) :: count

type(ESMF_Reduce_Flag), intent(in) :: reduceflag

integer, intent(in) :: rootPet

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Sync_Flag), intent(in), optional :: syncflag

type(ESMF_CommHandle), intent(out), optional :: commhandle

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Collective ESMF_VM communication call that reduces a contiguous data array across the ESMF_VM object into a
contiguous data array of the same <type><kind>. The result array is returned on rootPet. Different reduction
operations can be specified.

This method is overloaded for: ESMF_TYPEKIND_I4, ESMF_TYPEKIND_I8, ESMF_TYPEKIND_R4,
ESMF_TYPEKIND_R8.

TODO: The current version of this method does not provide an implementation of the non-blocking feature. When
calling this method with syncflag = ESMF_SYNC_NONBLOCKING, error code ESMF_RC_NOT_IMPL will be
returned and an error will be logged.

The arguments are:

vm ESMF_VM object.

sendData Contiguous data array holding data to be sent. All PETs must specify a valid source array.

recvData Contiguous data array for data to be received. Only the recvData array specified by the rootPet will
be used by this method.

count Number of elements in sendData and recvData. Must be the same on all PETs.

1238

reduceflag Reduction operation. See section 52.47 for a list of valid reduce operations.

rootPet PET on which reduced data is returned.

[syncflag] Flag indicating whether this call behaves blocking or non-blocking. The default is
ESMF_SYNC_BLOCKING. See section 52.57 for a complete list of options.

[commhandle] If present, a communication handle will be returned in case of a non-blocking request (see argument
syncflag). The commhandle can be used in ESMF_VMCommWait() to block the calling PET until the
communication call has finished PET-locally. If no commhandle was supplied to a non-blocking call the VM
method ESMF_VMCommWaitAll() may be used to block on all currently queued communication calls of the
VM context.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

49.6.28 ESMF_VMScatter - Scatter data across VM

INTERFACE:

subroutine ESMF_VMScatter(vm, sendData, recvData, count, &

rootPet, syncflag, commhandle, rc)

ARGUMENTS:

type(ESMF_VM), intent(in) :: vm

<type>(ESMF_KIND_<kind>), target, intent(in) :: sendData(:)

<type>(ESMF_KIND_<kind>), target, intent(out) :: recvData(:)

integer, intent(in) :: count

integer, intent(in) :: rootPet

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Sync_Flag), intent(in), optional :: syncflag

type(ESMF_CommHandle), intent(out), optional :: commhandle

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Collective ESMF_VM communication call that scatters contiguous data of <type><kind> from rootPet across all
the PETs of an ESMF_VM object. Every PET, including rootPet, receives a portion of the data. The count number
of elements received by PET i originate from the sendData array on rootPet, starting at position i × count +
1. Each PET stores the received contiguous data portion at the start of its recvData array.

This method is overloaded for: ESMF_TYPEKIND_I4, ESMF_TYPEKIND_I8, ESMF_TYPEKIND_R4,
ESMF_TYPEKIND_R8, ESMF_TYPEKIND_LOGICAL.

The arguments are:

1239

vm ESMF_VM object.

sendData Contiguous data array holding data to be sent. Only the sendData array specified by the rootPet will
be used by this method.

recvData Contiguous data array for data to be received. All PETs must specify a valid destination array large enough
to accommodate the received data.

count Number of elements to be sent from rootPet to each of the PETs. Must be the same on all PETs.

rootPet PET that holds data that is being scattered.

[syncflag] Flag indicating whether this call behaves blocking or non-blocking. The default is
ESMF_SYNC_BLOCKING. See section 52.57 for a complete list of options.

[commhandle] If present, a communication handle will be returned in case of a non-blocking request (see argument
syncflag). The commhandle can be used in ESMF_VMCommWait() to block the calling PET until the
communication call has finished PET-locally. If no commhandle was supplied to a non-blocking call the VM
method ESMF_VMCommWaitAll() may be used to block on all currently queued communication calls of the
VM context.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

49.6.29 ESMF_VMScatterV - ScatterV across VM

INTERFACE:

subroutine ESMF_VMScatterV(vm, sendData, sendCounts, &

sendOffsets, recvData, recvCount, rootPet, rc)

ARGUMENTS:

type(ESMF_VM), intent(in) :: vm

<type>(ESMF_KIND_<kind>), target, intent(in) :: sendData(:)

integer, intent(in) :: sendCounts(:)

integer, intent(in) :: sendOffsets(:)

<type>(ESMF_KIND_<kind>), target, intent(out) :: recvData(:)

integer, intent(in) :: recvCount

integer, intent(in) :: rootPet

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Collective ESMF_VM communication call that scatters contiguous data of <type><kind> from rootPet across all
the PETs of an ESMF_VM object. Every PET, including rootPet, receives a portion of the data. The recvCount

1240

number of elements received by PET i originate from the sendData array on rootPet, starting at position
sendOffsets(i). Each PET stores the received contiguous data portion at the start of its recvData array.

This method is overloaded for: ESMF_TYPEKIND_I4, ESMF_TYPEKIND_I8, ESMF_TYPEKIND_R4,
ESMF_TYPEKIND_R8.

The arguments are:

vm ESMF_VM object.

sendData Contiguous data array holding data to be sent. Only the sendData array specified by the rootPet will
be used by this method.

sendCounts Number of sendData elements to be sent to corresponding receive PET.

sendOffsets Offsets in units of elements in sendData marking the start of element sequence to be sent to receive
PET.

recvData Contiguous data array for data to be received. All PETs must specify a valid recvData argument large
enough to accommodate the received data.

recvCount Number of recvData elements to receive by local PET from rootPet.

rootPet PET that holds data that is being scattered.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

49.6.30 ESMF_VMSend - Send data to dstPet

INTERFACE:

subroutine ESMF_VMSend(vm, sendData, count, dstPet, &

syncflag, commhandle, rc)

ARGUMENTS:

type(ESMF_VM), intent(in) :: vm

<type>(ESMF_KIND_<kind>), target, intent(in) :: sendData(:)

integer, intent(in) :: count

integer, intent(in) :: dstPet

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Sync_Flag), intent(in), optional :: syncflag

type(ESMF_CommHandle), intent(out), optional :: commhandle

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

1241

DESCRIPTION:

Send contiguous data to dstPet within the same ESMF_VM object.

This method is overloaded for: ESMF_TYPEKIND_I4, ESMF_TYPEKIND_I8, ESMF_TYPEKIND_R4,
ESMF_TYPEKIND_R8, ESMF_TYPEKIND_LOGICAL, ESMF_TYPEKIND_CHARACTER.

The arguments are:

vm ESMF_VM object.

sendData Contiguous data array holding data to be sent.

count Number of elements to be sent.

dstPet Receiving PET.

[syncflag] Flag indicating whether this call behaves blocking or non-blocking. The default is
ESMF_SYNC_BLOCKING. See section 52.57 for a complete list of options.

[commhandle] If present, a communication handle will be returned in case of a non-blocking request (see argument
syncflag). The commhandle can be used in ESMF_VMCommWait() to block the calling PET until the
communication call has finished PET-locally. If no commhandle was supplied to a non-blocking call the VM
method ESMF_VMCommWaitAll() may be used to block on all currently queued communication calls of the
VM context.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

49.6.31 ESMF_VMSendRecv - Send and Recv data to and from PETs

INTERFACE:

subroutine ESMF_VMSendRecv(vm, sendData, sendCount, dstPet, &

recvData, recvCount, srcPet, syncflag, commhandle, rc)

ARGUMENTS:

type(ESMF_VM), intent(in) :: vm

<type>(ESMF_KIND_<kind>), target, intent(in) :: sendData(:)

integer, intent(in) :: sendCount

integer, intent(in) :: dstPet

<type>(ESMF_KIND_<kind>), target, intent(out) :: recvData(:)

integer, intent(in) :: recvCount

integer, intent(in) :: srcPet

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_Sync_Flag), intent(in), optional :: syncflag

type(ESMF_CommHandle), intent(out), optional :: commhandle

integer, intent(out), optional :: rc

STATUS:

1242

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Send contiguous data to dstPet within the same ESMF_VM object while receiving contiguous data from srcPet

within the same ESMF_VM object. The sendData and recvData arrays must be disjoint!

This method is overloaded for: ESMF_TYPEKIND_I4, ESMF_TYPEKIND_I8, ESMF_TYPEKIND_R4,
ESMF_TYPEKIND_R8, ESMF_TYPEKIND_LOGICAL, ESMF_TYPEKIND_CHARACTER.

The arguments are:

vm ESMF_VM object.

sendData Contiguous data array holding data to be sent.

sendCount Number of elements to be sent.

dstPet PET that holds recvData.

recvData Contiguous data array for data to be received.

recvCount Number of elements to be received.

srcPet PET that holds sendData.

[syncflag] Flag indicating whether this call behaves blocking or non-blocking. The default is
ESMF_SYNC_BLOCKING. See section 52.57 for a complete list of options.

[commhandle] If present, a communication handle will be returned in case of a non-blocking request (see argument
syncflag). The commhandle can be used in ESMF_VMCommWait() to block the calling PET until the
communication call has finished PET-locally. If no commhandle was supplied to a non-blocking call the VM
method ESMF_VMCommWaitAll() may be used to block on all currently queued communication calls of the
VM context.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

49.6.32 ESMF_VMValidate - Validate VM internals

INTERFACE:

subroutine ESMF_VMValidate(vm, rc)

ARGUMENTS:

type(ESMF_VM), intent(in) :: vm

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

1243

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Validates that the vm is internally consistent. The method returns an error code if problems are found.

The arguments are:

vm Specified ESMF_VM object.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

49.6.33 ESMF_VMWtime - Get floating-point number of seconds

INTERFACE:

subroutine ESMF_VMWtime(time, rc)

ARGUMENTS:

real(ESMF_KIND_R8), intent(out) :: time

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Get floating-point number of seconds of elapsed wall-clock time since the beginning of execution of the application.

The arguments are:

time Time in seconds.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

49.6.34 ESMF_VMWtimeDelay - Delay execution

INTERFACE:

1244

recursive subroutine ESMF_VMWtimeDelay(delay, rc)

ARGUMENTS:

real(ESMF_KIND_R8), intent(in) :: delay

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Delay execution for amount of seconds.

The arguments are:

delay Delay time in seconds.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

49.6.35 ESMF_VMWtimePrec - Timer precision as floating-point number of seconds

INTERFACE:

subroutine ESMF_VMWtimePrec(prec, rc)

ARGUMENTS:

real(ESMF_KIND_R8), intent(out) :: prec

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Get a run-time estimate of the timer precision as floating-point number of seconds. This is a relatively expensive call
since the timer precision is measured several times before the maximum is returned as the estimate. The returned value
is PET-specific and may differ across the VM context.

The arguments are:

prec Timer precision in seconds.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

1245

50 Profiling and Tracing

50.1 Description

50.1.1 Profiling

ESMF’s built in profiling capability collects runtime statistics of an executing ESMF application through both auto-

matic and manual code instrumentation. Timing information for all phases of all ESMF components executing in an

application can be automatically collected using the ESMF_RUNTIME_PROFILE environment variable (see below

for settings). Additionally, arbitrary user-defined code regions can be timed by manually instrumenting code with

special API calls. Timing profiles of component phases and user-defined regions can be output in several different

formats:

• in text at the end of ESMF Log files

• in separate text file, one per PET (if the ESMF Logs are turned off)

• in a single summary text file that aggregates timings over multiple PETs

• in a binary format for import into Cupid for detailed analysis

The following table lists important environment variables that control aspects of ESMF profiling.

Environment Variable Description Example Values

ESMF_RUNTIME_PROFILE Enable/disables all profiling functions ON or OFF

ESMF_RUNTIME_PROFILE_PETLIST Limits profiling to an explicit list of PETs “0-9 50 99”

ESMF_RUNTIME_PROFILE_OUTPUT Controls output format of profiles; multiple can be speci-

fied in a space separated list

TEXT, SUMMARY, BINARY

50.1.2 Tracing

Whereas profiling collects summary information from an application, tracing records a more detailed set of events for

later analysis. Trace analysis can be used to understand what happened during a program’s execution and is often used

for diagnosing problems, debugging, and performance analysis.

ESMF has a built-in tracing capability that records events into special binary log files. Unlike log files written by the

ESMF_Log class, which are primarily for human consumption (see Section 47.1), the trace output files are recorded

in a compact binary representation and are processed by tools to produce various analyses. ESMF event streams are

recorded in the Common Trace Format (CTF). CTF traces include one or more event streams, as well as a metadata

file describing the events in the streams.

Several tools are available for reading in the CTF traces output by ESMF. Of the tools listed below, the first one is

designed specifically for analyzing ESMF applications and the second two are general purpose tools for working with

all CTF traces.

• Cupid is a plugin for the Eclipse Integrated Development Environment that can read and analyze ESMF traces.

• TraceCompass is a general purpose tool for reading, analyzing, and visualizing traces.

• Babeltrace is a command-line tool and library for trace conversion that can read and write CTF traces. Python

bindings are available to open CTF traces are iterate through events.

1246

https://cupid.readthedocs.io/en/latest/
http://diamon.org/ctf/
https://cupid.readthedocs.io/en/latest/
http://tracecompass.org/
http://www.efficios.com/babeltrace

Events that can be captured by the ESMF tracer include the following. Events are recorded with a high-precision

timestamp to allow timing analyses.

phase_enter indicates entry into an initialize, run, or finalize ESMF component routine

phase_exit indicates exit from an initialize, run, or finalize ESMF component routine

region_enter indicates entry into a user-defined code region

region_exit indicates exit from a user-defined code region

mem records current memory usage information

The following table lists important environment variables that control aspects of ESMF tracing.

Environment Variable Description Example Values

ESMF_RUNTIME_TRACE Enable/disables all tracing functions ON or OFF

ESMF_RUNTIME_TRACE_CLOCK Sets the type of clock for timestamping events (see Sec-

tion 50.2.6).

REALTIME or MONOTONIC

MONOTONIC_SYNC

ESMF_RUNTIME_TRACE_PETLIST Limits tracing to an explicit list of PETs “0-9 50 99”

ESMF_RUNTIME_TRACE_COMPONENT Enables/disable tracing of Component phase_enter and

phase_exit events

ON or OFF

ESMF_RUNTIME_TRACE_FLUSH Controls frequency of event stream flushing to file DEFAULT or EAGER

50.2 Use and Examples

50.2.1 Output a Timing Profile to Text

ESMF profiling is disabled by default. To profile an application, set the ESMF_RUNTIME_PROFILE variable to ON

prior to executing the application. You do not need to recompile your code to enable profiling.

csh shell

$ setenv ESMF_RUNTIME_PROFILE ON

bash shell

$ export ESMF_RUNTIME_PROFILE=ON

(from now on, only the csh shell version will be shown)

Then execute the application in the usual way. At the end of the run the profile information will be available at the end

of each PET log (if ESMF Logs are turned on) or in a set of separate files, one per PET, with names ESMF_Profile.XXX

where XXX is the PET number. Below is an example timing profile. Some regions are left out for brevity.

Region Count Total (s) Self (s) Mean (s) Min (s) Max

[esm] Init 1 1 4.0878 0.0341 4.0878 4.0878 4.0878

[OCN-TO-ATM] IPDv05p6b 1 2.6007 2.6007 2.6007 2.6007 2.6007

[ATM-TO-OCN] IPDv05p6b 1 1.4333 1.4333 1.4333 1.4333 1.4333

[ATM] IPDv00p2 1 0.0055 0.0055 0.0055 0.0055 0.0055

[OCN] IPDv00p2 1 0.0023 0.0023 0.0023 0.0023 0.0023

1247

[ATM] IPDv00p1 1 0.0011 0.0011 0.0011 0.0011 0.0011

[OCN] IPDv00p1 1 0.0009 0.0009 0.0009 0.0009 0.0009

[ATM-TO-OCN] IPDv05p3 1 0.0008 0.0008 0.0008 0.0008 0.0008

[ATM-TO-OCN] IPDv05p1 1 0.0008 0.0008 0.0008 0.0008 0.0008

[ATM-TO-OCN] IPDv05p2b 1 0.0007 0.0007 0.0007 0.0007 0.0007

[ATM-TO-OCN] IPDv05p4 1 0.0007 0.0007 0.0007 0.0007 0.0007

[ATM-TO-OCN] IPDv05p2a 1 0.0007 0.0007 0.0007 0.0007 0.0007

[ATM-TO-OCN] IPDv05p5 1 0.0007 0.0007 0.0007 0.0007 0.0007

[OCN-TO-ATM] IPDv05p3 1 0.0006 0.0006 0.0006 0.0006 0.0006

[OCN-TO-ATM] IPDv05p4 1 0.0006 0.0006 0.0006 0.0006 0.0006

[OCN-TO-ATM] IPDv05p2b 1 0.0006 0.0006 0.0006 0.0006 0.0006

[OCN-TO-ATM] IPDv05p2a 1 0.0006 0.0006 0.0006 0.0006 0.0006

[OCN-TO-ATM] IPDv05p5 1 0.0006 0.0006 0.0006 0.0006 0.0006

[OCN-TO-ATM] IPDv05p1 1 0.0005 0.0005 0.0005 0.0005 0.0005

[esm] RunPhase1 1 2.7423 0.9432 2.7423 2.7423 2.7423

[OCN-TO-ATM] RunPhase1 864 0.6094 0.6094 0.0007 0.0006 0.0179

[ATM] RunPhase1 864 0.5296 0.2274 0.0006 0.0005 0.0011

ATM:ModelAdvance 864 0.3022 0.3022 0.0003 0.0003 0.0005

[ATM-TO-OCN] RunPhase1 864 0.3345 0.3345 0.0004 0.0002 0.0299

[OCN] RunPhase1 864 0.3256 0.3256 0.0004 0.0003 0.0010

[esm] FinalizePhase1 1 0.0029 0.0020 0.0029 0.0029 0.0029

[OCN-TO-ATM] FinalizePhase1 1 0.0006 0.0006 0.0006 0.0006 0.0006

[ATM-TO-OCN] FinalizePhase1 1 0.0002 0.0002 0.0002 0.0002 0.0002

[OCN] FinalizePhase1 1 0.0001 0.0001 0.0001 0.0001 0.0001

[ATM] FinalizePhase1 1 0.0000 0.0000 0.0000 0.0000 0.0000

A timed region is either an ESMF component phase (e.g., initialize, run, or finalize) or a user-defined region of code

surrounded by calls to ESMF_TraceRegionEnter() and ESMF_TraceRegionExit(). (See section 50.2.8

for more information on instrumenting user-defined regions.) Regions are organized hierarchically with sub-regions

nested. For example, in the profile above, the [OCN] RunPhase1 is a sub-region of [esm] RunPhase1 and is

entirely contained inside that region. Regions with the same name may appear at multiple places in the hierarchy,

and so would appear in multiple rows in the table. The statistics in that row apply to that region at that location in

the hierarchy. Component names appear in square brackets, e.g., [ATM], [OCN], and [ATM-TO-OCN]. By default,

timings are based on elapsed wall clock time and are collected on a per-PET basis. Therefore, regions timings may

differ across PETs. Regions are sorted with the most expensive regions appearing at the top. The following describes

the meaning of the statistics in each column:

Count the number of times the region is executed

Total the aggregate time spent in the region, inclusive of all sub-regions

Self the aggregate time spend in the region, exclusive of all sub-regions

Mean the average amount of time for one execution of the region

Min time of the fastest execution of the region

Max time of the slowest execution of the region

50.2.2 Summarize Timings across Multiple PETs

By default, separate timing profiles are generated for each PET in the application. The per-PET pro-

files can be aggregated together and output to a single file, ESMF_Profile.summary, by setting the

1248

ESMF_RUNTIME_PROFILE_OUTPUT environment variable as follows:

$ setenv ESMF_RUNTIME_PROFILE ON # turn on profiling

$ setenv ESMF_RUNTIME_PROFILE_OUTPUT SUMMARY # specify summary output

Note the ESMF_RUNTIME_PROFILE environment variable must also be set to ON since this controls all profiling

capabilities. The ESMF_Profile.summary file will contain a tree of timed regions, but aggregated across all PETs. For

example:

Region PETs Count Mean (s) Min (s) Min PET Max (s)

[esm] Init 1 4 1 4.0880 4.0878 2 4.0883

[OCN-TO-ATM] IPDv05p6b 4 1 2.6007 2.6007 2 2.6007

[ATM-TO-OCN] IPDv05p6b 4 1 1.4335 1.4333 0 1.4337

[ATM-TO-OCN] IPDv05p4 4 1 0.0037 0.0007 0 0.0060

[ATM] IPDv00p2 4 1 0.0034 0.0020 1 0.0055

[ATM-TO-OCN] IPDv05p1 4 1 0.0020 0.0007 2 0.0033

[OCN] IPDv00p2 4 1 0.0019 0.0015 3 0.0024

[ATM-TO-OCN] IPDv05p3 4 1 0.0010 0.0008 0 0.0013

[ATM-TO-OCN] IPDv05p2a 4 1 0.0009 0.0007 0 0.0012

[ATM] IPDv00p1 4 1 0.0009 0.0007 3 0.0011

[ATM-TO-OCN] IPDv05p2b 4 1 0.0008 0.0007 0 0.0010

[ATM-TO-OCN] IPDv05p5 4 1 0.0008 0.0007 0 0.0010

[ATM-TO-OCN] IPDv05p6a 4 1 0.0008 0.0005 2 0.0012

[OCN-TO-ATM] IPDv05p3 4 1 0.0008 0.0006 2 0.0010

[OCN-TO-ATM] IPDv05p4 4 1 0.0008 0.0006 0 0.0009

[OCN-TO-ATM] IPDv05p2b 4 1 0.0007 0.0006 2 0.0009

[OCN] IPDv00p1 4 1 0.0007 0.0005 1 0.0009

[OCN-TO-ATM] IPDv05p2a 4 1 0.0007 0.0006 2 0.0009

[OCN-TO-ATM] IPDv05p5 4 1 0.0007 0.0006 0 0.0009

[OCN-TO-ATM] IPDv05p1 4 1 0.0006 0.0005 0 0.0008

[OCN-TO-ATM] IPDv05p6a 4 1 0.0006 0.0004 2 0.0007

[esm] RunPhase1 4 1 2.7444 2.7423 0 2.7454

[OCN-TO-ATM] RunPhase1 4 864 0.6123 0.6004 2 0.6244

[ATM] RunPhase1 4 864 0.5386 0.5296 0 0.5530

ATM:ModelAdvance 4 864 0.3038 0.3022 0 0.3065

[OCN] RunPhase1 4 864 0.3471 0.3256 0 0.3824

[ATM-TO-OCN] RunPhase1 4 864 0.2843 0.1956 1 0.3345

[esm] FinalizePhase1 4 1 0.0029 0.0029 1 0.0030

[OCN-TO-ATM] FinalizePhase1 4 1 0.0007 0.0006 0 0.0008

[ATM-TO-OCN] FinalizePhase1 4 1 0.0002 0.0001 3 0.0002

[OCN] FinalizePhase1 4 1 0.0001 0.0001 3 0.0001

[ATM] FinalizePhase1 4 1 0.0001 0.0000 0 0.0001

The meaning of the statistics in each column in as follows:

PETs the number of reporting PETs that executed the region

Count the number of times each reporting PET executed the region or “MULTIPLE” if not all PETs executed the region

the same number of times

Mean the mean across all reporting PETs of the total time spent in the region

1249

Min the minimum across all reporting PETs of the total time spent in the region

Min PET the PET that reported the minimum time

Max the maximum across all reporting PETs of the total time spent in the region

Max PET the PET that reported the maximum time

Note that setting the ESMF_RUNTIME_PROFILE_PETLIST environment variable (described below) may reduce

the number of reporting PETs. Only reporting PETs are included in the summary profile. To output both the per-PET

and summary timing profiles, set the ESMF_RUNTIME_PROFILE_OUTPUT environment variable as follows:

$ setenv ESMF_RUNTIME_PROFILE_OUTPUT "TEXT SUMMARY"

50.2.3 Limit the Set of Profiled PETs

By default, all PETs in an application are profiled. It may be desirable to only profile a subset of PETs to reduce the

amount of output. An explicit list of PETs can be specified by setting the ESMF_RUNTIME_PROFILE_PETLIST

environment variable. The syntax of this environment variable is to list PET numbers separated by spaces. PET ranges

are also supported using the “X-Y” syntax where X < Y. For example:

only profile PETs 0, 20, and 35 through 39

$ setenv ESMF_RUNTIME_PROFILE_PETLIST "0 20 35-39"

When used in conjunction with the SUMMARY option above, the summarized profile will only aggregate over the spec-

ified set of PETs. The one exception is that PET 0 is always profiled if ESMF_RUNTIME_PROFILE=ON, regardless

of the ESMF_RUNTIME_TRACE_PETLIST setting.

50.2.4 Include MPI Communication in the Profile

MPI functions can be included in the timing profile to indicate how much time is spent inside communication calls.

This can also help to determine load imbalance in the system, since large times spent inside MPI may indicate that

communication between PETs is not tightly synchronized. This option includes all MPI calls in the application,

whether or not they originate from the ESMF library. Here is a partial example summary profile that contains MPI

times:

Region PETs Count Mean (s) Min (s) Min PET Max (s)

[esm] RunPhase1 8 1 4.9307 4.6867 0 4.9656

[OCN] RunPhase1 8 1824 0.8344 0.8164 0 0.8652

[MED] RunPhase1 8 1824 0.8203 0.7900 5 0.8584

[ATM] RunPhase1 8 1824 0.6387 0.6212 5 0.6610

[ATM-TO-MED] RunPhase1 8 1824 0.5975 0.5317 0 0.6583

MPI_Bcast 8 1824 0.0443 0.0025 4 0.1231

MPI_Wait 8 MULTIPLE 0.0421 0.0032 0 0.0998

[MED-TO-OCN] RunPhase1 8 1824 0.4879 0.4497 0 0.5362

MPI_Wait 8 MULTIPLE 0.0234 0.0030 0 0.0821

MPI_Bcast 8 1824 0.0111 0.0024 4 0.0273

[OCN-TO-MED] RunPhase1 8 1824 0.4541 0.4075 0 0.4918

MPI_Wait 8 MULTIPLE 0.0339 0.0017 0 0.0824

1250

MPI_Bcast 8 1824 0.0194 0.0026 4 0.0452

[MED-TO-ATM] RunPhase1 8 1824 0.4487 0.4005 0 0.4911

MPI_Bcast 8 1824 0.0338 0.0026 4 0.0942

MPI_Wait 8 MULTIPLE 0.0241 0.0022 1 0.0817

[esm] Init 1 8 1 0.6287 0.6287 1 0.6287

[ATM-TO-MED] IPDv05p6b 8 1 0.1501 0.1500 1 0.1501

MPI_Barrier 8 242 0.0082 0.0006 3 0.0157

MPI_Wait 8 MULTIPLE 0.0034 0.0010 0 0.0053

MPI_Allreduce 8 62 0.0030 0.0003 3 0.0063

MPI_Alltoall 8 6 0.0015 0.0000 1 0.0022

MPI_Allgather 8 21 0.0010 0.0002 1 0.0017

MPI_Waitall 8 MULTIPLE 0.0006 0.0001 3 0.0015

MPI_Send 8 MULTIPLE 0.0004 0.0001 7 0.0008

MPI_Allgatherv 8 6 0.0001 0.0001 4 0.0001

MPI_Scatter 8 5 0.0000 0.0000 0 0.0000

MPI_Reduce 8 5 0.0000 0.0000 1 0.0000

MPI_Recv 8 MULTIPLE 0.0000 0.0000 0 0.0000

MPI_Bcast 8 1 0.0000 0.0000 0 0.0000

The procedure for including MPI functions in the timing profile depends on whether the application is dynamically or

statically linked. Most applications are dynamically linked, however on some systems (such as Cray), static linking

may be used. Note that for either option, ESMF must be built with ESMF_TRACE_BUILD_LIB=ON, which is the

default.

In dynamically linked applications, the LD_PRELOAD environment variable must be used when executing the MPI

application. This instructs the dynamic linker to interpose certain MPI symbols so they can be captured by the ESMF

profiler. To simplify this process, a script is provided at $(ESMF_INSTALL_LIBDIR)/preload.sh that sets the

LD_PRELOAD variable. For example, if you typically execute your application as as follows:

$ mpirun -np 8 ./myApp

then you should add the preload.sh script in front of the executable when starting the application as follows:

replace $(ESMF_INSTALL_LIBDIR) with absolute path to the ESMF installation lib directory

$ mpirun -np 8 $(ESMF_INSTALL_LIBDIR)/preload.sh ./myApp

An advantage of this approach is that your application does not need to be recompiled. The MPI timing in-

formation will be included in the per-PET profiles and/or the summary profile, depending on the setting of

ESMF_RUNTIME_PROFILE_OUTPUT.

In statically linked applications, the application must be re-linked with specific options provided to the linker. These

options instruct the linker to wrap the MPI symbols with the ESMF profiling functions. The linking flags that must be

provided are included in the esmf.mk Makefile fragment that is part of the ESMF installation. These link flags should

be imported into your application Makefile, and included in the final link command. To do this, first import the esmf.mk

file into your application Makefile. The path to this file is typically stored in the ESMFMKFILE environment variable.

Then, pass the variables $(ESMF_TRACE_STATICLINKOPTS) and $(ESMF_TRACE_STATICLINKLIBS) to

the final linking command. For example:

import esmf.mk

include $(ESMFMKFILE)

1251

other makefile targets here...

example final link command, with $(ESMF_TRACE_STATICLINKOPTS) and $(ESMF_TRACE_STATICLINKLIBS)

myApp: myApp.o driver.o model.o

$(ESMF_F90LINKER) $(ESMF_F90LINKOPTS) $(ESMF_F90LINKPATHS) $(ESMF_F90LINKRPATHS) -o $@ $^ $(ESMF_F90ESMFLINKLIBS)

This option will statically wrap all of the MPI functions and include them in the profile output. Execute the applica-

tion in the normal way with the environment variable ESMF_RUNTIME_PROFILE set to ON. You will see the MPI

functions included in the timing profile.

50.2.5 Output a Detailed Trace for Analysis

ESMF tracing is disabled by default. To enable tracing, set the ESMF_RUNTIME_TRACE environment variable to

ON. You do not need to recompile your code to enable tracing.

csh shell

$ setenv ESMF_RUNTIME_TRACE ON

bash shell

$ export ESMF_RUNTIME_TRACE=ON

When enabled, the default behavior is to trace all PETs of the ESMF application. Although the ESMF tracer is

designed to write events in a compact form, tracing can produce an extremely large number of events depending on

the total number of PETs and the length of the run. To reduce output, it is possible to restrict the PETs that produce

trace output by setting the ESMF_RUNTIME_TRACE_PETLIST environment variable. For example, this setting:

$ setenv ESMF_RUNTIME_TRACE_PETLIST "0 101 192-196"

will instruct the tracer to only trace PETs 0, 101, and 192 through 196 (inclusive). The syntax of this environment

variable is to list PET numbers separated by spaces. PET ranges are also supported using the “X-Y” syntax where X

< Y. For PET counts greater than 100, it is recommended to set this environment variable. The one exception is that

PET 0 is always traced, regardless of the ESMF_RUNTIME_TRACE_PETLIST setting.

ESMF’s profiling and tracing options can be used together. A typical use would be to set

ESMF_RUNTIME_PROFILE=ON for all PETs to capture summary timings, and set ESMF_RUNTIME_TRACE=ON

and ESMF_RUNTIME_TRACE_PETLIST to a subset of of PETs, such as the root PET of each ESMF component.

This helps to keep trace sizes small while still providing timing summaries over all PETs.

When tracing is enabled, phase_enter and phase_exit events will automatically be recorded for all initial-

ize, run, and finalize phases of all Components in the application. To trace only user-instrumented regions (via the

ESMF_TraceRegionEnter() and ESMF_TraceRegionExit() calls), Component-level tracing can be turned

off by setting:

$ setenv ESMF_RUNTIME_TRACE_COMPONENT OFF

After running an ESMF application with tracing enabled, a directory called traceout will be created in the run directory

and it will contain a metadata file and an event stream file esmf_stream_XXXX for each PET with tracing enabled.

Together these files form a valid CTF trace which may be analyzed with any of the tools listed above.

1252

Trace events are flushed to file at a regular interval. If the application crashes, some of the most recent events may not

be flushed to file. To maximize the number of events appearing in the trace, an option is available to flush events to

file more frequently. Because this option may have negative performance implications due to increased file I/O, it is

not recommended unless needed. To turn on eager flushing use:

$ setenv ESMF_RUNTIME_TRACE_FLUSH EAGER

50.2.6 Set the Clock used for Profiling/Tracing

There are three options for the kind of clock to use to timestamp events when profiling/tracing an application. These

options are controlled by setting the environment variable ESMF_RUNTIME_TRACE_CLOCK.

REALTIME The REALTIME clock timestamps events with the current time on the system. This is the default clock if the

above environment variable is not set. This setting can be useful when tracing PETs that span multiple physical

computing nodes assuming that the system clocks on each node are adequately synchronized. On most HPC

systems, system clocks are periodically updated to stay in sync. A disadvantage of this clock is that periodic

adjustments mean the clock is not monotonically increasing so some timings may be inaccurate if the system

clock jumps forward or backward significantly. Testing has shown that this is not typically an issue on most

systems.

MONOTONIC The MONOTONIC clock is guaranteed to be monotonically increasing and does not suffer from periodic adjust-

ments. The timestamps represent an amount of time since some arbitrary point in the past. There is no guarantee

that these timestamps will be synchronized across physical computing nodes, so this option should only be used

for tracing a set of PETs running on a single physical machine.

MONOTONIC_SYNC The MONOTONIC_SYNC clock is similar to the MONOTONIC clock in that it is guaranteed to be monotonically

increasing. In addition, at application startup, all PET clocks are synchronized to a common time by determining

a PET-local offset to be applied to timestamps. Therefore this option can be used to compare trace streams across

physical nodes.

50.2.7 Tracing a simple ESMF application

This example illustrates how to trace a simple ESMF application and print the event stream using Babeltrace. The first
part of the code is a module representing a trivial ESMF Gridded Component. The second part is a main program that
creates and executes the component.

module SimpleComp

use ESMF

implicit none

private

public SetServices

contains

subroutine SetServices(gcomp, rc)

type(ESMF_GridComp) :: gcomp

integer, intent(out) :: rc

1253

call ESMF_GridCompSetEntryPoint(gcomp, ESMF_METHOD_INITIALIZE, &

userRoutine=Init, rc=rc)

call ESMF_GridCompSetEntryPoint(gcomp, ESMF_METHOD_RUN, &

userRoutine=Run, rc=rc)

call ESMF_GridCompSetEntryPoint(gcomp, ESMF_METHOD_FINALIZE, &

userRoutine=Finalize, rc=rc)

rc = ESMF_SUCCESS

end subroutine SetServices

subroutine Init(gcomp, istate, estate, clock, rc)

type(ESMF_GridComp):: gcomp

type(ESMF_State):: istate, estate

type(ESMF_Clock):: clock

integer, intent(out):: rc

print *, "Inside Init"

end subroutine Init

subroutine Run(gcomp, istate, estate, clock, rc)

type(ESMF_GridComp):: gcomp

type(ESMF_State):: istate, estate

type(ESMF_Clock):: clock

integer, intent(out):: rc

print *, "Inside Run"

end subroutine Run

subroutine Finalize(gcomp, istate, estate, clock, rc)

type(ESMF_GridComp):: gcomp

type(ESMF_State):: istate, estate

type(ESMF_Clock):: clock

integer, intent(out):: rc

print *, "Inside Finalize"

end subroutine Finalize

end module SimpleComp

program ESMF_TraceEx

! Use ESMF framework module

use ESMF

use SimpleComp, only: SetServices

implicit none

1254

! Local variables

integer :: rc, finalrc, i

type(ESMF_GridComp) :: gridcomp

! initialize ESMF

finalrc = ESMF_SUCCESS

call ESMF_Initialize(vm=vm, defaultlogfilename="TraceEx.Log", &

logkindflag=ESMF_LOGKIND_MULTI, rc=rc)

! create the component and then execute

! initialize, run, and finalize routines

gridcomp = ESMF_GridCompCreate(name="test", rc=rc)

call ESMF_GridCompSetServices(gridcomp, userRoutine=SetServices, rc=rc)

call ESMF_GridCompInitialize(gridcomp, rc=rc)

do i=1, 5

call ESMF_GridCompRun(gridcomp, rc=rc)

enddo

call ESMF_GridCompFinalize(gridcomp, rc=rc)

call ESMF_GridCompDestroy(gridcomp, rc=rc)

call ESMF_Finalize(rc=rc)

end program ESMF_TraceEx

Assuming the code above is executed on four PETs with the environment variable ESMF_RUNTIME_TRACE set to
ON, then a folder will be created in the run directory called traceout containing a metadata file and four event stream
files named esmf_stream_XXXX where XXXX is the PET number. If Babeltrace is available on the system, the list of
events can be printed by executing the following from the run directory:

$ babeltrace ./traceout

For details about iterating over trace events and performing analyses on CTF traces, see the corresponding documen-

tation in the tools listed in Section 50.1.2.

1255

50.2.8 Profiling/Tracing User-defined Code Regions

This example illustrates how to manually instrument code with entry and exit points for user-defined code re-
gions. Note that the API calls ESMF_TraceRegionEnter and ESMF_TraceRegionExit should always
appear in pairs, wrapping a particular section of code. The environment variable ESMF_RUNTIME_TRACE or
ESMF_RUNTIME_PROFILE must be set to ON to enable these regions. If not at least one is set, the calls to
ESMF_TraceRegionEnter and ESMF_TraceRegionExit will simply return immediately. For this reason,
it is safe to leave this instrumentation in application code, even when not being profiled.

! Use ESMF framework module

use ESMF

implicit none

! Local variables

integer :: rc, finalrc

integer :: i, j, tmp

! initialize ESMF

finalrc = ESMF_SUCCESS

call ESMF_Initialize(vm=vm, defaultlogfilename="TraceUserEx.Log", &

logkindflag=ESMF_LOGKIND_MULTI, rc=rc)

! record entrance into "outer_region"

call ESMF_TraceRegionEnter("outer_region", rc=rc)

tmp = 0

do i=1, 10

! record entrance into "inner_region_1"

call ESMF_TraceRegionEnter("inner_region_1", rc=rc)

! arbitrary computation

do j=1,10000

tmp=tmp+j+i

enddo

! record exit from "inner_region_1"

call ESMF_TraceRegionExit("inner_region_1", rc=rc)

tmp = 0

! record entrance into "inner_region_2"

call ESMF_TraceRegionEnter("inner_region_2", rc=rc)

! arbitrary computation

do j=1,5000

tmp=tmp+j+i

enddo

! record exit from "inner_region_2"

call ESMF_TraceRegionExit("inner_region_2", rc=rc)

enddo

! record exit from "outer_region"

1256

call ESMF_TraceRegionExit("outer_region", rc=rc)

call ESMF_Finalize(rc=rc)

50.3 Restrictions and Future Work

1. Limited types of trace events. Currently only a few trace event types are available. The tracer may be extended

in the future to record additional types of events.

50.4 Class API

50.4.1 ESMF_TraceRegionEnter - Trace user-defined region entry event

INTERFACE:

subroutine ESMF_TraceRegionEnter(name, rc)

ARGUMENTS:

character(len=*), intent(in) :: name

integer, intent(out), optional :: rc

DESCRIPTION:

Record an event in the trace for this PET indicating entry into a user-defined region with the given name. This call
must be paired with a call to ESMF_TraceRegionExit() with a matching name parameter. User-defined regions
may be nested. If tracing is disabled on the calling PET or for the application as a whole, no event will be recorded
and the call will return immediately.

The arguments are:

name A user-defined name for the region of code being entered

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

50.4.2 ESMF_TraceRegionExit - Trace user-defined region exit event

INTERFACE:

subroutine ESMF_TraceRegionExit(name, rc)

ARGUMENTS:

1257

character(len=*), intent(in) :: name

integer, intent(out), optional :: rc

DESCRIPTION:

Record an event in the trace for this PET indicating exit from a user-defined region with the given name. This call
must appear after a call to ESMF_TraceRegionEnter() with a matching name parameter. If tracing is disabled
on the calling PET or for the application as a whole, no event will be recorded and the call will return immediately.

The arguments are:

name A user-defined name for the region of code being exited

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

51 Fortran I/O and System Utilities

51.1 Description

The ESMF Fortran I/O and System utilities provide portable methods to access capabilities which are often imple-

mented in different ways amongst different environments. These utility methods are divided into three groups: com-

mand line access, Fortran I/O, and sorting.

Command line arguments may be accessed using three methods: ESMF_UtilGetArg() returns a given command

line argument, ESMF_UtilGetArgC() returns a count of the number of command line arguments available. Finally,

the ESMF_UtilGetArgIndex() method returns the index of a desired argument value, given its keyword name.

Two I/O methods are implemented: ESMF_IOUnitGet(), to obtain an unopened Fortran unit number within the

range of unit numbers that ESMF is allowed to use, and ESMF_IOUnitFlush() to flush the I/O buffer associated

with a specific Fortran unit.

Finally, the ESMF_UtilSort() method sorts integer, floating point, and character string data types in either ascend-

ing or descending order.

51.2 Use and Examples

51.2.1 Fortran unit number management

The ESMF_UtilIOUnitGet()method is provided so that applications using ESMF can remain free of unit number

conflicts — both when combined with other third party code, or with ESMF itself. This call is typically used just prior

to an OPEN statement:

call ESMF_UtilIOUnitGet (unit=grid_unit, rc=rc)

open (unit=grid_unit, file=’grid_data.dat’, status=’old’, action=’read’)

By default, unit numbers between 50 and 99 are scanned to find an unopened unit number.

Internally, ESMF also uses ESMF_UtilIOUnitGet() when it needs to open Fortran unit numbers for file I/O. By

using the same API for both user and ESMF code, unit number collisions can be avoided.

1258

When integrating ESMF into an application where there are conflicts with other uses of the same unit number range,

such as when hard-coded unit number values are used, an alternative unit number range can be specified. The

ESMF_Initialize() optional arguments IOUnitLower and IOUnitUpper may be set as needed. Note that

IOUnitUpper must be set to a value higher than IOUnitLower, and that both must be non-negative. Otherwise

ESMF_Initialize will return a return code of ESMF_FAILURE. ESMF itself does not typically need more than

about five units for internal use.

call ESMF_Initialize (..., IOUnitLower=120, IOUnitUpper=140)

All current Fortran environments have preconnected unit numbers, such as units 5 and 6 for standard input and output,

in the single digit range. So it is recommended that the unit number range is chosen to begin at unit 10 or higher to

avoid these preconnected units.

51.2.2 Flushing output

Fortran run-time libraries generally use buffering techniques to improve I/O performance. However output buffering

can be problematic when output is needed, but is “trapped” in the buffer because it is not full. This is a common

occurrance when debugging a program, and inserting WRITE statements to track down the bad area of code. If the

program crashes before the output buffer has been flushed, the desired debugging output may never be seen — giving

a misleading indication of where the problem occurred. It would be desirable to ensure that the output buffer is flushed

at predictable points in the program in order to get the needed results. Likewise, in parallel code, predictable flushing

of output buffers is a common requirement, often in conjunction with ESMF_VMBarrier() calls.

The ESMF_UtilIOUnitFlush() API is provided to flush a unit as desired. Here is an example of code which

prints debug values, and serializes the output to a terminal in PET order:

type(ESMF_VM) :: vm

integer :: tty_unit

integer :: me, npets

call ESMF_Initialize (vm=vm, rc=rc)

call ESMF_VMGet (vm, localPet=me, petCount=npes)

call ESMF_UtilIOUnitGet (unit=tty_unit)

open (unit=tty_unit, file=’/dev/tty’, status=’old’, action=’write’)

...

call ESMF_VMBarrier (vm=vm)

do, i=0, npets-1

if (i == me) then

write (tty_unit, *) ’PET: ’, i, ’, values are: ’, a, b, c

call ESMF_UtilIOUnitFlush (unit=tty_unit)

end if

call ESMF_VMBarrier (vm=vm)

end do

1259

51.3 Design and Implementation Notes

51.3.1 Fortran unit number management

When ESMF needs to open a Fortran I/O unit, it calls ESMF_IOUnitGet() to find an unopened unit number. As de-

livered, the range of unit numbers that are searched are between ESMF_LOG_FORTRAN_UNIT_NUMBER (normally

set to 50), and ESMF_LOG_UPPER (normally set to 99.) Unopened unit numbers are found by using the Fortran

INQUIRE statement.

When integrating ESMF into an application where there are conflicts with other uses of the same unit number

range, an alternative range can be specified in the ESMF_Initialize() call by setting the IOUnitLower and

IOUnitUpper arguments as needed. ESMF_IOUnitGet() will then search the alternate range of unit numbers.

Note that IOUnitUpper must be set to a value higher than IOUnitLower, and that both must be non-negative.

Otherwise ESMF_Initialize will return a return code of ESMF_FAILURE.

Fortran unit numbers are not standardized in the Fortran 90 Standard. The standard only requires that they be non-

negative integers. But other than that, it is up to the compiler writers and application developers to provide and use

units which work with the particular implementation. For example, units 5 and 6 are a defacto standard for “standard

input” and “standard output” — even though this is not specified in the actual Fortran standard. The Fortran standard

also does not specify which unit numbers can be used, nor does it specify how many can be open simultaneously.

Since all current compilers have preconnected unit numbers, and these are typically found on units lower than 10, it is

recommended that applications use unit numbers 10 and higher.

51.3.2 Flushing output

When ESMF needs to flush a Fortran unit, the ESMF_IOUnitFlush() API is used to centralize the file flushing

capability, because Fortran has not historically had a standard mechanism for flushing output buffers. Most compilers

run-time libraries support various library extensions to provide this functionality — though, being non-standard, the

spelling and number of arguments vary between implementations. Fortran 2003 also provides for a FLUSH statement

which is built into the language. When possible, ESMF_IOUnitFlush() uses the F2003 FLUSH statement. With

older compilers, the appropriate library call is made.

51.3.3 Sorting algorithms

The ESMF_UtilSort() algorithms are the same as those in the LAPACK sorting procedures SLASRT() and

DLASRT(). Two algorithms are used. For small sorts, arrays with 20 or fewer elements, a simple Insertion sort

is used. For larger sorts, a Quicksort algorithm is used.

Compared to the original LAPACK code, a full Fortran 90 style interface is supported for ease of use and enhanced

compile time checking. Additional support is also provided for integer and character string data types.

51.4 Utility API

1260

51.4.1 ESMF_UtilGetArg - Return a command line argument

INTERFACE:

subroutine ESMF_UtilGetArg(argindex, argvalue, arglength, rc)

ARGUMENTS:

integer, intent(in) :: argindex

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character(*), intent(out), optional :: argvalue

integer, intent(out), optional :: arglength

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

This method returns a copy of a command line argument specified when the process was started. This argument is the
same as an equivalent C++ program would find in the argv array.

Some MPI implementations do not consistently provide command line arguments on PETs other than PET 0. It
is therefore recommended that PET 0 call this method and broadcast the results to the other PETs by using the
ESMF_VMBroadcast() method.

The arguments are:

argindex A non-negative index into the command line argument argv array. If argindex is negative or greater than
the number of user-specified arguments, ESMF_RC_ARG_VALUE is returned in the rc argument.

[argvalue] Returns a copy of the desired command line argument. If the provided character string is longer than the
command line argument, the string will be blank padded. If the string is too short, truncation will occur and
ESMF_RC_ARG_SIZE is returned in the rc argument.

[arglength] Returns the length of the desired command line argument in characters. The length result does not depend
on the length of the value string. It may be used to query the length of the argument.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

51.4.2 ESMF_UtilGetArgC - Return number of command line arguments

INTERFACE:

subroutine ESMF_UtilGetArgC(count, rc)

1261

ARGUMENTS:

integer, intent(out) :: count

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

This method returns the number of command line arguments specified when the process was started.

The number of arguments returned does not include the name of the command itself - which is typically returned as
argument zero.

Some MPI implementations do not consistently provide command line arguments on PETs other than PET 0. It
is therefore recommended that PET 0 call this method and broadcast the results to the other PETs by using the
ESMF_VMBroadcast() method.

The arguments are:

count Count of command line arguments.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

51.4.3 ESMF_UtilGetArgIndex - Return the index of a command line argument

INTERFACE:

subroutine ESMF_UtilGetArgIndex(argvalue, argindex, rc)

ARGUMENTS:

character(*), intent(in) :: argvalue

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: argindex

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

1262

This method searches for, and returns the index of a desired command line argument. An example might be to find a
specific keyword (e.g., -esmf_path) so that its associated value argument could be obtained by adding 1 to the argindex
and calling ESMF_UtilGetArg().

Some MPI implementations do not consistently provide command line arguments on PETs other than PET 0. It
is therefore recommended that PET 0 call this method and broadcast the results to the other PETs by using the
ESMF_VMBroadcast() method.

The arguments are:

argvalue A character string which will be searched for in the command line argument list.

[argindex] If the value string is found, the position will be returned as a non-negative integer. If the string is not
found, a negative value will be returned.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

51.4.4 ESMF_UtilIOGetCWD - Get the current directory

INTERFACE:

subroutine ESMF_UtilIOGetCWD (pathName, rc)

PARAMETERS:

character(*), intent(out) :: pathName

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Call the system-dependent routine to get the current directory from the file system.

The arguments are:

pathName Name of the current working directory.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

51.4.5 ESMF_UtilIOMkDir - Create a directory in the file system

INTERFACE:

subroutine ESMF_UtilIOMkDir (pathName, &

mode, relaxedFlag, &

rc)

1263

PARAMETERS:

character(*), intent(in) :: pathName

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: mode

logical, intent(in), optional :: relaxedFlag

integer, intent(out), optional :: rc

DESCRIPTION:

Call the system-dependent routine to create a directory in the file system.

The arguments are:

pathName Name of the directory to be created.

[mode] File permission mode. Typically an octal constant is used as a value, for example: mode=o’755’. If not
specified on POSIX-compliant systems, the default is o’755’ - corresponding to owner read/write/execute,
group read/execute, and world read/execute. On native Windows, this argument is ignored and default security
settings are used.

[relaxedFlag] When set to .true., if the directory already exists, rc will be set to ESMF_SUCCESS instead of an
error. If not specified, the default is .false..

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

51.4.6 ESMF_UtilIORmDir - Remove a directory from the file system

INTERFACE:

subroutine ESMF_UtilIORmDir (pathName, &

relaxedFlag, rc)

PARAMETERS:

character(*), intent(in) :: pathName

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

logical, intent(in), optional :: relaxedFlag

integer, intent(out), optional :: rc

DESCRIPTION:

Call the system-dependent routine to remove a directory from the file system. Note that the directory must be empty
in order to be successfully removed.

The arguments are:

pathName Name of the directory to be removed.

1264

[relaxedFlag] If set to .true., and if the specified directory does not exist, the error is ignored and rc will be set
to ESMF_SUCCESS. If not specified, the default is .false..

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

51.4.7 ESMF_UtilString2Double - Convert a string to floating point real

INTERFACE:

function ESMF_UtilString2Double(string, rc)

RETURN VALUE:

real(ESMF_KIND_R8) :: ESMF_UtilString2Double

ARGUMENTS:

character(len=*), intent(in) :: string

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

DESCRIPTION:

Return the numerical real value represented by the string.

Leading and trailing blanks in string are ignored when directly converting into integers.

This procedure may fail when used in an expression in a write statement with some older, pre-Fortran 2003, compiler
environments that do not support re-entrant I/O calls.

The arguments are:

string The string to be converted

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

51.4.8 ESMF_UtilString2Int - Convert a string to an integer

INTERFACE:

function ESMF_UtilString2Int(string, &

specialStringList, specialValueList, rc)

RETURN VALUE:

1265

integer :: ESMF_UtilString2Int

ARGUMENTS:

character(len=*), intent(in) :: string

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character(len=*), intent(in), optional :: specialStringList(:)

integer, intent(in), optional :: specialValueList(:)

integer, intent(out), optional :: rc

DESCRIPTION:

Return the numerical integer value represented by the string. If string matches a string in the optional
specialStringList, the corresponding special value will be returned instead.

If special strings are to be taken into account, both specialStringList and specialValueList arguments
must be present and of same size.

An error is returned, and return value set to 0, if string is not found in specialStringList, and does not
convert into an integer value.

Leading and trailing blanks in string are ignored when directly converting into integers.

This procedure may fail when used in an expression in a write statement with some older, pre-Fortran 2003, compiler
environments that do not support re-entrant I/O calls.

The arguments are:

string The string to be converted

[specialStringList] List of special strings.

[specialValueList] List of values associated with special strings.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

51.4.9 ESMF_UtilString2Real - Convert a string to floating point real

INTERFACE:

function ESMF_UtilString2Real(string, rc)

RETURN VALUE:

real :: ESMF_UtilString2Real

ARGUMENTS:

character(len=*), intent(in) :: string

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

1266

DESCRIPTION:

Return the numerical real value represented by the string.

Leading and trailing blanks in string are ignored when directly converting into integers.

This procedure may fail when used in an expression in a write statement with some older, pre-Fortran 2003, compiler
environments that do not support re-entrant I/O calls.

The arguments are:

string The string to be converted

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

51.4.10 ESMF_UtilStringInt2String - convert integer to character string

INTERFACE:

function ESMF_UtilStringInt2String (i, rc)

ARGUMENTS:

integer, intent(in) :: i

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

RETURN VALUE:

character(int2str_len (i)) :: ESMF_UtilStringInt2String

DESCRIPTION:

Converts given an integer to string representation. The returned string is sized such that it does not contain leading or
trailing blanks.

This procedure may fail when used in an expression in a write statement with some older, pre-Fortran 2003, compiler
environments that do not support re-entrant I/O calls.

The arguments are:

i An integer.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

1267

51.4.11 ESMF_UtilStringLowerCase - convert string to lowercase

INTERFACE:

function ESMF_UtilStringLowerCase(string, rc)

ARGUMENTS:

character(len=*), intent(in) :: string

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

RETURN VALUE:

character(len (string)) :: ESMF_UtilStringLowerCase

DESCRIPTION:

Converts given string to lowercase.

The arguments are:

string A character string.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

51.4.12 ESMF_UtilStringUpperCase - convert string to uppercase

INTERFACE:

function ESMF_UtilStringUpperCase(string, rc)

ARGUMENTS:

character(len=*), intent(in) :: string

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

RETURN VALUE:

character(len (string)) :: ESMF_UtilStringUpperCase

DESCRIPTION:

Converts given string to uppercase.

The arguments are:

1268

string A character string.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

51.4.13 ESMF_UtilIOUnitFlush - Flush output on a unit number

INTERFACE:

subroutine ESMF_UtilIOUnitFlush(unit, rc)

PARAMETERS:

integer, intent(in) :: unit

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Call the system-dependent routine to force output on a specific Fortran unit number.

The arguments are:

unit A Fortran I/O unit number. If the unit is not connected to a file, no flushing occurs.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

51.4.14 ESMF_UtilIOUnitGet - Scan for a free I/O unit number

INTERFACE:

subroutine ESMF_UtilIOUnitGet(unit, rc)

ARGUMENTS:

integer, intent(out) :: unit

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(out), optional :: rc

STATUS:

1269

• This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Scan for, and return, a free Fortran I/O unit number. By default, the range of unit numbers returned is between 50 and
99 (parameters ESMF_LOG_FORTRAN_UNIT_NUMBER and ESMF_LOG_UPPER respectively.) When integrating
ESMF into an application where these values conflict with other usages, the range of values may be moved by setting
the optional IOUnitLower and IOUnitUpper arguments in the initial ESMF_Initialize() call with values
in a safe, alternate, range.

The Fortran unit number which is returned is not reserved in any way. Successive calls without intervening OPEN or
CLOSE statements (or other means of connecting to units), might not return a unique unit number. It is recommended
that an OPEN statement immediately follow the call to ESMF_IOUnitGet() to activate the unit.

The arguments are:

unit A Fortran I/O unit number.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

51.4.15 ESMF_UtilSort - Sort data

INTERFACE:

subroutine ESMF_UtilSort (list, direction, rc)

ARGUMENTS:

<list>, see below for supported values

type(ESMF_SortFlag), intent(in) :: direction

integer, intent(out), optional :: rc

DESCRIPTION:

Supported values for <list> are:

integer(ESMF_KIND_I4), intent(inout) :: list(:)

integer(ESMF_KIND_I8), intent(inout) :: list(:)

real(ESMF_KIND_R4), intent(inout) :: list(:)

real(ESMF_KIND_R8), intent(inout) :: list(:)

character(len=*), intent(inout) :: list(:)

Use Quick Sort, reverting to Insertion sort on lists of size <= 20.

This is an ESMFized version of SLASRT from LAPACK version 3.1. Univ. of Tennessee, Univ. of California Berkeley
and NAG Ltd. November 2006

The arguments are:

1270

list Array of data to be sorted. The original data is overwritten by the sorted data.

direction Direction of sorting. Legal values are ESMF_SORT_ASCENDING and ESMF_SORT_DESCENDING.

[rc] Return code; equals ESMF_SUCCESS if the sorting is successful.

1271

Part VI

References

References

[1] JSON for Modern C++, 2020 (accessed February 2020). https://github.com/nlohmann/json.

[2] JSON for Modern C++ 64-Bit Float, 2020 (accessed February 2020).

https://nlohmann.github.io/json/classnlohmann_1_1basic__json_a88d6103cb3620410b35200ee8e313d97.html#a88d6103cb3620410b35200ee8e313d97

[3] JSON for Modern C++ 64-Bit Integer, 2020 (accessed February 2020).

https://nlohmann.github.io/json/classnlohmann_1_1basic__json_a98e611d67b7bd75307de99c9358ab2dc.html#a98e611d67b7bd75307de99c9358ab2dc

[4] JSON for Modern C++ Is Structured, 2020 (accessed February 2020).

https://nlohmann.github.io/json/classnlohmann_1_1basic__json_a9f68a0af820c3ced7f9d17851ce4c22d.html#a9f68a0af820c3ced7f9d17851ce4c22d

[5] JSON for Modern C++ JSON Pointer, 2020 (accessed February 2020).

https://nlohmann.github.io/json/classnlohmann_1_1json__pointer_a7f32d7c62841f0c4a6784cf741a6e4f8.html#a7f32d7c62841f0c4a6784cf741a6e4f

[6] JSON for Modern C++ Memory Efficiency, 2020 (accessed February 2020).

https://github.com/nlohmann/json#design-goals.

[7] JSON for Modern C++ Null Value, 2020 (accessed February 2020).

https://nlohmann.github.io/json/classnlohmann_1_1basic__json_a8faa039ca82427ed29c486ffd00600c3.html#a8faa039ca82427ed29c486ffd00600c3

[8] JSON for Modern C++ Object, 2020 (accessed February 2020). https://nlohmann.github.io/json/classnlohmann_1_1basic__json_a5e48a

[9] JSON for Modern C++ Type Name, 2020 (accessed February 2020).

https://nlohmann.github.io/json/classnlohmann_1_1basic__json_ad14563c53cf7ca9189bc164082367bf3.html#ad14563c53cf7ca9189bc164082367bf3

[10] JSON for Modern C++ Update, 2020 (accessed February 2020). https://nlohmann.github.io/json/classnlohmann_1_1basic__json_a1cfa9

[11] JSON, 2020 (accessed March 2020). https://www.json.org/json-en.html.

[12] A Julian Day and Civil Date Calculator. http://www.numerical-recipes.com/julian.html, last accessed on Dec 3,

2015.

[13] SCRIP: A Spherical Coordinate Remapping and Interpolation Package. http://oceans11.lanl.gov/trac/SCRIP, last

accessed on Dec 4, 2015. Los Alamos Software Release LACC 98-45.

[14] Some notes on the ISO 8601 date and time specification standard. http://en.wikipedia.org/wiki/ISO_8601

http://www.iso.ch/iso/en/prods-services/popstds/datesandtime.html, last accessed on Dec 4, 2015.

[15] NetCDF Climate and Forecast (CF) Metadata Conventions. http://cfconventions.org/, last accessed on Nov 27,

2015.

[16] NetCDF Users Guide for C, Version 3. http://www.unidata.ucar.edu/software/netcdf/docs, last accessed on Nov

27, 2015.

[17] V. Balaji, Jeff Anderson, Isaac Held, Michael Winton, Jeff Durachta, Sergey Malyshev, and Ronald J. Stouffer.

The exchange grid: a mechanism for data exchange between earth system components on independent grids.

Parallel Computational Fluid Dynamics: Theory and Applications, Proceedings of the 2005 International Con-

ference on Parallel Computational Fluid Dynamics, 2006.

1272

https://github.com/nlohmann/json
https://nlohmann.github.io/json/classnlohmann_1_1basic__json_a88d6103cb3620410b35200ee8e313d97.html#a88d6103cb3620410b35200ee8e313d97
https://nlohmann.github.io/json/classnlohmann_1_1basic__json_a98e611d67b7bd75307de99c9358ab2dc.html#a98e611d67b7bd75307de99c9358ab2dc
https://nlohmann.github.io/json/classnlohmann_1_1basic__json_a9f68a0af820c3ced7f9d17851ce4c22d.html#a9f68a0af820c3ced7f9d17851ce4c22d
https://nlohmann.github.io/json/classnlohmann_1_1json__pointer_a7f32d7c62841f0c4a6784cf741a6e4f8.html#a7f32d7c62841f0c4a6784cf741a6e4f8
https://github.com/nlohmann/json#design-goals
https://nlohmann.github.io/json/classnlohmann_1_1basic__json_a8faa039ca82427ed29c486ffd00600c3.html#a8faa039ca82427ed29c486ffd00600c3
https://nlohmann.github.io/json/classnlohmann_1_1basic__json_a5e48a7893520e1314bf0c9723e26ea2a.html#a5e48a7893520e1314bf0c9723e26ea2a
https://nlohmann.github.io/json/classnlohmann_1_1basic__json_ad14563c53cf7ca9189bc164082367bf3.html#ad14563c53cf7ca9189bc164082367bf3
https://nlohmann.github.io/json/classnlohmann_1_1basic__json_a1cfa9ae5e7c2434cab4cfe69bffffe11.html#a1cfa9ae5e7c2434cab4cfe69bffffe11
https://www.json.org/json-en.html

[18] E. G. Boman, U. V. Catalyurek, C. Chevalier, and K. D. Devine. The Zoltan and Isorropia parallel toolkits for

combinatorial scientific computing: Partitioning, ordering, and coloring. Scientific Programming, 20(2), 2012.

[19] Y. Meurdesoif E. Kritsikis, M. Aechtner and T. Dubos. Conservative interpolation between general spherical

meshes. Geoscientific Model Development, 10, 2017.

[20] H. C. Edwards, A. B. Williams, G. D. Sjaardema, D. G. Baur, and W. K. Cochran. SIERRA toolkit computational

mesh conceptual model. Technical Report SAND2010-1192, Sandia National Laboratories, Albuquerque, New

Mexico 87185, March 2010.

[21] Extensible markup language (xml). http://www.w3.org/XML/, last accessed on Dec 3, 2015.

[22] Fliegel, H.F. and Van Flandern, T.C. A Machine Algorithm for Processing Calendar Dates. Communications of

the ACM, 11(10):657, 1968.

[23] David Goldberg. What every computer scientist should know about floating-point arithmetic. ACM Computing

Surveys, 23(1), 1991.

[24] H. Gu, Z. Zong, and K.C. Hung. A modified superconvergent patch recovery method and its application to large

deformation problems. Finite Elements in Analysis and Design, 40(5-6), 2004.

[25] Hatcher, D.A. Simple Formulae for Julian Day Numbers and Calendar Dates. Q.JlR. astr. Soc., 25(1):53–55,

1984.

[26] International Organization for Standardization. Standard 8601:2004, Data elements and

interchange formats – Information interchange – Representation of dates and times.

http://www.iso.ch/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=40874&COMMID=&scopelist=,

last accessed on Dec 4, 2015.

[27] William Kahan. Documents relating to IEEE standard 754 for binary floating-point arithmetic. University of

California, Berkeley.

[28] A.R. Khoei and S.A. Gharehbaghi. The superconvergent patch recovery technique and data transfer operators in

3d plasticity problems. Finite Elements in Analysis and Design, 43(8), 2007.

[29] Peter Meyer. A good discussion of Gregorian and Julian Calendars.

http://www.hermetic.ch/cal_stud/cal_art.html, last accessed on Nov 27, 2015.

[30] Peter Meyer. A good discussion of Julian Day Numbers. http://www.hermetic.ch/cal_stud/jdn.htm, last accessed

on Nov 27, 2015.

[31] D. Ramshaw. Conservative rezoning algorithm for generalized two-dimensional meshes. Journal of Computa-

tional Physics, 59, 1985.

[32] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference Manual. Addison-Wesley,

1999.

[33] Seidelman, P.K. Explanatory Supplement to the Astronomical Almanac. University Science Books, 1992.

[34] Gernot M.R. Winkler. A good discussion of the Modified Julian Day Calendar.

http://tycho.usno.navy.mil/mjd.html, last accessed on Nov 27, 2015.

1273

Part VII

Appendices

52 Appendix A: Master List of Constants

52.1 ESMF_ALARMLIST

This flag is documented in section 45.2.1.

52.2 ESMF_DIM_ARB

DESCRIPTION:

An integer named constant which is used to indicate that a particular dimension is arbitrarily distributed.

52.3 ESMF_ATTCOPY

This flag is documented in section 55.0.1.

52.4 ESMF_ATTGETCOUNT

This flag is documented in section 55.0.2.

52.5 ESMF_ATTNEST

DESCRIPTION:

Indicate whether or not to descend the Attribute hierarchy.

The type of this flag is:

type(ESMF_AttNest_Flag)

The valid values are:

ESMF_ATTNEST_ON Indicates that the Attribute hierarchy should be traversed.

ESMF_ATTNEST_OFF Indicates that the Attribute hierarchy should not be traversed.

52.6 ESMF_ATTRECONCILE

DESCRIPTION:

Indicate whether or not to handle metadata (Attributes) in ESMF_StateReconcile().

The type of this flag is:

type(ESMF_AttReconcileFlag)

1274

The valid values are:

ESMF_ATTRECONCILE_ON Attribute reconciliation will be turned on.

ESMF_ATTRECONCILE_OFF Attribute reconciliation will be turned off.

52.7 ESMF_ATTWRITE

This flag is documented in section 55.0.3.

52.8 ESMF_CALKIND

This flag is documented in section 41.2.1.

52.9 ESMF_COMPTYPE

DESCRIPTION:

Indicate the type of a Component.

The type of this flag is:

type(ESMF_CompType_Flag)

The valid values are:

ESMF_COMPTYPE_GRID A ESMF_GridComp object.

ESMF_COMPTYPE_CPL A ESMF_CplComp objects.

ESMF_COMPTYPE_SCI A ESMF_SciComp objects.

52.10 ESMF_CONTEXT

DESCRIPTION:

Indicates the type of VM context in which a Component will be executing its standard methods.

The type of this flag is:

type(ESMF_Context_Flag)

The valid values are:

ESMF_CONTEXT_OWN_VM The component is running in its own, separate VM context. Resources are inherited

from the parent but can be arranged to fit the component’s requirements.

ESMF_CONTEXT_PARENT_VM The component uses the parent’s VM for resource management. Compared to

components that use their own VM context components that run in the parent’s VM context are more light-

weight with respect to the overhead of calling into their initialize, run and finalize methods. Furthermore, VM-

specific properties remain unchanged when going from the parent component to the child component. These

properties include the MPI communicator, the number of PETs, the PET labeling, communication attributes,

threading-level.

1275

52.11 ESMF_COORDSYS

DESCRIPTION:

A set of values which indicates in which system the coordinates in a class (e.g. Grid) are. This type is useful both

to indicate to other users the type of the coordinates, but also to control how the coordinates are interpreted in ESMF

methods which depend on the coordinates (e.g. regridding methods like ESMF_FieldRegridStore()).

The type of this flag is:

type(ESMF_CoordSys_Flag)

The valid values are:

ESMF_COORDSYS_CART Cartesian coordinate system. In this system, the Cartesian coordinates are mapped to

the coordinate dimensions in the following order: x,y,z. (E.g. using coordDim=2 in ESMF_GridGetCoord()

references the y dimension)

ESMF_COORDSYS_SPH_DEG Spherical coordinates in degrees. In this system, the spherical coordinates are

mapped to the coordinate dimensions in the following order: longitude, latitude, radius. (E.g. using

coordDim=2 in ESMF_GridGetCoord() references the latitude dimension.)

ESMF_COORDSYS_SPH_RAD Spherical coordinates in radians. In this system, the spherical coordinates are

mapped to the coordinate dimensions in the following order: longitude, latitude, radius. (E.g. using

coordDim=2 in ESMF_GridGetCoord() references the latitude dimension.)

52.12 ESMF_DATACOPY

DESCRIPTION:

Indicates how data references, copies, and memory allocations to hold data are handled.

The type of this flag is:

type(ESMF_DataCopy_Flag)

The valid values are:

ESMF_DATACOPY_ALLOC Create a new allocation that is sufficient in size to hold the data. However, no data is

copied and the allocation is returned uninitialized.

ESMF_DATACOPY_REFERENCE Reference the data within the existing allocation.

ESMF_DATACOPY_VALUE Copy the data to another allocation. If needed create the new allocation.

52.13 ESMF_DECOMP

DESCRIPTION:

Indicates how DistGrid elements are decomposed over DEs.

The type of this flag is:

type(ESMF_Decomp_Flag)

The valid values are:

1276

ESMF_DECOMP_BALANCED Decompose elements as balanced as possible across DEs. The maximum differ-

ence in number of elements per DE is 1, with the extra elements on the lower DEs.

ESMF_DECOMP_CYCLIC Decompose elements cyclically across DEs.

ESMF_DECOMP_RESTFIRST Divide elements over DEs. Assign the rest of this division to the first DE.

ESMF_DECOMP_RESTLAST Divide elements over DEs. Assign the rest of this division to the last DE.

ESMF_DECOMP_SYMMEDGEMAX Decompose elements across the DEs in a symmetric fashion. Start with the

maximum number of elements at the two edge DEs, and assign a decending number of elements to the DEs as

the center of the decomposition is approached from both sides.

52.14 ESMF_DIRECTION

This flag is documented in section 44.2.1.

52.15 ESMF_DISTGRIDMATCH

This flag is documented in section 35.2.1.

52.16 ESMF_END

This flag is documented in section 16.2.1.

52.17 ESMF_EXTRAPMETHOD

DESCRIPTION:

Specify which extrapolation method to use on unmapped destination points after regridding.

The type of this flag is:

type(ESMF_ExtrapMethod_Flag)

The valid values are:

ESMF_EXTRAPMETHOD_NONE Indicates that no extrapolation should be done.

ESMF_EXTRAPMETHOD_NEAREST_IDAVG Inverse distance weighted average. Here the value of an un-

mapped destination point is the weighted average of the closest N source points. The weight is the reciprocal

of the distance of the source point from the destination point raised to a power P. All the weights contributing

to one destination point are normalized so that they sum to 1.0. The user can choose N and P when using this

method, but defaults are also provided. This extrapolation method is not supported with conservative regrid

methods (e.g. ESMF_REGRIDMETHOD_CONSERVE).

ESMF_EXTRAPMETHOD_NEAREST_STOD Nearest source to destination. Here the value of each unmapped

destination point is set to the value of the closest source point. This extrapolation method is not supported with

conservative regrid methods (e.g. ESMF_REGRIDMETHOD_CONSERVE).

1277

ESMF_EXTRAPMETHOD_NEAREST_D Nearest mapped destination to unmapped destination. Here the

value of each unmapped destination point is set to the value of the closest mapped (i.e. regridded)

destination point. This extrapolation method is not supported with conservative regrid methods (e.g.

ESMF_REGRIDMETHOD_CONSERVE).

ESMF_EXTRAPMETHOD_CREEP Creep fill. Here unmapped destination points are filled by moving data from

mapped locations to neighboring unmapped locations. The data filled into a new location is the average of

its already filled neighbors’ values. This process is repeated for a user specified number of levels (e.g. in

ESMF_FieldRegridStore() this is specified via the extrapNumLevels argument). This extrapolation method

is not supported with conservative regrid methods (e.g. ESMF_REGRIDMETHOD_CONSERVE).

ESMF_EXTRAPMETHOD_CREEP_NRST_D Creep fill with nearest destination. Here unmapped destination

points are filled using creep fill as described under that entry (see ESMF_EXTRAPMETHOD_CREEP above),

any points not filled by creep fill are then set to the closest filled or mapped destination point as if the nearest

destination method (see ESMF_EXTRAPMETHOD_NEAREST_D above) were run after the initial regridding

followed by creep fill. Like creep fill, this method is repeated for a user specified number of levels (e.g. in

ESMF_FieldRegridStore() this is specified via the extrapNumLevels argument). This extrapolation method

is not supported with conservative regrid methods (e.g. ESMF_REGRIDMETHOD_CONSERVE).

52.18 ESMF_FIELDSTATUS

This flag is documented in section 26.2.1.

52.19 ESMF_FILEFORMAT

DESCRIPTION:

This flag is used in ESMF_GridCreate and ESMF_MeshCreate functions. It is also used in the

ESMF_RegridWeightGen API as an optional argument.

The type of this flag is:

type(ESMF_FileFormat_Flag)

The valid values are:

ESMF_FILEFORMAT_CFGRID A single tile logically rectangular grid file that follows the NetCDF CF conven-

tion. See section 12.8.3 for more detailed description.

ESMF_FILEFORMAT_ESMFMESH ESMF unstructured grid file format. This format was developed by the

ESMF team to match the capabilities of the Mesh class and to be efficient to convert to that class. See sec-

tion 12.8.2 for more detailed description.

ESMF_FILEFORMAT_GRIDSPEC Equivalent to ESMF_FILEFORMAT_CFGRID flag.

ESMF_FILEFORMAT_MOSAIC This format is a proposed extension to the CF-conventions for grid mosaics con-

sisting of multiple logically rectangular grid tiles. See section 12.8.5 for more detailed description.

ESMF_FILEFORMAT_SCRIP SCRIP format grid file. The SCRIP format is the format accepted by the SCRIP

regridding tool [13]. See section12.8.1 for more detailed description.

ESMF_FILEFORMAT_UGRID CF-convention unstructured grid file format. This format is a proposed extension

to the CF-conventions for unstructured grid data model. See section 12.8.4 for more detailed description.

1278

52.20 ESMF_FILEMODE

DESCRIPTION:

This flag is used to indicate which mode to use when writing a weight file.

The type of this flag is:

type(ESMF_FileMode_Flag)

The valid values are:

ESMF_FILEMODE_BASIC Indicates that only the factorList and factorIndexList should be written.

ESMF_FILEMODE_WITHAUX Indicates that grid center coordinates should also be written.

52.21 ESMF_FILESTATUS

DESCRIPTION:

This flag is used in ESMF I/O functions. It’s use is similar to the status keyword in the Fortran open statement.

The type of this flag is:

type(ESMF_FileStatus_Flag)

The valid values are:

ESMF_FILESTATUS_NEW The file must not exist, it will be created.

ESMF_FILESTATUS_OLD The file must exist.

ESMF_FILESTATUS_REPLACE If the file exists, all of its contents will be deleted before writing. If the file does

not exist, it will be created.

ESMF_FILESTATUS_UNKNOWN The value is treated as if it were ESMF_FILESTATUS_OLD if the correspond-

ing file already exists. Otherwise, the value is treated as if it were ESMF_FILESTATUS_NEW.

52.22 ESMF_GEOMTYPE

DESCRIPTION:

Different types of geometries upon which an ESMF Field or ESMF Fieldbundle may be built.

The type of this flag is:

type(ESMF_GeomType_Flag)

The valid values are:

ESMF_GEOMTYPE_GRID An ESMF_Grid, a structured grid composed of one or more logically rectangular tiles.

ESMF_GEOMTYPE_MESH An ESMF_Mesh, an unstructured grid.

ESMF_GEOMTYPE_XGRID An ESMF_XGrid, an exchange grid.

ESMF_GEOMTYPE_LOCSTREAM An ESMF_LocStream, a disconnected series of points with associated key

values.

1279

52.23 ESMF_GRIDCONN

This flag is documented in section 31.2.1.

52.24 ESMF_GRIDITEM

This flag is documented in section 31.2.2.

52.25 ESMF_GRIDMATCH

This flag is documented in section 31.2.3.

52.26 ESMF_GRIDSTATUS

This flag is documented in section 31.2.4.

52.27 ESMF_INDEX

DESCRIPTION:

Indicates whether index is local (per DE) or global (per object).

The type of this flag is:

type(ESMF_Index_Flag)

The valid values are:

ESMF_INDEX_DELOCAL Indicates that DE-local index space starts at lower bound 1 for each DE.

ESMF_INDEX_GLOBAL Indicates that global indices are used. This means that DE-local index space starts at the

global lower bound for each DE.

ESMF_INDEX_USER Indicates that the DE-local index bounds are explicitly set by the user.

52.28 ESMF_IOFMT

DESCRIPTION:

Indicates I/O format options that are currently supported.

The type of this flag is:

type(ESMF_IOFmt_Flag)

The valid values are:

ESMF_IOFMT_BIN Binary format.

ESMF_IOFMT_NETCDF NETCDF and PNETCDF format.

ESMF_IOFMT_NETCDF_64BIT_OFFSET NETCDF and PNETCDF 64-bit format.

1280

52.29 ESMF_IO_NETCDF_PRESENT

DESCRIPTION:

Indicates whether netcdf feature support has been enabled within the current ESMF build.

The type of this flag is:

logical

The valid values are:

.true. Netcdf features are enabled.

.false. Netcdf features are not enabled.

52.30 ESMF_IO_PIO_PRESENT

DESCRIPTION:

Indicates whether PIO (parallel I/O) feature support has been enabled within the current ESMF build.

The type of this flag is:

logical

The valid values are:

.true. PIO features are enabled..

.false. PIO features are not enabled.

52.31 ESMF_IO_PNETCDF_PRESENT

DESCRIPTION:

Indicates whether parallel netcdf feature support has been enabled within the current ESMF build.

The type of this flag is:

logical

The valid values are:

.true. Parallel netcdf features are enabled.

.false. Parallel netcdf features are not enabled.

52.32 ESMF_ITEMORDER

DESCRIPTION:

Specifies the order of items in a list.

The type of this flag is:

type(ESMF_ItemOrder_Flag)

1281

The valid values are:

ESMF_ITEMORDER_ABC The items are in alphabetical order, according to their names.

ESMF_ITEMORDER_ADDORDER The items are in the order in which they were added to the container.

52.33 ESMF_KIND

DESCRIPTION:

Named constants to be used as kind-parameter in Fortran variable declarations. For example:

integer(ESMF_KIND_I4) :: integerVariable

integer(kind=ESMF_KIND_I4) :: integerVariable

real(ESMF_KIND_R4) :: realVariable

real(kind=ESMF_KIND_R4) :: realVariable

The Fortran standard does not mandate what numeric values correspond to actual number of bytes allocated for the

various kinds. The following constants are defined by ESMF to be correct across the supported Fortran compilers.

Note that not all compilers support every kind listed below; in particular 1 and 2 byte integers can be problematic.

The type of these named constants is:

integer

The named constants are:

ESMF_KIND_I1 Kind-parameter for 1 byte integer.

ESMF_KIND_I2 Kind-parameter for 2 byte integer.

ESMF_KIND_I4 Kind-parameter for 4 byte integer.

ESMF_KIND_I8 Kind-parameter for 8 byte integer.

ESMF_KIND_R4 Kind-parameter for 4 byte real.

ESMF_KIND_R8 Kind-parameter for 8 byte real.

52.34 ESMF_LINETYPE

DESCRIPTION:

This argument allows the user to select the path of the line which connects two points on the surface of a sphere. This

in turn controls the path along which distances are calculated and the shape of the edges that make up a cell.

The type of this flag is:

type(ESMF_LineType_Flag)

The valid values are:

ESMF_LINETYPE_CART Cartesian line. When this option is specified distances are calculated

in a straight line through the 3D Cartesian space in which the sphere is embedded. Cells

1282

are approximated by 3D planes bounded by 3D Cartesian lines between their corner ver-

tices. When calculating regrid weights, this line type is currently the default for the follow-

ing regrid methods: ESMF_REGRIDMETHOD_BILINEAR, ESMF_REGRIDMETHOD_PATCH,

ESMF_REGRIDMETHOD_NEAREST_STOD, and ESMF_REGRIDMETHOD_NEAREST_DTOS.

ESMF_LINETYPE_GREAT_CIRCLE Great circle line. When this option is specified distances are calculated

along a great circle path (the shortest distance between two points on a sphere surface). Cells are bounded by

great circle paths between their corner vertices. When calculating regrid weights, this line type is currently the

default for the following regrid method: ESMF_REGRIDMETHOD_CONSERVE.

52.35 ESMF_LOGERR

This flag is documented in section 47.2.1.

52.36 ESMF_LOGKIND

This flag is documented in section 47.2.2.

52.37 ESMF_LOGMSG

This flag is documented in section 47.2.3.

52.38 ESMF_MESHELEMTYPE

This flag is documented in section 33.2.1.

52.39 ESMF_MESHLOC

DESCRIPTION:

Used to indicate a specific part of a Mesh. This is commonly used to specify the part of the Mesh to create a Field on.

The type of this flag is:

type(ESMF_MeshLoc)

The valid values are:

ESMF_MESHLOC_NODE The nodes (also known as corners or vertices) of a Mesh.

ESMF_MESHLOC_ELEMENT The elements (also known as cells) of a Mesh.

52.40 ESMF_MESHOP

DESCRIPTION:

Specifies the spatial operation with two source Meshes, treating the Meshes as point sets.

The type of this flag is:

1283

type(ESMF_MeshOp_Flag)

The valid values are:

ESMF_MESHOP_DIFFERENCE Calculate the difference of the two point sets from the source Meshes.

52.41 ESMF_MESHSTATUS

DESCRIPTION:

The ESMF Mesh class can exist in several states. The ESMF_MESHSTATUS flag is used to indicate which of these

states a Mesh is currently in.

The type of this flag is:

type(ESMF_MeshStatus_Flag)

The valid values are:

ESMF_MESHSTATUS_UNINIT: The Mesh status is uninitialized. This might happen if the Mesh hasn’t been

created yet, or if the Mesh has been destroyed.

ESMF_MESHSTATUS_EMPTY: Status after a Mesh has been created with ESMF_MeshEmptyCreate. Only

distribution information has been set in the Mesh. This object can be used in the ESMF_MeshGet() method

to retrieve distgrids and the distgrid’s presence.

ESMF_MESHSTATUS_STRUCTCREATED: Status after a Mesh has been through the first step of the three step

creation process. The Mesh is now ready to have nodes added to it.

ESMF_MESHSTATUS_NODESADDED: Status after a Mesh has been through the second step of the three step

creation process. The Mesh is now ready to be completed with elements.

ESMF_MESHSTATUS_COMPLETE: The Mesh has been completely created and can be used to create a Field.

Further, if the internal Mesh memory hasn’t been freed, then the Mesh should be usable in any Mesh functional-

ity (e.g. regridding). The status of the internal Mesh memory can be checked using the isMemFreed argument

to ESMF_MeshGet().

52.42 ESMF_METHOD

DESCRIPTION:

Specify standard ESMF Component method.

The type of this flag is:

type(ESMF_Method_Flag)

The valid values are:

ESMF_METHOD_FINALIZE Finalize method.

ESMF_METHOD_INITIALIZE Initialize method.

ESMF_METHOD_READRESTART ReadRestart method.

ESMF_METHOD_RUN Run method.

ESMF_METHOD_WRITERESTART WriteRestart method.

1284

52.43 ESMF_NORMTYPE

DESCRIPTION:

When doing conservative regridding (e.g. ESMF_REGRIDMETHOD_CONSERVE), this option allows the user to select

the type of normalization used when producing the weights.

type(ESMF_NormType_Flag)

The valid values are:

ESMF_NORMTYPE_DSTAREA Destination area normalization. Here the weights are calculated by dividing the

area of overlap of the source and destination cells by the area of the entire destination cell. In other words, the

weight is the fraction of the entire destination cell which overlaps with the given source cell.

ESMF_NORMTYPE_FRACAREA Fraction area normalization. Here in addition to the weight calculation done

for destination area normalization (ESMF_NORMTYPE_DSTAREA) the weights are also divided by the fraction

that the destination cell overlaps with the entire source grid. In other words, the weight is the fraction of just the

part of the destination cell that overlaps with the entire source mesh.

52.44 ESMF_PIN

This flag is documented in section 48.2.1.

52.45 ESMF_POLEKIND

This flag is documented in section 31.2.5.

52.46 ESMF_POLEMETHOD

DESCRIPTION:

When interpolating between two Grids which have been mapped to a sphere these can be used to specify the type of

artificial pole to create on the source Grid during interpolation. Creating the pole allows destination points above the

top row or below the bottom row of the source Grid to still be mapped.

The type of this flag is:

type(ESMF_PoleMethod_Flag)

The valid values are:

ESMF_POLEMETHOD_NONE No pole. Destination points which lie above the top or below the bottom row of

the source Grid won’t be mapped.

ESMF_POLEMETHOD_ALLAVG Construct an artificial pole placed in the center of the top (or bottom) row of

nodes, but projected onto the sphere formed by the rest of the grid. The value at this pole is the average of all

the source values surrounding the pole.

ESMF_POLEMETHOD_NPNTAVG Construct an artificial pole placed in the center of the top (or bottom) row of

nodes, but projected onto the sphere formed by the rest of the grid. The value at this pole is the average of the N

1285

source nodes next to the pole and surrounding the destination point (i.e. the value may differ for each destination

point). Here N is set by using the regridPoleNPnts parameter and ranges from 1 to the number of nodes

around the pole. This option is useful for interpolating values which may be zeroed out by averaging around the

entire pole (e.g. vector components).

ESMF_POLEMETHOD_TEETH No new pole point is constructed, instead the holes at the poles are filled by

constructing triangles across the top and bottom row of the source Grid. This can be useful because no averaging

occurs, however, because the top and bottom of the sphere are now flat, for a big enough mismatch between the

size of the destination and source pole holes, some destination points may still not be able to be mapped to the

source Grid.

52.47 ESMF_REDUCE

DESCRIPTION:

Indicates reduce operation.

The type of this flag is:

type(ESMF_Reduce_Flag)

The valid values are:

ESMF_REDUCE_SUM Use arithmetic sum to add all data elements.

ESMF_REDUCE_MIN Determine the minimum of all data elements.

ESMF_REDUCE_MAX Determine the maximum of all data elements.

52.48 ESMF_REGION

DESCRIPTION:

Specifies various regions in the data layout of an Array or Field object.

The type of this flag is:

type(ESMF_Region_Flag)

The valid values are:

ESMF_REGION_TOTAL Total allocated memory.

ESMF_REGION_SELECT Region of operation-specific elements.

ESMF_REGION_EMPTY The empty region contains no elements.

52.49 ESMF_REGRIDMETHOD

DESCRIPTION:

Specify which interpolation method to use during regridding. For a more detailed discussion of these methods, as well

as ESMF regridding in general, see Section 24.2.

The type of this flag is:

1286

type(ESMF_RegridMethod_Flag)

The valid values are:

ESMF_REGRIDMETHOD_BILINEAR Bilinear interpolation. Destination value is a linear combination of the

source values in the cell which contains the destination point. The weights for the linear combination are based

on the distance of destination point from each source value.

ESMF_REGRIDMETHOD_PATCH Higher-order patch recovery interpolation. Destination value is a weighted

average of 2D polynomial patches constructed from cells surrounding the source cell which contains the des-

tination point. This method typically results in better approximations to values and derivatives than bilinear.

However, because of its larger stencil, it also results in a much larger interpolation matrix (and thus routeHan-

dle) than the bilinear.

ESMF_REGRIDMETHOD_NEAREST_STOD In this version of nearest neighbor interpolation each destination

point is mapped to the closest source point. A given source point may go to multiple destination points, but no

destination point will receive input from more than one source point.

ESMF_REGRIDMETHOD_NEAREST_DTOS In this version of nearest neighbor interpolation each source point

is mapped to the closest destination point. A given destination point may receive input from multiple source

points, but no source point will go to more than one destination point.

ESMF_REGRIDMETHOD_CONSERVE First-order conservative interpolation. The main purpose of this method

is to preserve the integral of the field between the source and destination. Will typically give a less accurate

approximation to the individual field values than the bilinear or patch methods. The value of a destination cell

is calculated as the weighted sum of the values of the source cells that it overlaps. The weights are determined

by the amount the source cell overlaps the destination cell. Needs corner coordinate values to be provided in the

Grid. Currently only works for Fields created on the Grid center stagger or the Mesh element location.

ESMF_REGRIDMETHOD_CONSERVE_2ND Second-order conservative interpolation. As with first-order, pre-

serves the integral of the value between the source and destination. However, typically produces a smoother

more accurate result than first-order. Also like first-order, the value of a destination cell is calculated as the

weighted sum of the values of the source cells that it overlaps. However, second-order also includes additional

terms to take into account the gradient of the field across the source cell. Needs corner coordinate values to be

provided in the Grid. Currently only works for Fields created on the Grid center stagger or the Mesh element

location.

52.50 ESMF_REGRIDSTATUS

DESCRIPTION:

These values can be output during regridding (e.g. from ESMF_FieldRegridStore() via the

dstStatusField argument). They indicate the status of each destination location.

The type of this flag is:

integer(ESMF_KIND_I4)

The valid values for all regrid methods are:

ESMF_REGRIDSTATUS_DSTMASKED The destination location is masked, so no regridding has been peformed

on it.

ESMF_REGRIDSTATUS_SRCMASKED The destination location is within a masked part of the source grid, so

no regridding has been performed on it.

1287

ESMF_REGRIDSTATUS_OUTSIDE The destination location is outside the source grid, so no regridding has been

performed on it.

ESMF_REGRIDSTATUS_MAPPED The destination location is within the unmasked source grid, and so has been

regridded (i.e. there is an entry for it within the factorIndexList or routeHandle).

ESMF_REGRIDSTATUS_EXMAPPED The destination location was not within the unmasked source grid, and so

typically it wouldn’t be regridded. However, extrapolation was used, and so it has been regridded (i.e. there is

an entry for it within the factorIndexList or routeHandle).

In addition to the above, regridding using the conservative method can result in other values. The reason for this is that

in that method one destination cell can overlap multiple source cells, so a single destination can have a combination

of values. The following are the additional values that apply to the conservative method:

ESMF_REGRIDSTATUS_SMSK_OUT The destination cell overlaps a masked source cell, and extends outside the

source grid.

ESMF_REGRIDSTATUS_SMSK_MP The destination cell overlaps a masked source cell, and an unmasked source

cell. (Because it overlaps with the unmasked source grid, there will be an entry for the destination cell within

the factorIndexList or routeHandle).

ESMF_REGRIDSTATUS_OUT_MP The destination cell overlaps an unmasked source cell, and extends outside

the source grid. (Because it overlaps with the unmasked source grid, there will be an entry for the destination

cell within the factorIndexList or routeHandle).

ESMF_REGRIDSTATUS_SMSK_OUT_MP The destination cell overlaps a masked source cell, an unmasked

source cell, and extends outside the source grid. (Because it overlaps with the unmasked source grid, there

will be an entry for the destination cell within the factorIndexList or routeHandle).

52.51 ESMF_ROUTESYNC

DESCRIPTION:

Switch between blocking and non-blocking execution of RouteHandle based communication calls. Every

RouteHandle based communication method contains an optional argument routesyncflag that is of type

ESMF_RouteSync_Flag.

The type of this flag is:

type(ESMF_RouteSync_Flag)

The valid values are:

ESMF_ROUTESYNC_BLOCKING Execute a precomputed communication pattern in blocking mode. This mode

guarantees that when the method returns all PET-local data transfers, both in-bound and out-bound, have fin-

ished.

ESMF_ROUTESYNC_NBSTART Start executing a precomputed communication pattern in non-blocking mode.

When a method returns from being called in this mode, it guarantees that all PET-local out-bound data

has been transferred. It is now safe for the user to overwrite out-bound data elements. No guarantees

are made for in-bound data elements at this stage. It is unsafe to access these elements until a call in

ESMF_ROUTESYNC_NBTESTFINISH mode has been issued and has returned with finishedflag equal

to .true., or a call in ESMF_ROUTESYNC_NBWAITFINISH mode has been issued and has returned.

1288

ESMF_ROUTESYNC_NBTESTFINISH Test whether the transfer of data of a precomputed communication pat-

tern, started with ESMF_ROUTESYNC_NBSTART, has completed. Finish up as much as possible and set the

finishedflag to .true. if all data operations have completed, or .false. if there are still outstanding

transfers. Only after a finishedflag equal to .true. has been returned is it safe to access any of the

in-bound data elements.

ESMF_ROUTESYNC_NBWAITFINISH Wait (i.e. block) until the transfer of data of a precomputed communica-

tion pattern, started with ESMF_ROUTESYNC_NBSTART, has completed. Finish up all data operations and set

the returned finishedflag to .true.. It is safe to access any of the in-bound data elements once the call

has returned.

ESMF_ROUTESYNC_CANCEL Cancel outstanding transfers for a precomputed communication pattern.

52.52 ESMF_SERVICEREPLY

This flag is documented in section 48.2.2.

52.53 ESMF_STAGGERLOC

This flag is documented in section 31.2.6.

52.54 ESMF_STARTREGION

DESCRIPTION:

Specifies the start of the effective halo region of an Array or Field object.

The type of this flag is:

type(ESMF_StartRegion_Flag)

The valid values are:

ESMF_STARTREGION_EXCLUSIVE Region of elements that are exclusively owned by the local DE.

ESMF_STARTREGION_COMPUTATIONAL User defined region, greater or equal to the exclusive region.

52.55 ESMF_STATEINTENT

This flag is documented in section 21.2.1.

52.56 ESMF_STATEITEM

This flag is documented in section 21.2.2.

1289

52.57 ESMF_SYNC

DESCRIPTION:

Indicates method blocking behavior and PET synchronization for VM communication methods, as well as for standard

Component methods, such as Initialize(), Run() and Finalize().

For VM communication calls the ESMF_SYNC_BLOCKING and ESMF_SYNC_NONBLOCKING modes provide be-

havior that is practically identical to the blocking and non-blocking communication calls familiar from MPI.

The details of how the blocking mode setting affects Component methods are more complex. This is a consequence

of the fact that ESMF Components can be executed in threaded or non-threaded mode. However, in the default,

non-threaded case, where an ESMF application runs as a pure MPI or mpiuni program, most of the complexity is

removed.

See the VM item in 6.5 for an explanation of the PET and VAS concepts used in the following descriptions.

The type of this flag is:

type(ESMF_Sync_Flag)

The valid values are:

ESMF_SYNC_BLOCKING Communication calls: The called method will block until all (PET-)local operations

are complete. After the return of a blocking communication method it is safe to modify or use all participating

local data.

Component calls: The called method will block until all PETs of the VM have completed the operation.

For a non-threaded, pure MPI component the behavior is identical to calling a barrier before returning from

the method. Generally this kind of rigid synchronization is not the desirable mode of operation for an MPI

application, but may be useful for application debugging. In the opposite case, where all PETs of the component

are running as threads in shared memory, i.e. in a single VAS, strict synchronization of all PETs is required to

prevent race conditions.

ESMF_SYNC_VASBLOCKING Communication calls: Not available for communication calls.

Component calls: The called method will block each PET until all operations in the PET-local VAS have com-

pleted.

This mode is a combination of ESMF_SYNC_BLOCKING and ESMF_SYNC_NONBLOCKING modes. It pro-

vides a default setting that leads to the typically desirable behavior for pure MPI components as well as those

that share address spaces between PETs.

For a non-threaded, pure MPI component each PET returns independent of the other PETs. This is generally

the expected behavior in the pure MPI case where calling into a component method is practically identical to a

subroutine call without extra synchronization between the processes.

In the case where some PETs of the component are running as threads in shared memory

ESMF_SYNC_VASBLOCKING becomes identical to ESMF_SYNC_BLOCKING within thread groups, to pre-

vent race conditions, while there is no synchronization between the thread groups.

ESMF_SYNC_NONBLOCKING Communication calls: The called method will not block but returns immediately

after initiating the requested operation. It is unsafe to modify or use participating local data before all local

operations have completed. Use the ESMF_VMCommWait() or ESMF_VMCommQueueWait() method to

block the local PET until local data access is safe again.

Component calls: The behavior of this mode is fundamentally different for threaded and non-threaded compo-

nents, independent on whether the components use shared memory or not. The ESMF_SYNC_NONBLOCKING

1290

mode is the most complex mode for calling component methods and should only be used if the extra control,

described below, is absolutely necessary.

For non-threaded components (the ESMF default) calling a component method with

ESMF_SYNC_NONBLOCKING is identical to calling it with ESMF_SYNC_VASBLOCKING. However, different

than for ESMF_SYNC_VASBLOCKING, a call to ESMF_GridCompWait() or ESMF_CplCompWait() is

required in order to deallocate memory internally allocated for the ESMF_SYNC_NONBLOCKING mode.

For threaded components the calling PETs of the parent component will not be blocked and return immediately

after initiating the requested child component method. In this scenario parent and child components will run

concurrently in identical VASs. This is the most complex mode of operation. It is unsafe to modify or use

VAS local data that may be accessed by concurrently running components until the child component method

has completed. Use the appropriate ESMF_GridCompWait() or ESMF_CplCompWait() method to block

the local parent PET until the child component method has completed in the local VAS.

52.58 ESMF_TERMORDER

DESCRIPTION:

Specifies the order of source terms in a destination sum, e.g. during sparse matrix multiplication.

The type of this flag is:

type(ESMF_TermOrder_Flag)

The valid values are:

ESMF_TERMORDER_SRCSEQ The source terms are in strict ascending order according to their source sequence

index.

ESMF_TERMORDER_SRCPET The source terms are first ordered according to their distribution across the source

side PETs: for each destination PET the source PET order starts with the localPet and decrements from there,

modulo petCount, until all petCount PETs are accounted for. The term order within each source PET is given

by the source term sequence index.

ESMF_TERMORDER_FREE There is no prescribed term order. The source terms may be summed in any order

that optimizes performance.

52.59 ESMF_TYPEKIND

DESCRIPTION:

Named constants used to indicate type and kind combinations supported by the overloaded ESMF interfaces. The

corresponding Fortran kind-parameter constants are described in section 52.33.

The type of these named constants is:

type(ESMF_TypeKind_Flag)

The named constants numerical types are:

ESMF_TYPEKIND_I1 Indicates 1 byte integer.

(Only available if ESMF was built with ESMF_NO_INTEGER_1_BYTE = FALSE. This is not the default.)

ESMF_TYPEKIND_I2 Indicates 2 byte integer.

(Only available if ESMF was built with ESMF_NO_INTEGER_2_BYTE = FALSE. This is not the default.)

1291

ESMF_TYPEKIND_I4 Indicates 4 byte integer.

ESMF_TYPEKIND_I8 Indicates 8 byte integer.

ESMF_TYPEKIND_R4 Indicates 4 byte real.

ESMF_TYPEKIND_R8 Indicates 8 byte real.

The named constants non-numerical types are:

ESMF_TYPEKIND_LOGICAL Indicates a logical value.

ESMF_TYPEKIND_CHARACTER Indicates a character string.

52.60 ESMF_UNMAPPEDACTION

DESCRIPTION:

Indicates what action to take with respect to unmapped destination points and the entries of the sparse matrix that

correspond to these points.

The type of this flag is:

type(ESMF_UnmappedAction_Flag)

The valid values are:

ESMF_UNMAPPEDACTION_ERROR An error is issued when there exist destination points in a regridding oper-

ation that are not mapped by corresponding source points.

ESMF_UNMAPPEDACTION_IGNORE Destination points which do not have corresponding source points are

ignored and zeros are used for the entries of the sparse matrix that is generated.

52.61 ESMF_VERSION

DESCRIPTION:

The following named constants define the precise version of ESMF in use.

ESMF_VERSION_BETASNAPSHOT Constant of type logical indicating beta snapshot phase (.true. for

any version during the pre-release development phase, .false. for any released version of the software).

ESMF_VERSION_MAJOR Constant of type integer indicating the major version number (e.g. 5 for v5.2.0r).

ESMF_VERSION_MINOR Constant of type integer indicating the minor version number (e.g. 2 for v5.2.0r).

ESMF_VERSION_PATCHLEVEL Constant of type integer indicating the patch level of a specific revision (e.g.

0 for v5.2.0r, or 1 for v5.2.0rp1).

ESMF_VERSION_PUBLIC Constant of type logical indicating public vs. internal release status (e.g. .true.

for v5.2.0r, or .false. for v5.2.0).

ESMF_VERSION_REVISION Constant of type integer indicating the revision number (e.g. 0 for v5.2.0r).

ESMF_VERSION_STRING Constant of type character holding the exact release version string (e.g. "5.2.0r").

1292

52.62 ESMF_VMEPOCH

This flag is documented in section 49.2.1.

52.63 ESMF_XGRIDSIDE

This flag is documented in section 34.2.1.

53 Appendix B: A Brief Introduction to UML

The schematic below shows the Unified Modeling Language (UML) notation for the class diagrams presented in this

Reference Manual. For more on UML, see references such as The Unified Modeling Language Reference Manual,

Rumbaugh et al, [32].

1293

ClassB

ClassA

Public class. This is a class whose methods can be called by the user. In Fortran

a public class is usually associated with a derived type and a corresponding

module that contains class methods and flags.

Private class. This type of class does not have methods that should be called by

the user. Like a public class it is usually associated with a derived type and a

corresponding module.

A line indicates some sort of association among classes.

A hollow diamond at one end of a line drawn between classes represents an

association called aggregation. Aggregation is a part-whole relationship that can

be read as “the class at the end of the line without the diamond is part of the class

at the end of the line with the diamond.” The class that is the “part” can be

created and destroyed separately, and it is usually implemented as a reference

contained with the structure of the class that is the “whole.”

A filled diamond at one end of a line drawn between classes represents an

association called composition. Composition is a part-whole relationship that is

similar to aggregation, but stronger. It implies that that class that is the “part” is

created and destroyed by the class that is the “whole.” It is often implemented as

a structure within part of the contiguous memory of a larger structure.

Multiplicity indicators at association line ends show how many classes on the one

end are associated with how many classes on the other end.

Field

0..1

0..n

This simple diagram shows that a public class called Field is associated with

another public class, called Grid. The aggregation relationship indicated by the

unfilled diamond means that a Field contains a Grid, but that a Grid can be

created and destroyed outside of a Field. The diagram multiplicities show that a

Field can be associated with no Grid or with one Grid, but that a single Grid can

be associated with any number of Fields.

1
 1..n

Grid

Comp

GridComp

The triangle indicates an inheritance relationship. Inheritance means that a child

class shares a set of characteristics (such as the same attributes or methods) with a

parent class. The child can specialize and extend the behavior of the parent. This

diagram shows a GridComp class that inherits from a more general Comp class.

54 Appendix C: ESMF Error Return Codes

The tables below show the possible error return codes for Fortran and C methods.

=====================================

Fortran Symmetric Return Codes 1-500

=====================================

1294

ESMF_SUCCESS 0

ESMF_RC_OBJ_BAD 1

ESMF_RC_OBJ_INIT 2

ESMF_RC_OBJ_CREATE 3

ESMF_RC_OBJ_COR 4

ESMF_RC_OBJ_WRONG 5

ESMF_RC_ARG_BAD 6

ESMF_RC_ARG_RANK 7

ESMF_RC_ARG_SIZE 8

ESMF_RC_ARG_VALUE 9

ESMF_RC_ARG_DUP 10

ESMF_RC_ARG_SAMETYPE 11

ESMF_RC_ARG_SAMECOMM 12

ESMF_RC_ARG_INCOMP 13

ESMF_RC_ARG_CORRUPT 14

ESMF_RC_ARG_WRONG 15

ESMF_RC_ARG_OUTOFRANGE 16

ESMF_RC_ARG_OPT 17

ESMF_RC_NOT_IMPL 18

ESMF_RC_FILE_OPEN 19

ESMF_RC_FILE_CREATE 20

ESMF_RC_FILE_READ 21

ESMF_RC_FILE_WRITE 22

ESMF_RC_FILE_UNEXPECTED 23

ESMF_RC_FILE_CLOSE 24

ESMF_RC_FILE_ACTIVE 25

ESMF_RC_PTR_NULL 26

ESMF_RC_PTR_BAD 27

ESMF_RC_PTR_NOTALLOC 28

ESMF_RC_PTR_ISALLOC 29

ESMF_RC_MEM 30

ESMF_RC_MEM_ALLOCATE 31

ESMF_RC_MEM_DEALLOCATE 32

ESMF_RC_MEMC 33

ESMF_RC_DUP_NAME 34

ESMF_RC_LONG_NAME 35

ESMF_RC_LONG_STR 36

ESMF_RC_COPY_FAIL 37

ESMF_RC_DIV_ZERO 38

ESMF_RC_CANNOT_GET 39

ESMF_RC_CANNOT_SET 40

ESMF_RC_NOT_FOUND 41

ESMF_RC_NOT_VALID 42

ESMF_RC_INTNRL_LIST 43

ESMF_RC_INTNRL_INCONS 44

ESMF_RC_INTNRL_BAD 45

ESMF_RC_SYS 46

ESMF_RC_BUSY 47

ESMF_RC_LIB 48

ESMF_RC_LIB_NOT_PRESENT 49

ESMF_RC_ATTR_UNUSED 50

ESMF_RC_OBJ_NOT_CREATED 51

ESMF_RC_OBJ_DELETED 52

ESMF_RC_NOT_SET 53

1295

ESMF_RC_VAL_WRONG 54

ESMF_RC_VAL_ERRBOUND 55

ESMF_RC_VAL_OUTOFRANGE 56

ESMF_RC_ATTR_NOTSET 57

ESMF_RC_ATTR_WRONGTYPE 58

ESMF_RC_ATTR_ITEMSOFF 59

ESMF_RC_ATTR_LINK 60

ESMF_RC_BUFFER_SHORT 61

ESMF_RC_TIMEOUT 62

ESMF_RC_FILE_EXISTS 63

ESMF_RC_FILE_NOTDIR 64

ESMF_RC_MOAB_ERROR 65

ESMF_RC_NOOP 66

ESMF_RC_NETCDF_ERROR 67

68-499 reserved for future Fortran symmetric return code definitions

=====================================

C/C++ Symmetric Return Codes 501-999

=====================================

ESMC_RC_OBJ_BAD 501

ESMC_RC_OBJ_INIT 502

ESMC_RC_OBJ_CREATE 503

ESMC_RC_OBJ_COR 504

ESMC_RC_OBJ_WRONG 505

ESMC_RC_ARG_BAD 506

ESMC_RC_ARG_RANK 507

ESMC_RC_ARG_SIZE 508

ESMC_RC_ARG_VALUE 509

ESMC_RC_ARG_DUP 510

ESMC_RC_ARG_SAMETYPE 511

ESMC_RC_ARG_SAMECOMM 512

ESMC_RC_ARG_INCOMP 513

ESMC_RC_ARG_CORRUPT 514

ESMC_RC_ARG_WRONG 515

ESMC_RC_ARG_OUTOFRANGE 516

ESMC_RC_ARG_OPT 517

ESMC_RC_NOT_IMPL 518

ESMC_RC_FILE_OPEN 519

ESMC_RC_FILE_CREATE 520

ESMC_RC_FILE_READ 521

ESMC_RC_FILE_WRITE 522

ESMC_RC_FILE_UNEXPECTED 523

ESMC_RC_FILE_CLOSE 524

ESMC_RC_FILE_ACTIVE 525

ESMC_RC_PTR_NULL 526

ESMC_RC_PTR_BAD 527

ESMC_RC_PTR_NOTALLOC 528

ESMC_RC_PTR_ISALLOC 529

ESMC_RC_MEM 530

ESMC_RC_MEM_ALLOCATE 531

ESMC_RC_MEM_DEALLOCATE 532

ESMC_RC_MEMC 533

ESMC_RC_DUP_NAME 534

1296

ESMC_RC_LONG_NAME 535

ESMC_RC_LONG_STR 536

ESMC_RC_COPY_FAIL 537

ESMC_RC_DIV_ZERO 538

ESMC_RC_CANNOT_GET 539

ESMC_RC_CANNOT_SET 540

ESMC_RC_NOT_FOUND 541

ESMC_RC_NOT_VALID 542

ESMC_RC_INTNRL_LIST 543

ESMC_RC_INTNRL_INCONS 544

ESMC_RC_INTNRL_BAD 545

ESMC_RC_SYS 546

ESMC_RC_BUSY 547

ESMC_RC_LIB 548

ESMC_RC_LIB_NOT_PRESENT 549

ESMC_RC_ATTR_UNUSED 550

ESMC_RC_OBJ_NOT_CREATED 551

ESMC_RC_OBJ_DELETED 552

ESMC_RC_NOT_SET 553

ESMC_RC_VAL_WRONG 554

ESMC_RC_VAL_ERRBOUND 555

ESMC_RC_VAL_OUTOFRANGE 556

ESMC_RC_ATTR_NOTSET 557

ESMC_RC_ATTR_WRONGTYPE 558

ESMC_RC_ATTR_ITEMSOFF 559

ESMC_RC_ATTR_LINK 560

ESMC_RC_BUFFER_SHORT 561

ESMC_RC_TIMEOUT 562

ESMC_RC_FILE_EXISTS 563

ESMC_RC_FILE_NOTDIR 564

ESMC_RC_MOAB_ERROR 565

ESMC_RC_NOOP 566

ESMC_RC_NETCDF_ERROR 567

568-999 reserved for future C/C++ symmetric return code definitions

=====================================

C/C++ Non-symmetric Return Codes 1000

=====================================

ESMC_RC_OPTARG_BAD 1000

55 Appendix D: Attribute Class Legacy API

Documentation for the legacy ESMF_Attribute Class. It is recommended that users use or migrate to the

ESMF_Info class (see section 39).

1297

55.0.1 ESMF_ATTCOPY

DESCRIPTION:

Indicates which type of copy behavior is used when copying ESMF Attribute objects.

The type of this flag is:

type(ESMF_AttCopy_Flag)

The valid values are:

ESMF_ATTCOPY_REFERENCE The destination Attribute hierarchy becomes a reference copy of the Attribute

hierarchy of the source object. Any further changes to one will also be reflected in the other.

ESMF_ATTCOPY_VALUE All of the Attributes and Attribute packages of the source object will be copied by value

to the destination object. None of the Attribute links to the Attribute hierarchies of other objects are copied to

the destination object.

55.0.2 ESMF_ATTGETCOUNT

DESCRIPTION:

Indicates which type of Attribute object count to return.

The type of this flag is:

type(ESMF_AttGetCountFlag)

The valid values are:

ESMF_ATTGETCOUNT_ATTRIBUTE This option will allow the routine to return the number of single At-

tributes.

ESMF_ATTGETCOUNT_ATTPACK This option will allow the routine to return the number of Attribute packages.

ESMF_ATTGETCOUNT_TOTAL This option will allow the routine to return the total number of Attributes.

55.0.3 ESMF_ATTWRITE

DESCRIPTION:

Indicates which file format to use in the write operation.

The type of this flag is:

type(ESMF_AttWriteFlag)

The valid values are:

ESMF_ATTWRITE_JSON This option will allow the routine to write in JSON format.

55.0.4 ESMF_AttributeAdd - Add an ESMF Attribute package

INTERFACE:

1298

! Private name; call using ESMF_AttributeAdd()

subroutine ESMF_AttAddPackInfo(info, convention, purpose, attrList, &

nestConvention, nestPurpose, attpack, rc)

ARGUMENTS:

type(<ESMF_Info>), intent(inout) :: info

character (len = *), intent(in) :: convention

character (len = *), intent(in) :: purpose

character (len = *), intent(in), optional :: attrList(:)

character (len = *), intent(in) optional :: nestConvention

character (len = *), intent(in) optional :: nestPurpose

type(ESMF_AttPack), intent(out), optional :: attpack

integer, intent(inout), optional :: rc

DESCRIPTION:

Add an ESMF Attribute package.

The arguments are:

info An ESMF_Info object.

convention The convention of the new Attribute package.

purpose The purpose of the new Attribute package.

[attrList] The list of Attribute names to add to the Attribute package.

[nestConvention] The convention(s) of the standard Attribute package(s) around which to nest the new Attribute
package.

[nestPurpose] The purpose(s) of the standard Attribute package(s) around which to nest the new Attribute package.

[attpack] An optional handle to the Attribute package that is to be created.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

55.0.5 ESMF_AttributeAdd - Add a nested ESMF Attribute package

INTERFACE:

! Private name; call using ESMF_AttributeAdd()

subroutine ESMF_AttAddPackStd(target, convention, purpose, attrList, &

nestConvention, nestPurpose, attpack, rc)

ARGUMENTS:

type(<object>), intent(inout) :: target

character (len = *), intent(in) :: convention

character (len = *), intent(in) :: purpose

1299

character (len = *), intent(in), optional :: attrList(:)

character (len = *), intent(in) optional :: nestConvention

character (len = *), intent(in) optional :: nestPurpose

type(ESMF_AttPack), intent(out), optional :: attpack

integer, intent(inout), optional :: rc

DESCRIPTION:

Add an ESMF Attribute package containing a nested Attribute package.

Supported values for <object> are:

ESMF_Array

ESMF_ArrayBundle

ESMF_CplComp

ESMF_GridComp

ESMF_SciComp

ESMF_DistGrid

ESMF_Field

ESMF_FieldBundle

ESMF_Grid

ESMF_State

ESMF_LocStream

ESMF_Mesh

The arguments are:

target An ESMF object.

convention The convention of the new Attribute package.

purpose The purpose of the new Attribute package.

[attrList] The list of Attribute names to add to the Attribute package.

[nestConvention] The convention(s) of the standard Attribute package(s) around which to nest the new Attribute
package.

[nestPurpose] The purpose(s) of the standard Attribute package(s) around which to nest the new Attribute package.

[attpack] An optional handle to the Attribute package that is to be created.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

1300

55.0.6 ESMF_AttributeCopy - Copy an Attribute hierarchy

INTERFACE:

! Private name; call using ESMF_AttributeCopy()

subroutine ESMF_AttributeCopy(src, dst, attcopy, rc)

ARGUMENTS:

type(<object>), intent(in) :: src

type(<object>), intent(inout) :: dst

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_AttCopy_Flag), intent(in), optional :: attcopy

integer, intent(out), optional :: rc

DESCRIPTION:

Copy an Attribute hierarchy from src to dst.

Supported values for <object> are:

ESMF_Array

ESMF_ArrayBundle

ESMF_CplComp

ESMF_GridComp

ESMF_SciComp

ESMF_DistGrid

ESMF_Field

ESMF_FieldBundle

ESMF_Grid

ESMF_State

ESMF_LocStream

ESMF_Mesh

NOTE: Copies between different ESMF object types are not possible.

The arguments are:

src An Attribute-bearing ESMF object.

dst An Attribute-bearing ESMF object.

[attcopy] A flag to determine if the copy is by value (the default) or reference. This flag is documented in section
55.0.1.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

1301

55.0.7 ESMF_AttributeGet - Get an Attribute from an ESMF_AttPack

INTERFACE:

subroutine ESMF_AttributeGet(target, name, attpack, <value> &

<defaultvalue>, attnestflag, isPresent, rc)

ARGUMENTS:

type(<object>), intent(in) :: target

character (len = *), intent(in) :: name

type(ESMF_AttPack), intent(inout) :: attpack

<value>, see below for supported values

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

<defaultvalue>, see below for supported values

type(ESMF_AttNest_Flag),intent(in), optional :: attnestflag

logical, intent(out), optional :: isPresent

integer, intent(inout), optional :: rc

DESCRIPTION:

Return an Attribute value from the target, or from an Attribute package on the target, specified by attpack.
A defaultvalue argument may be given if a return code is not desired when the Attribute is not found.

Supported values for <object> are:

ESMF_Array

ESMF_ArrayBundle

ESMF_CplComp

ESMF_GridComp

ESMF_SciComp

ESMF_DistGrid

ESMF_Field

ESMF_FieldBundle

ESMF_Grid

ESMF_State

ESMF_LocStream

ESMF_Mesh

Supported types for <value> and <defaultvalue> are:

integer(ESMF_KIND_I4), intent(out)

integer(ESMF_KIND_I8), intent(out)

1302

real (ESMF_KIND_R4), intent(out)

real (ESMF_KIND_R8), intent(out)

logical, intent(out)

character (len = *), intent(out)

The arguments are:

target An ESMF object.

name The name of the Attribute to retrieve.

attpack A handle to the Attribute package.

<value> The value of the named Attribute.

[<defaultvalue>] The default value of the named Attribute.

[attnestflag] A flag to determine whether to descend the Attribute hierarchy when looking for this Attribute, the
default is ESMF_ATTNEST_ON. This flag is documented in section 52.5.

[isPresent] A logical flag to tell if this Attribute is present or not.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

55.0.8 ESMF_AttributeGet - Get an Attribute from an ESMF_AttPack

INTERFACE:

subroutine ESMF_AttributeGet(target, name, attpack, <valueList>, &

<defaultvalueList>, attnestflag, itemCount, &

isPresent, rc)

ARGUMENTS:

type(<object>), intent(in) :: target

character (len = *), intent(in) :: name

type(ESMF_AttPack), intent(inout) :: attpack

<valueList>, see below for supported values

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

<defaultvalueList>, see below for supported values

type(ESMF_AttNest_Flag),intent(in), optional :: attnestflag

integer, intent(out), optional :: itemCount

logical, intent(out), optional :: isPresent

integer, intent(inout), optional :: rc

DESCRIPTION:

Return an Attribute valueList from the target, or from an Attribute package on the target, specified by
attpack. A defaultvalueList list argument may be given if a return code is not desired when the Attribute is
not found.

Supported values for <object> are:

1303

ESMF_Array

ESMF_ArrayBundle

ESMF_CplComp

ESMF_GridComp

ESMF_SciComp

ESMF_DistGrid

ESMF_Field

ESMF_FieldBundle

ESMF_Grid

ESMF_State

ESMF_LocStream

ESMF_Mesh

Supported types for <valueList> and <defaultvalueList> are:

integer(ESMF_KIND_I4), intent(out), dimension(:)

integer(ESMF_KIND_I8), intent(out), dimension(:)

real(ESMF_KIND_R4), intent(out), dimension(:)

real(ESMF_KIND_R8), intent(out), dimension(:)

logical, intent(out), dimension(:)

character(len=*), intent(out), dimension(:)

The arguments are:

target An ESMF object.

name The name of the Attribute to retrieve.

attpack A handle to the Attribute package.

<valueList> The valueList of the named Attribute.

[<defaultvalueList>] The default value list of the named Attribute.

[attnestflag] A flag to determine whether to descend the Attribute hierarchy when looking for this Attribute, the
default is ESMF_ATTNEST_ON. This flag is documented in section 52.5.

[itemCount] The number of items in a multi-valued Attribute.

[isPresent] A logical flag to tell if this Attribute is present or not.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

1304

55.0.9 ESMF_AttributeGet - Get an Attribute

INTERFACE:

subroutine ESMF_AttributeGet(target, name, <value>, <defaultvalue>, &

convention, purpose, attnestflag, isPresent, rc)

ARGUMENTS:

type(<object>), intent(in) :: target

character (len = *), intent(in) :: name

<value>, see below for supported values

<defaultvalue>, see below for supported values

character (len = *), intent(in), optional :: convention

character (len = *), intent(in), optional :: purpose

type(ESMF_AttNest_Flag),intent(in), optional :: attnestflag

logical, intent(out), optional :: isPresent

integer, intent(inout), optional :: rc

STATUS: The following parameters were removed in ESMF version 8.1.0:

• attPackInstanceName

DESCRIPTION:

Return an Attribute value from the target, or from an Attribute package on the target, specified by
convention and purpose. A defaultvalue argument may be given if a return code is not desired when
the Attribute is not found.

Supported values for <object> are:

ESMF_Array

ESMF_ArrayBundle

ESMF_CplComp

ESMF_GridComp

ESMF_SciComp

ESMF_DistGrid

ESMF_Field

ESMF_FieldBundle

ESMF_Grid

ESMF_State

ESMF_LocStream

ESMF_Mesh

1305

Supported types for <value> and <defaultvalue> are:

integer(ESMF_KIND_I4), intent(out)

integer(ESMF_KIND_I8), intent(out)

real (ESMF_KIND_R4), intent(out)

real (ESMF_KIND_R8), intent(out)

logical, intent(out)

character (len = *), intent(out)

The arguments are:

target An ESMF object.

name The name of the Attribute to retrieve.

<value> The value of the named Attribute.

[<defaultvalue>] The default value of the named Attribute.

[convention] The convention of the Attribute package.

[purpose] The purpose of the Attribute package.

[attnestflag] A flag to determine whether to descend the Attribute hierarchy when looking for this Attribute, the
default is ESMF_ATTNEST_ON. This flag is documented in section 52.5.

[isPresent] A logical flag to tell if this Attribute is present or not.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

55.0.10 ESMF_AttributeGet - Get an Attribute

INTERFACE:

subroutine ESMF_AttributeGet(target, name, <valueList>, <defaultvalueList>, &

convention, purpose, attnestflag, itemCount, isPresent, rc)

ARGUMENTS:

type(<object>), intent(in) :: target

character (len = *), intent(in) :: name

<valueList>, see below for supported values

<defaultvalueList>, see below for supported values

character (len = *), intent(in), optional :: convention

character (len = *), intent(in), optional :: purpose

type(ESMF_AttNest_Flag),intent(in), optional :: attnestflag

integer, intent(out), optional :: itemCount

logical, intent(out), optional :: isPresent

integer, intent(inout), optional :: rc

1306

STATUS: The following parameters were removed in ESMF version 8.1.0:

• attPackInstanceName

DESCRIPTION:

Return an Attribute valueList from the target, or from an Attribute package on the target, specified by
convention and purpose. A defaultvalueList list argument may be given if a return code is not desired
when the Attribute is not found.

Supported values for <object> are:

ESMF_Array

ESMF_ArrayBundle

ESMF_CplComp

ESMF_GridComp

ESMF_SciComp

ESMF_DistGrid

ESMF_Field

ESMF_FieldBundle

ESMF_Grid

ESMF_State

ESMF_LocStream

ESMF_Mesh

Supported types for <valueList> and <defaultvalueList> are:

integer(ESMF_KIND_I4), intent(out), dimension(:)

integer(ESMF_KIND_I8), intent(out), dimension(:)

real(ESMF_KIND_R4), intent(out), dimension(:)

real(ESMF_KIND_R8), intent(out), dimension(:)

logical, intent(out), dimension(:)

character(len=*), intent(out), dimension(:)

The arguments are:

target An ESMF object.

name The name of the Attribute to retrieve.

<valueList> The valueList of the named Attribute.

[<defaultvalueList>] The default value list of the named Attribute.

1307

[convention] The convention of the Attribute package.

[purpose] The purpose of the Attribute package.

[attnestflag] A flag to determine whether to descend the Attribute hierarchy when looking for this Attribute, the
default is ESMF_ATTNEST_ON. This flag is documented in section 52.5.

[itemCount] The number of items in a multi-valued Attribute.

[isPresent] A logical flag to tell if this Attribute is present or not.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

55.0.11 ESMF_AttributeGet - Get the Attribute count from an ESMF_AttPack

INTERFACE:

! Private name; call using ESMF_AttributeGet()

subroutine ESMF_AttributeGetCount(target, attpack, count, &

attcountflag, attnestflag, rc)

ARGUMENTS:

type(<object>), intent(in) :: target

type(ESMF_AttPack), intent(inout) :: attpack

integer, intent(inout) :: count

type(ESMF_AttGetCountFlag), intent(in), optional :: attcountflag

type(ESMF_AttNest_Flag), intent(in), optional :: attnestflag

integer, intent(inout), optional :: rc

DESCRIPTION:

Return the Attribute count for target.

Supported values for <object> are:

ESMF_Array

ESMF_ArrayBundle

ESMF_CplComp

ESMF_GridComp

ESMF_SciComp

ESMF_DistGrid

ESMF_Field

ESMF_FieldBundle

ESMF_Grid

1308

ESMF_State

ESMF_LocStream

ESMF_Mesh

The arguments are:

target An ESMF object.

attpack A handle to the Attribute package.

count The number of all existing Attributes of the type designated in the attcountflag, not just Attribute that have been
set.

[attcountflag] The flag to specify which attribute count to return, the default is
ESMF_ATTGETCOUNT_ATTRIBUTE. This flag is documented in section 55.0.2.

[attnestflag] A flag to determine whether to descend the Attribute hierarchy when looking for this Attribute, the
default is ESMF_ATTNEST_ON. This flag is documented in section 52.5.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

55.0.12 ESMF_AttributeGet - Get the Attribute count

INTERFACE:

! Private name; call using ESMF_AttributeGet()

subroutine ESMF_AttributeGetCount(target, count, convention, purpose, &

attcountflag, attnestflag, rc)

ARGUMENTS:

type(<object>), intent(in) :: target

integer, intent(inout) :: count

character (len=*), intent(in), optional :: convention

character (len=*), intent(in), optional :: purpose

type(ESMF_AttGetCountFlag), intent(in), optional :: attcountflag

type(ESMF_AttNest_Flag), intent(in), optional :: attnestflag

integer, intent(inout), optional :: rc

STATUS: The following parameters were removed in ESMF version 8.1.0:

• attPackInstanceName

DESCRIPTION:

Return the Attribute count for target.

Supported values for <object> are:

1309

ESMF_Array

ESMF_ArrayBundle

ESMF_CplComp

ESMF_GridComp

ESMF_SciComp

ESMF_DistGrid

ESMF_Field

ESMF_FieldBundle

ESMF_Grid

ESMF_State

ESMF_LocStream

ESMF_Mesh

The arguments are:

target An ESMF object.

count The number of all existing Attributes of the type designated in the attcountflag, not just Attribute that have been
set.

[convention] The convention of the Attribute package.

[purpose] The purpose of the Attribute package.

[attcountflag] The flag to specify which attribute count to return, the default is
ESMF_ATTGETCOUNT_ATTRIBUTE. This flag is documented in section 55.0.2.

[attnestflag] A flag to determine whether to descend the Attribute hierarchy when looking for this Attribute, the
default is ESMF_ATTNEST_ON. This flag is documented in section 52.5.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

55.0.13 ESMF_AttributeGet - Get Attribute info by name from an ESMF_AttPack

INTERFACE:

! Private name; call using ESMF_AttributeGet()

subroutine ESMF_AttributeGetInfoByNamAP(target, name, attpack, &

attnestflag, typekind, itemCount, isPresent, rc)

ARGUMENTS:

1310

type(<object>), intent(in) :: target

character (len = *), intent(in) :: name

type(ESMF_AttPack), intent(inout) :: attpack

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_AttNest_Flag), intent(in), optional :: attnestflag

type(ESMF_TypeKind_Flag), intent(out), optional :: typekind

integer, intent(out), optional :: itemCount

logical, intent(out), optional :: isPresent

integer, intent(inout), optional :: rc

DESCRIPTION:

Return information associated with an Attribute in an Attribute package, including typekind and itemCount.

Supported values for <object> are:

ESMF_Array

ESMF_ArrayBundle

ESMF_CplComp

ESMF_GridComp

ESMF_SciComp

ESMF_DistGrid

ESMF_Field

ESMF_FieldBundle

ESMF_Grid

ESMF_State

ESMF_LocStream

ESMF_Mesh

The arguments are:

target An ESMF object.

name The name of the Attribute to query.

attpack A handle to the Attribute package.

[attnestflag] A flag to determine whether to descend the Attribute hierarchy when looking for this Attribute, the
default is ESMF_ATTNEST_ON. This flag is documented in section 52.5.

[typekind] The typekind of the Attribute. This flag is documented in section 52.59.

[itemCount] The number of items in this Attribute.

[isPresent] A logical flag to tell if this Attribute is present or not.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

1311

55.0.14 ESMF_AttributeGet - Get Attribute info by name

INTERFACE:

! Private name; call using ESMF_AttributeGet()

subroutine ESMF_AttributeGetInfoByNam(target, name, &

convention, purpose, attnestflag, typekind, itemCount, isPresent, rc)

ARGUMENTS:

type(<object>), intent(in) :: target

character (len = *), intent(in) :: name

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character (len=*), intent(in), optional :: convention

character (len=*), intent(in), optional :: purpose

type(ESMF_AttNest_Flag), intent(in), optional :: attnestflag

type(ESMF_TypeKind_Flag), intent(out), optional :: typekind

integer, intent(out), optional :: itemCount

logical, intent(out), optional :: isPresent

integer, intent(inout), optional :: rc

STATUS: The following parameters were removed in ESMF version 8.1.0:

• attPackInstanceName

DESCRIPTION:

Return information associated with the named Attribute, including typekind and itemCount.

Supported values for <object> are:

ESMF_Array

ESMF_ArrayBundle

ESMF_CplComp

ESMF_GridComp

ESMF_SciComp

ESMF_DistGrid

ESMF_Field

ESMF_FieldBundle

ESMF_Grid

ESMF_State

ESMF_LocStream

ESMF_Mesh

1312

The arguments are:

target An ESMF object.

name The name of the Attribute to query.

[convention] The convention of the Attribute package.

[purpose] The purpose of the Attribute package.

[attnestflag] A flag to determine whether to descend the Attribute hierarchy when looking for this Attribute, the
default is ESMF_ATTNEST_ON. This flag is documented in section 52.5.

[typekind] The typekind of the Attribute. This flag is documented in section 52.59.

[itemCount] The number of items in this Attribute.

[isPresent] A logical flag to tell if this Attribute is present or not.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

55.0.15 ESMF_AttributeGet - Get Attribute info by index number

INTERFACE:

! Private name; call using ESMF_AttributeGet()

subroutine ESMF_AttributeGetInfoByNum(target, attributeIndex, &

name, convention, purpose, attnestflag, typekind, itemcount, isPresent, &

rc)

ARGUMENTS:

type(<object>), intent(in) :: target

integer, intent(in) :: attributeIndex

character (len = *), intent(out) :: name

character (len = *), intent(in), optional :: convention

character (len = *), intent(in), optional :: purpose

type(ESMF_AttNest_Flag), intent(in), optional :: attnestflag

type(ESMF_TypeKind_Flag), intent(out), optional :: typekind

integer, intent(out), optional :: itemCount

logical, intent(out), optional :: isPresent

integer, intent(inout), optional :: rc

STATUS: The following parameters were removed in ESMF version 8.1.0:

• attPackInstanceName

DESCRIPTION:

Returns information associated with the indexed Attribute, including name, typekind and itemCount. Keep in
mind that these indices start from 1, as expected in a Fortran API.

Supported values for <object> are:

1313

ESMF_Array

ESMF_ArrayBundle

ESMF_CplComp

ESMF_GridComp

ESMF_SciComp

ESMF_DistGrid

ESMF_Field

ESMF_FieldBundle

ESMF_Grid

ESMF_State

ESMF_LocStream

ESMF_Mesh

The arguments are:

target An ESMF object.

attributeIndex The index number of the Attribute to query.

name The name of the Attribute.

[convention] The convention of the Attribute package.

[purpose] The purpose of the Attribute package.

[attnestflag] A flag to determine whether to descend the Attribute hierarchy when looking for this Attribute, the
default is ESMF_ATTNEST_ON. This flag is documented in section 52.5.

[typekind] The typekind of the Attribute. This flag is documented in section 52.59.

[itemCount] The number of items in this Attribute.

[isPresent] A logical flag to tell if this Attribute is present or not.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

55.0.16 ESMF_AttributeGetAttPack - Get an ESMF Attribute package object and/or query for presence

INTERFACE:

! Private name; call using ESMF_AttributeGetAttPack()

subroutine ESMF_AttGetAttPack(target, convention, purpose, &

attpack, attnestflag, isPresent, rc)

ARGUMENTS:

1314

type(<object>), intent(in) :: target

character (len = *), intent(in) :: convention

character (len = *), intent(in) :: purpose

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

type(ESMF_AttPack), intent(inout), optional :: attpack

type(ESMF_AttNest_Flag), intent(in), optional :: attnestflag

logical, intent(out), optional :: isPresent

integer, intent(out), optional :: rc

STATUS: The following parameters were removed in ESMF version 8.1.0:

• attPackInstanceName

DESCRIPTION:

Get an ESMF Attribute package object.

Supported values for <object> are:

ESMF_Array

ESMF_ArrayBundle

ESMF_CplComp

ESMF_GridComp

ESMF_SciComp

ESMF_DistGrid

ESMF_Field

ESMF_FieldBundle

ESMF_Grid

ESMF_State

ESMF_LocStream

ESMF_Mesh

The arguments are:

<object> An ESMF object.

convention The convention of the Attribute package.

purpose The purpose of the Attribute package.

[attpack] A handle to the Attribute package.

[attnestflag] A flag to determine whether to descend the Attribute hierarchy when searching for this Attribute pack-
age, the default is ESMF_ATTNEST_ON. This flag is documented in section 52.5.

[isPresent] A logical flag to tell if this Attribute package is present or not.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

1315

55.0.17 ESMF_AttributeRemove - Remove an Attribute or Attribute package using an ESMF_AttPack

INTERFACE:

subroutine ESMF_AttributeRemove(target, name, &

attpack, attnestflag, rc)

ARGUMENTS:

type(<object>), intent(inout) :: target

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

character (len = *), intent(in), optional :: name

type(ESMF_AttPack), intent(inout), optional :: attpack

type(ESMF_AttNest_Flag), intent(in), optional :: attnestflag

integer, intent(inout), optional :: rc

DESCRIPTION:

Remove an Attribute, or Attribute package on target.

Supported values for <object> are:

ESMF_Array

ESMF_ArrayBundle

ESMF_CplComp

ESMF_GridComp

ESMF_SciComp

ESMF_DistGrid

ESMF_Field

ESMF_FieldBundle

ESMF_Grid

ESMF_State

ESMF_LocStream

ESMF_Mesh

The arguments are:

target An ESMF object.

[name] The name of the Attribute to remove.

attpack A handle to the Attribute package.

[attnestflag] A flag to determine whether to descend the Attribute hierarchy when searching for this Attribute pack-
age, the default is ESMF_ATTNEST_ON. This flag is documented in section 52.5.

1316

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

NOTE: An entire Attribute package can be removed by specifying attpack only, without name. By specifying
attpack an Attribute will be removed from the corresponding Attribute package, if it exists. An Attribute can be
removed directly from target by specifying name, without attpack.

55.0.18 ESMF_AttributeRemove - Remove an Attribute or Attribute package

INTERFACE:

subroutine ESMF_AttributeRemove(target, name, convention, purpose, &

attnestflag, rc)

ARGUMENTS:

type(<object>), intent(inout) :: target

character (len = *), intent(in), optional :: name

character (len = *), intent(in), optional :: convention

character (len = *), intent(in), optional :: purpose

type(ESMF_AttNest_Flag), intent(in), optional :: attnestflag

integer, intent(inout), optional :: rc

STATUS: The following parameters were removed in ESMF version 8.1.0:

• attPackInstanceName

DESCRIPTION:

Remove an Attribute, or Attribute package on target.

Supported values for <object> are:

ESMF_Array

ESMF_ArrayBundle

ESMF_CplComp

ESMF_GridComp

ESMF_SciComp

ESMF_DistGrid

ESMF_Field

ESMF_FieldBundle

ESMF_Grid

ESMF_State

1317

ESMF_LocStream

ESMF_Mesh

The arguments are:

target An ESMF object.

[name] The name of the Attribute to remove.

[convention] The convention of the Attribute package.

[purpose] The purpose of the Attribute package.

[attnestflag] A flag to determine whether to descend the Attribute hierarchy when searching for this Attribute pack-
age, the default is ESMF_ATTNEST_ON. This flag is documented in section 52.5.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

NOTE: An entire Attribute package can be removed by specifying convention, purpose, and
attPackInstanceName only, without name. An Attribute can be removed directly from <object> by specify-
ing name, without convention, purpose, and attPackInstanceName.

55.0.19 ESMF_AttributeSet - Set an Attribute in an ESMF_AttPack

INTERFACE:

subroutine ESMF_AttributeSet(target, name, <value>, attpack, &

itemcount, attnestflag, rc)

ARGUMENTS:

type(<object>), intent(in) :: target

character (len = *), intent(in) :: name

<value>, see below for supported values

type(ESMF_AttPack), intent(inout) :: attpack

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: itemcount

type(ESMF_AttNest_Flag), intent(in), optional :: attnestflag

integer, intent(inout), optional :: rc

DESCRIPTION:

Attach an Attribute to target, or set an Attribute in an Attribute package. The Attribute has a name and value,
and, if in an Attribute package, a attpack.

The itemcount and attnestflag are NOOP. The target is a NOOP if the attpack is used.

Supported values for <object> are:

ESMF_Array

1318

ESMF_ArrayBundle

ESMF_CplComp

ESMF_GridComp

ESMF_SciComp

ESMF_DistGrid

ESMF_Field

ESMF_FieldBundle

ESMF_Grid

ESMF_State

ESMF_LocStream

ESMF_Mesh

Supported types for <value> and <defaultvalue> are:

integer(ESMF_KIND_I4), intent(out)

integer(ESMF_KIND_I8), intent(out)

real (ESMF_KIND_R4), intent(out)

real (ESMF_KIND_R8), intent(out)

logical, intent(out)

character (len = *), intent(out)

The arguments are:

target An ESMF object.

name The name of the Attribute to set.

<value> The value of the Attribute to set.

attpack A handle to the Attribute package.

[itemcount] This parameter is only included for backward compatibility, it is NOOP.

[attnestflag] This parameter is only included for backward compatibility, it is NOOP.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

1319

55.0.20 ESMF_AttributeSet - Set an Attribute in an ESMF_AttPack

INTERFACE:

subroutine ESMF_AttributeSet(target, name, <valueList>, attpack, &

itemCount, attnestflag, rc)

ARGUMENTS:

type(<object>), intent(in) :: target

character (len = *), intent(in) :: name

<valueList>, see below for supported values

type(ESMF_AttPack), intent(inout) :: attpack

-- The following arguments require argument keyword syntax (e.g. rc=rc). --

integer, intent(in), optional :: itemcount

type(ESMF_AttNest_Flag), intent(in), optional :: attnestflag

integer, intent(inout), optional :: rc

DESCRIPTION:

Attach an Attribute to target, or set an Attribute in an Attribute package. The Attribute has a name and a
valueList, with an itemCount, and, if in an Attribute package, a attpack.

The itemcount and attnestflag are NOOP. The target is a NOOP if the attpack is used.

Supported values for <object> are:

ESMF_Array

ESMF_ArrayBundle

ESMF_CplComp

ESMF_GridComp

ESMF_SciComp

ESMF_DistGrid

ESMF_Field

ESMF_FieldBundle

ESMF_Grid

ESMF_State

ESMF_LocStream

ESMF_Mesh

Supported types for <valueList> and <defaultvalueList> are:

integer(ESMF_KIND_I4), intent(out), dimension(:)

integer(ESMF_KIND_I8), intent(out), dimension(:)

1320

real(ESMF_KIND_R4), intent(out), dimension(:)

real(ESMF_KIND_R8), intent(out), dimension(:)

logical, intent(out), dimension(:)

character(len=*), intent(out), dimension(:)

The arguments are:

target An ESMF object.

name The name of the Attribute to set.

<valueList> The valueList of the Attribute to set.

attpack A handle to the Attribute package.

[itemcount] This parameter is only included for backward compatibility, it is NOOP.

[attnestflag] This parameter is only included for backward compatibility, it is NOOP.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

55.0.21 ESMF_AttributeSet - Set an Attribute

INTERFACE:

subroutine ESMF_AttributeSet(target, name, <value>, &

convention, purpose, itemcount, attnestflag, rc)

ARGUMENTS:

type(<object>), intent(inout) :: target

character (len = *), intent(in) :: name

<value>, see below for supported values

character (len = *), intent(in), optional :: convention

character (len = *), intent(in), optional :: purpose

integer, intent(in), optional :: itemcount

type(ESMF_AttNest_Flag), intent(in), optional :: attnestflag

integer, intent(inout), optional :: rc

STATUS: The following parameters were removed in ESMF version 8.1.0:

• attPackInstanceName

DESCRIPTION:

Attach an Attribute to target, or set an Attribute in an Attribute package. The Attribute has a name and value,
and, if in an Attribute package, convention and purpose.

The itemcount and attnestflag are NOOP.

Supported values for <object> are:

1321

ESMF_Array

ESMF_ArrayBundle

ESMF_CplComp

ESMF_GridComp

ESMF_SciComp

ESMF_DistGrid

ESMF_Field

ESMF_FieldBundle

ESMF_Grid

ESMF_State

ESMF_LocStream

ESMF_Mesh

Supported types for <value> and <defaultvalue> are:

integer(ESMF_KIND_I4), intent(out)

integer(ESMF_KIND_I8), intent(out)

real (ESMF_KIND_R4), intent(out)

real (ESMF_KIND_R8), intent(out)

logical, intent(out)

character (len = *), intent(out)

The arguments are:

target An ESMF object.

name The name of the Attribute to set.

<value argument> The value of the Attribute to set.

[convention] The convention of the Attribute package.

[purpose] The purpose of the Attribute package.

[itemcount] This parameter is only included for backward compatibility, it is NOOP.

[attnestflag] This parameter is only included for backward compatibility, it is NOOP.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

1322

55.0.22 ESMF_AttributeSet - Set an Attribute

INTERFACE:

subroutine ESMF_AttributeSet(target, name, <valueList>, &

convention, purpose, itemCount, attnestflag, rc)

ARGUMENTS:

type(<object>), intent(inout) :: target

character (len = *), intent(in) :: name

<valueList>, see below for supported values

character (len = *), intent(in), optional :: convention

character (len = *), intent(in), optional :: purpose

integer, intent(in), optional :: itemcount

type(ESMF_AttNest_Flag), intent(in), optional :: attnestflag

integer, intent(inout), optional :: rc

STATUS: The following parameters were removed in ESMF version 8.1.0:

• attPackInstanceName

DESCRIPTION:

Attach an Attribute to target, or set an Attribute in an Attribute package. The Attribute has a name and a
valueList, with an itemCount, and, if in an Attribute package, convention and purpose.

The itemcount and attnestflag are NOOP.

Supported values for <object> are:

ESMF_Array

ESMF_ArrayBundle

ESMF_CplComp

ESMF_GridComp

ESMF_SciComp

ESMF_DistGrid

ESMF_Field

ESMF_FieldBundle

ESMF_Grid

ESMF_State

ESMF_LocStream

ESMF_Mesh

Supported types for <valueList> and <defaultvalueList> are:

1323

integer(ESMF_KIND_I4), intent(out), dimension(:)

integer(ESMF_KIND_I8), intent(out), dimension(:)

real(ESMF_KIND_R4), intent(out), dimension(:)

real(ESMF_KIND_R8), intent(out), dimension(:)

logical, intent(out), dimension(:)

character(len=*), intent(out), dimension(:)

The arguments are:

target An ESMF object.

name The name of the Attribute to set.

<valueList> The valueList of the Attribute to set.

[convention] The convention of the Attribute package.

[purpose] The purpose of the Attribute package.

[itemcount] This parameter is only included for backward compatibility, it is NOOP.

[attnestflag] This parameter is only included for backward compatibility, it is NOOP.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

55.0.23 ESMF_AttributeUpdate - Update an Attribute hierarchy

INTERFACE:

subroutine ESMF_AttributeUpdate(target, vm, rootList, rc)

ARGUMENTS:

<target>, see below for supported values

type(ESMF_VM), intent(in) :: vm

integer, intent(in) :: rootList(:)

integer, intent(out), optional :: rc

STATUS: The following parameters were removed in ESMF version 8.1.0:

• reconcile

DESCRIPTION:

Update an Attribute hierarchy during runtime. The information from the PETs in the rootList is transferred to the
PETs that are not in the rootList. Care should be taken to ensure that the information contained in the Attributes
on the PETs in the rootList is consistent.

Supported values for <object> are:

1324

ESMF_State

ESMF_CplComp

ESMF_GridComp

ESMF_SciComp

ESMF_Field

ESMF_FieldBundle

The arguments are:

target An ESMF object.

vm The virtual machine over which this Attribute hierarchy should be updated.

rootList The list of PETs that are to be used as the source of the update.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

1325

	I ESMF Overview
	What is the Earth System Modeling Framework?
	The ESMF Reference Manual for Fortran
	How to Contact User Support and Find Additional Information
	How to Submit Comments, Bug Reports, and Feature Requests
	Conventions
	Typeface and Diagram Conventions
	Method Name and Argument Conventions

	The ESMF Application Programming Interface
	Standard Methods and Interface Rules
	Deep and Shallow Classes
	Special Methods
	The ESMF Data Hierarchy
	ESMF Spatial Classes
	ESMF Maps
	ESMF Specification Classes
	ESMF Utility Classes

	Integrating ESMF into Applications
	Using the ESMF Superstructure

	Overall Rules and Behavior
	Return Code Handling
	Local and Global Views and Associated Conventions
	Allocation Rules
	Assignment, Equality, Copying and Comparing Objects
	Attributes
	Constants

	Overall Design and Implementation Notes
	Overall Restrictions and Future Work

	II Command Line Tools
	ESMF_PrintInfo
	Description

	ESMF_RegridWeightGen
	Description
	Regridding Options
	Poles
	Masking
	Extrapolation
	Unmapped destination points
	Line type

	Regridding Methods
	Bilinear
	Patch
	Nearest neighbor
	First-order conservative
	Second-order conservative

	Conservation
	The effect of normalization options on integrals and values produced by conservative methods
	Usage
	Examples
	Grid File Formats
	SCRIP Grid File Format
	ESMF Unstructured Grid File Format
	CF Convention Single Tile File Format
	CF Convention UGRID File Format
	GRIDSPEC Mosaic File Format

	Regrid Weight File Format
	Source Grid Description
	Destination Grid Description
	Regrid Calculation Output
	Weight File Description Attributes
	Weight Only Weight File

	ESMF_RegridWeightGenCheck

	ESMF_Regrid
	Description
	Usage
	Examples

	ESMF_Scrip2Unstruct
	Description

	III Superstructure
	Overview of Superstructure
	Superstructure Classes
	Hierarchical Creation of Components
	Sequential and Concurrent Execution of Components
	Intra-Component Communication
	Data Distribution and Scoping in Components
	Performance
	Object Model

	Application Driver and Required ESMF Methods
	Description
	Constants
	ESMF_END

	Use and Examples
	Required ESMF Methods
	ESMF_Initialize
	ESMF_InitializePreMPI
	ESMF_IsInitialized
	ESMF_IsFinalized
	ESMF_Finalize
	User-code SetServices method
	User-code Initialize, Run, and Finalize methods
	User-code SetVM method
	Use of internal procedures as user-provided procedures

	GridComp Class
	Description
	Use and Examples
	Implement a user-code SetServices routine
	Implement a user-code Initialize routine
	Implement a user-code Run routine
	Implement a user-code Finalize routine
	Implement a user-code SetVM routine
	Set and Get the Internal State

	Restrictions and Future Work
	Class API
	ESMF_GridCompAssignment(=)
	ESMF_GridCompOperator(==)
	ESMF_GridCompOperator(/=)
	ESMF_GridCompCreate
	ESMF_GridCompDestroy
	ESMF_GridCompFinalize
	ESMF_GridCompGet
	ESMF_GridCompGetInternalState
	ESMF_GridCompInitialize
	ESMF_GridCompIsCreated
	ESMF_GridCompIsPetLocal
	ESMF_GridCompPrint
	ESMF_GridCompReadRestart
	ESMF_GridCompRun
	ESMF_GridCompServiceLoop
	ESMF_GridCompSet
	ESMF_GridCompSetEntryPoint
	ESMF_GridCompSetInternalState
	ESMF_GridCompSetServices
	ESMF_GridCompSetServices
	ESMF_GridCompSetServices
	ESMF_GridCompSetServices
	ESMF_GridCompSetVM
	ESMF_GridCompSetVM
	ESMF_GridCompSetVMMaxPEs
	ESMF_GridCompSetVMMaxThreads
	ESMF_GridCompSetVMMinThreads
	ESMF_GridCompValidate
	ESMF_GridCompWait
	ESMF_GridCompWriteRestart

	CplComp Class
	Description
	Use and Examples
	Implement a user-code SetServices routine
	Implement a user-code Initialize routine
	Implement a user-code Run routine
	Implement a user-code Finalize routine
	Implement a user-code SetVM routine

	Restrictions and Future Work
	Class API
	ESMF_CplCompAssignment(=)
	ESMF_CplCompOperator(==)
	ESMF_CplCompOperator(/=)
	ESMF_CplCompCreate
	ESMF_CplCompDestroy
	ESMF_CplCompFinalize
	ESMF_CplCompGet
	ESMF_CplCompGetInternalState
	ESMF_CplCompInitialize
	ESMF_CplCompIsCreated
	ESMF_CplCompIsPetLocal
	ESMF_CplCompPrint
	ESMF_CplCompReadRestart
	ESMF_CplCompRun
	ESMF_CplCompServiceLoop
	ESMF_CplCompSet
	ESMF_CplCompSetEntryPoint
	ESMF_CplCompSetInternalState
	ESMF_CplCompSetServices
	ESMF_CplCompSetServices
	ESMF_CplCompSetServices
	ESMF_CplCompSetServices
	ESMF_CplCompSetVM
	ESMF_CplCompSetVM
	ESMF_CplCompSetVMMaxPEs
	ESMF_CplCompSetVMMaxThreads
	ESMF_CplCompSetVMMinThreads
	ESMF_CplCompValidate
	ESMF_CplCompWait
	ESMF_CplCompWriteRestart

	SciComp Class
	Description
	Use and Examples
	Use ESMF_SciComp and Attach Attributes

	Restrictions and Future Work
	Class API
	ESMF_SciCompAssignment(=)
	ESMF_SciCompOperator(==)
	ESMF_SciCompOperator(/=)
	ESMF_SciCompCreate
	ESMF_SciCompDestroy
	ESMF_SciCompGet
	ESMF_SciCompIsCreated
	ESMF_SciCompPrint
	ESMF_SciCompSet
	ESMF_SciCompValidate

	Fault-tolerant Component Tunnel
	Description
	Use and Examples
	Creating an actual Component
	Creating a dual Component
	Setting up the actual side of a Component Tunnel
	Setting up the dual side of a Component Tunnel
	Invoking standard Component methods through a Component Tunnel
	The non-blocking option to invoke standard Component methods through a Component Tunnel
	Destroying a connected dual Component
	Destroying a connected actual Component

	Restrictions and Future Work

	State Class
	Description
	Constants
	ESMF_STATEINTENT
	ESMF_STATEITEM

	Use and Examples
	State create and destroy
	Add items to a State
	Add placeholders to a State
	Mark an item NEEDED
	Create a NEEDED item
	ESMF_StateReconcile() usage
	Read Arrays from a NetCDF file and add to a State
	Print Array data from a State
	Write Array data within a State to a NetCDF file

	Restrictions and Future Work
	Design and Implementation Notes
	Object Model
	Class API
	ESMF_StateAssignment(=)
	ESMF_StateOperator(==)
	ESMF_StateOperator(/=)
	ESMF_StateAdd
	ESMF_StateAddReplace
	ESMF_StateCreate
	ESMF_StateDestroy
	ESMF_StateGet
	ESMF_StateGet
	ESMF_StateGet
	ESMF_StateIsCreated
	ESMF_StatePrint
	ESMF_StateRead
	ESMF_StateReconcile
	ESMF_StateRemove
	ESMF_StateRemove
	ESMF_StateReplace
	ESMF_StateSet
	ESMF_StateValidate
	ESMF_StateWrite

	Attachable Methods
	Description
	Use and Examples
	Producer Component attaches user defined method
	Producer Component implements user defined method
	Consumer Component executes user defined method

	Restrictions and Future Work
	Class API
	ESMF_MethodAdd
	ESMF_MethodAdd
	ESMF_MethodAdd
	ESMF_MethodAdd
	ESMF_MethodAdd
	ESMF_MethodAdd
	ESMF_MethodAddReplace
	ESMF_MethodAddReplace
	ESMF_MethodAddReplace
	ESMF_MethodAddReplace
	ESMF_MethodAddReplace
	ESMF_MethodAddReplace
	ESMF_MethodExecute
	ESMF_MethodExecute
	ESMF_MethodExecute
	ESMF_MethodGet
	ESMF_MethodGet
	ESMF_MethodGet
	ESMF_MethodRemove
	ESMF_MethodRemove
	ESMF_MethodRemove

	Web Services
	Description
	Creating a Service around a Component
	Code Modifications
	Accessing the Service
	Client Application via C++ API
	Process Controller
	Tomcat/Axis2

	Use and Examples
	Making a Component available through ESMF Web Services

	Restrictions and Future Work
	Class API
	ESMF_WebServicesLoop
	ESMF_WebServicesCplCompLoop

	IV Infrastructure: Fields and Grids
	Overview of Data Classes
	Bit-for-Bit Considerations
	Regrid
	Interpolation methods: bilinear
	Interpolation methods: higher-order patch
	Interpolation methods: nearest source to destination
	Interpolation methods: nearest destination to source
	Interpolation methods: first-order conservative
	Interpolation methods: second-order conservative
	Conservation
	The effect of normalization options on integrals and values produced by conservative methods
	Great circle cells
	Masking
	Extrapolation methods: overview
	Extrapolation methods: nearest source to destination
	Extrapolation methods: inverse distance weighted average
	Extrapolation methods: creep fill
	Unmapped destination points
	Spherical grids and poles
	Troubleshooting guide
	Design and implementation notes

	File-based Regrid API
	ESMF_RegridWeightGen
	ESMF_RegridWeightGen
	ESMF_FileRegrid

	Restrictions and Future Work

	FieldBundle Class
	Description
	Use and Examples
	Creating a FieldBundle from a list of Fields
	Creating an empty FieldBundle then add one Field to it
	Creating an empty FieldBundle then add a list of Fields to it
	Query a Field stored in the FieldBundle by name or index
	Query FieldBundle for Fields list either alphabetical or in order of addition
	Create a packed FieldBundle on a Grid
	Create a packed FieldBundle on a Mesh
	Destroy a FieldBundle
	Redistribute data from a source FieldBundle to a destination FieldBundle
	Redistribute data from a packed source FieldBundle to a packed destination FieldBundle
	Perform sparse matrix multiplication from a source FieldBundle to a destination FieldBundle
	Perform FieldBundle halo update

	Restrictions and Future Work
	Design and Implementation Notes
	Class API: Basic FieldBundle Methods
	ESMF_FieldBundleAssignment(=)
	ESMF_FieldBundleOperator(==)
	ESMF_FieldBundleOperator(/=)
	ESMF_FieldBundleAdd
	ESMF_FieldBundleAddReplace
	ESMF_FieldBundleCreate
	ESMF_FieldBundleCreate
	ESMF_FieldBundleCreate
	ESMF_FieldBundleDestroy
	ESMF_FieldBundleGet
	ESMF_FieldBundleGet
	ESMF_FieldBundleGet
	ESMF_FieldBundleGet
	ESMF_FieldBundleHalo
	ESMF_FieldBundleHaloRelease
	ESMF_FieldBundleHaloStore
	ESMF_FieldBundleIsCreated
	ESMF_FieldBundlePrint
	ESMF_FieldBundleRead
	ESMF_FieldBundleRedist
	ESMF_FieldBundleRedistRelease
	ESMF_FieldBundleRedistStore
	ESMF_FieldBundleRedistStore
	ESMF_FieldBundleRegrid
	ESMF_FieldBundleRegridRelease
	ESMF_FieldBundleRegridStore
	ESMF_FieldBundleRemove
	ESMF_FieldBundleReplace
	ESMF_FieldBundleSet
	ESMF_FieldBundleSet
	ESMF_FieldBundleSet
	ESMF_FieldBundleSet
	ESMF_FieldBundleSMM
	ESMF_FieldBundleSMMRelease
	ESMF_FieldBundleSMMStore
	ESMF_FieldBundleSMMStore
	ESMF_FieldBundleSMMStore
	ESMF_FieldBundleValidate
	ESMF_FieldBundleWrite

	Field Class
	Description
	Operations

	Constants
	ESMF_FIELDSTATUS

	Use and Examples
	Field create and destroy
	Get Fortran data pointer, bounds, and counts information from a Field
	Get Grid, Array, and other information from a Field
	Create a Field with a Grid, typekind, and rank
	Create a Field with a Grid and Arrayspec
	Create a Field with a Grid and Array
	Create an empty Field and complete it with FieldEmptySet and FieldEmptyComplete
	Create an empty Field and complete it with FieldEmptyComplete
	Create a 7D Field with a 5D Grid and 2D ungridded bounds from a Fortran data array
	Shared memory features: DE pinning, sharing, and migration
	Create a 2D Field with a 2D Grid and a Fortran data array
	Create a 2D Field with a 2D Grid and a Fortran data pointer
	Create a 3D Field with a 2D Grid and a 3D Fortran data array
	Create a 3D Field with a 2D Grid and a 3D Fortran data array with gridToFieldMap argument
	Create a 3D Field with a 2D Grid and a 3D Fortran data array with halos
	Create a Field from a LocStream, typekind, and rank
	Create a Field from a LocStream and arrayspec
	Create a Field from a Mesh, typekind, and rank
	Create a Field from a Mesh and arrayspec
	Create a Field from a Mesh and an Array
	Create a Field from a Mesh and an ArraySpec with optional features
	Create a Field with replicated dimensions
	Create a Field on an arbitrarily distributed Grid
	Create a Field on an arbitrarily distributed Grid with replicated dimensions & ungridded bounds
	Field regridding
	Field regrid with masking
	Field regrid example: Mesh to Mesh
	Gather Field data onto root PET
	Scatter Field data from root PET onto its set of joint PETs
	Redistribute data from source Field to destination Field
	FieldRedist as a form of scatter involving arbitrary distribution
	FieldRedist as a form of gather involving arbitrary distribution
	Sparse matrix multiplication from source Field to destination Field
	Field Halo solving a domain decomposed heat transfer problem

	Restrictions and Future Work
	Design and Implementation Notes
	Class API
	ESMF_FieldAssignment(=)
	ESMF_FieldOperator(==)
	ESMF_FieldOperator(/=)
	ESMF_FieldCopy
	ESMF_FieldCreate
	ESMF_FieldCreate
	ESMF_FieldCreate
	ESMF_FieldCreate
	ESMF_FieldCreate
	ESMF_FieldCreate
	ESMF_FieldCreate
	ESMF_FieldCreate
	ESMF_FieldCreate
	ESMF_FieldCreate
	ESMF_FieldCreate
	ESMF_FieldCreate
	ESMF_FieldCreate
	ESMF_FieldCreate
	ESMF_FieldCreate
	ESMF_FieldCreate
	ESMF_FieldCreate
	ESMF_FieldCreate
	ESMF_FieldCreate
	ESMF_FieldCreate
	ESMF_FieldDestroy
	ESMF_FieldEmptyComplete
	ESMF_FieldEmptyComplete
	ESMF_FieldEmptyComplete
	ESMF_FieldEmptyComplete
	ESMF_FieldEmptyComplete
	ESMF_FieldEmptyComplete
	ESMF_FieldEmptyComplete
	ESMF_FieldEmptyComplete
	ESMF_FieldEmptyComplete
	ESMF_FieldEmptyComplete
	ESMF_FieldEmptyComplete
	ESMF_FieldEmptyComplete
	ESMF_FieldEmptyCreate
	ESMF_FieldEmptySet
	ESMF_FieldEmptySet
	ESMF_FieldEmptySet
	ESMF_FieldEmptySet
	ESMF_FieldFill
	ESMF_FieldGather
	ESMF_FieldGet
	ESMF_FieldGet
	ESMF_FieldGetBounds
	ESMF_FieldHalo
	ESMF_FieldHaloRelease
	ESMF_FieldHaloStore
	ESMF_FieldIsCreated
	ESMF_FieldPrint
	ESMF_FieldRead
	ESMF_FieldRedist
	ESMF_FieldRedistRelease
	ESMF_FieldRedistStore
	ESMF_FieldRedistStore
	ESMF_FieldRegrid
	ESMF_FieldRegridRelease
	ESMF_FieldRegridStore
	ESMF_FieldRegridStore
	ESMF_FieldRegridGetArea
	ESMF_FieldScatter
	ESMF_FieldSet
	ESMF_FieldSync
	ESMF_FieldSMM
	ESMF_FieldSMMRelease
	ESMF_FieldSMMStore
	ESMF_FieldSMMStore
	ESMF_FieldSMMStore
	ESMF_FieldSMMStore
	ESMF_FieldSMMStore
	ESMF_FieldSMMStore
	ESMF_FieldValidate
	ESMF_FieldWrite

	Class API: Field Utilities
	ESMF_GridGetFieldBounds
	ESMF_LocStreamGetFieldBounds
	ESMF_MeshGetFieldBounds
	ESMF_XGridGetFieldBounds

	ArrayBundle Class
	Description
	Use and Examples
	Creating an ArrayBundle from a list of Arrays
	Adding, removing, replacing Arrays in the ArrayBundle
	Accessing Arrays inside the ArrayBundle
	Destroying an ArrayBundle and its constituents
	Halo communication

	Restrictions and Future Work
	Design and Implementation Notes
	Class API
	ESMF_ArrayBundleAssignment(=)
	ESMF_ArrayBundleOperator(==)
	ESMF_ArrayBundleOperator(/=)
	ESMF_ArrayBundleAdd
	ESMF_ArrayBundleAddReplace
	ESMF_ArrayBundleCreate
	ESMF_ArrayBundleDestroy
	ESMF_ArrayBundleGet
	ESMF_ArrayBundleGet
	ESMF_ArrayBundleGet
	ESMF_ArrayBundleHalo
	ESMF_ArrayBundleHaloRelease
	ESMF_ArrayBundleHaloStore
	ESMF_ArrayBundleIsCreated
	ESMF_ArrayBundlePrint
	ESMF_ArrayBundleRead
	ESMF_ArrayBundleRedist
	ESMF_ArrayBundleRedistRelease
	ESMF_ArrayBundleRedistStore
	ESMF_ArrayBundleRedistStore
	ESMF_ArrayBundleRemove
	ESMF_ArrayBundleReplace
	ESMF_ArrayBundleSMM
	ESMF_ArrayBundleSMMRelease
	ESMF_ArrayBundleSMMStore
	ESMF_ArrayBundleSMMStore
	ESMF_ArrayBundleWrite

	Array Class
	Description
	Use and Examples
	Array from native Fortran array with 1 DE per PET
	Array from native Fortran array with extra elements for halo or padding
	Array from ESMF_LocalArray
	Create Array with automatic memory allocation
	Native language memory access
	Regions and default bounds
	Array bounds
	Computational region and extra elements for halo or padding
	Create 1D and 3D Arrays
	Working with Arrays of different rank
	Array and DistGrid rank – 2D+1 Arrays
	Arrays with replicated dimensions
	Shared memory features: DE pinning, sharing, and migration
	Communication – Scatter and Gather
	Communication – Halo
	Communication – Halo for arbitrary distribution
	Communication – Redist
	Communication – SparseMatMul
	Communication – Scatter and Gather, revisited
	Non-blocking Communications

	Restrictions and Future Work
	Design and Implementation Notes
	Class API
	ESMF_ArrayAssignment(=)
	ESMF_ArrayOperator(==)
	ESMF_ArrayOperator(/=)
	ESMF_ArrayCopy
	ESMF_ArrayCreate
	ESMF_ArrayCreate
	ESMF_ArrayCreate
	ESMF_ArrayCreate
	ESMF_ArrayCreate
	ESMF_ArrayCreate
	ESMF_ArrayCreate
	ESMF_ArrayCreate
	ESMF_ArrayCreate
	ESMF_ArrayCreate
	ESMF_ArrayCreate
	ESMF_ArrayDestroy
	ESMF_ArrayGather
	ESMF_ArrayGet
	ESMF_ArrayGet
	ESMF_ArrayGet
	ESMF_ArrayGet
	ESMF_ArrayHalo
	ESMF_ArrayHaloRelease
	ESMF_ArrayHaloStore
	ESMF_ArrayIsCreated
	ESMF_ArrayPrint
	ESMF_ArrayRead
	ESMF_ArrayRedist
	ESMF_ArrayRedistRelease
	ESMF_ArrayRedistStore
	ESMF_ArrayRedistStore
	ESMF_ArrayRedistStore
	ESMF_ArrayRedistStore
	ESMF_ArrayScatter
	ESMF_ArraySet
	ESMF_ArraySet
	ESMF_ArraySMM
	ESMF_ArraySMMRelease
	ESMF_ArraySMMStore
	ESMF_ArraySMMStore
	ESMF_ArraySMMStore
	ESMF_ArraySMMStore
	ESMF_ArraySMMStore
	ESMF_ArraySMMStore
	ESMF_ArraySync
	ESMF_ArrayValidate
	ESMF_ArrayWrite
	ESMF_SparseMatrixWrite

	Class API: DynamicMask Methods
	ESMF_DynamicMaskSetR8R8R8
	ESMF_DynamicMaskSetR8R8R8V
	ESMF_DynamicMaskSetR4R8R4
	ESMF_DynamicMaskSetR4R8R4V
	ESMF_DynamicMaskSetR4R4R4
	ESMF_DynamicMaskSetR4R4R4V

	LocalArray Class
	Description
	Restrictions and Future Work
	Class API
	ESMF_LocalArrayAssignment(=)
	ESMF_LocalArrayOperator(==)
	ESMF_LocalArrayOperator(/=)
	ESMF_LocalArrayCreate
	ESMF_LocalArrayCreate
	ESMF_LocalArrayCreate
	ESMF_LocalArrayCreate
	ESMF_LocalArrayDestroy
	ESMF_LocalArrayGet
	ESMF_LocalArrayGet
	ESMF_LocalArrayIsCreated

	ArraySpec Class
	Description
	Use and Examples
	Set ArraySpec values
	Get ArraySpec values

	Restrictions and Future Work
	Design and Implementation Notes
	Class API
	ESMF_ArraySpecAssignment(=)
	ESMF_ArraySpecOperator(==)
	ESMF_ArraySpecOperator(/=)
	ESMF_ArraySpecGet
	ESMF_ArraySpecPrint
	ESMF_ArraySpecSet
	ESMF_ArraySpecValidate

	Grid Class
	Description
	Grid Representation in ESMF
	Supported Grids
	Grid Topologies and Periodicity
	Grid Distribution
	Grid Coordinates
	Coordinate Specification and Generation
	Staggering
	Masking

	Constants
	ESMF_GRIDCONN
	ESMF_GRIDITEM
	ESMF_GRIDMATCH
	ESMF_GRIDSTATUS
	ESMF_POLEKIND
	ESMF_STAGGERLOC

	Use and Examples
	Create single-tile Grid shortcut method
	Create a 2D regularly distributed rectilinear Grid with uniformly spaced coordinates
	Create a periodic 2D regularly distributed rectilinear Grid
	Create a 2D irregularly distributed rectilinear Grid with uniformly spaced coordinates
	Create a 2D irregularly distributed Grid with curvilinear coordinates
	Create an irregularly distributed rectilinear Grid with a non-distributed vertical dimension
	Create an arbitrarily distributed rectilinear Grid with a non-distributed vertical dimension
	Create a curvilinear Grid using the coordinates defined in a SCRIP file
	Create an empty Grid in a parent Component for completion in a child Component
	Create a six-tile cubed sphere Grid
	Create a six-tile cubed sphere Grid and apply Schmidt transform
	Create a six-tile cubed sphere Grid from a GRIDSPEC Mosaic file
	Grid stagger locations
	Associate coordinates with stagger locations
	Specify the relationship of coordinate Arrays to index space dimensions
	Access coordinates
	Associate items with stagger locations
	Access items
	Grid regions and bounds
	Get Grid coordinate bounds
	Get Grid stagger location bounds
	Get Grid stagger location information
	Create an Array at a stagger location
	Create more complex Grids using DistGrid
	Specify custom stagger locations
	Specify custom stagger padding

	Restrictions and Future Work
	Design and Implementation Notes
	Grid Topology

	Class API: General Grid Methods
	ESMF_GridAssignment(=)
	ESMF_GridOperator(==)
	ESMF_GridOperator(/=)
	ESMF_GridAddCoord
	ESMF_GridAddItem
	ESMF_GridCreate
	ESMF_GridCreate
	ESMF_GridCreate
	ESMF_GridCreate
	ESMF_GridCreate
	ESMF_GridCreate
	ESMF_GridCreate
	ESMF_GridCreate
	ESMF_GridCreate
	ESMF_GridCreate1PeriDim
	ESMF_GridCreate1PeriDim
	ESMF_GridCreate1PeriDim
	ESMF_GridCreate2PeriDim
	ESMF_GridCreate2PeriDim
	ESMF_GridCreate2PeriDim
	ESMF_GridCreateNoPeriDim
	ESMF_GridCreateNoPeriDim
	ESMF_GridCreateNoPeriDim
	ESMF_GridCreate1PeriDimUfrm
	ESMF_GridCreate1PeriDimUfrm
	ESMF_GridCreateNoPeriDimUfrm
	ESMF_GridCreateCubedSphere
	ESMF_GridCreateCubedSphere
	ESMF_GridCreateMosaic
	ESMF_GridCreateMosaic
	ESMF_GridDestroy
	ESMF_GridEmptyComplete
	ESMF_GridEmptyComplete
	ESMF_GridEmptyComplete
	ESMF_GridEmptyCreate
	ESMF_GridGet
	ESMF_GridGet
	ESMF_GridGet
	ESMF_GridGet
	ESMF_GridGet
	ESMF_GridGetCoord
	ESMF_GridGetCoord
	ESMF_GridGetCoord
	ESMF_GridGetCoord
	ESMF_GridGetCoord
	ESMF_GridGetCoordBounds
	ESMF_GridGetItem
	ESMF_GridGetItem
	ESMF_GridGetItem
	ESMF_GridGetItemBounds
	ESMF_GridIsCreated
	ESMF_GridMatch
	ESMF_GridSetCoord
	ESMF_GridSetItem
	ESMF_GridValidate

	Class API: StaggerLoc Methods
	ESMF_StaggerLocGet
	ESMF_StaggerLocSet
	ESMF_StaggerLocSet
	ESMF_StaggerLocString
	ESMF_StaggerLocPrint

	LocStream Class
	Description
	Constants
	Coordinate keyNames
	Masking keyName

	Use and Examples
	Create a LocStream with user allocated memory
	Create a LocStream with internally allocated memory
	Create a LocStream with a distribution based on a Grid
	Regridding from a Grid to a LocStream

	Class API
	ESMF_LocStreamAssignment(=)
	ESMF_LocStreamOperator(==)
	ESMF_LocStreamOperator(/=)
	ESMF_LocStreamAddKey
	ESMF_LocStreamAddKey
	ESMF_LocStreamAddKey
	ESMF_LocStreamCreate
	ESMF_LocStreamCreate
	ESMF_LocStreamCreate
	ESMF_LocStreamCreate
	ESMF_LocStreamCreate
	ESMF_LocStreamCreate
	ESMF_LocStreamCreate
	ESMF_LocStreamCreate
	ESMF_LocStreamDestroy
	ESMF_LocStreamGet
	ESMF_LocStreamGetBounds
	ESMF_LocStreamGetKey
	ESMF_LocStreamGetKey
	ESMF_LocStreamGetKey
	ESMF_LocStreamIsCreated
	ESMF_LocStreamPrint
	ESMF_LocStreamValidate

	Mesh Class
	Description
	Mesh representation in ESMF
	Supported Meshes

	Constants
	ESMF_MESHELEMTYPE

	Use and Examples
	Mesh creation
	Create a small single PET Mesh in one step
	Create a small single PET Mesh in three steps
	Create a small Mesh on 4 PETs in one step
	Create a copy of a Mesh with a new distribution
	Create a small Mesh of all one element type on 4 PETs using easy element method
	Create a small Mesh of multiple element types on 4 PETs using easy element method
	Create a Mesh from an unstructured grid file
	Create a Mesh representation of a cubed sphere grid
	Remove Mesh memory
	Mesh Masking
	Mesh Halo Communication

	Class API
	ESMF_MeshAssignment(=)
	ESMF_MeshOperator(==)
	ESMF_MeshOperator(/=)
	ESMF_MeshAddElements
	ESMF_MeshAddNodes
	ESMF_MeshCreate
	ESMF_MeshCreate
	ESMF_MeshCreate
	ESMF_MeshCreate
	ESMF_MeshCreate
	ESMF_MeshCreate
	ESMF_MeshCreate
	ESMF_MeshCreateCubedSphere
	ESMF_MeshDestroy
	ESMF_MeshEmptyCreate
	ESMF_MeshFreeMemory
	ESMF_MeshGet
	ESMF_MeshIsCreated
	ESMF_MeshSet
	ESMF_MeshSetMOAB
	ESMF_MeshGetMOAB

	XGrid Class
	Description
	Constants
	ESMF_XGRIDSIDE

	Use and Examples
	Create an XGrid from Grids then use it for regridding
	Using XGrid in Earth System modeling
	Create an XGrid from user input data then use it for regridding
	Query the XGrid for its internal information
	Destroying the XGrid and other resources

	Restrictions and Future Work
	Restrictions and Future Work

	Design and Implementation Notes
	Class API
	ESMF_XGridAssignment(=)
	ESMF_XGridOperator(==)
	ESMF_XGridOperator(/=)
	ESMF_XGridCreate
	ESMF_XGridCreateFromSparseMat
	ESMF_XGridIsCreated
	ESMF_XGridDestroy
	ESMF_XGridGet

	DistGrid Class
	Description
	Constants
	ESMF_DISTGRIDMATCH

	Use and Examples
	Single tile DistGrid with regular decomposition
	DistGrid and DELayout
	Single tile DistGrid with decomposition by DE blocks
	2D multi-tile DistGrid with regular decomposition
	Arbitrary DistGrids with user-supplied sequence indices
	DistGrid Connections - Definition
	DistGrid Connections - Single tile periodic and pole connections
	DistGrid Connections - Multi tile connections

	Restrictions and Future Work
	Design and Implementation Notes
	Class API
	ESMF_DistGridAssignment(=)
	ESMF_DistGridOperator(==)
	ESMF_DistGridOperator(/=)
	ESMF_DistGridCreate
	ESMF_DistGridCreate
	ESMF_DistGridCreate
	ESMF_DistGridCreate
	ESMF_DistGridCreate
	ESMF_DistGridCreate
	ESMF_DistGridCreate
	ESMF_DistGridCreate
	ESMF_DistGridCreate
	ESMF_DistGridCreate
	ESMF_DistGridDestroy
	ESMF_DistGridGet
	ESMF_DistGridGet
	ESMF_DistGridGet
	ESMF_DistGridIsCreated
	ESMF_DistGridMatch
	ESMF_DistGridPrint
	ESMF_DistGridSet
	ESMF_DistGridValidate

	Class API: DistGridConnection Methods
	ESMF_DistGridConnectionGet
	ESMF_DistGridConnectionSet

	Class API: DistGridRegDecomp Methods
	ESMF_DistGridRegDecompSetCubic

	RouteHandle Class
	Description
	Use and Examples
	Bit-for-bit reproducibility
	Creating a RouteHandle from an existing RouteHandle – Transfer to a different set of PETs
	Write a RouteHandle to file and creating a RouteHandle from file
	Reusablity of RouteHandles and interleaved distributed and undistributed dimensions
	Dynamic Masking

	Restrictions and Future Work
	Design and Implementation Notes
	Class API
	ESMF_RouteHandleCreate
	ESMF_RouteHandleCreate
	ESMF_RouteHandleDestroy
	ESMF_RouteHandleGet
	ESMF_RouteHandleIsCreated
	ESMF_RouteHandlePrint
	ESMF_RouteHandleSet
	ESMF_RouteHandleWrite

	I/O Capability
	Description
	Data I/O
	Data formats
	Restrictions and Future Work
	Design and Implementation Notes

	V Infrastructure: Utilities
	Overview of Infrastructure Utility Classes
	Info Class (Object Attributes)
	Migrating from Attribute
	Setting an Attribute
	Getting an Attribute

	Key Format Overview
	Usage and Examples
	Retrieve an Info Handle
	General Usage Examples

	Class API
	ESMF_InfoAssignment(=)
	ESMF_InfoOperator(==)
	ESMF_InfoOperator(/=)
	ESMF_InfoBroadcast
	ESMF_InfoCreate
	ESMF_InfoCreate
	ESMF_InfoCreate
	ESMF_InfoCreate
	ESMF_InfoDestroy
	ESMF_InfoDump
	ESMF_InfoGet
	ESMF_InfoGetCharAlloc
	ESMF_InfoGet
	ESMF_InfoGetAlloc
	ESMF_InfoGet
	ESMF_InfoGetFromHost
	ESMF_InfoGetTK
	ESMF_InfoGetArrayMeta
	ESMF_InfoIsPresent
	ESMF_InfoIsSet
	ESMF_InfoPrint
	ESMF_InfoReadJSON
	ESMF_InfoRemove
	ESMF_InfoSet
	ESMF_InfoSet
	ESMF_InfoSet
	ESMF_InfoSetNULL
	ESMF_InfoSync
	ESMF_InfoUpdate
	ESMF_InfoWriteJSON

	Time Manager Utility
	Time Manager Classes
	Calendar
	Time Instants and TimeIntervals
	Clocks and Alarms
	Design and Implementation Notes
	Object Model

	Calendar Class
	Description
	Constants
	ESMF_CALKIND

	Use and Examples
	Calendar creation
	Calendar comparison
	Time conversion between Calendars
	Add a time interval to a time on a Calendar
	Calendar destruction

	Restrictions and Future Work
	Class API
	ESMF_CalendarAssignment(=)
	ESMF_CalendarOperator(==)
	ESMF_CalendarOperator(/=)
	ESMF_CalendarCreate
	ESMF_CalendarCreate
	ESMF_CalendarCreate
	ESMF_CalendarDestroy
	ESMF_CalendarGet
	ESMF_CalendarIsCreated
	ESMF_CalendarIsLeapYear
	ESMF_CalendarPrint
	ESMF_CalendarSet
	ESMF_CalendarSet
	ESMF_CalendarSetDefault
	ESMF_CalendarSetDefault
	ESMF_CalendarValidate

	Time Class
	Description
	Use and Examples
	Time initialization
	Time increment
	Time comparison

	Restrictions and Future Work
	Class API
	ESMF_TimeAssignment(=)
	ESMF_TimeOperator(+)
	ESMF_TimeOperator(-)
	ESMF_TimeOperator(-)
	ESMF_TimeOperator(==)
	ESMF_TimeOperator(/=)
	ESMF_TimeOperator(<)
	ESMF_TimeOperator(<=)
	ESMF_TimeOperator(>)
	ESMF_TimeOperator(>=)
	ESMF_TimeGet
	ESMF_TimeIsLeapYear
	ESMF_TimeIsSameCalendar
	ESMF_TimePrint
	ESMF_TimeSet
	ESMF_TimeSet
	ESMF_TimeSyncToRealTime
	ESMF_TimeValidate

	TimeInterval Class
	Description
	Use and Examples
	TimeInterval initialization
	TimeInterval conversion
	TimeInterval difference
	TimeInterval multiplication
	TimeInterval comparison

	Restrictions and Future Work
	Class API
	ESMF_TimeIntervalAssignment(=)
	ESMF_TimeIntervalOperator(+)
	ESMF_TimeIntervalOperator(-)
	ESMF_TimeIntervalOperator(-)
	ESMF_TimeIntervalOperator(/)
	ESMF_TimeIntervalOperator(/)
	ESMF_TimeIntervalFunction(MOD)
	ESMF_TimeIntervalOperator(*)
	ESMF_TimeIntervalOperator(==)
	ESMF_TimeIntervalOperator(/=)
	ESMF_TimeIntervalOperator(<)
	ESMF_TimeIntervalOperator(<=)
	ESMF_TimeIntervalOperator(>)
	ESMF_TimeIntervalOperator(>=)
	ESMF_TimeIntervalAbsValue
	ESMF_TimeIntervalGet
	ESMF_TimeIntervalGet
	ESMF_TimeIntervalGet
	ESMF_TimeIntervalGet
	ESMF_TimeIntervalNegAbsValue
	ESMF_TimeIntervalPrint
	ESMF_TimeIntervalSet
	ESMF_TimeIntervalSet
	ESMF_TimeIntervalSet
	ESMF_TimeIntervalSet
	ESMF_TimeIntervalValidate

	Clock Class
	Description
	Constants
	ESMF_DIRECTION

	Use and Examples
	Clock creation
	Clock advance
	Clock examination
	Clock reversal
	Clock destruction

	Restrictions and Future Work
	Class API
	ESMF_ClockAssignment(=)
	ESMF_ClockOperator(==)
	ESMF_ClockOperator(/=)
	ESMF_ClockAdvance
	ESMF_ClockCreate
	ESMF_ClockCreate
	ESMF_ClockDestroy
	ESMF_ClockGet
	ESMF_ClockGetAlarm
	ESMF_ClockGetAlarmList
	ESMF_ClockGetNextTime
	ESMF_ClockIsCreated
	ESMF_ClockIsDone
	ESMF_ClockIsReverse
	ESMF_ClockIsStopTime
	ESMF_ClockIsStopTimeEnabled
	ESMF_ClockPrint
	ESMF_ClockSet
	ESMF_ClockStopTimeDisable
	ESMF_ClockStopTimeEnable
	ESMF_ClockSyncToRealTime
	ESMF_ClockValidate

	Alarm Class
	Description
	Constants
	ESMF_ALARMLIST

	Use and Examples
	Clock initialization
	Alarm initialization
	Clock advance and Alarm processing
	Alarm and Clock destruction

	Restrictions and Future Work
	Design and Implementation Notes
	Class API
	ESMF_AlarmAssignment(=)
	ESMF_AlarmOperator(==)
	ESMF_AlarmOperator(/=)
	ESMF_AlarmCreate
	ESMF_AlarmCreate
	ESMF_AlarmDestroy
	ESMF_AlarmDisable
	ESMF_AlarmEnable
	ESMF_AlarmGet
	ESMF_AlarmIsCreated
	ESMF_AlarmIsEnabled
	ESMF_AlarmIsRinging
	ESMF_AlarmIsSticky
	ESMF_AlarmNotSticky
	ESMF_AlarmPrint
	ESMF_AlarmRingerOff
	ESMF_AlarmRingerOn
	ESMF_AlarmSet
	ESMF_AlarmSticky
	ESMF_AlarmValidate
	ESMF_AlarmWasPrevRinging
	ESMF_AlarmWillRingNext

	Config Class
	Description
	Package history
	Resource files

	Use and Examples
	Variable declarations
	Creation of a Config
	How to retrieve a label with a single value
	How to retrieve a label with multiple values
	How to retrieve a table
	Destruction of a Config

	Class API
	ESMF_ConfigAssignment(=)
	ESMF_ConfigOperator(==)
	ESMF_ConfigOperator(/=)
	ESMF_ConfigCreate
	ESMF_ConfigCreate
	ESMF_ConfigDestroy
	ESMF_ConfigFindLabel
	ESMF_ConfigFindNextLabel
	ESMF_ConfigGetAttribute
	ESMF_ConfigGetAttribute
	ESMF_ConfigGetChar
	ESMF_ConfigGetDim
	ESMF_ConfigGetLen
	ESMF_ConfigIsCreated
	ESMF_ConfigLoadFile
	ESMF_ConfigNextLine
	ESMF_ConfigPrint
	ESMF_ConfigSetAttribute
	ESMF_ConfigValidate

	Log Class
	Description
	Constants
	ESMF_LOGERR
	ESMF_LOGKIND
	ESMF_LOGMSG

	Use and Examples
	Default Log
	User created Log
	Get and Set

	Restrictions and Future Work
	Design and Implementation Notes
	Object Model
	Class API
	ESMF_LogAssignment(=)
	ESMF_LogOperator(==)
	ESMF_LogOperator(/=)
	ESMF_LogClose
	ESMF_LogFlush
	ESMF_LogFoundAllocError
	ESMF_LogFoundDeallocError
	ESMF_LogFoundError
	ESMF_LogFoundNetCDFError
	ESMF_LogGet
	ESMF_LogOpen
	ESMF_LogOpen
	ESMF_LogSet
	ESMF_LogSetError
	ESMF_LogWrite

	DELayout Class
	Description
	Constants
	ESMF_PIN
	ESMF_SERVICEREPLY

	Use and Examples
	Default DELayout
	DELayout with specified number of DEs
	DELayout with computational and communication weights
	DELayout from petMap
	DELayout from petMap with multiple DEs per PET
	Working with a DELayout - simple 1-to-1 DE-to-PET mapping
	Working with a DELayout - general DE-to-PET mapping
	Work queue dynamic load balancing

	Restrictions and Future Work
	Design and Implementation Notes
	Class API
	ESMF_DELayoutAssignment(=)
	ESMF_DELayoutOperator(==)
	ESMF_DELayoutOperator(/=)
	ESMF_DELayoutCreate
	ESMF_DELayoutCreate
	ESMF_DELayoutDestroy
	ESMF_DELayoutGet
	ESMF_DELayoutIsCreated
	ESMF_DELayoutPrint
	ESMF_DELayoutServiceComplete
	ESMF_DELayoutServiceOffer
	ESMF_DELayoutValidate

	VM Class
	Description
	Constants
	ESMF_VMEPOCH

	Use and Examples
	Global VM
	VM and Components
	Getting the MPI Communicator from an VM object
	Nesting ESMF inside a user MPI application
	Nesting ESMF inside a user MPI application on a subset of MPI ranks
	Multiple concurrent instances of ESMF under separate MPI communicators
	Communication - Send and Recv
	Communication - Scatter and Gather
	Communication - AllReduce and AllFullReduce
	Communication - Non-blocking option and VMEpochs
	Using VM communication methods with data of rank greater than one

	Restrictions and Future Work
	Design and Implementation Notes
	Class API
	ESMF_VMAssignment(=)
	ESMF_VMOperator(==)
	ESMF_VMOperator(/=)
	ESMF_VMAllFullReduce
	ESMF_VMAllGather
	ESMF_VMAllGatherV
	ESMF_VMAllReduce
	ESMF_VMAllToAll
	ESMF_VMAllToAllV
	ESMF_VMBarrier
	ESMF_VMBroadcast
	ESMF_VMCommWait
	ESMF_VMCommWaitAll
	ESMF_VMEpochEnter
	ESMF_VMEpochExit
	ESMF_VMGather
	ESMF_VMGatherV
	ESMF_VMGet
	ESMF_VMGet
	ESMF_VMGetGlobal
	ESMF_VMGetCurrent
	ESMF_VMIsCreated
	ESMF_VMLog
	ESMF_VMLogSystem
	ESMF_VMPrint
	ESMF_VMRecv
	ESMF_VMReduce
	ESMF_VMScatter
	ESMF_VMScatterV
	ESMF_VMSend
	ESMF_VMSendRecv
	ESMF_VMValidate
	ESMF_VMWtime
	ESMF_VMWtimeDelay
	ESMF_VMWtimePrec

	Profiling and Tracing
	Description
	Profiling
	Tracing

	Use and Examples
	Output a Timing Profile to Text
	Summarize Timings across Multiple PETs
	Limit the Set of Profiled PETs
	Include MPI Communication in the Profile
	Output a Detailed Trace for Analysis
	Set the Clock used for Profiling/Tracing
	Tracing a simple ESMF application
	Profiling/Tracing User-defined Code Regions

	Restrictions and Future Work
	Class API
	ESMF_TraceRegionEnter
	ESMF_TraceRegionExit

	Fortran I/O and System Utilities
	Description
	Use and Examples
	Fortran unit number management
	Flushing output

	Design and Implementation Notes
	Fortran unit number management
	Flushing output
	Sorting algorithms

	Utility API
	ESMF_UtilGetArg
	ESMF_UtilGetArgC
	ESMF_UtilGetArgIndex
	ESMF_UtilIOGetCWD
	ESMF_UtilIOMkDir
	ESMF_UtilIORmDir
	ESMF_UtilString2Double
	ESMF_UtilString2Int
	ESMF_UtilString2Real
	ESMF_UtilStringInt2String
	ESMF_UtilStringLowerCase
	ESMF_UtilStringUpperCase
	ESMF_UtilIOUnitFlush
	ESMF_UtilIOUnitGet
	ESMF_UtilSort

	VI References
	VII Appendices
	Appendix A: Master List of Constants
	ESMF_ALARMLIST
	ESMF_DIM_ARB
	ESMF_ATTCOPY
	ESMF_ATTGETCOUNT
	ESMF_ATTNEST
	ESMF_ATTRECONCILE
	ESMF_ATTWRITE
	ESMF_CALKIND
	ESMF_COMPTYPE
	ESMF_CONTEXT
	ESMF_COORDSYS
	ESMF_DATACOPY
	ESMF_DECOMP
	ESMF_DIRECTION
	ESMF_DISTGRIDMATCH
	ESMF_END
	ESMF_EXTRAPMETHOD
	ESMF_FIELDSTATUS
	ESMF_FILEFORMAT
	ESMF_FILEMODE
	ESMF_FILESTATUS
	ESMF_GEOMTYPE
	ESMF_GRIDCONN
	ESMF_GRIDITEM
	ESMF_GRIDMATCH
	ESMF_GRIDSTATUS
	ESMF_INDEX
	ESMF_IOFMT
	ESMF_IO_NETCDF_PRESENT
	ESMF_IO_PIO_PRESENT
	ESMF_IO_PNETCDF_PRESENT
	ESMF_ITEMORDER
	ESMF_KIND
	ESMF_LINETYPE
	ESMF_LOGERR
	ESMF_LOGKIND
	ESMF_LOGMSG
	ESMF_MESHELEMTYPE
	ESMF_MESHLOC
	ESMF_MESHOP
	ESMF_MESHSTATUS
	ESMF_METHOD
	ESMF_NORMTYPE
	ESMF_PIN
	ESMF_POLEKIND
	ESMF_POLEMETHOD
	ESMF_REDUCE
	ESMF_REGION
	ESMF_REGRIDMETHOD
	ESMF_REGRIDSTATUS
	ESMF_ROUTESYNC
	ESMF_SERVICEREPLY
	ESMF_STAGGERLOC
	ESMF_STARTREGION
	ESMF_STATEINTENT
	ESMF_STATEITEM
	ESMF_SYNC
	ESMF_TERMORDER
	ESMF_TYPEKIND
	ESMF_UNMAPPEDACTION
	ESMF_VERSION
	ESMF_VMEPOCH
	ESMF_XGRIDSIDE

	Appendix B: A Brief Introduction to UML
	Appendix C: ESMF Error Return Codes
	Appendix D: Attribute Class Legacy API
	ESMF_ATTCOPY
	ESMF_ATTGETCOUNT
	ESMF_ATTWRITE
	ESMF_AttributeAdd
	ESMF_AttributeAdd
	ESMF_AttributeCopy
	ESMF_AttributeGet
	ESMF_AttributeGet
	ESMF_AttributeGet
	ESMF_AttributeGet
	ESMF_AttributeGet
	ESMF_AttributeGet
	ESMF_AttributeGet
	ESMF_AttributeGet
	ESMF_AttributeGet
	ESMF_AttributeGetAttPack
	ESMF_AttributeRemove
	ESMF_AttributeRemove
	ESMF_AttributeSet
	ESMF_AttributeSet
	ESMF_AttributeSet
	ESMF_AttributeSet
	ESMF_AttributeUpdate

