Earth System Modeling Framework

ESMF Reference Manual for Fortran

Version 8.6.0

ESMF Joint Specification Team: V. Balaji, Byron Boville, Samson Cheung, Tom Clune, Nancy
Collins, Tony Craig, Carlos Cruz, Arlindo da Silva, Cecelia DeLuca, Rosalinda de Fainchtein,
Rocky Dunlap, Brian Eaton, Steve Goldhaber, Bob Hallberg, Tom Henderson, Chris Hill, Mark
Iredell, Joseph Jacob, Rob Jacob, Phil Jones, Brian Kauffman, Erik Kluzek, Ben Koziol, Jay
Larson, Peggy Li, Fei Liu, John Michalakes, Raffaele Montuoro, Sylvia Murphy, David Neckels,
Ryan O Kuinghttons, Bob Oehmke, Chuck Panaccione, Daniel Rosen, Jim Rosinski, Mathew
Rothstein, Bill Sacks, Kathy Saint, Will Sawyer, Earl Schwab, Shepard Smithline, Walter Spector,
Don Stark, Max Suarez, Spencer Swift, Gerhard Theurich, Atanas Trayanov, Silverio Vasquez, Jon
Wolfe, Weiyu Yang, Mike Young, Leonid Zaslavsky

November 14, 2023

http://www.earthsystemmodeling.org

Acknowledgements

The ESMF software is based on the contributions of a broad community. Below are the software packages that are
included in ESMF or strongly influenced our design. We’d like to express our gratitude to the developers of these
codes for access to their software as well as their ideas and advice.

e Parallel I/O (PIO) developers at NCAR and DOE Laboratories for their excellent work on this package and their
help in making it work with ESMF

e The Spherical Coordinate Remapping and Interpolation Package (SCRIP) from Los Alamos, which informed
the design of our regridding functionality

e The Model Coupling Toolkit (MCT) from Argonne National Laboratory, on which we based our sparse matrix
multiply approach to general regridding

e The Inpack configuration attributes package from NASA Goddard, which was adapted for use in ESMF by
members of NASA Global Modeling and Assimilation group

o The Flexible Modeling System (FMS) package from GFDL and the Goddard Earth Modeling System (GEMS)
from NASA Goddard, both of which provided inspiration for the overall ESMF architecture

e The Common Component Architecture (CCA) effort within the Department of Energy, from which we drew
many ideas about how to design components

e The Vector Signal Image Processing Library (VSIPL) and its predecessors, which informed many aspects of our
design, and the radar system software design group at Lincoln Laboratory

e The Portable, Extensible Toolkit for Scientific Computation (PETSc) package from Argonne National Labora-
tories, on which we based our initial makefile system

e The Community Climate System Model (CCSM) and Weather Research and Forecasting (WRF) modeling
groups at NCAR, who have provided valuable feedback on the design and implementation of the framework

Contents

[L__ESMF Overview
[Whal s e ot S Nodeline | =

33
34
34
35
35

36
36
36

37
37
37
38
39
39
40
40
41
41
42

42
42

43
43
43
44
44
44
44

45

45

m&grid Weight File FOrmal . . .« « o o o oo oo e e e e e e

Destination Grid Descriptionl v v i e e e e e e e e e e e
Regrid Calculation Qutputl e e e
\
\

u%°
115.2 Hierarchical Creation of Componentd v v i v v i i e e e

cauentuadl and OoNncurren Xecuuon o OMPONECNLY« « v v vttt e e e e e e e e e
4 _Intra-Componen OMMUNICAUON v v v v v v vt e e e e e e e e e e e e e e e e e e e
Data Distribution and Scoping in Components

64

[16.4.7 User-code Tnitialize Run.andFinalizemethodd
(648 Usercode Servimetho .« v o oo
l(i.4.9 Usc (2[i Ilterllal QIQCedures as uscl'p]()&ldcd p]Q_Qﬂ_du]ﬁd

i171 Descriotioﬁ ..
(172 Useand BXampled oo oo oottt
np au -COd e e e O NC . . .« v v o e e e e e e e e e e e e e e e e e

mplement a user-cod ni a STOULING ¢ v v v e e e e e e e e e e e e e e e

mplement a -code Run 10 11

4 TImp -c0d ina STOULING e

117.2.5 Implement a user-code St VMIoutind v v v v v v v e e e e e e
[172.6 Setand Getthe Internal Statd
(173 Restrictions and Future WorK oo
(74 Class API

[17.42 ESMF GridCompOperator(==)] o v o oo e e e e

4 M AdCompOpPerator(/=) v v e e e e e e e e e e e e e e
4.4 M AdCompCreatd e e e e e e e e e e
4 M [dCompDestro e e e e e
4.6 M ridCompFinalizd
4 M IdCompGell e
4.8 M idComp ntern = P
4.9 M adComplnitializd e e e
4,10 ESM ridComp ated
4 M ridComplsPetlocal
174 M idCompPrint
17413 ESMFE_GridCompReadRestart e
17.4.14 M adCompRun e
174 M ridCompServicel.oop e e e
17.4.16 M adCompSell e e e
174 M idCompSetEntryPoint
17418 ESMFE_GridCompSetInternalStata e
17.419 ESMF_GridCompSetServices v v v v i
[17.4.20 ESMF_GridCompSetServiced
[17.421 ESMF_GridCompSetServiced oot
[17.422 ESMF_GridCompSetServiced vttt
17423 ESME_GridCompSetVM
17424 ESMF_GridCompSetVM
4 M ridCompSetVMMaxPEd
4.26 M ridCompSetVMMaxThreads
4 M ridCompSetVMMinThreads

(17428 ESMF_GridCompValidate « « o v v oo e e e e e 153

U84 Class API e 161
[18.4.1 ESMFE CplCompASSISnmMENt(=] . . -« « o v o oooeee e e 161
118.4 M DICOMPOPEIator(==)« « ot e e e e e e e e e e e e 161

8.4 M plComMPOPErator(/=) o e 162
8.4.4 M DICOMPCICALE o v o e 163
8.4 M DICOMPDESIION e e e e 164
8.4.6 M plCompFinalizd e 165
1847 ESME_CplCompGel ot e e e e e e e e e e 167
8.4.8 M plCompGetinternaldtate L L Lo Lo 168
8.4.9 M plComplnitializd e e 169
8.4.10 ESM plComp eated e e e 171
8.4 M plComplsPetlocal 171
U84 12 ESMFE_CplCompPrinf e e e 172
118.4 M plCompReadRestar| 173
[18.4.14 M plCompRun e e e 174
118.4 M plCompServicel.oop e e e e e 176
118.4.16 ESM pICompSell e e e e e e e 177
118.4 M plCompSetEntrvPoint e 178
118.4.18 ESMF_CplCompSetlnternalStatd 179
18.4. 19 ESMF _CplCOmpPSELSErVICES . « « .« .« v v v v o v i v 180
18.420 ESMF _CplCompSetSEervices v o o v v v v 181
118.4.21 ESMFE_CplCompSetServices vt v i 182
18.4.22 ESMF sgglggggg§§£§%%jgﬂ< 183
18423 ESMFE_CplCompSetVM e e e e e e 183
: 8.4.24 M plCompdoetVIMI L e e e e e e e e e e e e 184
8.4 M plComp MMaxPES e 186
8.4.26 ESM plComp MMaxThreadd e 187
8.4 M plCompSetVMMinThreads e 188
18428 ESMFE_CplCompValidatd e e e 190
% 190
‘ iteRestart 191

[19.41 ESMF_SciCompASSignment(=) . . . « o v v v v e e e e e e 197

119.4 M 1ICoMPOPErator(==) o o o e e e e e e e e 198
119.4 M iCompOperator(/=) o o e e e e e e 198
119.4.4 M iICompCreatd e e e e 199
1194 M ICOMPDESIION . . .« o e e e e 200
19.4.6 ESME_SciCompGell o i e e e e 200
9.4 M iComp eated L. e e e 201
...................................... 201
....................................... 202
..................................... 202

0 cating a dual COMPONENT v v i e e e e e e e e e e e e e e 204
0 etting up the actual side of a Component Tunpel 204
nvoking standard Component methods through a Componen nppel 205
he non-blocking option to invoke standard Component methods through a Component Tunnel 206

Read Arra om a NetCDF fileandaddtoaStatd 214

25.5.3 ESME_FieldBundleOperator(/=) v v v i e e e e e e e 300

2554 ESMF FieldBundleAdd o 0o 301

3.8 Create an em Field and complete it with FieldFmComolet
9 eate a 7D Field with a SD Grid and 2D ungridded bounds from a Fortran data arrayy 348

2

2

2

om a Mesh and an ArraySpec with optional featured 360

R6.612 ESME FieldCreatd o o oo 396
R6.6 13ESMFE _FieldCreatd - . . . « « o o oo e e 398
R6.614ESME FieldCreatd « o o o oo e e 400
R6.6.15ESME FieldCreatd - . . . « o o o oo e e 402
R6.6. 16 ESMF_FieldCreatd « o oo oo e e e 403
R6.617ESME FieldCreatd o o oo e 404
D6.6ISESME FieldCreatd « o o o oo oo 405
R6.619ESMFE FieldCreatd « o o o oo e e 407
R6.620 ESME_FieldCreatd « « o o oo e e e 408
R6.6 21 ESME_FieldCreatd« « o o v oo e e e 409
R6.622 ESMF_FieldCreatd o o oo oo e e 411
R6.623 ESME FieldCreatd o o oo 412
R6.624ESME FieldCreatd « o o o oo oo 414
R6.625 ESME_FieldCreatd « « o o oo e e e 415
R6.626 ESME_FieldCreatd « « o v oo e e 416
R6.627ESMF_FieldCreatd o o o o oo e e e 418
R6.628 ESME FieldCreatd o o oo 419
D6.629ESMFE FieldCreatd « o o o oo oo 421
D6.630ESME FieldCreatd o o o oo oo 422
@ﬁ 423
26.6.32 ESMF_FieldEmptyCompletd o o o e 424

6.6 M ieldEmp omplete 426

11

12

[27.5.12 ESMF_ArrayBundleHaloReleasd

................................ 517

ME_ArrayBundleHaloStord 518

4 ME_ArrayBundle eated 519
ME_ArrayBundlePrinl 519

6 ESMFE_ArrayBundleReado 520
27.5.17ESMF_ArrayBundleRedist 521
8 MFE_ArravBundleRedistRelease 522

13

[28.5.9 ESMF_ArrayCreatd 606

8 ME_Arra 41 O 608
8.5 11 ESMFE_ArrayCreatd v v i v e e e e e e e e e e e e e e e 610
....................................... 612
....................................... 614

28 5. 14 ESME_ArravCreatd o o e e e 616
8 a 1= [O 618
8 WVDESIIOW e e e e e e e 619
wvGatherl e e e e e e 620

el . . e 621

D85 19ESME_ArrayGel o o ot 625
8520 ESME_ArravGell o e e e 625
8 ME_AImravGel o o o e e e e e e e e e e 626

4 ME_ArraySMMStOrel o e e e e e 656

“'_ DOJALAINTTANOINTT V] ¢ ¢ o o o o s o o o o o o s & & s & s s s s s s s s s s s s =

8.6
8.6 \ s

28.6.3 ESMFE_DynamicMaskSetR4R8R4o 666
8.6 i C

14

ESMF _I ocalArraCreat 673

Vi QCAIAITA 2 1 674

15

[31.3.5 Create a 2D irregularly distributed Grid with curvilinear coordinates 700

6 eate an irregula d buted re nea rid with a non-distributed vertical dimension . . 701

ate an arbitrarily distributed rectilinea d with a non-distributed vertical dimension . . . 705

1 six-tile cubed sphere d and apply Schmidt transformd 709

eate a six-tile cubed sphere Grid from a GRIDSP Mosaicfild 710

rid Stagger locationd e e e e e e e e e e e e e e e e e 713

4 Associate coordinates with staggerlocationd a e e e e e 714
pecify the relationship of coordinate Arrays to index space dimensiond 714

|§| i ZI g;EI(E]E giaéger location boundsot e 719

d stagger location information 719
ate an Array at a dggcC OCALION . . . v v v o e e e e e e e e 719

4 Restrictions and Future Workl e 725

| 1.6.25 ESMF_GridCreate1PeriDimUfrml 764

17

[32.43 ESMF_LocStreamOperator(/=) . . . o v v oo e e e e e 821
4 4 A A

Vi 0 AMAJdJKeEV 822

18

19

[36.3.1 Single tile DistGrid with regular decomposition 916

36.3.2 DistGrid and DELAYOUI ot ot ottt 918

Bit-for-bit reproducibility o e e 970

RouteHandle communication with VMEpoch 982

> | I
-
-
@)
=
)

eating a RouteHandle from an existing RouteHandle — Transfer to a different set of PETY . 984

20

nfo Cla Dbject A '

O no

40.2 Key Format Overview

om A DU

< 1007
ibute 1008
bute . .. 1008
... 1009

1009

40.3 Usage and Examples

ko4

21

42.5.15 ESMFE_CalendarSetDefaulfl e 1056

42516 ESMF CalendarValidatd o o o o 1057

43 Time Class 1058
Ié_B 1 Descrit)tioﬂ .. 1058
M32 Useand BXamples o v oo oo 1058

22

434 Class APL e e 1060
4341 ESME TimeAsSignment(=]« o o oo oo e 1060
143.4 M IMEOPErator(+) v v v e e e e e e e e e e e e e e e e 1060
43 4 M IMeOPErator(=] o o e e e e e e e e e 1061
43 .4 4 M IMeOPErator(=) o e e e e e e e e e e 1062
43 4 M IMeOperator(==) e e e 1063
43.4.6 M ImeOperator(/=) e e e e 1063
4347 ESME_TimeOperator(<) o v ot e e e e e e e e e e e e e e 1064
143.4.8 M IMeOPErator(<=) o e e e e e e e e 1065

..................................... 1065
.................................... 1066

43.4.12 ESMF_Timelsl CADYCAN . . o e e 1070
AiAJJ_ESME_T.Lmﬂs.S.amQCalQn.daﬂ 1071

43.4.17 ESMF TimeSvncToRealTimd« « v o oo oo 1076
M3 418 ESME TimeValidatd oo 1076

44_Timelnterval Class 1078
BAT Desciption . . . o o v o e oo 1078

442

(4445 ESMF_TimelntervalOperator] . . - « . « « v oo voeeee e e 1083
[4.4.6 ESME TimelntervalOperator] . . . « « + o oo eeee e e e 1084

44.47 ESMFE TimelntervalFunctionMOD) . .« « « o o o oo e 1084
44.4.8 ESMF TimelntervalOperator(*) o o o oo 1085
144.4.9 M imelntervalOperator(==)« v v v i e e e e e e e e e 1086
44.4.10 ESM imeln alOp OL(/=) . . . e e e e 1086
144.4 M imeln alOperator(<) o e e e e e e e e e 1087
144.4 M imelntervalOperator(<=) o o e e e e e 1088
144.4 M imelntervalOperator(>) e e e e e e e e 1088
144.4.14 M imelntervalOperator(>=) e e e e e e e 1089
144.4 M imelntervalAbsValuel e 1090
44416 ESMF_TimelntervalGel o oo oo 1090

23

24

46.6.6 ESMF ALArMDESITON . © o o e e e 1143

46.67 ESMF _AlarmDisabld o o oo 1144

onfigAssignment(=)] Lo 1163
onfigOperator(==1 e e e e 1163
onfigOperator(/=) e 1164
onfigCreatd e 1164
onfigCreatd e e e 1165
onfigDestror L e e e e e 1166
onfigFindlLabel 1167
onfigFindNextlabel 1168

25

4739 ESME ConfigGel ot vttt
4 0 M onfig Attributd L L e e e e
/ M onfigGetAttributd e
4 V] onfig 172
4 M onfieGetDIim e
47314 ESMFE _ConfigGetlell v v v v e e e e e e e e e e e e e e e e e
2 V] onfig CAted e e e e e e e e e e
/ 6 ESM onfigloadFild e
4 V] ONMIZLOY e e e e e e e e e e e e e e e
4 8 ESM onfieNextling e
4 9 ESM onfigPrinl

47.3.20 ESMF_ConfigSetAttribute

47.3.21 ESMF_ConfigValidatd

26

48 eate an empty HConfigobjecl L Lo 1179
48 HConfig from string using YAM DEAX e e e e e e e e e 1179
48 ator based HConfig sequence parsing ooov v e e v i e e 1179
48.2.4 Index based random access HConfig sequence p N . . e e e e e 1182
48.2.5 Destroya HConfigobject o v 1183
48.2.6 eate a HConfig object di oading from YAM N . . e e e e e e e 1183
48 erator based HConfig map parsing v i i e e e e e 1183
48 2.8 Key based random a HConfigmap parsing 1185
4829 Access HConfig fromConfig. e 1186
48 0Load HConfig from YAMI fild e 1187
48.2.11 Save HConfigto YAMI fild 1187
48.2.12 Tagsand Schemas 1189
48 Adding, Setting, and Removing men om HConfigobjectl 1192
48 2.14 Working with multiple YAMI . documentd 1196
48 equence shortcuts for: Create, As, Add,and Sef 1198
43 Restrictions and Future Workl e 1200
%@a IEEIEEEEEEJEE Noted © o o e 1200
48,5 Class API e e e e 1200
%@%i 1200
48.5.2 ESMFE HConfigOperator(/=) v v v v v o e e e e e e e e e e e e e e e e 1201
48 ME_HConfigAdd e e 1201
48.5.4 ME_HConfigAddMapKew e 1203
48 ME_HConfigAddMapVal e 1204
48.5.6 MF_HConfigAs<TVPESpec> o o o it e 1205
48.5.7 ESMF_HConfigAs<TypeSpec>MapKew i 1206
148.5.8 MFE_HConfigA ypeSpec>MapVal 1207
48.5.9 MFE_HConfigA ypeSpe o [P 1208
48.5.10 ESMF_HConfigA ypeSpe gMapKey 1210
48 MFE_HConfigA peSpe gMapVal 1211
48 ME_HConfig = 1212
148 ME_HConfig = 1213
48.5.14 ESMFE_HConfig = 1213
48 ME_HConfig ALE . . . e e e e e e e 1214
48 6 ESMFE_HConfig ALEAD e e e e e 1215

[48.5.17 ESMF_HConfieCreate AIMapKey v v v oo e e e e e 1215

48 8 ESMEF_HConfigCreateAtMapVal it 1216
48 O ESME_HConfigDestrov o v i o i e e e e e e e e e e e 1217
48 0ESME_HConfigFileload e e 1218
48 ME_HConfigFileSave e 1218
48.5.22 ESMF_HConfigGetDocCountl o i e e e 1219
148 ME_HConfigGetSiza e e e 1219
48.5.24 ESMFE_HConfigGetSizeMapKey e 1220
48 ME_HConfigGetSizeMapVal 1221
48 6 ESMFE_HConfigGetTag e e e 1222
48 ME_HConfigGetTagMapKey 1223
48.5.28 ESMF_HConfigGetTagMapVal 1223
8.5.29 e = 1224

8.5.30 ESMFE_HConfigls<NodeType>MapKey it 1225
............................. 1226
.................................... 1227

48.5.33 ESMF_HConfi gIterBeginManKeq 1228
48, 5.34 ESMFE_HConfiglterBeginMapVal e 1228
48 ME_HConfiglterEnd e 1229
48 6 ESMF_HConfiglterEndMapKey 1229
48 ME_HConfiglterEndMapVal 1230
48538 ESMF_HConfiglterIsMap o e e e e e e 1231
148 9 ESMFE_HConfiglte SUUENCH . .« + v o v e e e e e e e e e e e e e 1231
48.5.40 ESMF_HConfiglterloop« . o o e e e 1232
48.5 .4 ME_HConfiglterNext e e e e e e 1233
48 5.4 ME_HConfigRemovd e e 1233
48.5.4 ME _HConfigSell e e e e 1234
48.5.44 ESMF_HConfigSetMapKey e 1235
8.5.4 ME_HConfigSetMapVal e 1236
8 idate EYS . e e e e e e e e e 1237

497 ClasS AP . . o oo 1244

149 M OZASSIZNMENI(=] - -+« « « v v e e e e e e e e e 1244
149 M 0gOPEIALOI(==) - -« « ¢ o o o e e e e e e e e e 1245
149 M 0gOPEratOI(/=] . . . o v v e e e e e e e e e e e e e 1245
149.7.4 M 0ZCIOSE e e e e e e e e e e 1246
149 M ogFlushl e e 1247
149.7.6 M ogFoundAllocErron e e 1247

27

{4977 ESMF_LogFoundDeallocEITon . « « « « v v v v oo e e e e e 1248
40 Q

Defau 1YOU
0 DELayout with specified numberof DEd 1260
0 DELayout with computational and communication weightd 1260
50.3.4 DELayout frompetMap oi i 1260
50.3.5 DElLayout from petMap with multiple DEsper PETI 1261

| =) |) |) | e}

0.6.8 ME_DELa3 eate
0.6.9 ME _DELavoutPrinf o e e e e e 1271

28

[51.3.7 Multiple concurrent instances of ESMF under separate MPI communicators 1280

[51.3.8 Communication - Sendand Recyl o o o o 1281

51.3.12 Using VM communication metdq with data of rank ereater thanond 1287

I51.4 Restrictions and Future Work o oo o 1288

-
—_
(O8]
—_
[\

O \% V] cate

29

(5222 Summarlze Timings across Multiple PETH. . . o o o 1326

1352
... 1352

4 ME_DIM_ARB o s 1352
543 ESME ATTCOPYl . . . o o o oot 1352
544 ESME ATTGETCOUNT o o o oo e e e e e 1352
1545 ESME ATTNESTI o ot oot e et e e e e e e e e 1352
[54.6 ESMF ATTRECONCILE . . « « « o o oo e e e 1352

30

154.8 ESME CALKIND oot oe et ettt e e e e e e 1353
549 ESME COMPTYPH . . .« « o o o oo oo e e 1353
B410ESME CONTEXT . .« o o voooeee e e 1353
B411ESME COORDSYS . . . o o o oo oo 1354
B412ESME DATACOPY] . . o o o o oo 1354
IS4 13ESME_DECOME o oottt et e e e e 1354
B414ESMFE DIRECTION . . .« o o oo oo oo e 1355
B415ESMF DISTGRIDMATCH . .« « o o o oo e e e e e 1355
BAI6ESME END o\ o oo o 1355
[54.17ESMF_EXTRAPMETHOD . .« « « o o e oo e e e e 1355
[B418ESME FIELDSTATUS . . . « « o o o oo oo e e e 1356
[54 19OESMF_FILEFORMATl o o oot e e e e e e e e e e s 1356
B420ESMF FILEMODE . . . « « « o oo oo e e e 1357
B421ESME FILESTATUS . . . « o o o o oo e o e 1357
B422ESME GEOMTYPH . . . « o o o oo o o e e 1357
B423ESME GRIDCONN . . .« o o o oo o e e 1358
[5424ESME_GRIDITEM« o ot oot e e e e 1358
4 M RIDMATCH o 1358
STATUS . . o o o o oo 1358

B427ESME INDEX . . . o o o oo e e 1358
B42SESME JOEMT o o o o oo 1358
54 29ESMF_IO_NETCDFE_PRESENT« o o v vt e e e 1359
[B430ESMF IO PIO_PRESENTI o o o o oo e e 1359
.................................... 1359

4 M MOR <[1360
B433ESME KIND« v o oo e e e 1360
B434ESME LINETYPE « o o o oo e e e e e 1361
[5435ESMF _LOGERR o o oo o e e e 1361
B436ESME LOGKIND . . .« o o o oo oo e e e 1361
B437ESME LOGMSQ . . .« o o o oo e 1361
[B438ESME_MESHELEMTYPE . . -« « « o o oo e e e e 1361
B439ESME MESHLOQ o o o oo 1361
IS4.40ESME MESHORB o oo o ittt e 1362
B441ESME MESHSTATUS . . .« « o oo o oo e e e e 1362
B442ESME METHOD« o o v o oo e e e 1362
B443ESME NORMTYPE . . . o o o o oo e 1363
SAAAESME PIN o o oo oo 1363
154.45ESME POLEKIND o o\ vttt e e e e e e e e e e 1363
54.46ESMF POLEMETHOD . . . « « « o o oee e e e e 1363
B44TESME REDUCH« o o o oo e e e 1364
B448ESME REGION o o o oo 1364
[54.49ESMF_REGRIDMETHOD . . - « « « « « e oo e e e 1365
[54.50ESME REGRIDSTATUS . . .« « o o oo e e e e 1366
[5451ESMF_ ROUTESYNG o oo e s 1366
[B4.50ESMF SERVICEREPLY] . . . « « o o o oo e e e 1367
[B4.53ESMFE_STAGGERLOQ . . .+« o o o e 1367
[B4.54ESMF_STARTREGION . . .« o o o o oo e e 1367
[54.55ESME_STATEINTENT . . .« o o o o oo 1368
I54.56ESME_STATEITEM . . . « « © o vttt ettt e e e e e e e 1368
BASTESME SYNQ o o oo 1368

32

Part I
ESMF Overview

33

1 What is the Earth System Modeling Framework?

The Earth System Modeling Framework (ESMF) is a suite of software tools for developing high-performance, multi-
component Earth science modeling applications. Such applications may include a few or dozens of components
representing atmospheric, oceanic, terrestrial, or other physical domains, and their constituent processes (dynamical,
chemical, biological, etc.). Often these components are developed by different groups independently, and must be
“coupled” together using software that transfers and transforms data among the components in order to form functional
simulations.

ESMF supports the development of these complex applications in a number of ways. It introduces a set of simple,
consistent component interfaces that apply to all types of components, including couplers themselves. These interfaces
expose in an obvious way the inputs and outputs of each component. It offers a variety of data structures for transferring
data between components, and libraries for regridding, time advancement, and other common modeling functions.
Finally, it provides a growing set of tools for using metadata to describe components and their input and output
fields. This capability is important because components that are self-describing can be integrated more easily into
automated workflows, model and dataset distribution and analysis portals, and other emerging “semantically enabled”
computational environments.

ESMF is not a single Earth system model into which all components must fit, and its distribution doesn’t contain
any scientific code. Rather it provides a way of structuring components so that they can be used in many differ-
ent user-written applications and contexts with minimal code modification, and so they can be coupled together in
new configurations with relative ease. The idea is to create many components across a broad community, and so to
encourage new collaborations and combinations.

ESMF offers the flexibility needed by this diverse user base. It is tested nightly on more than two dozen plat-
form/compiler combinations; can be run on one processor or thousands; supports shared and distributed memory
programming models and a hybrid model; can run components sequentially (on all the same processors) or concur-
rently (on mutually exclusive processors); and supports single executable or multiple executable modes.

ESMF’s generality and breadth of function can make it daunting for the novice user. To help users navigate the
software, we try to apply consistent names and behavior throughout and to provide many examples. The large-scale
structure of the software is straightforward. The utilities and data structures for building modeling components are
called the ESMF infrastructure. The coupling interfaces and drivers are called the superstructure. User code sits
between these two layers, making calls to the infrastructure libraries underneath and being scheduled and synchronized
by the superstructure above. The configuration resembles a sandwich, as shown in Figure[ll

ESMF users may choose to extensively rewrite their codes to take advantage of the ESMF infrastructure, or they may
decide to simply wrap their components in the ESMF superstructure in order to utilize framework coupling services.
Either way, we encourage users to contact our [support team! if questions arise about how to best use the software, or
how to structure their application. ESMF is more than software; it’s a group of people dedicated to realizing the vision
of a collaborative model development community that spans institutional and national bounds.

2 The ESMF Reference Manual for Fortran

ESMF has a complete set of Fortran interfaces and some C interfaces. This ESMF Reference Manual is a listing of
ESMF interfaces for Fortran[l

Interfaces are grouped by class. A class is comprised of the data and methods for a specific concept like a physical
field. Superstructure classes are listed first in this Manual, followed by infrastructure classes.

I'Since the customer base for it is small, we have not yet prepared a comprehensive reference manual for C.

34

mailto:esmf_support@ucar.edu

Figure 1: Schematic of the ESMF “‘sandwich” architecture. The framework consists of two parts, an upper level
superstructure layer and a lower level infrastructure layer. User code is sandwiched between these two layers.

ESMF Superstructure
AppDriver
Component Classes: GridComp, CplComp, State

User Code

ESMF Infrastructure
Data Classes: Bundle, Field, Grid, Array
Utility Classes: Clock, LogErr, DELayout, VM, Config

The major classes in the ESMF superstructure are Components, which usually represent large pieces of functional-
ity such as atmosphere and ocean models, and States, which are the data structures used to transfer data between
Components. There are both data structures and utilities in the ESMF infrastructure. Data structures include multi-
dimensional Arrays, Fields that are comprised of an Array and a Grid, and collections of Arrays and Fields called
ArrayBundles and FieldBundles, respectively. There are utility libraries for data decomposition and communications,
time management, logging and error handling, and application configuration.

3 How to Contact User Support and Find Additional Information

The ESMF team can answer questions about the interfaces presented in this document. For user support, please contact
esmf_support@ucar.edu.

The website, http://www.earthsystemmodeling.org, provide more information of the ESMF project as a whole. The
website includes release notes and known bugs for each version of the framework, supported platforms, project history,
values, and metrics, related projects, the ESMF management structure, and more. The ESMF User’s Guide contains
build and installation instructions, an overview of the ESMF system and a description of how its classes interrelate
(this version of the document corresponds to the last public version of the framework). Also available on the ESMF
website is the ESMF Developer’s Guide that details ESMF procedures and conventions.

4 How to Submit Comments, Bug Reports, and Feature Requests

We welcome input on any aspect of the ESMF project. Send questions and comments to lesmf_support@ucar.edu.

35

mailto:esmf_support@ucar.edu
http://www.earthsystemmodeling.org
http://www.earthsystemmodeling.org/esmf_releases/public/last/ESMF_usrdoc/
http://www.earthsystemmodeling.org/documents/dev_guide/
mailto:esmf_support@ucar.edu

5 Conventions

5.1 Typeface and Diagram Conventions

The following conventions for fonts and capitalization are used in this and other ESMF documents.

Style Meaning Example

italics documents ESMF Reference Manual
courier code fragments ESMF_TRUE

courier () ESMF method name ESMF_FieldGet ()
boldface first definitions An address space is ...
boldface web links and tabs Developers tab on the website
Capitals ESMF class name DataMap

ESMF class names frequently coincide with words commonly used within the Earth system domain (field, grid, com-
ponent, array, etc.) The convention we adopt in this manual is that if a word is used in the context of an ESMF class
name it is capitalized, and if the word is used in a more general context it remains in lower case. We would write, for
example, that an ESMF Field class represents a physical field.

Diagrams are drawn using the Unified Modeling Language (UML). UML is a visual tool that can illustrate the structure
of classes, define relationships between classes, and describe sequences of actions. A reader interested in more detail
can refer to a text such as The Unified Modeling Language Reference Manual. [29]

5.2 Method Name and Argument Conventions

Method names begin with ESMF_, followed by the class name, followed by the name of the operation being performed.
Each new word is capitalized. Although Fortran interfaces are not case-sensitive, we use case to help parse multi-word
names.

For method arguments that are multi-word, the first word is lower case and subsequent words begin with upper case.
ESMF class names (including typed flags) are an exception. When multi-word class names appear in argument lists,
all letters after the first are lower case. The first letter is lower case if the class is the first word in the argument
and upper case otherwise. For example, in an argument list the DELayout class name may appear as delayout or
srcDelayout.

Most Fortran calls in the ESMF are subroutines, with any returned values passed through the interface. For the sake
of convenience, some ESMEF calls are written as functions.

A typical ESMF call looks like this:

call ESMF_<ClassName><Operation> (classname, firstArgument,
secondArgument, ..., rc)

where

<ClassName> is the class name,

<Operation> is the name of the action to be performed,

classname is a variable of the derived type associated with the class,

the arg« arguments are whatever other variables are required for the operation,
and rc is a return code.

36

6 The ESMF Application Programming Interface

The ESMF Application Programming Interface (API) is based on the object-oriented programming concept of a class.
A class is a software construct that is used for grouping a set of related variables together with the subroutines and
functions that operate on them. We use classes in ESMF because they help to organize the code, and often make it
easier to maintain and understand. A particular instance of a class is called an object. For example, Field is an ESMF
class. An actual Field called temperature is an object. That is about as far as we will go into software engineering
terminology.

The Fortran interface is implemented so that the variables associated with a class are stored in a derived type. For ex-
ample, an ESMF_Field derived type stores the data array, grid information, and metadata associated with a physical
field. The derived type for each class is stored in a Fortran module, and the operations associated with each class are
defined as module procedures. We use the Fortran features of generic functions and optional arguments extensively to
simplify our interfaces.

The modules for ESMF are bundled together and can be accessed with a single USE statement, USE ESMF.

6.1 Standard Methods and Interface Rules

ESMF defines a set of standard methods and interface rules that hold across the entire API. These are:

e ESMF_<Class>Create () and ESMF_<Class>Destroy (), for creating and destroying objects
of ESMF classes that require internal memory management (- called ESMF deep classes). The
ESMF_<Class>Create () method allocates memory for the object itself and for internal variables, and ini-
tializes variables where appropriate. It is always written as a Fortran function that returns a derived type instance
of the class, i.e. an object.

e ESMF_<Class>Set () and ESMF_<Class>Get (), for setting and retrieving a particular item or flag.
In general, these methods are overloaded for all cases where the item can be manipulated as a name/value
pair. If identifying the item requires more than a name, or if the class is of sufficient complexity
that overloading in this way would result in an overwhelming number of options, we define specific
ESMF_<Class>Set<Something> () and ESMF_<Class>Get<Something> () interfaces.

e ESMF_<Class>Add(), ESMF_<Class>AddReplace(), ESMF_<Class>Remove (), and
ESMF_<Class>Replace (), for manipulating objects of ESMF container classes - such as ESMF_State
and ESMF_FieldBundle. For example, the ESMF_FieldBundleAdd () method adds another Field to an
existing FieldBundle object.

e ESMF_<Class>Print (), for printing the contents of an object to standard out. This method is mainly
intended for debugging.

e ESMF_<Class>ReadRestart () and ESMF_<Class>WriteRestart (), for saving the contents of a
class and restoring it exactly. Read and write restart methods have not yet been implemented for most ESMF
classes, so where necessary the user needs to write restart values themselves.

e ESMF_<Class>Validate (), for determining whether a class is internally consistent. For example,
ESMF_Fieldvalidate () validates the internal consistency of a Field object.

6.2 Deep and Shallow Classes

ESMF contains two types of classes.

37

Deep classes require ESMF_<Class>Create () and ESMF_<Class>Destroy () calls. They involve memory
allocation, take significant time to set up (due to memory management) and should not be created in a time-critical
portion of code. Deep objects persist even after the method in which they were created has returned. Most classes
in ESMF, including GridComp, CplComp, State, Fields, FieldBundles, Arrays, ArrayBundles, Grids, and Clocks, fall
into this category.

Shallow classes do not possess ESMF_<Class>Create () and ESMF_<Class>Destroy () calls. They are
simply declared and their values set using an ESMF_<Class>Set () call. Examples of shallow classes are Time,
Timelnterval, and ArraySpec. Shallow classes do not take long to set up and can be declared and set within a time-
critical code segment. Shallow objects stop existing when execution goes out of the declaring scope.

An exception to this is when a shallow object, such as a Time, is stored in a deep object such as a Clock. The
deep Clock object then becomes the declaring scope of the Time object, persisting in memory. The Time object is
deallocated with the ESMF_ClockDestroy () call.

See Section [9 Overall Design and Implementation Notes, for a brief discussion of deep and shallow classes from an
implementation perspective. For an in-depth look at the design and inter-language issues related to deep and shallow
classes, see the ESMF Implementation Report.

6.3 Aliases and Named Aliases

Deep objects, i.e. instances of ESMF deep classes created by the appropriate ESMF_<Class>Create (), can be
used with the standard assignment (=), equality (==), and not equal (/=) operators.

The assignment
deep2 = deepl
makes deep?2 an alias of deepl, meaning that both variables reference the same deep allocation in memory. Many

aliases of the same deep object can be created.

All the aliases of a deep object are equivalent. In particular, there is no distinction between the variable on the left
hand side of the actual ESMF_<Class>Create () call, and any aliases created from it. All actions taken on any of
the aliases of a deep object affect the deep object, and thus all other aliases.

The equality and not equal operators for deep objects are implemented as simple alias checks. For a more general
comparison of two distinct deep objects, a deep class might provide the ESMF_<Class>Match () method.

ESMF provides the concept of a named alias. A named alias behaves just like an alias in all aspects, except when it
comes to setting and getting the name of the deep object it is associated with. While regular aliases all access the same
name string in the actual deep object, a named alias keeps its private name string. This allows the same deep object to
be known under a different name in different contexts.

The assignment
deep2 = ESMF_NamedAlias (deepl)

makes deep2 a named alias of deepl. Any name changes on deep?2 only affect deep2. However, the name
retrieved from deep1l, or from any regular aliases created from deep1, is unaffected.

Notice that aliases generated from a named alias are again named aliases. This is true even when using the regular
assignment operator with a named alias on the right hand side. Named aliases own their unique name string that cannot
be accessed or altered through any other alias.

38

http://www.earthsystemmodeling.org/documents/IMPL_repdoc/

6.3.1 ESMF_NamedAlias - Generate a Named Alias

INTERFACE:

function ESMF_NamedAlias (object, name, rc)

RETURN VALUE:
type (ESMF_x) :: ESMF_NamedAlias
ARGUMENTS:
type (ESMF_x), intent (in) object
character (len = %), intent (in), optional :: name
integer, intent (out), optional :: rc
DESCRIPTION:

Generate a named alias to object. The supported classes are:

e ESMF_State

e ESMF_GridComp

e ESMF_CplComp

e ESMF_SciComp

e ESMF_ FieldBundle
e ESMF_Field

e ESMF_ArrayBundle

e ESMF_Array
The arguments are:

object The incoming object for which a named alias is generated.
[name] The name of the named alias. By default use the name of object.

[re] Return code; equals ESMF_SUCCESS if there are no errors.

6.4 Special Methods

The following are special methods which, in one case, are required by any application using ESMF, and in the other
case must be called by any application that is using ESMF Components.

e ESMF_Initialize () and ESMF_Finalize () are required methods that must bracket the use of ESMF
within an application. They manage the resources required to run ESMF and shut it down gracefully. ESMF
does not support restarts in the same executable, i.e. ESMF_Initialize () should not be called after
ESMF_Finalize ().

39

e ESMF_<Type>CompInitialize (), ESMF_<Type>CompRun (), and
ESMF_<Type>CompFinalize () are component methods that are used at the highest level within
ESMF. <Type> may be <Grid>, for Gridded Components such as oceans or atmospheres, or <Cpl>, for
Coupler Components that are used to connect them. The content of these methods is not part of the ESMFE.
Instead the methods call into associated subroutines within user code.

6.5 The ESMF Data Hierarchy

The ESMF API is organized around a hierarchy of classes that contain model data. The operations that are performed
on model data, such as regridding, redistribution, and halo updates, are methods of these classes.

The main data classes in ESMF, in order of increasing complexity, are:

e Array An ESMF Array is a distributed, multi-dimensional array that can carry information such as its type,
kind, rank, and associated halo widths. It contains a reference to a native Fortran array.

e ArrayBundle An ArrayBundle is a collection of Arrays, not necessarily distributed in the same manner. It is
useful for performing collective data operations and communications.

e Field A Field represents a physical scalar or vector field. It contains a reference to an Array along with grid
information and metadata.

¢ FieldBundle A FieldBundle is a collection of Fields discretized on the same grid. The staggering of data points
may be different for different Fields within a FieldBundle. Like the ArrayBundle, it is useful for performing
collective data operations and communications.

e State A State represents the collection of data that a Component either requires to run (an Import State) or can
make available to other Components (an Export State). States may contain references to Arrays, ArrayBundles,
Fields, FieldBundles, or other States.

e Component A Component is a piece of software with a distinct function. ESMF currently recognizes two
types of Components. Components that represent a physical domain or process, such as an atmospheric model,
are called Gridded Components since they are usually discretized on an underlying grid. The Components
responsible for regridding and transferring data between Gridded Components are called Coupler Components.
Each Component is associated with an Import and an Export State. Components can be nested so that simpler
Components are contained within more complex ones.

Underlying these data classes are native language arrays. ESMF allows you to reference an existing Fortran array to
an ESMF Array or Field so that ESMF data classes can be readily introduced into existing code. You can perform
communication operations directly on Fortran arrays through the VM class, which serves as a unifying wrapper for
distributed and shared memory communication libraries.

6.6 ESMF Spatial Classes

Like the hierarchy of model data classes, ranging from the simple to the complex, ESMF is organized around a hierar-
chy of classes that represent different spaces associated with a computation. Each of these spaces can be manipulated,
in order to give the user control over how a computation is executed. For Earth system models, this hierarchy starts
with the address space associated with the computer and extends to the physical region described by the application.
The main spatial classes in ESMF, from those closest to the machine to those closest to the application, are:

40

6.7

The Virtual Machine, or VM The ESMF VM is an abstraction of a parallel computing environment that en-
compasses both shared and distributed memory, single and multi-core systems. Its primary purpose is resource
allocation and management. Each Component runs in its own VM, using the resources it defines. The elements
of a VM are Persistent Execution Threads, or PETs, that are executing in Virtual Address Spaces, or VASs.
A simple case is one in which every PET is associated with a single MPI process. In this case every PET is
executing in its own private VAS. If Components are nested, the parent component allocates a subset of its PETs
to its children. The children have some flexibility, subject to the constraints of the computing environment, to
decide how they want to use the resources associated with the PETSs they’ve received.

DELayout A DELayout represents a data decomposition (we also refer to this as a distribution). Its basic
elements are Decomposition Elements, or DEs. A DELayout associates a set of DEs with the PETs in a VM.
DEs are not necessarily one-to-one with PETs. For cache blocking, or user-managed multi-threading, more DEs
than PETs may be defined. Fewer DEs than PETs may also be defined if an application requires it.

DistGrid A DistGrid represents the index space associated with a grid. It is a useful abstraction because often
a full specification of grid coordinates is not necessary to define data communication patterns. The DistGrid
contains information about the sequence and connectivity of data points, which is sufficient information for
many operations. Arrays are defined on DistGrids.

Array An Array defines how the index space described in the DistGrid is associated with the VAS of each PET.
This association considers the type, kind and rank of the indexed data. Fields are defined on Arrays.

Grid A Grid is an abstraction for a logically rectangular region in physical space. It associates a coordinate
system, a set of coordinates, and a topology to a collection of grid cells. Grids in ESMF are comprised of
DistGrids plus additional coordinate information.

Mesh A Mesh provides an abstraction for an unstructured grid. Coordinate information is set in nodes, which
represent vertices or corners. Together the nodes establish the boundaries of mesh elements or cells.

LocStream A LocStream is an abstraction for a set of unstructured data points without any topological relation-
ship to each other.

Field A Field may contain more dimensions than the Grid that it is discretized on. For example, for convenience
during integration, a user may want to define a single Field object that holds snapshots of data at multiple times.
Fields also keep track of the stagger location of a Field data point within its associated Grid cell.

ESMF Maps

In order to define how the index spaces of the spatial classes relate to each other, we require either implicit rules
(in which case the relationship between spaces is defined by default), or special Map arrays that allow the user to
specify the desired association. The form of the specification is usually that the position of the array element carries
information about the first object, and the value of the array element carries information about the second object.
ESMF includes a distGridToArrayMap, agridToFieldMap, a distGridToGridMap, and others.

6.8

ESMF Specification Classes

It can be useful to make small packets of descriptive parameters. ESMF has one of these:

e ArraySpec, for storing the specifics, such as type/kind/rank, of an array.

41

6.9 ESMF Utility Classes

There are a number of utilities in ESMF that can be used independently. These are:

e Attributes, for storing metadata about Fields, FieldBundles, States, and other classes.
e TimeMgr, for calendar, time, clock and alarm functions.
o LogErr, for logging and error handling.

o Config, for creating resource files that can replace namelists as a consistent way of setting configuration param-
eters.

7 Integrating ESMF into Applications

Depending on the requirements of the application, the user may want to begin integrating ESMF in either a top-down
or bottom-up manner. In the top-down approach, tools at the superstructure level are used to help reorganize and
structure the interactions among large-scale components in the application. It is appropriate when interoperability is
a primary concern; for example, when several different versions or implementations of components are going to be
swapped in, or a particular component is going to be used in multiple contexts. Another reason for deciding on a
top-down approach is that the application contains legacy code that for some reason (e.g., intertwined functions, very
large, highly performance-tuned, resource limitations) there is little motivation to fully restructure. The superstructure
can usually be incorporated into such applications in a way that is non-intrusive.

In the bottom-up approach, the user selects desired utilities (data communications, calendar management, performance
profiling, logging and error handling, etc.) from the ESMF infrastructure and either writes new code using them,
introduces them into existing code, or replaces the functionality in existing code with them. This makes sense when
maximizing code reuse and minimizing maintenance costs is a goal. There may be a specific need for functionality or
the component writer may be starting from scratch. The calendar management utility is a popular place to start.

7.1 Using the ESMF Superstructure

The following is a typical set of steps involved in adopting the ESMF superstructure. The first two tasks, which occur
before an ESMF call is ever made, have the potential to be the most difficult and time-consuming. They are the work
of splitting an application into components and ensuring that each component has well-defined stages of execution.
ESMF aside, this sort of code structure helps to promote application clarity and maintainability, and the effort put into
it is likely to be a good investment.

1. Decide how to organize the application as discrete Gridded and Coupler Components. This might involve
reorganizing code so that individual components are cleanly separated and their interactions consist of a minimal
number of data exchanges.

2. Divide the code for each component into initialize, run, and finalize methods. These methods can be multi-phase,
eg.,init_1, init_2.

3. Pack any data that will be transferred between components into ESMF Import and Export State data structures.
This is done by first wrapping model data in either ESMF Arrays or Fields. Arrays are simpler to create and use
than Fields, but carry less information and have a more limited range of operations. These Arrays and Fields
are then added to Import and Export States. They may be packed into ArrayBundles or FieldBundles first, for
more efficient communications. Metadata describing the model data can also be added. At the end of this step,
the data to be transferred between components will be in a compact and largely self-describing form.

42

4. Pack time information into ESMF time management data structures.

5. Using code templates provided in the ESMF distribution, create ESMF Gridded and Coupler Components to
represent each component in the user code.

6. Write a set services routine that sets ESMF entry points for each user component’s initialize, run, and finalize
methods.

7. Run the application using an ESMF Application Driver.

8 Overall Rules and Behavior

8.1 Return Code Handling

All ESMF methods pass a refurn code back to the caller via the rc argument. If no errors are encountered during the
method execution, a value of ESMF_ SUCCESS is returned. Otherwise one of the predefined error codes is returned to
the caller. See the appendix, section for a full list of the ESMF error return codes.

Any code calling an ESMF method must check the return code. If rc is not equal to ESMF_SUCCESS, the calling
code is expected to break out of its execution and pass the rc to the next level up. All ESMF errors are to be handled
as fatal, i.e. the calling code must bail-on-all-errors.

ESMF provides a number of methods, described under section [49] that make implementation of the bail-on-all-errors
stategy more convenient. Consistent use of these methods will ensure that a full back trace is generated in the ESMF
log output whenever an error condition is triggered.

Note that in ESMF requesting not present information, e.g. via a Get () method, will trigger an error condition.
Combined with the bail-on-all-errors strategy this has the advantage of producing an error trace pointing to the earliest
location in the code that attempts to access unavailable information. In cases where the calling side is able to handle
the presence or absence of certain pieces of of information, the code first must query for the resepctive isPresent
argument. If this argument comes back as . true. itis safe to query for the actual information.

8.2 Local and Global Views and Associated Conventions

ESMF data objects such as Fields are distributed over DEs, with each DE getting a portion of the data. Depending on
the task, a local or global view of the object may be preferable. In a local view, data indices start with the first element
on the DE and end with the last element on the same DE. In a global view, there is an assumed or specified order to the
set of DEs over which the object is distributed. Data indices start with the first element on the first DE, and continue
across all the elements in the sequence of DEs. The last data index represents the number of elements in the entire
object. The DistGrid provides the mapping between local and global data indices.

The convention in ESMF is that entities with a global view have no prefix. Entities with a DE-local (and in some
cases, PET-local) view have the prefix “local.”

Just as data is distributed over DEs, DEs themselves can be distributed over PETs. This is an advanced feature for
users who would like to create multiple local chunks of data, for algorithmic or performance reasons. Local DEs are
those DEs that are located on the local PET. Local DE labeling always starts at 0 and goes to localDeCount-1, where
localDeCount is the number of DEs on the local PET. Global DE numbers also start at 0 and go to deCount-1. The
DELayout class provides the mapping between local and global DE numbers.

43

8.3 Allocation Rules

The basic rule of allocation and deallocation for the ESMF is: whoever allocates it is responsible for deallocating it.

ESMF methods that allocate their own space for data will deallocate that space when the object is de-
stroyed. Methods which accept a user-allocated buffer, for example ESMF_FieldCreate () with the
ESMF_DATACOPY_REFERENCE flag, will not deallocate that buffer at the time the object is destroyed. The user
must deallocate the buffer when all use of it is complete.

Classes such as Fields, FieldBundles, and States may have Arrays, Fields, Grids and FieldBundles created externally
and associated with them. These associated items are not destroyed along with the rest of the data object since it is
possible for the items to be added to more than one data object at a time (e.g. the same Grid could be part of many
Fields). It is the user’s responsibility to delete these items when the last use of them is done.

8.4 Assignment, Equality, Copying and Comparing Objects

The equal sign assignment has not been overloaded in ESMF, thus resulting in the standard Fortran behavior. This
behavior has been documented as the first entry in the API documentation section for each ESMF class. For deep
ESMF objects the assignment results in setting an alias the the same ESMF object in memory. For shallow ESMF
objects the assignment is essentially a equivalent to a copy of the object. For deep classes the equality operators have
been overloaded to test for the alias condition as a counter part to the assignment behavior. This and the not equal
operator are documented following the assignment in the class API documentation sections.

Deep object copies are implemented as a special variant of the ESMF_<Class>Create () methods. It
takes an existing deep object as one of the required arguments. At this point not all deep classes have
ESMF_<Class>Create () methods that allow object copy.

Due to the complexity of deep classes there are many aspects when comparing two objects of the same class. ESMF
provide ESMF_<Class>Match () methods, which are functions that return a class specific match flag. At this point
not all deep classes have ESMF_<Class>Match () methods that allow deep object comparison.

8.5 Attributes

Attributes are (name, value) pairs, where the name is a character string and the value can be either a single value or list
of integer, real, double precision, logical, or character values. Attributes can be associated with
Fields, FieldBundles, and States. Mixed types are not allowed in a single attribute, and all attribute names must be
unique within a single object. Attributes are set by name, and can be retrieved either directly by name or by querying
for a count of attributes and retrieving names and values by index number.

8.6 Constants

Named constants are used throughout ESMF to specify the values of many arguments with multiple well defined
values in a consistent way. These constants are defined by a derived type that follows this pattern:

ESMF_<CONSTANT_NAME>_Flag
The values of the constant are then specified by this pattern:

ESMF_<CONSTANT_NAME>_<VALUE1>

44

ESMF_<CONSTANT_NAME>_<VALUE2>
ESMF_<CONSTANT_NAME>_ <VALUE3>

A master list of all available constants can be found in section[34]

9 Overall Design and Implementation Notes

1.

10

Deep and shallow classes. The deep and shallow classes described in Section [6.2] differ in how and where they
are allocated within a multi-language implementation environment. We distinguish between the implementation
language, which is the language a method is written in, and the calling language, which is the language that the
user application is written in. Deep classes are allocated off the process heap by the implementation language.
Shallow classes are allocated off the stack by the calling language.

Base class. All ESMF classes are built upon a Base class, which holds a small set of system-wide capabilities.

Overall Restrictions and Future Work

. 32-bit integer limitations. In general, Fortran array bounds should be limited to 2**31-1 elements or less.

This is due to the Fortran-95 limitation of returning default sized (e.g., 32 bit) integers for array bound and size
inquiries, and consequent ESMF use of default sized integers for holding these values.

45

Part 11

Command Line Tools

The main product delivered by ESMF is the ESMF library that allows application developers to write programs based
on the ESMF API. In addition to the programming library, ESMF distributions come with a small set of command line
tools (CLT) that are of general interest to the community. These CLTs utilize the ESMF library to implement features
such as printing general information about the ESMF installation, or generating regrid weight files. The provided
ESMF CLTs are intended to be used as standard command line tools.

The bundled ESMF CLTs are built and installed during the usual ESMF installation process, which is described in
detail in the ESMF User’s Guide section "Building and Installing the ESMF". After installation, the CLTs will be
located in the ESMF_APPSDIR directory, which can be found as a Makefile variable in the esmf .mk file. The
esmf .mk file can be found in the ESMF_INSTALL_LIBDIR directory after a successful installation. The ESMF
User’s Guide discusses the e smf . mk mechanism to access the bundled CLTs in more detail in section "Using Bundled
ESMF Command Line Tools".

The following sections provide in-depth documentation of the bundled ESMF CLTs. In addition, each tool supports
the standard —-help command line argument, providing a brief description of how to invoke the program.

11 ESMF_PrintInfo

11.1 Description

The ESMF_PrintInfo command line tool that prints basic information about the ESMF installation to st dout.

The command line tool usage is as follows:

ESMF_PrintInfo [-—help]

where
——help prints a brief usage message

12 ESMF_RegridWeightGen

12.1 Description

This section describes the offline regrid weight generation application provided by ESMF (for a description of ESMF
regridding in general see Section[24.2)). Regridding, also called remapping or interpolation, is the process of changing
the grid that underlies data values while preserving qualities of the original data. Different kinds of transformations are
appropriate for different problems. Regridding may be needed when communicating data between Earth system model
components such as land and atmosphere, or between different data sets to support operations such as visualization.

46

Regridding can be broken into two stages. The first stage is generation of an interpolation weight matrix that describes
how points in the source grid contribute to points in the destination grid. The second stage is the multiplication
of values on the source grid by the interpolation weight matrix to produce values on the destination grid. This is
implemented as a parallel sparse matrix multiplication.

There are two options for accessing ESMF regridding functionality: integrated and offline. Integrated regridding is
a process whereby interpolation weights are generated via subroutine calls during the execution of the user’s code.
The integrated regridding can also perform the parallel sparse matrix multiplication. In other words, ESMF integrated
regridding allows a user to perform the whole process of interpolation within their code. For a further description
of ESMF integrated regridding please see Section In contrast to integrated regridding, offline regridding is
a process whereby interpolation weights are generated by a separate ESMF command line tool, not within the user
code. The ESMF offline regridding tool also only generates the interpolation matrix, the user is responsible for reading
in this matrix and doing the actual interpolation (multiplication by the sparse matrix) in their code. The rest of this
section further describes ESMF offline regridding.

For a discussion of installing and accessing ESMF command line tools such as this one please see the beginning of
this part of the reference manual (Section[I)) or for the quickest approach to just building and accessing the command
line tools please refer to the "Building and using bundled ESMF Command Line Tools" Section in the ESMF User’s
Guide.

This application requires the NetCDF library to read the grid files and to write out the weight files in NetCDF format.
To compile ESMF with the NetCDF library, please refer to the "Third Party Libraries" Section in the ESMF User’s
Guide for more information.

As described above, this tool reads in two grid files and outputs weights for interpolation between the two grids.
The input and output files are all in NetCDF format. The grid files can be defined in five different formats: the
SCRIP format[I2Z.8.T] as is used as an input to SCRIP [13]], the CF convension single-tile grid file [2.83]following the
CF metadata conventions, the GRIDSPEC Mosaic file[[2.8.3]following the proposed GRIDSPEC standard, the ESMF
unstructured grid format [[2.8.2] or the proposed CF unstructured grid data model (UGRID) [12.8.4l GRIDSPEC is
a proposed CF extension for the annotation of complex Earth system grids. In the latest ESMF library, we added
support for multi-tile GRIDSPEC Mosaic file with non-overlapping tiles. For UGRID, we support the 2D flexible
mesh topology with mixed triangles and quadrilaterals and fully 3D unstructured mesh topology with hexahedrons
and tetrahedrons.

The ESMF_RegridWeightGen command line tool can detect the type of the input grid files automatically, so
the specification of source and destination grid file type arguments is optional. However, these arguments (-t,
-—src_type or ——dst_type) can be provided to override the auto-detection. If not explicitly specified, the rule
to determine the file format is the following:

e ESMF_FILEFORMAT_UGRID: a variable with attribute "cf_role" or "standard_name" set to "mesh_topology"

e ESMF_FILEFORMAT_MOSAIC: a variable with attribute "standard_name" set to "grid_mosaic_spec"

e ESMF_FILEFORMAT_TILE: a varilable with attribute "standard_name" set to "grid_tile_spec"

e ESMF_FILEFORMAT_ESMFMESH: variables nodeCoords and elementConn exist

e ESMF_FILEFORMAT_SCRIP: variables grid_corner_lon and grid_corner_lat exist

e ESMF_FILEFORMAT_CFGRID: variables with attributes "degree_north" and "degree_east" (or similar) exist,

and other formats aren’t matched

This command line tool can do regrid weight generation from a global or regional source grid to a global or regional
destination grid. As is true with many global models, this application currently assumes the latitude and longitude

47

http://cfconventions.org
http://extranet.gfdl.noaa.gov/~vb/gridstd/gridstd.html

values refer to positions on a perfect sphere, as opposed to a more complex and accurate representation of the Earth’s
true shape such as would be used in a GIS system. (ESMF’s current user base doesn’t require this level of detail in
representing the Earth’s shape, but it could be added in the future if necessary.)

The interpolation weights generated by this application are output to a NetCDF file (specified by the "-w" or
"——weight" keywords). Two type of weight files are supported: the SCRIP format is the same as that generated
by SCRIP, see Section for a description of the format; and a simple weight file containing only the weights
and the source and destination grid indices (In ESMF term, these are the factorList and factorIndexList
generated by the ESMF weight calculation function ESMF_FieldRegridStore (). Note that the sequence of the
weights in the file can vary with the number of processors used to run the application. This means that two weight
files generated by using different numbers of processors can contain exactly the same interpolation matrix, but can
appear different in a direct line by line comparison (such as would be done by ncdiff). The interpolation weights can
be generated with the bilinear, patch, nearest neighbor, first-order conservative, or second-order conservative methods
described in Section [12.3]

Internally this application uses the ESMF public API to generate the interpolation weights. If a source or des-
tination grid is a single tile logically rectangular grid, then ESMF_GridCreate () is used to create
an ESMF_Grid object. The cell center coordinates of the input grid are put into the center stagger location
(ESMF_STAGGERLOC_CENTER). In addition, the corner coordinates are also put into the corner stagger loca-
tion (ESMF__STAGGERLOC_CORNER) for conservative regridding. If a grid contains multiple logically rectangular
tiles connected with each other by edges, such as a Cubed Sphere grid, the grid can be represented as a multi-tile
ESMF_Grid object created using ESMF_GridCreateMosaic () Such a grid is stored in the GRIDSPEC
Mosaic and tile file format. The method ESMF_MeshCreate () [33.3.8lis used to create an ESMF_Mesh
object, if the source or destination grid is an unstructured grid. When making this call, the flag convert3D is set
to TRUE to convert the 2D coordinates into 3D Cartesian coordinates. Internally ESMF_FieldRegridStore () is
used to generate the weight table and indices table representing the interpolation matrix.

12.2 Regridding Options

The offline regrid weight generation application supports most of the options available in the rest of the ESMF regrid
system. The following is a description of these options as relevant to the application. For a more in-depth description
see Section24.2]

12.2.1 Poles

The regridding occurs in 3D to avoid problems with periodicity and with the pole singularity. This application supports
four options for handling the pole region (i.e. the empty area above the top row of the source grid or below the bottom
row of the source grid). Note that all of these pole options currently only work for logically rectangular grids (i.e.
SCRIP format grids with grid_rank=2 or GRIDSPEC single-tile format grids). The first option is to leave the pole
region empty ("-p none"), in this case if a destination point lies above or below the top row of the source grid, it
will fail to map, yielding an error (unless "-i" is specified). With the next two options, the pole region is handled by
constructing an artificial pole in the center of the top and bottom row of grid points and then filling in the region from
this pole to the edges of the source grid with triangles. The pole is located at the average of the position of the points
surrounding it, but moved outward to be at the same radius as the rest of the points in the grid. The difference between
these two artificial pole options is what value is used at the pole. The default pole option ("-p all") sets the value at
the pole to be the average of the values of all of the grid points surrounding the pole. For the other option ("-p N"),
the user chooses a number N from 1 to the number of source grid points around the pole. For each destination point,
the value at the pole is then the average of the N source points surrounding that destination point. For the last pole
option ("-p teeth") no artificial pole is constructed, instead the pole region is covered by connecting points across the
top and bottom row of the source Grid into triangles. As this makes the top and bottom of the source sphere flat, for

48

a big enough difference between the size of the source and destination pole regions, this can still result in unmapped
destination points. Only pole option "none" is currently supported with the conservative interpolation methods (e.g.
"-m conserve") and with the nearest neighbor interpolation methods ("-m nearestdtos" and "-m neareststod").

12.2.2 Masking

Masking is supported for both the logically rectangular grids and the unstructured grids. If the grid file is in the
SCRIP format, the variable "grid_imask" is used as the mask. If the value is set to O for a grid point, then that point
is considered masked out and won’t be used in the weights generated by the application. If the grid file is in the
ESMF format, the variable "element Mask" is used as the mask. For a grid defined in the GRIDSPEC single-tile or
multi-tile grid or in the UGRID convention, there is no mask variable defined. However, a GRIDSPEC single-tile file
or a UGRID file may contain both the grid definition and the data. The grid mask is usually constructed using the
missing values defined in the data variable. The regridding application provides the argument "—-src_missingvalue"
or "——dst_missingvalue" for users to specify the variable name from where the mask can be constructed.

12.2.3 Extrapolation

The ESMF_RegridWeightGen application supports a number of kinds of extrapolation to fill in points not mapped
by the regrid method. Please see the sections starting with section for a description of these methods.
When using the application an extrapolation method is specified by using the "——extrap_method" flag. For the
inverse distance weighted average method (nearestidavg), the number of source locations is specified using the
"——extrap_num_src_pnts" flag, and the distance exponent is specified using the "——extrap_dist_exponent" flag. For
the creep fill method (creep), the number of creep levels is specified using the "——extrap_num_levels" flag.

12.2.4 Unmapped destination points

If a destination point can’t be mapped, then the default behavior of the application is to stop with an error. By speci-
fying "-i" or the equivalent "—-ignore_unmapped " the user can cause the application to ignore unmapped destination
points. In this case, the output matrix won’t contain entries for the unmapped destination points. Note that the un-
mapped point detection doesn’t currently work for nearest destination to source method ("-m nearestdtos"), so when

using that method it is as if “-i” is always on.

12.2.5 Line type

Another variation in the regridding supported with spherical grids is line type. This is controlled by the "—-line_type"
or “-1” flag. This switch allows the user to select the path of the line which connects two points on a sphere surface.
This in turn controls the path along which distances are calculated and the shape of the edges that make up a cell. Both
of these quantities can influence how interpolation weights are calculated, for example in bilinear interpolation the
distances are used to calculate the weights and the cell edges are used to determine to which source cell a destination
point should be mapped.

ESMF currently supports two line types: “cartesian” and “greatcircle”. The “cartesian” option specifies that the line
between two points follows a straight path through the 3D Cartesian space in which the sphere is embedded. Distances
are measured along this 3D Cartesian line. Under this option cells are approximated by planes in 3D space, and their
boundaries are 3D Cartesian lines between their corner points. The “greatcircle” option specifies that the line between
two points follows a great circle path along the sphere surface. (A great circle is the shortest path between two points
on a sphere.) Distances are measured along the great circle path. Under this option cells are on the sphere surface, and
their boundaries are great circle paths between their corner points.

49

12.3 Regridding Methods

This regridding application can be used to generate bilinear, patch, nearest neighbor, first-order conservative, or
second-order conservative interpolation weights. The following is a description of these interpolation methods as
relevant to the offline weight generation application. For a more in-depth description see Section 24.21

12.3.1 Bilinear

The default interpolation method for the weight generation application is bilinear. The algorithm used by this applica-
tion to generate the bilinear weights is the standard one found in many textbooks. Each destination point is mapped
to a location in the source Mesh, the position of the destination point relative to the source points surrounding it
is used to calculate the interpolation weights. A restriction on bilinear interpolation is that ESMF doesn’t support
self-intersecting cells (e.g. a cell twisted into a bow tie) in the source grid.

12.3.2 Patch

This application can also be used to generate patch interpolation weights. Patch interpolation is the ESMF version
of a technique called "patch recovery" commonly used in finite element modeling [25] [22]. It typically results in
better approximations to values and derivatives when compared to bilinear interpolation. Patch interpolation works by
constructing multiple polynomial patches to represent the data in a source element. For 2D grids, these polynomials
are currently 2nd degree 2D polynomials. The interpolated value at the destination point is the weighted average of
the values of the patches at that point.

The patch interpolation process works as follows. For each source element containing a destination point we construct
a patch for each corner node that makes up the element (e.g. 4 patches for quadrilateral elements, 3 for triangular
elements). To construct a polynomial patch for a corner node we gather all the elements around that node. (Note that
this means that the patch interpolation weights depends on the source element’s nodes, and the nodes of all elements
neighboring the source element.) We then use a least squares fitting algorithm to choose the set of coefficients for the
polynomial that produces the best fit for the data in the elements. This polynomial will give a value at the destination
point that fits the source data in the elements surrounding the corner node. We then repeat this process for each
corner node of the source element generating a new polynomial for each set of elements. To calculate the value at the
destination point we do a weighted average of the values of each of the corner polynomials evaluated at that point. The
weight for a corner’s polynomial is the bilinear weight of the destination point with regard to that corner.

The patch method has a larger stencil than the bilinear, for this reason the patch weight matrix can be correspondingly
larger than the bilinear matrix (e.g. for a quadrilateral grid the patch matrix is around 4x the size of the bilinear matrix).
This can be an issue when performing a regrid weight generation operation close to the memory limit on a machine.

The patch method does not guarantee that after regridding the range of values in the destination field is within the
range of values in the source field. For example, if the mininum value in the source field is 0.0, then it’s possible that
after regridding with the patch method, the destination field will contain values less than 0.0.

This method currently doesn’t support self-intersecting cells (e.g. a cell twisted into a bow tie) in the source grid.

12.3.3 Nearest neighbor

The nearest neighbor interpolation options work by associating a point in one set with the closest point in another set.
If two points are equally close then the point with the smallest index is arbitrarily used (i.e. the point with that would
have the smallest index in the weight matrix). There are two versions of this type of interpolation available in the
regrid weight generation application. One of these is the nearest source to destination method ("-m neareststod"). In

50

this method each destination point is mapped to the closest source point. The other of these is the nearest destination
to source method ("-m nearestdtos"). In this method each source point is mapped to the closest destination point. Note
that with this method the unmapped destination point detection doesn’t work, so no error will be returned even if there
are destination points which don’t map to any source point.

12.3.4 First-order conservative

The main purpose of this method is to preserve the integral of the field across the interpolation from source to desti-
nation. (For a more in-depth description of what this preservation of the integral (i.e. conservation) means please see
section[12.4]) In this method the value across each source cell is treated as a constant, so it will typically have a larger
interpolation error than the bilinear or patch methods. The first-order method used here is similar to that described in
the following paper [28].

By default (or if "——norm_type dstarea"), the weight w;; for a particular source cell ¢ and destination cell j are
calculated as w;; = fi; * Ag;/Aq;. In this equation f;; is the fraction of the source cell ¢ contributing to destination
cell j, and A,; and Ay are the areas of the source and destination cells. If "~-norm_type fracarea", then the weights
are further divided by the destination fraction. In other words, in that case w;; = fi; * Ag; / (Adj * Dj) where D is
fraction of the destination cell that intersects the unmasked source grid.

To see a description of how the different normalization options affect the values and integrals produced by the conser-
vative methods see section[12.3 For a grid on a sphere this method uses great circle cells, for a description of potential
problems with these see[24.2.9

12.3.5 Second-order conservative

Like the first-order conservative method, this method’s main purpose is to preserve the integral of the field across the
interpolation from source to destination. (For a more in-depth description of what this preservation of the integral (i.e.
conservation) means please see section[12.4l) The difference between the first and second-order conservative methods
is that the second-order takes the source gradient into account, so it yields a smoother destination field that typically
better matches the source field. This difference between the first and second-order methods is particularly apparent
when going from a coarse source grid to a finer destination grid. Another difference is that the second-order method
does not guarantee that after regridding the range of values in the destination field is within the range of values in the
source field. For example, if the mininum value in the source field is 0.0, then it’s possible that after regridding with
the second-order method, the destination field will contain values less than 0.0. The implementation of this method is
based on the one described in this paper [19]].

The weights for second-order are calculated in a similar manner to first-order [12.3.4] with additional weights that take
into account the gradient across the source cell.

To see a description of how the different normalization options affect the values and integrals produced by the conser-
vative methods see section[12.3l For a grid on a sphere this method uses great circle cells, for a description of potential
problems with these see

12.4 Conservation

Conservation means that the following equation will hold: sheltzsourcemcells oy ALY =

Zall*demnatwn*cells(Vdj * Afjj), where V is the variable being regridded and A is the area of a cell. The
subscripts s and d refer to source and destination values, and the i and j are the source and destination grid cell indices
(flattening the arrays to 1 dimension).

51

There are a couple of options for how the areas (A) in the proceding equation can be calculated. By default, ESMF
calculates the areas. For a grid on a sphere, areas are calculated by connecting the corner coordinates of each grid
cell (obtained from the grid file) with great circles. For a Cartesian grid, areas are calculated in the typcial manner for
2D polygons. If the user specifies the user area’s option ("—-user_areas"), then weights will be adjusted so that the
equation above will hold for the areas provided in the grid files. In either case, the areas output to the weight file are
the ones for which the weights have been adjusted to conserve.

12.5 The effect of normalization options on integrals and values produced by conservative
methods

It is important to note that by default (i.e. using destination area normalization) conservative regridding doesn’t
normalize the interpolation weights by the destination fraction. This means that for a destination grid which only
partially overlaps the source grid the destination field which is output from the regrid operation should be divided by
the corresponding destination fraction to yield the true interpolated values for cells which are only partially covered
by the source grid. The fraction also needs to be included when computing the total source and destination integrals.
To include the fraction in the conservative weights, the user can specify the fraction area normalization type. This can
be done by specifying "——-norm_type fracarea” on the command line.

For weights generated using destination area normalization (either by not specifying any normalization type or by
specifying "—~—norm_type dstarea"), the following pseudo-code shows how to adjust a destination field (dst_field)
by the destination fraction (dst_frac) called frac_b in the weight file:

for each destination element i
if (dst_frac(i) not equal to 0.0) then
dst_field(i)=dst_field (i) /dst_frac (i)
end if
end for

For weights generated using destination area normalization (either by not specifying any normalization type or by
specifying "——norm_type dstarea"), the following pseudo-code shows how to compute the total destination integral
(dst_total) given the destination field values (dst_field) resulting from the sparse matrix multiplication of
the weights in the weight file by the source field, the destination area (dst_area) called area_b in the weight
file, and the destination fraction (dst_frac) called frac_b in the weight file. As in the previous paragraph, it also
shows how to adjust the destination field (dst_field) resulting from the sparse matrix multiplication by the fraction
(dst_frac)called frac_b in the weight file:

dst_total=0.0
for each destination element i
if (dst_frac (i) not equal to 0.0) then
dst_total=dst_total+dst_field (i) *dst_area (i)
dst_field(i)=dst_field(i)/dst_frac (i)
! If mass computed here after dst_field adjust, would need to be:
! dst_total=dst_total+dst_field (i) *dst_area (i) *dst_frac (i)
end if
end for

For weights generated using fraction area normalization (set by specifying "——norm_type fracarea"), no adjustment of
the destination field (dst_field) by the destination fraction is necessary. The following pseudo-code shows how to
compute the total destination integral (dst_total) given the destination field values (dst__field) resulting from

52

the sparse matrix multiplication of the weights in the weight file by the source field, the destination area (dst_area)
called area_D in the weight file, and the destination fraction (dst_frac) called frac_J in the weight file:

dst_total=0.0

for each destination element i
dst_total=dst_total+dst_field (i) *dst_area (i) *dst_frac (i)

end for

For either normalization type, the following pseudo-code shows how to compute the total source integral
(src_total) given the source field values (src_field), the source area (src_area) called area_a in the
weight file, and the source fraction (src_frac) called frac_a in the weight file:

src_total=0.0

for each source element i
src_total=src_total+src_field(i)*src_area (i) *src_frac (i)

end for

12.6 Usage

The command line arguments are all keyword based. Both the long keyword prefixed with 7 —--’ or the one
character short keyword prefixed with ’ - are supported. The format to run the application is as follows:

ESMF_RegridWeightGen
—-—source|-s src_grid_filename
——destination|-d dst_grid_filename
—--weight|-w out_weight_file
[-—method|-m bilinear|patch|nearestdtos|neareststod|conserve|conserve2nd]
[-—pole|-p nonelalllteeth|1]2]..]
[-—line_typel|-1 cartesian|greatcircle]
[--norm_type dstarea|fracarea]
[-—extrap_method none|neareststod|nearestidavg|nearestd|creep|creepnrstd]
[-—extrap_num_src_pnts <N>]
[-—extrap_dist_exponent <P>]
[-——extrap_num_levels <L>]
[-—ignore_unmapped|—i]
[-—ignore_degenerate]
[-—src_type SCRIP|ESMFMESH|UGRID|CFGRID|GRIDSPEC|MOSAIC|TILE]
[-—dst_type SCRIP|ESMFMESH|UGRID|CFGRID|GRIDSPEC|MOSAIC|TILE]
[-t SCRIP|ESMFMESH|UGRID|CFGRID|GRIDSPEC|MOSAIC|TILE]
[-r]
[-—src_regional]
[--dst_regional]
[-—64bit_offset]
[
[
[
[
[
[

——-src_missingvalue var_name]
—-—dst_missingvalue var_name]
——src_coordinates lon_name, lat_name]
—-—dst_coordinates lon_name,var_name]
——tilefile_path filepath]

53

——user_areas]
——weight_only]

——checkFlag]
--no_log]

—-—version]

[
(-
[
[
[
[
[
[-
[
[-V]

where:

——source oOr -—s -

——destination or -d -

—--weight or -w -

—-—-method or -m -

--pole or -p -

——-src_loc center|corner]
—dst_loc center|corner]

a required argument specifying the source grid
file name

a required argument specifying the destination
grid file name

a required argument specifying the output regridding
weight file name

an optional argument specifying which interpolation
method is used. The value can be one of the following:

bilinear - for bilinear interpolation, also the

default method if not specified.
patch - for patch recovery interpolation
neareststod - for nearest source to destination interpolation
nearestdtos - for nearest destination to source interpolation
conserve — for first-order conservative interpolation
conserve2nd - for second-order conservative interpolation

an optional argument indicating how to extrapolate
in the pole region.
The value can be one of the following:

none - No pole, the source grid ends at the top
(and bottom) row of nodes specified in
<source grid>.

all — Construct an artificial pole placed in the
center of the top (or bottom) row of nodes,
but projected onto the sphere formed by the
rest of the grid. The value at this pole is
the average of all the pole values. This
is the default option.

teeth - No new pole point is constructed, instead
the holes at the poles are filled by
constructing triangles across the top and
bottom row of the source Grid. This can be
useful because no averaging occurs, however,

54

—-—line_type

or

-1

——norm_type

——extrap_method

because the top and bottom of the sphere are
now flat, for a big enough mismatch between
the size of the destination and source pole
regions, some destination points may still
not be able to be mapped to the source Grid.

<N> — Construct an artificial pole placed in the
center of the top (or bottom) row of nodes,
but projected onto the sphere formed by the
rest of the grid. The value at this pole is
the average of the N source nodes next to
the pole and surrounding the destination
point (i.e. the value may differ for each
destination point. Here N ranges from 1 to
the number of nodes around the pole.

— an optional argument indicating the type of path

lines (e.g. cell edges) follow on a spherical
surface. The default value depends on the regrid
method. For non-conservative methods the default is
cartesian. For conservative methods the default is
greatcircle.

an optional argument indicating the type of normal-
ization to do when generating conservative weights.

The default value is dstarea.

an optional argument specifying which extrapolation

method is used to handle unmapped destination locations.

The value can be one of the following:

none - no extrapolation method should be used.

This is the default.

neareststod - nearest source to destination. Each

unmapped destination location is mapped

to the closest source location. This

extrapolation method is not supported with
conservative regrid methods (e.g. conserve).

nearestidavg - inverse distance weighted average.

The value of each unmapped destination location

is the weighted average of the closest N

source locations. The weight is the reciprocal

of the distance of the source from the destination
raised to a power P. All the weights contributing
to one destination point are normalized so that
they sum to 1.0. The user can choose N and P by

using —--extrap_num_src_pnts and

55

—-—extrap_dist_exponent, but defaults are

also provided. This extrapolation method is not
supported with conservative regrid methods
(e.g. conserve).

nearestd - nearest mapped destination to
unmapped destination. Each
unmapped destination location is mapped
to the closest mapped destination location. This
extrapolation method is not supported with
conservative regrid methods (e.g. conserve).

creep - creep fill.
Here unmapped destination points are filled by
moving values from mapped locations to neighboring
unmapped locations. The value filled into a
new location is the average of its already filled
neighbors’ values. This process is repeated for
the number of levels indicated by the
——extrap_num_levels flag. This extrapolation
method is not supported with conservative
regrid methods (e.g. conserve).

creepnrstd — creep fill with nearest destination.
Here unmapped destination points are filled by
first doing a creep fill, and then filling the
remaining unmapped points by using
the nearest destination method (both of these
methods are described in the entries above).
This extrapolation method is not supported
with conservative regrid methods (e.g. conserve).

——extrap_num_src_pnts — an optional argument specifying how many source points
should be used when the extrapolation method is
nearestidavg. If not specified, the default is 8.

——extrap_dist_exponent - an optional argument specifying the exponent that
the distance should be raised to when the
extrapolation method is nearestidavg. If not specified,
the default is 2.0.

——extrap_num_levels - an optional argument specifying how many levels should
be filled for level based extrapolation methods (e.g. creep).

——ignore_unmapped
or
-i — ignore unmapped destination points. If not specified
the default is to stop with an error if an unmapped
point is found.

56

——ignore_degenerate - ignore degenerate cells in the input grids. If not specified

——src_type

—-—dst_type

—-—-src_regional

—-—-dst_regional

——064bit_offset

—-—netcdf4

the default is to stop with an error if an degenerate
cell is found.

an optional argument specifying the source grid file type.

The value can be one of SCRIP, ESMFMESH, UGRID, CFGRID, GRIDSPEC, !
If neither --src_type nor -t is given, the source grid file type w:
determined automatically. (Usually it is unnecessary to provide --
but it can be specified when the automatic file type determination

an optional argument specifying the destination grid file type.

The value can be one of SCRIP, ESMFMESH, UGRID, CFGRID, GRIDSPEC, I
If neither —--dst_type nor -t is given, the destination grid file t;
determined automatically. (Usually it is unnecessary to provide ——
but it can be specified when the automatic file type determination

an optional argument specifying the file types for both the source
and the destination grid files.

The value can be one of SCRIP, ESMFMESH, UGRID, CFGRID, GRIDSPEC, I
If -t is given, then neither —--src_type nor —-dst_type can be giver

an optional argument specifying that the source and
destination grids are regional grids. If the argument
is not given, the grids are assumed to be global.

an optional argument specifying that the source is
a regional grid and the destination is a global grid.

an optional argument specifying that the destination
is a regional grid and the source is a global grid.

an optional argument specifying that the weight file
will be created in the NetCDF 64-bit offset format

to allow variables larger than 2GB. Note the 64-bit
offset format is not supported in the NetCDF version
earlier than 3.6.0. An error message will be generated
if this flag is specified while the application is
linked with a NetCDF library earlier than 3.6.0.

an optional argument specifying that the output weight
will be created in the NetCDF4 format. This option
only works with NetCDF library version 4.1 and above
that was compiled with the NetCDF4 file format enabled
(with HDF5 compression). An error message will be
generated if these conditions are not met.

—--src_missingvalue - an optional argument that defines the variable name

in the source grid file if the file type is either CF Convension
single-tile or UGRID. The regridder will generate a mask using
the missing values of the data variable. The missing

value is defined using an attribute called "_FillValue"

57

or "missing_value".
—-—-dst_missingvalue - an optional argument that defines the variable name
in the destination grid file if the file type is
CF Convension single-tile or UGRID. The regridder will generate
the missing values of the data variable. The missing
value is defined using an attribute called "_FillvValue"
or "missing_value"

—-—-src_coordinates - an optional argument that defines the longitude and
latitude variable names in the source grid file if
the file type is CF Convension single-tile. The variable names ar¢
separated by comma. This argument is required in case
there are multiple sets of coordinate variables defined
in the file. Without this argument, the offline regrid
application will terminate with an error message when
multiple coordinate variables are found in the file.

——dst_coordinates - an optional argument that defines the longitude and
latitude variable names in the destination grid file
if the file type is CF Convension single-tile. The variable names
separated by comma. This argument is required in case
there are multiple sets of coordinate variables defined
in the file. Without this argument, the offline regrid
application will terminate with an error message when
multiple coordinate variables are found in the file.

—-—tilefile_path - the alternative file path for the tile files when either the sourcs
or the destination grid is a GRIDSPEC Mosaic grid. The path can
be either relative or absolute. If it is relative, it is relative

to the working directory. When specified, the gridlocation variab.
defined in the Mosaic file will be ignored.

--src_loc - an optional argument indicating which part of a source
grid cell to use for regridding. Currently, this flag is
only required for non-conservative regridding when the
source grid is an unstructured grid in ESMF or UGRID format.
For all other cases, only the center location is supported.
The value can be one of the following:

center - Regrid using the center location of each grid cell.

corner — Regrid using the corner location of each grid cell.
-—dst_loc - an optional argument indicating which part of a destination

grid cell to use for regridding. Currently, this flag is

only required for non-conservative regridding when the

destination grid is an unstructured grid in ESMF or UGRID format.

For all other cases, only the center location is supported.

The value can be one of the following:

center - Regrid using the center location of each grid cell.

58

——user_areas

—--weight_only

—-—check

——checkFlag

——no_log

——help
-—version

-V

12.7 Examples

corner - Regrid using the corner location of each grid cell.

an optional argument specifying that the conservation
is adjusted to hold for the user areas provided in
the grid files. If not specified, then the
conservation will hold for the ESMF calculated

(great circle) areas.

Whichever areas the conservation holds for are output
to the weight file.

an optional argument specifying that the output weight file only
contains the weights and the source and destination grid’s indices

Check that the generated weights produce reasonable
regridded fields. This is done by calling ESMF_Regrid()
on an analytic source field using the weights generated
by this application. The mean relative error between
the destination and analytic field is computed, as well
as the relative error between the mass of the source and
destination fields in the conservative case.

Turn on more expensive extra error checking during
weight generation.

Turn off the ESMF Log files. By default, ESMF creates
multiple log files, one per PET.

Print the usage message and exit.
Print ESMF version and license information and exit.

Print ESMF version number and exit.

The example below shows the command to generate a set of conservative interpolation weights between a global
SCRIP format source grid file (src.nc) and a global SCRIP format destination grid file (dst.nc). The weights are written
into file w.nc. In this case the ESMF library and applications have been compiled using an MPI parallel communication
library (e.g. setting ESMF_COMM to openmpi) to enable it to run in parallel. To demonstrate running in parallel the
mpirun script is used to run the application in parallel on 4 processors.

mpirun -np 4 ./ESMF_RegridWeightGen -s src.nc —-d dst.nc -m conserve —w w.nc

The next example below shows the command to do the same thing as the previous example except for three changes.
The first change is this time the source grid is regional ("-—-src_regional"). The second change is that for this

59

example bilinear interpolation ("-m bilinear") is being used. Because bilinear is the default, we could also omit
the "-m bilinear". The third change is that in this example some of the destination points are expected to not be
found in the source grid, but the user is ok with that and just wants those points to not appear in the weight file instead
of causing an error ("-1").

mpirun -np 4 ./ESMF_RegridWeightGen -i --src_regional -s src.nc -d dst.nc \
-m bilinear -w w.nc

The last example shows how to use the missing values of a data variable to generate the grid mask for a CF Convension
single-tile file, how to specify the coordinate variable names using "~--src_coordinates" and use user defined
area for the conservative regridding.

mpirun -np 4 ./ESMF_RegridWeightGen -s src.nc —-d dst.nc -m conserve \
-w w.nc —-src_missingvalue datavar \
—-—src_coordinates lon,lat —--user_areas

In the above example, "datavar" is the variable name defined in the source grid that will be used to construct the mask
using its missing values. In addition, "1on" and "l1at" are the variable names for the longitude and latitude values,
respectively.

12.8 Grid File Formats

This section describes the grid file formats supported by ESMF. These are typically used either to describe grids to
ESMF_RegridWeightGen or to create grids within ESMF. The following table summarizes the features supported by
each of the grid file formats.

Feature SCRIP | ESMF Unstruct. | CF Grid | UGRID | GRIDSPEC Mosaic
Create an unstructured Mesh YES YES NO YES NO
Create a logically-rectangular Grid | YES NO YES NO YES
Create a multi-tile Grid NO NO NO NO YES
2D YES YES YES YES YES
3D NO YES NO YES NO
Spherical coordinates YES YES YES YES YES
Cartesian coordinates NO YES NO NO NO
Non-conserv regrid on corners NO YES NO YES YES

The rest of this section contains a detailed descriptions of each grid file format along with a simple example of the
format.

12.8.1 SCRIP Grid File Format

A SCRIP format grid file is a NetCDF file for describing grids. This format is the same as is used by the SCRIP [13]]
package, and so grid files which work with that package should also work here. When using the ESMF API, the file
format flag ESMF_FILEFORMAT_SCRIP can be used to indicate a file in this format.

60

SCRIP format files are capable of storing either 2D logically rectangular grids or 2D unstructured grids. The basic
format for both of these grids is the same and they are distinguished by the value of the grid_rank variable.
Logically rectangular grids have grid_rank set to 2, whereas unstructured grids have this variable set to 1.

The following is a sample header of a logically rectangular grid file:

netcdf remap_grid_T42 {

dimensions:
grid_size = 8192 ;
grid_corners = 4 ;

grid_rank = 2 ;

variables:
int grid_dims (grid_rank) ;
double grid_center_lat (grid_size) ;

grid_center_lat:units = "radians";

double grid_center_lon(grid_size) ;
grid_center_lon:units = "radians" ;

int grid_imask (grid_size) ;
grid_imask:units = "unitless" ;

double grid_corner_lat (grid_size, grid_corners) ;
grid_corner_lat:units = "radians" ;

double grid_corner_lon(grid_size, grid_corners) ;
grid_corner_lon:units ="radians" ;

// global attributes:
:title = "T42 Gaussian Grid"

The grid_size dimension is the total number of cells in the grid; grid_rank refers to the number of dimensions.
In this case grid_rank is 2 for a 2D logically rectangular grid. The integer array grid_dims gives the number of
grid cells along each dimension. The number of corners (vertices) in each grid cell is given by grid_corners. The
grid corner coordinates need to be listed in an order such that the corners are in counterclockwise order. Also, note
that if your grid has a variable number of corners on grid cells, then you should set grid_corners to be the highest
value and use redundant points on cells with fewer corners.

The integer array grid_imask is used to mask out grid cells which should not participate in the regridding. The array
values should be zero for any points that do not participate in the regridding and one for all other points. Coordinate
arrays provide the latitudes and longitudes of cell centers and cell corners. The unit of the coordinates can be either
"radians" or "degrees".

Here is a sample header from a SCRIP unstructured grid file:

netcdf nednpéd-pentagons {

dimensions:
grid_size = 866 ;
grid_corners = 5 ;
grid_rank =1 ;
variables:

int grid_dims (grid_rank) ;
double grid_center_lat (grid_size) ;
grid_center_lat:units = "degrees"

61

double grid_center_lon(grid_size) ;
grid_center_lon:units = "degrees"

double grid_corner_lon(grid_size, grid_corners) ;
grid_corner_lon:units = "degrees";
grid_corner_lon:_FillValue = -9999. ;

double grid_corner_lat (grid_size, grid_corners) ;
grid_corner_lat:units = "degrees"
grid_corner_lat:_FillValue = -9999. ;

int grid_imask (grid_size) ;
grid_imask:_FillValue = -9999. ;

double grid_area(grid_size) ;
grid_area:units = "radians”"2"
grid_area:long_name = "area weights"

The variables are the same as described above, however, here grid_rank = 1. In this format there is no notion
of which cells are next to which, so to construct the unstructured mesh the connection between cells is defined by
searching for cells with the same corner coordinates. (e.g. the same grid_corner_lat and grid_corner_lon
values).

Both the SCRIP grid file format and the SCRIP weight file format work with the SCRIP 1.4 tools.

12.8.2 ESMF Unstructured Grid File Format (ESMFMESH)

ESMF supports a custom unstructured grid file format for describing meshes. This format is more com-
patible than the SCRIP format with the methods used to create an ESMF Mesh object, so less conversion
needs to be done to create a Mesh. The ESMF format is thus more efficient than SCRIP when used with
ESMF codes (e.g. the ESMF_RegridWeightGen application). When using the ESMF API, the file format flag
ESMF_FILEFORMAT_ ESMFMESH can be used to indicate a file in this format.

The following is a sample header in the ESMF format followed by a description:

netcdf mesh-esmf {
dimensions:
nodeCount = 9 ;
elementCount = 5 ;
maxNodePElement = 4 ;
coordDim = 2 ;
variables:
double nodeCoords (nodeCount, coordDim) ;
nodeCoords:units = "degrees"
int elementConn (elementCount, maxNodePElement) ;
elementConn:long_name = "Node Indices that define the element /
connectivity";
elementConn:_FillValue = -1 ;
elementConn:start_index = 1 ;
byte numElementConn (elementCount) ;
numElementConn:long_name = "Number of nodes per element" ;
double centerCoords (elementCount, coordDim) ;
centerCoords:units = "degrees"
double elementArea (elementCount) ;

62

elementArea:units = "radians”2" ;

elementArea:long_name = "area weights"
int elementMask (elementCount) ;
elementMask:_FillValue = -9999. ;

// global attributes:
:gridType="unstructured";
:version = "0.9"

In the ESMF format the NetCDF dimensions have the following meanings. The nodeCount dimension is the
number of nodes in the mesh. The elementCount dimension is the number of elements in the mesh. The
maxNodePElement dimension is the maximum number of nodes in any element in the mesh. For example, in
a mesh containing just triangles, then maxNodePElement would be 3. However, if the mesh contained one quadri-
lateral then maxNodePElement would need to be 4. The coordDim dimension is the number of dimensions of
the points making up the mesh (i.e. the spatial dimension of the mesh). For example, a 2D planar mesh would have
coordDim equal to 2.

In the ESMF format the NetCDF variables have the following meanings. The nodeCoords variable contains the
coordinates for each node. nodeCoords is a two-dimensional array of dimension (nodeCount, coordDim) . For
a2D Grid, coordDimis 2 and the grid can be either spherical or Cartesian. If the unit s attribute is either degrees
or radians, it is spherical. nodeCoords (:, 1) contains the longitude coordinates and nodeCoords (:, 2)
contains the latitude coordinates. If the value of the units attribute is km, kilometers or meters, the grid is in
2D Cartesian coordinates. nodeCoords (:, 1) contains the x coordinates and nodeCoords (:, 2) contains the
y coordinates. The same order applies to centerCoords. For a 3D Grid, coordDim is 3 and the grid is assumed
to be Cartesian. nodeCoords (:, 1) contains the x coordinates, nodeCoords (:, 2) contains the y coordinates,
and nodeCoords (:, 3) contains the z coordinates. The same order applies to centerCoords. A 2D grid in the
Cartesian coordinate can only be regridded into another 2D grid in the Cartesian coordinate.

The elementConn variable describes how the nodes are connected together to form each element. For each element,
this variable contains a list of indices into the nodeCoords variable pointing to the nodes which make up that
element. By default, the index is 1-based. It can be changed to 0-based by adding an attribute start_index of value
0 to the elementConn variable. The order of the indices describing the element is important. The proper order for
elements available in an ESMF mesh can be found in Section[33.2.11 The file format does support 2D polygons with
more corners than those in that section, but internally these are broken into triangles. For these polygons, the corners
should be listed such that they are in counterclockwise order around the element. e LementConn can be either a 2D
array or a 1D array. If it is a 2D array, the second dimension of the e lementConn variable has to be the size of the
largest number of nodes in any element (i.e. maxNodePElement), the actual number of nodes in an element is given
by the numElementConn variable. For a given dimension (i.e. coordDim) the number of nodes in the element
indicates the element shape. For example in 2D, if numElement Conn is 4 then the element is a quadrilateral. In 3D,
if numElementConn is 8 then the element is a hexahedron.

If the grid contains some elements with large number of edges, using a 2D array for elementConn could take a
lot of space. In that case, elementConn can be represented as a 1D array that stores the edges of all the elements
continuously. When elementConn is a 1D array, the dimension maxNodePElement is no longer needed, instead,
a new dimension variable connectionCount is required to define the size of elementConn. The value of
connectionCount is the sum of all the values in numElementConn.

The following is an example grid file using 1D array for elementConn:

netcdf catchments_esmfl ({
dimensions:
nodeCount = 1824345 ;
elementCount = 68127 ;

63

connectionCount = 18567179 ;
coordDim = 2 ;

variables:

double nodeCoords (nodeCount, coordDim) ;
nodeCoords:units = ‘‘degrees’’

double centerCoords (elementCount, coordDim) ;
centerCoords:units = ‘‘degrees’’

int elementConn (connectionCount) ;
elementConn:polygon_break_value = -8 ;
elementConn:start_index = 0. ;

int numElementConn (elementCount) ;

In some cases, one mesh element may contain multiple polygons and these polygons are separated by a special value
defined in the attribute polygon_break_value

The rest of the variables in the format are optional. The centerCoords variable gives the coordinates of the center of
the corresponding element. This variable is used by ESMF for non-conservative interpolation on the data field residing
at the center of the elements. The elementArea variable gives the area (or volume in 3D) of the corresponding
element. This area is used by ESMF during conservative interpolation. If not specified, ESMF calculates the area
(or volume) based on the coordinates of the nodes making up the element. The final variable is the e lementMask
variable. This variable allows the user to specify a mask value for the corresponding element. If the value is 1, then
the element is unmasked and if the value is O the element is masked. If not specified, ESMF assumes that no elements
are masked.

The following is a picture of a small example mesh and a sample ESMF format header using non-optional variables
describing that mesh:

2.0 7 ————— 8§ —————— 9
4	5

1.0 4 —————— 5 ——————— 6
| I\ 3
| 1 | \ |
| | 2 A

0.0 1 —————— 2 ——————= 3

0.0 1.0 2.0

Node indices at corners
Element indices in centers

netcdf mesh-esmf {

dimensions:
nodeCount = 9 ;
elementCount = 5 ;
maxNodePElement = 4 ;
coordDim = 2 ;
variables:
double nodeCoords (nodeCount, coordDim);

nodeCoords:units = "degrees"

64

int elementConn (elementCount, maxNodePElement) ;

elementConn:long_name = "Node Indices that define the element /
connectivity";
elementConn:_FillValue = -1 ;
byte numElementConn (elementCount) ;
numElementConn:long_name = "Number of nodes per element"

// global attributes:
:gridType="unstructured";

:version = "0.9" ;
data:
nodeCoords=
0.0, 0.0,
1.0, 0.0,
2.0, 0.0,
0.0, 1.0,
1.0, 1.0,
2.0, 1.0,
0.0, 2.0,
1.0, 2.0,
2.0, 2.0 ;
elementConn=
i, 2, 5, 4,
2, 3, 5, -1,
3, 6, 5, -1,
4, 5, 8, 17,
5 6, 9, 8 ;

numElementConn= 4, 3, 3, 4, 4 ;

12.8.3 CF Convention Single Tile File Format (CFGRID/GRIDSPEC)

ESMF_RegridWeightGen supports single tile logically rectangular lat/lon grid files that follow the NETCDF
CF convention based on ICF Metadata Conventions V1.6. When using the ESMF API, the file format flag
ESMF_FILEFORMAT_CFGRID (or its equivalent deprecated name, ESMF_FILEFORMAT_GRIDSPEC) can be used
to indicate a file in this format.

An example grid file is shown below. The cell center coordinate variables are determined by the value of its attribute
units. The longitude variable has the attribute value set to either degrees_east, degree_east, degrees_E,
degree_E, degreesE or degreeE. The latitude variable has the attribute value set to degrees_north,
degree_north, degrees_N, degree_N, degreesN or degreeN. The latitude and the longitude variables
are one-dimensional arrays if the grid is a regular lat/lon grid, two-dimensional arrays if the grid is curvilinear. The
bound coordinate variables define the bound or the corner coordinates of a cell. The bound variable name is specified
in the bounds attribute of the latitude and longitude variables. In the following example, the latitude bound variable
is lat_bnds and the longitude bound variable is 1on_lbnds. The bound variables are 2D arrays for a regular lat/lon
grid and a 3D array for a curvilinear grid. The first dimension of the bound array is 2 for a regular lat/lon grid and 4 for
a curvilinear grid. The bound coordinates for a curvilinear grid are defined in counterclockwise order. Since the grid
is a regular lat/lon grid, the coordinate variables are 1D and the bound variables are 2D with the first dimension equal

65

http://cfconventions.org/cf-conventions/v1.6.0/cf-conventions.html

to 2. The bound coordinates will be read in and stored in a ESMF Grid object as the corner stagger coordinates when
doing a conservative regrid. In case there are multiple sets of coordinate variables defined in a grid file, the offline
regrid application will return an error for duplicate latitude or longitude variables unless "~-src_coordinates"
or"--src_coordinates" options are used to specify the coordinate variable names to be used in the regrid.

netcdf single_tile_grid {
dimensions:

time = 1 ;

bound = 2 ;

lat = 181 ;

lon = 360 ;

variables:

double lat (lat) ;

lat :bounds = "lat_bnds" ;
lat:units = "degrees_north" ;
lat:long_name = "latitude" ;
lat:standard_name = "latitude" ;

double lat_bnds(lat, bound) ;
double lon(lon) ;

lon:bounds = "lon_bnds"
lon:long_name = "longitude" ;
lon:standard_name = "longitude" ;
lon:units = "degrees_east" ;
double lon_bnds (lon, bound) ;
float so(time, lat, lon) ;

so:standard_name = "sea_water_salinity"
so:units = "psu" ;
so:missing_value = 1.e+20f ;

}

2D Cartesian coordinates can be supplied in additional to the required longitude/latitude coordinates. They can be used
in ESMF to create a grid and used in ESMF_RegridWeightGen. The Cartesian coordinate variables have to include
an "axis" attribute with value "X" or "Y". The "units" attribute can be either "m" or "meters" for meters or "km"
or "kilometers" for kilometers. When a grid with 2D Cartesian coordinates are used in ESMF_RegridWeightGen, the
optional arguments "--src_coordinates" or "--src_coordinates" have to be used to specify the coordi-
nate variable names. A grid with 2D Cartesian coordinates can only be regridded with another grid in 2D Cartesian
coordinates. Internally in ESMF, the Cartesian coordinates are all converted into kilometers. Here is an example of
the 2D Cartesian coordinates:

double xc(xc) ;
xc:long_name = "x-coordinate in Cartesian system" ;
xc:standard_name = "projection_x_coordinate" ;
xc:axis = "X"
xc:units = "m"

double yc(yc) ;
yc:long_name = "y-coordinate in Cartesian system" ;
yc:standard_name = "projection_y_coordinate" ;
yc:axis = "y"
yc:units = "m"

Since a CF convension tile file does not have a way to specify the grid mask, the mask is usually derived by the missing

66

values stored in a data variable. ESMF_RegridWeightGen provides an option for users to derive the grid mask from a
data variable’s missing values. The value of the missing value is defined by the variable attribute missing_value or
_Fillvalue. If the value of the data point is equal to the missing value, the grid mask for that grid point is set to O,
otherwise, it is set to 1. In the following grid, the variable so can be used to derive the grid mask. A data variable could
be a 2D, 3D or 4D. For example, it may have additional depth and time dimensions. It is assumed that the first and the
second dimensions of the data variable should be the longitude and the latitude dimension. ESMF_RegridWeightGen
will use the first 2D data values to derive the grid mask.

12.8.4 CF Convention UGRID File Format

ESMF_RegridWeightGen supports NetCDF files that follow the UGRID conventions for unstructured grids.

The UGRID file format is a proposed extension to the CF metadata conventions for the unstructured grid data
model. The latest proposal can be found at https:/github.com/ugrid-conventions/ugrid-conventions. The pro-
posal is still evolving, the Mesh creation API and ESMF_RegridWeightGen in the current ESMF release is based
on UGRID Version 0.9.0 published on October 29, 2013. When using the ESMF API, the file format flag
ESMF_FILEFORMAT_ UGRID can be used to indicate a file in this format.

In the UGRID proposal, a 1D, 2D, or 3D mesh topology can be defined for an unstructured grid. Currently, ESMF
supports two types of meshes: (1) the 2D flexible mesh topology where each cell (a.k.a. "face" as defined in the
UGRID document) in the mesh is either a triangle or a quadrilateral, and (2) the fully 3D unstructured mesh topol-
ogy where each cell (a.k.a. "volume" as defined in the UGRID document) in the mesh is either a tetrahedron or a
hexahedron. Pyramids and wedges are not currently supported in ESMF, but they can be defined as degenerate hexa-
hedrons. ESMF_RegridWeightGen also supports UGRID 1D network mesh topology in a limited way: A 1D mesh in
UGRID can be used as the source grid for nearest neighbor regridding, and as the destination grid for non-conservative
regridding.

The main addition of the UGRID extension is a dummy variable that defines the mesh topology. This ad-
ditional variable has a required attribute cf_role with value "mesh_topology". In addition, it has
two more required attributes: topology_dimension and node_coordinates. If it is a 1D mesh,
topology_dimension is set to 1. If it is a 2D mesh (i.e., topology_dimension equals to 2), an ad-
ditional attribute face_node_connectivity is required. If it is a 3D mesh (i.e., topology_dimension
equals to 3), two additional attributes volume_node_connectivity and volume_shape_type are re-
quired. The value of attribute node_coordinates is a list of the names of the node longitude and latitude
variables, plus the elevation variable if it is a 3D mesh. The value of attribute face_node_connectivity or
volume_node_connectivity is the variable name that defines the corner node indices for each mesh cell. The
additional attribute volume_shape_type for the 3D mesh points to a flag variable that specifies the shape type of
each cell in the mesh.

Below is a sample 2D mesh called FVCOM_grid2d. The dummy mesh topology variable is fvcom_mesh. As
described above, its cf_role attribute has to be mesh_topology and the topology_dimension attribute has
to be 2 for a 2D mesh. It defines the node coordinate variable names to be 1on and 1at. It also specifies the face/node
connectivity variable name as nv.

The variable nv is a two-dimensional array that defines the node indices of each face. The first dimension defines
the maximal number of nodes for each face. In this example, it is a triangle mesh so the number of nodes per face
is 3. Since each face may have a different number of corner nodes, some of the cells may have fewer nodes than
the specified dimension. In that case, it is filled with the missing values defined by the attribute _Fillvalue. If
_Fillvalue is not defined, the default value is -1. The nodes are in counterclockwise order. An optional attribute
start_index defines whether the node index is 1-based or O-based. If start__index is not defined, the default
node index is 0-based.

The coordinate variables follows the CF metadata convention for coordinates. They are 1D array with attribute

67

https://github.com/ugrid-conventions/ugrid-conventions

standard_name being either latitude or longitude. The units of the coordinates can be either degrees or
radians.

The UGRID files may also contain data variables. The data may be located at the nodes or at the faces. Two additional
attributes are introduced in the UGRID extension for the data variables: 1ocation and mesh. The location
attribute defines where the data is located, it can be either face or node. The mesh attribute defines which mesh
topology this variable belongs to since multiple mesh topologies may be defined in one file. The coordinates
attribute defined in the CF conventions can also be used to associate the variables to their locations. ESMF checks
both location and coordinates attributes to determine where the data variable is defined upon. If both attributes
are present, the 1ocat ion attribute takes the precedence. ESMF_RegridWeightGen uses the data variable on the face
to derive the element masks for the mesh cell and variable on the node to derive the node masks for the mesh.

When creating a ESMF Mesh from a UGRID file, the user has to provide the mesh topology variable name to
ESMF_MeshCreate ().

netcdf FVCOM_grid2d {

dimensions:

node = 417642 ;

nele = 826866 ;

three = 3 ;
time

variables:
// Mesh topology
int fvcom_mesh;

fvcom_mesh:cf_role = "mesh_topology" ;
fvcom_mesh:topology_dimension = 2. ;
fvcom_mesh:node_coordinates = "lon lat" ;
fvcom_mesh:face_node_connectivity = "nv"
int nv(nele, three) ;

nv:standard_name = "face_node_connectivity"
nv:start_index = 1. ;

// Mesh node coordinates
float lon(node) ;

lon:standard_name = "longitude" ;
lon:units = "degrees_east"
float lat (node) ;
lat:standard_name = "latitude"
lat:units = "degrees_north" ;

// Data variable

float ua(time, nele) ;

ua:standard_name = "barotropic_eastward_sea_water_velocity"
ua:missing_value = -999. ;

ua:location = "face"

ua:mesh = "fvcom_mesh"

float va(time, nele) ;

va:standard_name = "barotropic_northward_sea_water_velocity" ;
va:missing_value = -999. ;

va:location = "face"

va:mesh = "fvcom_mesh"

68

Following is a sample 3D UGRID file containing hexahedron cells. The dummy mesh topology variable is
fvcom_mesh. Its cf_role attribute has to be mesh_topology and topology_dimension attribute has
to be 3 for a 3D mesh. There are two additional required attributes: volume_node_connectivity specifies a
variable name that defines the corner indices of the mesh cells and volume_shape_type specifies a variable name
that defines the type of the mesh cells.

The node coordinates are defined by variables nodelon, nodelat and height. Currently, the units attribute for the
height variable is either kilometers, km or meters. The variable vertids is a two-dimensional array that de-
fines the corner node indices of each mesh cell. The first dimension defines the maximal number of nodes for each cell.
There is only one type of cells in the sample grid, i.e. hexahedrons, so the maximal number of nodes is 8. The node
order is defined in [33.2.11 The index can be either 1-based or O-based and the default is O-based. Setting an optional
attribute start_index to 1 changed it to 1-based index scheme. The variable meshtype is a one-dimensional in-
teger array that defines the shape type of each cell. Currently, ESMF only supports tetrahedron and hexahedron shapes.
There are three attributes in meshtype: flag_range, flag_values, and flag_meanings representing the
range of the flag values, all the possible flag values, and the meaning of each flag value, respectively. flag_range
and flag_values are either a scalar or an array of integers. flag_meanings is a text string containing a list of
shape types separated by space. In this example, there is only one shape type, thus, the values of meshtype are all 1.

netcdf wam_ugridl00_110 {

dimensions:

nnodes = 78432 ;

ncells = 66030 ;

eight = 8 ;

variables:

int mesh ;

mesh:cf_role = "mesh_topology" ;
mesh:topology_dimension = 3. ;
mesh:node_coordinates = "nodelon nodelat height" ;
mesh:volume_node_connectivity = "vertids"
mesh:volume_shape_type = "meshtype" ;
double nodelon (nnodes) ;
nodelon:standard_name = "longitude" ;
nodelon:units = "degrees_east"

double nodelat (nnodes) ;
nodelat:standard_name = "latitude" ;
nodelat:units = "degrees_north"

double height (nnodes) ;
height:standard_name = "elevation"
height:units = "kilometers"

int vertids(ncells, eight) ;
vertids:cf_role = "volume_node_connectivity" ;
vertids:start_index = 1. ;

int meshtype(ncells) ;

meshtype:cf_role = "volume_shape_type"

meshtype:flag_range = 1. ;
meshtype:flag_values = 1. ;
meshtype:flag _meanings = "hexahedron" ;

}

69

12.8.5 GRIDSPEC Mosaic File Format

GRIDSPEC is a draft proposal to extend the Climate and Forecast (CF) metadata conventions for the representation of
gridded data for Earth System Models. The original GRIDSPEC standard was proposed by V. Balaji and Z. Liang of
GFDL (seeref). GRIDSPEC extends the current CF convention to support grid mosaics, i.e., a grid consisting of mul-
tiple logically rectangular grid tiles. It also provides a mechanism for storing a grid dataset in multiple files. Therefore,
it introduces different types of files, such as a mosaic file that defines the multiple tiles and their connectivity, and a
tile file for a single tile grid definition on a so-called "Supergrid" format. When using the ESMF API, the file format
flag ESMF_FILEFORMAT_MOSAIC can be used to indicate a file in this format.

Following is an example of a mosaic file that defines a 6 tile Cubed Sphere grid:

netcdf C48_mosaic {
dimensions:

ntiles = 6 ;

ncontact = 12 ;
string = 255 ;
variables:

char mosaic(string) ;

mosaic:standard_name = "grid_mosaic_spec" ;
mosaic:children = "gridtiles"
mosaic:contact_regions = "contacts" ;
mosaic:grid_descriptor = ""

char gridlocation(string) ;

char gridfiles(ntiles,
char gridtiles(ntiles,
char contacts (ncontact,
contacts:standard_name =
contacts

contacts

string) ;
string) ;
string) ;
"grid_contact_spec" ;
:contact_type = "boundary"
:alignment = "true"
contacts:contact_index = "contact_index"
contacts:orientation = "orient"
char contact_index (ncontact, string) ;
contact_index:standard_name = "starting_ending_ point_index_of_contact"

data:
mosaic = "C48_mosaic" ;
gridlocation = "./data/" ;
gridfiles =

"horizontal grid.tilel.
"horizontal_grid.tile2.

"horizontal_ grid.
"horizontal_ grid.
"horizontal_ grid.

"horizontal grid

gridtiles =

"tilel",

tile3.
tiled.
tileb.
.tileo.

70

http://www.gfdl.noaa.gov/~vb/gridstd/gridstd.html

"tile2™,
"tile3",
"tiled",
"tile5",
"tileg"

contacts =
"C48_mosaic:tilel::C48_mosaic:tile2",
"C48_mosaic:tilel::C48_mosaic:tile3",
"C48_mosaic:tilel::C48_mosaic:tileb",
"C48_mosaic:tilel::C48_mosaic:tileoc",
"C48_mosaic:tile2::C48_mosaic:tile3",
"C48_mosaic:tile2::C48_mosaic:tiled",
"C48_mosaic:tile2::C48_mosaic:tileb",
"C48_mosaic:tile3::C48_mosaic:tiled",
"C48_mosaic:tile3::C48_mosaic:tileb",
"C48_mosaic:tiled::C48_mosaic:tileb5",
"C48_mosaic:tiled::C48_mosaic:tileo",
"C48_mosaic:tileb5::C48_mosaic:tileb"

contact_index =
"96:96,1:96::1:1,1:96",
"1:96,96:96::1:1,96:1",
"1:1,1:96::96:1,96:96",
"1:96,1:1::1:96,96:96",
"1:96,96:96::1:96,1:1",
"96:96,1:96::96:1,1:1",
"1:96,1:1::96:96,96:1",
"96:96,1:96::1:1,1:96",
"1:96,96:96::1:1,96:1",
"1:96,96:96::1:96,1:1",
"96:96,1:96::96:1,1:1",
"96:96,1:96::1:1,1:96"

A GRIDSPEC Mosaic file is identified by a dummy variable with its standard_name attribute set to
grid_mosaic_spec. The children attribute of this dummy variable provides the variable name that contains
the tile names and the contact_region attribute points to the variable name that defines a list of tile pairs that
are connected to each other. For a Cubed Sphere grid, there are six tiles and 12 connections. The contacts vari-
able, the variable that defines the contact_region has three required attributes: standard_name, contact_type,
and contact_index. startand_name has to be set to grid_contact_spec. contact_type can be
either boundary or overlap. Currently, ESMF only supports non-overlapping tiles connected by boundary.
contact_index defines the variable name that contains the information defining how the two adjacent tiles are
connected to each other. In the above example, the contact_index variable contains 12 entries. Each entry con-
tains the index of four points that defines the two edges that contact to each other from the two neighboring tiles.
Assuming the four points are A, B, C, and D. A and B defines the edge of tile 1 and C and D defines the edge of tile
2. A is the same point as C and B is the same as D. (Ai, Aj) is the index for point A. The entry looks like this:

Ai:Bi,Aj:Bj::Ci:Di,Cj:Dj

There are two fixed-name variables required in the mosaic file: variable gridfiles defines the associated tile

71

file names and variable gridlocation defines the directory path of the tile files. The gridlocation can be
overwritten with an command line argument ~tilefile_path in ESMF_RegridWeightGen application.

It is possible to define a single-tile Mosaic file. If there is only one tile in the Mosaic, the contact_region attribute
in the grid_mosaic_spec varilable will be ignored.

Each tile in the Mosaic is a logically rectangular lat/lon grid and is defined in a separate file. The tile file used in
the GRIDSPEC Mosaic file defines the coordinates of a so-called supergrid. A supergrid contains all the stagger
locations in one grid. It contains the corner, edge and center coordinates all in one 2D array. In this example, there are
48 elements in each side of a tile, therefore, the size of the supergrid is 48%2+1=97, i.e. 97x97.

Here is the header of one of the tile files:

netcdf horizontal_grid.tilel {

dimensions:

string = 255 ;

nx = 96 ;

ny = 96 ;

nxp = 97 ;

nyp = 97 ;

variables:

char tile(string) ;

tile:standard_name = "grid_tile_spec"
tile:geometry = "spherical"

tile:north_pole = "0.0 90.0"

tile:projection = "cube_gnomonic"
tile:discretization = "logically_rectangular" ;
tile:conformal = "FALSE" ;

double x(nyp, nxp) ;

x:standard_name = "geographic_longitude" ;
x:units = "degree_east" ;

double y (nyp, nxp) ;

y:standard_name = "geographic_latitude"
y:units = "degree_north" ;

double dx (nyp, nx) ;

dx:standard_name = "grid_edge_x_distance" ;
dx:units = "meters"

double dy(ny, nxp) ;

dy:standard_name = "grid_edge_y_distance" ;
dy:units = "meters"

double area(ny, nx) ;

area:standard_name = "grid_cell_area" ;
area:units = "m2"

double angle_dx (nyp, nxp) ;
angle_dx:standard_name = "grid_vertex_x_angle_WRT_geographic_east"
angle_dx:units = "degrees_east" ;

double angle_dy (nyp, nxp) ;
angle_dy:standard_name = "grid_vertex_y_angle_WRT_geographic_north"
angle_dy:units = "degrees_north" ;

char arcx(string) ;

arcx:standard_name = "grid_edge_x_arc_type" ;
arcx:north_pole = "0.0 90.0"

72

// global attributes:
:grid_version = "0.2"

thistory = "/home/z11l/bin/tools_20091028/make_hgrid --grid_type gnomonic_ed --nlon 96"

}

The tile file not only defines the coordinates at all staggers, it also has a complete specification of distances, angles,
and areas. In ESMF, we only use the geographic_longitude and geographic_latitude variables and its
subsets on the center and corner staggers. ESMF currently supports the Mosaic containing tiles of the same size. A
tile can be square or rectangular. For a cubed sphere grid, each tile is a square, i.e. the x and y dimensions are the
same.

12.9 Regrid Weight File Format

A regrid weight file is a NetCDF format file containing the information necessary to perform a regridding between
two grids. It also optionally contains information about the grids used to compute the regridding. This information
is provided to allow applications (e.g. ESMF_RegridWeightGenCheck) to independently compute the accuracy
of the regridding weights. In some cases, ESMF_RegridWeightGen doesn’t output the full grid information (e.g.
when it’s costly to compute, or when the current grid format doesn’t support the type of grids used to generate the
weights). In that case, the weight file can still be used for regridding, but applications which depend on the grid
information may not work.

The following is the header of a sample regridding weight file that describes a bilinear regridding from a logically
rectangular 2D grid to a triangular unstructured grid:

netcdf t42mpas-bilinear {

dimensions:
n_a = 8192 ;
n_b = 20480 ;
n_s = 42456 ;
nv_a = 4 ;
nv_b = 3 ;
num_wgts = 1 ;
src_grid_rank = 2 ;
dst_grid_rank =1 ;
variables:

int src_grid_dims (src_grid_rank) ;
int dst_grid_dims (dst_grid_rank) ;
double yc_a(n_a) ;

yc_a:units = "degrees" ;
double yc_b(n_b) ;

yc_b:units = "radians" ;
double xc_a(n_a) ;

xXCc_a:units = "degrees" ;
double xc_b(n_b) ;

xXc_b:units = "radians" ;
double yv_a(n_a, nv_a) ;

yv_a:units = "degrees" ;

double xv_a(n_a, nv_a) ;
xXv_a:units = "degrees" ;

73

14

double yv_b(n_b, nv_Db)

yv_b:units =

double xv_b (n_b, nv_b)

xXv_b:units =
int mask_a(n_a) ;
mask_a:units
int mask_b (n_b) ;
mask_b:units
double area_a(n_a)
area_a:units
double area_b (n_b)
area_b:units
double frac_a(n_a)
frac_a:units
double frac_b(n_b)
frac_b:units
int col(n_s) ;
int row(n_s) ;
double S(n_s) ;

// global attributes:

4

4

4

4

14

"radians"

4

"radians"

"unitless" ;
"unitless" ;
"square radians" ;
"square radians"
"unitless" ;

"unitless" ;

:title = "ESMF Offline Regridding Weight
:normalization = "destarea" ;
:map_method = "Bilinear remapping" ;
:ESMF_regrid_method = "Bilinear" ;
:conventions = "NCAR-CSM" ;

:domain_a = "T42_grid.nc" ;

:domain_b = "grid-dual.nc" ;
:grid_file_src = "T42_grid.nc" ;
:grid_file_dst = "grid-dual.nc" ;

:ESMF_version = "ESMF_8_2_0_beta_snapshot_05-3-g2193fa3f8a"

The weight file contains four types of information: a description of the source grid, a description of the destination
grid, the output of the regrid weight calculation, and global attributes describing the weight file.

12.9.1 Source Grid Description

The variables describing the source grid in the weight file end with the suffix "_a". To be consistent with the original
use of this weight file format the grid information is written to the file such that the location being regridded is always
the cell center. This means that the grid structure described here may not be identical to that in the source grid file.
The full set of these variables may not always be present in the weight file. The following is an explanation of each

variable:

n_a The number of source cells.

nv_a The maximum number of corners (i.e. vertices) around a source cell. If a cell has less than the maximum number
of corners, then the remaining corner coordinates are repeats of the last valid corner’s coordinates.

xc_a The longitude coordinates of the centers of each source cell.

yc_a The latitude coordinates of the centers of each source cell.

74

Generator"

4

xv_a The longitude coordinates of the corners of each source cell.
yv_a The latitude coordinates of the corners of each source cell.
mask_a The mask for each source cell. A value of 0, indicates that the cell is masked.

area_a The area of each source cell. This quantity is either from the source grid file or calculated by
ESMF_RegridWeightGen. When a non-conservative regridding method (e.g. bilinear) is used, the area
is set to 0.0.

src_grid_rank The number of dimensions of the source grid. Currently this can only be 1 or 2. Where 1 indicates an
unstructured grid and 2 indicates a 2D logically rectangular grid.

src_grid_dims The number of cells along each dimension of the source grid. For unstructured grids this is equal to
the number of cells in the grid.

12.9.2 Destination Grid Description

The variables describing the destination grid in the weight file end with the suffix "_b". To be consistent with the
original use of this weight file format the grid information is written to the file such that the location being regridded is
always the cell center. This means that the grid structure described here may not be identical to that in the destination
grid file. The full set of these variables may not always be present in the weight file. The following is an explanation
of each variable:

n_b The number of destination cells.

nv_b The maximum number of corners (i.e. vertices) around a destination cell. If a cell has less than the maximum
number of corners, then the remaining corner coordinates are repeats of the last valid corner’s coordinates.

xc_b The longitude coordinates of the centers of each destination cell.

yc_b The latitude coordinates of the centers of each destination cell.

xv_b The longitude coordinates of the corners of each destination cell.

yv_b The latitude coordinates of the corners of each destination cell.

mask_b The mask for each destination cell. A value of 0, indicates that the cell is masked.

area_b The area of each destination cell. This quantity is either from the destination grid file or calculated by
ESMF_RegridWeightGen. When a non-conservative regridding method (e.g. bilinear) is used, the area
is set to 0.0.

dst_grid_rank The number of dimensions of the destination grid. Currently this can only be 1 or 2. Where 1 indicates
an unstructured grid and 2 indicates a 2D logically rectangular grid.

dst_grid_dims The number of cells along each dimension of the destination grid. For unstructured grids this is equal
to the number of cells in the grid.

12.9.3 Regrid Calculation Output
The following is an explanation of the variables containing the output of the regridding calculation:

n_s The number of entries in the regridding matrix.
col The position in the source grid for each entry in the regridding matrix.
row The position in the destination grid for each entry in the weight matrix.

S The weight for each entry in the regridding matrix.

75

frac_a When a conservative regridding method is used, this contains the fraction of each source cell that participated
in the regridding. When a non-conservative regridding method is used, this array is set to 0.0.

frac_b When a conservative regridding method is used, this contains the fraction of each destination cell that partic-
ipated in the regridding. When a non-conservative regridding method is used, this array is set to 1.0 where the
point participated in the regridding (i.e. was within the unmasked source grid), and 0.0 otherwise.

The following code shows how to apply the weights in the weight file to interpolate a source field (src_field)
defined over the source grid to a destination field (dst_field) defined over the destination grid. The variables n_s,
n_b, row, col, and S are from the weight file.

! ITnitialize destination field to 0.0
do i=1, n_b

dst_field(i)=0.0
enddo

! Apply weights

do i=1, n_s
dst_field(row(i))=dst_field(row(i))+S(i)+src_field(col(i))

enddo

If the first-order conservative interpolation method is specified ("-m conserve") then the destination field may need to
be adjusted by the destination fraction (frac_I). This should be done if the normalization type is "dstarea" and if
the destination grid extends outside the unmasked source grid. If it isn’t known if the destination extends outside the
source, then it doesn’t hurt to apply the destination fraction. (If it doesn’t extend outside, then the fraction will be 1.0
everywhere anyway.) The following code shows how to adjust an already interpolated destination field (dst_field)
by the destination fraction. The variables n_b, and frac_b are from the weight file:

! Adjust destination field by fraction
do i=1, n_b
if (frac_b (i) .ne. 0.0) then
dst_field(i)=dst_field(i)/frac_b (1)
endif
enddo

12.9.4 Weight File Description Attributes
The following is an explanation of the global attributes describing the weight file:

title Always set to "ESMF Offline Regridding Weight Generator" when generated by ESMF_RegridWeightGen.

normalization The normalization type used to compute conservative regridding weights. The options for this are
described in section which contains a description of the conservative regridding method.

map_method An indication of the mapping method which is constrained by the original use of this format. In
some cases the method specified here will differ from the actual regridding method used, for example weights
generated with the "patch" method will have this attribute set to "Bilinear remapping".

ESMF _regrid_method The ESMF regridding method used to generate the weight file.
conventions The set of conventions that the weight file follows. Currently only "NCAR-CSM" is supported.

domain_a The source grid file name.

76

domain_b The destination grid file name.

grid_file_src The source grid file name.

grid_file_dst The destination grid file name.

ESMF _version The version of ESMF used to generate the weight file.

12.9.5 Weight Only Weight File

In the current ESMF distribution, a new simplified weight file option -weight_only is added to
ESMF_RegridWeightGen. The simple weight file contains only a subset of the Regrid Calculation Output de-
fined in i.e. the weights S, the source grid indices col and destination grid indices row. The dimension of
these three variables is n__s.

12.10 ESMF_RegridWeightGenCheck

The ESMF_RegridWeightGen application is used in the ESMF_RegridWeightGenCheck external demo| to generate
interpolation weights. These weights are then tested by using them for a regridding operation and then comparing
them against an analytic function on the destination grid. This external demo is also used to regression test ESMF
regridding, and it is run nightly on over 150 combinations of structured and unstructured, regional and global grids,
and regridding methods.

13 ESMF_Regrid

13.1 Description

This section describes the file-based regridding command line tool provided by ESMF (for a description of ESMF
regridding in general see Section[24.2)). Regridding, also called remapping or interpolation, is the process of changing
the grid that underlies data values while preserving qualities of the original data. Different kinds of transformations are
appropriate for different problems. Regridding may be needed when communicating data between Earth system model
components such as land and atmosphere, or between different data sets to support operations such as visualization.

Regridding can be broken into two stages. The first stage is generation of an interpolation weight matrix that describes
how points in the source grid contribute to points in the destination grid. The second stage is the multiplication
of values on the source grid by the interpolation weight matrix to produce values on the destination grid. This is
implemented as a parallel sparse matrix multiplication.

The ESMF_RegridWeightGen command line tool described in Section[T2]performs the first stage of the regridding
process - generate the interpolation weight matrix. This tool not only calculates the interpolation weights, it also
applies the weights to a list of variables stored in the source grid file and produces the interpolated values on the
destination grid. The interpolated output variable is written out to the destination grid file. This tool supports three
CF compliant file formats: the CF Single Tile grid file format([12.8.3)) for a logically rectangular grid, the UGRID file
format(for unstructured grid and the GRIDSPEC Mosaic file format(for cubed-sphere grid. For the
GRIDSPEC Mosaic file format, the data are stored in seperate data files, one file per tile. The SCRIP format([12.8.1)
and the ESMF unstructured grid format([12.8.2)) are not supported because there is no way to define a variable field
using these two formats. Currently, the tool only works with 2D grids, the support for the 3D grid will be made
available in the future release. The variable array can be up to four dimensions. The variable type is currently limited
to single or double precision real numbers. The support for other data types, such as integer or short will be added in
the future release.

77

http://www.earthsystemmodeling.org/users/code_examples/external_demos/external_demos.shtml

The user interface of this tool is greatly simplified from ESMF_RegridWeightGen. User only needs to provide two
input file names, the source and the destination variable names and the regrid method. The tool will figure out the type
of the grid file automatically based on the attributes of the variable. If the variable has a coordinates attribute, the
grid file is a GRIDSPEC file and the value of the coordinates defines the longitude and latitude variable’s names.
For example, following is a simple GRIDSPEC file with a variable named P SL and coordinate variables named lon
and lat.

netcdf simple_gridspec {
dimensions:
lat = 192 ;
lon = 288 ;
variables:
float PSL(lat, lon) ;
PSL:time = 50. ;

PSL:units = "Pa" ;
PSL:long_name = "Sea level pressure"
PSL:cell_method = "time: mean"
PSL:coordinates = "lon lat" ;

double lat (lat) ;
lat:long_name = "latitude" ;
lat:units = "degrees_north"

double lon(lon) ;
lon:long_name = "longitude" ;
lon:units = "degrees_east"

If the variable has a mesh attribute and a 1ocation attribute, the grid file is in UGRID format([12.8.4). The value
of mesh attribute is the name of a dummy variable that defines the mesh topology. If the application performs a
conservative regridding, the value of the 1ocat ion attribute has to be face, otherwise, it has to be node. This is
because ESMF only supports non-conservative regridding on the data stored at the nodes of a ESMF_Mesh object,
and conservative regridding on the data stored at the cells of a ESMF_Mesh object.

Here is an example 2D UGRID file:

netcdf simple_ugrid {
dimensions:
node = 4176 ;
nele = 8268 ;
three = 3 ;

time = 2 ;
variables:
float lon(node) ;
lon:units = "degrees_east"
float lat (node) ;
lat:units = "degrees_north"
float lonc (nele) ;
lonc:units = "degrees_east" ;
float latc(nele) ;
latc:units = "degrees_north" ;
int nv(nele, three) ;
nv:standard_name = "face_node_connectivity" ;

78

nv:start_index = 1. ;
float zeta(time, node) ;
zeta:standard_name = "sea_surface_height_above_geoid"
zeta:_FillValue = -999. ;
zeta:location = "node"
zeta:mesh = "fvcom _mesh"
float ua(time, nele) ;
ua:standard_name = "barotropic_eastward_sea_water_velocity" ;
ua:_FillValue = -999. ;
ua:location = "face"
ua:mesh = "fvcom_mesh"
float va(time, nele) ;
va:standard_name = "barotropic_northward_sea_water_velocity"
va:_Fillvalue = -999. ;
va:location = "face"
va:mesh = "fvcom_mesh"
int fvcom_mesh (node) ;
fvcom_mesh:cf_role = "mesh_topology"
fvcom_mesh:dimension = 2. ;
fvcom_mesh:locations = "face node"
fvcom_mesh:node_coordinates = "lon lat"

fvcom_mesh:face_coordinates = "lonc latc" ;

n n

fvcom_mesh:face_node_connectivity = "nv" ;

There are three variables defined in the above UGRID file - zet a on the node of the mesh, ua and va on the face of
the mesh. All three variables have one extra time dimension.

The GRIDSPEC MOSAIC file(can be identified by a dummy variable with standard_name attribute set
to grid_mosaic_spec. The data for a GRIDSPEC Mosaic file are stored in seperate files, one tile per file. The
name of the data file is not specified in the mosaic file. Therefore, additional optional argument —~srcdatafile
or —~dstdatafile is required to provide the prefix of the datafile. The datafile is also a CF compliant NetCDF
file. The complete name of the datafile is constructed by appending the tilename (defined in the Mosaic file in a
variable specified by the children attribute of the dummy variable). For instance, if the prefix of the datafile is
mosaicdata, then the datafile names are mosaicdata.tilel.nc,mosaicdata.tile2.nc, etc... using the
mosaic file example in[I2.8.3] The path of the datafile is defined by gridlocation variable, similar to the tile files.
To overwrite it, an optional argument t ilefile_path can be specified.

Following is an example GRIDSPEC MOSAIC datafile:

netcdf mosaictest.tilel {

dimensions:
grid_yt = 48 ;
grid_xt = 48 ;
time = UNLIMITED ; // (12 currently)
variables:
float area_land(grid_yt, grid_xt) ;
area_land:long_name = "area in the grid cell" ;
area_land:units = "m2"
float evap_land(time, grid_yt, grid_xt) ;
evap_land:long_name = "vapor flux up from land"
evap_land:units = "kg/(m2 s)"

79

evap_land:coordinates = "geolon_t geolat_t" ;
double geolat_t (grid_yt, grid_xt) ;
geolat_t:long_name = "latitude of grid cell centers”
geolat_t:units = "degrees_N"
double geolon_t (grid_yt, grid_xt) ;
geolon_t:long_name = "longitude of grid cell centers"
geolon_t:units = "degrees_E" ;
double time (time) ;
time:long_name = "time" ;
time:units = "days since 1900-01-01 00:00:00"

This is a database for the C48 Cubed Sphere grid defined in[12.8.3 Note currently we assume that the data are located
at the center stagger of the grid. The coordinate variables geolon_t and geolat_t should be identical to the center
coordinates defined in the corresponding tile files. They are not used to create the multi-tile grid. For this application,
they are only used to construct the analytic field to check the correctness of the regridding results if —check argument
is given.

If the variable specified for the destination file does not already exist in the file, the file type is determined as follows:
First search for a variable that has a cf_role attribute of value mesh_topology. If successful, the file is a
UGRID file. The destination variable will be created on the nodes if the regrid method is non-conservative and an
optional argument dst_1loc is set to corner. Otherwise, the destination variable will be created on the face. If the
destination file is not a UGRID file, check if there is a variable with its units attribute set to degrees_east and
another variable with it’s units attribute set to degrees_west. If such a pair is found, the file is a GRIDSPEC file
and the above two variables will be used as the coordinate variables for the variable to be created. If more than one
pair of coordinate variables are found in the file, the application will fail with an error message.

If the destination variable exists in the destination grid file, it has to have the same number of dimensions and the same
type as the source variable. Except for the latitude and longitude dimensions, the size of the destination variable’s
extra dimensions (e.g., time and vertical layers) has to match with the source variable. If the destination varialbe does
not exist in the destination grid file, a new variable will be created with the same type and matching dimensions as
the source variable. All the attributes of the source variable will be copied to the destination variable except those
related to the grid definition (i.e. coordinates attribute if the destination file is in GRIDSPEC or MOSAIC format
or mesh and location attributes if the destination file is in UGRID format.

Additional rules beyond the CF convention are adopted to determine whether there is a time dimension defined in the
source and destination files. In this application, only a dimension with a name t ime is considered as a time dimension.
If the source variable has a t ime dimension and the destination variable is not already defined, the application first
checks if there is a t ime dimension defined in the destination file. If so, the values of the t ime dimension in both
files have to be identical. If the time dimension values don’t match, the application terminates with an error message.
The application does not check the existence of a t ime variable or if the unit s attribute of the t ime variable match
in two input files. If the destination file does not have a t ime dimension, it will be created. UNLIMITED time
dimension is allowed in the source file, but the t ime dimension created in the destination file is not UNLIMITED.

This application requires the NetCDF library to read the grid files and write out the interpolated variables. To compile
ESMF with the NetCDF library, please refer to the "Third Party Libraries" Section in the ESMF User’s Guide for more
information.

Internally this application uses the ESMF public API to perform regridding. If a source or destination grid is logically
rectangular, then ESMF_GridCreate () (BL6.13) is used to create an ESMF_Grid object from the file. The coordi-
nate variables are stored at the center stagger location (ESMF_STAGGERLOC_CENTER). If the application performs
a conservative regridding, the addCornerStager argument is set to TRUE and the bound variables in the grid
file will be read in and stored at the corner stagger location (ESMF__STAGGERLOC_CORNER). If the variable has an

80

_Fillvalue attribute defined, a mask will be generated using the missing values of the variable. The data variable
is defined as a ESMF_Field object at the center stagger location (ESMF_STAGGERLOC_CENTER) of the grid.

If the source grid is an unstructured grid and the the regrid method is nearest neighbor, or if the destination grid is
unstructured and the regrid method is non-conservative, ESMF_LocStreamCreate () ([324.14]is used to create
an ESMF_LocStream object. Otherwise, ESMF_MeshCreate () ([33.4.8) is used to create an ESMF_Mesh object
for the unstructured input grids. Currently, only the 2D unstructured grid is supported. If the application performs a
conservative regridding, the variable has to be defined on the face of the mesh cells, i.e., its location attribute has
to be set to face. Otherwise, the variable has to be defined on the node and its (Locat ion attribute is set to node).

If a source or a destination grid is a Cubed Sphere grid defined in GRIDSPEC MOSAIC file format,
ESMF_GridCreateMosaic () (B1.6.28) will be used to create a multi-tile ESMF_Grid object from the file. The
coordinates at the center and the corner stagger in the tile files will be stored in the grid. The data has to be located at
the center stagger of the grid.

Similar to the ESMF_RegridWeightGen command line tool (Section[12)), this application supports bilinear, patch,
nearest neighbor, first-order and second-order conservative interpolation. The descriptions of different interpolation
methods can be found at Section 24.2] and Section [[21 It also supports different pole methods for non-conservative
interpolation and allows user to choose to ignore the errors when some of the destination points cannot be mapped by
any source points.

If the optional argument —check is given, the interpolated fields will be checked agaist a synthetic field defined as
follows:

13.2 Usage

The command line arguments are all keyword based. Both the long keyword prefixed with ' —--’ or the one
character short keyword prefixed with / - are supported. The format to run the command line tool is as follows:

ESMF_Regrid
——source|-s src_grid_filename
——destination|-d dst_grid_filename
—-—-src_var var_name[,var_name, ..]
—-—-dst_var var_name|[,var_name, ..]
[-—srcdatafile]
[-—dstdatafile]
[-—tilefile_path filepath]
[-—dst_loc center|corner]
[-—method|-m bilinear|patchl|nearestdtos|neareststod|conserve|conserve2nd]
[-—-polel|-p nonelalllteethlllZI .]
[-—ignore_unmapped|-1]
[-—ignore_degenerate]
[-r]
[-—src_regional]
[--dst_regional]
[
[

—-no_log]

[-—help]
[--version]

81

[-V]
where
—-—source or -s

——destination or -d

—-—-src_var

-—dst_var

—-—-srcdatafile

--srcdatafile

——tilefile_path

—-—dst_1loc

—--method or -m

a required argument specifying the source grid
file name

a required argument specifying the destination
grid file name

a required argument specifying the variable names
in the src grid file to be interpolated from. If more
than one, separated them with comma.

a required argument specifying the variable names
to be interpolated to. If more than one, separated
them with comma. The variable may or may not

exist in the destination grid file.

If the source grid is a GRIDSPEC MOSAIC grid, the data
is stored in separate files, one per tile. srcdatafile
is the prefix of the source data file. The filename
is srcdatafile.tilename.nc, where tilename is the tile
name defined in the MOSAIC file.

If the destination grid is a GRIDSPEC MOSAIC grid, the data
is stored in separate files, one per tile. dstdatafile

is the prefix of the destination data file. The filename
is dstdatafile.tilename.nc, where tilename is the tile

name defined in the MOSAIC file.

— the alternative file path for the tile files and the

data files when either the source or the destination grid

is a GRIDSPEC MOSAIC grid. The path can be either relative
or absolute. If it is relative, it is relative to the
working directory. When specified, the gridlocation variable
defined in the Mosaic file will be ignored.

an optional argument that specifies whether the destination
variable is located at the center or the corner of the grid

if the destination variable does not exist in the destination
grid file. This flag is only required for non-conservative
regridding when the destination grid is in UGRID format.

For all other cases, only the center location is supported

that is also the default value if this argument is not specified.

an optional argument specifying which interpolation
method is used. The value can be one of the following:

bilinear — for bilinear interpolation, also the
default method if not specified.
patch - for patch recovery interpolation
nearstdtos - for nearest destination to source interpolation

82

—-—-pole or -p -

—-—ignore_unmapped
or

nearstst
conserve

an optio
the pole
The valu

none -

all -

teeth -

<N> -

od - for nearest source to destination interpolation
- for first-order conservative interpolation

nal argument indicating what to do with

e can be one of the following:

No pole, the source grid ends at the top
(and bottom) row of nodes specified in
<source grid>.

Construct an artificial pole placed in the
center of the top (or bottom) row of nodes,
but projected onto the sphere formed by the
rest of the grid. The value at this pole is
the average of all the pole values. This

is the default option.

No new pole point is constructed, instead
the holes at the poles are filled by
constructing triangles across the top and
bottom row of the source Grid. This can be
useful because no averaging occurs, however,
because the top and bottom of the sphere are
now flat, for a big enough mismatch between
the size of the destination and source pole
regions, some destination points may still
not be able to be mapped to the source Grid.

Construct an artificial pole placed in the
center of the top (or bottom) row of nodes,
but projected onto the sphere formed by the
rest of the grid. The value at this pole 1is
the average of the N source nodes next to
the pole and surrounding the destination
point (i.e. the value may differ for each
destination point. Here N ranges from 1 to
the number of nodes around the pole.

-1 — lgnore unmapped destination points. If not specified

——ignore_degenerate

the defa

- ignore
the defa
cell is

an optio
destinat
is not g

ult is to stop with an error if an unmapped

point is found.

degenerate cells in the input grids. If not specified

ult is to stop with an error if an degenerate
found.

nal argument specifying that the source and

ion grids are regional grids. If the argument
iven, the grids are assumed to be global.

83

—-—-src_regional - an optional argument specifying that the source is
a regional grid and the destination is a global grid.

——-dst_regional - an optional argument specifying that the destination
is a regional grid and the source is a global grid.

—-—-check — Check the correctness of the interpolated destination
variables against an analytic field. The source variable
has to be synthetically constructed using the same analytic
method in order to perform meaningful comparison.

The analytic field is calculated based on the coordinate

of the data point. The formular is as follows:

data (i, j,%k,1)=2.0+cos (lat (i, j))**2xcos (2.0xlon (i, J))+(k-1)+2x(1-1)
The data field can be up to four dimensional with the

first two dimension been longitude and latitude.

The mean relative error between the destination and

analytic field is computed.

—--no_log — Turn off the ESMF error log.

——help - Print the usage message and exit.

—-—version - Print ESMF version and license information and exit.
-V — Print ESMF version number and exit.

13.3 Examples

The example below regrids the node variable zeta defined in the sample UGRID file(I3.1) to the destination grid
defined in the sample GRIDSPEC file(I3.1) using bilinear regridding method and write the interpolated data into a
variable named zeta.

mpirun -np 4 ESMF_Regrid -s simple_ugrid.nc -d simple_gridspec.nc \
—-—src_var zeta —--dst_var zeta

In this case, the destination variable does not exist in simple_ugrid.nc and the t ime dimension is not defined in
the destination file. The resulting output file has a new time dimension and a new variable zeta. The attributes from
the source variable zeta are copied to the destination variable except for mesh and location. A new attribute
coordinates is created for the destination variable to specify the names of the coordinate variables. The header of
the output file looks like:

netcdf simple_gridspec {

dimensions:
lat = 192 ;
lon = 288 ;
time = 2 ;

84

variables:

float PSL(lat, lon) ;

PSL:time = 50. ;
PSL:units = "Pa" ;
PSL:long_name = "Sea level pressure"
PSL:cell_method = "time: mean"
PSL:coordinates = "lon lat" ;

double lat (lat) ;
lat:long_name = "latitude" ;
lat:units = "degrees_north"

double lon(lon) ;
lon:long_name = "longitude"
lon:units = "degrees_east"

float zeta(time, lat, lon) ;
zeta:standard_name = "sea_surface_height_above_geoid"
zeta:_FillValue = -999. ;
zeta:coordinates = "lon lat"

The next example shows the command to do the same thing as the previous example but for a different variable ua.
Since ua is defined on the face, we can only do a conservative regridding.

mpirun -np

4 ESMF_Regrid -s simple_ugrid.nc -d simple_gridspec.nc \
—-—-src_var ua —--dst_var ua -m conserve

14 ESMF_Scrip2Unstruct

14.1 Description

The ESMF_Scrip2Unstruct application is a parallel program that converts a SCRIP format grid file[[2.8 T]into an
unstructured grid file in the ESMF unstructured file format[12.8.2or in the UGRID file format[12.8.4 This application
program can be used together with ESMF_RegridWeightGen [I2] application for the unstructured SCRIP format
grid files. An unstructured SCRIP grid file will be converted into the ESMF unstructured file format internally in
ESMF_RegridWeightGen. The conversion subroutine used in ESMF_RegridWeightGen is sequential and
could be slow if the grid file is very big. It will be more efficient to run the ESMF__Scrip2Unstruct first and then
regrid the output ESMF or UGRID file using ESMF_RegridWeightGen. Note that a logically rectangular grid file
in the SCRIP format (i.e. the dimension grid_rank is equal to 2) can also be converted into an unstructured grid

file with this application.

The application usage is as follows:

ESMF_Scrip2Unstruct

where
inputfile

outputfile

- a SCRIP format grid file

— the output file name

85

inputfile outputfile dualflag [fileformat]

dualflag - 0 for straight conversion and 1 for dual
mesh. A dual mesh is a mesh constructed
by putting the corner coordinates in the
center of the elements and using the
center coordinates to form the mesh
corner vertices.

fileformat - an optional argument for the output file
format. It could be either ESMF or UGRID.
If not specified, the output file is in
the ESMF format.

86

Part 111

Superstructure

87

15 Overview of Superstructure

ESMF superstructure classes define an architecture for assembling Earth system applications from modeling compo-
nents. A component may be defined in terms of the physical domain that it represents, such as an atmosphere or sea
ice model. It may also be defined in terms of a computational function, such as a data assimilation system. Earth
system research often requires that such components be coupled together to create an application. By coupling we
mean the data transformations and, on parallel computing systems, data transfers, that are necessary to allow data from
one component to be utilized by another. ESMF offers regridding methods and other tools to simplify the organization
and execution of inter-component data exchanges.

In addition to components defined at the level of major physical domains and computational functions, components
may be defined that represent smaller computational functions within larger components, such as the transformation
of data between the physics and dynamics in a spectral atmosphere model, or the creation of nested higher resolution
regions within a coarser grid. The objective is to couple components at varying scales both flexibly and efficiently.
ESMF encourages a hierarchical application structure, in which large components branch into smaller sub-components
(see Figure2)). ESMF also makes it easier for the same component to be used in multiple contexts without changes to
its source code.

Key Features

Modular, component-based architecture.

Hierarchical assembly of components into applications.

Use of components in multiple contexts without modification.

Sequential or concurrent component execution.

Single program, multiple datastream (SPMD) applications for maximum portability and reconfigurability.
Multiple program, multiple datastream (MPMD) option for flexibility.

15.1 Superstructure Classes

There are a small number of classes in the ESMF superstructure:

e Component An ESMF component has two parts, one that is supplied by ESMF and one that is supplied by the
user. The part that is supplied by the framework is an ESMF derived type that is either a Gridded Component
(GridComp) or a Coupler Component (CplComp). A Gridded Component typically represents a physical
domain in which data is associated with one or more grids - for example, a sea ice model. A Coupler Component
arranges and executes data transformations and transfers between one or more Gridded Components. Gridded
Components and Coupler Components have standard methods, which include initialize, run, and finalize. These
methods can be multi-phase.

The second part of an ESMF Component is user code, such as a model or data assimilation system. Users set
entry points within their code so that it is callable by the framework. In practice, setting entry points means that
within user code there are calls to ESMF methods that associate the name of a Fortran subroutine with a cor-
responding standard ESMF operation. For example, a user-written initialization routine called myOceanInit
might be associated with the standard initialize routine of an ESMF Gridded Component named “myOcean”
that represents an ocean model.

e State ESMF Components exchange information with other Components only through States. A State is an
ESMF derived type that can contain Fields, FieldBundles, Arrays, ArrayBundles, and other States. A Compo-
nent is associated with two States, an Import State and an Export State. Its Import State holds the data that it
receives from other Components. Its Export State contains data that it makes available to other Components.

88

Figure 2: ESMF enables applications such as the atmospheric general circulation model GEOS-5 to be structured
hierarchically, and reconfigured and extended easily. Each box in this diagram is an ESMF Gridded Component.

GEOS-5

[I

gravity_wave_drag | fvcore | | surface || chemistry || moist_processes || radiation || turbulence |
I
| lake || land_ice ||data_ocean || land | | infrared || solar |
| vegetation || catchment |

An ESMF coupled application typically involves a parent Gridded Component, two or more child Gridded Components
and one or more Coupler Components.

The parent Gridded Component is responsible for creating the child Gridded Components that are exchanging data, for
creating the Coupler, for creating the necessary Import and Export States, and for setting up the desired sequencing.
The application’s “main” routine calls the parent Gridded Component’s initialize, run, and finalize methods in order
to execute the application. For each of these standard methods, the parent Gridded Component in turn calls the
corresponding methods in the child Gridded Components and the Coupler Component. For example, consider a
simple coupled ocean/atmosphere simulation. When the initialize method of the parent Gridded Component is called
by the application, it in turn calls the initialize methods of its child atmosphere and ocean Gridded Components, and
the initialize method of an ocean-to-atmosphere Coupler Component. Figure Blshows this schematically.

15.2 Hierarchical Creation of Components

Components are allocated computational resources in the form of Persistent Execution Threads, or PETs. A list of
a Component’s PETs is contained in a structure called a Virtual Machine, or VM. The VM also contains information
about the topology and characteristics of the underlying computer. Components are created hierarchically, with parent
Components creating child Components and allocating some or all of their PETs to each one. By default ESMF creates
anew VM for each child Component, which allows Components to tailor their VM resources to match their needs. In
some cases, a child may want to share its parent’s VM - ESMF supports this, too.

89

Figure 3: A call to a standard ESMF initialize (run, finalize) method by a parent component triggers calls to initialize
(run, finalize) all of its child components.

AppDriver (“Main”)
Call Initialize Call Run Call Finalize
<
Initialize] (Run] [Finalize]
Parent GridComp “Hurricane Model”
Call Initialize Call Run Call Finalize
AN

Initialize Run | Finalize |

Child GridComp “Atmospherg”

Initialize) Run (Finalize
Child GridComp “Ocean”

Initialize | Run (Finalize
Child CplComp “Atm-Ocean Coupler”

A Gridded Component may exist across all the PETs in an application. A Gridded Component may also reside on
a subset of PETs in an application. These PETs may wholly coincide with, be wholly contained within, or wholly
contain another Component.

15.3 Sequential and Concurrent Execution of Components

When a set of Gridded Components and a Coupler runs in sequence on the same set of PETs the application is executing
in a sequential mode. When Gridded Components are created and run on mutually exclusive sets of PETs, and are
coupled by a Coupler Component that extends over the union of these sets, the mode of execution is concurrent.

Figure @lillustrates a typical configuration for a simple coupled sequential application, and Figure [5] shows a possible
configuration for the same application running in a concurrent mode.

Parent Components can select if and when to wait for concurrently executing child Components, synchronizing only
when required.

90

It is possible for ESMF applications to contain some Component sets that are executing sequentially and others that
are executing concurrently. We might have, for example, atmosphere and land Components created on the same subset
of PETs, ocean and sea ice Components created on the remainder of PETs, and a Coupler created across all the PETs
in the application.

15.4 Intra-Component Communication

All data transfers within an ESMF application occur within a component. For example, a Gridded Component may
contain halo updates. Another example is that a Coupler Component may redistribute data between two Gridded
Components. As a result, the architecture of ESMF does not depend on any particular data communication mechanism,
and new communication schemes can be introduced without affecting the overall structure of the application.

Since all data communication happens within a component, a Coupler Component must be created on the union of the
PETs of all the Gridded Components that it couples.

15.5 Data Distribution and Scoping in Components

The scope of distributed objects is the VM of the currently executing Component. For this reason, all PETSs in the
current VM must make the same distributed object creation calls. When a Coupler Component running on a super-
set of a Gridded Component’s PETs needs to make communication calls involving objects created by the Gridded
Component, an ESMF-supplied function called ESMF_StateReconcile () creates proxy objects for those PETs
that had no previous information about the distributed objects. Proxy objects contain no local data but can be used in
communication calls (such as regrid or redistribute) to describe the remote source for data being moved to the current
PET, or to describe the remote destination for data being moved from the local PET. Figure [6]is a simple schematic
that shows the sequence of events in a reconcile call.

15.6 Performance

The ESMF design enables the user to configure ESMF applications so that data is transferred directly from one com-
ponent to another, without requiring that it be copied or sent to a different data buffer as an interim step. This is likely
to be the most efficient way of performing inter-component coupling. However, if desired, an application can also be
configured so that data from a source component is sent to a distinct set of Coupler Component PETs for processing
before being sent to its destination.

The ability to overlap computation with communication is essential for performance. When running with ESMF the
user can initiate data sends during Gridded Component execution, as soon as the data is ready. Computations can then
proceed simultaneously with the data transfer.

91

Figure 4: Schematic of the run method of a coupled application, with an “Atmosphere” and an “Ocean” Gridded Com-
ponent running sequentially with an “Atm-Ocean Coupler.” The top-level “Hurricane Model” Gridded Component
contains the sequencing information and time advancement loop. The application driver, Coupler, and all Gridded
Components are distributed over nine PETs.

PETs

>
1 2 3 4 5 6 7 8 9
—
3
@ AppDriver (“Main”)
Call Run
y
y
(Run]
GridComp “Hurricane Model”
LOOP Call Run
f Run]
GridComp
“Atmosphere”
[Run]
GridComp
“Ocean”
_.r Run]
CplComp
“Atm-Ocean Coupler”

92

Figure 5: Schematic of the run method of a coupled application, with an “Atmosphere” and an “Ocean” Gridded
Component running concurrently with an “Atm-Ocean Coupler.” The top-level “Hurricane Model” Gridded Compo-
nent contains the sequencing information and time advancement loop. The application driver, Coupler, and top-level
“Hurricane Model” Gridded Component are distributed over nine PETs. The “Atmosphere” Gridded Component is
distributed over three PETs and the “Ocean” Gridded Component is distributed over six PETs.

PETs >

awl |

AppDriver (“Main”)

Call Run

g—
-

Run]

GridComp “Hurricane Model”

LOOP Call Run

_i y
(Run] (Run]
GridComp GridComp
“Atmosphere” “Ocean”
—f Run]
CpiComp
“Atm-Ocean Coupler”

93

Figure 6: An ESMF_StateReconcile () call creates proxy objects for use in subsequent communication calls.
The reconcile call would normally be made during Coupler initialization.

PETs >

:|

3

® Initialize)

CplComp
\J “Atm-Ocean Coupler”
AtmState OcnState

AtmField1 ||
AtmField2 ||
AtmField3 ||
...... OcnField1
...... OcnField2
...... OcnField3

call ESMF_StateReconcile()

AtmState OcnState
AtmField1 AtmField1-proxy
AtmField2 AtmField2-proxy
AtmField3 AtmField3-proxy

OcnField1-proxy OcnField1
OcnField2-proxy OcnField2
OcnField3-proxy OcnField3

94

15.7 Object Model

The following is a simplified Unified Modeling Language (UML) diagram showing the relationships among ESMF
superstructure classes. See Appendix A, A Brief Introduction to UML, for a translation table that lists the symbols in
the diagram and their meaning.

Comp

Possible extensions

GridComp CplComp @ @

16 Application Driver and Required ESMF Methods

16.1 Description

Every ESMF application needs a driver code. Typically the driver layer is implemented as the "main" of the applica-
tion, although this is not strictly an ESMF requirement. For most ESMF applications the task of the application driver
will be very generic: Initialize ESMEF, create a top-level Component and call its Initialize, Run and Finalize methods,
before destroying the top-level Component again and calling ESMF Finalize.

ESMF provides a number of different application driver templates in the
SESMF_DIR/src/Superstructure/AppDriver directory. An appropriate one can be chosen depend-
ing on how the application is to be structured:

Sequential vs. Concurrent Execution In a sequential execution model, every Component executes on all PETs, with
each Component completing execution before the next Component begins. This has the appeal of simplicity of
data consumption and production: when a Gridded Component starts, all required data is available for use,
and when a Gridded Component finishes, all data produced is ready for consumption by the next Gridded
Component. This approach also has the possibility of less data movement if the grid and data decomposition is
done such that each processor’s memory contains the data needed by the next Component.

In a concurrent execution model, subgroups of PETs run Gridded Components and multiple Gridded Compo-
nents are active at the same time. Data exchange must be coordinated between Gridded Components so that data
deadlock does not occur. This strategy has the advantage of allowing coupling to other Gridded Components
at any time during the computational process, including not having to return to the calling level of code before
making data available.

Pairwise vs. Hub and Spoke Coupler Components are responsible for taking data from one Gridded Component and
putting it into the form expected by another Gridded Component. This might include regridding, change of units,
averaging, or binning.

95

Coupler Components can be written for pairwise data exchange: the Coupler Component takes data from a
single Component and transforms it for use by another single Gridded Component. This simplifies the structure
of the Coupler Component code.

Couplers can also be written using a hub and spoke model where a single Coupler accepts data from all other
Components, can do data merging or splitting, and formats data for all other Components.

Multiple Couplers, using either of the above two models or some mixture of these approaches, are also possible.

Implementation Language The ESMF framework currently has Fortran interfaces for all public functions. Some
functions also have C interfaces, and the number of these is expected to increase over time.

Number of Executables The simplest way to run an application is to run the same executable program on all PETs.
Different Components can still be run on mutually exclusive PETs by using branching (e.g., if this is PET 1,
2, or 3, run Component A, if it is PET 4, 5, or 6 run Component B). This is a SPMD model, Single Program
Multiple Data.
The alternative is to start a different executable program on different PETs. This is a MPMD model, Multiple
Program Multiple Data. There are complications with many job control systems on multiprocessor machines
in getting the different executables started, and getting inter-process communications established. ESMF cur-
rently has some support for MPMD: different Components can run as separate executables, but the Coupler that
transfers data between the Components must still run on the union of their PETs. This means that the Coupler
Component must be linked into all of the executables.

16.2 Constants
16.2.1 ESMF_END

DESCRIPTION:
The ESMF_End_Flag determines how an ESMF application is shut down.

The type of this flag is:
type (ESMF_End_Flag)

The valid values are:

ESMF_END_ABORT Global abort of the ESMF application. There is no guarantee that all PETs will shut down
cleanly during an abort. However, all attempts are made to prevent the application from hanging and the LogErr
of at least one PET will be completely flushed during the abort. This option should only be used if a condition
is detected that prevents normal continuation or termination of the application. Typical conditions that warrant
the use of ESMF_END_ABORT are those that occur on a per PET basis where other PETs may be blocked in
communication calls, unable to reach the normal termination point. An aborted application returns to the parent
process with a system dependent indication that a failure occurred during execution.

ESMF_END_NORMAL Normal termination of the ESMF application. Wait for all PETs of the global VM
to reach ESMF_Finalize () before termination. This is the clean way of terminating an application.
MPI_Finalize () will be called in case of MPI applications.

ESMF_END_KEEPMPI Same as ESMF_END_NORMAL but MPI_Finalize () will not be called. It is the user
code’s responsibility to shut down MPI cleanly if necessary.

96

16.3 Use and Examples

ESMF encourages application organization in which there is a single top-level Gridded Component. This provides
a simple, clear sequence of operations at the highest level, and also enables the entire application to be treated as a
sub-Component of another, larger application if desired. When a simple application is organized in this fashion the
standard AppDriver can probably be used without much modification.

Examples of program organization using the AppDriver can be found in the src/Superstructure/AppDriver
directory. A set of subdirectories within the AppDriver directory follows the naming convention:

<seqg|concur>_<pairwise|hub>_<f|c>driver_<spmd|mpmd>

The example that is currently implemented is seq_pairwise_fdriver_spmd, which has sequential component
execution, a pairwise coupler, a main program in Fortran, and all processors launching the same executable. It is also
copied automatically into a top-level quick_start directory at compilation time.

The user can copy the AppDriver files into their own local directory. Some of the files can be used unchanged. Others
are template files which have the rough outline of the code but need additional application-specific code added in
order to perform a meaningful function. The README file in the AppDriver subdirectory or quick_start directory
contains instructions about which files to change.

Examples of concurrent component execution can be found in the system tests that are bundled with the ESMF distri-
bution.

The ChangeMe.F90 file that’s included below contains a number of
definitions that are used by the AppDriver, such as the name of the
application’s main configuration file and the name of the application’s
SetServices routine. This file is in the same directory as the
AppDriver.F90 file.

#include "ChangeMe.F90"

program ESMF_AppDriver
#define ESMF_METHOD "program ESMF_AppDriver"

#include "ESMF.h"

! ESMF module, defines all ESMF data types and procedures
use ESMF

! Gridded Component registration routines. Defined in "ChangeMe.F90"
use USER_APP_Mod, only : SetServices => USER_APP_SetServices

implicit none

Define local variables

! Components and States
type (ESMF_GridComp) :: compGridded
type (ESMF_State) :: defaultstate

! Configuration information
type (ESMF_Config) :: config

! A common Grid
type (ESMF_Grid) :: grid

! A Clock, a Calendar, and timesteps

type (ESMF_Clock) :: clock

type (ESMF_TimeInterval) :: timeStep
type (ESMF_Time) :: startTime

type (ESMF_Time) :: stopTime

! Variables related to the Grid
integer :: i_max, Jj_max

! Return codes for error checks
integer :: rc, localrc

Initialize ESMF. Note that an output Log is created by default.

call ESMF_Initialize (defaultCalKind=ESMF_CALKIND_GREGORIAN, rc=localrc)
if (ESMF_LogFoundError (localrc, ESMF_ERR_PASSTHRU, &

ESMF_CONTEXT, rcToReturn=rc)) &

call ESMF_Finalize(rc=localrc, endflag=ESMF_END_ABORT)

call ESMF_LogWrite ("ESMF AppDriver start", ESMF_LOGMSG_INFO)

Create and load a configuration file.

The USER_CONFIG_FILE is set to sample.rc in the ChangeMe.F90 file.
The sample.rc file is also included in the directory with the
AppDriver.F90 file.

config = ESMF_ConfigCreate (rc=localrc)

if (ESMF_LogFoundError (localrc, ESMF_ERR_PASSTHRU, &
ESMF_CONTEXT, rcToReturn=rc)) &
call ESMF_Finalize(rc=localrc, endflag=ESMF_END_ABORT)

call ESMF_ConfigLoadFile (config, USER_CONFIG_FILE, rc = localrc)
if (ESMF_LogFoundError (localrc, ESMF_ERR _PASSTHRU, &
ESMF_CONTEXT, rcToReturn=rc)) &
call ESMF_Finalize (rc=localrc, endflag=ESMF_END_ABORT)

Get configuration information.

98

A configuration file like sample.rc might include:
- size and coordinate information needed to create the default Grid.
- the default start time, stop time, and running intervals

for the main time loop.

call ESMF_ConfigGetAttribute (config, i_max, label=’I Counts:’, &
default=10, rc=localrc)
if (ESMF_LogFoundError (localrc, ESMF_ERR_PASSTHRU, &
ESMF_CONTEXT, rcToReturn=rc)) &
call ESMF_Finalize(rc=localrc, endflag=ESMF_END_ABORT)
call ESMF_ConfigGetAttribute (config, j_max, label=’J Counts:’, &
default=40, rc=localrc)
if (ESMF_LogFoundError (localrc, ESMF_ERR _PASSTHRU, &
ESMF_CONTEXT, rcToReturn=rc)) &
call ESMF_Finalize(rc=localrc, endflag=ESMF_END_ABORT)

compGridded = ESMF_GridCompCreate (name="ESMF Gridded Component", &
rc=localrc)

if (ESMF_LogFoundError (localrc, ESMF_ERR_PASSTHRU, &
ESMF_CONTEXT, rcToReturn=rc)) &
call ESMF_Finalize(rc=localrc, endflag=ESMF_END_ABORT)

call ESMF_LogWrite ("Component Create finished", ESMF_LOGMSG_INFO)

call ESMF_GridCompSetServices (compGridded, userRoutine=SetServices, rc=rc)
if (ESMF_LogFoundError (rc, msg="Registration failed", rcToReturn=rc)) &
call ESMF_Finalize(rc=localrc, endflag=ESMF_END_ABORT)

call ESMF_TimeIntervalSet (timeStep, s=2, rc=localrc)

if (ESMF_LogFoundError (localrc, ESMF_ERR _PASSTHRU, &
ESMF_CONTEXT, rcToReturn=rc)) &
call ESMF_Finalize(rc=localrc, endflag=ESMF_END_ABORT)

call ESMF_TimeSet (startTime, yy=2004, mm=9, dd=25, rc=localrc)
if (ESMF_LogFoundError (localrc, ESMF_ERR_PASSTHRU, &
ESMF_CONTEXT, rcToReturn=rc)) &
call ESMF_Finalize (rc=localrc, endflag=ESMF_END_ABORT)

call ESMF_TimeSet (stopTime, yy=2004, mm=9, dd=26, rc=localrc)

if (ESMF_LogFoundError (localrc, ESMF_ERR_PASSTHRU, &
ESMF_CONTEXT, rcToReturn=rc)) &

99

call ESMF_Finalize (rc=localrc, endflag=ESMF_END_ABORT)

clock = ESMF_ClockCreate (timeStep, startTime, stopTime=stopTime, &
name="Application Clock", rc=localrc)
if (ESMF_LogFoundError (localrc, ESMF_ERR_PASSTHRU, &
ESMF_CONTEXT, rcToReturn=rc)) &
call ESMF_Finalize(rc=localrc, endflag=ESMF_END_ABORT)

Create and initialize a Grid.

The default lower indices for the Grid are (/1,1/).
The upper indices for the Grid are read in from the sample.rc file,

where they are set to (/10,40/). This means a Grid will be
created with 10 grid cells in the x direction and 40 grid cells in the
y direction. The Grid section in the Reference Manual shows how to set
coordinates.
grid = ESMF_GridCreateNoPeriDim (maxIndex=(/i_max, j_max/), &
name="source grid", rc=localrc)

if (ESMF_LogFoundError (localrc, ESMF_ERR_PASSTHRU, &
ESMF_CONTEXT, rcToReturn=rc)) &
call ESMF_Finalize(rc=localrc, endflag=ESMF_END_ABORT)

! Attach the grid to the Component

call ESMF_GridCompSet (compGridded, grid=grid, rc=localrc)

if (ESMF_LogFoundError (localrc, ESMF_ERR_PASSTHRU, &
ESMF_CONTEXT, rcToReturn=rc)) &
call ESMF_Finalize(rc=localrc, endflag=ESMF_END_ABORT)

Create and initialize a State to use for both import and export.
In a real code, separate import and export States would normally be
created.

defaultstate = ESMF_StateCreate (name="Default State", rc=localrc)
if (ESMF_LogFoundError (localrc, ESMF_ERR_PASSTHRU, &
ESMF_CONTEXT, rcToReturn=rc)) &
call ESMF_Finalize(rc=localrc, endflag=ESMF_END_ABORT)

Call the initialize, run, and finalize methods of the top component.
When the initialize method of the top component is called, it will in
turn call the initialize methods of all its child components, they
will initialize their children, and so on. The same is true of the
run and finalize methods.

call ESMF_GridCompInitialize (compGridded, importState=defaultstate, &
exportState=defaultstate, clock=clock, rc=localrc)
if (ESMF_LogFoundError (rc, msg="Initialize failed", rcToReturn=rc)) &
call ESMF_Finalize (rc=localrc, endflag=ESMF_END_ABORT)

100

call ESMF_GridCompRun (compGridded, importState=defaultstate, &
exportState=defaultstate, clock=clock, rc=localrc)
if (ESMF_LogFoundError (rc, msg="Run failed", rcToReturn=rc)) &
call ESMF_Finalize (rc=localrc, endflag=ESMF_END_ABORT)

call ESMF_GridCompFinalize (compGridded, importState=defaultstate, &
exportState=defaultstate, clock=clock, rc=localrc)
if (ESMF_LogFoundError (rc, msg="Finalize failed", rcToReturn=rc)) &
call ESMF_Finalize(rc=localrc, endflag=ESMF_END_ABORT)

call ESMF_ClockDestroy(clock, rc=localrc)

if (ESMF_LogFoundError (localrc, ESMF_ERR_PASSTHRU, &
ESMF_CONTEXT, rcToReturn=rc)) &
call ESMF_Finalize(rc=localrc, endflag=ESMF_END_ABORT)

call ESMF_StateDestroy(defaultstate, rc=localrc)

if (ESMF_LogFoundError (localrc, ESMF_ERR_PASSTHRU, &
ESMF_CONTEXT, rcToReturn=rc)) &
call ESMF_Finalize(rc=localrc, endflag=ESMF_END_ABORT)

call ESMF_GridCompDestroy (compGridded, rc=localrc)

if (ESMF_LogFoundError (localrc, ESMF_ERR _PASSTHRU, &
ESMF_CONTEXT, rcToReturn=rc)) &
call ESMF_Finalize(rc=localrc, endflag=ESMF_END_ABORT)

call ESMF_Finalize ()

end program ESMF_AppDriver

16.4 Required ESMF Methods

There are a few methods that every ESMF application must contain. First, ESMF_Initialize () and
ESMF_Finalize () are in complete analogy to MPI_TInit () and MPI_Finalize () known from MPIL. All
ESMF programs, serial or parallel, must initialize the ESMF system at the beginning, and finalize it at the end of exe-
cution. The behavior of calling any ESMF method before ESMF_Initialize (), or after ESMF_Finalize () is
undefined.

Second, every ESMF Component that is accessed by an ESMF application requires that its set services routine is called
through ESMF_<Grid/Cpl>CompSetServices (). The Component must implement one public entry point, its
set services routine, that can be called through the ESMF_<Grid/Cpl>CompSetServices () library routine.
The Component set services routine is responsible for setting entry points for the standard ESMF Component methods
Initialize, Run, and Finalize.

101

Finally, the Component can optionally call ESMF_<Grid/Cpl>CompSetVM() before calling
ESMF_<Grid/Cpl>CompSetServices (). Similar to ESMF_<Grid/Cpl>CompSetServices (), the
ESMF_<Grid/Cpl>CompSetVM () call requires a public entry point into the Component. It allows the

Component to adjust certain aspects of its execution environment, i.e. its own VM, before it is started up.

The following sections discuss the above mentioned aspects in more detail.

16.4.1 ESMF _Initialize - Initialize ESMF

INTERFACE:

subroutine ESMF_Initialize (configFilenameFromArgNum, &

configFilename, configKey, &
defaultDefaultCalKind, defaultCalKind, &

defaultDefaultLogFilename, defaultLogFilename,

defaultLogAppendFlag, logAppendFlag, defaultLogKindFlag, logKindFlag, &

mpiCommunicator, i1oUnitLBound,
defaultGlobalResourceControl,

ioUnitUBound,
globalResourceControl,

config, vm, rc)

ARGUMENTS:

—-— The following arguments require argument keyword syntax (e.g. rc=rc). —-—
integer, intent (in), optional configFilenameFromArgNum
character (len=x), intent (in), optional configFilename
character (len=x%), intent (in), optional configKey (:)
type (ESMF_CalKind_Flag), intent(in), optional defaultDefaultCalKind
type (ESMF_CalKind_Flag), intent(in), optional defaultCalKind
character (len=x%), intent (in), optional defaultDefaultLogFilename
character (len=x), intent (in), optional defaultLogFilename
logical, intent (in), optional defaultLogAppendFlag
logical, intent (in), optional logAppendFlag
type (ESMF_LogKind_Flag), intent(in), optional defaultLogKindFlag
type (ESMF_LogKind_Flag), intent(in), optional logKindFlag
integer, intent (in), optional mpiCommunicator
integer, intent (in), optional ioUnitLBound
integer, intent (in), optional ioUnitUBound
logical, intent (in), optional defaultGlobalResourceControl
logical, intent (in), optional globalResourceControl
type (ESMF_Confiqg), intent (out), optional config
type (ESMF_VM) , intent (out), optional vm
integer, intent (out), optional rc

STATUS:

o This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

o This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features

102

that were available in the 5.2.0r release.
Changes made after the 5.2.0r release:

7.0.0 Added argument 1ogAppendFlag to allow specifying that the existing log files will be overwritten.

8.2.0 Added argument globalResourceControl to support ESMF-aware threading and resource control
on the global VM level.
Added argument config to return default handle to the defaultConfig.
Renamed argument defaultConfigFilename to configFilename, in order to clarify that
provided settings in the Config file are not defaults, but final overrides.
Introduce default prefixed arguments: defaultDefaultLogFilename,
defaultLogAppendFlag, defaultLogKindFlag, defaultGlobalResourceControl.
These arguments allow specification of defaults for the associated settings. This default can be overridden
via the associated argument, without the extra default prefix, either specified in the call, or within the
specified Config file.

8.5.0 Added argument configKey to support custom location of the map of predefined initialization options
for YAML configurations.
Added argument configFilenameFromArgNum to support config file specification via the command
line.

8.6.0 Added defaultDefaultCalKind argument to allow specifiation of a default for
defaultCalKind.

DESCRIPTION:

This method must be called once on each PET before any other ESMF methods are used. The method contains a
barrier before returning, ensuring that all processes made it successfully through initialization.

Typically ESMF_Initialize () will call MPI_TInit () internally unless MPI has been initialized by the user
code before initializing the framework. If the MPI initialization is left to ESMF_Initialize () itinherits all of the
MPI implementation dependent limitations of what may or may not be done before MPI_Init (). For instance, it is
unsafe for some MPI implementations, such as MPICH1, to do I/O before the MPI environment is initialized. Please
consult the documentation of your MPI implementation for details.

Note that when using MPICH1 as the MPI library, ESMF needs to use the application command line arguments
for MPT_TInit (). However, ESMF acquires these arguments internally and the user does not need to worry about
providing them. Also, note that ESMF does not alter the command line arguments, so that if the user obtains them
they will be as specified on the command line (including those which MPICH1 would normally strip out).

ESMF_Initialize () supports running ESMF inside a user MPI program. Details of this feature are discussed
under the VM example It is not necessary that all MPI ranks are handed to ESMF. Section [51.3.6] shows how
an MPI communicator can be used to execute ESMF on a subset of MPI ranks. ESMF_Initialize () supports
running multiple concurrent instances of ESMF under the same user MPI program. This feature is discussed under
51.3.7]

In order to use any of the advanced resource management functions that ESMF provides via the
ESMF_+CompSetVMx* () methods, the MPI environment must be thread-safe. ESMF_Initialize () handles
this automatically if it is in charge of initializing MPI. However, if the user code initializes MPI before calling into
ESMF_Initialize (), it mustdo soviaMPI_Init_thread(), specifying MPI_THREAD_SERIALIZED or
above for the required level of thread support.

In cases where ESMF_ «CompSet VM~ () methods are used to move processing elements (PEs), i.e. CPU cores,
between persistent execution threads (PETs), ESMF uses POSIX signals between PETs. In order to do so safely, the
proper signal handlers must be installed before MPI is initialized. ESMF_TInitialize () handles this automatically
if it is in charge of initializing MPL. If, however, MPI is explicitly initialized by user code, then to ensure correct signal
handling it is necessary to call ESMF_InitializePreMPI () from the user code prior to the MPI initialization.

By default, ESMF_TInitialize () opens multiple error log files, one per processor. This is very useful for debug-
ging purpose. However, when running the application on a large number of tasks, opening a large number of log

103

files and writing log messages from all the tasks can become a performance bottleneck. Therefore, it is recommended
for production runs to set LogKindFlag to ESMF_LOGKIND_NONE, or ESMF_LOGKIND_Multi_On_Error.
The latter only creates log files when an error occurs.

When integrating ESMF with applications where Fortran unit number conflicts exist, the optional ioUnitLBound
and ioUnitUBound arguments may be used to specify an alternate unit number range. See section[33.2.1] for more
information on how ESMF uses Fortran unit numbers.

Before exiting the application the user must call ESMF_Finalize () to release resources and clean up ESMF grace-
fully. See the ESMF_Finalize () documentation about details relating to the MPI environment.

The arguments are:

[configFilenameFromArgNum] Index of the command line argument specifying the config file name. If the spec-
ified command line argument does not exist, or configFilenameFromArgNum was not specified, the
configFilename argument, if provided, is used by default.

[configFilename] Name of the configuration file for the entire application. If this argument is specified, the config-
uration file must exist. Its content is read during ESMF_Initialize (), and returned in optional argument
config if present.

The traditional ESMF_Config format and the YAML format are supported. The latter is identified by file
suffix . yaml and . ym1l, including all lower/upper case letter combinations that map to either suffix.

In the case of the traditional ESMF_Config format, the predefined labels of initialization options discussed
below are expected on the top level of the configuration. The expected termination character for this case is a
single colon following each label.

For the YAML case, the predefined initialization option labels are expected as the keys of a map. If the optional
argument configKey is specified, it is used to locate this map. The map is expected as the terminal value of a
succession of mappings:

configKey (1)
configKey (2)

configKey (size (configKey))
{map of specified init options}

By default, in the absence of argument configKey, the top level itself is searched for a mapping of predefined
labels, analogous to the traditional case.

If any of the following predefined labels are found in the specified configuration file (as per the above defined
rules), their values are used to set the associated ESMF_Initialize () argument, overriding any defaults. If
the same argument is also specified in the ESMF_TInitialize () call directly, an error is returned, and ESMF
is not initialized. The supported config labels are:

e defaultCalKind

e defaultLogFilename

e logAppendFlag

e logKindFlag

globalResourceControl

ESMF allows the user to affect certain details about the execution of an application through a number of run-
time environment variables. The following list of variables are checked within the specified configuration file.
If a matching label is found, the respective value is set, potentially overriding the value defined within the user
environment for the same variable.

e ESMF_RUNTIME_PROFILE

104

e ESMF_RUNTIME_PROFILE_OUTPUT
e ESMF_RUNTIME_PROFILE_PETLIST
e ESMF_RUNTIME_TRACE
e ESMF_RUNTIME_TRACE_CLOCK
e ESMF_RUNTIME_TRACE_PETLIST
e ESMF_RUNTIME_TRACE_COMPONENT
e ESMF_RUNTIME_TRACE_FLUSH
e ESMF_RUNTIME_COMPLIANCECHECK
[configKey] If present, use configKey to find the map of predefined initialization options that are used during
ESMF initialization. The default is to search the top level of the configuration for the labels directly. The

configKey option is only supported for YAML configurations. An error is returned if configKey is speci-
fied for the traditional ESMF_Config case.

[defaultDefaultCalKind] Default value for argument defaultCalKind, the calendar used by ESMF Time
Manger by default. If not specified, defaults to ESMF_CALKIND_NOCALENDAR.

[defaultCalKind] Sets the default calendar to be used by ESMF Time Manager. See section[d2.2.1] for a list of valid
options. If not specified, defaults according to defaultDefaultCalKind.

[defaultDefaultLogFilename] Default value for argument defaultLogFilename, the name of the default log
file for warning and error messages. If not specified, the default is ESMF_LogFile.

[defaultLogFilename] Name of the default log file for warning and error messages. If not specified, defaults accord-
ingto defaultDefaultLogFilename.

[defaultL.ogAppendFlag] Default value for argument 1ogAppendF lag, indicating the overwrite behavior in case
the default log file already exists. If not specified, the defaultis . true..

[logAppendFlag] If the default log file already exists, a value of . false. will set the file position to the beginning
of the file. A value of .true. sets the position to the end of the file. If not specified, defaults according to
defaultLogAppendFlag.

[defaultLogKindFlag] Default value for argument 1ogKindFlag, setting the LogKind of the default ESMF log. If
not specified, the default is ESMF_ LOGKIND_MULTI.

[logKindFlag] Sets the LogKind of the default ESMF log. See section [49.2.7] for a list of valid options. If not
specified, defaults according to defaultLogKindFlag.

[mpiCommunicator] MPI communicator defining the group of processes on which the ESMF application is running.
See section [51.3.6]and [31.3.7] for details. If not specified, defaults to MP I_COMM_WORLD.

[ioUnitLBound] Lower bound for Fortran unit numbers used within the ESMF library. Fortran units are primarily
used for log files. Legal unit numbers are positive integers. A value higher than 10 is recommended in order to
avoid the compiler-specific reservations which are typically found on the first few units. If not specified, defaults
to ESMF_LOG_FORT_UNIT_NUMBER, which is distributed with a value of 50.

[ioUnitUBound] Upper bound for Fortran unit numbers used within the ESMF library. Must be set to a value at least
5 units higher than ioUnitLBound. If not specified, defaults to ESMF_LOG_UPPER, which is distributed
with a value of 99.

[defaultGlobalResourceControl] Default value for argument globalResourceControl, indicating whether
PETs of the global VM are pinned to PEs and the OpenMP threading level is reset. If not specified, the de-
faultis . false..

105

[globalResourceControl] For . true., each global PET is pinned to the corresponding PE (i.e. CPU core) in order.
Further, if OpenMP support is enabled for the ESMF installation (during build time), the OMP_NUM_THREADS
is set to 1 on every PET, regardless of the setting in the launching environment. The . true. setting is recom-
mended for applications that utilize the ESMF-aware threading and resource control features. For . false.,
global PETs are not pinned by ESMF, and OMP_NUM_THREADS is not modified. If not specified, defaults
according to defaultGlobalResourceControl.

[config] Returns the default ESMF_Configifthe configFilename argument was provided. Otherwise the pres-
ence of this argument triggers an error.

[vm] Returns the global ESMF_ VM that was created during initialization.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

16.4.2 ESMF_InitializePreMPI - Initialize parts of ESMF that must happen before MPI is initialized

INTERFACE:
subroutine ESMF_InitializePreMPI (rc)
ARGUMENTS:

—— The following arguments require argument keyword syntax (e.g. rc=rc). —-—
integer, intent (out), optional :: rc

DESCRIPTION:

This method is only needed for cases where MPI is initialized explicitly by user code. In most typical cases
ESMF_Initialize () is called before MPI is initialized, and takes care of all the internal initialization, includ-
ing MPL

There are circumstances where it is necessary or convenient to initialize MPI before calling into
ESMF_Initialize (). This option is supported by ESMF, and for most cases no special action is required on
the user side. However, for cases where ESMF__ «CompSet VM« () methods are used to move processing elements
(PEs), i.e. CPU cores, between persistent execution threads (PETs), ESMF uses POSIX signals between PETs. In
order to do so safely, the proper signal handlers must be installed before MPI is initialized. This is accomplished by
calling ESMF_InitializePreMPI () from the user code prior to the MPI initialization.

Note also that in order to use any of the advanced resource management functions that ESMF provides via the
ESMF_+CompSetVMx* () methods, the MPI environment must be thread-safe. ESMF_Initialize () handles
this automatically if it is in charge of initializing MPI. However, if the user code initializes MPI before calling into
ESMF_Initialize (), it mustdo soviaMPI_Init_thread (), specifying MPI_THREAD_SERIALIZED or
above for the required level of thread support.

The arguments are:

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

106

16.4.3 ESMF _IslInitialized - Query Initialized status of ESMF

INTERFACE:
function ESMF_IsInitialized(rc)
RETURN VALUE:
logical :: ESMF_IsInitialized
ARGUMENTS:

—-— The following arguments require argument keyword syntax (e.g. rc=rc). —-—
integer, intent (out), optional :: rc

DESCRIPTION:

Returns . true. if the framework has been initialized. This means that ESMF_Initialize () has been called.
Otherwise returns . false.. If an error occurs, i.e. rc /= ESMF_SUCCESS is returned, the return value of the
function will also be . false..

The arguments are:

[re] Return code; equals ESMF_SUCCESS if there are no errors.

16.4.4 ESMF _IsFinalized - Query Finalized status of ESMF

INTERFACE:
function ESMF_IsFinalized(rc)
RETURN VALUE:
logical :: ESMF_IsFinalized
ARGUMENTS:

—-— The following arguments require argument keyword syntax (e.g. rc=rc). —-—
integer, intent (out), optional :: rc

DESCRIPTION:

Returns .t rue. if the framework has been finalized. This means that ESMF_Finalize () has been called. Other-
wise returns . false.. If an error occurs, i.e. rc /= ESMF__SUCCESS is returned, the return value of the function
will alsobe . false..

The arguments are:

107

[re] Return code; equals ESMF_SUCCESS if there are no errors.

16.4.5 ESMF_Finalize - Clean up and shut down ESMF

INTERFACE:
subroutine ESMF_Finalize (endflag, rc)
ARGUMENTS:

—-— The following arguments require argument keyword syntax (e.g. rc=rc). —-—
type (ESMF_End_Flag), intent (in), optional :: endflag
integer, intent (out), optional :: rc

STATUS:

e This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

This must be called once on each PET before the application exits to allow ESMF to flush buffers, close open con-
nections, and release internal resources cleanly. The optional argument endf lag may be used to indicate the mode
of termination. Note that this call must be issued only once per PET with endflag=ESMF_END_NORMAL, and that
this call may not be followed by ESMF_Initialize (). This last restriction means that it is not possible to restart
ESMF within the same execution.

The arguments are:
[endflag] Specify mode of termination. The default is ESMF_END_NORMAL which waits for all PETs of the global

VM to reach ESMF_Finalize () before termination. See section[[6.2.1] for a complete list and description
of valid flags.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

16.4.6 User-code SetServices method

Many programs call some library routines. The library documentation must explain what the routine name is, what
arguments are required and what are optional, and what the code does.

In contrast, all ESMF components must be written to be called by another part of the program; in effect, an ESMF
component takes the place of a library. The interface is prescribed by the framework, and the component writer must
provide specific subroutines which have standard argument lists and perform specific operations. For technical reasons
none of the arguments in user-provided subroutines must be declared as optional.

The only required public interface of a Component is its SetServices method. This subroutine must have an externally
accessible name (be a public symbol), take a component as the first argument, and an integer return code as the second.

108

Both arguments are required and must not be declared as opt ional. If an intent is specified in the interface it must be
intent (inout) for the first and intent (out) for the second argument. The subroutine name is not predefined,
it is set by the component writer, but must be provided as part of the component documentation.

The required function that the SetServices subroutine must provide is to specify the user-code entry points for the
standard ESMF Component methods. To this end the user-written SetServices routine calls the

ESMF_<Grid/Cpl>CompSetEntryPoint () method to set each Component entry point.
See sections [[7.2.7]and I8 2.1l for examples of how to write a user-code SetServices routine.

Note that a component does not call its own SetServices routine; the AppDriver or parent component code, which
is creating a component, will first call ESMF_<Grid/Cpl>CompCreate () to create a component object, and
then must call into ESMF_<Grid/Cpl>CompSetServices (), supplying the user-code SetServices routine as an
argument. The framework then calls into the user-code SetServices, after the Component’s VM has been started up.

It is good practice to package the user-code implementing a component into a Fortran module, with the user-code
SetService routine being the only public module method. ESMF supports three mechanisms for accessing the user-
code SetServices routine from the calling AppDriver or parent component.

e Fortran USE association: The AppDriver or parent component utilizes the standard Fortran USE statement
on the component module to make all public entities available. The user-code SetServices routine can then be
passed directly into the ESMF_<Grid/Cpl>CompSetServices () interface documented in and
respectively.

Pros: Standard Fortran module use: name mangling and interface checking is handled by the Fortran compiler.

Cons: Fortran 90/95 has no mechanism to implement a "smart" dependency scheme through USE association.
Any change in a lower level component module (even just adding or changing a comment!) will trigger a
complete recompilation of all of the higher level components throughout the component hierarchy. This situation
is particularly annoying for ESMF componentized code, where the prescribed ESMF component interfaces, in
principle, remove all interdependencies between components that would require recompilation.

Fortran submodules, introduced as an extension to Fortran 2003, and now part for the Fortran 2008 standard,
are designed to avoid this "false" dependency issue. A code change to an ESMF component that keeps the
actual implementation within a submodule, will not trigger a recompilation of the components further up in the
component hierarchy. Unfortunately, as of mid-2015, only two compiler vendors support submodules.

e External routine: The AppDriver or parent component provides an explicit interface block for an external
routine that implements (or calls) the user-code SetServices routine. This routine can then be passed directly into
the ESMF_<Grid/Cpl>CompSetServices () interface documented in and [I8.4.19] respectively.
(In practice this can be implemented by the component as an external subroutine that simply calls into the
user-code SetServices module routine.)

Pros: Avoids Fortran USE dependencies: a change to lower level component code will not trigger a complete
recompilation of all of the higher level components throughout the component hierarchy. Name mangling is
handled by the Fortran compiler.

Cons: The user-code SetServices interface is not checked by the compiler. The user must ensure uniqueness of
the external routine name across the entire application.

e Name lookup: The AppDriver or parent component specifies the user-code SetServices routine by name.
The actual lookup and code association does not occur until runtime. The name string is passed into the
ESMF_<Grid/Cpl>CompSetServices () interface documented in[[7.4.20] and [[8.4.20] respectively.

Pros: Avoids Fortran USE dependencies: a change to lower level component code will not trigger a complete
recompilation of all of the higher level components throughout the component hierarchy. The component code

109

does not have to be accessible until runtime and may be located in a shared object, thus avoiding relinking of
the application.

Cons: The user-code SetServices interface is not checked by the compiler. The user must explicitly deal with
all of the Fortran name mangling issues: 1) Accessing a module routine requires precise knowledge of the
name mangling rules of the specific compiler. Alternatively, the user-code SetServices routine may be imple-
mented as an external routine, avoiding the module name mangling. 2) Even then, Fortran compilers typically
append one or two underscores on a symbol name. This must be considered when passing the name into the
ESMF_<Grid/Cpl>CompSetServices () method.

16.4.7 User-code Initialize,Run,and Finalize methods

The required standard ESMF Component methods, for which user-code entry points must be set, are Initialize, Run,
and Finalize. Currently optional, a Component may also set entry points for the WriteRestart and ReadRestart methods.

Sections [I7.2.1land [I8.2. Tl provide examples of how the entry points for Initialize, Run, and Finalize are set during the
user-code SetServices routine, using the ESMF__<Grid/Cpl>CompSetEntryPoint () library call.

All standard user-code methods must abide exactly to the prescribed interfaces. None of the arguments must be
declared as optional.

The names of the Initialize, Run, and Finalize user-code subroutines do not need to be public; in fact it is far better for
them to be private to lower the chances of public symbol clashes between different components.

See sections[17.2.2] [72.4] and[18.2.2] [I8.2. 4 for examples of how to write entry points for the standard
ESMF Component methods.

16.4.8 User-code Set VM method

When the AppDriver or parent component code calls ESMF_<Grid/Cpl>CompCreate () it has the option to
specify a petList argument. All of the parent PETSs contained in this list become resources of the child component.
By default, without the petList argument, all of the parent PETs are provided to the child component.

Typically each component has its own virtual machine (VM) object. However, using the optional contextflag
argument during ESMF__<Grid/Cpl>CompCreate () a child component can inherit its parent component’s VM.
Unless a child component inherits the parent VM, it has the option to set certain aspects of how its VM utilizes the
provided resources. The resources provided via the parent PETs are the associated processing elements (PEs) and
virtual address spaces (VASs).

The optional user-written SetVM routine is called from the parent for the child through the
ESMF_<Grid/Cpl>CompSetVM () method. This is the only place where the child component can set as-
pects of its own VM before it is started up. The child component’s VM must be running before the SetServices
routine can be called, and thus the parent must call the optional ESMF_ <Grid/Cpl>CompSetVM () method before
ESMF_<Grid/Cpl>CompSetServices ().

Inside the user-code called by the SetVM routine, the component has the option to specify how the PETs share the
provided parent PEs. Further, PETs on the same single system image (SSI) can be set to run multi-threaded within a
reduced number of virtual address spaces (VAS), allowing a component to leverage shared memory concepts.

Sections and [I8.2. 3 provide examples for simple user-written SetVM routines.

One common use of the SetVM approach is to implement hybrid parallelism based on MPI+OpenMP. Under ESMF,
each component can use its own hybrid parallelism implementation. Different components, even if running on the
same PE resources, do not have to agree on the number of MPI processes (i.e. PETs), or the number of OpenMP

110

threads launched under each PET. Hybrid and non-hybrid components can be mixed within the same application.
Coupling between components of any flavor is supported under ESMF.

In order to obtain best performance when using SetVM based resource control for hybrid parallelism, it is strongly
recommended to set OMP_WAIT_POLICY=PASSIVE in the environment. This is one of the standard OpenMP
environment variables. The PASSIVE setting ensures that OpenMP threads relinquish the PEs as soon as they have
completed their work. Without that setting ESMF resource control threads can be delayed, and context switching
between components becomes more expensive.

16.4.9 Useof internal procedures as user-provided procedures
Internal procedures are nested within a surrounding procedure, and only local to the surrounding procedure. They are
specified by using the CONTAINS statement.

Prior to Fortran-2008 an internal procedure could not be used as a user-provided callback procedure. In Fortran-2008
this restriction was lifted. It is important to note that if ESMF is passed an internal procedure, that the surrounding
procedure be active whenever ESMF calls it. This helps ensure that local variables at the surrounding procedures
scope are properly initialized.

When internal procedures contained within a main program unit are used for callbacks, there is no problem. This is
because the main program unit is always active. However when internal procedures are used within other program
units, initialization could become a problem. The following outlines the issue:

module my_procs_mod
use ESMF
implicit none

contains

subroutine my_procs (...)
integer :: my_setting

call ESMF_GridCompSetEntryPoint (gridcomp, methodflag=ESMF_METHOD_INITIALIZE, &
userRoutine=my_grid_proc_init, rc=localrc)

my_setting = 42
contains
subroutine my_grid_proc_init (gridcomp, importState, exportState, clock, rc)

! my_setting is possibly uninitialized when my_grid_proc_init is used as a call-back
something = my_setting

end subroutine my_grid_proc_init

end subroutine my_procs
end module my_procs_mod

The Fortran standard does not specify whether variable my_setting is statically or automatically allocated, unless it is
explicitly given the SAVE attribute. Thus there is no guarantee that its value will persist after my_procs has finished.

111

The SAVE attribute is usually given to a variable via specifying a SAVE attribute in its delaration. However it can also
be inferred by initializing the variable in its declaration:

integer, save : my_setting
or,
integer :: my_setting = 42

Because of the potential initialization issues, it is recommended that internal procedures only be used as ESMF call-
backs when the surrounding procedure is also active.

17 GridComp Class

17.1 Description

In Earth system modeling, the most natural way to think about an ESMF Gridded Component, or ESMF_GridComp,
is as a piece of code representing a particular physical domain, such as an atmospheric model or an ocean model.
Gridded Components may also represent individual processes, such as radiation or chemistry. It’s up to the application
writer to decide how deeply to “componentize.”

Earth system software components tend to share a number of basic features. Most ingest and produce a variety
of physical fields, refer to a (possibly noncontiguous) spatial region and a grid that is partitioned across a set of
computational resources, and require a clock for things like stepping a governing set of PDEs forward in time. Most
can also be divided into distinct initialize, run, and finalize computational phases. These common characteristics are
used within ESMF to define a Gridded Component data structure that is tailored for Earth system modeling and yet is
still flexible enough to represent a variety of domains.

A well designed Gridded Component does not store information internally about how it couples to other Gridded
Components. That allows it to be used in different contexts without changes to source code. The idea here is to avoid
situations in which slightly different versions of the same model source are maintained for use in different contexts -
standalone vs. coupled versions, for example. Data is passed in and out of Gridded Components using an ESMF State,
this is described in Section 2111

An ESMF Gridded Component has two parts, one which is user-written and another which is part of the framework.
The user-written part is software that represents a physical domain or performs some other computational function. It
forms the body of the Gridded Component. It may be a piece of legacy code, or it may be developed expressly for use
with ESMF. It must contain routines with standard ESMF interfaces that can be called to initialize, run, and finalize the
Gridded Component. These routines can have separate callable phases, such as distinct first and second initialization
steps.

ESMF provides the Gridded Component derived type, ESMF_GridComp. An ESMF_GridComp must be created
for every portion of the application that will be represented as a separate component. For example, in a climate model,
there may be Gridded Components representing the land, ocean, sea ice, and atmosphere. If the application contains
an ensemble of identical Gridded Components, every one has its own associated ESMF_GridComp. Each Gridded

112

Component has its own name and is allocated a set of computational resources, in the form of an ESMF Virtual
Machine, or VM.

The user-written part of a Gridded Component is associated with an ESMF_GridComp derived type through a routine
called ESMF_SetServices (). This is a routine that the user must write, and declare public. Inside the SetServices
routine the user must call ESMF_SetEntryPoint () methods that associate a standard ESMF operation with the
name of the corresponding Fortran subroutine in their user code.

17.2 Use and Examples

A Gridded Component is a computational entity which consumes and produces data. It uses a State object to exchange
data between itself and other Components. It uses a Clock object to manage time, and a VM to describe its own and
its child components’ computational resources.

This section shows how to create Gridded Components. For demonstrations of the use of Gridded Components,
see the system tests that are bundled with the ESMF software distribution. These can be found in the directory
esmf/src/system_tests.

17.2.1 Implement a user-code Set Services routine

Every ESMF_GridComp is required to provide and document a public set services routine. It can have any name,
but must follow the declaration below: a subroutine which takes an ESMF_GridComp as the first argument, and an
integer return code as the second. Both arguments are required and must not be declared as opt ional. If an intent
is specified in the interface it must be intent (inout) for the first and intent (out) for the second argument.

The set services routine must call the ESMF method ESMF_GridCompSetEntryPoint () to register with the
framework what user-code subroutines should be called to initialize, run, and finalize the component. There are
additional routines which can be registered as well, for checkpoint and restart functions.

Note that the actual subroutines being registered do not have to be public to this module; only the set services routine
itself must be available to be used by other code.

! Example Gridded Component
module ESMF_GriddedCompEx

! ESMF Framework module
use ESMF

implicit none

public GComp_SetServices
public GComp_SetVM

contains

subroutine GComp_SetServices (comp, rc)
type (ESMF_GridComp) :: comp ! must not be optional
integer, intent (out) 1 rc ! must not be optional

! Set the entry points for standard ESMF Component methods

call ESMF_GridCompSetEntryPoint (comp, ESMF_METHOD_INITIALIZE, &
userRoutine=GComp_Init, rc=rc)

call ESMF_GridCompSetEntryPoint (comp, ESMF_METHOD_RUN, &
userRoutine=GComp_Run, rc=rc)

call ESMF_GridCompSetEntryPoint (comp, ESMF_METHOD_FINALIZE, &

113

userRoutine=GComp_Final, rc=rc)
rc = ESMF_SUCCESS

end subroutine

17.2.2 Implement a user-code Initialize routine

When a higher level component is ready to begin using an ESMF_GridComp, it will call its initialize routine.

The component writer must supply a subroutine with the exact interface shown below. Arguments must not be declared
as optional, and the types and order must match.

At initialization time the component can allocate data space, open data files, set up initial conditions; anything it needs
to do to prepare to run.

The rc return code should be set if an error occurs, otherwise the value ESMF__SUCCESS should be returned.

subroutine GComp_Init (comp, importState, exportState, clock, rc)
|

type (ESMF_GridComp) 1 comp ! must not be optional
type (ESMF_State) :: importState ! must not be optional
type (ESMF_State) :: exportState ! must not be optional
type (ESMF_Clock) :: clock ! must not be optional
integer, intent (out) 1 rc ! must not be optional

print x, "Gridded Comp Init starting”

! This is where the model specific setup code goes.

' If the initial Export state needs to be filled, do it here.
'call ESMF_StateAdd (exportState, field, rc)

'call ESMF_StateAdd (exportState, bundle, rc)

print %, "Gridded Comp Init returning"

rc = ESMF_SUCCESS

end subroutine GComp_Init

17.2.3 Implement a user-code Run routine

During the execution loop, the run routine may be called many times. Each time it should read data from the
importState, use the clock to determine what the current time is in the calling component, compute new values
or process the data, and produce any output and place it in the exportState.

When a higher level component is ready to use the ESMF_GridComp it will call its run routine.

The component writer must supply a subroutine with the exact interface shown below. Arguments must not be declared
as optional, and the types and order must match.

It is expected that this is where the bulk of the model computation or data analysis will occur.

114

The rc return code should be set if an error occurs, otherwise the value ESMF_SUCCESS should be returned.

subroutine GComp_Run (comp, importState, exportState, clock, rc)
!

type (ESMF_GridComp) :: comp must not be optional
type (ESMF_State) :: lmportState ! must not be optional
type (ESMF_State) :: exportState ! must not be optional
type (ESMF_Clock) :: clock ! must not be optional
integer, intent (out) 1 orc ! must not be optional

print *, "Gridded Comp Run starting"

! call ESMF_StateGet (), etc to get fields, bundles, arrays
' from import state.

! This is where the model specific computation goes.

' Fill export state here using ESMF_StateAdd(), etc

print %, "Gridded Comp Run returning"

rc = ESMF_SUCCESS

end subroutine GComp_Run

17.2.4 Implement a user-code Finalize routine
At the end of application execution, each ESMF_GridComp should deallocate data space, close open files, and flush
final results. These functions should be placed in a finalize routine.

The component writer must supply a subroutine with the exact interface shown below. Arguments must not be declared
as optional, and the types and order must match.

The rc return code should be set if an error occurs, otherwise the value ESMF_SUCCESS should be returned.

subroutine GComp_Final (comp, importState, exportState, clock, rc)

type (ESMF_GridComp) :: comp ! must not be optional

type (ESMF_State) :: lmportState ! must not be optional

type (ESMF_State) :: exportState ! must not be optional

type (ESMF_Clock) :: clock ! must not be optional
|

integer, intent (out) HE o] must not be optional
print %, "Gridded Comp Final starting"

! Add whatever code here needed

print x, "Gridded Comp Final returning"”

rc = ESMF_SUCCESS

end subroutine GComp_Final

115

17.2.5 Implement a user-code SetVM routine

Every ESMF_GridComp can optionally provide and document a public set vm routine. It can have any name, but
must follow the declaration below: a subroutine which takes an ESMF_GridComp as the first argument, and an
integer return code as the second. Both arguments are required and must not be declared as opt ional. If an intent
is specified in the interface it must be intent (inout) for the first and intent (out) for the second argument.

The set vm routine is the only place where the child component can use the ESMF_GridCompSetVMMaxPEs (), or
ESMF_GridCompSetVMMaxThreads (), or ESMF_GridCompSetVMMinThreads () call to modify aspects
of its own VM.

A component’s VM is started up right before its set services routine is entered. ESMF_GridCompSetVM() is
executing in the parent VM, and must be called before ESMF_GridCompSetServices ().

subroutine GComp_SetVM(comp, rc)

type (ESMF_GridComp) :: comp ! must not be optional
integer, intent (out) 1 orc ! must not be optional
type (ESMF_VM) :: vm

logical :: pthreadsEnabled

! Test for Pthread support, all SetVM calls require it
call ESMF_VMGetGlobal (vm, rc=rc)
call ESMF_VMGet (vm, pthreadsEnabledFlag=pthreadsEnabled, rc=rc)

if (pthreadsEnabled) then

! run PETs single-threaded

call ESMF_GridCompSetVMMinThreads (comp, rc=rc)
endif

rc = ESMF_SUCCESS
end subroutine

end module ESMF_GriddedCompEx

17.2.6 Set and Get the Internal State

ESMF provides the concept of an Internal State that is associated with a Component. Through the Internal State API a
user can attach a private data block to a Component, and later retrieve a pointer to this memory allocation. Setting and
getting of Internal State information are supported from anywhere in the Component’s SetServices, Initialize, Run, or
Finalize code.

The code below demonstrates the basic Internal State API of ESMF_<Grid|Cpl>SetInternalState () and
ESMF_<Grid|Cpl>GetInternalState (). Notice that an extra level of indirection to the user data is neces-
sary!

! ESMF Framework module
use ESMF

use ESMF_TestMod
implicit none

type (ESMF_GridComp) :: comp
integer :: rc, finalrc

116

! Internal State Variables
type testData

sequence
integer :: testValue
real :: testScaling
end type

type dataWrapper

sequence
type (testData), pointer :: p
end type
type (dataWrapper) :: wrapl, wrap2
type (testData), target :: data
type (testData), pointer :: datap ! extra level of indirection

call ESMF_TInitialize(defaultlogfilename="InternalStateEx.Log", &
logkindflag=ESMF_LOGKIND_MULTI, rc=rc)
if (rc /= ESMF_SUCCESS) call ESMF_Finalize (endflag=ESMF_END_ABORT)

! Creation of a Component
comp = ESMF_GridCompCreate (name="test", rc=rc)
if (rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

This could be called, for example, during a Component’s initialize phase.

! Initialize private data block
data%testvValue = 4567
data%testScaling = 0.5

! Set Internal State

wrapl%$p => data

call ESMF_GridCompSetInternalState (comp, wrapl, rc)
if (rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

This could be called, for example, during a Component’s run phase.

! Get Internal State
call ESMF_GridCompGetInternalState (comp, wrap2, rc)
if (rc .ne. ESMF_SUCCESS) finalrc = ESMF_FAILURE

! Access private data block and verify data

datap => wrap2%p

if ((datap%testValue .ne. 4567) .or. (datap%testScaling .ne. 0.5)) then
print x, "did not get same wvalues back"”
finalrc = ESMF_FAILURE

else
print x, "got same values back from GetInternalState as original"

117

endif

When working with ESMF Internal States it is important to consider the applying scoping rules. The user must
ensure that the private data block that is being referenced persists for the entire access period. This is not an issue
in the previous example, where the private data block was defined on the scope of the main program. However, the
Internal State construct is often useful inside of Component modules to hold Component specific data between calls.
One option to ensure persisting private data blocks is to use the Fortran SAVE attribute either on local or module
variables. A second option, illustrated in the following example, is to use Fortran pointers and user controlled memory
management via allocate() and deallocate() calls.

One situation where the Internal State is useful is in the creation of ensembles of the same Component. In this case
it can be tricky to distinguish which data, held in saved module variables, belongs to which ensemble member -
especially if the ensemble members are executing on the same set of PETs. The Internal State solves this problem by
providing a handle to instance specific data allocations.

module user_mod
use ESMF
implicit none

! module variables
private

! Internal State Variables
type testData

sequence
integer :: testValue ! scalar data
real :: testScaling ! scalar data
real, pointer :: testArray(:) ! array data
end type

type dataWrapper
sequence

type (testData), pointer :: p
end type

contains !--———>-"-"-"-""">"""""""">""""""-""""""-""—"—\——(———

subroutine mygcomp_init (gcomp, istate, estate, clock, rc)
type (ESMF_GridComp) : : gcomp
type (ESMF_State) :: istate, estate
type (ESMF_Clock) :: clock
integer, intent (out):: rc

! Local variables

type (dataWrapper) :: wrap
type (testData), pointer :: data
integer :: 1

118

rc = ESMF_SUCCESS

! Allocate private data block
allocate (data)

! Initialize private data block

data%testValue = 4567 ! initialize scalar data
data%testScaling = 0.5 ! initialize scalar data
allocate (data%testArray (10)) ! allocate array data
do i=1, 10

data%testArray (i) = real(i) ! initialize array data
enddo

In a real ensemble application the initial data would be set to
something unique for this ensemble member. This could be
accomplished for example by reading a member specific config file
that was specified by the driver code. Alternatively, Attributes,
set by the driver, could be used to label the Component instances
as specific ensemble members.

! Set Internal State
wrap%p => data
call ESMF_GridCompSetInternalState (gcomp, wrap, rc)

end subroutine !--———-——-"--"--"-">-"—-"""""""""""""""“"""""""

subroutine mygcomp_run (gcomp, istate, estate, clock, rc)

type (ESMF_GridComp) : : gcomp

type (ESMF_State) :: istate, estate
type (ESMF_Clock) :: clock

integer, intent (out):: rc

! Local variables

type (dataWrapper) :: wrap

type (testData), pointer :: data
logical :: match = .true.
integer :: 1

rc = ESMF_SUCCESS

! Get Internal State
call ESMF_GridCompGetInternalState (gcomp, wrap, rc)
if (rc/=ESMF_SUCCESS) return

! Access private data block and verify data
data => wrap%p

if (data%$testValue .ne. 4567) match = .false. ! test scalar data
if (data%testScaling .ne. 0.5) match = .false. ! test scalar data
do i=1, 10
if (data%$testArray (i) .ne. real(i)) match = .false. ! test array data
enddo

if (match) then
print %, "got same values back from GetInternalState as original"

119

else
print =, "did not get same values back"
rc = ESMF_FATILURE

endif

end subroutine !'- - - ———— —— ——

subroutine mygcomp_final (gcomp, istate, estate, clock, rc)
type (ESMF_GridComp) : : gcomp
type (ESMF_State) :: istate, estate
type (ESMF_Clock) :: clock
integer, intent (out):: rc

! Local variables

type (dataWrapper) :: wrap
type (testData), pointer :: data

rc = ESMF_SUCCESS

! Get Internal State

call ESMF_GridCompGetInternalState (gcomp, wrap, rc)
if (rc/=ESMF_SUCCESS) return

! Deallocate private data block

data => wrap%p

deallocate (data%testArray) ! deallocate array data

deallocate (data)

end subroutine !--——-——-"--"-—"-"-—-—H—""-—""" """

end module

17.3 Restrictions and Future Work

1. No optional arguments. User-written routines called by SetServices, and registered for Initialize, Run and
Finalize, must not declare any of the arguments as optional.

2. Namespace isolation. If possible, Gridded Components should attempt to make all data private, so public
names do not interfere with data in other components.

3. Single execution mode. It is not expected that a single Gridded Component be able to function in both se-
quential and concurrent modes, although Gridded Components of different types can be nested. For example, a
concurrently called Gridded Component can contain several nested sequential Gridded Components.

17.4 Class API

17.4.1 ESMF_GridCompAssignment(=) - GridComp assignment

INTERFACE:

120

interface assignment (=)
gridcompl = gridcomp2

ARGUMENTS:
type (ESMF_GridComp) :: gridcompl
type (ESMF_GridComp) :: gridcomp?2
STATUS:

e This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Assign gridcompl as an alias to the same ESMF GridComp object in memory as gridcomp?2. If gridcomp?2 is invalid,
then gridcomp1 will be equally invalid after the assignment.

The arguments are:

gridcompl The ESMF_GridComp object on the left hand side of the assignment.

gridcomp2 The ESMF_GridComp object on the right hand side of the assignment.

17.4.2 ESMF_GridCompOperator(==) - GridComp equality operator

INTERFACE:

interface operator (==)

if (gridcompl == gridcomp2) then
OR
result = (gridcompl == gridcomp2)
RETURN VALUE:
logical :: result
ARGUMENTS:

type (ESMF_GridComp), intent (in)
type (ESMF_GridComp), intent (in)

STATUS:

endif

gridcompl
gridcomp?2

e This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

121

DESCRIPTION:

Test whether gridcompl and gridcomp?2 are valid aliases to the same ESMF GridComp object in memory. For a more
general comparison of two ESMF GridComps, going beyond the simple alias test, the ESMF_GridCompMatch()
function (not yet implemented) must be used.

The arguments are:

gridcompl The ESMF_GridComp object on the left hand side of the equality operation.

gridcomp2 The ESMF_GridComp object on the right hand side of the equality operation.

17.4.3 ESMF_GridCompOperator(/=) - GridComp not equal operator

INTERFACE:
interface operator (/=)
if (gridcompl /= gridcomp2) then ... endif
result = (Siidcompl /= gridcomp?2)
RETURN VALUE:
logical :: result
ARGUMENTS:
type (ESMF_GridComp), intent (in) :: gridcompl
type (ESMF_GridComp), intent (in) :: gridcomp2
STATUS:

e This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Test whether gridcomp1 and gridcomp?2 are not valid aliases to the same ESMF GridComp object in memory. For a
more general comparison of two ESMF GridComps, going beyond the simple alias test, the ESMF_GridCompMatch()
function (not yet implemented) must be used.

The arguments are:

gridcompl The ESMF_GridComp object on the left hand side of the non-equality operation.

gridcomp2 The ESMF_GridComp object on the right hand side of the non-equality operation.

122

17.44 ESMF_GridCompCreate - Create a GridComp

INTERFACE:

recursive function ESMF_GridCompCreate (grid, gridList, &
mesh, meshlList, locstream, locstreamlist, xgrid, xgridList, &
config, configFile, clock, petlList, devList, contextflag, name, rc)

RETURN VALUE:
type (ESMF_GridComp) :: ESMF_GridCompCreate

ARGUMENTS:

—-— The following arguments require argument keyword syntax (e.g. rc=rc). —-—

type (ESMF_Grid), intent (in), optional :: grid
type (ESMF_Grid), intent (in), optional :: gridList(:)
type (ESMF_Mesh), intent (in), optional :: mesh
type (ESMF_Mesh), intent (in), optional :: meshList (:)
type (ESMF_LocStream), intent (in), optional :: locstream
type (ESMF_LocStream), intent (in), optional :: locstreamList (:)
type (ESMF_XGrid), intent (in), optional :: xgrid
type (ESMF_XGrid), intent (in), optional :: xgridList (:)
type (ESMF_Config), intent (in), optional :: config
character (len=x), intent (in), optional :: configFile
type (ESMF_Clock), intent (in), optional :: clock
integer, intent (in), optional :: petList (:)
integer, intent (in), optional :: devList(:)
type (ESMF_Context_Flag), intent (in), optional :: contextflag
character (len=x%), intent (in), optional :: name
integer, intent (out), optional :: rc

STATUS:

e This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

e This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.

Changes made after the 5.2.0r release:

7.1.0r Added arguments gridList, mesh, meshList, locstream, locstreamList, xgrid, and
xgridList. These arguments add support for holding references to multiple geom objects, either of
the same type, or different type, in the same ESMF__GridComp object.

8.6.0 Added argument devList to support management of accelerator devices.

DESCRIPTION:

This interface creates an ESMF_GridComp object. By default, a separate VM context will be created for each
component. This implies creating a new MPI communicator and allocating additional memory to manage the VM

123

resources. When running on a large number of processors, creating a separate VM for each component could be both
time and memory inefficient. If the application is sequential, i.e., each component is running on all the PETs of the
global VM, it will be more efficient to use the global VM instead of creating a new one. This can be done by setting
contextflagto ESMF_CONTEXT_PARENT_VM.

The return value is the new ESMF_GridComp.

The arguments are:

[grid] Associate an ESMF_Grid object with the newly created component. This is simply a convenience feature for
the user. The ESMF library code does not access the grid object. The grid argument is mutually exclusive
with the gridList argument. If both arguments are provided, the routine will fail, and an error is returned in
rc. By default, i.e. if neither grid nor gridList are provided, no ESMF_Grid objects are associated with
the component.

[gridList] Associate a list of ESMF_Grid objects with the newly created component. This is simply a convenience
feature for the user. The ESMF library code does not access the gridList object. The gridList argument
is mutually exclusive with the grid argument. If both arguments are provided, the routine will fail, and an
error is returned in rc. By default, i.e. if neither grid nor gridList are provided, no ESMF_Grid objects
are associated with the component.

[mesh] Associate an ESMF_Mesh object with the newly created component. This is simply a convenience feature for
the user. The ESMF library code does not access the mesh object. The mesh argument is mutually exclusive
with the meshList argument. If both arguments are provided, the routine will fail, and an error is returned in
rc. By default, i.e. if neither mesh nor meshList are provided, no ESMF_Mesh objects are associated with
the component.

[meshList] Associate a list of ESMF_Mesh objects with the newly created component. This is simply a convenience
feature for the user. The ESMF library code does not access the meshList object. The meshList argument
is mutually exclusive with the mesh argument. If both arguments are provided, the routine will fail, and an
error is returned in rc. By default, i.e. if neither mesh nor meshList are provided, no ESMF_Mesh objects
are associated with the component.

[locstream] Associate an ESMF_LocStream object with the newly created component. This is simply a conve-
nience feature for the user. The ESMF library code does not access the 1ocstream object. The locstream
argument is mutually exclusive with the locstreamList argument. If both arguments are provided, the rou-
tine will fail, and an error is returned in rc. By default, i.e. if neither locstreamnor locstreamList are
provided, no ESMF_LocSt ream objects are associated with the component.

[locstreamList] Associate a list of ESMF_LocStream objects with the newly created component. This is simply
a convenience feature for the user. The ESMF library code does not access the locstreamList object.
The locstreamList argument is mutually exclusive with the locstream argument. If both arguments
are provided, the routine will fail, and an error is returned in rc. By default, i.e. if neither Locstream nor
locstreamlist are provided, no ESMF_LocStream objects are associated with the component.

[xgrid] Associate an ESMF_XGrid object with the newly created component. This is simply a convenience feature
for the user. The ESMF library code does not access the xgrid object. The xgrid argument is mutually
exclusive with the xgridList argument. If both arguments are provided, the routine will fail, and an error is
returned in rc. By default, i.e. if neither xgrid nor xgridList are provided, no ESMF_XGrid objects are
associated with the component.

[xgridList] Associate a list of ESMF_ XGrid objects with the newly created component. This is simply a convenience
feature for the user. The ESMF library code does not access the xgridList object. The xgridList argu-
ment is mutually exclusive with the xgrid argument. If both arguments are provided, the routine will fail, and
an error is returned in rc. By default, i.e. if neither xgrid nor xgridList are provided, no ESMF_XGrid
objects are associated with the component.

[config] An already-created ESMF_Config object to be attached to the newly created component. If both config
and configFile arguments are specified, config takes priority.

124

[configFile] The filename of an ESMF_Config format file. If specified, a new ESMF_Config object is created and
attached to the newly created component. The configFile file is opened and associated with the new config
object. If both configand configFile arguments are specified, config takes priority.

[clock] Component-specific ESMF_Clock. This clock is available to be queried and updated by the new
ESMF_GridComp as it chooses. This should not be the parent component clock, which should be maintained
and passed down to the initialize/run/finalize routines separately.

[petList] List of parent PETs given to the created child component by the parent component. If petList is not
specified, or is empty, all of the parent PETs are given to the child component. The order of PETSs in petList
determines how the child local PETs map back to the parent PETs.

[devList] List of accelerator devices global ids DEVs to be associated with the created child component. If devList
is not specified, or is empty, no devices are associated with the component.

[contextflag] Specify the component’s VM context. The default context is ESMF_CONTEXT_OWN_VM. See section
24,10l for a complete list of valid flags.

[name] Name of the newly-created ESMF_GridComp. This name can be altered from within the ESMF_GridComp
code once the initialization routine is called.

[re] Return code; equals ESMF_SUCCESS if there are no errors.

17.4.5 ESMF_GridCompDestroy - Release resources associated with a GridComp

INTERFACE:

recursive subroutine ESMF_GridCompDestroy (gridcomp, &
timeout, timeoutFlag, rc)

ARGUMENTS:
type (ESMF_GridComp), intent (inout) :: gridcomp
—-— The following arguments require argument keyword syntax (e.g. rc=rc). —-—
integer, intent (in), optional :: timeout
logical, intent (out), optional :: timeoutFlag
integer, intent (out), optional :: rc
STATUS:

e This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

o This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.

Changes made after the 5.2.0r release:

5.3.0 Added argument t imeout. Added argument t imeoutFlag. The new arguments provide access to the
fault-tolerant component features.

125

DESCRIPTION:

Destroys an ESMF_GridComp, releasing the resources associated with the object.

The arguments are:

gridcomp Release all resources associated with this ESMF_GridComp and mark the object as invalid. It is an error
to pass this object into any other routines after being destroyed.

[timeout] The maximum period in seconds that this call will wait in communications with the actual component,
before returning with a timeout condition. The default is 3600, i.e. 1 hour. The timeout argument is only
supported for connected dual components.

[timeoutFlag] Returns .true. if the timeout was reached, .false. otherwise. If timeoutFlag was not
provided, a timeout condition will lead to a return code of rc \= ESMF_SUCCESS. Otherwise the return
value of t imeoutFlag is the sole indicator of a timeout condition.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

17.4.6 ESMF_GridCompFinalize - Call the GridComp’s finalize routine

INTERFACE:

recursive subroutine ESMF_GridCompFinalize (gridcomp, &
importState, exportState, clock, syncflag, phase, timeout, timeoutFlag, &
userRc, rc)

ARGUMENTS:

type (ESMF_GridComp), 1intent (inout) :: gridcomp
—-— The following arguments require argument keyword syntax (e.g. rc=rc). —-—

type (ESMF_State), intent (inout), optional :: importState
type (ESMF_State), intent (inout), optional :: exportState
type (ESMF_Clock), intent (inout), optional :: clock
type (ESMF_Sync_Flag), intent (in), optional :: syncflag
integer, intent (in), optional :: phase
integer, intent (in), optional :: timeout
logical, intent (out), optional :: timeoutFlag
integer, intent (out), optional :: userRc
integer, intent (out), optional :: rc

STATUS:

o This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

e This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.

Changes made after the 5.2.0r release:

126

5.3.0 Added argument t imeout. Added argument t imeoutFlag. The new arguments provide access to the
fault-tolerant component features.

DESCRIPTION:

Call the associated user-supplied finalization routine for an ESMF_GridComp.

The arguments are:

gridcomp The ESMF_GridComp to call finalize routine for.

[importState] ESMF_State containing import data. If not present, a dummy argument will be passed to the user-
supplied routine. The importState argument in the user code cannot be optional.

[exportState] ESMF_State containing export data. If not present, a dummy argument will be passed to the user-
supplied routine. The exportState argument in the user code cannot be optional.

[clock] External ESMF_C1lock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations. If not present, a dummy argument will be passed to the user-supplied routine.
The clock argument in the user code cannot be optional.

[syncflag] Blocking behavior of this method call. See section[34.57|for a list of valid blocking options. Default option
is ESMF__SYNC_VASBLOCKING which blocks PETs and their spawned off threads across each VAS but does
not synchronize PETs that run in different VASs.

[phase] Component providers must document whether each of their routines are single-phase or multi-phase. Single-
phase routines require only one invocation to complete their work. Multi-phase routines provide multiple sub-
routines to accomplish the work, accommodating components which must complete part of their work, return to
the caller and allow other processing to occur, and then continue the original operation. For multiple-phase child
components, this is the integer phase number to be invoked. For single-phase child components this argument
is optional. The default is 1.

[timeout] The maximum period in seconds that this call will wait in communications with the actual component,
before returning with a timeout condition. The default is 3600, i.e. 1 hour. The t imeout argument is only
supported for connected dual components.

[timeoutFlag] Returns .true. if the timeout was reached, . false. otherwise. If timeoutFlag was not
provided, a timeout condition will lead to a return code of rc \= ESMF_SUCCESS. Otherwise the return
value of t imeoutFlag is the sole indicator of a timeout condition.

[userRc] Return code set by userRout ine before returning.

[re] Return code; equals ESMF_SUCCESS if there are no errors.

17.4.7 ESMF_GridCompGet - Get GridComp information

INTERFACE:

recursive subroutine ESMF_GridCompGet (gridcomp, &
gridIsPresent, grid, gridList, meshIsPresent, mesh, meshList, &
locstreamIsPresent, locstream, locstreamList, xgridIsPresent, &
xgrid, xgridList, importStatelIsPresent, importState, &

127

exportStatelIsPresent, exportState, configIsPresent, config, &
configFileIsPresent, configFile, clockIsPresent, clock, localPet, &
petCount, contextflag, currentMethod, currentPhase, comptype, &
vmIsPresent, vm, name, rc)

ARGUMENTS:

type (ESMF_GridComp) , intent (in) :: gridcomp
—— The following arguments require argument keyword syntax (e.g. rc=rc). —-—

logical, intent (out), optional :: gridIsPresent
type (ESMF_Grid), intent (out), optional :: grid
type (ESMF_Grid), allocatable, intent (out), optional :: gridList(:)
logical, intent (out), optional :: meshIsPresent
type (ESMF_Mesh), intent (out), optional :: mesh
type (ESMF_Mesh), allocatable, intent (out), optional :: meshList (:)
logical, intent (out), optional :: locstreamIsPresent
type (ESMF_LocStream), intent (out), optional :: locstream
type (ESMF_LocStream), allocatable, intent (out), optlonal :: locstreamList (:)
logical, intent (out), optional :: xgridIsPresent
type (ESMF_XGrid), intent (out), optional :: xgrid
type (ESMF_XGrid), allocatable, intent (out), optional :: xgridList(:)
logical, intent (out), optional :: importStatelIsPresent
type (ESMF_State), intent (out), optional :: importState
logical, intent (out), optional :: exportStateIsPresent
type (ESMF_State), intent (out), optional :: exportState
logical, intent (out), optional :: configIsPresent
type (ESMF_Confiqg), intent (out), optional :: config
logical, intent (out), optional :: configFileIsPresent
character (len=x), intent (out), optional :: configFile
logical, intent (out), optional :: clockIsPresent
type (ESMF_Clock), intent (out), optional :: clock
integer, intent (out), optional :: localPet
integer, intent (out), optional :: petCount
type (ESMF_Context_Flag), intent (out), optional :: contextflag
type (ESMF_Method_Flag), intent (out), optional :: currentMethod
integer, intent (out), optional :: currentPhase
type (ESMF_CompType_Flag), intent (out), optional :: comptype
logical, intent (out), optional :: vmIsPresent
type (ESMF_VM) , intent (out), optional :: vm
character (len=x), intent (out), optional :: name
integer, intent (out), optional :: rc

STATUS:

o This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

e This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.

Changes made after the 5.2.0r release:

7.1.0r Added arguments gridList, meshIsPresent, mesh, meshList, locstreamIsPresent,
locstream, locstreamList, xgridIsPresent, xgrid, and xgridList. These arguments

128

add support for accessing references to multiple geom objects, either of the same type, or different type,
associated with the same ESMF__GridComp object.

DESCRIPTION:

Get information about an ESMF_ GridComp object.

The arguments are:

gridcomp The ESMF_GridComp object being queried.

[gridIsPresent] Set to .true. if at least one ESMF_Grid object is associated with the gridcomp component.
Setto . false. otherwise.

[grid] Return the ESMF_Grid object associated with the gridcomp component. If multiple ESMF_Grid objects
are associated, return the first in the list. It is an error to query for grid if no ESMF_Grid object is associated
with the gridcomp component. If unsure, query for gridIsPresent first, or use the gridList variant.

[gridList] Return a list of all ESMF_Grid objects associated with the gridcomp component. The size of the
returned gridList corresponds to the number of ESMF_Grid objects associated. If no ESMF_Grid object
is associated with the gr idcomp component, the size of the returned gridList is zero.

[meshlsPresent] Set to .true. if atleast one ESMF_Mesh object is associated with the gridcomp component.
Setto . false. otherwise.

[mesh] Return the ESMF_Mesh object associated with the gridcomp component. If multiple ESMF_Mesh objects
are associated, return the first in the list. It is an error to query for mesh if no ESMF_Mesh object is associated
with the gridcomp component. If unsure, query for meshIsPresent first, or use the meshList variant.

[meshList] Return a list of all ESMF_Mesh objects associated with the gridcomp component. The size of the
returned meshList corresponds to the number of ESMF_Mesh objects associated. If no ESMF_Mesh object
is associated with the gridcomp component, the size of the returned meshList is zero.

[locstreamlIsPresent] Set to .true. if at least one ESMF_LocStream object is associated with the gridcomp
component. Setto . false. otherwise.

[locstream] Return the ESMF_LocStream object associated with the gridcomp component. If multiple
ESMF_LocStream objects are associated, return the first in the list. It is an error to query for
locstream if no ESMF_Grid object is associated with the gridcomp component. If unsure, query for
locstreamIsPresent first, or use the locstreamlList variant.

[locstreamList] Return a list of all ESMF_LocStream objects associated with the gridcomp component. The
size of the returned locstreamList corresponds to the number of ESMF_LocStream objects associ-
ated. If no ESMF_LocStream object is associated with the gridcomp component, the size of the returned
locstreamList is zero.

[xgridIsPresent] Setto .true. if at least one ESMF_XGrid object is associated with the gridcomp component.
Setto . false. otherwise.

[xgrid] Return the ESMF_XGrid object associated with the gridcomp component. If multiple ESMF_XGrid
objects are associated, return the first in the list. It is an error to query for xgrid if no ESMF_XGrid ob-
ject is associated with the gridcomp component. If unsure, query for xgridIsPresent first, or use the
xgridList variant.

[xgridList] Return a list of all ESMF_XGrid objects associated with the gridcomp component. The size of the
returned xgridList corresponds to the number of ESMF_XGrid objects associated. If no ESMF_XGrid
object is associated with the gridcomp component, the size of the returned xgridList is zero.

[importStatelsPresent] .true. if importState was set in GridComp object, . false. otherwise.

129

[importState] Return the associated import State. It is an error to query for the import State if none is associated with
the GridComp. If unsure, get importStateIsPresent first to determine the status.

[exportStatelsPresent] .true. if exportState was set in GridComp object, . false. otherwise.

[exportState] Return the associated export State. It is an error to query for the export State if none is associated with
the GridComp. If unsure, get exportStateIsPresent first to determine the status.

[configIsPresent] .true. if config was set in GridComp object, . false. otherwise.

[config] Return the associated Config. It is an error to query for the Config if none is associated with the GridComp.
If unsure, get configIsPresent first to determine the status.

[configFileIsPresent] .true. if configFile was setin GridComp object, . false. otherwise.

[configFile] Return the associated configuration filename. It is an error to query for the configuration filename if none
is associated with the GridComp. If unsure, get configFileIsPresent first to determine the status.

[clockIsPresent] .true. if clock was setin GridComp object, . false. otherwise.

[clock] Return the associated Clock. It is an error to query for the Clock if none is associated with the GridComp. If
unsure, get clockIsPresent first to determine the status.

[localPet] Return the local PET id within the ESMF_GridComp object.
[petCount] Return the number of PETs in the the ESMF_GridComp object.

[contextflag] Return the ESMF_Context_Flag for this ESMF_GridComp. See section[34.10lfor a complete list
of valid flags.

[currentMethod] Return the current ESMF_Method_Flag of the ESMF_GridComp execution. See section[34.42)]
for a complete list of valid options.

[currentPhase] Return the current phase of the ESMF_GridComp execution.
[comptype] Return the Component type. See section for a complete list of valid flags.
[vmIsPresent] .true. if vm was set in GridComp object, . false. otherwise.

[vim] Return the associated VM. It is an error to query for the VM if none is associated with the GridComp. If unsure,
get vmIsPresent first to determine the status.

[name] Return the name of the ESMF_GridComp.

[re] Return code; equals ESMF_SUCCESS if there are no errors.

17.4.8 ESMF_GridCompGetInternalState - Get private data block pointer

INTERFACE:
subroutine ESMF_GridCompGetInternalState (gridcomp, wrappedDataPointer, rc)

ARGUMENTS:

130

type (ESMF_GridComp) :: gridcomp

type (wrapper) :: wrappedDataPointer
integer, intent (out) :: rc
STATUS:

e This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Auvailable to be called by an ESMF_GridComp at any time after ESMF_GridCompSetInternalState has been
called. Since init, run, and finalize must be separate subroutines, data that they need to share in common can either
be module global data, or can be allocated in a private data block and the address of that block can be registered with
the framework and retrieved by this call. When running multiple instantiations of an ESMF__GridComp, for example
during ensemble runs, it may be simpler to maintain private data specific to each run with private data blocks. A
corresponding ESMF_GridCompSetInternalState call sets the data pointer to this block, and this call retrieves
the data pointer. Note that the wrappedDataPointer argument needs to be a derived type which contains only a
pointer of the type of the data block defined by the user. When making this call the pointer needs to be unassociated.
When the call returns, the pointer will now reference the original data block which was set during the previous call to
ESMF_GridCompSetInternalState.

Only the last data block set via ESMF_GridCompSetInternalState will be accessible.

CAUTION: If you are working with a compiler that does not support Fortran 2018 assumed-type dummy arguments,
then this method does not have an explicit Fortran interface. In this case do not specify argument keywords when
calling this method!

The arguments are:

gridcomp An ESMF_GridComp object.

wrappedDataPointer A derived type (wrapper), containing only an unassociated pointer to the private data block.
The framework will fill in the pointer. When this call returns, the pointer is set to the same address set during
the last ESMF_GridCompSetInternalState call. This level of indirection is needed to reliably set and
retrieve the data block no matter which architecture or compiler is used.

rc¢ Return code; equals ESMF_SUCCESS if there are no errors. Note: unlike most other ESMF routines, this argument
is not optional because of implementation considerations.

17.4.9 ESMF_GridComplnitialize - Call the GridComp’s initialize routine

INTERFACE:

recursive subroutine ESMF_GridCompInitialize (gridcomp, &
importState, exportState, clock, syncflag, phase, timeout, timeoutFlag, &
userRc, rc)

ARGUMENTS:

131

type (ESMF_GridComp), intent (inout) :: gridcomp
—— The following arguments require argument keyword syntax (e.g. rc=rc). —-

type (ESMF_State), intent (inout), optional :: importState
type (ESMF_State), intent (inout), optional :: exportState
type (ESMF_Clock), intent (inout), optional :: clock
type (ESMF_Sync_Flag), intent (in), optional :: syncflag
integer, intent (in), optional :: phase
integer, intent (in), optional :: timeout
logical, intent (out), optional :: timeoutFlag
integer, intent (out), optional :: userRc
integer, intent (out), optional :: rc

STATUS:

o This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

e This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.

Changes made after the 5.2.0r release:

5.3.0 Added argument t imeout. Added argument t imeoutFlag. The new arguments provide access to the
fault-tolerant component features.

DESCRIPTION:

Call the associated user initialization routine for an ESMF_GridComp.

The arguments are:

gridcomp ESMF_GridComp to call initialize routine for.

[importState] ESMF_State containing import data for coupling. If not present, a dummy argument will be passed
to the user-supplied routine. The importState argument in the user code cannot be optional.

[exportState] ESMF_State containing export data for coupling. If not present, a dummy argument will be passed
to the user-supplied routine. The exportState argument in the user code cannot be optional.

[clock] External ESMF_C1lock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations. If not present, a dummy argument will be passed to the user-supplied routine.
The clock argument in the user code cannot be optional.

[syncflag] Blocking behavior of this method call. See section[34.57|for a list of valid blocking options. Default option
is ESMF__SYNC_VASBLOCKING which blocks PETs and their spawned off threads across each VAS but does
not synchronize PETS that run in different VASs.

[phase] Component providers must document whether each of their routines are single-phase or multi-phase. Single-
phase routines require only one invocation to complete their work. Multi-phase routines provide multiple sub-
routines to accomplish the work, accommodating components which must complete part of their work, return to
the caller and allow other processing to occur, and then continue the original operation. For multiple-phase child
components, this is the integer phase number to be invoked. For single-phase child components this argument
is optional. The default is 1.

132

[timeout] The maximum period in seconds that this call will wait in communications with the actual component,
before returning with a timeout condition. The default is 3600, i.e. 1 hour. The timeout argument is only
supported for connected dual components.

[timeoutFlag] Returns .true. if the timeout was reached, .false. otherwise. If timeoutFlag was not
provided, a timeout condition will lead to a return code of rc \= ESMF_SUCCESS. Otherwise the return
value of t imeoutFlag is the sole indicator of a timeout condition.

[userRc] Return code set by userRout ine before returning.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

17.4.10 ESMF_GridComplsCreated - Check whether a GridComp object has been created

INTERFACE:

function ESMF_GridCompIsCreated(gridcomp, rc)

RETURN VALUE:
logical :: ESMF_GridCompIsCreated
ARGUMENTS:
type (ESMF_GridComp), intent (in) :: gridcomp
—— The following arguments require argument keyword syntax (e.g. rc=rc). —-—
integer, intent (out), optional :: rc
DESCRIPTION:

Return .true. if the gridcomp has been created. Otherwise return . false.. If an error occurs, i.e. rc /=
ESMF_SUCCESS is returned, the return value of the function will also be . false..

The arguments are:

gridcomp ESMF_GridComp queried.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

17.4.11 ESMF_GridComplsPetLocal - Inquire if this GridComp is to execute on the calling PET

INTERFACE:

recursive function ESMF_GridCompIsPetLocal (gridcomp, rc)

133

RETURN VALUE:

logical :: ESMF_GridCompIsPetLocal
ARGUMENTS:
type (ESMF_GridComp), intent (in) :: gridcomp
—— The following arguments require argument keyword syntax (e.g. rc=rc). —-—
integer, intent (out), optional :: rc
STATUS:

e This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Inquire if this ESMF_GridComp object is to execute on the calling PET.
The return value is . true. if the component is to execute on the calling PET, . false. otherwise.

The arguments are:

gridcomp ESMF_GridComp queried.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

17.4.12 ESMF_GridCompPrint - Print GridComp information

INTERFACE:

subroutine ESMF_GridCompPrint (gridcomp, rc)

ARGUMENTS:
type (ESMF_GridComp), intent (in) :: gridcomp
—-— The following arguments require argument keyword syntax (e.g. rc=rc). —-—
integer, intent (out), optional :: rc
STATUS:

e This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:
Prints information about an ESMF_GridComp to stdout.
The arguments are:

134

gridcomp ESMF_GridComp to print.

[re] Return code; equals ESMF_SUCCESS if there are no errors.

17.4.13 ESMF_GridCompReadRestart - Call the GridComp’s read restart routine

INTERFACE:

recursive subroutine ESMF_GridCompReadRestart (gridcomp, &
importState, exportState, clock, syncflag, phase, timeout, timeoutFlag, &
userRc, rc)

ARGUMENTS:

type (ESMF_GridComp) , intent (inout) :: gridcomp
—-— The following arguments require argument keyword syntax (e.g. rc=rc). —-—

type (ESMF_State), intent (inout), optional :: importState
type (ESMF_State), intent (inout), optional :: exportState
type (ESMF_Clock), intent (inout), optional :: clock
type (ESMF_Sync_Flag), intent (in), optional :: syncflag
integer, intent (in), optional :: phase
integer, intent (in), optional :: timeout
logical, intent (out), optional :: timeoutFlag
integer, intent (out), optional :: userRc
integer, intent (out), optional :: rc

STATUS:

o This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

e This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.

Changes made after the 5.2.0r release:

5.3.0 Added argument t imeout. Added argument t imeoutFlag. The new arguments provide access to the
fault-tolerant component features.

DESCRIPTION:

Call the associated user read restart routine for an ESMF_GridComp.

The arguments are:

gridcomp ESMF_GridComp to call run routine for.

[importState] ESMF_State containing import data. If not present, a dummy argument will be passed to the user-
supplied routine. The importState argument in the user code cannot be optional.

135

[exportState] ESMF_State containing export data. If not present, a dummy argument will be passed to the user-
supplied routine. The exportState argument in the user code cannot be optional.

[clock] External ESMF_Clock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations. If not present, a dummy argument will be passed to the user-supplied routine.
The clock argument in the user code cannot be optional.

[syncflag] Blocking behavior of this method call. See section[34.57for a list of valid blocking options. Default option
is ESMF_SYNC_VASBLOCKING which blocks PETs and their spawned off threads across each VAS but does
not synchronize PETS that run in different VASs.

[phase] Component providers must document whether each of their routines are single-phase or multi-phase. Single-
phase routines require only one invocation to complete their work. Multi-phase routines provide multiple sub-
routines to accomplish the work, accommodating components which must complete part of their work, return to
the caller and allow other processing to occur, and then continue the original operation. For multiple-phase child
components, this is the integer phase number to be invoked. For single-phase child components this argument
is optional. The default is 1.

[timeout] The maximum period in seconds that this call will wait in communications with the actual component,
before returning with a timeout condition. The default is 3600, i.e. 1 hour. The timeout argument is only
supported for connected dual components.

[timeoutFlag] Returns .true. if the timeout was reached, .false. otherwise. If timeoutFlag was not
provided, a timeout condition will lead to a return code of rc \= ESMF_SUCCESS. Otherwise the return
value of t imeoutFlag is the sole indicator of a timeout condition.

[userRc] Return code set by userRout ine before returning.

[re] Return code; equals ESMF_SUCCESS if there are no errors.

17.4.14 ESMF_GridCompRun - Call the GridComp’s run routine

INTERFACE:

recursive subroutine ESMF_GridCompRun (gridcomp, &
importState, exportState, clock, syncflag, phase, timeout, timeoutFlag, &
userRc, rc)

ARGUMENTS:

type (ESMF_GridComp), intent (inout) :: gridcomp
—-— The following arguments require argument keyword syntax (e.g. rc=rc). —-—

type (ESMF_State), intent (inout), optional :: importState
type (ESMF_State), intent (inout), optional :: exportState
type (ESMF_Clock), intent (inout), optional :: clock
type (ESMF_Sync_Flag), intent (in), optional :: syncflag
integer, intent (in), optional :: phase
integer, intent (in), optional :: timeout
logical, intent (out), optional :: timeoutFlag
integer, intent (out), optional :: userRc
integer, intent (out), optional :: rc

136

STATUS:

e This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

o This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.

Changes made after the 5.2.0r release:

5.3.0 Added argument t imeout. Added argument t imeoutFlag. The new arguments provide access to the
fault-tolerant component features.

DESCRIPTION:

Call the associated user run routine for an ESMF_GridComp.

The arguments are:

gridcomp ESMF_GridComp to call run routine for.

[importState] ESMF_State containing import data. If not present, a dummy argument will be passed to the user-
supplied routine. The importState argument in the user code cannot be optional.

[exportState] ESMF_State containing export data. If not present, a dummy argument will be passed to the user-
supplied routine. The exportState argument in the user code cannot be optional.

[clock] External ESMF_Clock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations. If not present, a dummy argument will be passed to the user-supplied routine.
The clock argument in the user code cannot be optional.

[syncflag] Blocking behavior of this method call. See section[54.57]for a list of valid blocking options. Default option
is ESMF__SYNC_VASBLOCKING which blocks PETs and their spawned off threads across each VAS but does
not synchronize PETS that run in different VASs.

[phase] Component providers must document whether each of their routines are single-phase or multi-phase. Single-
phase routines require only one invocation to complete their work. Multi-phase routines provide multiple sub-
routines to accomplish the work, accommodating components which must complete part of their work, return to
the caller and allow other processing to occur, and then continue the original operation. For multiple-phase child
components, this is the integer phase number to be invoked. For single-phase child components this argument
is optional. The default is 1.

[timeout] The maximum period in seconds that this call will wait in communications with the actual component,
before returning with a timeout condition. The default is 3600, i.e. 1 hour. The t imeout argument is only
supported for connected dual components.

[timeoutFlag] Returns .true. if the timeout was reached, .false. otherwise. If timeoutFlag was not
provided, a timeout condition will lead to a return code of rc \= ESMF_SUCCESS. Otherwise the return
value of t imeoutFlag is the sole indicator of a timeout condition.

[userRc] Return code set by userRout ine before returning.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

137

17.4.15 ESMF_GridCompServiceLoop - Call the GridComp’s service loop routine

INTERFACE:

recursive subroutine ESMF_GridCompServiceLoop (gridcomp, &
importState, exportState, clock, syncflag, port, timeout, timeoutFlag, rc)

ARGUMENTS:

type (ESMF_GridComp), intent (inout) :: gridcomp
—— The following arguments require argument keyword syntax (e.g. rc=rc). —-—

type (ESMF_State), intent (inout), optional :: importState
type (ESMF_State), intent (inout), optional :: exportState
type (ESMF_Clock), intent (inout), optional :: clock
type (ESMF_Sync_Flag), intent (in), optional :: syncflag
integer, intent (in), optional :: port
integer, intent (in), optional :: timeout
logical, intent (out), optional :: timeoutFlag
integer, intent (out), optional :: rc

DESCRIPTION:

Call the ServiceLoop routine for an ESMF_GridComp. This tries to establish a "component tunnel" between the
actual Component (calling this routine) and a dual Component connecting to it through a matching SetServices call.

The arguments are:

gridcomp ESMF_GridComp to call service loop routine for.

[importState] ESMF_State containing import data for coupling. If not present, a dummy argument will be passed
to the user-supplied routine. The importState argument in the user code cannot be optional.

[exportState] ESMF_State containing export data for coupling. If not present, a dummy argument will be passed
to the user-supplied routine. The exportState argument in the user code cannot be optional.

[clock] External ESMF_C1lock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations. If not present, a dummy argument will be passed to the user-supplied routine.
The clock argument in the user code cannot be optional.

[syncflag] Blocking behavior of this method call. See section[54.57]for a list of valid blocking options. Default option
is ESMF__SYNC_VASBLOCKING which blocks PETs and their spawned off threads across each VAS but does
not synchronize PETS that run in different VASs.

[port] In case a port number is provided, the "component tunnel" is established using sockets. The actual component
side, i.e. the side that calls into ESMF_GridCompServiceLoop (), starts to listen on the specified port as
the server. The valid port range is [1024, 65535]. In case the port argument is not specified, the "component
tunnel” is established within the same executable using local communication methods (e.g. MPI).

[timeout] The maximum period in seconds that this call will wait for communications with the dual component,
before returning with a timeout condition. The default is 3600, i.e. 1 hour. (NOTE: Currently this option is only
available for socket based component tunnels.)

[timeoutFlag] Returns .true. if the timeout was reached, .false. otherwise. If timeoutFlag was not
provided, a timeout condition will lead to a return code of rc \= ESMF_SUCCESS. Otherwise the return
value of t imeoutFlag is the sole indicator of a timeout condition.

138

[re] Return code; equals ESMF_SUCCESS if there are no errors.

17.4.16 ESMF_GridCompSet - Set or reset information about the GridComp

INTERFACE:

subroutine ESMF_GridCompSet (gridcomp, grid, gridList, &
mesh, meshlList, locstream, locstreamlist, xgrid, xgridList, &
config, configFile, clock, name, rc)

ARGUMENTS:

type (ESMF_GridComp) , intent (inout) :: gridcomp
—— The following arguments require argument keyword syntax (e.g. rc=rc). —-—

type (ESMF_Grid), intent (in), optional :: grid
type (ESMF_Grid), intent (in), optional :: gridList (:)
type (ESMF_Mesh), intent (in), optional :: mesh
type (ESMF_Mesh), intent (in), optional :: meshList (:)
type (ESMF_LocStream), intent (in), optional :: locstream
type (ESMF_LocStream), intent (in), optional :: locstreamList (:)
type (ESMF_XGrid), intent (in), optional :: xgrid
type (ESMF_XGrid), intent (in), optional :: xgridList (:)
type (ESMF_Confiqg), intent (in), optional :: config
character (len=x), intent (in), optional :: configFile
type (ESMF_Clock), intent (in), optional :: clock
character (len=x), intent (in), optional :: name
integer, intent (out), optional :: rc

STATUS:

o This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

e This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.

Changes made after the 5.2.0r release:

7.1.0r Added arguments gridList, mesh, meshList, locstream, locstreamlList, xgrid, and
xgridList. These arguments add support for holding references to multiple geom objects, either of
the same type, or different type, in the same ESMF_Gr idComp object.

DESCRIPTION:

Sets or resets information about an ESMF__GridComp.

The arguments are:

gridcomp ESMF_GridComp to change.

139

[grid] Associate an ESMF_Grid object with the gridcomp component. This is simply a convenience feature for
the user. The ESMF library code does not access the grid object. The grid argument is mutually exclusive
with the gridList argument. If both arguments are provided, the routine will fail, and an error is returned in
rc. By default, i.e. if neither grid nor gridList are provided, the ESMF_Grid association of the incoming
gridcomp component remains unchanged.

[gridList] Associate a list of ESMF_Grid objects with the gridcomp component. This is simply a convenience
feature for the user. The ESMF library code does not access the gridList object. The gridList argument
is mutually exclusive with the grid argument. If both arguments are provided, the routine will fail, and an error
is returned in rc. By default, i.e. if neither grid nor gridList are provided, the ESMF_Grid association
of the incoming gridcomp component remains unchanged.

[mesh] Associate an ESMF_Mesh object with the gridcomp component. This is simply a convenience feature for
the user. The ESMF library code does not access the mesh object. The mesh argument is mutually exclusive
with the meshList argument. If both arguments are provided, the routine will fail, and an error is returned in
rc. By default, i.e. if neither mesh nor meshList are provided, the ESMF_Mesh association of the incoming
gridcomp component remains unchanged.

[meshList] Associate a list of ESMF_Mesh objects with the gridcomp component. This is simply a convenience
feature for the user. The ESMF library code does not access the meshList object. The meshList argument
is mutually exclusive with the me sh argument. If both arguments are provided, the routine will fail, and an error
is returned in rc. By default, i.e. if neither mesh nor meshList are provided, the ESMF_Mesh association
of the incoming gridcomp component remains unchanged.

[locstream] Associate an ESMF_LocStream object with the gridcomp component. This is simply a convenience
feature for the user. The ESMF library code does not access the 1ocstream object. The locstream argu-
ment is mutually exclusive with the locstreamList argument. If both arguments are provided, the routine
will fail, and an error is returned in rc. By default, i.e. if neither locstream nor locstreamList are
provided, the ESMF_LocSt ream association of the incoming gr idcomp component remains unchanged.

[locstreamList] Associate a list of ESMF_LocStream objects with the gridcomp component. This is simply a
convenience feature for the user. The ESMF library code does not access the locstreamList object. The
locstreamList argument is mutually exclusive with the 1locstream argument. If both arguments are
provided, the routine will fail, and an error is returned in rc. By default, i.e. if neither locstream nor
locstreamlList are provided, the ESMF_LocStream association of the incoming gridcomp component
remains unchanged.

[xgrid] Associate an ESMF_XGrid object with the gridcomp component. This is simply a convenience feature for
the user. The ESMF library code does not access the xgrid object. The xgrid argument is mutually exclusive
with the xgridList argument. If both arguments are provided, the routine will fail, and an error is returned
in rc. By default, i.e. if neither xgrid nor xgridList are provided, the ESMF_XGrid association of the
incoming gridcomp component remains unchanged.

[xgridList] Associate a list of ESMF_XGrid objects with the gridcomp component. This is simply a convenience
feature for the user. The ESMF library code does not access the xgridList object. The xgridList argu-
ment is mutually exclusive with the xgrid argument. If both arguments are provided, the routine will fail, and
an error is returned in rc. By default, i.e. if neither xgrid nor xgridList are provided, the ESMF_XGrid
association of the incoming gridcomp component remains unchanged.

[config] An already-created ESMF_Config object to be attached to the component. If both config and
configFile arguments are specified, config takes priority.

[configFile] The filename of an ESMF_Config format file. If specified, a new ESMF_Config object is created and
attached to the component. The configFile file is opened and associated with the new config object. If both
configand configFile arguments are specified, config takes priority.

[clock] Set the private clock for this ESMF_GridComp.

[name] Set the name of the ESMF_GridComp.

140

[re] Return code; equals ESMF_SUCCESS if there are no errors.

17.4.17 ESMF_GridCompSetEntryPoint - Set user routine as entry point for standard GridComp method

INTERFACE:

recursive subroutine ESMF_GridCompSetEntryPoint (gridcomp, methodflag, &
userRoutine, phase, rc)

ARGUMENTS:
type (ESMF_GridComp) , intent (inout) :: gridcomp
type (ESMF_Method_Flag), intent (in) :: methodflag
interface

subroutine userRoutine (gridcomp, importState, exportState, clock, rc)
use ESMF_CompMod
use ESMF_StateMod
use ESMF_ClockMod
implicit none

type (ESMF_GridComp) :: gridcomp ! must not be optional
type (ESMF_State) :: importState ! must not be optional
type (ESMF_State) :: exportState ! must not be optional
type (ESMF_Clock) :: clock ! must not be optional
integer, intent (out) 1 rc ! must not be optional

end subroutine
end interface
—-— The following arguments require argument keyword syntax (e.g. rc=rc). —-—

integer, intent (in), optional :: phase
integer, intent (out), optional :: rc
STATUS:

e This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Registers a user-supplied userRoutine as the entry point for one of the predefined Component methodflags.
After this call the userRout ine becomes accessible via the standard Component method APL

The arguments are:

gridcomp An ESMF_GridComp object.

methodflag One of a set of predefined Component methods - e.g. ESMF_METHOD_INITIALIZE,
ESMF_METHOD_RUN, ESMF_METHOD_FINALIZE. See section [54.42] for a complete list of valid method
options.

141

userRoutine The user-supplied subroutine to be associated for this Component method. Argument types, intent and
order must match the interface signature, and must not have the opt ional attribute. Prior to Fortran-2008, the
subroutine must be either a module scope procedure, or an external procedure that has a matching interface block
specified for it. An internal procedure which is contained within another procedure must not be used. From
Fortran-2008 onwards, an internal procedure contained within either a main program or a module procedure
may be used. If the internal procedure is contained within a module procedure, it is subject to initialization
requirements. See:

[phase] The phase number for multi-phase methods. For single phase methods the phase argument can be omitted.
The default setting is 1.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

17.4.18 ESMF_GridCompSetInternalState - Set private data block pointer

INTERFACE:

subroutine ESMF_GridCompSetInternalState (gridcomp, wrappedDataPointer, rc)

ARGUMENTS:
type (ESMF_GridComp) :: gridcomp
type (wrapper) :: wrappedDataPointer
integer, intent (out) :: rc

STATUS:

e This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Auvailable to be called by an ESMF_GridComp at any time, but expected to be most useful when called during the
registration process, or initialization. Since init, run, and finalize must be separate subroutines, data that they need to
share in common can either be module global data, or can be allocated in a private data block and the address of that
block can be registered with the framework and retrieved by subsequent calls. When running multiple instantiations
of an ESMF_GridComp, for example during ensemble runs, it may be simpler to maintain private data specific to
each run with private data blocks. A corresponding ESMF_GridCompGetInternalState call retrieves the data
pointer.

Only the last data block set via ESMF_GridCompSetInternalState will be accessible.

CAUTION: If you are working with a compiler that does not support Fortran 2018 assumed-type dummy arguments,
then this method does not have an explicit Fortran interface. In this case do not specify argument keywords when
calling this method!

The arguments are:

gridcomp An ESMF_GridComp object.

142

wrappedDataPointer A pointer to the private data block, wrapped in a derived type which contains only a pointer
to the block. This level of indirection is needed to reliably set and retrieve the data block no matter which
architecture or compiler is used.

rc Return code; equals ESMF__SUCCESS if there are no errors. Note: unlike most other ESMF routines, this argument
is not optional because of implementation considerations.

17.4.19 ESMF_GridCompSetServices - Call user routine to register GridComp methods

INTERFACE:

recursive subroutine ESMF_GridCompSetServices (gridcomp, &
userRoutine, userRc, rc)

ARGUMENTS:

type (ESMF_GridComp), intent (inout) :: gridcomp
interface
subroutine userRoutine (gridcomp, rc)
use ESMF_CompMod
implicit none
type (ESMF_GridComp) :: gridcomp ! must not be optional
integer, intent (out) 1 rc ! must not be optional
end subroutine
end interface
—-— The following arguments require argument keyword syntax (e.g. rc=rc). —-—

integer, intent (out), optional :: userRc
integer, intent (out), optional :: rc
STATUS:

e This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Call into user provided userRout ine which is responsible for setting Component’s Initialize(), Run(), and Finalize()
services.

The arguments are:

gridcomp Gridded Component.

userRoutine The Component writer must supply a subroutine with the exact interface shown above for the
userRoutine argument. Arguments in userRoutine must not be declared as optional, and the types,
intent and order must match. Prior to Fortran-2008, the subroutine must be either a module scope procedure, or
an external procedure that has a matching interface block specified for it. An internal procedure which is con-
tained within another procedure must not be used. From Fortran-2008 onwards, an internal procedure contained
within either a main program or a module procedure may be used. If the internal procedure is contained within
a module procedure, it is subject to initialization requirements. See:

143

The wuserRoutine, when «called by the framework, must make successive calls to
ESMF_GridCompSetEntryPoint () to preset callback routines for standard Component Initialize(),
Run(), and Finalize() methods.

[userRc] Return code set by userRout ine before returning.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

17.4.20 ESMF_GridCompSetServices - Call user routine through name lookup, to register GridComp meth-
ods

INTERFACE:

! Private name; call using ESMF_GridCompSetServices ()
recursive subroutine ESMF_GridCompSetServicesShObj(gridcomp, userRoutine, &
sharedObj, userRoutineFound, userRc, rc)

ARGUMENTS:
type (ESMF_GridComp), intent (inout) :: gridcomp
character (len=x%), intent (in) :: userRoutine

—-— The following arguments require argument keyword syntax (e.g. rc=rc). —--—

character (len=x), intent (in), optional :: sharedObj
logical, intent (out), optional :: userRoutineFound
integer, intent (out), optional :: userRc
integer, intent (out), optional :: rc

STATUS:

e This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

e This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.

Changes made after the 5.2.0r release:

6.3.0r Added argument userRout ineFound. The new argument provides a way to test availability without
causing error conditions.

DESCRIPTION:

Call into a user provided routine which is responsible for setting Component’s Initialize(), Run(), and Finalize()
services. The named userRout ine must exist in the executable, or in the shared object specified by sharedObj.
In the latter case all of the platform specific details about dynamic linking and loading apply.

The arguments are:

gridcomp Gridded Component.

144

userRoutine Name of routine to be called, specified as a character string. The Component writer must supply a
subroutine with the exact interface shown for userRoutine below. Arguments must not be declared as
optional, and the types, intent and order must match. Prior to Fortran-2008, the subroutine must be either
a module scope procedure, or an external procedure that has a matching interface block specified for it. An
internal procedure which is contained within another procedure must not be used. From Fortran-2008 onwards,
an internal procedure contained within either a main program or a module procedure may be used. If the internal
procedure is contained within a module procedure, it is subject to initialization requirements. See:

INTERFACE:
interface
subroutine userRoutine (gridcomp, rc)
type (ESMF_GridComp) :: gridcomp ! must not be optional
integer, intent (out) :: rc ! must not be optional

end subroutine
end interface

DESCRIPTION:

The wuserRoutine, when «called by the framework, must make successive calls to
ESMF_GridCompSetEntryPoint () to preset callback routines for standard Component Initialize(),
Run(), and Finalize() methods.

[sharedObj] Name of shared object that contains userRout ine. If the sharedOb j argument is not provided the
executable itself will be searched for userRoutine.

[userRoutineFound] Report back whether the specified userRout ine was found and executed, or was not avail-
able. If this argument is present, not finding the userRout ine will not result in returning an error in rc. The
default is to return an error if the userRout ine cannot be found.

[userRc] Return code set by userRout ine before returning.

[re] Return code; equals ESMF_SUCCESS if there are no errors.

17.4.21 ESMF_GridCompSetServices - Set to serve as Dual Component for an Actual Component

INTERFACE:

! Private name; call using ESMF_GridCompSetServices ()
recursive subroutine ESMF_GridCompSetServicesComp (gridcomp, &
actualGridcomp, rc)

ARGUMENTS:
type (ESMF_GridComp), intent (inout) :: gridcomp
type (ESMF_GridComp), intent (in) :: actualGridcomp
—— The following arguments require argument keyword syntax (e.g. rc=rc). —-—
integer, intent (out), optional :: rc

145

DESCRIPTION:

Set the services of a Gridded Component to serve a "dual" Component for an "actual” Component. The component
tunnel is VM based.

The arguments are:

gridcomp Dual Gridded Component.
actualGridcomp Actual Gridded Component.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

17.4.22 ESMF_GridCompSetServices - Set to serve as Dual Component for an Actual Component through
sockets

INTERFACE:

! Private name; call using ESMF_GridCompSetServices ()
recursive subroutine ESMF_GridCompSetServicesSock (gridcomp, port, &
server, timeout, timeoutFlag, rc)

ARGUMENTS:
type (ESMF_GridComp), intent (inout) :: gridcomp
integer, intent (in) :: port

—-— The following arguments require argument keyword syntax (e.g. rc=rc). —-—

character (len=x%), intent (in), optional :: server
integer, intent (in), optional :: timeout
logical, intent (out), optional :: timeoutFlag
integer, intent (out), optional :: rc

DESCRIPTION:

Set the services of a Gridded Component to serve a "dual" Component for an "actual" Component. The component
tunnel is socket based.

The arguments are:

gridcomp Dual Gridded Component.
port Port number under which the actual component is being served. The valid port range is [1024, 65535].

[server] Server name where the actual component is being served. The default, i.e. if the server argument was not
provided, is localhost.

[timeout] The maximum period in seconds that this call will wait in communications with the actual component,
before returning with a timeout condition. The default is 3600, i.e. 1 hour.

[timeoutFlag] Returns .true. if the timeout was reached, .false. otherwise. If timeoutFlag was not
provided, a timeout condition will lead to a return code of rc \= ESMF_SUCCESS. Otherwise the return
value of t imeoutFlag is the sole indicator of a timeout condition.

146

[re] Return code; equals ESMF_SUCCESS if there are no errors.

17.4.23 ESMF_GridCompSetVM - Call user routine to set GridComp VM properties

INTERFACE:

recursive subroutine ESMF_GridCompSetVM (gridcomp, userRoutine, &
userRc, rc)

ARGUMENTS:

type (ESMF_GridComp), intent (inout) :: gridcomp
interface
subroutine userRoutine (gridcomp, rc)
use ESMF_CompMod
implicit none
type (ESMF_GridComp) :: gridcomp ! must not be optional
integer, intent (out) 1 rc ! must not be optional
end subroutine
end interface
—— The following arguments require argument keyword syntax (e.g. rc=rc). —-—

integer, intent (out), optional :: userRc
integer, intent (out), optional :: rc
STATUS:

e This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Optionally call into user provided userRout ine which is responsible for setting Component’s VM properties.

The arguments are:

gridcomp Gridded Component.

userRoutine The Component writer must supply a subroutine with the exact interface shown above for the
userRoutine argument. Arguments in userRoutine must not be declared as optional, and the types,
intent and order must match. Prior to Fortran-2008, the subroutine must be either a module scope procedure, or
an external procedure that has a matching interface block specified for it. An internal procedure which is con-
tained within another procedure must not be used. From Fortran-2008 onwards, an internal procedure contained
within either a main program or a module procedure may be used. If the internal procedure is contained within
a module procedure, it is subject to initialization requirements. See:

The subroutine, when called by the framework, is expected to use any of the ESMF_GridCompSetVMxxx ()
methods to set the properties of the VM associated with the Gridded Component.

[userRc] Return code set by userRout ine before returning.

[re] Return code; equals ESMF_SUCCESS if there are no errors.

147

17.4.24 ESMF_GridCompSetVM - Call user routine through name lookup, to set GridComp VM properties

INTERFACE:

! Private name; call using ESMF_GridCompSetVM ()
recursive subroutine ESMF_GridCompSetVMShObj (gridcomp, userRoutine, &
sharedObj, userRoutineFound, userRc, rc)

ARGUMENTS:
type (ESMF_GridComp), intent (inout) :: gridcomp
character (len=x%), intent (in) :: userRoutine

—-— The following arguments require argument keyword syntax (e.g. rc=rc). —-—

character (len=x), intent (in), optional :: sharedObj
logical, intent (out), optional :: userRoutineFound
integer, intent (out), optional :: userRc
integer, intent (out), optional :: rc

STATUS:

e This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

e This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.

Changes made after the 5.2.0r release:

8.4.0 Added argument userRout ineFound. The new argument provides a way to test availability without
causing error conditions.

DESCRIPTION:

Optionally call into user provided userRout ine which is responsible for setting Component’s VM properties. The
named userRout ine must exist in the executable, or in the shared object specified by sharedObj. In the latter
case all of the platform specific details about dynamic linking and loading apply.

The arguments are:

gridcomp Gridded Component.

userRoutine Routine to be called, specified as a character string. The Component writer must supply a subroutine
with the exact interface shown for userRoutine below. Arguments must not be declared as optional, and
the types, intent and order must match. Prior to Fortran-2008, the subroutine must be either a module scope
procedure, or an external procedure that has a matching interface block specified for it. An internal procedure
which is contained within another procedure must not be used. From Fortran-2008 onwards, an internal proce-
dure contained within either a main program or a module procedure may be used. If the internal procedure is
contained within a module procedure, it is subject to initialization requirements. See:

INTERFACE:

148

interface
subroutine userRoutine (gridcomp, rc)
type (ESMF_GridComp) :: gridcomp ! must not be optional
integer, intent (out) :: rc ! must not be optional
end subroutine
end interface

DESCRIPTION:
The subroutine, when called by the framework, is expected to use any of the ESMF_GridCompSetVMxxx ()
methods to set the properties of the VM associated with the Gridded Component.

[sharedObj] Name of shared object that contains userRout ine. If the sharedOb j argument is not provided the
executable itself will be searched for userRoutine.

[userRoutineFound] Report back whether the specified userRout ine was found and executed, or was not avail-
able. If this argument is present, not finding the userRout ine will not result in returning an error in rc. The
default is to return an error if the userRout ine cannot be found.

[userRc] Return code set by userRout ine before returning.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

17.4.25 ESMF_GridCompSetVMMaxPEs - Associate PEs with PETs in GridComp VM

INTERFACE:

subroutine ESMF_GridCompSetVMMaxPEs (gridcomp, &
maxPeCountPerPet, preflIntraProcess, preflIntraSsi, preflInterSsi, &
pthreadMinStackSize, openMpHandling, openMpNumThreads, &
forceChildPthreads, rc)

ARGUMENTS:

type (ESMF_GridComp), intent (inout) :: gridcomp
—-— The following arguments require argument keyword syntax (e.g. rc=rc). —-—

integer, intent (in), optional :: maxPeCountPerPet
integer, intent (in), optional :: prefIntraProcess
integer, intent (in), optional :: preflIntraSsi
integer, intent (in), optional :: preflInterSsi
integer, intent (in), optional :: pthreadMinStackSize
character (%), intent (in), optional :: openMpHandling
integer, intent (in), optional :: openMpNumThreads
logical, intent (in), optional :: forceChildPthreads
integer, intent (out), optional :: rc

DESCRIPTION:

Set characteristics of the ESMF_VM for this ESMF_GridComp. Attempts to associate up to maxPeCountPerPet
PEs with each PET. Only PEs that are located on the same single system image (SSI) can be associated with the same
PET. Within this constraint the call tries to get as close as possible to the number specified by maxPeCountPerPet.

149

The other constraint to this call is that the number of PEs is preserved. This means that the child Component in the end
is associated with as many PEs as the parent Component provided to the child. The number of child PETs however is
adjusted according to the above rule.

The typical use of ESMF_GridCompSetVMMaxPEs () is to allocate multiple PEs per PET in a Component for
user-level threading, e.g. OpenMP.

The arguments are:

gridcomp ESMF_GridComp to set the ESMF_VM for.
[maxPeCountPerPet] Maximum number of PEs on each PET. Default for each SSI is the local number of PEs.

[prefIntraProcess] Communication preference within a single process. Currently options not documented. Use
default.

[prefIntraSsi] Communication preference within a single system image (SSI). Currently options not documented.
Use default.

[prefInterSsi] Communication preference between different single system images (SSIs). Currently options not doc-
umented. Use default.

[pthreadMinStackSize] Minimum stack size in byte of any child PET executing as Pthread. By default single
threaded child PETs do not execute as Pthread, and their stack size is unaffected by this argument. However, for
multi-threaded child PETs, or if forceChildPthreads is .true., child PETs execute as Pthreads with
their own private stack.

For cases where OpenMP threads are used by the user code, each thread allocates its own private stack. For
all threads other than the master, the stack size is set via the typical OMP_STACKSIZE environment variable
mechanism. The PET itself, however, becomes the master of the OpenMP thread team, and is not affected by
OMP_STACKSIZE. It is the master’s stack that can be sized via the pthreadMinStackSize argument, and
a large enough size is often critical.

When pthreadMinStackSize is absent, the default is to use the system default set by the 1imit or
ulimit command. However, the stack of a Pthread cannot be unlimited, and a shell stacksize setting of
unlimited, or any setting below the ESMF implemented minimum, will result in setting the stack size to 20MiB
(the ESMF minimum). Depending on how much private data is used by the user code under the master thread,
the default might be too small, and pthreadMinStackSize must be used to allocate sufficient stack space.

[openMpHandling] Handling of OpenMP threads. Supported options are:

e "none" - OpenMP handling is completely left to the user.

e "set"-ESMF uses the omp_set_num_threads () API to set the number of OpenMP threads in each
team.

e "init" - ESMF sets the number of OpenMP threads in each team, and triggers the instantiation of the
team.

e "pin" (default) - ESMF sets the number of OpenMP threads in each team, triggers the instantiation of the
team, and pins each OpenMP thread to the corresponding PE.

[openMpNumThreads] Number of OpenMP threads in each OpenMP thread team. This can be any positive number.
By default, or if openMpNumThreads is negative, each PET sets the number of OpenMP threads to its local
peCount.

[forceChildPthreads] For . true., force each child PET to execute in its own Pthread. By default, . false., single
PETs spawned from a parent PET execute in the same thread (or MPI process) as the parent PET. Multiple child
PETs spawned by the same parent PET always execute as their own Pthreads.

[re] Return code; equals ESMF_SUCCESS if there are no errors.

150

17.4.26 ESMF_GridCompSetVMMaxThreads - Set multi-threaded PETs in GridComp VM

INTERFACE:

subroutine ESMF_GridCompSetVMMaxThreads (gridcomp, &
maxPetCountPerVas, preflIntraProcess, preflIntraSsi, preflnterSsi, &
pthreadMinStackSize, forceChildPthreads, rc)

ARGUMENTS:

type (ESMF_GridComp), intent (inout) :: gridcomp
—-— The following arguments require argument keyword syntax (e.g. rc=rc). —-—

integer, intent (in), optional :: maxPetCountPerVas
integer, intent (in), optional :: prefIntraProcess
integer, intent (in), optional :: preflIntraSsi
integer, intent (in), optional :: preflInterSsi
integer, intent (in), optional :: pthreadMinStackSize
logical, intent (in), optional :: forceChildPthreads
integer, intent (out), optional :: rc

DESCRIPTION:

Set characteristics of the ESMF_VM for this ESMF_GridComp. Attempts to provide maxPetCountPerVas
threaded PETs in each virtual address space (VAS). Only as many threaded PETs as there are PEs located on the
single system image (SSI) can be associated with the VAS. Within this constraint the call tries to get as close as
possible to the number specified by maxPetCountPerVas.

The other constraint to this call is that the number of PETs is preserved. This means that the child Component in the
end is associated with as many PETs as the parent Component provided to the child. The threading level of the child
PETs however is adjusted according to the above rule.

The typical use of ESMF_GridCompSetVMMaxThreads () is to run a Component multi-threaded with groups of
PETs executing within a common virtual address space.

The arguments are:

gridcomp ESMF_GridComp to set the ESMF_VM for.

[maxPetCountPerVas] Maximum number of threaded PETs in each virtual address space (VAS). Default for each
SSI is the local number of PEs.

[prefIntraProcess] Communication preference within a single process. Currently options not documented. Use
default.

[prefIntraSsi] Communication preference within a single system image (SSI). Currently options not documented.
Use default.

[prefInterSsi] Communication preference between different single system images (SSIs). Currently options not doc-
umented. Use default.

[pthreadMinStackSize] Minimum stack size in byte of any child PET executing as Pthread. By default single
threaded child PETs do not execute as Pthread, and their stack size is unaffected by this argument. However, for
multi-threaded child PETs, or if forceChildPthreads is .true., child PETs execute as Pthreads with
their own private stack.

151

For cases where OpenMP threads are used by the user code, each thread allocates its own private stack. For
all threads other than the master, the stack size is set via the typical OMP_STACKSIZE environment variable
mechanism. The PET itself, however, becomes the master of the OpenMP thread team, and is not affected by
OMP__STACKSIZE. It is the master’s stack that can be sized via the pthreadMinStackSize argument, and
a large enough size is often critical.

When pthreadMinStackSize is absent, the default is to use the system default set by the 1imit or
ulimit command. However, the stack of a Pthread cannot be unlimited, and a shell stacksize setting of
unlimited, or any setting below the ESMF implemented minimum, will result in setting the stack size to 20MiB
(the ESMF minimum). Depending on how much private data is used by the user code under the master thread,
the default might be too small, and pthreadMinStackSize must be used to allocate sufficient stack space.

[forceChildPthreads] For . true., force each child PET to execute in its own Pthread. By default, . false., single

PETSs spawned from a parent PET execute in the same thread (or MPI process) as the parent PET. Multiple child
PETs spawned by the same parent PET always execute as their own Pthreads.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

17.4.27 ESMF_GridCompSetVMMinThreads - Set a reduced threading level in GridComp VM

INTERFACE:

subroutine ESMF_GridCompSetVMMinThreads (gridcomp, &

maxPeCountPerPet, prefIntraProcess, preflIntraSsi, preflnterSsi, &
pthreadMinStackSize, forceChildPthreads, rc)

ARGUMENTS:

type (ESMF_GridComp), intent (inout) :: gridcomp
—— The following arguments require argument keyword syntax (e.g. rc=rc). —-—

integer, intent (in), optional :: maxPeCountPerPet
integer, intent (1 n), optional :: prefIntraProcess
integer, intent (in), optional :: prefIntraSsi
integer, intent (in), optional :: preflInterSsi
integer, intent (in), optional :: pthreadMinStackSize
logical, intent (in), optional :: forceChildPthreads
integer, intent (out), optional :: rc

DESCRIPTION:

Set characteristics of the ESMF_VM for this ESMF__GridComp. Reduces the number of threaded PETs in each VAS.
The max argument may be specified to limit the maximum number of PEs that a single PET can be associated with.

Several constraints apply: 1) the number of PEs cannot change, 2) PEs cannot migrate between single system images
(SSIs), 3) the number of PETs cannot increase, only decrease, 4) PETs cannot migrate between virtual address spaces
(VASs), nor can VASs migrate between SSIs.

The typical use of ESMF_GridCompSetVMMinThreads () is to run a Component across a set of single-threaded

PETs.

The arguments are:

152

gridcomp ESMF_GridComp to set the ESMF_VM for.
[maxPeCountPerPet] Maximum number of PEs on each PET. Default for each SSI is the local number of PEs.

[prefIntraProcess] Communication preference within a single process. Currently options not documented. Use
default.

[prefIntraSsi] Communication preference within a single system image (SSI). Currently options not documented.
Use default.

[prefInterSsi] Communication preference between different single system images (SSIs). Currently options not doc-
umented. Use default.

[pthreadMinStackSize] Minimum stack size in byte of any child PET executing as Pthread. By default single
threaded child PETs do not execute as Pthread, and their stack size is unaffected by this argument. However, for
multi-threaded child PETs, or if forceChildPthreads is .true., child PETs execute as Pthreads with
their own private stack.

For cases where OpenMP threads are used by the user code, each thread allocates its own private stack. For
all threads other than the master, the stack size is set via the typical OMP__STACKSIZE environment variable
mechanism. The PET itself, however, becomes the master of the OpenMP thread team, and is not affected by
OMP_STACKSIZE. It is the master’s stack that can be sized via the pthreadMinStackSize argument, and
a large enough size is often critical.

When pthreadMinStackSize is absent, the default is to use the system default set by the 1imit or
ulimit command. However, the stack of a Pthread cannot be unlimited, and a shell stacksize setting of
unlimited, or any setting below the ESMF implemented minimum, will result in setting the stack size to 20MiB
(the ESMF minimum). Depending on how much private data is used by the user code under the master thread,
the default might be too small, and pthreadMinStackSize must be used to allocate sufficient stack space.

[forceChildPthreads] For . true., force each child PET to execute in its own Pthread. By default, . false., single
PETs spawned from a parent PET execute in the same thread (or MPI process) as the parent PET. Multiple child
PETs spawned by the same parent PET always execute as their own Pthreads.

[re] Return code; equals ESMF_SUCCESS if there are no errors.

17.4.28 ESMF_GridComp Validate - Check validity of a GridComp

INTERFACE:

subroutine ESMF_GridCompValidate (gridcomp, rc)

ARGUMENTS:
type (ESMF_GridComp), intent (in) :: gridcomp
—— The following arguments require argument keyword syntax (e.g. rc=rc). —-—
integer, intent (out), optional :: rc
STATUS:

e This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

153

DESCRIPTION:

Currently all this method does is to check that the gridcomp was created.

The arguments are:

gridcomp ESMF_GridComp to validate.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

17.4.29 ESMF_GridCompWait - Wait for a GridComp to return

INTERFACE:

subroutine ESMF_GridCompWait (gridcomp, syncflag, &
timeout, timeoutFlag, userRc, rc)

ARGUMENTS:

type (ESMF_GridComp), intent (inout) :: gridcomp
—— The following arguments require argument keyword syntax (e.g. rc=rc). —-—

type (ESMF_Sync_Flag), intent(in), optional :: syncflag
integer, intent (in), optional :: timeout
logical, intent (out), optional :: timeoutFlag
integer, intent (out), optional :: userRc
integer, intent (out), optional :: rc

STATUS:

e This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

e This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.

Changes made after the 5.2.0r release:

5.3.0 Added argument t imeout. Added argument t imeoutFlag. The new arguments provide access to the
fault-tolerant component features.

DESCRIPTION:

When executing asynchronously, wait for an ESMF_GridComp to return.

The arguments are:

gridcomp ESMF_GridComp to wait for.

154

[syncflag] Blocking behavior of this method call. See section[54.571for a list of valid blocking options. Default option
is ESMF__SYNC_VASBLOCKING which blocks PETs and their spawned off threads across each VAS but does
not synchronize PETs that run in different VASs.

[timeout] The maximum period in seconds the actual component is allowed to execute a previously invoked com-
ponent method before it must communicate back to the dual component. If the actual component does not
communicate back in the specified time, a timeout condition is raised on the dual side (this side). The default is
3600, i.e. 1 hour. The t imeout argument is only supported for connected dual components.

[timeoutFlag] Returns .true. if the timeout was reached, . false. otherwise. If timeoutFlag was not
provided, a timeout condition will lead to a return code of rc \= ESMF_SUCCESS. Otherwise the return
value of t imeoutFlag is the sole indicator of a timeout condition.

[userRc] Return code set by userRout ine before returning.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

17.4.30 ESMF_GridCompWriteRestart - Call the GridComp’s write restart routine

INTERFACE:

recursive subroutine ESMF_GridCompWriteRestart (gridcomp, &
importState, exportState, clock, syncflag, phase, timeout, timeoutFlag, &
userRc, rc)

ARGUMENTS:

type (ESMF_GridComp), 1intent (inout) :: gridcomp
—-— The following arguments require argument keyword syntax (e.g. rc=rc). —-—

type (ESMF_State), intent (inout), optional :: importState
type (ESMF_State), intent (inout), optional :: exportState
type (ESMF_Clock), intent (inout), optional :: clock
type (ESMF_Sync_Flag), intent (in), optional :: syncflag
integer, intent (in), optional :: phase
integer, intent (in), optional :: timeout
logical, intent (out), optional :: timeoutFlag
integer, intent (out), optional :: userRc
integer, intent (out), optional :: rc

STATUS:

e This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

e This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.

Changes made after the 5.2.0r release:

5.3.0 Added argument t imeout. Added argument t imeoutFlag. The new arguments provide access to the
fault-tolerant component features.

155

DESCRIPTION:

Call the associated user write restart routine for an ESMF_GridComp.

The arguments are:

gridcomp ESMF_GridComp to call run routine for.

[importState] ESMF_State containing import data. If not present, a dummy argument will be passed to the user-
supplied routine. The importState argument in the user code cannot be optional.

[exportState] ESMF_State containing export data. If not present, a dummy argument will be passed to the user-
supplied routine. The exportState argument in the user code cannot be optional.

[clock] External ESMF_C1lock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations. If not present, a dummy argument will be passed to the user-supplied routine.
The clock argument in the user code cannot be optional.

[syncflag] Blocking behavior of this method call. See section[534.57]for a list of valid blocking options. Default option
is ESMF_SYNC_VASBLOCKING which blocks PETs and their spawned off threads across each VAS but does
not synchronize PETsS that run in different VASs.

[phase] Component providers must document whether each of their routines are single-phase or multi-phase. Single-
phase routines require only one invocation to complete their work. Multi-phase routines provide multiple sub-
routines to accomplish the work, accommodating components which must complete part of their work, return to
the caller and allow other processing to occur, and then continue the original operation. For multiple-phase child
components, this is the integer phase number to be invoked. For single-phase child components this argument
is optional. The default is 1.

[timeout] The maximum period in seconds that this call will wait in communications with the actual component,
before returning with a timeout condition. The default is 3600, i.e. 1 hour. The timeout argument is only
supported for connected dual components.

[timeoutFlag] Returns .true. if the timeout was reached, .false. otherwise. If timeoutFlag was not
provided, a timeout condition will lead to a return code of rc \= ESMF_SUCCESS. Otherwise the return
value of t imeoutFlag is the sole indicator of a timeout condition.

[userRc] Return code set by userRout ine before returning.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

18 CplComp Class

18.1 Description

In a large, multi-component application such as a weather forecasting or climate prediction system running within
ESMF, physical domains and major system functions are represented as Gridded Components (see Section [[Z.1)).
A Coupler Component, or ESMF_CplComp, arranges and executes the data transformations between the Gridded
Components. Ideally, Coupler Components should contain all the information about inter-component communication
for an application. This enables the Gridded Components in the application to be used in multiple contexts; that is, used
in different coupled configurations without changes to their source code. For example, the same atmosphere might
in one case be coupled to an ocean in a hurricane prediction model, and to a data assimilation system for numerical
weather prediction in another. A single Coupler Component can couple two or more Gridded Components.

156

Like Gridded Components, Coupler Components have two parts, one that is provided by the user and another that is
part of the framework. The user-written portion of the software is the coupling code necessary for a particular exchange
between Gridded Components. This portion of the Coupler Component code must be divided into separately callable
initialize, run, and finalize methods. The interfaces for these methods are prescribed by ESMF.

The term “user-written” is somewhat misleading here, since within a Coupler Component the user can leverage ESMF
infrastructure software for regridding, redistribution, lower-level communications, calendar management, and other
functions. However, ESMF is unlikely to offer all the software necessary to customize a data transfer between Gridded
Components. For instance, ESMF does not currently offer tools for unit tranformations or time averaging operations,
so users must manage those operations themselves.

The second part of a Coupler Component is the ESMF_ Cp1Comp derived type within ESMF. The user must create one
of these types to represent a specific coupling function, such as the regular transfer of data between a data assimilation
system and an atmospheric model.

The user-written part of a Coupler Component is associated with an ESMF__CplComp derived type through a rou-
tine called ESMF_SetServices (). This is a routine that the user must write and declare public. Inside the
ESMF_SetServices () routine the user must call ESMF_SetEntryPoint () methods that associate a stan-
dard ESMF operation with the name of the corresponding Fortran subroutine in their user code. For example, a user
routine called “couplerInit” might be associated with the standard initialize routine in a Coupler Component.

18.2 Use and Examples

A Coupler Component manages the transformation of data between Components. It contains a list of State objects
and the operations needed to make them compatible, including such things as regridding and unit conversion. Coupler
Components are user-written, following prescribed ESMF interfaces and, wherever desired, using ESMF infrastructure
tools.

18.2.1 Implement a user-code SetServices routine

Every ESMF_CplComp is required to provide and document a public set services routine. It can have any name,
but must follow the declaration below: a subroutine which takes an ESMF_CplComp as the first argument, and an
integer return code as the second. Both arguments are required and must not be declared as optional. If an intent
is specified in the interface it must be intent (inout) for the first and intent (out) for the second argument.

The set services routine must call the ESMF method ESMF_CplCompSetEntryPoint () to register with the
framework what user-code subroutines should be called to initialize, run, and finalize the component. There are
additional routines which can be registered as well, for checkpoint and restart functions.

Note that the actual subroutines being registered do not have to be public to this module; only the set services routine
itself must be available to be used by other code.

! Example Coupler Component
module ESMF_CouplerEx

! ESMF Framework module
use ESMF

implicit none

public CPL_SetServices

contains

2It is not necessary to create a Coupler Component for each individual data transfer.

157

subroutine CPL_SetServices (comp, rc)
type (ESMF_CplComp) 1 comp ! must not be optional
integer, intent (out) 1 rc ! must not be optional

! Set the entry points for standard ESMF Component methods

call ESMF_CplCompSetEntryPoint (comp, ESMF_METHOD_INITIALIZE, &
userRoutine=CPL_Init, rc=rc)

call ESMF_CplCompSetEntryPoint (comp, ESMF_METHOD_RUN, &
userRoutine=CPL_Run, rc=rc)

call ESMF_CplCompSetEntryPoint (comp, ESMF_METHOD_FINALIZE, &
userRoutine=CPL_Final, rc=rc)

rc = ESMF_SUCCESS
end subroutine

18.2.2 Implement a user-code Initialize routine

When a higher level component is ready to begin using an ESMF_ CplComp, it will call its initialize routine.

The component writer must supply a subroutine with the exact interface shown below. Arguments must not be declared
as optional, and the types and order must match.

At initialization time the component can allocate data space, open data files, set up initial conditions; anything it needs
to do to prepare to run.

The rc return code should be set if an error occurs, otherwise the value ESMF_SUCCESS should be returned.

subroutine CPL_Init (comp, importState, exportState, clock, rc)
I

type (ESMF_CplComp) :: comp ! must not be optional
type (ESMF_State) :: ilmportState ! must not be optional
type (ESMF_State) :: exportState ! must not be optional
type (ESMF_Clock) :: clock ! must not be optional
integer, intent (out) 1 rc ! must not be optional

print x, "Coupler Init starting"

! Add whatever code here needed

! Precompute any needed values, fill in any inital wvalues
! needed in Import States

rc = ESMF_SUCCESS

print x, "Coupler Init returning"

end subroutine CPL_Init

158

18.2.3 Implement a user-code Run routine

During the execution loop, the run routine may be called many times. Each time it should read data from the
importState, use the clock to determine what the current time is in the calling component, compute new values
or process the data, and produce any output and place it in the exportState.

When a higher level component is ready to use the ESMF_CplComp it will call its run routine.

The component writer must supply a subroutine with the exact interface shown below. Arguments must not be declared
as optional, and the types and order must match.

It is expected that this is where the bulk of the model computation or data analysis will occur.

The rc return code should be set if an error occurs, otherwise the value ESMF__SUCCESS should be returned.

subroutine CPL_Run (comp, importState, exportState, clock, rc)
. |

type (ESMF_CplComp) t . comp ! must not be optional
type (ESMF_State) :: importState ! must not be optional
type (ESMF_State) :: exportState ! must not be optional
type (ESMF_Clock) :: clock ! must not be optional
integer, intent (out) 11 rc ! must not be optional

print =, "Coupler Run starting"

! Add whatever code needed here to transform Export state data
' into Import states for the next timestep.

rc = ESMF_SUCCESS
print =, "Coupler Run returning"

end subroutine CPIL_Run

18.2.4 Implement a user-code Finalize routine
At the end of application execution, each ESMF_CplComp should deallocate data space, close open files, and flush
final results. These functions should be placed in a finalize routine.

The component writer must supply a subroutine with the exact interface shown below. Arguments must not be declared
as optional, and the types and order must match.

The rc return code should be set if an error occurs, otherwise the value ESMF__SUCCESS should be returned.

subroutine CPL_Final (comp, importState, exportState, clock, rc)

type (ESMF_CplComnp) :: comp ! must not be optional

type (ESMF_State) :: importState ! must not be optional

type (ESMF_State) :: exportState ! must not be optional

type (ESMF_Clock) :: clock ! must not be optional
|

integer, intent (out) i rc must not be optional
print %, "Coupler Final starting"

! Add whatever code needed here to compute final values and

159

!' finish the computation.
rc = ESMF_SUCCESS
print x, "Coupler Final returning"

end subroutine CPL_Final

18.2.5 Implement a user-code SetVM routine

Every ESMF_CplComp can optionally provide and document a public set vm routine. It can have any name, but must
follow the declaration below: a subroutine which takes an ESMF__ Cp1Comp as the first argument, and an integer return
code as the second. Both arguments are required and must not be declared as optional. If an intent is specified in
the interface it must be intent (inout) for the first and intent (out) for the second argument.

The set vm routine is the only place where the child component can use the ESMF_CplCompSetVMMaxPEs (), or
ESMF_CplCompSetVMMaxThreads (), or ESMF_CplCompSetVMMinThreads () call to modify aspects of

its own VM.

A component’s VM is started up right before its set services routine is entered. ESMF_CplCompSetVM () is execut-

ing in the parent VM, and must be called before ESMF_CplCompSetServices ().

subroutine GComp_SetVM (comp, rc)

type (ESMF_CplComp) i comp ! must not be optional
integer, intent (out) 1 rc ! must not be optional
type (ESMF_VM) :: vm

logical :: pthreadsEnabled

! Test for Pthread support, all SetVM calls require it
call ESMF_VMGetGlobal (vm, rc=rc)
call ESMF_VMGet (vm, pthreadsEnabledFlag=pthreadsEnabled,
if (pthreadsEnabled) then

! run PETs single-threaded

call ESMF_CplCompSetVMMinThreads (comp, rc=rc)
endif
rc = ESMF_SUCCESS

end subroutine

end module ESMF_CouplerEx

18.3 Restrictions and Future Work

1. No optional arguments. User-written routines called by SetServices, and registered for Initialize, Run and

Finalize, must not declare any of the arguments as optional.

160

2. No Transforms. Components must exchange data through ESMF__State objects. The input data are available
at the time the component code is called, and data to be returned to another component are available when that
code returns.

3. No automatic unit conversions. The ESMF framework does not currently contain tools for performing unit
conversions, operations that are fairly standard within Coupler Components.

4. No accumulator. The ESMF does not have an accumulator tool, to perform time averaging of fields for cou-
pling. This is likely to be developed in the near term.

18.4 Class API

18.4.1 ESMF_CplCompAssignment(=) - CplComp assignment

INTERFACE:

interface assignment (=)
cplcompl = cplcomp?2

ARGUMENTS:
type (ESMF_CplComp) :: cplcompl
type (ESMF_CplComp) :: cplcomp?2
STATUS:

e This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Assign cplcompl as an alias to the same ESMF CplComp object in memory as cplcomp2. If cplcomp?2 is invalid, then
cplcomp1 will be equally invalid after the assignment.

The arguments are:

cplcompl The ESMF_CplComp object on the left hand side of the assignment.

cplcomp2 The ESMF_CplComp object on the right hand side of the assignment.

18.4.2 ESMF_CplCompOperator(==) - CplComp equality operator

INTERFACE:
interface operator (==)
if (cplcompl == cplcomp2) then ... endif
OR
result = (cplcompl == cplcomp2)

161

RETURN VALUE:

logical :: result

ARGUMENTS:

type (ESMF_CplComp), intent (in)
type (ESMF_CplComp), intent (in)

STATUS:

cplcompl
cplcomp?2

e This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Test whether cplcomp1 and cplcomp?2 are valid aliases to the same ESMF CplComp object in memory. For a more gen-
eral comparison of two ESMF CplComps, going beyond the simple alias test, the ESMF_CplCompMatch() function

(not yet implemented) must be used.

The arguments are:

cplcompl The ESMF_CplComp object on the left hand side of the equality operation.

cplcomp2 The ESMF_CplComp object on the right hand side of the equality operation.

18.4.3 ESMF_CplCompOperator(/=) - CplComp not equal operator

INTERFACE:

interface operator (/=)
if (cplcompl /= cplcomp2) then

result = (gilcompl /= cplcomp?2)
RETURN VALUE:

logical :: result
ARGUMENTS:

type (ESMF_CplComp), intent (in)
type (ESMF_CplComp), intent (in)

STATUS:

endif

cplcompl
cplcomp?2

o This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

162

DESCRIPTION:

Test whether cplcompl and cplcomp2 are not valid aliases to the same ESMF CplComp object in memory. For a
more general comparison of two ESMF CplComps, going beyond the simple alias test, the ESMF_CplCompMatch()
function (not yet implemented) must be used.

The arguments are:

cplcompl The ESMF_CplComp object on the left hand side of the non-equality operation.

cplcomp2 The ESMF_CplComp object on the right hand side of the non-equality operation.

18.4.4 ESMF_CplCompCreate - Create a CplComp

INTERFACE:

recursive function ESMF_CplCompCreate (config, configFile, &
clock, petlList, devList, contextflag, name, rc)

RETURN VALUE:
type (ESMF_CplComp) :: ESMF_CplCompCreate
ARGUMENTS:

—-— The following arguments require argument keyword syntax (e.g. rc=rc). —-—

type (ESMF_Configqg), intent (in), optional :: config
character (len=x), intent (in), optional :: configFile
type (ESMF_Clock), intent (in), optional :: clock
integer, intent (in), optional :: petList (:)
integer, intent (in), optional :: devList (:)
type (ESMF_Context_Flag), intent (in), optional :: contextflag
character (len=x), intent (in), optional :: name
integer, intent (out), optional :: rc

STATUS:

e This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

e This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.

Changes made after the 5.2.0r release:

8.6.0 Added argument devList to support management of accelerator devices.

163

DESCRIPTION:

This interface creates an ESMF_ CplComp object. By default, a separate VM context will be created for each compo-
nent. This implies creating a new MPI communicator and allocating additional memory to manage the VM resources.
When running on a large number of processors, creating a separate VM for each component could be both time and
memory inefficient. If the application is sequential, i.e., each component is running on all the PETs of the global VM, it
will be more efficient to use the global VM instead of creating a new one. This can be done by setting contextflag
to ESMF_CONTEXT_PARENT_VM.

The return value is the new ESMF_CplComp.

The arguments are:

[config] An already-created ESMF_Config object to be attached to the newly created component. If both config
and configFile arguments are specified, config takes priority.

[configFile] The filename of an ESMF_Config format file. If specified, a new ESMF_Config object is created and
attached to the newly created component. The configFile file is opened and associated with the new config
object. If both configand configFile arguments are specified, config takes priority.

[clock] Component-specific ESMF_Clock. This clock is available to be queried and updated by the new
ESMF_CplComp as it chooses. This should not be the parent component clock, which should be maintained
and passed down to the initialize/run/finalize routines separately.

[petList] List of parent PETs given to the created child component by the parent component. If petList is not
specified, or is empty, all of the parent PETs are given to the child component. The order of PETSs in petList
determines how the child local PETs map back to the parent PETs.

[devList] List of accelerator devices global ids DEVs to be associated with the created child component. If devList
is not specified, or is empty, no devices are associated with the component.

[contextflag] Specify the component’s VM context. The default context is ESMF_CONTEXT_OWN_VM. See section
54.10lfor a complete list of valid flags.

[name] Name of the newly-created ESMF_CplComp. This name can be altered from within the ESMF_ CplComp
code once the initialization routine is called.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

18.4.5 ESMF_CplCompDestroy - Release resources associated with a CplComp

INTERFACE:

recursive subroutine ESMF_CplCompDestroy (cplcomp, &
timeout, timeoutFlag, rc)

ARGUMENTS:
type (ESMF_CplComp), intent (inout) :: cplcomp
—— The following arguments require argument keyword syntax (e.g. rc=rc). —-—
integer, intent (in), optional :: timeout
logical, intent (out), optional :: timeoutFlag
integer, intent (out), optional :: rc

164

STATUS:

e This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

e This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.

Changes made after the 5.2.0r release:

5.3.0 Added argument t imeout. Added argument t imeoutFlag. The new arguments provide access to the
fault-tolerant component features.

DESCRIPTION:

Destroys an ESMF_ CplComp, releasing the resources associated with the object.

The arguments are:

cplcomp Release all resources associated with this ESMF_CplComp and mark the object as invalid. It is an error to
pass this object into any other routines after being destroyed.

[timeout] The maximum period in seconds that this call will wait in communications with the actual component,
before returning with a timeout condition. The default is 3600, i.e. 1 hour. The timeout argument is only
supported for connected dual components.

[timeoutFlag] Returns .true. if the timeout was reached, .false. otherwise. If timeoutFlag was not
provided, a timeout condition will lead to a return code of rc \= ESMF_SUCCESS. Otherwise the return
value of t imeoutF1lag is the sole indicator of a timeout condition.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

18.4.6 ESMF_CplCompFinalize - Call the CplComp’s finalize routine

INTERFACE:

recursive subroutine ESMF_CplCompFinalize (cplcomp, &
importState, exportState, clock, syncflag, phase, timeout, timeoutFlag, &
userRc, rc)

ARGUMENTS:

type (ESMF_CplComp), intent (inout) :: cplcomp
—— The following arguments require argument keyword syntax (e.g. rc=rc). —-—

type (ESMF_State), intent (inout), optional :: importState
type (ESMF_State), intent (inout), optional :: exportState
type (ESMF_Clock), intent (inout), optional :: clock
type (ESMF_Sync_Flag), intent (in), optional :: syncflag
integer, intent (in), optional :: phase
integer, intent (in), optional :: timeout

165

logical, intent (out), optional :: timeoutFlag

integer, intent (out), optional :: userRc
integer, intent (out), optional :: rc
STATUS:

e This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

e This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.

Changes made after the 5.2.0r release:

5.3.0 Added argument t imeout. Added argument t imeoutFlag. The new arguments provide access to the
fault-tolerant component features.

DESCRIPTION:

Call the associated user-supplied finalization routine for an ESMF_CplComp.

The arguments are:

cplcomp The ESMF_CplComp to call finalize routine for.

[importState] ESMF_State containing import data for coupling. If not present, a dummy argument will be passed
to the user-supplied routine. The importState argument in the user code cannot be optional.

[exportState] ESMF_State containing export data for coupling. If not present, a dummy argument will be passed
to the user-supplied routine. The exportState argument in the user code cannot be optional.

[clock] External ESMF_C1lock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations. If not present, a dummy argument will be passed to the user-supplied routine.
The clock argument in the user code cannot be optional.

[syncflag] Blocking behavior of this method call. See section[34.57for a list of valid blocking options. Default option
is ESMF_SYNC_VASBLOCKING which blocks PETs and their spawned off threads across each VAS but does
not synchronize PETS that run in different VASs.

[phase] Component providers must document whether each of their routines are single-phase or multi-phase. Single-
phase routines require only one invocation to complete their work. Multi-phase routines provide multiple sub-
routines to accomplish the work, accommodating components which must complete part of their work, return to
the caller and allow other processing to occur, and then continue the original operation. For multiple-phase child
components, this is the integer phase number to be invoked. For single-phase child components this argument
is optional. The default is 1.

[timeout] The maximum period in seconds that this call will wait in communications with the actual component,
before returning with a timeout condition. The default is 3600, i.e. 1 hour. The timeout argument is only
supported for connected dual components.

[timeoutFlag] Returns .true. if the timeout was reached, .false. otherwise. If timeoutFlag was not
provided, a timeout condition will lead to a return code of rc \= ESMF_SUCCESS. Otherwise the return
value of t imeoutFlag is the sole indicator of a timeout condition.

[userRc] Return code set by userRout ine before returning.

166

[re] Return code; equals ESMF_SUCCESS if there are no errors.

18.4.7 ESMF_CplCompGet - Get CplComp information

INTERFACE:

subroutine ESMF_CplCompGet (cplcomp, configIsPresent, config, &
configFileIsPresent, configFile, clockIsPresent, clock, localPet, &
petCount, contextflag, currentMethod, currentPhase, vmIsPresent, &
vm, name, rc)

ARGUMENTS:

type (ESMF_CplComp) , intent (in) :: cplcomp
—-— The following arguments require argument keyword syntax (e.g. rc=rc). —-—

logical, intent (out), optional :: configIsPresent
type (ESMF_Confiqg), intent (out), optional :: config
logical, intent (out), optional :: configFileIsPresent
character (len=x), intent (out), optional :: configFile
logical, intent (out), optional :: clockIsPresent
type (ESMF_Clock), intent (out), optional :: clock
integer, intent (out), optional :: localPet
integer, intent (out), optional :: petCount
type (ESMF_Context_Flag), intent (out), optional :: contextflag
type (ESMF_Method_Flag), intent (out), optional :: currentMethod
integer, intent (out), optional :: currentPhase
logical, intent (out), optional :: vmIsPresent
type (ESMF_VM) , intent (out), optional :: vm
character (len=x), intent (out), optional :: name
integer, intent (out), optional :: rc

STATUS:

e This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Get information about an ESMF_ CplComp object.

The arguments are:

cplcomp The ESMF_CplComp object being queried.
[configlsPresent] .true. if config was set in CplComp object, . false. otherwise.

[config] Return the associated Config. It is an error to query for the Config if none is associated with the CplComp.
If unsure, get configIsPresent first to determine the status.

[configFileIsPresent] .true. if configFile was setin CplComp object, . false. otherwise.

167

[configFile] Return the associated configuration filename. It is an error to query for the configuration filename if none
is associated with the CplComp. If unsure, get configFileIsPresent first to determine the status.

[clockIsPresent] .true. if clock was setin CplComp object, . false. otherwise.

[clock] Return the associated Clock. It is an error to query for the Clock if none is associated with the CplComp. If
unsure, get clockIsPresent first to determine the status.

[localPet] Return the local PET id within the ESMF_ CplComp object.
[petCount] Return the number of PETs in the the ESMF_CplComp object.

[contextflag] Return the ESMF_Context_Flag for this ESMF_CplComp. See section[54.10lfor a complete list of
valid flags.

[currentMethod] Return the current ESMF_Method_Flag of the ESMF_CplComp execution. See section 54.42]
for a complete list of valid options.

[currentPhase] Return the current phase of the ESMF_CplComp execution.
[vmIsPresent] .true. if vm was set in CplComp object, . false. otherwise.

[vm] Return the associated VM. It is an error to query for the VM if none is associated with the CplComp. If unsure,
get vmIsPresent first to determine the status.

[name] Return the name of the ESMF_CplComp.

[re] Return code; equals ESMF_SUCCESS if there are no errors.

18.4.8 ESMF_CplCompGetInternalState - Get private data block pointer

INTERFACE:

subroutine ESMF_CplCompGetInternalState (cplcomp, wrappedDataPointer, rc)

ARGUMENTS:
type (ESMF_CplComp) :: cplcomp
type (wrapper) :: wrappedDataPointer
integer, intent (out) :: rc

STATUS:

e This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Available to be called by an ESMF_CplComp at any time after ESMF_CplCompSetInternalState has been
called. Since init, run, and finalize must be separate subroutines, data that they need to share in common can either
be module global data, or can be allocated in a private data block and the address of that block can be registered with
the framework and retrieved by this call. When running multiple instantiations of an ESMF_ CplComp, for example

168

during ensemble runs, it may be simpler to maintain private data specific to each run with private data blocks. A
corresponding ESMF_CplCompSetInternalState call sets the data pointer to this block, and this call retrieves
the data pointer. Note that the wrappedDataPointer argument needs to be a derived type which contains only a
pointer of the type of the data block defined by the user. When making this call the pointer needs to be unassociated.
When the call returns, the pointer will now reference the original data block which was set during the previous call to
ESMF_CplCompSetInternalState.

Only the last data block set via ESMF_CplCompSet InternalState will be accessible.

CAUTION: If you are working with a compiler that does not support Fortran 2018 assumed-type dummy arguments,
then this method does not have an explicit Fortran interface. In this case do not specify argument keywords when
calling this method!

The arguments are:

cplcomp An ESMF_CplComp object.

wrappedDataPointer A derived type (wrapper), containing only an unassociated pointer to the private data block.
The framework will fill in the pointer. When this call returns, the pointer is set to the same address set during
the last ESMF_CplCompSetInternalState call. This level of indirection is needed to reliably set and
retrieve the data block no matter which architecture or compiler is used.

rc Return code; equals ESMF__SUCCESS if there are no errors. Note: unlike most other ESMF routines, this argument
is not optional because of implementation considerations.

18.4.9 ESMF_CplComplnitialize - Call the CplComp’s initialize routine

INTERFACE:

recursive subroutine ESMF_CplCompInitialize (cplcomp, &
importState, exportState, clock, syncflag, phase, timeout, timeoutFlag, &
userRc, rc)

ARGUMENTS:

type (ESMF_CplComp), intent (inout) :: cplcomp
—-— The following arguments require argument keyword syntax (e.g. rc=rc). —-—

type (ESMF_State), intent (inout), optional :: importState
type (ESMF_State), intent (inout), optional :: exportState
type (ESMF_Clock), intent (inout), optional :: clock
type (ESMF_Sync_Flag), intent (in), optional :: syncflag
integer, intent (in), optional :: phase
integer, intent (in), optional :: timeout
logical, intent (out), optional :: timeoutFlag
integer, intent (out), optional :: userRc
integer, intent (out), optional :: rc

STATUS:

o This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

169

e This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.

Changes made after the 5.2.0r release:

5.3.0 Added argument t imeout. Added argument t imeoutFlag. The new arguments provide access to the
fault-tolerant component features.

DESCRIPTION:

Call the associated user initialization routine for an ESMF_CplComp.

The arguments are:

cplcomp ESMF_CplComp to call initialize routine for.

[importState] ESMF_State containing import data for coupling. If not present, a dummy argument will be passed
to the user-supplied routine. The importState argument in the user code cannot be optional.

[exportState] ESMF_State containing export data for coupling. If not present, a dummy argument will be passed
to the user-supplied routine. The exportState argument in the user code cannot be optional.

[clock] External ESMF_Clock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations. If not present, a dummy argument will be passed to the user-supplied routine.
The clock argument in the user code cannot be optional.

[syncflag] Blocking behavior of this method call. See section[34.57|for a list of valid blocking options. Default option
is ESMF__SYNC_VASBLOCKING which blocks PETs and their spawned off threads across each VAS but does
not synchronize PETS that run in different VASs.

[phase] Component providers must document whether each of their routines are single-phase or multi-phase. Single-
phase routines require only one invocation to complete their work. Multi-phase routines provide multiple sub-
routines to accomplish the work, accommodating components which must complete part of their work, return to
the caller and allow other processing to occur, and then continue the original operation. For multiple-phase child
components, this is the integer phase number to be invoked. For single-phase child components this argument
is optional. The default is 1.

[timeout] The maximum period in seconds that this call will wait in communications with the actual component,
before returning with a timeout condition. The default is 3600, i.e. 1 hour. The timeout argument is only
supported for connected dual components.

[timeoutFlag] Returns .true. if the timeout was reached, . false. otherwise. If timeoutFlag was not
provided, a timeout condition will lead to a return code of rc \= ESMF_SUCCESS. Otherwise the return
value of t imeoutFlag is the sole indicator of a timeout condition.

[userRc] Return code set by userRout ine before returning.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

170

18.4.10 ESMF_CplComplsCreated - Check whether a CplComp object has been created

INTERFACE:

function ESMF_CplCompIsCreated(cplcomp, rc)

RETURN VALUE:
logical :: ESMF_CplCompIsCreated
ARGUMENTS:
type (ESMF_CplComp), intent (in) :: cplcomp
—— The following arguments require argument keyword syntax (e.g. rc=rc). —-—
integer, intent (out), optional :: rc
DESCRIPTION:

Return .true. if the cplcomp has been created. Otherwise return . false.. If an error occurs, i.e. rc /=
ESMF__SUCCESS is returned, the return value of the function will also be . false..

The arguments are:

cplcomp ESMF_CplComp queried.

[re] Return code; equals ESMF_SUCCESS if there are no errors.

18.4.11 ESMF_CplComplsPetLocal - Inquire if this CplComp is to execute on the calling PET

INTERFACE:

recursive function ESMF_CplCompIsPetLocal (cplcomp, rc)

RETURN VALUE:
logical :: ESMF_CplCompIsPetLocal
ARGUMENTS:
type (ESMF_CplComp), intent (in) :: cplcomp
—— The following arguments require argument keyword syntax (e.g. rc=rc). —-—
integer, intent (out), optional :: rc
STATUS:

171

e This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Inquire if this ESMF__Cp1Comp object is to execute on the calling PET.
The return value is . true. if the component is to execute on the calling PET, . false. otherwise.

The arguments are:

cplcomp ESMF_CplComp queried.

[re] Return code; equals ESMF_SUCCESS if there are no errors.

18.4.12 ESMF_CplCompPrint - Print CplComp information

INTERFACE:

subroutine ESMF_CplCompPrint (cplcomp, rc)

ARGUMENTS:
type (ESMF_CplComp), intent (in) :: cplcomp
—— The following arguments require argument keyword syntax (e.g. rc=rc). —-—
integer, intent (out), optional :: rc
STATUS:

e This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Prints information about an ESMF_CplComp to stdout.

The arguments are:

cplcomp ESMF_CplComp to print.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

172

18.4.13 ESMF_CplCompReadRestart — Call the CplComp’s read restart routine

INTERFACE:

recursive subroutine ESMF_CplCompReadRestart (cplcomp, &
importState, exportState, clock, syncflag, phase, timeout, timeoutFlag, &
userRc, rc)

ARGUMENTS:

type (ESMF_CplComp) , intent (inout) :: cplcomp
—-— The following arguments require argument keyword syntax (e.g. rc=rc). —-—

type (ESMF_State), intent (inout), optional :: importState
type (ESMF_State), intent (inout), optional :: exportState
type (ESMF_Clock), intent (inout), optional :: clock
type (ESMF_Sync_Flag), intent (in), optional :: syncflag
integer, intent (in), optional :: phase
integer, intent (in), optional :: timeout
logical, intent (out), optional :: timeoutFlag
integer, intent (out), optional :: userRc
integer, intent (out), optional :: rc

STATUS:

o This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

e This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.

Changes made after the 5.2.0r release:

5.3.0 Added argument t imeout. Added argument t imeoutFlag. The new arguments provide access to the
fault-tolerant component features.

DESCRIPTION:

Call the associated user read restart routine for an ESMF__ CplComp.

The arguments are:

cplcomp ESMF_CplComp to call run routine for.

[importState] ESMF_State containing import data. If not present, a dummy argument will be passed to the user-
supplied routine. The importState argument in the user code cannot be optional.

[exportState] ESMF_State containing export data. If not present, a dummy argument will be passed to the user-
supplied routine. The exportState argument in the user code cannot be optional.

[clock] External ESMF_Clock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations. If not present, a dummy argument will be passed to the user-supplied routine.
The clock argument in the user code cannot be optional.

173

[syncflag] Blocking behavior of this method call. See section[54.571for a list of valid blocking options. Default option
is ESMF__SYNC_VASBLOCKING which blocks PETs and their spawned off threads across each VAS but does
not synchronize PETs that run in different VASs.

[phase] Component providers must document whether each of their routines are single-phase or multi-phase. Single-
phase routines require only one invocation to complete their work. Multi-phase routines provide multiple sub-
routines to accomplish the work, accommodating components which must complete part of their work, return to
the caller and allow other processing to occur, and then continue the original operation. For multiple-phase child
components, this is the integer phase number to be invoked. For single-phase child components this argument
is optional. The default is 1.

[timeout] The maximum period in seconds that this call will wait in communications with the actual component,
before returning with a timeout condition. The default is 3600, i.e. 1 hour. The t imeout argument is only
supported for connected dual components.

[timeoutFlag] Returns .true. if the timeout was reached, . false. otherwise. If timeoutFlag was not
provided, a timeout condition will lead to a return code of rc \= ESMF_SUCCESS. Otherwise the return
value of t imeoutFlag is the sole indicator of a timeout condition.

[userRc] Return code set by userRout ine before returning.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

18.4.14 ESMF_CplCompRun - Call the CplComp’s run routine

INTERFACE:

recursive subroutine ESMF_CplCompRun (cplcomp, &
importState, exportState, clock, syncflag, phase, timeout, timeoutFlag, &
userRc, rc)

ARGUMENTS:

type (ESMF_CplComp) , intent (inout) :: cplcomp
—— The following arguments require argument keyword syntax (e.g. rc=rc). —-—

type (ESMF_State), intent (inout), optional :: importState
type (ESMF_State), intent (inout), optional :: exportState
type (ESMF_Clock), intent (inout), optional :: clock
type (ESMF_Sync_Flag), intent (in), optional :: syncflag
integer, intent (in), optional :: phase
integer, intent (in), optional :: timeout
logical, intent (out), optional :: timeoutFlag
integer, intent (out), optional :: userRc
integer, intent (out), optional :: rc

STATUS:

e This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

174

e This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.

Changes made after the 5.2.0r release:

5.3.0 Added argument t imeout. Added argument t imeoutFlag. The new arguments provide access to the
fault-tolerant component features.

DESCRIPTION:

Call the associated user run routine for an ESMF_CplComp.

The arguments are:

cplcomp ESMF_CplComp to call run routine for.

[importState] ESMF_State containing import data for coupling. If not present, a dummy argument will be passed
to the user-supplied routine. The importState argument in the user code cannot be optional.

[exportState] ESMF_State containing export data for coupling. If not present, a dummy argument will be passed
to the user-supplied routine. The exportState argument in the user code cannot be optional.

[clock] External ESMF_Clock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations. If not present, a dummy argument will be passed to the user-supplied routine.
The clock argument in the user code cannot be optional.

[syncflag] Blocking behavior of this method call. See section[34.57|for a list of valid blocking options. Default option
is ESMF__SYNC_VASBLOCKING which blocks PETs and their spawned off threads across each VAS but does
not synchronize PETS that run in different VASs.

[phase] Component providers must document whether each of their routines are single-phase or multi-phase. Single-
phase routines require only one invocation to complete their work. Multi-phase routines provide multiple sub-
routines to accomplish the work, accommodating components which must complete part of their work, return to
the caller and allow other processing to occur, and then continue the original operation. For multiple-phase child
components, this is the integer phase number to be invoked. For single-phase child components this argument
is optional. The default is 1.

[timeout] The maximum period in seconds that this call will wait in communications with the actual component,
before returning with a timeout condition. The default is 3600, i.e. 1 hour. The timeout argument is only
supported for connected dual components.

[timeoutFlag] Returns .true. if the timeout was reached, . false. otherwise. If timeoutFlag was not
provided, a timeout condition will lead to a return code of rc \= ESMF_SUCCESS. Otherwise the return
value of t imeoutFlag is the sole indicator of a timeout condition.

[userRc] Return code set by userRout ine before returning.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

175

18.4.15 ESMF_CplCompServiceLoop - Call the CplComp’s service loop routine

INTERFACE:

recursive subroutine ESMF_CplCompServiceLoop (cplcomp, &
importState, exportState, clock, syncflag, port, timeout, timeoutFlag, rc)

ARGUMENTS:

type (ESMF_CplComp), intent (inout) :: cplcomp
—— The following arguments require argument keyword syntax (e.g. rc=rc). —-—

type (ESMF_State), intent (inout), optional :: importState
type (ESMF_State), intent (inout), optional :: exportState
type (ESMF_Clock), intent (inout), optional :: clock
type (ESMF_Sync_Flag), intent (in), optional :: syncflag
integer, intent (in), optional :: port
integer, intent (in), optional :: timeout
logical, intent (out), optional :: timeoutFlag
integer, intent (out), optional :: rc

DESCRIPTION:

Call the ServiceLoop routine for an ESMF_CplComp. This tries to establish a "component tunnel" between the actual
Component (calling this routine) and a dual Component connecting to it through a matching SetServices call.

The arguments are:

cplcomp ESMF_CplComp to call service loop routine for.

[importState] ESMF_State containing import data for coupling. If not present, a dummy argument will be passed
to the user-supplied routine. The importState argument in the user code cannot be optional.

[exportState] ESMF_State containing export data for coupling. If not present, a dummy argument will be passed
to the user-supplied routine. The exportState argument in the user code cannot be optional.

[clock] External ESMF_C1lock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations. If not present, a dummy argument will be passed to the user-supplied routine.
The clock argument in the user code cannot be optional.

[syncflag] Blocking behavior of this method call. See section[54.571for a list of valid blocking options. Default option
is ESMF__SYNC_VASBLOCKING which blocks PETs and their spawned off threads across each VAS but does
not synchronize PETS that run in different VASs.

[port] In case a port number is provided, the "component tunnel" is established using sockets. The actual component
side, i.e. the side that calls into ESMF_CplCompServiceLoop (), starts to listen on the specified port as
the server. The valid port range is [1024, 65535]. In case the port argument is not specified, the "component
tunnel” is established within the same executable using local communication methods (e.g. MPI).

[timeout] The maximum period in seconds that this call will wait for communications with the dual component,
before returning with a timeout condition. The default is 3600, i.e. 1 hour. (NOTE: Currently this option is only
available for socket based component tunnels.)

[timeoutFlag] Returns .true. if the timeout was reached, .false. otherwise. If timeoutFlag was not
provided, a timeout condition will lead to a return code of rc \= ESMF_SUCCESS. Otherwise the return
value of t imeoutFlag is the sole indicator of a timeout condition.

176

[re] Return code; equals ESMF_SUCCESS if there are no errors.

18.4.16 ESMF_CplCompSet - Set or reset information about the CplComp

INTERFACE:

subroutine ESMF_CplCompSet (cplcomp, config, configFile, &
clock, name, rc)

ARGUMENTS:

type (ESMF_CplComp), intent (inout) :: cplcomp
—-— The following arguments require argument keyword syntax (e.g. rc=rc). —-—

type (ESMF_Config), intent (in), optional :: config
character (len=x%), intent (in), optional :: configFile
type (ESMF_Clock), intent (in), optional :: clock
character (len=x%), intent (in), optional :: name
integer, intent (out), optional :: rc

STATUS:

e This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Sets or resets information about an ESMF__Cp1Comp.

The arguments are:

cplcomp ESMF_CplComp to change.
[name] Set the name of the ESMF_CplComp.

[config] An already-created ESMF_Config object to be attached to the component. If both config and
configFile arguments are specified, config takes priority.

[configFile] The filename of an ESMF__Conf ig format file. If specified, a new ESMF_Config object is created and
attached to the component. The configFile file is opened and associated with the new config object. If both
configand configFile arguments are specified, config takes priority.

[clock] Set the private clock for this ESMF_CplComp.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

177

18.4.17 ESMF_CplCompSetEntryPoint - Set user routine as entry point for standard Component method

INTERFACE:

recursive subroutine ESMF_CplCompSetEntryPoint (cplcomp, methodflag, &
userRoutine, phase, rc)

ARGUMENTS:
type (ESMF_CplComp) , intent (inout) :: cplcomp
type (ESMF_Method_Flag), intent (in) :: methodflag
interface

subroutine userRoutine (cplcomp, importState, exportState, clock, rc)
use ESMF_CompMod
use ESMF_StateMod
use ESMF_ClockMod
implicit none

type (ESMF_CplComp) :: cplcomp ! must not be optional
type (ESMF_State) :: importState ! must not be optional
type (ESMF_State) :: exportState ! must not be optional
type (ESMF_Clock) :: clock ! must not be optional
integer, intent (out) i rc ! must not be optional

end subroutine
end interface
—— The following arguments require argument keyword syntax (e.g. rc=rc). —-—

integer, intent (in), optional :: phase
integer, intent (out), optional :: rc
STATUS:

e This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Registers a user-supplied userRoutine as the entry point for one of the predefined Component methodflags.
After this call the userRout ine becomes accessible via the standard Component method APL

The arguments are:

cplcomp An ESMF_CplComp object.

methodflag One of a set of predefined Component methods - e.g. ESMF_METHOD_INITIALIZE,
ESMF_METHOD_RUN, ESMF_METHOD_FINALIZE. See section [54.42] for a complete list of valid method
options.

userRoutine The user-supplied subroutine to be associated for this methodflag. The Component writer must
supply a subroutine with the exact interface shown above for the userRoutine argument. Arguments in
userRoutine must not be declared as optional, and the types, intent and order must match. Prior to Fortran-
2008, the subroutine must be either a module scope procedure, or an external procedure that has a matching
interface block specified for it. An internal procedure which is contained within another procedure must not be
used. From Fortran-2008 onwards, an internal procedure contained within either a main program or a module
procedure may be used. If the internal procedure is contained within a module procedure, it is subject to
initialization requirements. See:

178

[phase] The phase number for multi-phase methods. For single phase methods the phase argument can be omitted.
The default setting is 1.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

18.4.18 ESMF_CplCompSetinternalState - Set private data block pointer

INTERFACE:

subroutine ESMF_CplCompSetInternalState (cplcomp, wrappedDataPointer, rc)

ARGUMENTS:
type (ESMF_CplComp) :: cplcomp
type (wrapper) :: wrappedDataPointer
integer, intent (out) :: rc

STATUS:

e This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Auvailable to be called by an ESMF_CplComp at any time, but expected to be most useful when called during the
registration process, or initialization. Since init, run, and finalize must be separate subroutines data that they need to
share in common can either be module global data, or can be allocated in a private data block and the address of that
block can be registered with the framework and retrieved by subsequent calls. When running multiple instantiations
of an ESMF_CplComp, for example during ensemble runs, it may be simpler to maintain private data specific to each
run with private data blocks. A corresponding ESMF_ CplCompGetInternalState call retrieves the data pointer.

Only the last data block set via ESMF_CplCompSet InternalState will be accessible.

CAUTION: If you are working with a compiler that does not support Fortran 2018 assumed-type dummy arguments,
then this method does not have an explicit Fortran interface. In this case do not specify argument keywords when
calling this method!

The arguments are:

cplcomp An ESMF_CplComp object.

wrappedDataPointer A pointer to the private data block, wrapped in a derived type which contains only a pointer
to the block. This level of indirection is needed to reliably set and retrieve the data block no matter which
architecture or compiler is used.

rc¢ Return code; equals ESMF_SUCCESS if there are no errors. Note: unlike most other ESMF routines, this argument
is not optional because of implementation considerations.

179

18.4.19 ESMF_CplCompSetServices - Call user routine to register CplComp methods

INTERFACE:

recursive subroutine ESMF_CplCompSetServices (cplcomp, userRoutine, &
userRc, rc)

ARGUMENTS:

type (ESMF_CplComp), intent (inout) :: cplcomp
interface
subroutine userRoutine (cplcomp, rc)
use ESMF_CompMod
implicit none
type (ESMF_CplComp) :: cplcomp ! must not be optional
integer, intent (out) HES afe! ! must not be optional
end subroutine
end interface
—-— The following arguments require argument keyword syntax (e.g. rc=rc). —-—

integer, intent (out), optional :: userRc
integer, intent (out), optional :: rc
STATUS:

e This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Call into user provided userRout ine which is responsible for setting Component’s Initialize(), Run(), and Finalize()
services.

The arguments are:

cplcomp Coupler Component.

userRoutine The Component writer must supply a subroutine with the exact interface shown above for the
userRoutine argument. Arguments in userRoutine must not be declared as optional, and the types,
intent and order must match. Prior to Fortran-2008, the subroutine must be either a module scope procedure, or
an external procedure that has a matching interface block specified for it. An internal procedure which is con-
tained within another procedure must not be used. From Fortran-2008 onwards, an internal procedure contained
within either a main program or a module procedure may be used. If the internal procedure is contained within
a module procedure, it is subject to initialization requirements. See: [16.4.9)

The wuserRoutine, when «called by the framework, must make successive calls to
ESMF_CplCompSetEntryPoint () to preset callback routines for standard Component Initialize(),
Run(), and Finalize() methods.

[userRc] Return code set by userRout ine before returning.

[re] Return code; equals ESMF_SUCCESS if there are no errors.

180

18.4.20 ESMF_CplCompSetServices - Call user routine through name lookup, to register CplComp methods

INTERFACE:

! Private name; call using ESMF_CplCompSetServices ()
recursive subroutine ESMF_CplCompSetServicesShObj(cplcomp, userRoutine, &
sharedObj, userRoutineFound, userRc, rc)

ARGUMENTS:
type (ESMF_CplComp), intent (inout) :: cplcomp
character (len=x%), intent (in) :: userRoutine

—-— The following arguments require argument keyword syntax (e.g. rc=rc). —-—

character (len=x), intent (in), optional :: sharedObj
logical, intent (out), optional :: userRoutineFound
integer, intent (out), optional :: userRc
integer, intent (out), optional :: rc

STATUS:

e This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

e This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.

Changes made after the 5.2.0r release:

6.3.0r Added argument userRout ineFound. The new argument provides a way to test availability without
causing error conditions.

DESCRIPTION:

Call into a user provided routine which is responsible for setting Component’s Initialize(), Run(), and Finalize()
services. The named userRout ine must exist in the executable, or in the shared object specified by sharedObj.
In the latter case all of the platform specific details about dynamic linking and loading apply.

The arguments are:

cplcomp Coupler Component.

userRoutine Name of routine to be called, specified as a character string. The Component writer must supply a
subroutine with the exact interface shown for userRoutine below. Arguments must not be declared as
optional, and the types, intent and order must match. Prior to Fortran-2008, the subroutine must be either
a module scope procedure, or an external procedure that has a matching interface block specified for it. An
internal procedure which is contained within another procedure must not be used. From Fortran-2008 onwards,
an internal procedure contained within either a main program or a module procedure may be used. If the internal
procedure is contained within a module procedure, it is subject to initialization requirements. See:

INTERFACE:

181

interface
subroutine userRoutine (cplcomp, rc)
type (ESMF_CplComp) :: cplcomp ! must not be optional
integer, intent (out) :: rc ! must not be optional
end subroutine
end interface

DESCRIPTION:

The wuserRoutine, when called by the framework, must make successive calls to
ESMF_CplCompSetEntryPoint () to preset callback routines for standard Component Initialize(),
Run(), and Finalize() methods.

[sharedObj] Name of shared object that contains userRout ine. If the sharedOb j argument is not provided the
executable itself will be searched for userRoutine.

[userRoutineFound] Report back whether the specified userRout ine was found and executed, or was not avail-
able. If this argument is present, not finding the userRout ine will not result in returning an error in rc. The
default is to return an error if the userRout ine cannot be found.

[userRc] Return code set by userRout ine before returning.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

18.4.21 ESMF_CplCompSetServices - Set to serve as Dual Component for an Actual Component

INTERFACE:

! Private name; call using ESMF_CplCompSetServices ()
recursive subroutine ESMF_CplCompSetServicesComp (cplcomp, &
actualCplcomp, rc)

ARGUMENTS:
type (ESMF_CplComp), intent (inout) :: cplcomp
type (ESMF_CplComp), intent (in) :: actualCplcomp
—— The following arguments require argument keyword syntax (e.g. rc=rc). —-—
integer, intent (out), optional :: rc
DESCRIPTION:

Set the services of a Coupler Component to serve a "dual" Component for an "actual” Component. The component
tunnel is VM based.

The arguments are:

cplcomp Dual Coupler Component.
actualCplcomp Actual Coupler Component.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

182

18.4.22 ESMF_CplCompSetServices - Set to serve as Dual Component for an Actual Component through
sockets

INTERFACE:

! Private name; call using ESMF_CplCompSetServices ()
recursive subroutine ESMF_CplCompSetServicesSock (cplcomp, port, &
server, timeout, timeoutFlag, rc)

ARGUMENTS:
type (ESMF_CplComp), intent (inout) :: cplcomp
integer, intent (in) :: port

—— The following arguments require argument keyword syntax (e.g. rc=rc). —-—

character (len=x), intent (in), optional :: server
integer, intent (in), optional :: timeout
logical, intent (out), optional :: timeoutFlag
integer, intent (out), optional :: rc

DESCRIPTION:

Set the services of a Coupler Component to serve a "dual" Component for an "actual” Component. The component
tunnel is socket based.

The arguments are:

cplcomp Dual Coupler Component.
port Port number under which the actual component is being served. The valid port range is [1024, 65535].

[server] Server name where the actual component is being served. The default, i.e. if the server argument was not
provided, is localhost.

[timeout] The maximum period in seconds that this call will wait in communications with the actual component,
before returning with a timeout condition. The default is 3600, i.e. 1 hour.

[timeoutFlag] Returns .true. if the timeout was reached, . false. otherwise. If timeoutFlag was not
provided, a timeout condition will lead to a return code of rc \= ESMF_SUCCESS. Otherwise the return
value of t imeoutFlag is the sole indicator of a timeout condition.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

18.4.23 ESMF_CplCompSetVM - Call user routine to set CplComp VM properties

INTERFACE:

recursive subroutine ESMF_CplCompSetVM(cplcomp, userRoutine, &
userRc, rc)

183

ARGUMENTS:

type (ESMF_CplComp), intent (inout) :: cplcomp
interface
subroutine userRoutine (cplcomp, rc)
use ESMF_CompMod
implicit none
type (ESMF_CplComp) :: cplcomp ! must not be optional
integer, intent (out) HES ¢! ! must not be optional
end subroutine
end interface
—-— The following arguments require argument keyword syntax (e.g. rc=rc). —-—

integer, intent (out), optional :: userRc
integer, intent (out), optional :: rc
STATUS:

e This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Optionally call into user provided userRout ine which is responsible for setting Component’s VM properties.

The arguments are:

cplcomp Coupler Component.

userRoutine The Component writer must supply a subroutine with the exact interface shown above for the
userRoutine argument. Arguments in userRoutine must not be declared as optional, and the types,
intent and order must match. Prior to Fortran-2008, the subroutine must be either a module scope procedure, or
an external procedure that has a matching interface block specified for it. An internal procedure which is con-
tained within another procedure must not be used. From Fortran-2008 onwards, an internal procedure contained
within either a main program or a module procedure may be used. If the internal procedure is contained within
a module procedure, it is subject to initialization requirements. See:

The subroutine, when called by the framework, is expected to use any of the ESMF_CplCompSetVMxxx ()
methods to set the properties of the VM associated with the Coupler Component.

[userRc] Return code set by userRout ine before returning.

[re] Return code; equals ESMF_SUCCESS if there are no errors.

18.4.24 ESMF_CplCompSetVM - Call user routine through name lookup, to set CplComp VM properties

INTERFACE:

! Private name; call using ESMF_CplCompSetVM()
recursive subroutine ESMF_CplCompSetVMShObj (cplcomp, userRoutine, &
sharedObj, userRoutineFound, userRc, rc)

184

ARGUMENTS:

type (ESMF_CplComp), intent (inout) :: cplcomp
character (len=x%), intent (in) :: userRoutine
—-— The following arguments require argument keyword syntax (e.g. rc=rc). —-—

character (len=x), intent (in), optional :: sharedObj
logical, intent (out), optional :: userRoutineFound
integer, intent (out), optional :: userRc
integer, intent (out), optional :: rc

STATUS:

e This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

e This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.

Changes made after the 5.2.0r release:

8.4.0 Added argument userRoutineFound. The new argument provides a way to test availability without
causing error conditions.

DESCRIPTION:

Optionally call into user provided userRout ine which is responsible for setting Component’s VM properties. The
named userRout ine must exist in the executable, or in the shared object specified by sharedObj. In the latter
case all of the platform specific details about dynamic linking and loading apply.

The arguments are:

cplcomp Coupler Component.

userRoutine Routine to be called, specified as a character string. The Component writer must supply a subroutine
with the exact interface shown for userRoutine below. Arguments must not be declared as optional, and
the types, intent and order must match. Prior to Fortran-2008, the subroutine must be either a module scope
procedure, or an external procedure that has a matching interface block specified for it. An internal procedure
which is contained within another procedure must not be used. From Fortran-2008 onwards, an internal proce-
dure contained within either a main program or a module procedure may be used. If the internal procedure is
contained within a module procedure, it is subject to initialization requirements. See:

INTERFACE:
interface
subroutine userRoutine (cplcomp, rc)
type (ESMF_CplComp) :: cplcomp ! must not be optional
integer, intent (out) :: rc ! must not be optional

end subroutine
end interface

DESCRIPTION:

The subroutine, when called by the framework, is expected to use any of the ESMF_CplCompSetVMxxx ()
methods to set the properties of the VM associated with the Coupler Component.

185

[sharedObj] Name of shared object that contains userRout ine. If the sharedOb j argument is not provided the
executable itself will be searched for userRoutine.

[userRoutineFound] Report back whether the specified userRout ine was found and executed, or was not avail-
able. If this argument is present, not finding the userRout ine will not result in returning an error in rc. The
default is to return an error if the userRout ine cannot be found.

[userRc] Return code set by userRout ine before returning.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

18.4.25 ESMF_CplCompSetVMMaxPEs - Associate PEs with PETs in CplComp VM

INTERFACE:

subroutine ESMF_CplCompSetVMMaxPEs (cplcomp, &
maxPeCountPerPet, preflIntraProcess, preflIntraSsi, preflInterSsi, &
pthreadMinStackSize, forceChildPthreads, rc)

ARGUMENTS:

type (ESMF_CplComp), intent (inout) :: cplcomp
—-— The following arguments require argument keyword syntax (e.g. rc=rc). —--—

integer, intent (in), optional :: maxPeCountPerPet
integer, intent (in), optional :: preflIntraProcess
integer, intent (in), optional :: preflIntraSsi
integer, intent (in), optional :: prefInterSsi
integer, intent (in), optional :: pthreadMinStackSize
logical, intent (in), optional :: forceChildPthreads
integer, intent (out), optional :: rc

DESCRIPTION:

Set characteristics of the ESMF_VM for this ESMF_CplComp. Attempts to associate up to maxPeCountPerPet
PEs with each PET. Only PEs that are located on the same single system image (SSI) can be associated with the same
PET. Within this constraint the call tries to get as close as possible to the number specified by maxPeCountPerPet.

The other constraint to this call is that the number of PEs is preserved. This means that the child Component in the end
is associated with as many PEs as the parent Component provided to the child. The number of child PETs however is
adjusted according to the above rule.

The typical use of ESMF_CplCompSetVMMaxPEs () is to allocate multiple PEs per PET in a Component for user-
level threading, e.g. OpenMP.

The arguments are:

cplcomp ESMF_CplComp to set the ESMF_VM for.
[maxPeCountPerPet] Maximum number of PEs on each PET. Default for each SSI is the local number of PEs.

[prefIntraProcess] Communication preference within a single process. Currently options not documented. Use
default.

186

[prefIntraSsi] Communication preference within a single system image (SSI). Currently options not documented.
Use default.

[prefInterSsi] Communication preference between different single system images (SSIs). Currently options not doc-
umented. Use default.

[pthreadMinStackSize] Minimum stack size in byte of any child PET executing as Pthread. By default single
threaded child PETs do not execute as Pthread, and their stack size is unaffected by this argument. However, for
multi-threaded child PETs, or if forceChildPthreads is .true., child PETs execute as Pthreads with
their own private stack.

For cases where OpenMP threads are used by the user code, each thread allocates its own private stack. For
all threads other than the master, the stack size is set via the typical OMP__STACKSIZE environment variable
mechanism. The PET itself, however, becomes the master of the OpenMP thread team, and is not affected by
OMP__STACKSIZE. It is the master’s stack that can be sized via the pthreadMinStackSize argument, and
a large enough size is often critical.

When pthreadMinStackSize is absent, the default is to use the system default set by the 1imit or
ulimit command. However, the stack of a Pthread cannot be unlimited, and a shell stacksize setting of
unlimited, or any setting below the ESMF implemented minimum, will result in setting the stack size to 20MiB
(the ESMF minimum). Depending on how much private data is used by the user code under the master thread,
the default might be too small, and pthreadMinStackSize must be used to allocate sufficient stack space.

[forceChildPthreads] For .true., force each child PET to execute in its own Pthread. By default, . false., single
PETs spawned from a parent PET execute in the same thread (or MPI process) as the parent PET. Multiple child
PETs spawned by the same parent PET always execute as their own Pthreads.

[re] Return code; equals ESMF_SUCCESS if there are no errors.

18.4.26 ESMF_CplCompSetVMMaxThreads - Set multi-threaded PETs in CplComp VM

INTERFACE:

subroutine ESMF_CplCompSetVMMaxThreads (cplcomp, &
maxPetCountPerVas, preflIntraProcess, preflIntraSsi, preflInterSsi, &
pthreadMinStackSize, forceChildPthreads, rc)

ARGUMENTS:

type (ESMF_CplComp), intent (inout) :: cplcomp
—— The following arguments require argument keyword syntax (e.g. rc=rc). —-—

integer, intent (in), optional :: maxPetCountPerVas
integer, intent (in), optional :: prefIntraProcess
integer, intent (in), optional :: preflIntraSsi
integer, intent (in), optional :: preflInterSsi
integer, intent (in), optional :: pthreadMinStackSize
logical, intent (in), optional :: forceChildPthreads
integer, intent (out), optional :: rc

DESCRIPTION:

187

Set characteristics of the ESMF_ VM for this ESMF_ CplComp. Attempts to provide maxPetCountPerVas threaded
PETs in each virtual address space (VAS). Only as many threaded PETs as there are PEs located on the single system
image (SSI) can be associated with the VAS. Within this constraint the call tries to get as close as possible to the
number specified by maxPetCountPerVas.

The other constraint to this call is that the number of PETs is preserved. This means that the child Component in the
end is associated with as many PETs as the parent Component provided to the child. The threading level of the child
PETs however is adjusted according to the above rule.

The typical use of ESMF_CplCompSetVMMaxThreads () is to run a Component multi-threaded with groups of
PETs executing within a common virtual address space.

The arguments are:

cplcomp ESMF_CplComp to set the ESMF_VM for.

[maxPetCountPerVas] Maximum number of threaded PETs in each virtual address space (VAS). Default for each
SSI is the local number of PEs.

[prefIntraProcess] Communication preference within a single process. Currently options not documented. Use
default.

[prefIntraSsi] Communication preference within a single system image (SSI). Currently options not documented.
Use default.

[prefInterSsi] Communication preference between different single system images (SSIs). Currently options not doc-
umented. Use default.

[pthreadMinStackSize] Minimum stack size in byte of any child PET executing as Pthread. By default single
threaded child PETs do not execute as Pthread, and their stack size is unaffected by this argument. However, for
multi-threaded child PETs, or if forceChildPthreads is .true., child PETs execute as Pthreads with
their own private stack.

For cases where OpenMP threads are used by the user code, each thread allocates its own private stack. For
all threads other than the master, the stack size is set via the typical OMP__STACKSIZE environment variable
mechanism. The PET itself, however, becomes the master of the OpenMP thread team, and is not affected by
OMP__STACKSIZE. It is the master’s stack that can be sized via the pthreadMinStackSize argument, and
a large enough size is often critical.

When pthreadMinStackSize is absent, the default is to use the system default set by the 1imit or
ulimit command. However, the stack of a Pthread cannot be unlimited, and a shell stacksize setting of
unlimited, or any setting below the ESMF implemented minimum, will result in setting the stack size to 20MiB
(the ESMF minimum). Depending on how much private data is used by the user code under the master thread,
the default might be too small, and pthreadMinStackSize must be used to allocate sufficient stack space.

[forceChildPthreads] For . true., force each child PET to execute in its own Pthread. By default, . false., single
PETs spawned from a parent PET execute in the same thread (or MPI process) as the parent PET. Multiple child
PETs spawned by the same parent PET always execute as their own Pthreads.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

18.4.27 ESMF_CplCompSetVMMinThreads - Set a reduced threading level in CplComp VM

INTERFACE:

188

subroutine ESMF_CplCompSetVMMinThreads (cplcomp, &
maxPeCountPerPet, preflIntraProcess, preflIntraSsi, preflInterSsi, &
pthreadMinStackSize, forceChildPthreads, rc)

ARGUMENTS:

type (ESMF_CplComp), intent (inout) :: cplcomp
—— The following arguments require argument keyword syntax (e.g. rc=rc). —-—

integer, intent (in), optional :: maxPeCountPerPet
integer, intent (in), optional :: prefIntraProcess
integer, intent (in), optional :: prefIntraSsi
integer, intent (in), optional :: preflInterSsi
integer, intent (in), optional :: pthreadMinStackSize
logical, intent (in), optional :: forceChildPthreads
integer, intent (out), optional :: rc

DESCRIPTION:

Set characteristics of the ESMF_VM for this ESMF_CplComp. Reduces the number of threaded PETs in each VAS.
The max argument may be specified to limit the maximum number of PEs that a single PET can be associated with.

Several constraints apply: 1) the number of PEs cannot change, 2) PEs cannot migrate between single system images
(SSIs), 3) the number of PETs cannot increase, only decrease, 4) PETs cannot migrate between virtual address spaces
(VASs), nor can VASs migrate between SSIs.

The typical use of ESMF_CplCompSetVMMinThreads () is to run a Component across a set of single-threaded
PETs.

The arguments are:

cplcomp ESMF_CplComp to set the ESMF_VM for.
[maxPeCountPerPet] Maximum number of PEs on each PET. Default for each SSI is the local number of PEs.

[prefIntraProcess] Communication preference within a single process. Currently options not documented. Use
default.

[prefIntraSsi] Communication preference within a single system image (SSI). Currently options not documented.
Use default.

[prefInterSsi] Communication preference between different single system images (SSIs). Currently options not doc-
umented. Use default.

[pthreadMinStackSize] Minimum stack size in byte of any child PET executing as Pthread. By default single
threaded child PETs do not execute as Pthread, and their stack size is unaffected by this argument. However, for
multi-threaded child PETsS, or if forceChildPthreads is .true., child PETs execute as Pthreads with
their own private stack.

For cases where OpenMP threads are used by the user code, each thread allocates its own private stack. For
all threads other than the master, the stack size is set via the typical OMP_STACKSIZE environment variable
mechanism. The PET itself, however, becomes the master of the OpenMP thread team, and is not affected by
OMP__STACKSIZE. It is the master’s stack that can be sized via the pthreadMinStackSize argument, and
a large enough size is often critical.

When pthreadMinStackSize is absent, the default is to use the system default set by the 1imit or
ulimit command. However, the stack of a Pthread cannot be unlimited, and a shell stacksize setting of
unlimited, or any setting below the ESMF implemented minimum, will result in setting the stack size to 20MiB
(the ESMF minimum). Depending on how much private data is used by the user code under the master thread,
the default might be too small, and pthreadMinStackSize must be used to allocate sufficient stack space.

189

[forceChildPthreads] For . true., force each child PET to execute in its own Pthread. By default, . false., single
PETs spawned from a parent PET execute in the same thread (or MPI process) as the parent PET. Multiple child
PETs spawned by the same parent PET always execute as their own Pthreads.

[re] Return code; equals ESMF_SUCCESS if there are no errors.

18.4.28 ESMF_CplCompValidate — Ensure the CplComp is internally consistent

INTERFACE:

subroutine ESMF_CplCompValidate (cplcomp, rc)

ARGUMENTS:
type (ESMF_CplComp), intent (in) :: cplcomp
—— The following arguments require argument keyword syntax (e.g. rc=rc). —-—
integer, intent (out), optional :: rc
STATUS:

e This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

DESCRIPTION:

Currently all this method does is to check that the cplcomp was created.

The arguments are:

cplcomp ESMF_CplComp to validate.

[re] Return code; equals ESMF_SUCCESS if there are no errors.

18.4.29 ESMF_CplCompWait - Wait for a CplComp to return

INTERFACE:

subroutine ESMF_CplCompWait (cplcomp, syncflag, &
timeout, timeoutFlag, userRc, rc)

ARGUMENTS:

190

type (ESMF_CplComp) , intent (inout) :: cplcomp
—— The following arguments require argument keyword syntax (e.g. rc=rc). —-

type (ESMF_Sync_Flag), intent(in), optional :: syncflag
integer, intent (in), optional :: timeout
logical, intent (out), optional :: timeoutFlag
integer, intent (out), optional :: userRc
integer, intent (out), optional :: rc

STATUS:

e This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

e This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.

Changes made after the 5.2.0r release:

5.3.0 Added argument t imeout. Added argument t imeoutFlag. The new arguments provide access to the
fault-tolerant component features.

DESCRIPTION:

When executing asynchronously, wait for an ESMF_CplComp to return.

The arguments are:

cplcomp ESMF_CplComp to wait for.

[syncflag] Blocking behavior of this method call. See section[54.57]for a list of valid blocking options. Default option
is ESMF__SYNC_VASBLOCKING which blocks PETs and their spawned off threads across each VAS but does
not synchronize PETS that run in different VASs.

[timeout] The maximum period in seconds the actual component is allowed to execute a previously invoked com-
ponent method before it must communicate back to the dual component. If the actual component does not
communicate back in the specified time, a timeout condition is raised on the dual side (this side). The default is
3600, i.e. 1 hour. The t imeout argument is only supported for connected dual components.

[timeoutFlag] Returns .true. if the timeout was reached, .false. otherwise. If timeoutFlag was not
provided, a timeout condition will lead to a return code of rc \= ESMF_SUCCESS. Otherwise the return
value of t imeoutFlag is the sole indicator of a timeout condition.

[userRc] Return code set by userRout ine before returning.

[re] Return code; equals ESMF_SUCCESS if there are no errors.

18.4.30 ESMF_CplCompWriteRestart — Call the CplComp’s write restart routine

INTERFACE:

191

recursive subroutine ESMF_CplCompWriteRestart (cplcomp, &
importState, exportState, clock, syncflag, phase, timeout, timeoutFlag, &
userRc, rc)

ARGUMENTS:

type (ESMF_CplComp) , intent (inout) :: cplcomp
—-— The following arguments require argument keyword syntax (e.g. rc=rc). —--—

type (ESMF_State), intent (inout), optional :: importState
type (ESMF_State), intent (inout), optional :: exportState
type (ESMF_Clock), intent (inout), optional :: clock
type (ESMF_Sync_Flag), intent (in), optional :: syncflag
integer, intent (in), optional :: phase
integer, intent (in), optional :: timeout
logical, intent (out), optional :: timeoutFlag
integer, intent (out), optional :: userRc
integer, intent (out), optional :: rc

STATUS:

e This interface is backward compatible with ESMF versions starting at 5.2.0r. If code using this interface com-
piles with any version of ESMF starting with 5.2.0r, then it will compile with the current version.

e This interface was modified since ESMF version 5.2.0r. The fact that code using this interface compiles with the
current ESMF version does not guarantee that it compiles with previous versions of this interface. If user code
compatibility with version 5.2.0r is desired then care must be taken to limit the use of this interface to features
that were available in the 5.2.0r release.

Changes made after the 5.2.0r release:

5.3.0 Added argument t imeout. Added argument t imeoutFlag. The new arguments provide access to the
fault-tolerant component features.

DESCRIPTION:

Call the associated user write restart routine for an ESMF_CplComp.

The arguments are:

cplcomp ESMF_CplComp to call run routine for.

[importState] ESMF_State containing import data. If not present, a dummy argument will be passed to the user-
supplied routine. The importState argument in the user code cannot be optional.

[exportState] ESMF_State containing export data. If not present, a dummy argument will be passed to the user-
supplied routine. The exportState argument in the user code cannot be optional.

[clock] External ESMF_Clock for passing in time information. This is generally the parent component’s clock, and
will be treated as read-only by the child component. The child component can maintain a private clock for its
own internal time computations. If not present, a dummy argument will be passed to the user-supplied routine.
The clock argument in the user code cannot be optional.

[syncflag] Blocking behavior of this method call. See section[54.571for a list of valid blocking options. Default option
is ESMF__SYNC_VASBLOCKING which blocks PETs and their spawned off threads across each VAS but does
not synchronize PETS that run in different VASs.

192

[phase] Component providers must document whether each of their routines are single-phase or multi-phase. Single-
phase routines require only one invocation to complete their work. Multi-phase routines provide multiple sub-
routines to accomplish the work, accommodating components which must complete part of their work, return to
the caller and allow other processing to occur, and then continue the original operation. For multiple-phase child
components, this is the integer phase number to be invoked. For single-phase child components this argument
is optional. The default is 1.

[timeout] The maximum period in seconds that this call will wait in communications with the actual component,
before returning with a timeout condition. The default is 3600, i.e. 1 hour. The timeout argument is only
supported for connected dual components.

[timeoutFlag] Returns .true. if the timeout was reached, . false. otherwise. If timeoutFlag was not
provided, a timeout condition will lead to a return code of rc \= ESMF_SUCCESS. Otherwise the return
value of t imeoutFlag is the sole indicator of a timeout condition.

[userRc] Return code set by userRout ine before returning.

[rc] Return code; equals ESMF_SUCCESS if there are no errors.

19 SciComp Class

19.1 Description

In Earth system modeling, a particular piece of code representing a physical domain, such as an atmospheric model or
an ocean model, is typically implemented as an ESMF Gridded Component, or ESMC_GridComp. However, there
are times when physical domains, or realms, need to be represented, but aren’t actual pieces of code, or software.
These domains can be implemented as ESMF Science Components, or ESMC__SciComp.

Unlike Gridded and Coupler Components, Science Components are not associated with software; they don’t include
execution routines such as initialize, run and finalize. The main purpose of a Science Component is to provide a
container for Attributes within a Component hierarchy.

19.2 Use and Examples

A Science Component is a container object intended to represent scientific domains, or realms, in an Earth Science
Model. It’s primary purpose is to provide a means for representing Component metadata within a hierarchy of Com-
ponents, and it does this by being a container for Attributes as well as other Components.

19.2.1 Use ESMF_SciComp and Attach Attributes

This example illustrates the use of the ESMF_SciComp to attach Attributes within a Component hierarchy. The
hierarchy includes Coupler, Gridded, and Science Components and Attributes are attached to the Science Components.
For demonstrable purposes, we’ll add some CIM Component attributes to the Gridded Component.

Create the top 2 levels of the Component hierarchy. This example creates a parent Coupler Component and 2 Gridded
Components as children.

! Create top-level Coupler Component
cplcomp = ESMF_CplCompCreate (name="coupler_component", rc=rc)

! Create Gridded Component for Atmosphere

193

atmcomp = ESMF_GridCompCreate (name="Atmosphere", rc=rc)

! Create Gridded Component for Ocean
ocncomp = ESMF_GridCompCreate (name="Ocean", rc=rc)

Now add CIM Attribute packages to the Component. Also, add a CIM Component Properties package, to contain two
custom attributes.

convCIM = 'CIM 1.5’
purpComp = "ModelComp’
purpProp = ’'CompProp’
purpField = ’'Inputs’
purpPlatform = "Platform’

convISO = "ISO 19115’
purpRP = ’RespParty’
purpCitation = ’"Citation’

! Add CIM Attribute package to the Science Component
call ESMF_AttributeAdd (atmcomp, convention=convCIM, &
purpose=purpComp, attpack=attpack, rc=rc)

The Attribute package can also be retrieved in a multi-Component setting like this:

call ESMF_AttributeGetAttPack (atmcomp, convCIM, purpComp, &
attpack=attpack, rc=rc)

Now, add some CIM Component attributes to the Atmosphere Grid Component.

|

! Top-level model component attributes, set on gridded component

|

call ESMF_AttributeSet (atmcomp, ’ShortName’, ’'EarthSys_Atmos’, &
attpack=attpack, rc=rc)

call ESMF_AttributeSet (atmcomp, ’LongName’, &
"Earth System High Resolution Global Atmosphere Model’, &
attpack=attpack, rc=rc)

call ESMF_AttributeSet (atmcomp, ’Description’, &
"EarthSys brings together expertise from the global ' // &
"community in a concerted effort to develop coupled ’ // &
"climate models with increased horizontal resolutions. ' // &
"Increasing the horizontal resolution of coupled climate ' // &
"models will allow us to capture climate processes and ' // &
"weather systems in much greater detail.’, &
attpack=attpack, rc=rc)

call ESMF_AttributeSet (atmcomp, ’Version’, '2.0’, &
attpack=attpack, rc=rc)

194

call ESMF_AttributeSet (atmcomp, ’'ReleaseDate’, "2009-01-01T00:00:00Z’, &
attpack=attpack, rc=rc)

call ESMF_AttributeSet (atmcomp, ’'ModelType’, ’'aerosol’, &
attpack=attpack, rc=rc)

call ESMF_AttributeSet (atmcomp, ’'URL’, &
"www.earthsys.org’, attpack=attpack, rc=rc)

Now create a set of Science Components as a children of the Atmosphere Gridded Component. The hierarchy is as
follows:

e Atmosphere

— AtmosDynamicalCore
* AtmosAdvection

— AtmosRadiation

After each Component is created, we need to link it with its parent Component. We then add some standard CIM
Component properties as well as Scientific Properties to each of these components.

|
! Atmosphere Dynamical Core Science Component
i

dc_scicomp = ESMF_SciCompCreate (name="AtmosDynamicalCore", rc=rc)

call ESMF_AttributeAdd (dc_scicomp, &
convention=convCIM, purpose=purpComp, &
attpack=attpack, rc=rc)

call ESMF_AttributeSet (dc_scicomp, "ShortName", "AtmosDynamicalCore", &
attpack=attpack, rc=rc)

call ESMF_AttributeSet (dc_scicomp, "LongName", &
"Atmosphere Dynamical Core", &
attpack=attpack, rc=rc)

purpSci = ’SciProp’

dc_sciPropAtt (1) = ’TopBoundaryCondition’
dc_sciPropAtt (2) = ’"HeatTreatmentAtTop’
dc_sciPropAtt (3) '"WindTreatmentAtTop’

call ESMF_AttributeAdd(dc_scicomp, &
convention=convCIM, purpose=purpSci, &
attrList=dc_sciPropAtt, &
attpack=attpack, rc=rc)

call ESMF_AttributeSet (dc_scicomp, ’'TopBoundaryCondition’, &
"radiation boundary condition’, &

195

attpack=attpack, rc=rc)

call ESMF_AttributeSet (dc_scicomp, ’'HeatTreatmentAtTop’, &
"some heat treatment’, &
attpack=attpack, rc=rc)

call ESMF_AttributeSet (dc_scicomp, ’'WindTreatmentAtTop’, &
"some wind treatment’, &
attpack=attpack, rc=rc)

!

! Atmosphere Advection Science Component
|

adv_scicomp = ESMF_SciCompCreate (name="AtmosAdvection", rc=rc)

call ESMF_AttributeAdd (adv_scicomp, &
convention=convCIM, purpose=purpComp, &
attpack=attpack, rc=rc)

call ESMF_AttributeSet (adv_scicomp, "ShortName", "AtmosAdvection", &
attpack=attpack, rc=rc)
call ESMF_AttributeSet (adv_scicomp, "LongName", "Atmosphere Advection", &

attpack=attpack, rc=rc)

adv_sciPropAtt (1) "TracersSchemeName’
adv_sciPropAtt (2) = ’'TracersSchemeCharacteristics’
adv_sciPropAtt (3) = ’"MomentumSchemeName’

call ESMF_AttributeAdd (adv_scicomp, &
convention=convCIM, purpose=purpSci, &
attrList=adv_sciPropAtt, &
attpack=attpack, rc=rc)

call ESMF_AttributeSet (adv_scicomp, ’TracersSchemeName’, 'Prather’, &
attpack=attpack, rc=rc)

call ESMF_AttributeSet (adv_scicomp, ’'TracersSchemeCharacteristics’, &
"modified Euler’, &
attpack=attpack, rc=rc)

call ESMF_AttributeSet (adv_scicomp, ’'MomentumSchemeName’, ’Van Leer’, &

attpack=attpack, rc=rc)

|
! Atmosphere Radiation Science Component
i

rad_scicomp = ESMF_SciCompCreate (name="AtmosRadiation", rc=rc)

call ESMF_AttributeAdd(rad_scicomp, &
convention=convCIM, purpose=purpComp, &
attpack=attpack, rc=rc)

call ESMF_AttributeSet (rad_scicomp, "ShortName", "AtmosRadiation", &
attpack=attpack, rc=rc)

call ESMF_AttributeSet (rad_scicomp, "LongName", &
"Atmosphere Radiation", &
attpack=attpack, rc=rc)

196

rad_sciPropAtt (1) = ’LongwaveSchemeType’
rad_sciPropAtt (2) = ’'LongwaveSchemeMethod’

call ESMF_AttributeAdd (rad_scicomp, &
convention=convCIM, purpose=purpSci, &
attrList=rad_sciPropAtt, &
attpack=attpack, rc=rc)

call ESMF_AttributeSet (rad_scicomp, &
"LongwaveSchemeType’, &
"wide-band model’, &
attpack=attpack, rc=rc)

call ESMF_AttributeSet (rad_scicomp, &
"LongwaveSchemeMethod’, &
"two-stream’, &
attpack=attpack, rc=rc)

Finally, destroy all of the Components.

call ESMF_SciCompDestr